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Abstract 
 

The demand for bandwidth in computer networks has been growing at a steady pace for the last several 
years, and a significant portion of that traffic is for the World Wide Web.  At the same time, a large fraction of 
Internet users continue to rely on slow “last mile” links (such as modems and wireless links).  We present a 
transparent proxy system that uses deltas and compression to increase the performance of web traffic over slow 
links.  By using compression, the average transfer time for HTML objects can be reduced by a factor of 2.3, while 
using deltas can reduce the transfer time by a factor of 6.0.  The techniques used by this system, if utilized by other 
proxies and/or web servers, could also be used to reduce the amount of web traffic that traverses a network. 
 
 

1  Introduction 
 

During the last few years the amount of 
traffic on the Internet has been increasing at a rapid 
pace.  While many people have high-speed access to 
the Internet through their employer or university, a 
large fraction of users are still reliant on slow 
modems for their Internet access.  Web caches have 
been placed in certain networks to help reduce 
network traffic, but the usefulness of these proxies is 
hindered by the increasing use of “uncacheable” 
dynamic content on web servers.  To assist end-
clients and proxies in determining if a locally cached 
copy is still up-to-date, the HTTP protocol was 
extended to allow for “conditional requests” that 
instruct web servers to transmit an object only if it 
has changed since a certain date.   

HTTP’s conditional request mechanism is 
useful, but this “all-or-nothing” approach ignores the 
fact that the current version of an object has a 
significant amount of content in common with prior 
versions.  As a result, a more dynamic approach that 
uses deltas to transmit only the modifications to an 
object should have a useful benefit.  In this paper we 
describe the xProxy system that can take advantage 
of deltas and significantly improve the download 
performance of web objects over a slow link.  In 
those situations where a delta cannot be used (e.g., 

the first time that a particular page is visited), using 
compression is a very viable and worthwhile 
alternative.  The xProxy system is transparent to both 
web browsers and web servers, and can therefore be 
used in any network.  If the techniques used by 
xProxy are incorporated into future web servers and 
clients, then a significant amount of bandwidth 
savings could be realized in the Internet. 

In the next section we describe the 
architecture of xProxy and provide details on our 
implementation.  Section 3 provides results on the 
performance improvements we obtained by using the 
system, and Section 4 describes related work.  
Section 4 also discusses some of the prior research 
that pertains to the average characteristics on how 
people “surf” the web—in this paper we make no 
claims on how people access the web.  Instead, we 
operate under the assumption (substantiated by these 
research papers) that a reasonable amount of pages 
are visited repeatedly.  For example, some sites are 
revisited due to personal preference (e.g., a news site 
that has relatively few advertisements), while other 
sites are visited because of necessity (e.g., “home 
banking” information for a checking account is only 
available on a particular bank’s web site).  

 



 

 
Figure 1:  Diagram of the xProxy architecture; this diagram is a simplified representation and does not 

convey that a Server Proxy can serve multiple Client Proxies or that the Server Proxy need not be located 
near the Client Proxy. 

 

2  Implementation 
 
2.1  Overview 
 

In order to allow deltas and compression to 
be used within the existing web infrastructure, we 
designed the xProxy system to be transparent to both 
web browsers and web servers.  The overall system 
architecture for this design is depicted above in 
Figure 1.  xProxy consists of two web caching 
proxies, where each proxy is placed on either side of 
a slow link. The “Client Proxy” (CP) is essentially a 
daemon that resides on the end-user’s machine, while 
the “Server Proxy” (SP) can be placed anywhere in 
the network that has a reasonably high speed 
connection to the Internet (e.g., on a 100 Mbps 
subnet that is near the modem bank of the client’s 
ISP).  The CP and SP both operate as normal HTTP 
traffic proxies, except that they have been enhanced 
to utilize deltas and compression.  The CP is intended 
to serve only the end-client’s machine, while the SP 
could potentially service a large set of users. 
 
