
A gentle introduction to the Wt

C++ Toolkit for Web Applications

Koen Deforche and Wim Dumon

January, 2006

* Originally published in Software Developers Journal April 2006 issue, and brought
up-to-date for Wt version 1.1.0.

A gentle introduction to the Wt C++ Toolkit for Web Applications

1. Introduction

Web application technology for the
future

C++ is an established language for developing many
kinds of software such as desktop applications, email
clients, database engines, and so on. Still, the use of
C++ for creating “web applications” has been limited.
Instead, languages that dominate web application
development are JAVA, PHP, Python, and Perl. With the
exception of PHP, which is a language specifically
designed for web development, web application
frameworks are offered for the other languages to aid in
web application development. Examples are J2EE and
Struts for JAVA, Perl::CGI for Perl, or Zope for Python.
These frameworks provide session-management, support
for parsing data transmitted from the web browser from
HTML forms and cookies, and help in generating the
new page in response.

The paradigm followed by these web applications
frameworks is illustrated in Figure 1(a). At each step, the
web browser requests a new page to the web server, and
may submit within the request a number of form values.
At the server end, the web application processes the
request, identifies the session, and performs business
logic. Finally, the application generates the response
page. The response page may contain not only HTML,
but also JavaScript to enhance the interactivity of the
web application. However, JavaScript has many quirks
in different web browsers, and therefore requires great
effort to write in a portable way.

New and highly successful web applications such as
Google's Gmail or Google Maps, however, do no longer
follow this page-by-page paradigm. Instead, they use a
combination of JavaScript and server-side techniques,
often referred to as AJAX, to dynamically update the
web page with new content received from the server,
without reloading the web page. AJAX works by using
JavaScript to make a HTTP request in the background to
the server (e.g. 'Any new email?'). The server generates
the appropriate response (e.g. 'Yes, 2: (1) ..., (2) ...'), in
XML format. Finally, client-side JavaScript parses the
response and updates the web page by manipulating the
Document Object Model (DOM) (e.g. by prepending the
two email messages to the inbox list).

This new technology which enjoyed much hype in 2005,
causes a fundamental change in how web applications
may be built. It is no longer necessary to transmit an
entire new web page in response to every event. AJAX
has fueled new possibilities for the web, and is therefore
sometimes associated with an entire new and more
interactive version of the web: Web 2.0. At the same
time, the use of these technologies poses many

challenges. The application developer needs to learn and
absorb a number of technologies in order to use AJAX.
In addition to the server-side framework and
HTML/CSS, the developer needs to learn Dynamic
HTML (DHTML) which is the manipulation of the
Document Object Model (DOM) using JavaScript, some
details of the HTTP protocol in order to generate valid
GET or POST requests using JavaScript, and finally the
usage of the XMLHttpRequest API. And to top it off, as
always there is the variety of browser dialects to take
into account, plus the desire to keep supporting older
browsers lacking these new technologies.

Enter Wt !
In contrast with the page model of traditional web

applications frameworks, the model followed by Wt or a
traditional GUI library is based on widgets, see Figure
1(b). The widgets are conceptually organized in a tree,
and callback functions are attached to particular events.
In response to an event, the callback is called, some
work gets done, and/or the widget tree is modified.

Wt is a young C++ widget library for developing web
applications. The application model of Wt is similar to
the application models of existing GUI libraries (such as

2

Figure 1: (a) The dynamic page model traditionally
used by web application frameworks, contrasted with
(b) the event-driver model traditionally used by GUI
toolkits, and Wt.

A gentle introduction to the Wt C++ Toolkit for Web Applications

Microsoft's MFC or TrollTech's Qt). At the same time
Wt hides many underlying technology details (HTML,
Forms/CGI, JavaScript, AJAX, etc...) from the
developer, not unlike how the Qt library hides the
underlying X library or Microsoft Windows GUI details.

Because the API of Wt makes abstraction of the
underlying technologies (Forms, JavaScript or AJAX),
Wt chooses how to communicate with the web browser
depending on technology support in the browser. The
responsibility for making the application work in the
jungle of web browsers is therefore also transferred from
the application developers to the library developers.

