Tntnet users guide

Authors: Tommi Méakitalo, Andreas Welchlin

Tntnet users guide 1

Table of contents

(00010100 o F RO RTU R TOPPP PRSI 3
LIS g o T I 11 SRR 3
Create a Simple tntNet-apPliCaLION.oiiiieieeee bbb 3
C++-content (processing, expressions, conditional EXPreSSiONS)..........vceeieeieeieeseeseerseeseeeseeeeseens 4
Query-arguments (scalar/vector, untyped/typed, default-Value)..........ccccervreiinenie e 4
(O] 101070] 01 o £SO PRPI 5
(O] 001010 01c 011 072 = 1 01=: 1= £ PR 5
Calling components (AYNAMIC/SIALIC).eeuereereerieeeeieste st ns 5
Calling COMPONENES FIOM CH ... sttt e e e sneesaeesreeneeneeneeneens 6
INCIUAE ECPP-TITES. ...t b bttt e et b bbb nne s 6
DeClare SUDCOMPONENES........c.eoiieiecee et e et e sreesse e beentesnsesseesseesseenneaneaas 6
Passing parameters t0 COMPONENTS.......c.oiuireiierierie s seeeeseesiesreseeseeseessesseeeessessesseeeessessessensennsessessens 6
Sessions and Scoped-variabl €S (TYPES, SCOPE)......couiririrrierierieeieie sttt ettt sa e sse e e sns 7
L0000 (1 == PP USURTRTRI 7
COMPONENTALIITIULES. ...ttt b et nb e b b nneens 8
(@001 1T [0 =1 o] 1 1SRRI 8
Accessing Configurati ONVANTADIES...........coiuiriiiieeee e 9
0o o 1 o OSSR 9
[ders: o 11T 0] | g= 1070 | 1T ol SRR PSRRPR 9
S Y= 001 | £SO 9
2T gT=T Y0 1= | SRS 10
UPIOB. ...ttt e ekt a et bRt et b Rt h e e e e R et ne e 10
USING CHH-ClaSSES....ueeiecie e stee st ste et ee et e e et e s e s e s s e et e e tesseesseesbeenseenseeseesaeesseenseensesneesneenseensen 11
Some notes about MUITITAIEANING.........coeiiiiieeec e e sre e 11

Tntnet users guide 2

Concept

Tntnet is a applicationserver for webapplications written in c++. A webapplication in tntnet is
written with atemplate-language, which embeds c++-processing-instructions in html-pages. Y ou
can use exernal classes or libraries in these pages. That way programmers can concentrate on the
html-result, when creating content and put processing in c++-classes.

Applications written with the template-language called ecpp are compiled into c++-classes and
linked into a dynamically loaded shared library. Thisis done at compile-time — not at runtime, like
other template-systems often do. On runtime there is no compiler needed.

Installing Tntnet

Tntnet runs on Linux/Unix. Y ou need a c++-compiler to compile Tntnet and also to compile your
webapplications. As a prerequisite cxxtools (which is available through the Tntnet-homepage
http://www.tntnet.org) is needed. Cxxtoolsis a collection of useful c++-classes.

To install tntnet you have to:
1. install cxxtools

2. unpack the sources with “tar xzf tntnet-version.tar.gz”
3. cd to the source-directory “cd tntnet-version.tar.gz”

4. run “./configure”

5. run “make”

6. run “make install”

Thisinstalls: The applicationserver and tools for

1. tntnet — the webapplicationserver

ecppc — the ecpp-compiler

ecppl — the ecpp-language-extractor for internationalization
ecppll — the ecpp-language-linker for internationalization
some shared libraries

© gk~ 0D

tntnet-config — a script, which gives you information about the installed Tntnet and helps you
setting up a simple project.

Create a simple application with Tntnet

The simples way to create a tntnet-application is to use the tntnet-config-script. Just run “tntnet-
config —project=projectname”. This creates a directory with the name of the project and:

1. projectname.ecpp — your first ecpp-file

2. Makefile —a simple makefile to build the application

3. tntnet.conf — a basic configurationfile for tntnet

4. tntnet.properties — a basic configurationfile for logging-configuration

Y ou should use avalid c++-classname as the projectname, because the projectnameis used asa
classname.