2.2  Client Proxy (CP) 
 

To utilize the xProxy system, a web browser 
must be configured to use the CP as its proxy.  Since 
all common web browsers already support the use of 
proxies, this configuration change is trivial.  In the 
case of a novice user, a software program (or one of 
the many automatic proxy detection protocols) could 
be used to automate this change. By specifying the 
CP as a proxy, all web requests from the web browser 
will be routed through the CP.  This change allows 
the CP to determine whether it can satisfy a request 
without using the slow network connection by 
utilizing a locally stored copy of the resource as a 
substitute.  If there is not a locally stored copy, or the 
local copy is not suitable for reuse (as discussed 
below), then the CP will use the slow network 
connection to forward the client’s request to the SP.  
Once the CP has received a reply from the SP, it 
caches a copy of the reply and, if necessary, takes 

action to produce a conventional response that is 
suitable for use by the web browser. 
 
2.3  Server Proxy (SP) 
 

The Server Proxy operates in a similar 
manner as the Client Proxy.  In fact, the primary 
difference between a SP and a CP is that the SP will 
forward web requests to the originating servers, while 
the CP will forward all of its requests to a proxy.  
Like the CP, the SP will first try to satisfy requests 
using a local copy of the resource.  A local copy is 
only used if the originating server specified, via 
HTTP caching primitives, that the cached copy is 
“fresh” (i.e., the object may be used to service other 
requests for a server-specified length of time).  If the 
proxy has a local copy that can not be considered 
fresh (i.e., the copy is “stale”), then a unique MD5 
identifier of that page is included in the outgoing 
request in the hope that the recipient (or any 
transparent proxies residing on the path to the 
recipient) can use the identifier to create a “delta” 
response that only contains the differences between 
the current and locally stored versions of the object.  
If a delta response is received, then the proxy will use 
that information to reconstruct the full version of the 
resource, which is then processed like any 
conventional response. 

When preparing a response to a request, the 
proxy will create a delta response if it received a 
MD5 page identifier in the request and a copy of that 
page is stored locally on the proxy.  In cases where a 
delta response cannot be used for a textual object, the 
object is compressed before it is transmitted to the 
requester.  Objects that are not text (e.g., images) are 
not compressed because they are typically 
represented in a format that is natively compressed.  
Our system can compute deltas for any file type (e.g., 
images, other binary files), except that deltas might 
not be worthwhile for such file types (see below for 
more details). 



2.4  Example of System Execution 
 

We will now consider an example scenario 
where a web browser makes a request for an HTML 
page and an image.  After the CP receives the two 
requests, it finds that neither object is stored locally 
and forwards the requests to the SP.  The SP also 
does not have a local copy of the objects, so it 
forwards the requests to the originating server.  After 
receiving the replies from the server, the SP stores 
local copies of the objects, compresses the response 
for the HTML object, and forwards both replies to 
the CP over the slow network link.  The CP 
decompresses the HTML object, stores a local copy 
of both objects, and then forwards a copy of the 
objects to the web browser.  

Supposing that the image was specified by 
the server as cacheable and the HTML page was 
specified as not being cacheable, then when the user 
returns to the page in the near future the request for 
the image will be immediately serviced by the CP, 
while the HTML object will make another round-trip 
to the originating server.  However, since the SP and 
CP now both share a common version of that 
document, a delta, instead of a compressed file, can 
be transferred between the two proxies. 
 
2.5  Implementation Features 
 

Our implementation of xProxy contains a 
large number of features and unique capabilities.  
Although some of these features are present in other 
related projects, in most cases those projects only 
offered a small subset of these features (typically 
only one). 
 
XDFS 
 

Our implementation utilized an application 
level file API called XDFS (“xDelta File System”) 
[Mac00] for caching local copies of web objects and 
computing deltas in the proxies.  XDFS is a key 
component of xProxy that provides the ability to 
store multiple versions of an object and to store those 
versions efficiently on disk using deltas.  More 
importantly, XDFS can also compute in linear time a 
delta between any two arbitrary versions of an object. 
XDFS uses the xDelta algorithm [Mac98] for 
computing deltas and stores information on disk 
using the Berkeley DB [OBS99].  Internally, XDFS 
stores the various versions of a file by using “forward 
deltas” from an older base version to the more recent 
versions of a file.  If the size of the most recent delta 
exceeds a certain threshold, then XDFS will 
automatically create a new base object against which 

future deltas will be computed.  XDFS also computes 
an MD5 signature for each version of an object, and 
as a result we choose to use MD5 as our mechanism 
for allowing a CP to report its base version to an SP 
for delta computation. 