In the remainder of this introductory article to Wt, we
will first give an overview of the main classes and
features, as well as an explanation of what Wt does
behind the scenes. Next we will show how to use Wt by
implementing the classic “hangman” game.

3

A gentle introduction to the Wt C++ Toolkit for Web Applications

2. Library overview

Main components
The entire user-interface is organized in a hierarchical
widget tree of WWidget objects. A WWidget
corresponds to a visible entity such as for example a
piece of text (WText), a table (WTable), a line edit
(WLineEdit), or a more complex composite widget
(classes that implement WCompositeWidget). The
user-interface, which corresponds to the web page, is
specified by creating and maintaining this widget tree.
Every WWidget corresponds to a rectangular piece, and
manages the contents and events within that rectangle.

The library provides a number of basic widgets that
correspond directly to the widgets provided by HTML,
and which are all descendants of WWebWidget
(WText, WTable, WImage, ...). These widgets
internally manipulate a server-side HTML DOM, which
is then used by the core library to update the web page
rendered by the browser. In contrast,
WCompositeWidget objects are widgets that are
implemented by composition of other widgets. These
widgets do not manipulate the DOM themselves but
merely use the public API of the composing widgets.
While Wt provides a number of these composite widgets
(such as a tree-list widget and an auto-complete line
edit), these widgets do not necessarily belong to the
library, since they are implemented on top of Wt.

Every Wt application must start with the instantiation of
a WApplication object. This object manages the root
of the widget tree, information on browser capabilities
and manages internationalization support using a locale
and message resource bundles (see further).

Session management
Similar to how multiple instances of conventional
applications may be run concurrently, so will the Wt
core system spawn multiple Wt applications for every
independent web session. Each new “session” implies a
new path of execution which starts in wmain(), which
is the application entry point. Thus, the programmer only
needs to implement a single-user application, unless
users interact with a common component (such as a
database) or with each other, for which standard data-
sharing mechanisms must be used.

The current version of Wt implements these different
paths of execution using different processes. Thus, for
every new session, Wt spawns a new process. This has
the main benefit of enjoying kernel-level memory
protection between user sessions. As a consequence
simple programming mistakes will not automatically

compromise session-privacy. The downside of this
approach is cost: current kernel implementations may
require some amount of non-swappable memory
associated with every process. In the future, Wt may
offer different thread implementation choices, including
user-level threads.

Signal/Slot event propagation
Wt uses a signal/slot implementation for event
propagation. User-interface events, such as mouse clicks,
or text modifications, are exposed by Wt as signals
associated with particular widgets. To respond to an
event, the programmer connects the respective signal to
a slot. Any object method with a signature compatible
with the signal may be used as a slot. Whenever the
signal is emitted, all slots that have been connected to
the signal are called. The signal/slot paradigm is a well-
established type-safe and self-managed alternative to
callbacks.

Internationalization
Internationalization and localization is an important
property of a website, given the inherent global scope of
the World-Wide-Web. Wt assists in internationalization
by offering message resource bundles. A WMessage
object provides a piece of text which is dependent on the
current locale. Widgets that display text to the user (such
as WText) may be given a WMessage instead of raw
text. The message translations for every locale are stored
in XML format in message resource files, one for every
locale. When changing the application locale, using
WApplication::setLocale(), the application
automatically updates the corresponding widgets with
the localized text.

Non-intrusive upgrades
Web applications enjoy a major advantage over
conventional applications since the publisher can easily
upgrade all copies of the application, by merely
deploying a new version on his website. Usually the
publisher may not want to terminate running sessions
when deploying a new version, but instead offer the new
version to new sessions. This process of non-intrusive
upgrades is the default method of upgrading in Wt.

Session lifetime
Wt uses a keep-alive protocol between client and server
to determine session lifetime. As long as the web page is
displayed in the user's browser, the session is kept alive,
otherwise the session is terminated. In addition the
application can choose to end the session (for example in
response to the user 'logging out'), by calling

4

A gentle introduction to the Wt C++ Toolkit for Web Applications

WApplication::quit(). Either way, when a
session terminates, the main widget is destroyed. This
allows the application to release any application-specific
resources.

How does it work?
Wt implements two main tasks: rendering and
maintaining the HTML DOM tree in the web browser,
and responding to user input and user events, such as
mouse clicks.

