

xProxy: A Transparent Caching and

Delta Transfer System for Web Objects

Matthew Delco and Mihut Ionescu

Computer Science Division
University of California, Berkeley
{delco,mihut}@cs.berkeley.edu

Abstract

The demand for bandwidth in computer networks has been growing at a steady pace for the last several
years, and a significant portion of that traffic is for the World Wide Web. At the same time, a large fraction of
Internet users continue to rely on slow “last mile” links (such as modems and wireless links). We present a
transparent proxy system that uses deltas and compression to increase the performance of web traffic over slow
links. By using compression, the average transfer time for HTML objects can be reduced by a factor of 2.3, while
using deltas can reduce the transfer time by a factor of 6.0. The techniques used by this system, if utilized by other
proxies and/or web servers, could also be used to reduce the amount of web traffic that traverses a network.

1 Introduction

During the last few years the amount of
traffic on the Internet has been increasing at a rapid
pace. While many people have high-speed access to
the Internet through their employer or university, a
large fraction of users are still reliant on slow
modems for their Internet access. Web caches have
been placed in certain networks to help reduce
network traffic, but the usefulness of these proxies is
hindered by the increasing use of “uncacheable”
dynamic content on web servers. To assist end-
clients and proxies in determining if a locally cached
copy is still up-to-date, the HTTP protocol was
extended to allow for “conditional requests” that
instruct web servers to transmit an object only if it
has changed since a certain date.

HTTP’s conditional request mechanism is
useful, but this “all-or-nothing” approach ignores the
fact that the current version of an object has a
significant amount of content in common with prior
versions. As a result, a more dynamic approach that
uses deltas to transmit only the modifications to an
object should have a useful benefit. In this paper we
describe the xProxy system that can take advantage
of deltas and significantly improve the download
performance of web objects over a slow link. In
those situations where a delta cannot be used (e.g.,

the first time that a particular page is visited), using
compression is a very viable and worthwhile
alternative. The xProxy system is transparent to both
web browsers and web servers, and can therefore be
used in any network. If the techniques used by
xProxy are incorporated into future web servers and
clients, then a significant amount of bandwidth
savings could be realized in the Internet.

In the next section we describe the
architecture of xProxy and provide details on our
implementation. Section 3 provides results on the
performance improvements we obtained by using the
system, and Section 4 describes related work.
Section 4 also discusses some of the prior research
that pertains to the average characteristics on how
people “surf” the web—in this paper we make no
claims on how people access the web. Instead, we
operate under the assumption (substantiated by these
research papers) that a reasonable amount of pages
are visited repeatedly. For example, some sites are
revisited due to personal preference (e.g., a news site
that has relatively few advertisements), while other
sites are visited because of necessity (e.g., “home
banking” information for a checking account is only
available on a particular bank’s web site).

Figure 1: Diagram of the xProxy architecture; this diagram is a simplified representation and does not

convey that a Server Proxy can serve multiple Client Proxies or that the Server Proxy need not be located
near the Client Proxy.

2 Implementation

2.1 Overview

In order to allow deltas and compression to
be used within the existing web infrastructure, we
designed the xProxy system to be transparent to both
web browsers and web servers. The overall system
architecture for this design is depicted above in
Figure 1. xProxy consists of two web caching
proxies, where each proxy is placed on either side of
a slow link. The “Client Proxy” (CP) is essentially a
daemon that resides on the end-user’s machine, while
the “Server Proxy” (SP) can be placed anywhere in
the network that has a reasonably high speed
connection to the Internet (e.g., on a 100 Mbps
subnet that is near the modem bank of the client’s
ISP). The CP and SP both operate as normal HTTP
traffic proxies, except that they have been enhanced
to utilize deltas and compression. The CP is intended
to serve only the end-client’s machine, while the SP
could potentially service a large set of users.

2.2 Client Proxy (CP)

To utilize the xProxy system, a web browser
must be configured to use the CP as its proxy. Since
all common web browsers already support the use of
proxies, this configuration change is trivial. In the
case of a novice user, a software program (or one of
the many automatic proxy detection protocols) could
be used to automate this change. By specifying the
CP as a proxy, all web requests from the web browser
will be routed through the CP. This change allows
the CP to determine whether it can satisfy a request
without using the slow network connection by
utilizing a locally stored copy of the resource as a
substitute. If there is not a locally stored copy, or the
local copy is not suitable for reuse (as discussed
below), then the CP will use the slow network
connection to forward the client’s request to the SP.
Once the CP has received a reply from the SP, it
caches a copy of the reply and, if necessary, takes

action to produce a conventional response that is
suitable for use by the web browser.