Since XDFS stores the various instances of a 
file using deltas, there are certain cases where XDFS 
does not need to compute a delta “on the fly” and can 
instead use the delta that is already stored on disk—
the most obvious example is where a fresh version of 
an object is cached locally as a delta against a version 
which the client happens to possess.  The use of a 
database provided us with some useful features, such 
as the buffer manager’s automatic management of 
swapping data to and from disk.  In order to increase 
the performance of xProxy, we modified the 
transactional behavior so that modifications and log 
records are not forced to disk—before this change we 
experienced a significant amount of hard disk 
thrashing (a separate disk was not used for database 
logs).  Although this change will affect the 
persistency of data, it will not severely affect the 
system since the cached data is essentially soft state. 

The XDFS API currently supports only 
synchronous calls and is not completely thread-safe 
(data corruption does not occur, but XDFS can 
readily cause deadlocks in the database).  As a result, 
it was not feasible for us to implement xProxy by 
modifying the source code of a pre-existing web 
caching proxy (e.g., Squid), since those proxies 
expect an asynchronous API that supports callbacks.  
For our implementation we resorted to using a global 
lock for every call to XDFS.  Although this lock 
would be undesirable for an actual high-load 
deployment of xProxy, we did not observe any 
significant issues during our performance evaluations 
because it was not the bottleneck in our evaluations.  
 
Compression 
 

To the best of our knowledge, xProxy is the 
first actual web proxy implementation to fully utilize 
compression.  Although the HTTP specification has 
included compression-related mechanisms for a 
relatively long period of time, it has yet to become 
widely adopted by web servers.  Both Netscape and 
Internet Explorer (IE) web browsers have built-in 
support for compression, and the Apache web server 
must be specially configured to handle compression.   
We selected gzip [D96] as our compression scheme 
because it is supported by both Netscape and IE, a 
public implementation of the algorithm is widely 
available, and the compression performance is 
superior to other algorithms (e.g., “compress” in 
UNIX).  Our original purpose for adding 
compression was to lessen the negative performance 



impact for cases where deltas cannot be used; we 
were pleasantly surprised by the amount of 
improvement that was gained (see below for more 
details). 
 
HTTP 1.1 
 

We invested a significant amount of time in 
creating a proxy implementation that would conform 
to HTTP/1.1—our implementation required 5000 
lines of C/C++ code (excluding any code for XDFS, 
compression, and the Berkeley DB).  HTTP version 
1.1 provides certain features over 1.0 that can 
increase overall performance and reduce both CPU 
and network overhead.  The current version of 
xProxy uses persistent connections so that multiple 
objects can be requested and received over the same 
network connection.  With HTTP/1.0 at most one 
object can be requested for each connection. 

The xDelta proxies also support 
“pipelining”, whereby multiple requests are sent over 
a single persistent connection without waiting for 
each response.  Pipelining requests serves to reduce 
latency and also makes it possible for multiple 
responses to be returned in the same network packet.  
Pipelining is particularly important for proxies 
because they handle requests that are destined for 
many different servers.  Without pipelining, a proxy 
would not be able to service multiple requests from a 
particular network connection in parallel.  For 
example, by pipelining requests to a proxy for 
“a.com” and “b.com”, the proxy can simultaneously 
retrieve information from those two sites.  This 
feature is particularly important due to a protocol-
defined restriction in HTTP/1.1 that limits each client 
to at most two connections to the same proxy or web 
server—this limit does not apply to proxies (which 
are permitted to use 2*N connections, where ‘N’ is 
the number of users) and no such limit exists in 
HTTP/1.0. 

Most web servers currently support 
persistent connections and pipelining, although we 
found certain implementations to be better than 
others.  For example, older versions of Apache only 
allow up to 5 requests to be made over a single 
persistent connection and many web servers will only 
return responses in separate network packets even 
though some responses could have been consolidated 
into fewer packets.  In terms of web browsers, 
Netscape currently supports only HTTP/1.0, although 
the HTTP Working Group indicates that the latest 
beta version of Netscape supports HTTP/1.1. 