All events that may be caught for processing are mapped
to signals, which are available in the respective widgets.
When an event is triggered by the user (e.g. a click on an
'OK' button), the web browser communicates the target
object and corresponding signal (for example
OkButton->clicked), together with all form data to
the web server (using AJAX or plain HTML form
submission). At the server, the corresponding Wt
application instance processes first all form data to
update the widget tree state. Then, the event is
propagated by emitting the signal of the target object,
which triggers all connected slots. These may perform
business logic and modify the widget tree. Modifications
to the widget tree are tracked by the library, and
converted to modifications to a server-side model of the
HTML DOM tree. Finally, depending on the method for
communication, either the DOM tree changes, or the
complete modified DOM tree are communicated back to
the web browser, completing the event cycle.

Because of the clear separation between user-interface
specification using the widget tree and the mechanism of
rendering the tree, Wt optimizes rendering for increased
responsiveness when AJAX is available. Wt
accomplishes this by transmitting only visible widget
changes during the first communication with the web
browser. As soon as the page is loaded, remaining
hidden widgets changes are transmitted in the
background. As a consequence, both the initial response
is optimized and the appearance of subsequent widgets
appears snappy.

5

A gentle introduction to the Wt C++ Toolkit for Web Applications

3. Tutorial
The tutorial section discusses two small programs to
illustrate various Wt library concepts. The first program
is a Hello World application, introducing two key
concepts of the library: the widget tree and signal/slots.
The second larger program is an online version of the
classic hangman game, including a user ranking system,
backed by a small database. The game is available
online1. The hangman game illustrates how a widget tree
for a more complex web application is constructed and
managed, how to write your own widgets, signals and
slots, how layout is handled, and offers an example of
how data can be extracted from a database to be
displayed on the website. The complete source code of
the game is around 900 lines including comments. We
selected the most interesting parts for this tutorial.

The Wt documentation page2 contains an exhaustive list
of classes, methods, signals and slots exposed in the Wt
API. Even the Hangman demo only uses a small portion
of the available classes and methods. The complete
sources of the tutorial examples, together with Makefiles
to build them, are included in the Wt source distribution.

The omnipresent Hello World
The entry point of every Wt program is the wmain()
function. The simplest Wt program must instantiate the
WApplication object, and call the application idle
loop. For the hello world application, a WText object
and a WPushButton were added, having the root of the
widget tree as parent. This will make them appear in the
web browser. Clicking the Quit button cleanly terminates
the session. This is achieved by connecting the
clicked signal of the Quit button with the quit()
slot of the application.

It is important to remark that there is no obligation to
call quit() explicitly. When the user navigates away
from the web application, Wt will detect that keep-alive
messages are no longer received, and Wt will terminate
the session as if quit() was called.

Listing 1. Hello World with Quit button

#include <WApplication>
#include <WText>
#include <WPushButton>
int wmain(int argc, char **argv)
{
 WApplication appl(argc, argv);

1Available at
http://jose.med.kuleuven.ac.be/wt/examples/hangman/ha
ngman.fcg

2Available at http://jose.med.kuleuven.ac.be/wt/doc/

 // Widgets can be added to a parent
 // by calling addWidget() ...
 appl.root()
 ->addWidget(new Wtext(
 "<h1>Hello, World!</h1>"));

 // ... or by specifying a parent at
 // construction time
 WPushButton *Button
 = new WPushButton("Quit", appl.root());

 Button->clicked.connect
 (SLOT(&appl, Wapplication::quit));
 return appl.exec();
}

My first widget
We start the discussion the hangman game with the login
process. This is handled by the LoginWidget. We have
kept the business logic to a minimum, and indeed a bit
simplistic. The LoginWidget invites the returning user to
login using his user name and password, and to choose
one of the available dictionaries from which words will
used for the game. If the user was not present in the user
database, we assume a new user and he is automatically
added to the database. On successful login, a
confirmation is displayed, otherwise the user is notified
of the problem and may try again.

