
TCode

User Guide

Tools for documenting Java programs in LATEX

Version: September 17, 2008

This document describes facilities that help writing Java classes, together with detailed
documentation of their application programming interface (API), in a single LATEX file. The
LATEX package tcode offers special commands and environments for typesetting API docu-
mentation and user guides. It permits one to display certain parts of the code (e.g., method
headers), hide others (e.g., method bodies and private variables), and explain the methods,
variables, etc., in a uniform format. Although it is targeted to that language, it works not
only for Java, but also for other programming languages such as C, C++, etc. LATEX will
produce the documentation as a .dvi, .ps, or .pdf file.

A Perl script called texjava produces a .java file by extracting the code form the .tex

file. With the help of LATEX2HTML, texjava also transforms some of the documentation into
Javadoc format, so that the javadoc program can later produce HTML documentation from
the .java file. Another Perl script called javatex does the reverse transformation, recovering
the .tex file from the .java file.

September 17, 2008 1 INTRODUCTION 1

1 Introduction

Javadoc is the standard Java tool for generating API documentation [2]. Its output is
in HTML format. However, HTML is very limited on certain aspects such as displaying
mathematical expressions, complex tables, etc. Good modern typesetting systems such as
TEX and LATEX offer much better quality, flexibility, and precision than HTML for producing
detailed and nice-looking documentation [3]. LATEX is certainly a tool of choice for API
documentation of mathematically-oriented software. On the other hand, for Java libraries,
standard online HTML documentation based on Javadoc is almost a necessity.

With the tools described here, one can program a Java class and document its API in
great detail, in a single LATEX file. The LATEX program produces a nicely-typeset version of
the documentation, while a Perl script called texjava, helped by LATEX2HTML [3], produces
a .java file, which can be compiled into a .class file and can also be used by javadoc to
produce HTML documentation. The .java file produced by texjava can be retransformed
(to a certain extent) into a LATEX file by the Perl script javatex.

The LATEX package tcode defines special commands and environments for typesetting
API documentation in a uniform format, and selectively displaying or hiding (from the API
documentation or user’s guide) pieces of Java code. This LATEX class file can also be used
for other programming languages such as C, C++, etc. In this document, we assume that
the target language is Java.

These tools are rudimentary and much simpler, for example, than the CWEB system of
documentation [4], also based on TEX.

Section 2 explains how LATEX files should be organized for using these tools, describes
the main commands, and give an example. Section 3 shows how to run texjava. Sections 4
and 5 tell about javatex and how to run it.

2 Layout of the LATEX files

A LATEX document using the tcode LATEX package to describe a Java package (or set of
packages) normally has a single master file, with several secondary .tex files, which are
loaded via \include{ } commands in the master file. There should be one secondary .tex

file for each .java file that we want to have (typically, this is one file for each Java class or
interface in the package). The master file may contain other material and include additional
files as well. LATEX or pdfLATEX will process the master file to produce the detailed documen-
tation, which will usually end up as a .pdf file. The .tex files that implement Java classes
are transformed one by one into the corresponding .java files (or .c, .cpp, etc., in the
case of other languages) by the Perl script texjava.pl helped by the LATEX2HTML program,
which basically extracts the code and formats additional information for javadoc. Since the
script can process only one .tex file at a time, one may create a Makefile to automate the
generation process when dealing with many files.

The tcode package. To use the commands of the tcode LATEX package, this one must be
imported via the command

\usepackage{tcode}

This command will locate and load tcode.sty, so this file must be accessible in a directory

September 17, 2008 2 LAYOUT OF THE LATEX FILES 2

pointed to by the TEXINPUTS environment variable. The tcode package requires the html

and alltt packages which should also be locatable through the TEXINPUTS environment
variable.

The code environment. The basic construct for identifying programming code in the
LATEX files is the code environment. Everything between \begin{code} and \end{code},
with the exception of LATEX commands, is displayed in special verbatim mode, with a type-
writer font, by LATEX and is treated as Java code (copied into the .java file) by texjava.
The Perl script disallows nesting of code environments. The \end{code} command should
always be placed alone at the beginning of a line. A document is therefore composed of an
alternance of text blocks and code blocks, starting and ending with a text block.

The contents of a code environment is actually treated as a “box” by LATEX, which means
that all the code it contains will appear on the same document page. This is what we expect
when documenting methods, because we wish a multi-line signature not to span on two
pages. However, if the code is too long to fit in the page, LATEX will issue an “overfull vbox”
warning and the code will not appear entirely on the resulting document. The longcode

environment is convenient for displaying long blocks of code; it behaves just as the code

environment, except that it allows the code to span over two or more pages.