We did implement a special version of our 
client proxy that is optimized for HTTP/1.0 clients.  

The HTTP/1.0 optimized version of our proxy 
communicates to the client using HTTP/1.0, but all 
other communication that is performed on behalf of 
that client (e.g., communication to the SP or servers) 
is conducted using HTTP/1.1.  HTTP/1.0 clients tend 
to make a large number of simultaneous requests 
using multiple network connections (Netscape uses 
up to four), so this particular version of xProxy uses 
pipelining to multiplex those requests over a single 
persistent HTTP/1.1 network connection. 

Microsoft’s IE web browser does support 
HTTP/1.1 and persistent connections, but it does not 
pipeline requests.  By default, IE uses HTTP/1.0 
through a proxy, but we took advantage of a user-
specifiable option that causes IE to use HTTP/1.1 
with proxies.  Since neither Netscape nor IE 
implement the full HTTP/1.1 functionality, we 
created a custom test client and used that client to 
analyze the performance of the system.  This test 
client does not actually render the HTML pages 
graphically, but we did enhance it with timers that 
would allow us to accurately measure the duration of 
each request and the various phases that comprise 
each request. 

Mogul and Douglis have recently published 
an IETF draft that outlines an approach for using 
delta encoding in HTTP.  The latest version 
[MKD00] outlines the addition of several new 
attribute headers and a new status code.  Although 
our implementation does conform to this proposal, it 
does not use all of the proposed headers.  For 
example, the proposal outlines a means by which web 
servers can specify a template for a site (against 
which deltas can be computed) as well as a 
“clustering” attribute that allows servers to specify 
how a client can determine if computing a delta 
against a “neighboring” URL is a worthwhile 
endeavor for producing an effective (i.e., small) delta.   
Our current implementation does “cluster” URLs that 
execute the same CGI program but have a different 
CGI query string (versions are indexed by the prefix 
string up to the ‘?’ character).   

We also experimented with using deltas on 
the first-access to a page by using a “neighboring” 
URL (i.e., a cached object from the same web server) 
as the baseline version.  The resulting deltas not only 
had a larger variation in size, but they were also an 
average of 40% the size of the full-version of the 
object. The compression in our implementation 
typically results in objects that are smaller than 40%, 
so we elected not to expand the clustering feature to 
consider neighboring pages. 



Table 1:  Average savings from using compression and deltas. 

 
3  Results 
 
 The goal of this evaluation was to examine 
the update patterns of web objects (HTML files, 
output generated by CGI scripts, images), quantify 
the amount of change over time (differences between 
various versions of a file), evaluate the benefits of 
transferring deltas between file versions as opposed 
to entire uncompressed or compressed files, and 
determine the overall performance speedup gained by 
using xProxy.  The following sections detail the 
experimental setups and the results we obtained. 
 
3.1  Reduction in Bandwidth  
 

To gauge the overall benefit of deltas we 
initially selected six popular web sites and used a 
custom program to obtain the homepage from each 
site on a regular basis for an entire week (April 2nd to 
April 9th, 2000).  The program polled each site on an 
hourly basis, and at 15 minutes past the hour for even 
numbered hours.  After collecting the pages, we used 
another program to create a delta between each 
version of a page and all future versions of that page.   

Table 1 presents the overall statistics for 
these deltas.  The table shows that a wide variation 
exists for the average size of a delta among the web 
sites.  For example, the average size delta for AOL 
was 3.17%, while the average delta for slashdot.org is 
nearly 25%.  The worst case for slashdot was 
47.15%, which is only slightly worse than the 
average case performance of the UNIX “compress” 
utility’s 44.94%.  Compared to the compress utility, 
deltas have an obvious benefit; however, the benefits 
of deltas are less obvious when compared with gzip.  
 The table also presents results for 
compressed deltas.  The data indicates that 
compressing deltas does have some benefit, but we 
feel that the margin of improvement is not large 
enough to make any definite conclusions on whether 
all deltas should be compressed.  Although xProxy 
does not currently compressed deltas, it would 
require only trivial changes in the code to enable the 
feature. 
 We also experimented with using deltas 
against graphical images.  In most cases we found 