Hangman's LoginWidget demonstrates the possibility to
write self-contained widgets in a nice object-oriented
fashion, with clean interfaces, ready to be plugged in
where they are required. The LoginWidget, with its non-
standard behavior, may not immediately be a candidate
for reuse, but nevertheless it demonstrates the interface
principles. The LoginWidget has only two public
member functions. The first is the constructor, which
takes the parent widget as an argument. Since all built-in
widgets take their parent as an argument in the
constructor, it is a consistent approach to do this as well
for custom widgets. The second member is a signal that
will be emitted when the login process has been
successfully completed. The signal also carries the user
name, and the chosen game dictionary.

The object oriented widget tree approach for GUI
libraries has led to a significant amount of widget reuse,
which is evident from large scale desktop projects such
as KDE. Especially where widgets cover pretty simple
concepts, reuse of a widget is often no more complex
than instantiating it in the right location of the object
tree. The remainder of a program may interact with the
widget using its methods and by installing callback
functions to react to events. Traditional GUI widget
examples are an expandable tree list, a file-open dialog,
etc... which are almost always included in the GUI
libraries. Wt introduces the exact same paradigm to the
world of web programming, and invites the programmer
to partition a web application in well defined and self

6

http://jose.med.kuleuven.ac.be/wt/examples/hangman/hangman.fcg
http://jose.med.kuleuven.ac.be/wt/examples/hangman/hangman.fcg
http://jose.med.kuleuven.ac.be/wt/examples/hangman/hangman.fcg
http://jose.med.kuleuven.ac.be/wt/doc

A gentle introduction to the Wt C++ Toolkit for Web Applications

contained widgets.

Listing 2. LoginWidget class definition.

class LoginWidget : public WContainerWidget
{
public:
 LoginWidget(WContainerWidget *parent = 0);

public signals:
 Wt::Signal<std::string, Dictionary>
 loginSuccessful;

private slots:
 void checkCredentials();
 void startPlaying();

private:
 WText *IntroText;
 WLineEdit *Username;
 WLineEdit *Password;
 WComboBox *Language;
 std::string User;
 Dictionary Dict;
 void confirmLogin(const std::string text);
};

In Listing 2, we show the class definition of the
LoginWidget class. The LoginWidget defines a public
signal, loginSuccessful, and uses internally a
number of slots to react to user events. Therefore, we
must inherit (directly or indirectly) from WObject. We
then declare signals and methods that will be used as in
the class declaration.

LoginWidget inherits from WContainerWidget. A
WContainerWidget is a widget which holds and
manages child widgets. The parent of a widget is always
a WContainerWidget or one of its derived classes
(such as WStackedWidget or WTableCell).
Children in a WContainerWidget are layed out in
the order in which they were added to the container. The
inline property of a widget determines its default layout
behavior within the container. In-line widgets are layed
out like words in a text, following lines and wrapping at
the right border of the container. Non in-line widgets are
formatted as a new paragraph. Widgets may also be
lifted out of this default layout flow to be manually
positioned in various ways, but we will not discuss this
here. Instead, as illustrated in the constructor discussed
below, a WTable is used to create a more sophisticated
layout.

The login widget, as rendered by Firefox, is shown in
figure 2. The code that generates this interactive form is
entirely located inside the constructor of LoginWidget,
which is shown in Listing 3.

Listing 3. The LoginWidget constructor implementation.

LoginWidget::LoginWidget(WContainerWidget*
 parent)
 : WContainerWidget(parent)
{
 setPadding(WLength(100), Left | Right);

 WText *title = new WText("Login", this);
 title->decorationStyle().font()
 .setSize(WFont::XLarge);

 IntroText = new Wtext(
 "<p>Hangman keeps track of the best"
 "players. To recognize you, we ask you "
 "to log in. If you never logged in "
 "before, choose any name and "
 "password.</p>",
 this);

 WTable *layout = new WTable(this);
 WLabel *usernameLabel
 = new WLabel("User name: ",
 layout->elementAt(0, 0));
 layout->elementAt(0, 0)
 ->resize(WLength(14, Wlength::FontEx),
 WLength());
 Username = new WLineEdit(
 layout->elementAt(0, 1));
 usernameLabel->setBuddy(Username);

 WLabel *passwordLabel

7

Figure 2: The hangman login widget, right after
construction. Listing 3 is the source code for this web
page.