2.3 Server Proxy (SP)

The Server Proxy operates in a similar
manner as the Client Proxy. In fact, the primary
difference between a SP and a CP is that the SP will
forward web requests to the originating servers, while
the CP will forward all of its requests to a proxy.
Like the CP, the SP will first try to satisfy requests
using a local copy of the resource. A local copy is
only used if the originating server specified, via
HTTP caching primitives, that the cached copy is
“fresh” (i.e., the object may be used to service other
requests for a server-specified length of time). If the
proxy has a local copy that can not be considered
fresh (i.e., the copy is “stale”), then a unique MD5
identifier of that page is included in the outgoing
request in the hope that the recipient (or any
transparent proxies residing on the path to the
recipient) can use the identifier to create a “delta”
response that only contains the differences between
the current and locally stored versions of the object.
If a delta response is received, then the proxy will use
that information to reconstruct the full version of the
resource, which is then processed like any
conventional response.

When preparing a response to a request, the
proxy will create a delta response if it received a
MD5 page identifier in the request and a copy of that
page is stored locally on the proxy. In cases where a
delta response cannot be used for a textual object, the
object is compressed before it is transmitted to the
requester. Objects that are not text (e.g., images) are
not compressed because they are typically
represented in a format that is natively compressed.
Our system can compute deltas for any file type (e.g.,
images, other binary files), except that deltas might
not be worthwhile for such file types (see below for
more details).

2.4 Example of System Execution

We will now consider an example scenario
where a web browser makes a request for an HTML
page and an image. After the CP receives the two
requests, it finds that neither object is stored locally
and forwards the requests to the SP. The SP also
does not have a local copy of the objects, so it
forwards the requests to the originating server. After
receiving the replies from the server, the SP stores
local copies of the objects, compresses the response
for the HTML object, and forwards both replies to
the CP over the slow network link. The CP
decompresses the HTML object, stores a local copy
of both objects, and then forwards a copy of the
objects to the web browser.

Supposing that the image was specified by
the server as cacheable and the HTML page was
specified as not being cacheable, then when the user
returns to the page in the near future the request for
the image will be immediately serviced by the CP,
while the HTML object will make another round-trip
to the originating server. However, since the SP and
CP now both share a common version of that
document, a delta, instead of a compressed file, can
be transferred between the two proxies.

2.5 Implementation Features

Our implementation of xProxy contains a
large number of features and unique capabilities.
Although some of these features are present in other
related projects, in most cases those projects only
offered a small subset of these features (typically
only one).

XDFS

Our implementation utilized an application
level file API called XDFS (“xDelta File System”)
[Mac00] for caching local copies of web objects and
computing deltas in the proxies. XDFS is a key
component of xProxy that provides the ability to
store multiple versions of an object and to store those
versions efficiently on disk using deltas. More
importantly, XDFS can also compute in linear time a
delta between any two arbitrary versions of an object.
XDFS uses the xDelta algorithm [Mac98] for
computing deltas and stores information on disk
using the Berkeley DB [OBS99]. Internally, XDFS
stores the various versions of a file by using “forward
deltas” from an older base version to the more recent
versions of a file. If the size of the most recent delta
exceeds a certain threshold, then XDFS will
automatically create a new base object against which

future deltas will be computed. XDFS also computes
an MD5 signature for each version of an object, and
as a result we choose to use MD5 as our mechanism
for allowing a CP to report its base version to an SP
for delta computation.

Since XDFS stores the various instances of a
file using deltas, there are certain cases where XDFS
does not need to compute a delta “on the fly” and can
instead use the delta that is already stored on disk—
the most obvious example is where a fresh version of
an object is cached locally as a delta against a version
which the client happens to possess. The use of a
database provided us with some useful features, such
as the buffer manager’s automatic management of
swapping data to and from disk. In order to increase
the performance of xProxy, we modified the
transactional behavior so that modifications and log
records are not forced to disk—before this change we
experienced a significant amount of hard disk
thrashing (a separate disk was not used for database
logs). Although this change will affect the
persistency of data, it will not severely affect the
system since the cached data is essentially soft state.

The XDFS API currently supports only
synchronous calls and is not completely thread-safe
(data corruption does not occur, but XDFS can
readily cause deadlocks in the database). As a result,
it was not feasible for us to implement xProxy by
modifying the source code of a pre-existing web
caching proxy (e.g., Squid), since those proxies
expect an asynchronous API that supports callbacks.
For our implementation we resorted to using a global
lock for every call to XDFS. Although this lock
would be undesirable for an actual high-load
deployment of xProxy, we did not observe any
significant issues during our performance evaluations
because it was not the bottleneck in our evaluations.