that deltas for graphical images are usually 80 to 90% 
the size of the full version, and is therefore not 
worthwhile.  This result is not entirely dissuasive 
considering that most images remain unchanged for a 
large period of time and can be cached using 
traditional means.  In addition, we also found a 
NASDAQ graph at http://www.golden1.com/ for 
which the deltas never exceeded 40% the size of the 
original graph. 
 Each of the data points for our html delta 
experiment were plotted so that we could study how 
the size of deltas increase as more time passes since a 
page was last visited.  Each of these graphs displayed 
a relatively regular pattern.  Figure 2 shows the delta 
sizes for http://abcnews.go.com/.  The graph shows 
that the size of a delta initially increases at a 
relatively high rate before leveling off around 15%.  
Figure 3 shows the average size delta for each two-
hour interval.  By examining the graph we can see 
that a delta will first reach the maximum range after 
two days have passed since a page was last visited. 
 Figures 4 and 5 show the behavior of delta 
sizes for aol.com.  The graphs show that a significant 
change occurred to the web page on day 4 of the 
week that we polled the web site (the average delta 
size in Figure 5 starts to increase in day 3 because 
each “day” in that chart is relative to the start of the 
log, rather the than actual time of day).  Although the 
size increase appears to be significant, a closer 
inspection of the graph shows that there is only a 2% 
increase in the size of the deltas (relative to the full-
version of the page).  In Figure 4 we can also see that 
the deltas that are computed against a base version 
occurring after the change have returned to the 
smaller delta size (e.g., the purple “day 6” deltas 
which are 24 hours old are smaller than 3%). 
 Figure 6 is another example of another web 
site with “well-behaved” deltas.  Figure 7 shows the 
benefits of using deltas for “stock quote” web pages. 
Rather than compute an average delta size for the 
same stock over time, we took a more challenging 
approach and graphed the average size of a delta 
when a particular stock page is used as the baseline 
version for other stock quota pages on that same site. 
With either approach, the benefits of deltas are 
noticeable. 

Size as Percent Compression
of Original Size Best Case Worst Case Average Case Average Best Case Worst Case Average Case

abcnews.com 0.40% 28.92% 13.91% 39.51% 0.28% 16.66% 9.19%
aol.com 0.39% 5.07% 3.17% 39.03% 0.33% 4.04% 2.57%
cnn.com 0.24% 35.68% 19.50% 43.68% 0.23% 22.53% 13.36%
slashdot.org 0.33% 47.15% 24.91% 44.94% 0.33% 30.33% 17.05%
finance.yahoo.com 0.17% 16.33% 10.11% 43.96% 0.17% 11.68% 7.18%
yahoo.com 0.14% 6.59% 3.05% 43.81% 0.14% 5.66% 2.84%
Average 0.28% 23.29% 12.44% 42.49% 0.25% 15.15% 8.70%

Delta Compressed Delta



 
Figure 2:  Size of delta (as percentage of new version size) vs. amount of  

time since the homepage for http://abcnews.go.com/ was last visited. 
 

 
Figure 3:  Average Size of delta (as percentage of new version size) vs. amount  

of time since the homepage for http://abcnews.go.com/ was last visited.  



 
 

 
Figure 4: Size of delta (as percentage of new version size) vs. amount of  

time since the homepage for http://www.aol.com/ was last visited. 
 

 
Figure 5:  Average size of delta (as percentage of new version size) vs. amount  

of time since the homepage for http://www.aol.com/ was last visited. 
 
 
 



 
Figure 6:  Average size of delta (as percentage of new version size) vs. amount of 

time since the homepage for http://cnn.com was last visited. 
 