A gentle introduction to the Wt C++ Toolkit for Web Applications

 = new WLabel("Password: ",
 layout->elementAt(1, 0));
 Password = new WLineEdit(
 layout->elementAt(1, 1));
 Password
 ->setEchoMode(WLineEdit::Password);
 passwordLabel->setBuddy(Password);

 WLabel *languageLabel
 = new WLabel("Language: ",
 layout->elementAt(2, 0));
 Language = new WcomboBox(
 layout->elementAt(2, 1));
 Language->insertItem(0,
 "English words (18957 words)");
 Language->insertItem(1,
 "Nederlandse woordjes (1688 woorden)");
 languageLabel->setBuddy(Language);

 new WBreak(this);

 WPushButton *LoginButton
 = new WPushButton("Login", this);
 LoginButton
 ->clicked.connect(SLOT(this,
 LoginWidget::checkCredentials));
}

The constructor introduces a number of new concepts.
We had encountered the WText and WPushButton
already in the hello world example. The new widgets
will hold few surprises. WLineEdit provides a single
line edit input and WComboBox provides a drop-down
selection box. The latter is populated with selection
options using insertItem(). We use the WLabel
class to provide labels for the three input fields, and tie
them to the corresponding input-field using
setBuddy(). By using WLabel instead of WText,
the user may click on the label to give focus to the
corresponding input field. WTable is a table, in this
case used for layout purposes. The table cells, accessed
using elementAt(row, column), are used as parent widget
for some of the text widgets, the line inputs, and the
combo box, so that they are layed out in an array.
Finally, WBreak is the equivalent of the HTML line
break tag (
), and lets subsequent inline widgets
start a new line.

The setPadding() call adds empty space within
LoginWidget between its border and its children. The
WLength class offers an interface to the CSS method of
specifying sizes. An 'automatic' length is created by
calling the default constructor. When constructed with
parameters, a value and a unit (defaulting to
WLength::Pixels) are specified. All CSS units
(pixels, font height, font width, cm, percentage, ...) are
supported by the WLength class. A few lines below the
setPadding() call, the WLength class appears
again, in the line where the table cell is resized. The
table width is set to 14 font width units, while the height

remains the default.

The last important new aspect of Wt in this constructor is
the use of decorationStyle() to access style
properties of a widget, which we use to set the font size
of the title to extra large. In the hello world example, we
used the old-fashioned <h2>..</h2>, but here we
demonstrate that you can apply CSS-based styles. This
method will reappear in other functions.

We use setEchoMode() to mask the entered
password with stars. Finally, the connect() call is
similar as in the hello world application, but here we
connect the clicked signal to the
LoginWidget::checkCredentials slot.

Listing 4. Methods checkCredentials() and
confirmLogin() of the LoginWidget class.

void LoginWidget::checkCredentials()
{
 User = Username->text();
 std::string pass = Password->text();
 Dict
 = (Dictionary) Language->currentIndex();

 if (HangmanDb::validLogin(User, pass)) {
 confirmLogin("<p>Welcome back, "

 + User + ".</p>");
 } else
 if (HangmanDb::addUser(User, pass)) {
 confirmLogin("<p>Welcome, "
 + User
 + ". Good luck with your first"
 " game!</p>");
 } else {
 IntroText
 ->setText("<p>You entered the wrong"
 " username/password, please try"
 " again.</p>");
 IntroText->decorationStyle()
 .setForegroundColor(Wt::red);
 Username->setText("");
 Password->setText("");
 }
}

void LoginWidget::confirmLogin(
 const std::string text)
{
 clear();

 WText *title
 = new WText("Loging successful", this);
 title->decorationStyle().font()
 .setSize(WFont::XLarge);

 new WText(text, this);
 (new WPushButton("Start playing", this))
 ->clicked.connect(SLOT(this,
 LoginWidget::startPlaying));
}

In checkCredentials() we validate the user and

8

A gentle introduction to the Wt C++ Toolkit for Web Applications

password that were entered. Therefore, it is a fine
example of how user input is retrieved and how the
webpage can be modified as a reaction to user input. In
the first three lines, the user name, password, and
language selection provided by the user are retrieved
from the WLineEdit and WComboBox widgets, using
respectively the text() and currentIndex()
method calls. These methods always return the up-to-
date values for these widgets, without any intervention
from the programmer. This may not be surprising for a
GUI library, but is a huge simplification compared to the
traditional and tedious form-based content retrieval
commonly found in web application frameworks.

