
The Therion Book

Stacho Mudr�ak

Martin Budaj

Therion is copyrighted software. Distributed under the GNU General Public License.

Copyright c
 1999{2005 Stacho Mudr�ak, Martin Budaj

This book describes Therion 0.3.9

We owe thanks to

Martin Sluka, Martin Heller, Wookey, Olly Betts

and all users giving feedback and suggestions.

Translations:

Language XTherion Map header Translated by

cz (Czech) yes yes Ladislav Bla�zek

en, en UK, en US (English) yes yes original

es (Spanish) yes yes Roman Mu~noz

fr (French) no yes Eric Madelaine

sk (Slovak) yes yes Stacho Mudr�ak

The cover picture shows survey sketch of the Hrozn�y kame�nolom part of the Dead Bats

Cave in Slovakia and the map of it produced by Therion.

Contents

Introduction . 5

Why Therion? . 5

Features . 6

Software requirements . 7

Installation . 7

Setting-up environment . 7

How does it work? . 8

First run . 9

Creating data �les . 10

Basics . 10

Data types . 11

Data format . 11

`encoding' . 12

`input' . 12

`survey' . 12

`centreline' . 13

`scrap' . 17

`point' . 19

`line' . 21

`area' . 24

`join' . 24

`equate' . 25

`map' . 25

`surface' . 26

`import' . 27

`grade' . 27

`revise' . 28

XTherion . 28

XTherion|text editor . 29

XTherion|map editor . 29

Keyboard and mouse shortcuts in the Map editor 32

Thinking in Therion . 34

How to enter centreline? . 34

How to draw maps? . 35

How to create models? . 36

Therion in depth . 36

How the map is put together . 36

Processing data . 38

Con�guration �le . 38

`encoding' . 38

`input' . 38

`source' . 38

`select' . 38

`unselect' . 39

`layout' . 39

`export' . 45

Running Therion . 46

XTherion|compiler . 47

What we get? . 48

Information �les . 48

Log �le . 48

XTherion . 48

SQL export . 48

2D maps . 49

3D models . 50

XTherion|model viewer . 50

Changing layout of PDF maps . 51

Page layout in the atlas mode . 51

Page layout in the map mode . 56

Customizing text labels . 56

New map symbols . 57

Point symbols . 58

Line symbols . 58

Area symbols . 59

Special symbols . 60

Appendix . 61

Compilation . 61

Quick start . 61

Hacker's guide . 62

Environment variables . 63

Initialization �les . 63

Therion . 63

XTherion . 65

Example data . 65

History . 67

Future . 68

General . 68

2D maps . 68

3D models . 68

Introduction

Therion is a tool for cave surveying. Its purpose is to help

� archive survey data on computer in a form as close to the original notes and sketches

as possible and retrieve them in a
exible and e�cient way;

� draw a nice up-to-date plan or elevation map;

� create a realistic 3D model of the cave.

It runs on Unix, Linux, MacOSX and Win32 operating systems. Source code and Win-

dows installer are available on the Therion web page (http://therion.speleo.sk).

Therion is distributed under the GNU General Public License.

Why Therion?

In the 1990s we've done a lot of caving and cave surveying. Some computer programs

existed which displayed survey shots and stations after loop closure and error elimination.

These were a great help, especially for large and complicated cave systems. We used the

output of one of them|TJIKPR|as a background layer with survey stations for hand-

-drawn maps. After �nishing a huge 166 page Atlas of Dead Bats Cave, we soon had

a problem: we found new passages connecting between known passages and surveyed

them. After processing in TJIKPR, the new loops in
uenced the position of the old

surveys; most survey stations now had a slightly di�erent position from before due to

the changed error distribution. So we could either draw the whole Atlas again, or accept

that the location of some places was not accurate|in the case of loops with a length of

approximately 1 km there were sometimes errors of about 10m|and try to distort the

new passages to �t to old ones.

These problems remained when we tried to draw maps using some CAD programs. It was

always hard to add new surveys without adapting the old ones to the newly calculated

positions of survey stations in the whole cave. We found no program that was able

to draw an up-to-date complex map (i.e. not just survey shots with LRUD envelope),

in which the old parts are modi�ed according to the most recent known coordinates of

survey stations.

In 1999 we begun to think about creating own program for map drawing. We knew about

programs which were perfectly suited for particular sub-tasks. There was METAPOST,

a high level programming language for vector graphics description, Survex for excellent

processing of survey shots, and TEX for typesetting the results. We had only to glue

them together. By Xmas 1999 we had a minimalistic version of Therion working for the

5

http://therion.speleo.sk
http://www.gnu.org/

�rst time. This consisted only of about 32 kB of Perl scripts and METAPOST macros but

served the purpose of showing that our ideas were implementable.

During 2000{2001 we searched for the optimal format of the input data, programming

language, concept of interactive map editor and internal algorithms with the help of

Martin Sluka (Prague) and Martin Heller (Z�urich). In 2002 we were able to introduce

the �rst really usable version of Therion, which met our requirements.

Features

Therion is a command-line application. It processes input �les, which are|including 2D

maps|in text format, and creates �les with 2D maps or 3D model as the output.

The syntax of input �les is described in detail in later chapters. You may create these

�les in an arbitrary plain text editor like ed or vi. They contain instructions for Therion

like

point 1303 1004 pillar

where point is a keyword for point symbol followed by its coordinates and a symbol type

speci�cation.

Hand-editing of such �les is not easy|especially when you draw maps, you need to think

in spatial (Cartesian coordinate) terms. Thus there is a special GUI for Therion called

XTherion. XTherion works as an advanced text editor, map editor (where maps are

drawn fully interactively), compiler (which runs Therion on the data) and 3D model

viewer.

It may look quite complicated, but this approach has a lot of advantages:

� There is strict separation of data and visualization. The data �les specify only what

is where, not what it looks like. The visual representation is added by METAPOST in

later phases of data processing. (It's very similar concept to XML data representation.)

This makes it possible to change map symbols used without changing the input data,

or merge more maps created by di�erent persons in di�erent styles into one map with

uni�ed map symbols set.

2D maps are adapted for particular output scale (level of abstraction, non-linear scaling

of symbols and texts)

� All data are relative to survey station positions. If the coordinates of survey stations are

changed in the process of loop closure, then all relevant data is moved correspondingly,

so the map is always up-to-date.

� Therion is not dependent on particular operating system, character encoding or input

�les editor; input �les will remain human readable

� It's possible to add new output formats

6

� 3D model is generated from 2D maps to get a realistic 3D model without entering too

much data

� although the support for WYSIWYG is limited, you get what you want

Software requirements

\A program should do one thing, and do it well." (Ken Thompson) Therefore we use

some valuable external programs, which are related to the problems of typesetting and

data visualization. Therion can then do its task much better than if it was a standalone

application in which you could calibrate your printer or scanner and with one click send

e-mail with your data.

Therion needs:

� TEX distribution. Necessary only if you want to create 2D maps.

� Tcl/Tk with BWidget and optionally Tom and tkImg extensions. It is only required

for XTherion.

Windows installer includes TEX and Tcl/Tk distributions with all required extensions.

Read the Appendix if you want to compile Therion yourself.

For displaying of maps and models you may use any of the following programs:

� any PDF viewer like Acrobat Reader, ghostscript or xpdf for displaying 2D maps;

� appropriate 3D viewer for models exported in other than default format;

� any SQL database client to process exported database.

Installation

Installation from sources (therion-0.3.*.tar.gz package):

The source code is a primary Therion distribution. It needs be compiled and installed

according to instructions in the Appendix.

Installation on Windows:

Run the setup program and follow instructions. It installs all the required stu� and

creates shortcuts to XTherion and Therion Book.

Setting-up environment

Therion reads settings from the initialization �le. Default settings should work �ne for

users using only ASCII (non-accented latin) characters, standard TEX and METAPOST.

If you want to use accented latin or non-latin characters, edit initialization �le. Instruc-

tions on how to do this are in the Appendix.

7

How does it work?

So, now it's clear what Therion needs, let's have a look at the way it interacts with all

these programs:

Therion

therion.mp

therion.tex

XTherion

MetaPost

Plain base

makempx mpto

TEXdvitomp

Plain format

pdf-"-TEX
Plain format

input data

PDF maps

3D model

info & log �les

export (model, SQL)

scanned sketches

DON'T PANIC! When your system is set-up right the majority of this is hidden from the

user and all necessary programs are run automatically by Therion.

For working with Therion it is enough to know that you have to create input data (best

done with XTherion), run Therion, and display output �les (3D model, PDF map, log

�le) in the appropriate program.

For those who want to understand more about it, here is a brief explanation of the above

owchart. Program names are in roman font, data �les in italics. Arrows show data
ow

between programs. Temporary data �les are not shown. Meaning of colors:

� black|Therion programs and macros (XTherion is written in Tcl/Tk, so it needs this

interpreter to run)

� red|TEX package

� green|input �les created by the user and output �les created by Therion

Therion itself does the main task. It reads the input �les, interprets them, �nds closed

loops and distributes errors. Next it transforms all other data (e.g. 2D maps) according

to new stations position. Therion exports data for 2D maps in METAPOST format.

METAPOST gives the actual shape to abstract map symbols according to map symbol

de�nitions; it creates a lot of PostScript �les with small fragments of the cave. These

are read back and converted to a PDF-like format, which forms input data for pdfTEX.

PdfTEX does all the typesetting and creates a PDF �le of the cave map.

8

Therion also exports 3D model (full or centreline) in various formats. The model in the

therion format may be loaded and displayed in the XTherion's model viewer.

Centreline may be exported for further processing in any SQL database.

First run

After explaining the basic principles of Therion it's a good idea to try it on the example

data.

� Download the sample data from Therion web page and unpack it somewhere on your

computer's hard drive.

� Run XTherion (under Unix and MacOSX by typing `xtherion' in the command line,

under Windows there is a shortcut in the Start menu).

� Open the �le `thcon�g' from the sample data directory in the `Compiler' window of

XTherion

� Press `F9' or `compile' in the menu to run Therion on the data|you'll get some mes-

sages from Therion, METAPOST and TEX.

� PDF maps and 3D model are created in the data directory.

Additionally, you may open survey data �les (*.th) in the `Text editor' window and map

data �les (*.th2) in the `Map editor' window of XTherion. Although the data format

may look confusing for the �rst time, it will be explained in the following chapters.

9

Creating data �les

Basics

The input �les for Therion are in text format. There are a few rules about how such a

�le should look:

� There are two kinds of commands. One-line commands and multi-line commands.

� A one-line command is terminated by an end of line character. The syntax of these is

command arg1 ... argN [-option1 value1 -option2 value2 ...]

where arg1 ... argN are obligatory arguments, and pairs -option value are options,

which you may freely omit. Which arguments and options are available depends on

the particular command. An example may be

point 643.5 505.0 gradient -orientation 144.7

with three obligatory arguments and one optional option/value pair. Sometimes op-

tions have no or multiple values.

� Multi-line commands begin similarly to one line commands, but continue on subsequent

lines until explicit command termination. These lines may contain either data or

options, which are applied to subsequent data. If a data line starts with a word

reserved for an option, you have to insert `!' in front of it. The syntax is

command arg1 ... argN [-option1 value1 -option2 value2 ...]

...

optionX valueX

data

...

endcommand

Again, for better illustration, a real example follows:

line wall -id walltobereferenced

1174.0 744.5

1194.0 756.5 1192.5 757.5 1176.0 791.0

smooth off

1205.5 788.0 1195.5 832.5 1173.5 879.0

endline

This command line has one obligatory argument, a line type (passage wall in this

case), followed by one option. The next two lines contain data (coordinates of B�ezier

curves to be drawn). The next line (\smooth off") speci�es an option which applies

10

to subsequent data (i.e. not for the whole line, unlike the option -id in the �rst line)

and the last line contains some more data.

� if the value of an option or argument contains spaces, you should enclose this value in

" " or []. If you want to put a double-quote " into text in " " you need to insert it

twice. Quotes are used for strings; brackets for numerical values and keywords.

� each line ending with a backslash (\) is considered to continue on the next line, as if

there was neither line-break nor backlash.

� everything that follows #, until the end of line|even inside a command|is considered

to be a comment, and is ignored.

Data types

Therion uses following data types:

� keyword . a sequence of A-Z, a-z, 0-9 and _-/ characters (not starting with `-').

� ext keyword . keyword that can also contain +*.,' characters, but not on the �rst

position.

� date . a date (or a time interval) speci�cation in a format

YYYY.MM.DD@HH:MM:SS.SS - YYYY.MM.DD@HH:MM:SS.SS or `-' to leave a date unspec-

i�ed.

� person . a person's �rst name and surname separated by whitespace characters. Use

`/' to separate �rst name and surname if there are more names.

� string . a sequence of any characters.

� units . length units supported: meter[s], centimeter[s], inch[es], feet[s], yard[s] (also m,

cm, in, ft, yd). Angle units supported: degree[s], minute[s] (also deg, min), grad[s],

mil[s], percent[age] (clino only). A degree value may be entered in decimal notation

(x:y) or in a special notation for degrees, minutes and seconds (deg[:min[:sec]]).