The script tells you some basic instructions how to build and run the project.
To build the project, change to the directory and run “make’. It should compile out of the box. You

Tntnet users guide 3

get ashared library projectname.so, which contains the webapplication. To run it start “tntnet -c
tntnet.conf” and navigate your browser to http://local host:8000/projectname. Y ou should see a
simple Web-page.

C++-content (processing, expressions, conditional
expressions)

There are some simple tags, with which you can embed c++-content into the page. The most
important are processing-tags and output-tags.

With processing-tags you insert c++-code into the page, which is processed on runtime. There are 3
options to insert code:

The most verbose version is <%cpp>...some c++-code...</%cpp>. A newline after </%cpp> is
ignored.

<{ starts an inline-block, which is terminated by }>. A newline after the closing tag is not ignored,
but passed to the browser.

The character '%' in the first line starts also c++-code until the end of line.

To prevent interpretation of these you can always precede the tag with '\', which prevents the
interpretation of the next character.

Y ou can embed a c++-expression with <$ expr $> into the html-code. The result of the expression
is printed into the page. The type of the expression needs to have a output-operator for std::ostream.
The output is not regarded as html. Characters with special meaning in html are trandated into their
html-entities.

Often you need to print something depending on a condition. You can put aif-statement around it.
Asashortcut thereis a special tag <? cond ? output ?>. “cond” is evaluated as a c++-expression. If
the result of this expression istrue, output is printed. The output istranslated like <$...$>.

Another useful tag is<# ... #>, which isjust acomment. The content is skipped by the ecpp-
compiler.

In C++-mode reply.out() returns a std: : ostream, which writes text to the html-page. reply.sout()
returns a std:: ostream, which escapes characters with special meaning in html before writing to the

Page.

Query-arguments (scalar/vector, untyped/typed, default-value)

Web-applications need to interact with the user. Therefore they send a html-form to the user. After
the user submits the form, the application must interpret the content of the form.

To support this, ecpp has a speciad tag: <%args>...</%args>. Between this pair you define the
arguments of the form. Each argument is terminated with ';". Ecpp generates c++-variables of type
std::string, containing the content of the form.

Y ou can precede arguments with a c++-type to convert the parameter automatically into this type.
Thisis done using the input-operator of std::istream.

Ecpp supports multiple input-tags with the same name, e.g. multiple checkboxes or select-tag with
attribute multiple. By appending [] to your argument a std::vector and a typedef will be generated.
Writing name[] will be compiled to atypedef name_type and a vector name.

Single arguments can have a default value using the syntax variable = default_value;.
Examples:

<%ar gs>

Tntnet users guide 4

namne,;

street;

city = “New York”;

i nt age; /1 content of text-input is converted to int

int sport[]; // multiple checkboxes with the same nanme on ny form
</ Yar gs>

<# use the vector like this: #>

% for (sport_type::const_iterator it = sport.begin(); it !=
sport.end(); ++it) {

<$ *it $>

%}

Components

Ecpp-pages are called components. They are identified by their name. The name is composed of the
class-name and the library-name divided with'@'.

Components, which are called by Tntnet are called top-level-components.

Top-level-components return the http-response-code. If aexplicit return-statement is not specified
the constant HTTP_OK isreturned. Constants, which define http-response-codes are defined in the
header tnt/http.h.

Components can contain internal subcomponents. The subcomponent-name is appended to the
class-name divided by adot.

Examples are:

nmyconp@pp
identifies a component with the name “mycomp” in the shared library “app.so”

myconp. subconp@pp
identifies a subcomponent “subcomp” of “mycomp@app”

Component-parameters
Every component has 3 parameters called “request”, “reply” and “qgparam”.

The “request” -parameter contains information about the request, received from the client. This
includes information about http-headers, the peer-ip, cookies or multipart-components. It is defined
as “tnt::httpRequest”.

The “reply”-parameter is used to build the answer to the request. The http-answer can be modified
here. The reply-object is defined as “tnt::httpReply”. It contains methods to manipul ate the http-
headers and an output-stream for writing to the http-body.

“gparam” specifies the query-parameters of the component. For top-level-components it contains
the query-parameters of the form. As described above, the parameters are accessed via the <%args>-
block.