 

 
Figure 7:  Average size deltas for stock quote pages on three different web sites, 

where each page is used as a base version for other stock quote pages on the same site 
 
 
 
 



 
3.2  Reduction in Retrieval Time 
 
 To measure the decrease in retrieval time for 
obtaining web objects using xProxy, we retrieved the 
main “index.html” pages of 32 dynamic web sites 
(those pages changed a few times per day, such as 
news, stock quotes, sports, weather reports, shopping 
sites, etc.) and measured the retrieval time when using 
our proxies versus retrieving directly the pages from 
the source web servers.  The client machine was a 
Pentium II, 333 MHz, 128 MB RAM, running RedHat 
Linux 2.2 and equipped with an U.S. Robotics 56.6 
kbps data/fax modem.  The connection to the Internet 
was established through the U.C. Berkeley general 
modem pool.  The “browser” was a C++ program 
acting as an HTTP/1.1 client that connected to the 
locally running client proxy or directly to the source 
web servers.  The server proxy was run on Sun 
ULTRA 5, 333 MHZ, 128 MB RAM, running SunOS 
5.7 and having a 100 Mbps network connection.  The 
server proxy was located five “hops” from the modem 
pool. 

To determine the average retrieval time for 
downloading the HTML files directly from the source 
web servers, we retrieved the main HTML page 20 
times over the course of one day, with requests being 
made every 30 minutes from 10am to 7:30pm.  A 
similar experiment was performed for retrieving web 
pages through xProxy during “cold start” (i.e, when 
the proxies must use compression because they do not 
have a cached version of the file). For this experiment 
the client and server proxies were restarted on every 
trial to clear their caches.  To determine the average 
retrieval time for transferring deltas between proxies, 
we retrieved the main HTML pages of the same web 
sites 5 times during the course of one day (same day 
as above), with requests being made every 2 hours 
from 10am to 6pm; the caches of client and server 
proxies were never flushed during this experiment. 

Both proxies and the C++ program acting as 
the “browser” logged timing information and the 
amount of data transferred; these logs were later used 
to determine average retrieval time for downloading 
the various HTML files, the performance speedup 
gained when using deltas or compression during cold 
start, and the amount of time spent in the 
subcomponents (such  as overhead added by the 
proxies, modem transfer time, and web server 
response time). 
 Figure 8 shows the average retrieval time for 
the 32 web sites.  Even during cold start, xProxy is 
still able to reduce the retrieval time by compressing 
HTML files.  Moreover, the use of deltas further 
decreases the average retrieval time.  Figure 9 
illustrates the performance speedup gained using 

xProxy as opposed to retrieving the files directly from 
the source web servers:  transferring compressed files 
during cold start reduces the retrieval time by an 
average factor of 2.3, while transferring deltas 
improves performance by an average factor of 6.0!  
Overall, delta transfer reduces the retrieval time by an 
additional factor (on top of compression) of 2.6. 
Although these figures are somewhat overstated since 
they do not consider the transfer of other objects such 
as images, the level of speedup can still be achieved 
for pages that contain cacheable images.  
 Figures 10 shows the breakdown of average 
retrieval time when transferring whole compressed 
files through xProxy during cold start.  The time 
components that measured are client overhead, server 
overhead, modem transfer time, and server response 
time.  The client overhead includes request processing 
(in this case, the client proxy just pipes the client 
request to the server proxy since there is no existing 
version in XDFS) and reply processing 
(decompression of compressed file and insertion into 
XDFS).  The server overhead includes request 
processing (same as above) and reply processing time 
(insertion into XDFS of new version received from the 
source web server and compression of this version).   

The goal of this evaluation was to determine 
the overhead added by our proxies and, thus, how 
much improvement can be provided by a more 
efficient implementation.  As can be seen in Figure 
10, the client and server proxy overheads are 
insignificant as compared to the modem transfer and 
server response times.  More specifically, the average 
total overhead added by both proxies is 7%, with 5.9% 
of the time spent in the client proxy and 1.1% spent in 
the server proxy.  Thus, the overhead added by xProxy 
is an insignificant percentage of the total time. 