Data format

The syntax of input �les is explained in the description of individual commands. Studying

the example �les distributed with Therion will help you understand. See also an example

in the Appendix.

Each of the following sections describes one Therion command using the following struc-

ture:

Description: notes concerning this command.

Syntax: schematic syntax description.

11

Context: speci�es the context in which is this command allowed. The survey context

means that the commmand must be enclosed by survey ... endsurvey pair. The scrap

context means that the command must be enclosed within scrap ... endscrap pair.

Context all means that the command may be used anywhere.

Arguments: a list of the obligatory arguments with explanations.

Options: a list of the available options.

Command-like options: options for multi-line commands, which can be speci�ed among

the data lines.

`encoding'

Description: sets the encoding of input �le. This allows the use of non-ASCII characters

in input �les.

Syntax: encoding <encoding-name>

Context: It should be the very �rst command in the �le.

Arguments:

� <encoding-name> . to see a list of all the supported encoding names, run Therion

with --print-encodings option. `UTF-8' (Unicode) and `ASCII' (7 bit) encodings

are always supported.

`input'

Description: inserts the contents of a �le in place of the command. Default extension is

`.th' and may be omitted. For greatest portability use relative paths and Unix slashes

`/', not Windows backslashes `\', as directory separators.

Syntax: input <file-name>

Context: all

Arguments:

� <file-name>

`survey'

Description: Survey is the main data structure. Each data object must belong to a

survey. Surveys may be nested|this allows a hierarchical structure to be built.

Each survey has its own namespace speci�ed by its <id> argument. Objects (like survey

stations or scraps; see below) which belong to a subsurvey of the current survey are

referenced as

12

<object-id>@<subsurvey-id>,

or, if there are more nesting levels

<object-id>@<subsubsurvey-id>.<subsurvey-id>.1

This means, that object identi�ers must be unique only in the scope of one survey. For

instance, survey stations names can be the same if they are in di�erent surveys. This

allows stations to be numbered from 0 in each survey or the joining of two caves into one

cave system without renaming survey stations.

Syntax: survey <id> [OPTIONS]

... other therion objects ...

endsurvey [<id>]

Context: none, survey

Arguments:

� <id> . survey identi�er

Options:

� declination <specification> . set the default declination for all data objects in

this survey (which can be overridden by declination de�nitions in subsurveys). The

<specification> has three forms:

1. [] an empty string. This will reset the declination de�nition.

2. [<value> <units>] will set a single value (also for undated surveys).

3. [<date1> <value1> [<date2> <value2> ...] <units>] will set declination for

several dates. Then the declination of each shot will be set according to the date

speci�cation of the data object. If you want to explicitely set the declination for

undated survey data, use `-' instead of date.

� person-rename <old name> <new name> . rename a person whose name has been

changed

� title <string> . description of the object

`centreline'

Description: Survey data (centreline) speci�cation. The syntax is borrowed from Survex

with minor modi�cations; the Survex manual may be useful as an additional reference

for the user. A synonym term `centerline' may be used.

Syntax: centreline [OPTIONS]

date <date>

team <person> [<roles>]

1Note: it's not possible to reference any object from the higher-level surveys.

13

explo-date <date>

explo-team <person>

instrument <quantity list> <description>

calibrate <quantity list> <zero error> [<scale>]

units <quantity list> [<factor>] <units>

sd <quantity list> <value> <units>

grade <grade list>

declination <value> <units>

infer <what> <on/off>

mark <type>

flags <shot flags>

station <station> <comment> [<flags>]

fix <station> [<x> <y> <z> [<std x> <std y> <std z>]]

equate <station list>

data <style> <readings order>

break

group

endgroup

walls <auto/on/off>

vthreshold <number> <units>

extend <spec> [<station> [<station>]]

station-names <prefix> <suffix>

...

[SURVEY DATA]

...

endcentreline

Context: survey

Options:

� id <ext_keyword> . id of the object

� author <date> <person> . author of the data and its creation date

� copyright <date> <string> . copyright date and name

� title <string> . description of the object

Command-like options:

� date <date> . survey date. If multiple dates are speci�ed, a time interval is created.

� explo-date <date> . discovery date. If multiple dates are speci�ed, a time interval

is created.

� team <person> [<roles>] . a survey team member. The �rst argument is his/her

name, the others describe the roles of the person in the team (optional|currently not

14

used). The following role keywords are supported: station, length, tape, compass, bear-

ing, clino, gradient, counter, depth, station, position, notes, pictures, pics, instruments

(insts), assistant (dog).

� explo-team <person> . a discovery team member.

� instrument <quantity list> <description> . description of the instrument that

was used to survey the given quantities (same keywords as team person's role)

� infer <what> <on/off> . `infer plumbs on' tells the program to interpret gradients

�90 � as UP/DOWN (this means no clino corrections are applied). `infer equates

on' will case program to interpret shots with 0 length as equate commands (which

means that no tape corrections are applied)

� declination <value> <units> . sets the declination for subsequent shots

true bearing = measured bearing + declination:

If no declination is speci�ed, or the declination is reset (-), then a valid declination

speci�cation is searched for in all surveys the data object is in. See declination option

of survey command.

� sd <quantity list> <value> <units> . sets the standard deviation for the given

measurements. The Quantity list can contain the following keywords: length, tape,

bearing, compass, gradient, clino, counter, depth, x, y, z, position, easting, dx, nor-

thing, dy, altitude, dz.

� grade <grade list> . sets standard deviations according to the survey grade speci�-

cation (see grade command). All previously speci�ed standard deviations or grades are

lost. If you want to change an SD, use the sd option after this command. If multiple

grades are speci�ed, only the last one applies. You can specify grades only for position

or only for surveys. If you want to combine them, you must use them in one grade line.

� units <quantity list> [<factor>] <units> . set the units for given measurements

(same quantities as for sd).

� calibrate <quantity list> <zero error> [<scale>] . set the instrument calibra-

tion. The measured value is calculated using the following formula: measured value =

(read value� zero error)� scale. The supported quantities are the same as sd.

� break . can be used with interleaved data to separate two traverses

� mark [<station list>] <type> . set the type of named stations. <type> is one

of: �xed, painted and temporary (default). If there is no station list, all subsequent

stations are marked.

� flags <shot flags> . set
ags for following shots. The supported
ags are: surface

(for surface measurements), duplicate (for duplicated surveys). Both are excluded

from length calculations. Also \not" is allowed before a
ag.

15

� station <station> <comment> [<flags>] . set the station comment and
ags: en-

trance or continuation. If "" is speci�ed as a comment, it is ignored.

� fix <station> [<x> <y> <z> [<std x> <std y> <std z>]] . �x station coordi-

nates (with speci�ed errors|only the units transformation, not calibration, is applied

to them).

� equate <station list> . set points that are equivalent

� data <style> <readings order> . set data style (normal, topo�l, diving, cartesian,

cylpolar, dimensions, nosurvey) and readings order. Reading is one of the following

keywords: station, from, to, tape/length, [back]compass/[back]bearing, [back]clino/

[back]gradient, depth, fromdepth, todepth, depthchange, counter, fromcount, tocount,

northing, easting, altitude, up/ceiling2, down/
oor, left, right, ignore, ignoreall. For

interleaved data both newline and direction keywords are supported. If backward and

forward compass or clino reading are given, the average of them is computed. See

Survex manual for details.

� group

� endgroup . group/endgroup pair enables the user to make temporary changes in

almost any setting (calibrate, units, sd, data,
ags...)

� walls <auto/on/off> . turn on/o� passage shape genaration from LRUD data for

subsequent shots. If set auto, passage is generated only if there is no scrap referencing

given centreline.

� vthreshold <number> <units> . treshold for interpreting LRUD readings as left-

right-front-back reading perpendicular to the shot.

� extend <spec> [<station> [<station>]] . control how the centerline is extended.

<spec> is one of the following

normal/reverse . extend given and following stations to the same/reverse direction

as previous station. If two stations are given|direction is applied only to given shot.

left/right . same as above, but direction is speci�ed explicitely.

break . break series at given station (shot)

start . specify starting station (shot)

ignore . ignore speci�ed station (shot)

If no stations are speci�ed, <spec> is valid for following shots speci�ed.

� station-names <prefix> <suffix> . adds given pre�x/su�x to all survey stations

in the current centreline. Saves some typing.

2 dimension may be speci�ed as a pair [<from> <to>], meaning the size at the beginning and end of
the shot

16

`scrap'

Description: Scrap is a piece of 2D map, which doesn't contain overlapping passages

(i.e. all the passages may be drawn on the paper without overlapping). For small and

simple caves, the whole cave may belong to one scrap. In complicated systems, a scrap

is usually one chamber or one passage. Ideally, a scrap contains about 100 m of the cave.

Each scrap is processed separately by METAPOST; scraps which are too large may exceed

METAPOST's memory and cause errors.

Scrap consists of point, line and area map symbols. See chapter How the map is put

together for explanation how and in which order are they displayed.

Scrap border consists of lines with the -outline out or -outline in options (passage

walls have -outline out by default). These lines shouldn't intersect|otherwise Therion

(METAPOST) can't detemine the interior of the scrap and METAPOST issues a warning

message \scrap outline intersects itself".

Each scrap has its own local cartesian coordinate system, which usually corresponds with

the millimeter paper (if you measure the coordinates of map symbols by hand) or pixels

of the scanned image (if you use XTherion). Therion does the transformation from this

local coordinate system to the real coordinates using the positions of survey stations,

which are speci�ed both in the scrap as point map symbols and in centreline data. If the

scrap doesn't contain at least two survey stations with the -name reference, you have to

use the -scale option for calibrating the scrap. (This is usual for cross sections.)

The transformation consists of the following steps:

� Linear transformation (shifting, scaling and rotation) which `best' �ts stations drawn

in the scrap to real ones. `Best' means that the sum of squared distances between cor-

responding stations before and after transformation is minimal. The result is displayed

red if debug option of the layout command is set on.

� Non-linear transformation of the scrap which (1) moves survey stations to their correct

position, (2) is continuos. Displayed blue in the debug mode.

� Non-linear transformation of the scrap which (1) moves joined points together, (2)

doesn't move survey stations, (3) is continuos. Finally the position of curves' control

points is adjusted to preserve smoothness. The result is �nal map.

Syntax: scrap <id> [OPTIONS]

... point, line and area commands ...

endscrap [<id>]

Context: survey

Arguments:

� <id> . scrap identi�er

17

Options:

� projection <specification> . speci�es the drawing projection. Each projection is

identi�ed by a type and optionally by an index in the form type[:index]. The index

can be any keyword. The following projection types are supported:

1. none . no projection, used for cross sections or maps that are independent of survey

data (e.g. digitization of old maps where no centreline data are avaiable). No index is

allowed for this projection.

2. plan . basic plan projection (default).

3. elevation . orthogonal projection which optionally takes a view direction as an

argument (e.g. [elevation 10] or [elevation 10 deg]).

4. extended . extended elevation.

� scale <specification> . is used to pre-scale (convert coordinates from pixels to

meters) the scrap data. If scrap projection is none, this is the only transformation that

is done with coordinates. The <specification> has four forms:

1. <number> . <number> meters per drawing unit.

2. [<number> <length units>] . <number> <length units> per drawing unit.

3. [<num1> <num2> <length units>] . <num1> drawing units corresponds to <num2>

<length units> in reality.

4. [<num1> ... <num8> [<length units>]] . this is the most general format, where

you specify, in order, the x and y coordinates of two points in the scrap and two points

in reality. Optionally, you can also specify units for the coordinates of the `points in

reality'. This form allows you to apply both scaling and rotation to the scrap.

� stations <list of station names> . stations you want to plot to the scrap, but

which are not used for scrap transformation. You don't have to specify (draw) them

with the point station command.

� walls <on/off/auto> . specify if the scrap should be used in 3D model reconstruction

� flip (none)/horizontal/vertical .
ips the scrap after scale transformation

� station-names <prefix> <suffix> . adds given pre�x/su�x to all survey stations

in the current scrap. Saves some typing.

� author <date> <person> . author of the data and its creation date

� copyright <date> <string> . copyright date and name

� title <string> . description of the object

18

`point'

Description: Point is a command for drawing a point map symbol.

Syntax: point <x> <y> <type> [OPTIONS]

Context: scrap

Arguments:

� <x> and <y> are the drawing coordinates of an object.