Compression

To the best of our knowledge, xProxy is the
first actual web proxy implementation to fully utilize
compression. Although the HTTP specification has
included compression-related mechanisms for a
relatively long period of time, it has yet to become
widely adopted by web servers. Both Netscape and
Internet Explorer (IE) web browsers have built-in
support for compression, and the Apache web server
must be specially configured to handle compression.
We selected gzip [D96] as our compression scheme
because it is supported by both Netscape and IE, a
public implementation of the algorithm is widely
available, and the compression performance is
superior to other algorithms (e.g., “compress” in
UNIX). Our original purpose for adding
compression was to lessen the negative performance

impact for cases where deltas cannot be used; we
were pleasantly surprised by the amount of
improvement that was gained (see below for more
details).

HTTP 1.1

We invested a significant amount of time in
creating a proxy implementation that would conform
to HTTP/1.1—our implementation required 5000
lines of C/C++ code (excluding any code for XDFS,
compression, and the Berkeley DB). HTTP version
1.1 provides certain features over 1.0 that can
increase overall performance and reduce both CPU
and network overhead. The current version of
xProxy uses persistent connections so that multiple
objects can be requested and received over the same
network connection. With HTTP/1.0 at most one
object can be requested for each connection.

The xDelta proxies also support
“pipelining”, whereby multiple requests are sent over
a single persistent connection without waiting for
each response. Pipelining requests serves to reduce
latency and also makes it possible for multiple
responses to be returned in the same network packet.
Pipelining is particularly important for proxies
because they handle requests that are destined for
many different servers. Without pipelining, a proxy
would not be able to service multiple requests from a
particular network connection in parallel. For
example, by pipelining requests to a proxy for
“a.com” and “b.com”, the proxy can simultaneously
retrieve information from those two sites. This
feature is particularly important due to a protocol-
defined restriction in HTTP/1.1 that limits each client
to at most two connections to the same proxy or web
server—this limit does not apply to proxies (which
are permitted to use 2*N connections, where ‘N’ is
the number of users) and no such limit exists in
HTTP/1.0.

Most web servers currently support
persistent connections and pipelining, although we
found certain implementations to be better than
others. For example, older versions of Apache only
allow up to 5 requests to be made over a single
persistent connection and many web servers will only
return responses in separate network packets even
though some responses could have been consolidated
into fewer packets. In terms of web browsers,
Netscape currently supports only HTTP/1.0, although
the HTTP Working Group indicates that the latest
beta version of Netscape supports HTTP/1.1.

We did implement a special version of our
client proxy that is optimized for HTTP/1.0 clients.

The HTTP/1.0 optimized version of our proxy
communicates to the client using HTTP/1.0, but all
other communication that is performed on behalf of
that client (e.g., communication to the SP or servers)
is conducted using HTTP/1.1. HTTP/1.0 clients tend
to make a large number of simultaneous requests
using multiple network connections (Netscape uses
up to four), so this particular version of xProxy uses
pipelining to multiplex those requests over a single
persistent HTTP/1.1 network connection.

Microsoft’s IE web browser does support
HTTP/1.1 and persistent connections, but it does not
pipeline requests. By default, IE uses HTTP/1.0
through a proxy, but we took advantage of a user-
specifiable option that causes IE to use HTTP/1.1
with proxies. Since neither Netscape nor IE
implement the full HTTP/1.1 functionality, we
created a custom test client and used that client to
analyze the performance of the system. This test
client does not actually render the HTML pages
graphically, but we did enhance it with timers that
would allow us to accurately measure the duration of
each request and the various phases that comprise
each request.

Mogul and Douglis have recently published
an IETF draft that outlines an approach for using
delta encoding in HTTP. The latest version
[MKD00] outlines the addition of several new
attribute headers and a new status code. Although
our implementation does conform to this proposal, it
does not use all of the proposed headers. For
example, the proposal outlines a means by which web
servers can specify a template for a site (against
which deltas can be computed) as well as a
“clustering” attribute that allows servers to specify
how a client can determine if computing a delta
against a “neighboring” URL is a worthwhile
endeavor for producing an effective (i.e., small) delta.
Our current implementation does “cluster” URLs that
execute the same CGI program but have a different
CGI query string (versions are indexed by the prefix
string up to the ‘?’ character).

We also experimented with using deltas on
the first-access to a page by using a “neighboring”
URL (i.e., a cached object from the same web server)
as the baseline version. The resulting deltas not only
had a larger variation in size, but they were also an
average of 40% the size of the full-version of the
object. The compression in our implementation
typically results in objects that are smaller than 40%,
so we elected not to expand the clustering feature to
consider neighboring pages.

Table 1: Average savings from using compression and deltas.

3 Results

 The goal of this evaluation was to examine
the update patterns of web objects (HTML files,
output generated by CGI scripts, images), quantify
the amount of change over time (differences between
various versions of a file), evaluate the benefits of
transferring deltas between file versions as opposed
to entire uncompressed or compressed files, and
determine the overall performance speedup gained by
using xProxy. The following sections detail the
experimental setups and the results we obtained.