Calling components (dynamic/static)

Normally you don't want to write a whole web-application in one file, but you want to split it into
pieces and glue them together, just like you would write normal applications. Y ou don't write a
single function, but split it into smaller parts and call them from a“main”-function.

This paradigm is supported by using components. Components can be called from other
components. Y ou can write reusable components, which implement some specific parts of your
page, e. g. atable or select-box.

Components are called using <& ... >.

Tntnet users guide 5

Basically there are several possibilities to call a component.
In the simplest case the component-name without library-part can be put inside these tags.

Component-names without library-part are searched in the local subcomponent first. If not found,
the component is searched in the library of the calling component.

Example:

<& soneconp >
call the component “somecomp” here. If there is ainternal subcomponent, thisis called,
otherwise the component is looked up in the library of the calling component.

Subcomponents, which are defined in other components, are called by appending the
subcomponent-name to the component-name separated by a dot.

Example:

<& ot her conp. subcomp >
call the subcomponent “subcomp” in the component “othercomponent”.

To call acomponent in another library the library-part is appended to the name.

Example:

<& someconp@onelib &
inserts the component “somecomp” from “somelib.so” here

Component-names can be computed at runtime. To call a computed component-name, the
expression is put inside brackets.

Example:

% std::string conp = “conp”;
<& (conmp + “@therlib”) &
The component “comp@otherlib” is called.

Calling components from c++

Components can be called directly from C++ using the method callComp. callComp takes the
parameters

e component-id (of type tnt::compident or tnt::subcompident or a std::string)
® request

o reply

® (uery-parameter-object (of type cxxtools::query_params)

It returns a http-result-code. See the API-documentation for details.

Sometimesit is useful not to send the output directly to the client. With the method scall Comp() it
Is also possible to retrieve the output and e.g. modify it before sending. It takes the same parameters
as callComp, except reply. Instead of that atemporary reply-object is passed. The http-return-code
of the called component is ignored.

Example:
std::string result = scall Conp(request, qgparan;

Tntnet users guide 6

Include ecpp-files

Ecpp-files can be included using the tag <%include>filename</%include>. The content is included
at compile-time. It issimilar to the #include-directive in C++.

Including Ecpp-files can be useful for:

e global declarations

e initialization, which is needed in multiple components

® itisstrongly recommended for global-scope (explained below) variables.

It should not be used for including content. Component-calling is better for that, because the content
is not duplicated.

Declaring subcomponents

Subcomponents are declared using <%def compname>...</%def>. The syntax of subcomponentsis
the same as in top-level-components. The only exception is, that it is not possible to define other
subcomponents there.

Example:
Hell o <& who >

<%gdef who>
Wor | d
</ Yglef >

Prints “Hello World”.

Passing parameters to components

Subcomponents receive named query-parameter just like top-level-components. The parameters are
passed inside the <&...>-tags. The called component defines the parameters using an <%args>-
block.

Example:
<& greeting name="Linus” | astname="Torval ds”>

<%gdef greeting>

<%ar gs>

| ast nane;

nane;

</ Y%ar gs>

H <$ nane $> <$ |astnane $>
</ Ygef >

Prints:

Hi Li nus Torval ds

Expressions are enclosed in brackets. The parametertype can also be numeric or any other type,
which is serializable and deserializable using std::ostream and std::istream.

Example:

<{
std::string naneVal ue = “Linus”;
std::string | astnaneVal ue = “Torval ds”;

unsi gned repeat Num = 3;

Tntnet users guide 7

1>
<& greeting name=(naneVal ue) | astnane=(| ast naneVal ue)
r epeat =(r epeat Num >

<%ef greeting>

<%ar gs>

| ast nane;

namne;

unsi gned repeat Num = 1;

</ Y%ar gs>

% for (unsigned n = 0; n < repeatNun ++n) ({
H <$ name $> <$ | astnanme $>

% }

</ Ydef >

Prints:

Hi Li nus Torval ds
Hi Li nus Torval ds
Hi Li nus Torval ds

A component can pass all its parameters to a subcomponent using its own gparam-object. In the
example below the parameters of the subcomponent greeting are forwarded to printname.