� <type> determines the type of an object. The following types are supported:

special objects: station3, section4, dimensions5;

labels: label, remark, altitude6, height7, passage-height8, station-name9, date;

symbolic passage �lls:10 bedrock, sand, raft, clay, pebbles, debris, blocks, water,

ice, guano, snow;

speleothems: flowstone, moonmilk, stalactite, stalagmite, pillar, curtain, he-

lictite, soda-straw, crystal, wall-calcite, popcorn, disk, gypsum, gypsum-

flower, aragonite, cave-pearl, rimstone-pool, rimstone-dam, anastomosis, kar-

ren, scallop, flute, raft-cone;

equipement: anchor, rope, fixed-ladder, rope-ladder, steps, bridge, traverse,

camp, no-equipement;

passage ends: continuation, narrow-end, low-end, flowstone-choke, breakdown-

choke, entrance;

others: archeo-material, paleo-material, vegetable-debris, root, water-flow,

spring11, sink, air-draught12, gradient.

3 Survey station. For each scrap (with the exception of scraps in `none' projection) at least one station
with station reference (-name option) has to be speci�ed.

4 section is an anchor for placing the cross-section at this point. This symbol has no visual repre-
sentation. The cross section must be in the separate scrap with `none' projection speci�ed. You can
specify it through the -scrap option.

5Use -value option to specify passage dimensions above/below centerline plane used in 3D model.
6General altitude label. All altitudes are exported as a di�erence against grid Z origin (which is 0
by default). To display altitude on the passage wall, use altitude option for any line point of the
passage wall

7Height of formations inside of the passage (like pit etc.); see below for details.
8Height of the passage; see below for details.
9 If no text is speci�ed, the name of the nearest station is used.
10Unlike other point symbols, these are clipped by the scrap border. See the chapter How the map is
put together.

11Always use spring and sink symbols with a water-flow arrow.
12Number of ticks is set according to -scale option

19

Options:

� subtype <keyword> . determines the object's subtype. The following subtypes for

given types are supported:

station:13 temporary (default), painted, natural, fixed;

water-
ow: permanent (default), intermittent, paleo.

� orientation/orient <number> . de�nes the orientation of the symbol. If not speci-

�ed, it's oriented to north. 0 � number < 360.

� align . alignment of the symbol or text. The following values are accepted: center, c,

top, t, bottom, b, left, l, right, r, top-left, tl, top-right, tr, bottom-left, bl, bottom-right,

br.

� scale . symbol scale, can be: tiny (xs), small (s), normal (m), large (l), huge (xl).

Normal is default.

� place <bottom/default/top> . changes displaying order in the map.

� clip <on/off> . specify whether a symbol is clipped by the scrap border. You cannot

specify this option for the following symbols: station, station-name, label, remark,

date, altitude, height, passage-height.

� visibility <on/off> . displays/hides the symbol.

� context <point/line/area> <symbol-type> . (to be used with symbol-hide and

symbol-show layout options) symbol will be hidden/shown according to rules for spec-

i�ed <symbol-type>.14

� id <ext_keyword> . ID of the symbol.

Type-speci�c options:

� name <reference> . if the point type is station, this option gives the reference to the

real survey station.

� extend [prev[ious] <station>] . if the point type is station and scrap projection

is extended elevation, you can adjust the extension of the centreline using this option.

� scrap <reference> . if the point type is section, this is a reference to a cross-section

scrap.

� text . text of the label or remark. It may contain following formatting keywords:

 . line break

<center>/<centre>, <left>, <right> . line alignment for multi-line labels. Ignored

if there is no
 tag.

13 if station subtype is not speci�ed, Therion reads it from centreline, if it's speci�ed there
14 Example: if you specify -context point air-draught to a label which displays the observation
date, the symbol-hide point air-draught command would hide both air-draught arrow and the
corresponding label.

20

<thsp> . thin space

<rm>, <it>, <bf>, <ss>, <si> . font switches

� value . value of height, passage-height or altitude label or point dimensions

height: according to the sign of the value (positive, negative or unsigned), this type of

symbol represents chimney height, pit depth or step height in general. The numeric

value can be optionally followed by `?', if the value is presumed and units can be added

(e.g. -value [40? ft]).

passage-height: the following four forms of value are supported: +<number> (the height

of the ceiling), -<number> (the depth of the
oor or water depth), <number> (the

distance between
oor and ceiling) and [<number> <number>] (the distance to ceiling

and distance to
oor).

altitude: the value speci�ed is the altitude di�erence from the nearest station. If the

altitude value is pre�xed by \fix" (e.g. -value [fix 1300]), this value is used as an

absolute altitude. The value can optionally be followed by length units.

dimensions: -value [<above> <below> [<units>]] speci�es passage dimensions a-

bove/below centerline plane used in 3D model.

`line'

Description: Line is a command for drawing a line symbol on the map. Each line symbol

is oriented and its visualization may depend on its orientation (e.g. pitch edge ticks). The

general rule is that the free space is on the left, rock on the right. Examples: the lower

side of a pitch, higher side of a chimney and interior of a passage are on the left side of

pitch, chimney or wall symbols, respectively.

Syntax: line <type> [OPTIONS]

[OPTIONS]

...

[LINE DATA]

...

[OPTIONS]

...

[LINE DATA]

...

endline

Context: scrap

Arguments:

� <type> is a keyword that determines the type of line. The following types are sup-

ported:

21

passages: wall, contour, slope15, floor-step, pit, ceiling-step, chimney, over-

hang, ceiling-meander, floor-meander;

passage �lls: flowstone, rock-border16, rock-edge17, water-flow;

labels: label;

special: border, arrow, section18, survey19.

Command-like options:

� subtype <keyword> . determines line subtype. The following subtypes are supported

for given types:

wall: invisible, bedrock (default), sand, clay, pebbles, debris, blocks, ice, un-

derlying, unsurveyed, presumed ;

border: visible (default), invisible, temporary, presumed;

water-
ow: permanent (default), conjectural, intermittent;

survey: cave (default), surface (default if centreline has surface
ag).

� [LINE DATA] specify either the coordinates of a line segment <x> <y>, or coordinates of

a B�ezier curve arc <c1x> <c1y> <c2x> <c2y> <x> <y>, where c indicates the control

point.

� close <on/off/auto> . determines whether a line is closed or not

� mark <keyword> . is used to mark the point on the line (see join command).

� orientation/orient <number> . orientation of the symbols on the line. If not spec-

i�ed, it's perpendicular to the line on its left side. 0 � number < 360.

� outline <in/out/none> . determines whether the line serves as a border line for a

scrap. Default value is `out' for walls, `none' for all other lines. Use -outline in for

large pillars etc.

� reverse <on/off> . whether points are given in reverse order.

� size <number> . line width (left and right sizes are set to one half of this value)

� r-size <number> . size of the line to the right

� l-size <number> . same to the left. Required for slope type.

15 Slope line marks upper border of the slopy area. It's necessary to specify l-size in at least one
point. Gradient lines length and orienation is an average of speci�ed l-sizes and orientations in
the nearest points. If there is no orientation speci�cation, gradient marks are perpendicular to the
slope line.

16Outer outline of large boulders. If the line is closed, it is �lled with the background colour.
17 Inner edges of large boulders.
18 Line showing cross-section position. If both control points of a B�ezier curve are given then the line
is drawn up to the perpendicular projection of the �rst control point and from the projection of the
section control point. No section curve is allowed.

19 Survey line is automatically drawn by Therion.

22

� smooth <on/off/auto> . whether the line is smooth at the given point. Auto is

default.

� adjust <horizontal/vertical> . shifts the line point to be aligned horizontaly/ver-

ticaly with the previous point (or next point if there is no previous point). The result

is horizontal/vertical line segment). If all line points have this option, they are aligned

to the average y or x coordinate, respectively. This option is not allowed in the plan

projection.

� place <bottom/default/top> . changes displaying order in the map.

� clip <on/off> . specify whether a symbol is clipped by the scrap border.

� visibility <on/off> . displays/hides the symbol.

� context <point/line/area> <symbol-type> . (to be used with symbol-hide and

symbol-show layout options) symbol will be hidden/shown according to rules for spec-

i�ed <symbol-type>.

Type-speci�c options:

� altitude <value> . can be speci�ed only with the wall type. This option creates an

altitude label on the wall. All altitudes are exported as a di�erence against grid Z

origin (which is 0 by default). If the value is speci�ed, it gives the altitude di�erence

of the point on the wall relative to the nearest station. The value can be pre�xed by a

keyword \fix", then no nearest station is taken into consideration; the absolue given

value is used instead. Units can follow the value. Examples: +4, [+4 m], [fix 1510

m].

� border <on/off> . this option can be speci�ed only with the `slope' symbol type. It

switches on/o� the border line of the slope.

� direction <begin/end/both/none/point> . can be used only with the section type.

It indicates where to put a direction arrow on the section line. None is default.

� gradient <none/center/point> . can be used only with the contour type and indi-

cates where to put a gradient mark on the contour line. If there is no gradient speci-

�cation, behaviour is symbol-set dependent (e.g. no tick in UIS, tick in the middle in

SKBB).

� head <begin/end/both/none> . can be used only with the arrow type and indicates

where to put an arrow head. End is default.

� text <string> . valid only for label lines.

Options:

� id <ext_keyword> . ID of the symbol.

23

`area'

Description: Area is speci�ed by surrounding border lines. They may be of any type,

but must be listed in order and each pair of consecutive lines must intersect. In order to

be sure that lines intersect even after scrap transformation you may e.g. continue a lake

border 1 cm behind a passage wall|these overlaps will be automatically clipped by scrap

border. You may use invisible border to achieve this inside of the passage.

Syntax: area <type>

place <bottom/default/top>

clip <on/off>

visibility <on/off>

... border line references ...

endarea

Context: scrap

Arguments:

� <type> is one of following: water, sump, sand, debris, blocks, snow, ice, clay,

pebbles.

Command-like options:

� the data lines consist of border line references (IDs)

� place <bottom/default/top> . changes displaying order in the map.

� clip <on/off> . specify whether a symbol is clipped by the scrap border.

� visibility <on/off> . displays/hides the symbol.

� context <point/line/area> <symbol-type> . (to be used with symbol-hide and

symbol-show layout options) symbol will be hidden/shown according to rules for spec-

i�ed <symbol-type>.

Options:

� id <ext_keyword> . ID of the symbol.

`join'

Description: Join works in two modes: it joins either two scraps or two or more points

in a map together. When joining scraps, only passage walls are joined. It's a good idea

to place a scrap join in the passage which is as simple as possible, otherwise you have to

specify join for each pair of objects which should be joined.

If you want some object which is clipped by a scrap boundary to continue to a neigh-

bouring scrap, use -clip off option for that object.

24

Syntax: join <point1> <point2> ... <pointN> [OPTIONS]

Context: scrap, survey

Arguments:

� <pointX> can be an ID of a point or line symbol, optionally followed by a line point

mark <id>:<mark> (e.g. podangl_l31@podangl:mark1). <mark> can be also `end' (end

of the line) or line point index (where 0 is the �rst point).

A special case is when <point1> and <point2> are scrap IDs|than the closest scrap

ends are joined together.

Options:

� smooth <on/off> indicates whether two lines are to be connected smoothly.

� count <N> (when used with scraps) . Therion will try to �nd more connections of

given two scraps

`equate'

Description: Sets the survey stations equivalence.

Syntax: equate <station list>

Context: survey

`map'

Description: A map is a collection of either scraps or other maps of the same projection

type. It's possible to include survey in the map|this will display centreline in the map.

Map object simpli�es the data management when selecting data for output. See the

chapter How the map is put together for more thorough explanation.

Syntax: map <id> [OPTIONS]

... scrap, survey or other map references ...

break

... next level scrap, survey or other map references ...

preview <above/below> <other map id>

endmap

Context: survey

Arguments:

� <id> . scrap identi�er

25

Command-like options:

� the data lines consist of scrap or map references. Note that you can not mix them

together.

� scraps following the break will be placed on another level

� preview <above/below> <other map id> will put the outline of the other map in the

speci�ed preview position relative to the current map.

Preview is displayed only if the map is in the map-level level as speci�ed by the

select command.

Use the revise command if you want to add maps from higher levels to the preview.

Options:

� projection/proj <plan/elevation/extended/none> . required if the map contains

survey.

� title <string> . description of the object

`surface'

Description: Surface (terrain) speci�cation. It's possible to display it in two ways: as a

scanned topographical map (currently in 2D maps only) or surface grid (3D model).

Syntax:

surface [<name>]

bitmap <filename> <calibration>

grid-units <units>

grid <origin x> <origin y> <x spacing> <y spacing> <x count> <y count>

grid-flip (none)/vertical/horizontal

[grid data]

endsurface

Context: survey

Command-like options:

� bitmap <filename> <calibration> . scanned topographical map.

calibration may have two forms:

1. [X1 Y1 x1 y1 X2 Y2 x2 y2 [units]], where upper case X/Y variables are pic-

ture coordinates (pixels; lower-left corner is 0 0), lower-case x/y variables are real

coordinates. Optional units apply to real coordinates (metres by default).

2. [X1 Y1 station1 X2 Y2 station2], where upper case X/Y variables are picture

coordinates and station1 and station2 are survey stations names.

� grid-units <units> . units in which grid is speci�ed. Metres by default.