3.1 Reduction in Bandwidth

To gauge the overall benefit of deltas we
initially selected six popular web sites and used a
custom program to obtain the homepage from each
site on a regular basis for an entire week (April 2nd to
April 9th, 2000). The program polled each site on an
hourly basis, and at 15 minutes past the hour for even
numbered hours. After collecting the pages, we used
another program to create a delta between each
version of a page and all future versions of that page.

Table 1 presents the overall statistics for
these deltas. The table shows that a wide variation
exists for the average size of a delta among the web
sites. For example, the average size delta for AOL
was 3.17%, while the average delta for slashdot.org is
nearly 25%. The worst case for slashdot was
47.15%, which is only slightly worse than the
average case performance of the UNIX “compress”
utility’s 44.94%. Compared to the compress utility,
deltas have an obvious benefit; however, the benefits
of deltas are less obvious when compared with gzip.
 The table also presents results for
compressed deltas. The data indicates that
compressing deltas does have some benefit, but we
feel that the margin of improvement is not large
enough to make any definite conclusions on whether
all deltas should be compressed. Although xProxy
does not currently compressed deltas, it would
require only trivial changes in the code to enable the
feature.
 We also experimented with using deltas
against graphical images. In most cases we found

that deltas for graphical images are usually 80 to 90%
the size of the full version, and is therefore not
worthwhile. This result is not entirely dissuasive
considering that most images remain unchanged for a
large period of time and can be cached using
traditional means. In addition, we also found a
NASDAQ graph at http://www.golden1.com/ for
which the deltas never exceeded 40% the size of the
original graph.
 Each of the data points for our html delta
experiment were plotted so that we could study how
the size of deltas increase as more time passes since a
page was last visited. Each of these graphs displayed
a relatively regular pattern. Figure 2 shows the delta
sizes for http://abcnews.go.com/. The graph shows
that the size of a delta initially increases at a
relatively high rate before leveling off around 15%.
Figure 3 shows the average size delta for each two-
hour interval. By examining the graph we can see
that a delta will first reach the maximum range after
two days have passed since a page was last visited.
 Figures 4 and 5 show the behavior of delta
sizes for aol.com. The graphs show that a significant
change occurred to the web page on day 4 of the
week that we polled the web site (the average delta
size in Figure 5 starts to increase in day 3 because
each “day” in that chart is relative to the start of the
log, rather the than actual time of day). Although the
size increase appears to be significant, a closer
inspection of the graph shows that there is only a 2%
increase in the size of the deltas (relative to the full-
version of the page). In Figure 4 we can also see that
the deltas that are computed against a base version
occurring after the change have returned to the
smaller delta size (e.g., the purple “day 6” deltas
which are 24 hours old are smaller than 3%).
 Figure 6 is another example of another web
site with “well-behaved” deltas. Figure 7 shows the
benefits of using deltas for “stock quote” web pages.
Rather than compute an average delta size for the
same stock over time, we took a more challenging
approach and graphed the average size of a delta
when a particular stock page is used as the baseline
version for other stock quota pages on that same site.
With either approach, the benefits of deltas are
noticeable.

Size as Percent Compression
of Original Size Best Case Worst Case Average Case Average Best Case Worst Case Average Case

abcnews.com 0.40% 28.92% 13.91% 39.51% 0.28% 16.66% 9.19%
aol.com 0.39% 5.07% 3.17% 39.03% 0.33% 4.04% 2.57%
cnn.com 0.24% 35.68% 19.50% 43.68% 0.23% 22.53% 13.36%
slashdot.org 0.33% 47.15% 24.91% 44.94% 0.33% 30.33% 17.05%
finance.yahoo.com 0.17% 16.33% 10.11% 43.96% 0.17% 11.68% 7.18%
yahoo.com 0.14% 6.59% 3.05% 43.81% 0.14% 5.66% 2.84%
Average 0.28% 23.29% 12.44% 42.49% 0.25% 15.15% 8.70%

Delta Compressed Delta

Figure 2: Size of delta (as percentage of new version size) vs. amount of

time since the homepage for http://abcnews.go.com/ was last visited.

Figure 3: Average Size of delta (as percentage of new version size) vs. amount

of time since the homepage for http://abcnews.go.com/ was last visited.

Figure 4: Size of delta (as percentage of new version size) vs. amount of

time since the homepage for http://www.aol.com/ was last visited.

Figure 5: Average size of delta (as percentage of new version size) vs. amount

of time since the homepage for http://www.aol.com/ was last visited.

Figure 6: Average size of delta (as percentage of new version size) vs. amount of

time since the homepage for http://cnn.com was last visited.