In the subsequent code, the credentials are verified, and
we call confirmLogin() when the login was
successful. Otherwise we change the displayed message
stored in the IntroText widget using setText() to
notify the user of the failure. In addition, we change the
message text color to red to alert the user. Text color is
another property that can be accessed using
decorationStyle(), which we previously used to
set the font size of the title. Finally, we complete the slot
implementation by clearing the user name and password
text.

The most interesting and maybe surprising aspect of this
slot implementation may be in the code that is not there!
Wt has two possible ways for updating the web browser
page: either by letting the browser move to a new page,
or by using JavaScript, AJAX and DHMTL to update the
current web page. Because the code does not specify the
mechanism but only the desired result, Wt may use
either of these methods depending on support for
JavaScript and AJAX at the client.

We have kept the database interface simple on purpose.
HangmanDb::validLogin() verifies if the
user/password combination is stored in the database. If
this fails, we try to add the user by means of the
HangmanDb::addUser() call. This call will fail if
the user name was already in the database. Even though
the implementation of these functions will not be
discussed in this article, it is worth to mention that they
use the MySQL++ library to interact with a MySQL
database.

When the login was successful, we display a welcome
message and a confirmation of the login, which is
implemented in confirmLogin(). If you have
digested the LoginWidget implementation well so far,
you will find that this method contains no new magic.
First, we use clear() to clear the container widget
contents. Finally, in one statement we create a new
button and at once connect its clicked signal to the
startPlaying() slot.

Listing 5. LoginWidget::startPlaying() slot
implementation.

void LoginWidget::startPlaying()
{
 emit(loginSuccessful(User, Dict));
}

The startPlaying() slot demonstrates how to emit
a signal, in this case with arguments. What happens in
response to the signal depends on slots that have been
connected to this signal.

This concludes the entire implementation of the
LoginWidget. In the remaining of the tutorial, we will
reuse the same concepts that were used for the
LoginWidget, to create highly responsive AJAX-enabled
web applications. Because of the widget abstraction, you
need no knowledge of JavaScript and even your
knowledge of HTML can be minimal. On the other hand,
Wt makes no big effort to abstract the decorative CSS

9

Figure 3: Hangman screen shot: an AJAX and DHTML
web-application, entirely programmed in C++. All
images are preloaded in the browser for improved user
experience.

A gentle introduction to the Wt C++ Toolkit for Web Applications

concepts, instead exposing them almost directly using
decorationStyle(). Therefore, familiarity with
CSS will help you to style a Wt application.

The second widget: unleashing
Wt's power
Until now, we introduced a rather unique paradigm to
program web applications. We demonstrated Wt's added
value to the programmer. The next widget also illustrates
some new Wt widgets and features, but we also
demonstrate an important aspect of Wt that highly
enhances the user experience. One of the most appealing
features of popular web applications like Google's Gmail
and Google Maps is the excellent response time. Google
has spent quite some effort in developing client-side
JavaScript and AJAX code to achieve this. With few
effort – indeed almost automatically – you can get
similar response times using Wt, and indeed the library
will be using similar techniques to achieve this. A nice
bonus of using Wt is that the application will still
function correctly even when AJAX or JavaScript
support is not available! The HangmanWidget class,
which we discuss next, contains some of these
techniques.

HangmanWidget contains the real hangman game logic.
Figure 3 is a screen shot of the game in action. For each
new game, the program chooses a random secret word
for the player to guess. From the alphabet, the player
guesses a letter, and if the letter is part of the secret
word, its occurrences in the word are revealed. In case of
a wrong guess, you get one step closer to a hanging man.
At the end of the game, we update the users score in the
database, and offer the user the possibility to start a new
game. The implementation of HangmanWidget contains
few novelties, except for how we handle the hangman
images.

In the constructor we construct the user interface. The
part that constructs the images is isolated in the method
createImages().