� grid <origin x> <origin y> <x spacing> <y spacing> <x count> <y count>

26

<origin x> <origin y> . specify coordinates of the lower-left (S-W) corner of the

grid

<x spacing> <y spacing> . distance between grid nodes in W-E and S-N directions

<x count> <y count> . number of nodes in the row and number of rows which form

the grid (see below).

� [grid data] . a stream of numbers giving the altitude a.s.l. in grid nodes. It starts in

the grid-origin and �lls the grid in rows (in the row from W to E; rows from S to N).

� grid-flip (none)/vertical/horizontal . useful if your grid (exported from other

program) needs to be
ipped

`import'

Description: Reads survey data in di�erent formats (currently processed centreline in

*.3d, *.plt, *.xyz formats). Survey stations may be referenced in scraps etc. When

importing Survex' 3D �le, stations are inserted in survey hierarchy, if there exists identical

hierarchy to that in 3D �le.

Syntax: import <file-name> [OPTIONS]

Context: survey / all20

Options:

� filter <prefix> . if speci�ed, only stations with given pre�x and shots between them

will be imported. Pre�x will be removed from station names.

� surveys (create)/use/ignore . speci�es how to import survey structure (works only

with .3d �les).

create . split stations into subsurveys, if subsurveys do not exist, create them

use . split stations into existing subsurveys

ignore . do not split stations into sub-surveys

`grade'

Description: This command is used to store prede�ned precisions of centreline data. See

sd option description for centreline command.

Syntax: : grade <id>

...

[<quantity list> <value> <units>]

...

endgrade

Context: all
20 only with .3d �les, where survey structure is speci�ed

27

`revise'

Description: This command is used to set or change properties of an already existing

object.

Syntax: The syntax of this command for object created with \single line" command is

revise id [-option1 value1 -option2 value2 ...]

For objects created with \multi line" commands is syntax following

revise id [-option1 value1 -option2 value2 ...]

...

optionX valueX

data

...

endrevise

Context: all

Arguments:

The id stands for object identi�er (the id of an object you want to revise must always

be speci�ed).

XTherion

XTherion is a GUI (Graphical User Interface) for Therion. It helps a lot with creating

input data �les. Currently it works in four main modes: text editor, map editor, compiler

and model viewer.21

It's not necessary for Therion itself|you may edit input �les in your favourite text editor

and run Therion from the command line. XTherion is also not the only GUI which may

be used with Therion. It's possible to write a better one, which would be more user

friendly, more WYSIWYG, faster, more robust and easier to use. Any volunteers?

This manual does not describe such familiar things as `if you want to save a �le, go to

menu File and select Save, or press Ctrl-s'. Browse the top menu for a minute to get

feeling of XTherion.

For each mode of operation, there is an additional right or left menu. The submenus

may be packed; you may unpack them by clicking on the menu button. For most of the

menus and buttons, there is a short description in the status line, so it's not hard to guess

the meaning of each one. The order of submenus on the side may be customized by the

user. Right-click on the menu button and select in the menu which of the other menus it

should be swapped with.

21Here we're concerned with creating data, so only the two �rst modes are described in this section.
For compiler features see the chapter Processing data, for model viewer features chapter What we
get?

28

XTherion|text editor

XTherion's text editor o�ers some interesting features which may help with creating text

input �les: support for Unicode encoding and ability to open multiple �les.

To make entering data easy, it supports table formatting of centreline data. There is

a menu Data table for typing the data. It may be customized to user's data order by

pressing a Scan data format button when the cursor is below the data order speci�cation

(`data' option in the `centreline' command).

XTherion|map editor

Map editor allows you to draw and edit map fully interactively. But don't expect too

much. XTherion is not a truly WYSIWYG editor. It displays only the position, not

the actual shape, of drawn point or line symbols. Visually there is no di�erence between

a helictite and a text label|both are rendered as simple dots. The type and other

attributes of any object are speci�ed only in the Point control and Line control menus.

Exercise: Find two substantial reasons, why the map drawn in XTherion can't be identical

with Therion output. (If you answer this, you'll know, why XTherion will never be true

WYSIWYG editor. Authors' laziness is not the correct answer.)

Let's begin by describing typical use of the map editor. First, you have to decide which

part of the cave (which scrap) you'll draw.22

After creating a new �le in the map editor, you may load one or more images|scanned

survey sketches from the cave23|as a backround for the drawing. Click on the Insert

button in Background images menu. Unfortunatelly, as a limitation of Tcl/Tk language,

only GIF, PNM and PPM (plus PNG and JPEG if you installed tkImg extension) images

are supported. Additionally XTherion supports XVI (XTherion vector image) format,

which displays centreline and LRUD information on the background. All opened images

are placed in the upper-left corner of the working area. Move them by double clicking

and dragging with the right mouse button or through a menu. For better performance

on slower computers, it's possible to temporarily unload a currently unused image from

memory by unchecking its Visibility check-box. It's possible to open an existing �le

without loading of background images using Open XP menu.24

The size and zoom setting of the drawing area is adjusted in the corresponding menu.

Auto adjust calculates optimal size of the working area according to the sizes and positions

of loaded background images.

22 It's possible to draw more than one scrap in one �le, in which case all inactive scraps are rendered
yellow.

23XTherion can't scale nor rotate individual images, so use the same orientation, scale and DPI for all
images used in the same scrap.

24Note: Therion doesn't use background images in any way.

29

Hints: 1. What does loop closure do? 2. Why do we use MetaPost?

After these preparation steps, you're ready for drawing, or, more precisely, for creating

a map data �le. It's important to remember, that you're actually creating a text �le

which should conform to the syntax described in the chapter Data format. Actually, only

a subset of the Therion commands are used in the Map editor: multi-line scrap ...

endscrap commands which may contain point, line and area commands. (Cf. chapter

Data format). This corresponds with a section of hand-drawn map, which is built up

from points, lines and �lled areas.

So, the �rst step is de�ning the scrap by a scrap ... endscrap multi-line command.

In the File commands menu click on the Action submenu and select Insert scrap. This

changes the Action button to Insert scrap if it had any other value. After pressing this

button a new scrap will be inserted in the beginning of the �le. You should see lines

scrap - scrap1

endscrap

end of file

in the preview window above the Insert scrap button. This window is a simpli�ed outline

of the text �le, which will be saved by XTherion. Only the command (scrap, point,

line, text|why text see below) and its type (for point and line) or ID (for scrap)

are shown.

The full contents of any command is displayed in the Command preview menu.

For modifying previously-created commands, there are additional menus|e.g. Scrap con-

trol for the scrap command. Here you can change the ID (very important!) and other

options. For details see chapter Data format.

Now it's possible to insert some point symbols. As with scrap insertion, go to the

File commands menu, click on the Action submenu and select Insert point; than press

newly renamed Insert point button. A shortcut for all this is Ctrl-p. Than click on the

desired spot in the working area and you'll see a blue dot representing a point symbol.

Its attributes can be adjusted in the Point control menu. You'll stay in `insert' mode|

each click on the working area adds a new point symbol. Take care not to click twice

on the same place|you would insert two point symbols in the same place! To escape

from `insert' to `select' mode, press Esc key on the keyboard or Select button in the File

commands menu.

What order will the commands be in the output �le? Exactly as in the outline in the

File commands menu. Newly created point, line and text objects are added before the

currently marked line in the outline. It's possible to change the order by selecting a line

and pressing Move down, Move up or Move to buttons in the File commands menu.

Drawing lines is similar to drawing in other vector editing programs, which work with

B�ezier curves. (Guess how to enter the line insertion mode, other than using the shortcut

Ctrl-l.) Click where the �rst point should be, then drag the mouse with pressed left

button and release it where the �rst control point should be. Than click somewhere else

(this point will be the second point of the curve) and drag the mouse (adjusting the second

30

control point of the previous arc and the �rst control point of the next one simultaneously.)

If this explanation sounds too obscure, you can get some practise working in some of the

standard vector editors with comprehensive documentation. The line will be �nished

after escaping from the insertion mode. Beginning and orientation of the line is marked

by a small orange tick to the left at the �rst point.

For line symbols, there are two control menus: Line control and Line point control. First

one sets attributes for the whole curve, like type or name. The check-box reverse is

important: Therion requires oriented curves and it is not unusual that you begin to draw

from the wrong end. The Line point control menu enables you to adjust the attributes of

any selected point on the line, such as the curve being smooth at this point (which is on

by default), or the presence of neighbouring control points (`<<' and `>>' check-boxes).

Areas are speci�ed by their surrounding lines. Click on Insert area and then click on the

lines surrounding the desired area. They are automatically inserted in the Area control

and named (if not already named). An alternate way is to insert them as a text25

command which contents (entered in the Text editor menu of the Map editor) is usual

area ... endarea multi-line command (see the chapter Data format.)

If you draw some scraps with none projection, it's necessary to calibrate the drawing

area. The scale can be de�ned only one way in XTherion|using coordinates of two

points. After selecting a scrap (click on its header in the File commands menu) two small

red squares will appear (by default, they'll be in the lower corners of drawing area). You

have to drag them to points with known coordinates|usually intersections of mm grid

lines on the scanned drawing. If you can not see these points, you can move pointer to

desired position, read pointer coordinates from the status bar and enter these coordinates

into picture scale points boxes in the Scrap control. You have to �ll X1,Y1 and X2,Y2

coordinate pairs. Then you have to enter real coordinates of these points.

In the selection mode you can select existing line or point objects and set their attributes

in the corresponding menus, move them, or delete them (Ctrl-d or Action button in File

commands menu after setting Action to Delete).

There is a Search and select menu, which makes it easy to switch between objects and

visualize things, you can't see at the �rst look at the picture. For example, if you enter

expression `station' and press Show All, all stations on the picture will become red.

XTherion doesn't do any syntax checking; it only writes drawn objects with their at-

tributes to a text �le. Any errors are detected only when you process these �les with

Therion.

TIP: Entering symbols of the same type at once saves you a lot of time because you

need not change symbol type and �ll options for each new symbol. Options box preserves

25CAUTION! The command text is not a Therion command! It's only a nickname for a block of an
arbitrary text in XTherion. In the �le saved by XTherion, there'll only be whatever you type into
the Text editor or see in the Command preview. It may be an area de�nition or whatever you want,
such as a comment beginning with a `#' character.

31

the old value and it's enough to change a few characters (e.g. if you're entering stations,

-name 34@pajan option inherited from previous station may be easily changed to -name

35@pajan by retyping one character). It is a good idea to start with drawing all sur-

vey stations (don't forget to give them names according to real names in the centreline

command), than all passage walls followed by all other point symbols, lines and areas.

Finally draw cross-sections.

Keyboard and mouse shortcuts in the Map editor

General

� Ctrl+Z . undo

� Ctrl+Y . redo

� F9 . compile current project

� to select object in the listbox using keyboard: switch using `Tab' into desired listbox;

move with underlined cursor to desired object; press `Space'

� PageUp/PageDown . scroll up/down in the side panel

� Shift+PageUp/PageDown . scroll up/down in �le commands window

Drawing area and background images

� RightClick . scroll drawing area

� Double RightClick on the image . move the image

Inserting scrap

� Ctrl+R . insert scrap

Inserting line

� Crtl+L . insert new line and enter an `insert line point' mode

� LeftClick . insert line point (without control points)

� Ctrl+LeftClick . insert line point very close to existing point (normally it's inserted

right above closest existing point)

� LeftClick + drag . insert line point (with control points)

� hold Ctrl while dragging . �x the distance of previous control point

� LeftClick + drag on the control point . move its position

� RightClick on one of the previous points . selects the previous point while in insert

mode (useful if you want to change also the direction of previous control point)

� Esc or LeftClick on the last point . end the line insertion

� LeftClick on the �rst line point . close the line and end line insertion

32

Editing line

� LeftClick + drag . move line point

� Ctrl+LeftClick + drag . move line point close to the existing point (normally it is

moved right above closest existing point)

� LeftClick on control point + drag . move control point

Adding line point

� select the point before which you want to insert points; insert required points; press

Esc or left-click on the point you selected at the begining

Deleting line point

� select the point you want to delete; press Edit line ! Delete point in the Line control

panel

Splitting line

� select the point at which you want to split the line; press Edit line ! Split line in the

Line control panel

Inserting point

� Ctrl+P . switch to `insert point' mode

� LeftClick . insert point at given position

� Ctrl+LeftClick . insert point very close to existing point (normally it will be inserted

right above the closest point)

� Esc . escape from the `inset point' mode

Editing point

� LeftClick + drag . move point

� Ctrl+LeftClick + drag . move point close to the existing point (normally it is moved

right above closest existing point)

� LeftClick + drag on point arrows . change point orientation or sizes (according to

given switches in Point cotrol panel)

Inserting area

� press Ctrl+A or File commands ! Insert ! area to switch to the `insert area border'

mode

� RightClick on the lines, that suround desired area

� Esc to �nish area border lines insertion

33

Editing area

� select area you want to edit

� pres `Insert' in the Area control to insert other border lines at current cursor position

� pres `Insert ID' to insert border with given ID at current cursor position

� pres `Delete' to remove selected area border line

Selecting an existing object

� LeftClick . select object on the top

� RightClick . select object right below the top object (useful when several points lie

above each other)

Thinking in Therion

Although everything about Therion input �les has been explained, this chapter o�ers

some aditional tips and hints.