Figure 7: Average size deltas for stock quote pages on three different web sites,

where each page is used as a base version for other stock quote pages on the same site

3.2 Reduction in Retrieval Time

 To measure the decrease in retrieval time for
obtaining web objects using xProxy, we retrieved the
main “index.html” pages of 32 dynamic web sites
(those pages changed a few times per day, such as
news, stock quotes, sports, weather reports, shopping
sites, etc.) and measured the retrieval time when using
our proxies versus retrieving directly the pages from
the source web servers. The client machine was a
Pentium II, 333 MHz, 128 MB RAM, running RedHat
Linux 2.2 and equipped with an U.S. Robotics 56.6
kbps data/fax modem. The connection to the Internet
was established through the U.C. Berkeley general
modem pool. The “browser” was a C++ program
acting as an HTTP/1.1 client that connected to the
locally running client proxy or directly to the source
web servers. The server proxy was run on Sun
ULTRA 5, 333 MHZ, 128 MB RAM, running SunOS
5.7 and having a 100 Mbps network connection. The
server proxy was located five “hops” from the modem
pool.

To determine the average retrieval time for
downloading the HTML files directly from the source
web servers, we retrieved the main HTML page 20
times over the course of one day, with requests being
made every 30 minutes from 10am to 7:30pm. A
similar experiment was performed for retrieving web
pages through xProxy during “cold start” (i.e, when
the proxies must use compression because they do not
have a cached version of the file). For this experiment
the client and server proxies were restarted on every
trial to clear their caches. To determine the average
retrieval time for transferring deltas between proxies,
we retrieved the main HTML pages of the same web
sites 5 times during the course of one day (same day
as above), with requests being made every 2 hours
from 10am to 6pm; the caches of client and server
proxies were never flushed during this experiment.

Both proxies and the C++ program acting as
the “browser” logged timing information and the
amount of data transferred; these logs were later used
to determine average retrieval time for downloading
the various HTML files, the performance speedup
gained when using deltas or compression during cold
start, and the amount of time spent in the
subcomponents (such as overhead added by the
proxies, modem transfer time, and web server
response time).
 Figure 8 shows the average retrieval time for
the 32 web sites. Even during cold start, xProxy is
still able to reduce the retrieval time by compressing
HTML files. Moreover, the use of deltas further
decreases the average retrieval time. Figure 9
illustrates the performance speedup gained using

xProxy as opposed to retrieving the files directly from
the source web servers: transferring compressed files
during cold start reduces the retrieval time by an
average factor of 2.3, while transferring deltas
improves performance by an average factor of 6.0!
Overall, delta transfer reduces the retrieval time by an
additional factor (on top of compression) of 2.6.
Although these figures are somewhat overstated since
they do not consider the transfer of other objects such
as images, the level of speedup can still be achieved
for pages that contain cacheable images.
 Figures 10 shows the breakdown of average
retrieval time when transferring whole compressed
files through xProxy during cold start. The time
components that measured are client overhead, server
overhead, modem transfer time, and server response
time. The client overhead includes request processing
(in this case, the client proxy just pipes the client
request to the server proxy since there is no existing
version in XDFS) and reply processing
(decompression of compressed file and insertion into
XDFS). The server overhead includes request
processing (same as above) and reply processing time
(insertion into XDFS of new version received from the
source web server and compression of this version).

The goal of this evaluation was to determine
the overhead added by our proxies and, thus, how
much improvement can be provided by a more
efficient implementation. As can be seen in Figure
10, the client and server proxy overheads are
insignificant as compared to the modem transfer and
server response times. More specifically, the average
total overhead added by both proxies is 7%, with 5.9%
of the time spent in the client proxy and 1.1% spent in
the server proxy. Thus, the overhead added by xProxy
is an insignificant percentage of the total time.

Figure 11 shows the breakdown of where the
time is spent when transferring deltas through xProxy.
The time components that we measured are the same
as above. On the client proxy, the request processing
includes the extraction of a version MD5 from XDFS,
and the reply processing includes the insertion into
XDFS of the received delta, which automatically
reconstructs the most-up-to-date version, and
extraction of this version from XDFS. On the server
proxy, the request processing remains the same, but
the reply processing includes the extraction of a delta
based on the version MD5 sent by the client. The
average overhead added by both proxies is 8% of the
total time, with 6.8% of the time spent in the client
proxy and 1.2% spent in the server proxy. Again, the
overhead added by xProxy is an insignificant
percentage of the total retrieval time.
 From Figures 10 and 11, we can observe that
the client proxy adds more overhead than the server

proxy, even though they use the same source code.
One explanation is that Solaris provides a more
efficient threads implementation than Linux.
However, further investigation is needed to determine
the exact cause of this slight discrepancy.
 Overall, xProxy provides great reduction in
time for retrieving web objects. We used it regularly

on Linux with Netscape Communicator 4.6 when
connecting to the Internet via modem, and our user
experience has been very satisfying until now. We
also tested it (successfully) for correct functionality
with Internet Explorer 5.0 on Windows NT, while
running both proxies on a Solaris machine.