Example:

<& greeting name="Linus” | astnanme="Torval ds”>
<%ef greeting>

<hl>greeting</hl>

<&pri nt name gpar ane
</ Y%def >

<%ef printname>

<%ar gs>

| ast nane;

nane;

</ Yar gs>

H <$ nane $> <$ | astnane $>
<%gef >

Prints:

<hl>greeting</hl>
H Li nus Torval ds

Defining Variables

Variables are defined in normal c++-syntax by specifying type and name of the variable and the

terminationcharacter ';". These variables are instantiated automatically on first use. Constructor-

parameters are specified by adding them in brackets after the name.

Lifetime

Variables are defined in alifetime-area. The lifetime can be session, request or application.

Session-variables are valid for the current usersession. Sessions are implemented using cookies.
Example

<¥sessi on>

Tntnet users guide 8

std::string currentUser;
</ Y%sessi on>

Request-variables are just valid while the current request is processed. Thisis the shortest possible
lifetime.

Example

<% equest >
unsi gned next1d(0);
</ % equest >

Application-variables are valid as long as tntnet is running. They are shared between users. Locking
of application-variablesis done by tntnet. Thisis explained in detail in chapter “multithreading”.

Example

<%appl i cati on>
DbConnect i on nyConnecti on(*“cust omerdb”);
</ Yappl i cati on>

To use the application-lifetime correctly it is necessary to know, that your application is one shared
library. Application-variables are only accessible within the same shared library.

Scope

State-variables are by default valid only in the component, where they are specified. The same name
can be used in different components without conflicts.

Sometimesiit us useful to widen this scope. You could e.g. define a session-variable “currentUser”,
which is accessible throughout your application. The scopes are specified by adding the scope-
attribute to the tag. Valid scopes are: component (the default), page (inside the current component
and itsinternal subcomponents) and global.

The application is a shared library with your components.
Examples:

<Usessi on scope="gl obal ">

std::string currentUser;

</ ¥Y%sessi on>

<% equest scope="page”>

i nt nunber (1);

</ % equest >

<Uglef >

<% equest scope="page”>

int nunber; // this references the variable “nunber” defined
/1 outside this subconponent

</ % equest >

</ Ygef >

Cookies

Cookies are supported by tntnet with asimple api. A cookie consists of aname, avalue and
optionally attributes. To set acookie a ecpp-application call “reply.setCookie’. The simplest formis
to call it with 2 parameters. a name and a cookie. Y ou can pass just a std::string or a character-string
as name and value of the cookie. When the browser does its next reguest, you can read the cookie
with “reply.getCookie()”. This returns a cookie-object, which is directly convertabe to a std::string.

Tntnet users guide 9

Example:
To set acookie:
<

request . set Cooki e(“mycooki e”, “myval ue”);
1>
At next request retrive the value:
<{
std::string v = reply. get Cooki e(“nycookie”);
[l “v” has the val ue “myval ue” now
}>
To clear the cookie:
<{
reply. cl ear Cooki e(“ mycooki e”);
}>

Componentattributes

Sometimesit is useful to query attributes of a component. Attributes are just string-values, which
are defined inside a component.

Attributes are defined within a <%oattr>-block. A attribute consists of a name, the character '=" and a
string terminated by ';'.

To query attributes of a component you need to fetch areference to it with fetchComp. Pass a
componentidentifier to fetchComp and use the method getAttribute with a name-parameter to
retrieve the value.

Example:
Define a attribute:

<%attr>
myattribute = “nyval ue”;
</%ttr>

To query the attribute:
<

std::string v =
fetchConp(“conponent @i brary”).getAttribute(“nyattribute”);
/1 “v” contains the value “nyval ue” now.

1>
Configuration

Tntnet needs a configurationfile to run. By default thisis read from “/etc/tntnet/tntnet.conf”, but you
can pass a different file with the commandline-switch -c, as was done at the first example.

Thefileis atextfile and contains configurationvariables. Every line starts with a variablename
followed by 0 or more parameters separated by whitespace. If a parameter contains itself
whitespace, enclose the parameter in single or double quotationmarks. If you need the
guotationmark in the value, you must preceide it with '\ to escape its special meaning.

Lines starting with '# and empty lines are ignored.

There are variables, which are read by tntnet. Unknown variables are ignored. Components might
use them, so they need not be unknown if they are unknown to tntnet.