How to enter centreline?

The basic building block is the centreline command. If the cave is larger than a few

meters it's a good idea to split data in more �les and separate centreline data from map

data.

We usually use one *.th �le containing centreline per survey trip. It's handy to start with

an empty template �le as shown bellow, where dots will be replaced with appropriate

texts.

encoding ISO8859-1

survey ... -title "..."

centreline

team "..."

team "..."

date ...

units clino compass grad

data normal from to compass clino length

...

endcentreline

endsurvey

To create a unique namespace the centreline command is enclosed in survey ... end-

survey command. It's useful when the survey has the same name as the �le which

34

contains it.26 The points will than be referenced using @ character|see the survey

command description.

For really large caves it's possible to build a hierarchical structure of directories. In such

a case we create one special �le called INDEX.th which includes all other *.th �les from

given directory and contains equate commands to de�ne connections between surveys.

How to draw maps?

The most imortant thing is to devise division of the cave into scraps. Scrap is the basic

building block of the map. It's almost always a bad idea to try to �t each scrap to corre-

sponding *.th �le with centreline from one survey trip. The reason is that connections

between scraps should be as simple as possible. Scraps in general are independent on

centreline hierarchy so try to forget the survey hierarchy when drawing maps and choose

best scrap joins.

We usually insert maps in the last-but-one level in survey hierarchy.27 Each scrap may

than contain arbitrary part of any survey in the last level of hierarchy. For example,

there is a survey main which contains surveys a, b, c and d. Surveys a { d contain

centreline data from four survey trips and each of them is in a separate �le. There is a

map main_map which contains scraps s1 and s2. If the main_map is located in the main

survey, scrap s1 may cover part of the centreline from survey a, complete survey b and

part of c; s2 will cover part of the a and c surveys and a complete d survey. The survey

stations names will be referenced using @ symbol (e.g. 1@a) in the scraps.28

Scraps are usually stored in *.th2 �les. Each �le may contain more scraps. To keep

data well organized, we have some naming conventions: in the �le foo.th2 all scraps are

named foo_si, where i is 1, 2 an so on. Cross-sections are named foo_ci, lines foo_li

etc. This helps a lot with large cave systems: if some scrap is referenced, you immediately

know in which �le it had been de�ned.

Similar to *.th �les, there may be one �le INDEX.th2 per directory which includes all

*.th2 �les, de�nes scrap joins and maps.

When drawing scraps you should check if the outline is properly de�ned: all lines creating

the outer border should have -outline out option; all lines surrouding inner pillars -

outline in option. Scrap outlines can't intersect themselves|otherwise the inner side

of the scrap can't be determined. There are two simple tests that scrap outline is correct:

� there is no METAPOST warning \scrap outline intersects itself"

26 E.g. survey entrance in the �le entrance.th.
27Remember that surveys create namespaces, so you may reference only objects in the given survey
and all subsurveys.

28 If you include maps in the top-level survey, you may reference any survey station in any scrap,
which is very
exible. On the other side you have than use longer names in stations references, like
3@dno.katakomby.jmn.dumbier

35

� when you set passage �ll to any color (color map-fg <number> option in layout),

you may see what Therion considers to be inside of the scrap.

How to create models?

The model is created from scrap outlines. The height and depth of the passage are

computed from passage-height point map symbols. In the future, there will be point

dimensions map symbol which will allow more precise
oor and ceiling speci�cation.

Therion in depth

How the map is put together

This chapter explains how -clip, -place, -visibility and -context options of point,

line and area commands exactly work. It gives also explanation of color, trans-

parency, symbol-hide and symbol-show options of the layout command.

While exporting the map, Therion has to determine three attributes for each point, line

or area symbol: visibility, clipping and ordering.

(1) Symbol is visible if all of the following is true:

� it has -visibility option set on (all symbols by default),

� it hasn't been hidden by the -symbol-hide option in layout,

� if its -context option is set, the corresponding symbol hasn't been hidden by the

-symbol-hide option in layout.

Only visible symbols are exported.

(2) Some symbols are clipped by the scrap outline. These are by default all the following:

� point symbols: symbolic passage �lls (bedrock: : : guano),

� line symbols: all line symbols which don't have -outline option set with the exception

of section, arrow, label, gradient and water-flow

� area symbols: all.

The default setting may be changed using the -clip option, if this is allowed for par-

ticular symbol. All other symbols are not clipped by the scrap boundary.

(3) Ordering: Each symbol belongs to one of the following groups which are drawn

consecutively:

� bottom . all symbols with -place bottom option set

� default-bottom . all area symbols by default

36

� default . symbols which don't belong to any other group

� default-top . ceiling-step and chimney by default

� top . all symbols with -place top option set

Ordering of symbols inside of each group follows the order of commands in the input

�le29: symbols which come �rst are drawn last (i.e. they are displayed at the top of each

group).

Now we are ready to describe how the map (or atlas chapter) is constructed:

� map area is �lled with color map-bg

� surface bitmaps are displayed if surface is set bottom

� FOR each scrap: outline is �lled white

� grid is displayed if grid is set bottom

� preview below30 is �lled with color preview-below

� FOR each level31:

BEGIN of transparency

FOR each scrap: outline is �lled with color map-fg

FOR each scrap: area symbols are �lled and clipped to scrap boundary

END of transparency

BEGIN of clipping by text labels (for all labels in this and upper levels)

FOR each scrap:

draw all symbols to be clipped (with the exception of line survey)

ordered from bottom to top

draw line survey symbols

clip to scrap boundary

FOR each scrap:

draw all symbols not to be clipped (with the exception of point station

and all labels) ordered from bottom to top

draw point station symbols

END of clipping by text labels

FOR each scrap: draw all (point and line) labels (including wall-altitude)

� preview above is drawn with color preview-above

� surface bitmaps are displayed if surface is set top

� grid is displayed if grid is set top

29Or File commands menu in XTherion
30As speci�ed using the preview option in the map command
31 Level is a collection of scraps not separated by a break in the map command

37

Processing data

Besides data �les, which contain survey data, Therion uses a con�guration �le, which

contains instructions on how the data should be presented.

Con�guration �le

The con�guration �lename can be given as an argument to therion. By default Therion

searches for �le named thconfig in the current working directory. It is read like any other

therion �le (i.e. one command per line; empty lines or lines starting with `#' are ignored;

lines ended with a backslash continue on the next line.) A list of currently supported

commands follow.

`encoding'

Works like the encoding command in data �les|speci�es character sets.

`input'

Works like input command in data �les|includes other �les.

`source'

Description: Speci�es which source (data) �les Therion should read. You can specify

several �les here; one per line. You can also specify them using the -s command line

option (see below).

Syntax: source <file-name>

Arguments:

� <file-name>

`select'

Description: selects objects (surveys and maps) for export. By default, all survey objects

are selected. If there is no map selected, all maps belonging to selected surveys are selected

by default for map export. If there are no such maps, centreline from the selected surveys

is exported in the map.

Syntax: select <object> [OPTIONS]

38

Arguments:

� <object> . any survey or map, identi�ed by its ID.

Options:

� recursive <on/off> . valid only when a survey is selected. If set on (by default) all

subsurveys of the given survey are recursively selected/unselected.

� map-level <number> . valid only when a map is selected. Determines the level at

which map expansion for atlas export is stopped. By default 0 is used; if \basic" is

speci�ed, expansion is done up to the basic maps. Note: Map previews are displayed

only as speci�ed in maps in the current map-level.

� chapter-level <number> . valid only when a map is selected. Determines the level

at which chapter expansion for atlas export is stopped. By default 0 is used, if \-" or

\." is speci�ed, no chapter is exported for this map. If title-pages option in layout

is on, each chapter starts with a title page.

`unselect'

Description: Unselects objects from export.

Syntax: unselect <object> [OPTIONS]

Arguments:

The same as the select command.

Options:

The same as the select command.

`layout'

Description: Speci�es layout for 2D maps. Settings which apply to atlas mode are marked

`A'; map mode `M'.

Syntax: layout <id> [OPTIONS]

copy <source layout id>

scale <picture length> <real length>

base-scale <picture length> <real length>

units <metric/imperial>

rotate <number>

symbol-set <symbol-set>

symbol-assign <point/line/area/group/special> <symbol-type> \

<symbol-set>

symbol-hide <point/line/area/group/special> <symbol-type>

symbol-show <point/line/area/group/special> <symbol-type>

39

size <width> <height> <units>

overlap <value> <units>

page-setup <dimensions> <units>

page-numbers <on/off>

exclude-pages <on/off> <list>

title-pages <on/off>

nav-factor <factor>

nav-size <x-size> <y-size>

transparency <on/off>

opacity <value>

surface <top/bottom/off>

surface-opacity <value>

layers <on/off>

grid <off/top/bottom>

grid-origin <x> <y> <x> <units>

grid-size <x> <y> <z> <units>

origin <x> <y> <z> <units>

origin-label <x-label> <y-label>

own-pages <number>

page-grid <on/off>

legend <on/off/all>

legend-columns <number>

legend-width <n> <units>

map-comment <string>

map-header <x> <y> <off/n/s/e/w/ne/nw/se/sw/center>

map-header-bg <on/off>

statistics <explo/topo/carto/copyright all/off/number>

<explo/topo-length on/off>

scale-bar <length> <units>

language <xx[_YY]>

colour/color <item> <colour>

debug <on/all/first/second/scrap-names/off>

doc-author <string>

doc-keywords <string>

doc-subject <string>

doc-title <string>

code <metapost/tex-map/tex-atlas>

endcode

endlayout

Arguments:

40

<id> . layout identi�er (to be used in the export command)

Command-like options:

� copy <source layout id> . set properties here that are not modi�ed based on the

given source layout.

map presentation-related:

� scale <picture length> <real length> . set scale of output map or map atlas (M,

A; default: 1 200)

� base-scale <picture length> <real length> . if set, Therion will optically scale

the map by a (scale/base-scale) factor. This has the same e�ect as if the map

printed in base-scale would be photoreduced to the scale. (M, A)

� rotate <value> . rotates the map (M, A; default: 0)

� units <metric/imperial> . set output units (M, A; default: imperial)

� symbol-set <symbol-set> . use symbol-set for all map symbols, if available (M, A)

Therion uses following prede�ned symbol sets:

UIS (International Union of Speleology)

ASF (Australian Speleological Federation)

CCNP (Carlsbad Caverns National Park)

SKBB (Speleoklub Bansk�a Bystrica)

� symbol-assign <point/line/area/group/special> <symbol-type> <symbol-set>

. display a particular symbol in the given symbol-set. This option overrides symbol-set

option.

If the symbol has a subtype, <symbol-type> argument may have one of the following

forms: type:subtype or simply type, which assigns new symbol set to all subtypes of

a given symbol.

Following symbols may not be used with this option: point section (which isn't rendered

at all) and all point and line labels (label, remark, altitude, height, passage-height,

station-name, date). See the chapter Changing layout/Customizing text labels for details

how to change labels' appearance. (M, A)

Group may be one of the following: all, centerline, sections.

There are two special symbols: north-arrow, scale-bar.

� symbol-hide <point/line/area/group/special> <symbol-type> . don't display

particular symbol or group of symbols. You may use group cave-centerline, group

surface-centerline, point cave-station and point surface-station in symbol-

hide and symbol-show commands. May be combined with symbol-show.(M, A)

� symbol-show <point/line/area/group/special> <symbol-type> . display partic-

ular symbol or group of symbols. May be combined with symbol-hide. (M, A)

41

page layout related:

� size <width> <height> <units> . set map size in the atlas mode. In map mode

applies i� page-grid is on (M, A; default: 18 22.2 cm)

� overlap <value> <units> . set overlap size in paper units in the atlas mode or map

margin in the map mode (M, A; default: 1 cm)

� page-setup <dimensions> <units> . set page dimensions in this order: paper-width,

paper-height, page-width, page-height, left-margin and top-margin (A; default: 21

29.7 20 28.7 0.5 0.5 cm)

� page-numbers <on/off> . turn on/o� page numbering (A; default: true)

� exclude-pages <on/off> <list> . exclude speci�ed pages from cave atlas. The list

may contain page numbers separated by a comma or dash (for intervals) e.g. 2,4-

7,9,23 means, that pages 2, 4, 5, 6, 7, 9 and 23 should be omitted. Only the map

pages should be counted. (Set own-pages 0 and title-pages off to get the correct

page numbers to be excluded.) Changes of own-pages or title-pages options don't

a�ect page excluding. (A)

� title-pages <on/off> . turn on/o� title pages before each atlas chapter (A; default:

off)

� nav-factor <factor> . set atlas navigator zoom factor (A; default: 30)

� nav-size <x-size> <y-size> . set number of atlas pages in both directions of navi-

gator (A; default: 2 2)

� transparency <on/off> . set transparency for the passages (underlying passages are

also visible) (M, A; default: on)

� opacity <value> . set opacity value (used if transparency is on). Value range is

0{100. (M, A; default: 70)

� surface-opacity <value> . set the surface bitmap opacity (used if transparency is

on). Value range is 0{100. (M, A; default: 70)

� surface <top/bottom/off> . set the position of the surface bitmap above/below the

map. (M, A; default: off)

� layers <on/off> . enable/disable PDF 1.5 layers (M, A; default: on)

� grid <off/bottom/top> . enable/disable grid (M, A; default: off)

� grid-origin <x> <y> <x> <units> . set coordinates of grid origin (M, A) [Grid is

currently not supported.]