Listing 6. Hidden widgets are prefetched by the browser,
ready to be displayed when show() is called.

void HangmanWidget::createHangmanImages
 (WContainerWidget *parent)
{
 for (unsigned int i = 0;
 i <= MaxGuesses;
 ++i) {
 std::string fname = "icons/hangman"
 + boost::lexical_cast<std::string>(i)
 + ".png";

 WImage *theImage
 = new WImage(fname, parent);
 HangmanImages.push_back(theImage);
 }

 HurrayImage
 = new Wimage("icons/hangmanhurray.png",
 parent);

 resetImages(); // Hide all images
}

void HangmanWidget::resetImages()
{
 HurrayImage->hide();
 for (unsigned int i = 0;
 i < HangmanImages.size();
 ++i)
 HangmanImages[i]->hide();
}

This function introduces a new widget: the WImage,
which not surprisingly corresponds to an image in
HTML. The code shows how all widgets are created and
inserted into the HangmanWidget. With what we
discussed until now, we would expect that all images are
displayed at the same time, which is clearly not what we
want. Therefore, we call resetImages() after the
images are created, and this method calls hide() on
every image, after which none of them are visible. The
game logic will show and hide the images, so that only
the correct one is visible at any point in the game. Every
WWidget can be hidden, and hidden widgets can be
redisplayed by calling show(). But why do we create
and hide them, where instead we could simply create and
delete the WImage that we want to show? Alternatively
we could work with only one image and modify the
source of the image to change image! The answer lies in
the response time, at least when AJAX is available. Wt
first transfers information about visible widgets to the
web browser. When the visible part of web page is
rendered, the remaining hidden widgets are transmitted
and inserted by the web browser into the DOM tree.
Most web browsers will also preload the images referred
to in these hidden widgets. As a consequence, when the
user clicks on a letter button and we need to update the
hangman image, we simply hide and show the correct
image widget. Then, only a single HTTP request with a
small response are communicated between the web
browser and the server. An alternative implementation
would invariably have caused the browser to fetch the
new image, requiring a second round-trip to the server,
plus the time to download the image. The hangman game
uses this principle of hidden widgets frequently, for
example also when you switch between high scores and
the game. At any point in time, only one of these widgets
is shown, and the user switches between these two
widgets using the menu bar at the bottom. Wt is able to
further reduce the reaction time in some cases by
transferring the slot implementation completely to the
browser, with the use of the so-called static signal/slot
connections, but that discussion falls outside the scope of
this introductory tutorial.

10

A gentle introduction to the Wt C++ Toolkit for Web Applications

In summary, the use of hidden widgets is a simple and
effective way to implement performant Wt applications.
Hidden widgets do not compromise the application load
time, since visible widgets are transferred first.

We will skip the implementation of the
HighScoresWidget and the HangmanGame because they
demonstrate no fundamental additional features.
HighScoresWidget displays the highest ranking users,
and HangmanGame connects together the LoginWidget,
the HangmanWidget, and the HighScoresWidget.
Information-hungry readers are however invited to take a
quick look at the HangmanGame source, since it uses
clickable text (no, not hyperlinks) to implement a menu
bar and demonstrates the use WStackedWidget, a
specialization of the WContainerWidget.

11

A gentle introduction to the Wt C++ Toolkit for Web Applications

4. Summary
The Wt library provides an effective way to implement
web applications and frees the application developer of
many technical aspects and quirks associated with new
web technologies such as JavaScript, AJAX and
DHTML. Because of the many similarities between Wt
and other GUI toolkits, application developers can treat
the web browser in many aspects as just another GUI
platform.

The tutorial demonstrated many important Wt features,
but far from all Wt features. Static slots, which further
improve event response times, file uploads and dynamic
resources, internationalization, full CSS support, and
many undiscussed widgets are only a selection of what
we had to skip. For more information, we refer the
reader to the online Wt documentation resources.

12

	1. Introduction
	Web application technology for the future
	Enter Wt !

	2. Library overview
	Main components
	Session management
	Signal/Slot event propagation
	Internationalization
	Non-intrusive upgrades
	Session lifetime
	How does it work?

	3. Tutorial
	The omnipresent Hello World
	My first widget
	The second widget: unleashing Wt's power

	4. Summary