The most important variableis“MapUrl”. It tells tntnet, what to do with requests. Without this

Tntnet users guide 10

variable tntnet answers every request with 404 — HTTP_NOT_FOUND. “MapUrl” takes at least 2
parameters: aregular expression, which is matched against the url, sent from the client and a
componentname, which to call, if the expression matches. The componentname might contain
backreferences to the regular expression.

Examples:

maps every htm-file to the conponent with the same basenane e.g.
/index. htm i ndex@ryapp
MapUrl /(.*).htm $1@ryapp

maps requests, which end with .jpg to conponents with jpg-suffix
e.g.

/nying.jpg => nying_j pg@yapp

MapUrl /(.*).jpg $1_jpg@vyapp

makes every conponent avail able through http by mappi ng the part
bef ore

first '/' to the applicationnane (shared-library-nanme) and the part
after

the app

MapUrl /(.*)/(.*) $2@h1

Accessing configurationvariables

Sometimes webapplications need some configuration e.g. a database-url. Instead of hardcoding it,
the application can put it into the configurationfile of tntnet.

Configurationvariables read this way can contain only a single value.

To specify avariable, put a<%config>-block into your component. Inside define a variable my
putting the name and optionally a default value separated with '=" and terminate the definition with

Example:

<%onfig>
dburl = “dat abase=nydb”;
</ %onfig>

To set the dburl-parameter put aline:
dburl “dat abase=anot her db”

into tntnet.conf.
If you don't specify adefault value, the variable is set to an empty string, when not set in tntnet.conf.

Logging

Logging is done through the cxxtools-meta-logging-library. This uses log4cplus, logdcxx or a
simple builtin-logging depending on configuration of cxxtools. Y ou don't have to bother too much
about the used library, when devel oping tntnet-applications. The API stays the same. If you use just
the cxxtools-provided macros, you can switch later to another library without changing the source of
your application.

Every logging-library cxxtools supports, support logging categories and severities. Tntnet defines
for each component a category “ component.componentname”. When you need to log something,
just use one of the macros log_fatal, log_error, log_warn, log_info or log_debug. The parameter is

Tntnet users guide 11

passed to a outputstream and you can put multiple outputitems separated by '<<'.

What is logged where is specified in “tntnet.properties’ (but this can be changed in tntnet.conf). Just
look into the example tntnet.properties for some details about configuration and look at the
documentation of the underlying logging-library.

Exceptionhandling

Exceptions derived from std::exception thrown by components are catched by tntnet. They usually
generate a500 —HTTP_INTERNAL_SERVER_ERROR, but there is a exeptionclass tnt::httpError,
which takes a errorcode and a message. The code is used as a http-error-code. Y ou should use the
tnt::HTTP_*-constants for it.

Savepoints

Sometimes you might want to catch exceptions generated by lower level classes or subcomponents
and generate a nicely formatted error-message. In this case you might want to close all open html-
tags before starting your error-message. Thisis often aamost impossible task, because you don't
know, where the exception occured. Luckily you get help from tntnet/ecpp to solve this open-htmil-
tag problem: savepoints. A savepoint isasimple class, which acts like a transaction for html-output.
Y ou instantiate a savepoint as alocal variable at the start of your try-block and pass the request-
object to it. Before catch call savepoint::commit(). If the commit is not reached, because a exception
happened, the savepoint-object rolls back the output to the point, where it was instantiated.

Example:
<
try
{ . .
tnt::savepoi nt nmysavepoi nt;
}>
<f or mp
<input type="text” nanme="val ue” val ue="<$ object.getVal ue() $>">
</fornmp
<{

mysavepoi nt. comit();

catch (const your dbexception& e)

{
1>

<p class="error”>A dat abase-error occured: <$e.what $></p>
<{

}
}>

In case object.getValue() throws a*“your_dbexception” the form-tag is discarded from the output of
the component and a nice error-message is printed. Without the savepoint the output ends at
“value="". Thisresultsin abadly formatted html-page.

Binary content

Webapplications may contain logos and other images or binary content. They often have static
content. For webapplications to be complete, you need away to include your images.

In Tntnet/ecpp you can generate components out of binary files, e.g. jpeg-images. The ecpp-
compiler ecppc has a special switch -b, which generates c++-classes out of these files, without
interpreting tags, which might appear in binary files. With the switch -m you can specify the
mimetype, but if you don't do that, ecppc will use your mime-database (normally /etc/mime.types).