� grid-size <x> <y> <z> <units> . set grid size in real units (M, A; default 10 m)

� origin <x> <y> <z> <units> . set origin of atlas pages (M, A)

� origin-label <x-label> <y-label> . set label for atlas page which has the lower

left corner at the given origin coordinates (M, A; default: 0 0)

42

� own-pages <number> . set number of own pages added before the �rst page of auto-

matically generated pages in atlas mode (currently required for correct page numbering)

(A; default: 0)

� page-grid <on/off> . show pages key plan (M; default: off)

map legend related:

� map-header <x> <y> <off/n/s/e/w/ne/nw/se/sw/center> . print map header at

location speci�ed by <x> <y>. Prede�ned map header contains some basic informations

about cave: name, scale, north arrow, list of surveyors etc. It is fully customizable (see

the chapter Changing layout for details). Ranges for <x> and <y> are -100{200. Lower-

left corner of the map is 0 0, upper-right corner is 100 100. The header is aligned

with the speci�ed corner or side to this anchor point. (M; default: 0 100 nw)

� map-header-bg <on/off> . when on, background of map header is �lled with back-

ground color (e.g. to hide map grid). (M; default: o�)

� legend-width <n> <units> . legend width (M, A; default: 14 cm)

� legend <on/off/all> . display list of used map symbols in the map header. If set to

all, all symbols from the current symbol set are displayed. (M, A; default: off)

� colo[u]r-legend <on/off> . turn on/o� colour legend (M, A)

� legend-columns <number> . adjusts the number of legend columns (M, A; default:

2)

� map-comment <string> . optional comment displayed at the map header (M)

� statistics <explo/topo/carto/copyright all/off/number> or

� statistics <explo/topo-length on/off> . display some basic statistics (M, A; de-

fault: off)

� scale-bar <length> <units> . set the length of the scale-bar (M, A)

� language <xx[_YY]> . set output language. Available languages are listed on im-

pressum page. See the Appendix if you want to add or customize translations. (M,

A)

� colo[u]r <item> <colour> . customize colour for special map items (map-fg, map-

bg, preview-above, preview-below). Colour range is 0{100 for grayscale, [0{100 0{100

0{100] triplet for RGB colours. Special colour speci�cation for map-fg is altitude or

map, in which case the map is coloured according to altitude or maps.

� debug <on/all/first/second/scrap-names/off> . draw scrap in di�erent stages of

transformation in di�erent colours to see how Therion distorts map data. See the

description of scrap command for details. The points with distance changed most

during transformation are displayed orange. If scrap-names is speci�ed, scrap names

are shown for each scrap.

43

PDF related:

� doc-author <string> . set document author (M, A)

� doc-keywords <string> . set document keywords (M, A)

� doc-subject <string> . set document subject (M, A)

� doc-title <string> . set document title (M, A)

customization:

� code <metapost/tex-map/tex-atlas> . Add/rede�ne TEX and METAPOST macros

here. This allows user to con�gure various things (like user de�ned symbols, map and

atlas layout at one place &c.) See the chapter Changing layout for details.

� endcode . should end the TeX and METAPOST sections

page-width

pa
ge

-h
ei
gh

t

size (width)

si
ze

(h
ei
gh

t)

overlap

le
ft
-m

ar
gi
n

top-margin

paper-width

pa
p
er
-h
ei
gh

t

grid-size (width)

gr
id
-s
iz
e
(h

ei
gh

t)

44

`export'

Description: Exports selected surveys or maps.

Syntax:

� export <type> [OPTIONS]

Arguments:

� <type> . The following export types are supported:

model . 3D model of the cave

map . one page 2D map

atlas . 2D atlas in more pages

database . SQL database with centreline

Options:

common:

� output/o <file> . set output �le name. If no �le name is given the pre�x \cave."

is used with an extension corresponding to output format.

If the output �lename is given and no output format is speci�ed, the format is deter-

mined from the �lename extension.

model:

� format/fmt <format> . set model output format. Currently the following output

formats are supported: therion (native format; default), compass (plt �le), survex

(3d �le), dxf, vrml and 3dmf.

� enable <walls/[cave/surface-]centerline/surface/all> and

� disable <walls/[cave/surface-]centerline/surface/all> .

selects which features to export, if the format supports it. Surface is currently exported

in therion format only.

map/atlas:

� format/fmt <format> . set map format. Currently pdf, svg and xvi32 for map; pdf

for atlas are supported.

� projection <id> . unique identi�er that speci�es the map projection type. (See the

scrap command for details.)

If there is no map de�ned, all scraps in the given projection are exported.

32Xtherion vector image. XVI images may be used in xtherion to draw in-scale maps. Scale (100 dpi
image resolution is assumed) and grid-size from layout are used in export.

45

If there are no scraps with the speci�ed projection then Therion will display centreline

from selected surveys.

� layout <id> . use prede�ned map or atlas layout.

� layout-xxx . where xxx stands for other layout options. Using this you can change

some layout properties directly within the export command.

database:

� format/fmt <format> . currently only sql

� encoding/enc <encoding> . set output encoding

File formats summary:

export type available formats

model therion, dxf, compass, survex, vrml, 3dmf

map pdf, svg, xvi

atlas pdf

database sql

Running Therion

Now, after mastering data and con�guration �les, we're ready to run Therion. Usually

this is done from the command line in the data directory by typing

therion

The full syntax is

therion [-q] [-L] [-l <log-file>]

[-s <source-file>] [-p <search-path>]

[-g/-u] [-i] [-d] [-x] [--use-extern-libs] [<cfg-file>]

or

therion [-h/--help]

[-v/--version]

[--print-encodings]

[--print-tex-encodings]

[--print-init-file]

[--print-environment]

Arguments:

<cfg-file> Therion takes only one optional argument: the name of a con�guration

�le. If no name is speci�ed thconfig in the current directory is used. If there is no

thconfig �le (e.g. current directory is not a data directory), Therion exits with an

error message.

46

Options:

� -d . Turn on debugging mode. The current implementation creates a temporary direc-

tory named thTMPDIR (in your system temporary directory) and does not delete any

temporary �les.

� -g .Generate a new con�guration �le. This will be the given <cfg-file> if speci�ed, or

thconfig in the current directory if not. If the �le already exists, it will be overwritten.

� -h, --help . Display short help.

� -i . Ignore comments when writing -g or -u con�guration �le.

� -L . Do not create a log-�le. Normally therion writes all the messages into a therion.log

�le in the current directory.

� -l <log-file> . Change the name of the log �le.

� -p <search-path> . This option is used to set the search path (or list of colon-

separated paths) which therion uses to �nd its source �les (if it doesn't �nd them

in the working directory).

� -q . Run therion in quiet mode. It will print only warning and error messages to

STDERR.

� --print-encodings . Print a list of all supported input encodings.

� --print-tex-encodings . Print a list of all supported encodings for PDF output.

� --print-init-file . Print a default initialization �le. For more details see the Ini-

tialization section in the Appendix.

� -s <source-file> . Set the name of the source �le.

� -u . Upgrade the con�guration �le.

� --use-extern-libs . Don't copy TEX and METAPOST macros to working directory.

TEX and METAPOST should search for them on their own. Use with caution.

� -v, --version . Display version information.

� -x . Generate �le `.xth-thcon�g' with additional informations for XTherion.

XTherion|compiler

XTherion makes it easier to run Therion especially on systems without a command line

prompt. Compiler window is the default window of XTherion. To run Therion it's enough

to open a con�guration �le and press `F9' or `Compile' button.

XTherion displays messages from Therion in the lower part of the screen. Each error

message is highlited and is hyperlinked to the source �le where the error occured.

After a �rst run there are activated additional menus Survey structure andMap structure.

User may comfortably select a survey or map for export by double clicking on some of

the items in the tree. Simple click in the Survey structure tree displays some basic

informations about the survey in the Survey info menu.

47

What we get?

Information �les

Log �le

Besides the messages from Therion and other programs used, the log �le contains infor-

mation about loop errors and scrap distortions.

XTherion

Therion provides some basic facts about each survey (length, vertical range, N{S range,

E{W range, number of shots and stations) if -x option is given. This information is

displayed in XTherion, Compiler window, Survey info menu, when some survey from the

Survey structure menu is selected.

SQL export

SQL export makes it easy to get very detailed and subtle informations about centreline.

It is a text �le starting with tables declaration (where `?' stands in the following listing

for a maximal value required by the column data)

create table SURVEY (ID integer, PARENT_ID integer,

NAME varchar(?), FULL_NAME varchar(?), TITLE varchar(?));

create table CENTRELINE (ID integer, SURVEY_ID integer,

TITLE varchar(?), TOPO_DATE date, EXPLO_DATE date,

LENGTH real, SURFACE_LENGTH real, DUPLICATE_LENGTH real);

create table PERSON (ID integer, NAME varchar(?), SURNAME varchar(?));

create table EXPLO (PERSON_ID integer, CENTRELINE_ID integer);

create table TOPO (PERSON_ID integer, CENTRELINE_ID integer);

create table STATION (ID integer, NAME varchar(?),

SURVEY_ID integer, X real, Y real, Z real);

create table STATION_FLAG (STATION_ID integer, FLAG char(3));

create table SHOT (ID integer, FROM_ID integer, TO_ID integer,

CENTRELINE_ID integer, LENGTH real, BEARING real, GRADIENT real,

ADJ_LENGTH real, ADJ_BEARING real, ADJ_GRADIENT real,

ERR_LENGTH real, ERR_BEARING real, ERR_GRADIENT real);

create table SHOT_FLAG (SHOT_ID integer, FLAG char(3));

48

which is followed by a mass of SQL insert commands. This �le may be loaded into any

SQL database (after some database-dependent initialization, which may include running

a SQL server and connecting to it, creating a database and connecting to it. A good idea

is to start a transaction before loading this �le, if database doesn't start a transaction

automatically.) It's important to set-up database encoding to match the one speci�ed in

Therion export database command.

Table and column names are self-explaining; for unde�ned or non-existing values NULL is

used. Examples of simple queries follow:

List of survey team members with an information how much has each of them surveyed:

select sum(LENGTH), sum(SURFACE_LENGTH), NAME, SURNAME

from CENTRELINE, TOPO, PERSON

where CENTRELINE.ID = TOPO.CENTRELINE_ID and PERSON.ID = PERSON_ID

group by NAME, SURNAME order by 1 desc, 4 asc;

Which parts of the cave were surveyed in the year 1998?

select TITLE from SURVEY where ID in

(select SURVEY_ID from CENTRELINE

where TOPO_DATE between '1998-01-01' and '1998-12-31');

How long are passages lying between 1500 and 1550 m a.s.l.?

select sum(LENGTH) from SHOT, STATION S1, STATION S2

where (S1.Z+S2.Z)/2 between 1500 and 1550 and

SHOT.FROM_ID = S1.ID and SHOT.TO_ID = S2.ID;

2D maps

Maps are produced in PDF format, which may be viewed or printed in a wide variety of

viewers. Be sure to uncheck Fit page to paper or similar option if you want to print in

the exact scale.

In atlas mode some additional information is put on each page: page number, map name,

and page label.

Especially useful are the numbers of neighbouring pages in N, S, E and W directions, as

well as in upper and lower levels. There are also hyperlinks at the border of the map if

the cave continues on the next page and on the appropriate cells of the Navigator.

PDF �les are highly optimized|scraps are stored in XObject forms only once in the

document and than referenced on appropriate pages. Therion uses most advanced PDF

features like transparency and layers.

Created PDF �les may be optionally post-processed in applications like pdfTEX or Adobe

Acrobat|it's possible to extract or change some pages, add comments or encryption, etc.

49

3D models

Therion may export 3D model in various formats besides its native format. These may

be loaded in appropriate viewing, editing or raytracing programs to be printed or further

processed. If the format doesn't support arbitrary passage shape de�nition, only the

centreline is included.

XTherion|model viewer

XTherion includes OpenGL model viewer which displays models in the native (therion)

format. It's tested under Linux and Windows 2000 and XP. If you encounter problems

compiling or running it on other systems, you may use any other format exported from

Therion.