Figure 11 shows the breakdown of where the 
time is spent when transferring deltas through xProxy.  
The time components that we measured are the same 
as above.  On the client proxy, the request processing 
includes the extraction of a version MD5 from XDFS, 
and the reply processing includes the insertion into 
XDFS of the received delta, which automatically 
reconstructs the most-up-to-date version, and 
extraction of this version from XDFS.  On the server 
proxy, the request processing remains the same, but 
the reply processing includes the extraction of a delta 
based on the version MD5 sent by the client.  The 
average overhead added by both proxies is 8% of the 
total time, with 6.8% of the time spent in the client 
proxy and 1.2% spent in the server proxy.  Again, the 
overhead added by xProxy is an insignificant 
percentage of the total retrieval time. 
 From Figures 10 and 11, we can observe that 
the client proxy adds more overhead than the server 



proxy, even though they use the same source code.  
One explanation is that Solaris provides a more 
efficient threads implementation than Linux.  
However, further investigation is needed to determine 
the exact cause of this slight discrepancy. 
 Overall, xProxy provides great reduction in 
time for retrieving web objects.  We used it regularly 

on Linux with Netscape Communicator 4.6 when 
connecting to the Internet via modem, and our user 
experience has been very satisfying until now.  We 
also tested it (successfully) for correct functionality 
with Internet Explorer 5.0 on Windows NT, while 
running both proxies on a Solaris machine. 

 
 

Figure 8:  Average retrieval for each HTML file retrieved 1) using a direct connection to  
the source web servers,  2) using xProxy to transfer whole compressed files during cold start,  

and 3) using xProxy to transfer deltas. 
 

 
Figure 9:  Performance speedup of xProxy (transferring deltas or whole compressed files during cold 

start) over direct retrieval from the source web servers. 



 
Figure 10:  Breakdown of average retrieval time when transferring whole compressed files through xProxy 
during cold start; the measured components of the time are client proxy overhead, server proxy overhead, 

modem transfer time and server response time. 
 

 
Figure 11:  Breakdown of retrieval time when transferring deltas through xProxy; the measured components 
of the time are client proxy overhead, server proxy overhead, modem transfer time and server response time. 

 



 
4  Related Work 
 

For this paper we opted not to make any 
claims regarding the characteristics of how the 
“average” person surfs on the World Wide Web.  A 
number of papers have already attempted to address 
the issue ([FCD99], [WM98]), and to a large extent 
these papers draw differing (and sometimes 
opposing) conclusions because their underlying 
analysis is based on traces obtained from their 
employer or university.  Many of these papers are 
also misleading because they implicitly or explicitly 
dismiss accesses to dynamic content (or content 
containing cookies) because they assume these 
objects can have no useful or tangible utility for 
future accesses. 

Jeff Mogul and Fred Douglis have authored 
a number of papers on the user access behavior and 
content update behavior of the web.  In [DFKM97] 
they report that 1) nearly 70% of accesses are for 
images, and 20% are for HTML, 2) images almost 
never change, 3) the most frequently accessed 
resources have a shorter interval between 
modifications, 4) 60% of the items that are referenced 
multiple times have changed since the last access 
(16.5% are modified on every access), and 5) the 
mean inter-arrival time between accesses is 25.4 
hours (although spikes in access probability are 
present at certain intervals such as 1 minute and 1 
hour).  

Mogul and Douglis also published a paper 
on the potential benefits of deltas between multi-user 
web proxies [JMFK97].  Their experiments involved 
an analysis based solely on web traces and did not 
include an actual implementation nor considered the 
tradeoffs of computation time.  Although the 
technical report is nearly sixty pages in length, its 
usefulness is limited because their use of pronouns 
renders many of their statements ambiguous.  What is 
clear from the paper is that one-third of HTML 
references are “delta-eligible” (meaning that deltas 
could be used if both proxies still have cached copies 
of a previous version), and a significant number of 
references are to CGI’s that produce dynamic 
content.  In addition, they conclude that 90% of 
repeat accesses occur within 14 hours of a previous 
access and that compression can be beneficial in 
cases where deltas are not feasible. [WM98] points 
out that pages with a “.com” domain name are more 
likely to change than those with “.net”, “.org” or 
“.edu”. 