Figure 8: Average retrieval for each HTML file retrieved 1) using a direct connection to
the source web servers, 2) using xProxy to transfer whole compressed files during cold start,

and 3) using xProxy to transfer deltas.

Figure 9: Performance speedup of xProxy (transferring deltas or whole compressed files during cold

start) over direct retrieval from the source web servers.

Figure 10: Breakdown of average retrieval time when transferring whole compressed files through xProxy
during cold start; the measured components of the time are client proxy overhead, server proxy overhead,

modem transfer time and server response time.

Figure 11: Breakdown of retrieval time when transferring deltas through xProxy; the measured components
of the time are client proxy overhead, server proxy overhead, modem transfer time and server response time.

4 Related Work

For this paper we opted not to make any
claims regarding the characteristics of how the
“average” person surfs on the World Wide Web. A
number of papers have already attempted to address
the issue ([FCD99], [WM98]), and to a large extent
these papers draw differing (and sometimes
opposing) conclusions because their underlying
analysis is based on traces obtained from their
employer or university. Many of these papers are
also misleading because they implicitly or explicitly
dismiss accesses to dynamic content (or content
containing cookies) because they assume these
objects can have no useful or tangible utility for
future accesses.

Jeff Mogul and Fred Douglis have authored
a number of papers on the user access behavior and
content update behavior of the web. In [DFKM97]
they report that 1) nearly 70% of accesses are for
images, and 20% are for HTML, 2) images almost
never change, 3) the most frequently accessed
resources have a shorter interval between
modifications, 4) 60% of the items that are referenced
multiple times have changed since the last access
(16.5% are modified on every access), and 5) the
mean inter-arrival time between accesses is 25.4
hours (although spikes in access probability are
present at certain intervals such as 1 minute and 1
hour).

Mogul and Douglis also published a paper
on the potential benefits of deltas between multi-user
web proxies [JMFK97]. Their experiments involved
an analysis based solely on web traces and did not
include an actual implementation nor considered the
tradeoffs of computation time. Although the
technical report is nearly sixty pages in length, its
usefulness is limited because their use of pronouns
renders many of their statements ambiguous. What is
clear from the paper is that one-third of HTML
references are “delta-eligible” (meaning that deltas
could be used if both proxies still have cached copies
of a previous version), and a significant number of
references are to CGI’s that produce dynamic
content. In addition, they conclude that 90% of
repeat accesses occur within 14 hours of a previous
access and that compression can be beneficial in
cases where deltas are not feasible. [WM98] points
out that pages with a “.com” domain name are more
likely to change than those with “.net”, “.org” or
“.edu”.

The WebExpress project [HL96] predates
the work of Mogul and Douglis and is commonly
considered the first published description of delta
encoding for accessing web servers. WebExpress is

targeted for salespersons who must use wireless
devices to submit web-based transactions over a
wireless interface, and it uses an optimized, non-
HTTP, message stream for the wireless connection.
Since WebExpress only caches a single version of
each page, a client that is not in possession of that
particular version must be sent a copy of that version,
uncompressed, before deltas can be used. The
project only considered two different benchmark
applications and all items are cached by WebExpress
for a fixed period of time. Since WebExpress uses a
non-HTTP protocol, it would not be appropriate for
more general use in a network.

A later project [BDR96] advocated the use
of “optimistic deltas”. Their main premise that, in
the case of servers with high latency, a person
accessing the web via a modem would see better
performance if an old version of the page was
transmitted to the user while he/she is waiting for the
server to respond. Once the server does respond to
the request, a proxy could transmit to the user a delta
between the old version and the new version. The
authors greatly underestimated the performance of
the Internet and concluded that this approach would
only improve performance in situations with extreme
latency (such as five seconds). In all other cases, the
“optimistic” approach performed worse. This
project, like many others that have attempted to trade
reduced latency for more network traffic ([PM96],
[RBR], [FCL99]), essentially resulting in failure
because many pre-fetched objects are not actually
used and, in certain cases, the pre-fetching is useless
because the object has been modified since the last
pre-fetch occurred.

XDFS does not currently allow deletions of
objects, so we were not able to consider the issue of
cache replacement policies in a proxy. However,
there are a large number of papers that already
consider these issues. [CI97] provides an overview of
nine different algorithms that are commonly used or
discussed in literature, and the authors also present a
new algorithm of their own creation. We expect that
the conventional replacement policies for a web
cache should also be appropriate for deltas, although
a reference count for each delta may have a useful
benefit.