50

Changing layout of PDF maps

This chapter is extremely useful if you're not satis�ed with the prede�ned layout of map

symbols and maps provided, and want to adapt them to your needs. However, you need

to know how to write plain TEX and METAPOST macros to do this.

Page layout in the atlas mode

The layout command allows basic page setup in the atlas mode. This is done through its

options such as page-setup or overlap. But there are no options which would specify

the position of map, navigator and other elements inside the area de�ned by page-width

and page-height dimensions; e.g., why is the navigator below the map and not on its

right or left side?

There are many possible arrangements for a page. Rather than o�er even more options for

the layout command, Therion uses the TEX language to describe other page layouts. This

approach has the advantage that the user has direct access to the advanced typesetting

engine without making the language of Therion overcomplex.

Therion uses pdfTEX with the plain format for typesetting. So you should be familiar

with the plain TEX if you wish to de�ne new layouts.

The ultimate reference for plain TEX is

Knuth, D. E.: The TEXbook, Reading, Massachusetts, Addison-Wesley 11984

For pdfTEX's extensions there is a short manual

Th�anh, H. T.|Rahtz, S.|Hagen, H.: The pdfTEX user manual, available at http://

www.pdftex.org

The TEX macros are used inside of code tex-atlas part of the layout command (see

the chapter Processing data for details). The basic one prede�ned by Therion is the

\dopage

macro. The idea is simple: for each page Therion de�nes TEX variables (count, token,

and box registers) which contain the page elements (map, navigator, page name etc.).

At the end of each page macro \dopage is invoked. This de�nes the position of each

element on the page. By rede�ning this macro you'll get desired page layout. Without

this rede�nition you'll get the standard layout.

Here is the list of variables de�ned for each page:

Boxes:

� \mapbox . The box containing the map. Its width (height) is set according to the size

and overlap options of the layout command to

51

size_width + 2*overlap or

size_height + 2*overlap, respectively

� \navbox . The box containing the navigator, with dimensions

size_width * (2*nav_size_x+1) / nav_factor or

size_height * (2*nav_size_y+1) / nav_factor, respectively

Both \mapbox and \navbox also contain hyperlinks.

Count registers:

� \pointerE, \pointerW, \pointerN, \pointerS contain the page number of the neigh-

bouring pages in the E, W, N and S directions. If there is no such a page its page

number is set to 0.

� \pagenum current page number

Token registers:

� \pointerU, \pointerD contain information about pages above and below the current

page. It consists of one or more concatenated records. Each record has a special format

page-name|page-number|destination||

If there are no such pages, the value is set to notdef.

See the description of the \processpointeritem macro below for how to extract and

use this information.

� \pagename . name of the current map according to options of the map command.

� \pagelabel . the page label as speci�ed by origin and origin-label options of the

layout command.

The following variables are set at the beginning of the document:

� \hsize, \vsize . TEX page dimensions, set according to page-width and page-height

parameters of the page-setup option of the layout command. They determine our

playground when de�ning page layout using the \dopage macro.

� \ifpagenumbering . This conditional is set true or false according to the page-

numbers option of the layout command.

There are also some prede�ned macros which help with the processing of \pointer*

variables:

� \showpointer with one of the \pointerE, \pointerW, \pointerN or \pointerS as

an argument displays the value of the argument. If the value is 0 it doesn't display

anything. This is useful because the zero value (no neighbouring page) shouldn't be

displayed.

� \showpointerlist with one of the \pointerU or \pointerD as an argument presents

the content of this argument. (Which contains \pointerU or \pointerD, see above.)

52

For each record it calls the macro \processpointeritem, which is responsible for data

formating.

Macro \showpointerlist should be used without rede�nition in the place where you

want to display the content of its argument; for custom data formating rede�ne \pro-

cesspointeritem macro.

� \processpointeritem has three arguments (page-name, page-number, destination)

and visualizes these data. The arguments are delimited as follows

\def\processpointeritem#1|#2|#3\endarg{...}

An example de�nition may be

\def\processpointeritem#1|#2|#3\endarg{%

\hbox{\pdfstartlink attr {/Border [0 0 0]}%

goto name {#3} #2 (#1)\pdfendlink}%

}

(note how to use the destination argument), or much simpler (if we don't need hyperlink

features):

\def\processpointeritem#1|#2|#3\endarg{%

\hbox{#2 (#1)}%

}

For font management there are macros

� \size[#1] for size changes, and

� \rm, \it, \bf, \ss, \si for type face switching.

See below for a list of prede�ned texts which may be used in the atlas.

Now we're ready to de�ne the \dopage macro. You may choose which of the prede�ned

elements to use. A very simple example would be

layout my_layout

scale 1 200

page-setup 29.7 21 27.7 19 1 1 cm

size 26.7 18 cm

overlap 0.5 cm

code tex-atlas

\def\dopage{\box\mapbox}

\insertmaps

endlayout

which de�nes the landscape A4 layout without the navigator nor any texts. There is only

a map on the page.

Note the \insertmaps macro. Map pages are inserted at its position. This is not done

automatically because you may wish to insert some other pages before the �rst map page.

More advanced is the default de�nition of the \dopage macro:

53

\def\dopage{%

\vbox{\centerline{\framed{\mapbox}}

\bigskip

\line{%

\vbox to \ht\navbox{

\hbox{\size[20]\the\pagelabel

\ifpagenumbering\space(\the\pagenum)\fi

\space\size[16]\the\pagename}

\ifpagenumbering

\medskip

\hbox{\qquad\qquad

\vtop{%

\hbox to 0pt{\hss\showpointer\pointerN\hss}

\hbox to 0pt{\llap{\showpointer\pointerW\hskip0.7em}%

\raise1pt\hbox to 0pt{\hss\updownarrow\hss}%

\raise1pt\hbox to 0pt{\hss\leftrightarrow\hss}%

\rlap{\hskip0.7em\showpointer\pointerE}}

\hbox to 0pt{\hss\showpointer\pointerS\hss}

}\qquad\qquad

\vtop{

\def\arr{\uparrow}

\showpointerlist\pointerU

\def\arr{\downarrow}

\showpointerlist\pointerD

}

}

\fi

\vss

\scalebar

}\hss

\box\navbox

}

}

}

Using other plain TEX macros or TEX primitives it's possible to add other features, e.g. a

di�erent layout for odd and even pages; headers and footers; or adding a logo to each

page.

In addition to map pages contains atlas additional items: title page, basic facts about

the cave, legend with used map symbols etc.

54

Therion automatically generates list of used map symbols and lists of persons who have

discovered, surveyed and drawn selected part of the cave. Following token registers may

be used (according to user's requirements before or after the \insertmaps macro):

� \explotitle, \topotitle, \cartotitle . translated titles

� \exploteam, \topoteam, \cartoteam . participating members (according to team,

explo-team options for centreline and author option of scraps)

� \explodate, \topodate, \cartodate . corresponding dates

� \comment . is set according to map-comment option of the layout command

� \copyrights . is set according to copyright options for surveys and other objects

� \cavename . name of the exported map; set according to -title option of exported

map

� \cavelength, \cavedepth . approximate length and depth of displayed map

� \cavelengthtitle, \cavedepthtitle . translated labels

There is a macro \atlastitlepages which combines all token registers mentioned above

to get simple preformatted atlas introductory pages.

For legend displaying there are

� \iflegend . conditional; true i� legend option of the layout command was set to on

or all values

� \legendtitle . token register containing translated legend title

� \insertlegend . macro for inserting legend symbols pictures with translated descrip-

tions in the speci�ed number of columns (according to legend-columns layout option)

� \formattedlegend . combines all three above commands to get preformatted legend

with header and symbols typeset in two33 columns if legend option is set on

North arrow and scale bar may be displayed using

� \ifnortharrow . conditional; true if map projection is plan and symbol north-arrow

is not hidden in layout

� \ifscalebar . conditional; true if scalebar is not hidden

� \northarrow . PDF form with the north arrow

� \scalebar . PDF form with the scale bar

There is a general-purpose macro for typesetting in multiple columns34:

� \begmulti <i>, \endmulti . text between these macros is typeset in <i> columns

Example how to create atlas with lists of surveyors etc. followed by map pages and with

legend at the end:

33Default; adjust the legend-columns layout option to get them more or less
34Not to be used with map legend, where multiple columns are to be adjusted by legend-columns

layout option

55

code tex-atlas

\atlastitlepages

\insertmaps

\formattedlegend

Page layout in the map mode

In the map mode it's possible to use a lot of prede�ned variables which are described in

the previous chapter: \cavename, \comment, \copyrights, \explotitle, \topotitle,

\cartotitle, \exploteam, \topoteam, \cartoteam, \explodate, \topodate, \carto-

date, \cavelength, \cavedepth, \cavelengthtitle, \cavedepthtitle, \ifnorthar-

row, \ifscalebar, \northarrow, \scalebar, \iflegend, \legendtitle, \insertle-

gend, \begmulti <i>, \endmulti, \formattedlegend, \legendcolumns.

In order to place them somewhere on the map page, you have to de�ne \maplayout

macro in the code tex-map section of the layout command. It should contain one or

more \legendbox invocations. The \legendbox macro has four parameters: coordinates

ranging 0{100, alignment speci�cation (N, E, S, W, NE, SE, SW, NW or C) and the

content to be displayed.

A simple example is

\def\maplayout{

\legendbox{0}{100}{NW}{\northarrow}

}

which displays north arrow in the upper-left corner of the map sheet.

For user's convenience, there is \legendcontent token register. It contains preformatted

cave name, north arrow, scale bar, explo/topo/carto teams, comment, copyrigts and

legend. Width of the above text may be adjusted by \legendwidth dimen register. The

\legendcontent is also used in the default map layout de�nition:

\def\maplayout{\legendbox{0}{100}{NW}{\the\legendcontent}}

Customizing text labels

There is a preliminary interface to changing font sizes for labels via the METAPOST

macro

fonts_setup(<tinysize>,<smallsize>,<normalsize>,<largesize>,<hugesize>);

which may be used inside of the code metapost section of the layout command. <nor-

malsize> applies to point label, <smallsize> applies to remark and all other point labels.

Each of them may apply to line label according to its -size option.

Example:

56

code metapost

fonts_setup(6,8,10,14,20);

New map symbols

Therion's layout command makes it easy to switch among various prede�ned map symbol

sets. If there is no such symbol or symbol set you want, it's possible to design new map

sybols.

Howewer, this requires knowledge of the METAPOST language, which is used for map

visualization. It's described in

Hobby, J. D.: A User's Manual for MetaPost, available at http://cm.bell-labs.

com/cm/cs/cstr/162.ps.gz

User may also bene�t from compehensive reference to the METAFONT language, which

is quite similar to METAPOST:

Knuth, D. E.: The METAFONTbook, Reading, Massachusetts, Addison-Wesley 11986

New symbols may be de�ned in the code metapost section of the layout command.

This makes it easy to add new symbols at the run-time. It's also possible to add symbols

permanently by compiling into Therion executable (see the Appendix for instructions how

to do this).

Each symbol has to have a unique name, which consists of following items:

� one of the letters `p', `l', `a', `s' for point, line, area or special symbols, respectively;

� underscore character;

� symbol type as listed in the chapter Data format with all dashes removed;

� if the symbol has a subtype, add underscore character and subtype;

� underscore character;

� symbol set identi�er in uppercase

Example: standard name for a point `water-
ow' symbol with a `permanent' subtype in

the `MY' set is p_waterflow_permanent_MY.

Each new symbol has to be registered by a macro call

initsymbol("<standard-name>");

unless it's compiled into Therion executable.

There are four prede�ned pens PenA (thickest) : : : PenD (thinest), which should be used

for all drawings. For drawing and �lling use thdraw and thfill commands instead of

METAPOST's draw and fill.

57

Point symbols

Point symbols are de�ned as macros using def ... enddef; commands. Majority of

point symbol de�nitions has four arguments: position (pair), rotation (numeric), scale

(numeric) and alignment (pair). Exceptions are section which has no visual represanta-

tion; all labels, which require special treatment as described in the previous chapter, and

station which takes only one argument: position (pair).

All point symbols are drawn in local coordinates with the length unit u. Recommended

ranges are h�0:5u; 0:5ui in both axes. The symbol should be centered at the coordinates'

origin. For the �nal map, all drawings are transformed as speci�ed in the T transforma-

tion variable, so it's necessary to set this variable before drawing.

This is usually done in two steps (assume that four arguments are P, R, S, A):

� set the U pair variable to
�
width

2
; height

2

�
of the symbol for correct alignment. The

alignment argument A is a pair representing ratios
�
shiftx

Ux

�
and

�
shifty

Uy

�
.

(Hence aligned A means shifted (xpart A * xpart U, ypart A * ypart U).)

� set the T transformation variable

T:=identity aligned A rotated R scaled S shifted P;

For drawing and �lling use thdraw and thfill commands instead of METAPOST's draw

and fill. These take automatically care of T transformation.

