Main Page | Namespace List | Class List | File List | Namespace Members | Class Members

segment.h

00001 // segment.h (A line segment) 00002 // 00003 // The WorldForge Project 00004 // Copyright (C) 2000, 2001 The WorldForge Project 00005 // 00006 // This program is free software; you can redistribute it and/or modify 00007 // it under the terms of the GNU General Public License as published by 00008 // the Free Software Foundation; either version 2 of the License, or 00009 // (at your option) any later version. 00010 // 00011 // This program is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 // 00016 // You should have received a copy of the GNU General Public License 00017 // along with this program; if not, write to the Free Software 00018 // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 00019 // 00020 // For information about WorldForge and its authors, please contact 00021 // the Worldforge Web Site at http://www.worldforge.org. 00022 // 00023 00024 // Author: Ron Steinke 00025 00026 #ifndef WFMATH_SEGMENT_H 00027 #define WFMATH_SEGMENT_H 00028 00029 #include <wfmath/const.h> 00030 #include <wfmath/vector.h> 00031 #include <wfmath/point.h> 00032 #include <wfmath/axisbox.h> 00033 #include <wfmath/rotbox.h> 00034 #include <wfmath/ball.h> 00035 #include <wfmath/intersect_decls.h> 00036 00037 namespace WFMath { 00038 00039 template<const int dim> class Segment; 00040 00041 template<const int dim> 00042 std::ostream& operator<<(std::ostream& os, const Segment<dim>& s); 00043 template<const int dim> 00044 std::istream& operator>>(std::istream& is, Segment<dim>& s); 00045 00047 00051 template<const int dim> 00052 class Segment 00053 { 00054 public: 00056 Segment() {} 00058 Segment(const Point<dim>& p1, const Point<dim>& p2) : m_p1(p1), m_p2(p2) {} 00060 Segment(const Segment& s) : m_p1(s.m_p1), m_p2(s.m_p2) {} 00061 00062 ~Segment() {} 00063 00064 friend std::ostream& operator<< <dim>(std::ostream& os, const Segment& s); 00065 friend std::istream& operator>> <dim>(std::istream& is, Segment& s); 00066 00067 Segment& operator=(const Segment& s) 00068 {m_p1 = s.m_p1; m_p2 = s.m_p2; return *this;} 00069 00070 bool isEqualTo(const Segment& s, double epsilon = WFMATH_EPSILON) const; 00071 00072 bool operator==(const Segment& b) const {return isEqualTo(b);} 00073 bool operator!=(const Segment& b) const {return !isEqualTo(b);} 00074 00075 bool isValid() const {return m_p1.isValid() && m_p2.isValid();} 00076 00077 // Descriptive characteristics 00078 00079 int numCorners() const {return 2;} 00080 Point<dim> getCorner(int i) const {assert(i == 0 || i == 1); return i ? m_p2 : m_p1;} 00081 Point<dim> getCenter() const {return Midpoint(m_p1, m_p2);} 00082 00084 const Point<dim>& endpoint(const int i) const {return i ? m_p2 : m_p1;} 00086 Point<dim>& endpoint(const int i) {return i ? m_p2 : m_p1;} 00087 00088 // Movement functions 00089 00090 Segment& shift(const Vector<dim>& v) 00091 {m_p1 += v; m_p2 += v; return *this;} 00092 Segment& moveCornerTo(const Point<dim>& p, int corner); 00093 Segment& moveCenterTo(const Point<dim>& p) 00094 {return shift(p - getCenter());} 00095 00096 Segment& rotateCorner(const RotMatrix<dim>& m, int corner); 00097 Segment& rotateCenter(const RotMatrix<dim>& m) 00098 {rotatePoint(m, getCenter()); return *this;} 00099 Segment<dim>& rotatePoint(const RotMatrix<dim>& m, const Point<dim>& p) 00100 {m_p1.rotate(m, p); m_p2.rotate(m, p); return *this;} 00101 00102 // 3D rotation functions 00103 Segment<3>& rotateCorner(const Quaternion& q, int corner); 00104 Segment<3>& rotateCenter(const Quaternion& q) 00105 {rotatePoint(q, getCenter()); return *this;} 00106 Segment<3>& rotatePoint(const Quaternion& q, const Point<3>& p) 00107 {m_p1.rotate(q, p); m_p2.rotate(q, p); return *this;} 00108 00109 // Intersection functions 00110 00111 AxisBox<dim> boundingBox() const {return AxisBox<dim>(m_p1, m_p2);} 00112 Ball<dim> boundingSphere() const 00113 {return Ball<dim>(getCenter(), Distance(m_p1, m_p2) / 2);} 00114 Ball<dim> boundingSphereSloppy() const 00115 {return Ball<dim>(getCenter(), SloppyDistance(m_p1, m_p2) / 2);} 00116 00117 Segment toParentCoords(const Point<dim>& origin, 00118 const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const 00119 {return Segment(m_p1.toParentCoords(origin, rotation), 00120 m_p2.toParentCoords(origin, rotation));} 00121 Segment toParentCoords(const AxisBox<dim>& coords) const 00122 {return Segment(m_p1.toParentCoords(coords), m_p2.toParentCoords(coords));} 00123 Segment toParentCoords(const RotBox<dim>& coords) const 00124 {return Segment(m_p1.toParentCoords(coords), m_p2.toParentCoords(coords));} 00125 00126 // toLocal is just like toParent, expect we reverse the order of 00127 // translation and rotation and use the opposite sense of the rotation 00128 // matrix 00129 00130 Segment toLocalCoords(const Point<dim>& origin, 00131 const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const 00132 {return Segment(m_p1.toLocalCoords(origin, rotation), 00133 m_p2.toLocalCoords(origin, rotation));} 00134 Segment toLocalCoords(const AxisBox<dim>& coords) const 00135 {return Segment(m_p1.toLocalCoords(coords), m_p2.toLocalCoords(coords));} 00136 Segment toLocalCoords(const RotBox<dim>& coords) const 00137 {return Segment(m_p1.toLocalCoords(coords), m_p2.toLocalCoords(coords));} 00138 00139 // 3D only 00140 Segment<3> toParentCoords(const Point<3>& origin, const Quaternion& rotation) const 00141 {return Segment<3>(m_p1.toParentCoords(origin, rotation), 00142 m_p2.toParentCoords(origin, rotation));} 00143 Segment<3> toLocalCoords(const Point<3>& origin, const Quaternion& rotation) const 00144 {return Segment<3>(m_p1.toLocalCoords(origin, rotation), 00145 m_p2.toLocalCoords(origin, rotation));} 00146 00147 friend bool Intersect<dim>(const Segment& s, const Point<dim>& p, bool proper); 00148 friend bool Contains<dim>(const Point<dim>& p, const Segment& s, bool proper); 00149 00150 friend bool Intersect<dim>(const Segment& s, const AxisBox<dim>& b, bool proper); 00151 friend bool Contains<dim>(const AxisBox<dim>& b, const Segment& s, bool proper); 00152 00153 friend bool Intersect<dim>(const Segment& s, const Ball<dim>& b, bool proper); 00154 friend bool Contains<dim>(const Ball<dim>& b, const Segment& s, bool proper); 00155 00156 friend bool Intersect<dim>(const Segment& s1, const Segment& s2, bool proper); 00157 friend bool Contains<dim>(const Segment& s1, const Segment& s2, bool proper); 00158 00159 friend bool Intersect<dim>(const RotBox<dim>& r, const Segment& s, bool proper); 00160 friend bool Contains<dim>(const RotBox<dim>& r, const Segment& s, bool proper); 00161 friend bool Contains<dim>(const Segment& s, const RotBox<dim>& r, bool proper); 00162 00163 friend bool Intersect<dim>(const Polygon<dim>& r, const Segment& s, bool proper); 00164 friend bool Contains<dim>(const Polygon<dim>& p, const Segment& s, bool proper); 00165 friend bool Contains<dim>(const Segment& s, const Polygon<dim>& p, bool proper); 00166 00167 private: 00168 00169 Point<dim> m_p1, m_p2; 00170 }; 00171 00172 } // namespace WFMath 00173 00174 #include <wfmath/segment_funcs.h> 00175 00176 #endif // WFMATH_SEGMENT_H

Generated on Thu Jul 29 07:09:56 2004 for WFMath by doxygen 1.3.7