5 Future Work

 The current implementation of xProxy is
fairly complete but can still be improved upon.
Based on the experience we have gained, the
following is a list of future work that we propose to
do in this area:

• The client proxy currently keeps all versions of a
file since we choose to reuse the code for the
server proxy. The client proxy only needs to
keep the most recent version of a file and, thus, a
storage that keeps only the most recent version
should be enough for the client proxy. XDFS
can be instrumented to keep only one version or
a simpler (and possibly less space consuming)
storage, such a hash table, can be used for this
purpose.

• Implement logic to decide whether it is better to
send a delta or the entire file (compressed or
uncompressed).

• Eliminate the “store and forward” technique that
xProxy currently implements. Inserting a
version/delta into XDFS as the data is being read
from the network or sending data onto the
network as the version/delta is being extracted
off XDFS would cut down the overhead added
by the two proxies.

• Implement a delta management policy to reduce
storage requirements on the server proxy.

• Deploy a server proxy at the departmental or
university level. This will allow extensive
tracing and, thus, better understanding of the
benefits provided by transferring deltas.

• Implement the server proxy as a cluster-based
service to provide good scalability, fault-
tolerance and availability. Such an approach
would allow for incremental cache increase (and
software upgrades) without discarding the
previous cache or making the service
unavailable.

• Since browsers already keep caches and can
handle compression, it would be natural to
include a mechanism for reconstructing a page
using a delta into the browser, thus, eliminating
the client proxy. On the other hand, web servers
could send deltas if clients provide MD5’s
identifying the version they have; thus,
bandwidth requirements for web servers would
decrease at a slight increase in CPU load
required to extract the necessary deltas.

6 Conclusion

The "all-or-nothing" approach of today's
web ignores the fact that the current version of an
object has a significant amount of content in common
with prior versions. xProxy is a transparent proxy
system that takes advantage of the similarity between
versions, and uses deltas and compression to decrease
the retrieval time for web objects. It is mainly
targeted for users behind slow links, such as modems
and wireless links, but it can also be used as a general

mechanism to reduce the amount of web traffic
across any network. Using compression, xProxy
reduced the retrieval time for HTML objects by an
average factor of 2.3; using deltas, xProxy reduced
the retrieval time by a factor of 6.0.

Acknowledgments

 We would like to thank Joshua MacDonald
for providing us with XDFS.

References

[BDR96] Gaurav Banga, Fred Douglis, and Michael
Rabinovich. “Optimistic deltas for WWW latency
reduction.” In Proceedings of 1997 USENIX
Technical Conference, pages 289-303. Anaheim,
CA, January 1997.

[BEOW] Richard Bunt, Derek Eager , Gregory
Oster, Carey Williamson, “Achieving Load Balance
and Effective Caching in Clustered Web Servers”.
Department of Computer Science, University of
Saskatchewan.

[CDF98] R. Caceres, F. Douglis, A. Feldmann, G.
Glass, and M. Rabinovich, “Web Proxy Caching: The
Devil is in the Details”, Performance Evaluation
Review, Vol. 26, No. 3, pp. 11-15, December 1998.

[CI97] Pei Cao, and Sandy Irani, “Cost-Aware
WWW Proxy Caching Algorithms”. In Symposium
on Internet Technology and Systems. USENIX
Association, December 1997.

[D96] P. Deutsch. GZIP file format specification
version 4.3. RFC1952, Network Working Group,
May, 1996.

[DAP] John Dilley, Martin Arlitt, Stephane Perret,
“Enhancment and Validation of Squid's Cache
Replacement Policy”, HP Labratories, Technical
Report.

[DFKM97] Fred Douglis, Anja Feldmann,
Balachander Krishnamurthy, and Jeffery Mogul.
“Rate of change and other metrics: a live study of the
World Wide Web.” Technical Report #97.24.2,
AT&T Labs-Research, Florham Park, NJ, December
1997.

[FCD99] Anja Feldmann, Ramon Caceres, Fred
Douglis, et al. “Performance of Web Proxy Caching
in Heterogeneous Bandwidth Environments”. In

Proceedings of the IEEE Infocom '99 Conference,
New York, NY, March 1999. IEEE.

[FCL99] Li Fan, Pei Cao, Wei Lin, et at. “Web
Prefetching Between Low-Bandwidth Clients and
Proxies: Potential and Performance.” Proceedings of
the 1999 ACM SIGMETRICS Conference, Atlanta,
GA, May 1999.

[FGC97] Armando Fox, Steven D. Gribble, Yatin
Chawathe, Eric A. Brewer, Paul Gauthier. “Cluster
based scalable network services”, Proceedings of the
16th ACM Symposium on Operating System
Principles, San Malo, France, October 1997.