The WebExpress project [HL96] predates 
the work of Mogul and Douglis and is commonly 
considered the first published description of delta 
encoding for accessing web servers.  WebExpress is 

targeted for salespersons who must use wireless 
devices to submit web-based transactions over a 
wireless interface, and it uses an optimized, non-
HTTP, message stream for the wireless connection.  
Since WebExpress only caches a single version of 
each page, a client that is not in possession of that 
particular version must be sent a copy of that version, 
uncompressed, before deltas can be used.  The 
project only considered two different benchmark 
applications and all items are cached by WebExpress 
for a fixed period of time.  Since WebExpress uses a 
non-HTTP protocol, it would not be appropriate for 
more general use in a network. 

A later project [BDR96] advocated the use 
of “optimistic deltas”.  Their main premise that, in 
the case of servers with high latency, a person 
accessing the web via a modem would see better 
performance if an old version of the page was 
transmitted to the user while he/she is waiting for the 
server to respond.  Once the server does respond to 
the request, a proxy could transmit to the user a delta 
between the old version and the new version.  The 
authors greatly underestimated the performance of 
the Internet and concluded that this approach would 
only improve performance in situations with extreme 
latency (such as five seconds).  In all other cases, the 
“optimistic” approach performed worse.  This 
project, like many others that have attempted to trade 
reduced latency for more network traffic ([PM96], 
[RBR], [FCL99]), essentially resulting in failure 
because many pre-fetched objects are not actually 
used and, in certain cases, the pre-fetching is useless 
because the object has been modified since the last 
pre-fetch occurred. 

XDFS does not currently allow deletions of 
objects, so we were not able to consider the issue of 
cache replacement policies in a proxy.  However, 
there are a large number of papers that already 
consider these issues. [CI97] provides an overview of 
nine different algorithms that are commonly used or 
discussed in literature, and the authors also present a 
new algorithm of their own creation.  We expect that 
the conventional replacement policies for a web 
cache should also be appropriate for deltas, although 
a reference count for each delta may have a useful 
benefit. 
 
5  Future Work 
 
 The current implementation of xProxy is 
fairly complete but can still be improved upon.    
Based on the experience we have gained, the 
following is a list of future work that we propose to 
do in this area: 



• The client proxy currently keeps all versions of a 
file since we choose to reuse the code for the 
server proxy.  The client proxy only needs to 
keep the most recent version of a file and, thus, a 
storage that keeps only the most recent version 
should be enough for the client proxy.  XDFS 
can be instrumented to keep only one version or 
a simpler (and possibly less space consuming) 
storage, such a hash table, can be used for this 
purpose. 

• Implement logic to decide whether it is better to 
send a delta or the entire file (compressed or 
uncompressed).   

• Eliminate the “store and forward” technique that 
xProxy currently implements.  Inserting a 
version/delta into XDFS as the data is being read 
from the network or sending data onto the 
network as the version/delta is being extracted 
off XDFS would cut down the overhead added 
by the two proxies. 

• Implement a delta management policy to reduce 
storage requirements on the server proxy. 

• Deploy a server proxy at the departmental or 
university level.  This will allow extensive 
tracing and, thus, better understanding of the 
benefits provided by transferring deltas.   

• Implement the server proxy as a cluster-based 
service to provide good scalability, fault-
tolerance and availability.  Such an approach 
would allow for incremental cache increase (and 
software upgrades) without discarding the 
previous cache or making the service 
unavailable. 

• Since browsers already keep caches and can 
handle compression, it would be natural to 
include a mechanism for reconstructing a page 
using a delta into the browser, thus, eliminating 
the client proxy.  On the other hand, web servers 
could send deltas if clients provide MD5’s 
identifying the version they have; thus, 
bandwidth requirements for web servers would 
decrease at a slight increase in CPU load 
required to extract the necessary deltas. 

 

6  Conclusion 
 

The "all-or-nothing" approach of today's 
web ignores the fact that the current version of an 
object has a significant amount of content in common 
with prior versions.  xProxy is a transparent proxy 
system that takes advantage of the similarity between 
versions, and uses deltas and compression to decrease 
the retrieval time for web objects.  It is mainly 
targeted for users behind slow links, such as modems 
and wireless links, but it can also be used as a general 

mechanism to reduce the amount of web traffic 
across any network.  Using compression, xProxy 
reduced the retrieval time for HTML objects by an 
average factor of 2.3; using deltas, xProxy reduced 
the retrieval time by a factor of 6.0. 
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