Tntnet users guide 12

Example:
To generate a component out of ajpeg-filelogo.jpg:

ecppc -b | ogo.jpg
will generate alogo.h and logo.cpp, which you can compile an link into your applicationlibrary.

The downside is, that for small binaries like small graphicsthereis arelative large overhead (I
measured aincrease of the webapplication of about 8k per image). Therefore starting with version
1.5 of tntnet the ecpp-compiler is able to pack multiple binaries into a single component. Thisis
done with the switch -bb.

To address aimage in a multi-image-component, you have to pass the name of your image as
pathinfo to MapUrl in your tntnet.conf:

MapUrl /images/ (*.jpg) nynultiinageconponent @ywebapp $1

Upload

Uploading filesis supported by html with the input-tag with type="file”. To use it, you have to
specify the enctype “multipart/form-data” in your form-tag.

When the form is submitted, the values comesin a specia format, which supports large objects.
Thisis supported by tntnet and it has asimple api to access the uploaded file.

Because files might be somewhat larger than other form-content, they are not passed through the
gparam-parameter and not accessible in <%args>-blocks. Y ou have to fetch a const reference to a
tnt::multipart-object with request.getMultipart(). This object is a container of objects of type
tnt::part. Y ou can either iterate through the parts or use the find-method to directly find the part,
which contains the uploaded file. The tnt::part-object gives you access to the content either through
constant iterators or just as a string. The iterator-interface is more efficient, because it does not need
to instantiate atemporary string. Y ou should consider always to use the iterator-interface.

Example:

To create aform with a upload-field:

<f orm enctype="nul ti part/form data”>
<input type="file” name="upl oad” >
<i nput type="submit”>

</fornme

To save the uploaded file:

<
const tnt::nultipart& np = request.getMiltipart();
tnt::multipart::const_iterator it = np.find("upload");
if (it !'= np.end())
{

std::of streamf(“result.dat”);
std:: copy(it->getBodyBegi n(), it->getBodyEnd(),
std: :ostreanbuf iterator<char>(f));
}

}>

Using c++-classes

As mentioned earlier it is desirable to separate content and processing. Content is the view, whichis
created using ecpp. Processing are some c++-classes. What you need is away to access c++-classes
from your ecpp-files. Luckily thisis easy done.

A ct++-class consists generally of ainterface in a header-file and aimplementationin a

Tntnet users guide 13

implementation-file. Y ou can link your application with the implemenation, but you need away to
include the interface into your ecpp-file. Thisis done in the <%pre>-block. Contents of thisblock is
copied unmodified to the start of the generated header. Y ou can place #include-directives here.

Example:

<%pr e>
#i ncl ude “yourclass.h” [/ include the class-definition here
</ Y%pr e>
<
yourclass c¢; // e.g. instantiate your class
1>
<p><$ c.getAttributel() $></p> <# include a attribute-value into your
page #>

Y ou might aswell link your shared library to aexternal library and use it this way.

Some notes about multithreading

When devel oping ecpp-components you have to bear in mind, that Tntnet is multithreaded, so your
code have to be thread-safe. Luckily Tntnet does it's best to encapsulate most of it, but if you use
your own classes this must be considered.

Y ou can use cxxtools::Mutex and cxxtool::MutexLock to protect your objects.

Scoped variables are automatically protected. If you use a application-scoped variable the current
request locks the application-scope-object and prevents other concurrent threads accessing the
application-scope until the request is finished. Using session-scope locks the application-scope-
object first and then session-scope-object to prevent deadlocks, where one request waits for the
session-scope and the other wait for the application-scope.

Tntnet users guide 14

	Concept
	Installing Tntnet
	Create a simple application with Tntnet
	C++-content (processing, expressions, conditional expressions)
	Query-arguments (scalar/vector, untyped/typed, default-value)
	Components
	Component-parameters
	Calling components (dynamic/static)
	Calling components from c++
	Include ecpp-files
	Declaring subcomponents
	Passing parameters to components
	Defining Variables
	Cookies
	Componentattributes
	Configuration
	Accessing configurationvariables
	Logging
	Exceptionhandling
	Savepoints
	Binary content
	Upload
	Using c++-classes
	Some notes about multithreading