[GB97] Steven D. Gribble and Eric A. Brewer.
System design issues for internet middleware
services: Deductions from a large client trace. In
Proceedings off the Symposium on Internetworking
Systems and Technologies. USENIX, December
1997.

[HL96] Barron C. Housel and David B. Lindquist.
“WebExpress: A System for Optimizing Web
Browsing in a Wireless Environment.” Proc. 2nd
Annual Intl. Conf. on Mobile Computing and
Networking, ACM, Rye, Net York, November 1996,
pp. 108-116. Document was later published in 1998
without any significant advances.

[HTTP1.1] Roy Fielding, Jim Gettys, Jeff Mogul, et
al. Hypertext Transfer Protocol -- HTTP/1.1, RFC
2616 (Proposed Standard), June 1999.

[JMFK97] Jeffrey Mogul, Fred Douglis, Anja
Feldmann, and Balachander Krishnamurthy.
“Potential benefits of delta encoding and data
compression for HTTP”, Proceedings of ACM
SIGCOMM ’97, pp. 181-194, Cannes France,
September 1997. A 60-page extended (and
corrected) version appears as Digital Equipment
Corporation Western Research Lab TR 97.4, July,
1997.

[Mac98a] Josh MacDonald. Program Source for
Xdelta. ftp://ftp.xcf.berkeley.edu/pub/xdelta, 1998.

[Mac98b] Josh MacDonald. “Versioned File
Archiving, Compression, and Distribution”. UC
Berkeley. Available via
http://www.cs.berkeley.edu/~jmacd/.

[Mac00] Josh MacDonald. “Delta Compression for
Storage and Transport”. Master’s Thesis (draft). UC
Berkeley. Available via
http://www.cs.berkeley.edu/~jmacd/.

[MKD00] Jeffrey Mogul, Balachander
Krishnamurthy, Fred Douglis, et al. “Delta encoding
in HTTP”, IETF Internet Draft, Network Working
Group. Available as “draft-mogul-http-delta-04.txt”
from ftp.isi.edu.

[ML97] J. Mogul, P. Leach, "Simple Hit-Metering
and Usage-Limiting for HTTP", Network Working
Group, RFC2227. October 1997

[Mog94] Jeffrey Mogul. “Improving HTTP
latency”. Available from
http://www.ncsa.edu/SDG/IT94/Proceedings/DDay/
mogul/HTTPLatency.html”

[Mog95] Mogul, J. “The Case for Persistent-
Connection HTTP”, Western Research Laboratory
Research Report 95/4, Digital Equipment
Corporation, May 1995.

[NGB97] H. Nielsen, Jim Gettys, Anselm Baird-
Smith, et al. “Network Performance Effects of
HTTP/1.1, CSS1, and PNG”. June 42, 1997.
Available from http://www.w3.org/TR/NOTE-
pipelining.

[OBS99] M. Olson, K. Bostic, and M. Seltzer.
Berkeley DB. In Proceedings of the 1999 USENIX
Annual Technical Conference, FREENIX Track
(June 1999), pp. 183-192.

[PM96] V. Padmanabhan, and Jeffrey C. Mogul.
“Using Predictive Prefetching to Improve WWW
Latency”, ACM SIGCOMM, Computer
Communication Review, Vol. 26, No. 3, pp. 2-36,
July 1996.

[RBR] Pablo Rodriguez, Ernst W. Biersack, Keith
W. Ross. “Improving the WWW: Caching or
Multicast?”

[RRB99] Pablo Rodriguez, Keith Ross, Ernst
Biersack, “Distributing Frequently-Changing
Documents in the Web: Multicasting or Hierarchical
Caching?”. Submitted to Infocom ’99. August 28,
1999.

[SS94] Spero, S., “Analysis of HTTP Performance
Problems,” July 1994. Available at
http://metalab.unc.edu/mdma-release/http-prob.html.

[THO96] Touch, J., J. Heidemann, K. Obraczka,
“Analysis of HTTP Performance,” USC/Information
Sciences Institute, June, 1996. Available at

http://www.isi.edu/lsam/publications/http-
perf/index.html.

[WAS96] S. Williams, M. Abrams, C. Standridge, G.
Abdulla and E. Fox, “Removal Policies in Network
Caches for World-Wide Web Documents”,
Proceedings of the 1996 ACM SIGCOMM
Conference, Stanford, CA, pp. 293-305, August
1996.

[WM98] Craig E. Wills and Mikhail Mikhailov.
Towards a Better Understanding of Web Resources
and Server Responses for Improved Caching.
Technical Report WPI-CS-TR-98-27, Computer
Science Department, Worcester Polytechnic Institute,
December 1998.