An example de�nition may be

def p_entrance_UIS (expr P,R,S,A)=

U:=(.2u,.5u);

T:=identity aligned A rotated R scaled S shifted P;

thfill (-.2u,-.5u)--(0,.5u)--(.2u,-.5u)--cycle;

enddef;

initsymbol("p_entrance_UIS");

Line symbols

Line symbols di�er from point symbols in respect that there is no local coordinate system.

Each line symbol gets the path in absolute coordinates as the �rst argument. Therefore

it's necessary to set T variable to identity before drawing.

Following symbols take additional arguments:

� arrow . numeric: 0 is no arrows, 1 arrow at the end, 2 begin, 3 both ends

� contour . text: list of points which get the tick or one of �1, �2 or �3 to mark

unde�ned tick, tick in the middle or no tick, respectively

58

� section . text: list of points which get the orinetation arrow or �1 to indicate no arrows

� slope . numeric: 0 no border, 1 border; text: list of (point,direction,length) triplets

Usage example:

def l_wall_bedrock_UIS (expr P) =

T:=identity;

pickup PenA;

thdraw P;

enddef;

initsymbol("l_wall_bedrock_UIS");

Area symbols

Areas are similar to lines: they take only one argument { path in absolute coordinates.

You may �ll them in three ways:

� �ll an uniform or randomised grid in a temporary picture (having dimensions bbox

path) with some point symbols; clip it according to path and add to the currentpic-

ture

� �ll path with a solid colour

� �ll path with a prede�ned pattern using a withpattern keyword.

Patterns are de�ned using the same user interface (without the patterncolor macro) as

described in the article

Bolek, P.: \METAPOST and patterns," TUGboat, 3, XIX (1998), pp. 276{283, available

online at http://www.tug.org/TUGboat/Articles/tb19-3/tb60bolek.pdf

You may use standard METAPOST draw and similar macros without setting of T variable

in pattern de�nitions.

Example on how to de�ne and use patterns:

beginpattern(pattern_water_UIS);

draw origin--10up withpen pensquare scaled (0.02u);

patternxstep(.18u);

patterntransform(identity rotated 45);

endpattern;

def a_water_UIS (expr p) =

T:=identity;

thclean p;

thfill p withpattern pattern_water_UIS;

enddef;

initsymbol("a_water_UIS");

59

Special symbols

There are currently two special symbols: scale bar and north arrow. Both are experi-

mental and subject to change.

60

Appendix

Compilation

If you want to compile Therion from source code and run it, you need (�rst three are

required only during compilation):

� GNU C/C++ compiler

� GNU make

� Perl

� Tcl/Tk 8.4.3 and newer (http://www.tcl.tk) with BWidget widget set (http://

sourceforge.net/projects/tcllib) and optionally Tom OpenGL extension (im-

proved version is included in Therion source distribution) and tkImg extension (http:

//sourceforge.net/projects/tkimg).

� TEX distribution with at least TEX with Plain format, recent pdfTEX, and METAPOST

(http://www.tug.org).

All programs (with the exception of BWidget, Tom and tkImg package) are usually

included in Linux, Unix or MacOSX distributions. For Windows consider using MinGW

and MSYS (http://www.mingw.org). It's a distribution of GNU utilities with GNU

make and GCC. (BTW, why not to use precompiled Windows version?)

Quick start

� unpack source distribution therion-0.3.*.tar.gz

� cd therion

� make config-macosx or make config-win32, if you use MacOS X or Windows, re-

spectively

� make

� su

� make install

Installing Tom:

� if you use Windows, download a Tcl/Tk source distribution, make and make install

it under MSYS

� cd therion/thtom/linux or cd therion/thtom/win

61

� make

� copy Tom0.2 directory (which should contain pkgIndex.tcl and one of libtom.so or

libtom.dll) to the lib subdirectory of your Tcl/Tk distribution.

Hacker's guide

Make parameters

Therion's make�le may take some optional parameters.

� config-linux, config-macosx, config-win32 . con�gure Therion for a speci�c plat-

form. Linux is a default.

� config-release, config-oxygen, config-ozone . set optimization level for C++

compiler (none, -O2 and -O3)

� config-debug . useful before debugging the program

� install . install Therion

� clean . delete all temporary �les

Adding new translations

Therion supports translation of map labels. Suppose you want to add a new language

xx.

� run `perl process.pl export xx' in the `thlang' Therion source subdirectory. This

creates a �le texts_xx.txt. This �le is UTF-8 encoded.

� edit the texts_xx.txt �le. Add your translations at lines beginning with `xx:'.

� run make update

� compile Therion

Adding new encodings

Although UTF-8 Unicode encoding covers all characters which Therion is able to process,

it may be inconveniet to use it. In that case it's possible to add support for any 8-bit

encoding for text input �les. Copy a translation �le to the thchencdata directory; add its

name to `i�les' hash in the beginning of the Perl script generate.pl; run it and recompile

Therion.

The translation �le should contain two hexadecimal values of a character (�rst one in

the 8-bit encoding, second one in Unicode) in each line. Possible comments follow the `#'

character.

Adding new TEX encodings

It's easy to add new encodings for 2D map output. Copy an appropriate encoding map-

ping �le with an *.enc extension to the texenc/encodings, run the Perl script mktex-

enc.pl located in the texenc directory and compile Therion.

62

Therion uses the same encoding �les as afm2tfm program from the TEX distribution,

which has the same format as an encoding vector in a PostScript font. You may �nd

more details in the chapter 6.3.1.5 Encoding �le format in the documentation to Dvips

program.

Generating new TEX and METAPOST headers

Therion uses TEX and METAPOST for 2D map visualization and typesetting. Prede�ned

macros are compiled into the Therion executable and are copied to the working directory

just before running METAPOST and TEX (unless the --use-extern-libs option is used).

Layout command makes it possible to modify some macros in the con�guration �le at

the run-time.

However, it's possible to make permanent changes to the macro �les. After modifying the

�les in the mpost and tex directories it's necessary to run Perl scripts genmpost.pl and

gentex.pl, which generate C++ header �les, and compile Therion executable again.

Environment variables

Therion reads following environment variables:

� THERION . [not required] search path for (x)therion.ini �le(s)

� HOME (HOMEDRIVE + HOMEPATH on WinXP) . [not required, but usually present on your

system] search path for (x)therion.ini �le(s)

� TEMP, TMP . system temporary directory, where Therion stores temporary �les (in a

directory named thPID, where PID is a process ID), unless tmp-path is speci�ed

in the initialization �le.

Consult the documentation of your OS how to set them.

Initialization �les

Therion's and XTherion's system dependent settings are specifyed in the �le therion.ini

or xtherion.ini, respectively. They are searched for in the following directories:

� on UNIX: ., $THERION, $HOME/.therion, /etc, /usr/etc, /usr/local/etc

� on Windows: ., $THERION, $HOME\.therion, <Therion-installation-directory>,

C:\WINDOWS, C:\WINNT, C:\Program Files\Therion

Therion

If no �le is found Therion uses its default settings. If you want to list them, use --print-

init-file option. The initialization �le is read like any other therion �le. (Empty lines

63

or lines starting with `#' are ignored; lines ending with a backslash continue on next line.)

Currently supported initialization commands follow.

� encoding-default <encoding-name>

Set the default output encoding (currently unused).

� encoding-sql <encoding-name>

Set the default output encoding for SQL export.

� language <xx[_YY]>

Default output language (used for maps). See the layout command for the list of

available languages.

� mpost-path <file-path>

Set the full path to a METAPOST executable if Therion can't �nd it (\mpost" is the

default).

� pdftex-path <file-path>

Set the full path to a pdfTEX executable if Therion can't �nd it (\pdfetex" is the

default).

� source-path <directory>

Path to data and con�guration �les. Used mostly for system-wide grades and layout

de�nitions.

� tmp-path <directory>

Path where temporary directory should be created.

� tmp-remove <OS command>

System command to delete �les from the temporary directory.

� tex-env <on/off>

[Works on Windows only.] When set to off (default), Therion temporarily clears all

environment variables related to TEX. Useful if there is other TEXdistribution installed

on your system which had set-up any environment variables, which could confuse TEX

and METAPOST programs supplied in Therion for Windows distribution.

Set to on if you use other TEX distribution for maps processing.

� tex-fonts <encoding> <rm> <it> <bf> <ss> <si>

Set-up fonts used for given encoding. The list of currently supported encodings gives the

--print-tex-encodings command line option. The same encoding must be used while

generating TEX metrics (*.tfm �les) for those fonts (e.g. with the afm2tfm program)

and this encoding must be explicitly given also in the pdfTEX's map �le. The only

exception is the base set of Computern Modern fonts, which use `raw' encoding. This

encoding doesn't need to be speci�ed in the pdfTEX's map �le.

64

Encoding has to be followed by �ve font speci�cations for regular, italic, bold, sans-

serif and sans-serif oblique styles. Default setting is tex-fonts raw cmr10 cmti10

cmbx10 cmss10 cmssi10

Example how to use other fonts (e.g. TrueType Palatino in xl2 (an encoding derived

from ISO8859-2) encoding). Run:

ttf2afm -e xl2.enc -o palatino.afm palatino.ttf

afm2tfm palatino.afm -u -v vpalatino -T xl2.enc

vptovf vpalatino.vpl vpalatino.vf vpalatino.tfm

You get �les vpalatino.vf, vpalatino.tfm and palatino.tfm. Add the line

palatino <xl2.enc <palatino.ttf

to the pdfTEX's map �le. The same should be done for the italic and bold faces and

corresponding sansserif and sansserifoblique fonts. If you're lazy try

tex-fonts xl2 palatino palatino palatino palatino palatino

(We should use actually virtual font vpalatino instead of palatino, which contains

no kerning or ligatures, but pdfTEX doesn't support \pdfincludechars command on

virtual fonts. To be improved.)

If you want to add some unsupported encodings, read the chapter Compilation /

Hacker's guide.

XTherion

Initialization �le for XTherion is actually a Tcl script evaluated when XTherion starts.

The �le is commented; see the comments for details.

Example data

Following simple example illustrates basic usage of Therion commands:

encoding utf-8

survey main -title "Test cave"

survey first

centreline

units compass grad

data normal from to compass clino length

1 2 100 -5 10

endcentreline

endsurvey

65

survey second -declination [3 deg]

centreline

calibrate length 0 0.96

data normal from to compass length clino

1 2 0 10 +10

endcentreline

endsurvey

centreline

equate 2@first 1@second

endcentreline

scraps are usually in separate *.th2 files

scrap s1 -author 2004 "Therion team"

point 763 746 station -name 2@second

point 702 430 station -name 2@first

point 352 469 station -name 1@first

point 675 585 air-draught -orientation 240 -scale large

line wall -close on

287 475

281 354 687 331 755 367

981 486 846 879 683 739

476 561 293 611 287 475

endline

endscrap

map m1 -title "Test map"

s1

endmap

endsurvey

Corrresponding con�guration �le could be:

encoding utf-8

source test

layout l1

scale 1 100

layers off

66

endlayout

select m1@main

export model -fmt survex

export map -layout l1

If you save data �le as `test.th' and con�guration �le as `thcon�g' you may process them

with Therion.

History

� 1999

Oct: �rst concrete ideas

Nov: start of programming (Perl scripts and METAPOST macros)

Dec 27: Therion compiles simple map for the �rst time (32 kB of Perl and METAPOST

source code). This �rst release had some interesting features such as transformation

functions, which alowed user-speci�cation of the input format for survey data.

� 2000

Jan: xthedit (Tcl/Tk), a graphical front-end for Therion

Feb 18: start of (�rst?) reprogramming (Perl)

Apr 1: �rst hyperlinked PDF cave map

Aug: experiments with PDF, pdfTEX and METAPOST

� 2001

Nov: start of reimplementation from scratch: Therion (C++ with some Perl scripts

inherited from the previous version); interactive 2D map editor ThEdit as a replace-

ment of xthedit (Delphi)

Dec: ThEdit exports simple map for the �rst time

� 2002

Mar: Therion 0.1 | Therion is able to process survey data (centreline) of Dead Bats

Cave. XTherion, text editor designed for Therion (Tcl/Tk).

Jul 27: Therion 0.2 | Therion compiles simple map (consisting of two scraps) for the

�rst time (800 kB of source code)

Aug: XTherion extended to 2D map editor (as a replacement of ThEdit)

Sep: Therion compiles �rst real and complex map of a cave. XTherion extended to

compiler.

� 2003

67

Mar: First version of The Therion Book �nished

Apr: Therion included in Debian GNU/Linux

Jun: all Perl scripts rewritten in C++, Therion is one executable program now (al-

though using Survex and TEX)

� 2004

Mar: Therion 0.3 | Therion exports 3D model created from 2D maps. Loop closure

algorithm included into Therion.

Future

Although Therion is already used for map production, there are a lot of new features to

be implemented:

General

� loop closure informations in SQL

2D maps

� GIS formats support

3D models

� improve passage walls modelling

68

	Contents
	Introduction
	Creating data files
	Processing data
	What we get?
	Changing layout of PDF maps
	Appendix