There are situations where one would like to have some code displayed in the documen-
tation, but not have it in the .java file (e.g., when giving programming examples in the
documentation). The vcode and longvcode environments do that: LATEX treats them just
like the code and longcode environments, but texjava does not copy the code into the .java
file. However, it will appear as typed text in the HTML documentation.

The following character strings should never appear inside programming code (e.g., in
a litteral string or in a comment), because they will be interpreted as active LATEX com-
mands: \hide, \endhide, \code, \endcode, \begin{hide}, \end{hide}, \begin{code},
\end{code}. If one needs to use such a string, one must separate it in two parts, as in the
following example: String s = "\\" + "begincode";.

The hide environment. Normally, we do not want all the code to be displayed in the API
documentation. For example, the private fields, methods, and classes, as well as the method
implementations, should be hidden. The hide environment permits one to easily hide parts
of the code and text from the LATEX documentation: Everything between \begin{hide} and
\end{hide} is simply not shown in the document produced by LATEX. This environment can
be applied to a block of text as well as to a block of code (i.e., inside the code environment).
Nesting is allowed, but not inside the code environment. For example, one may place a
whole set of methods together with their descriptions in a hide environment, to remove
them from the documentation, while part of the code of each method may already be in a
hide environment (inside the code environment). In this case, the outer hide environment
must begin and end outside any code environment.

The hide environment has no effect on the code extracted by texjava in the sense that
all hidden code goes to the .java file anyway. However, the hidden documentation will not
appear in the HTML conversion produced by Javadoc.

September 17, 2008 2 LAYOUT OF THE LATEX FILES 3

No hiding. In case one wishes a documentation that contains all the code, including the
method implementations and other private material, one can simply turn OFF the hiding
mechanism of the hide environment with the command \hidefalse. It can be turned ON
again with the command \hidetrue. However, turning the hide mechanism OFF will get
LATEX to parse hidden contents to display it. It will then react to backslashes in the hidden
code and try to interpret control sequences. For example, if some hidden code contains

System.out.println ("This is a string,\nAnd another one.");

it must remain hidden otherwise LATEX will complain about the invalid control sequence \n.

Detailed contents. The detailed environment is convenient for producing two versions
of the documentation, one more detailed than the other. It comes with a switch that
can be turned ON by the command \detailedtrue and turned OFF by the command
\detailedfalse. Everything inside the detailed environment is ignored by LATEX when
the switch is turned OFF, otherwise it is included normally. By default, the switch is turned
ON. When creating the HTML version, the detailed environment is ignored, meaning that
the HTML document will never be detailed.

Restrictions due to LATEX2HTML. The texjava script calls the LATEX2HTML utility to
convert the documentation in the .tex file to HTML format in the .java file. It generates
HTML 4.0 code using Unicode for mathematical symbols. This utility processes standard
LATEX commands, but not user-defined commands/macros and commands/macros found in
external packages. Adding support for new packages implies writing Perl code intended
for processing the different commands provided by these packages [3]. This operation is
complex and requires a good understanding of the LATEX2HTML conversion process (which is
yet undocumented at the time of this writing).

The contents intended for HTML conversion should therefore be as simple as possible and
should contain only standard LATEX commands and environments. Unknown environments
and mathematics are translated to images using LATEX (called by LATEX2HTML). However,
image creation is time consuming and should be avoided by restricting usage of the math
mode and complex environments to LATEX-only subblocks (see below). Sometimes, images
may mysteriously appear with a gray background. If LATEX generates an error when making
an image, it will skip it, LATEX2HTML will not notice that, and subsequent images may have
the wrong number. The equation and eqnarray environments are converted to their star
forms because problems arise with equation numbers. The ref and cite commands are also
ignored because reference collecting accross several independent runs of LATEX2HTML causes
problems.

Except for the hide environment, no other environment should span more than one
documentation block, i.e., should not contain a code environment. Departure from that
rule could prevent LATEX2HTML from writing the markers separating the blocks (i.e., the
fields and methods), and empty documentation blocks could then appear for subsequent
fields and methods. The script calls LATEX2HTML only once for the LATEX file given to it, so
any modification of the LATEX parameters in one text block could have an impact on the
subsequent blocks.

September 17, 2008 2 LAYOUT OF THE LATEX FILES 4

LATEX-only and HTML-only parts. Certain parts of the .tex files can be intended only
for LATEX, others only for the HTML file. This can be specified by the usual commands and
environments available in the html package (e.g., the latexonly, htmlonly, and rawhtml

environments).

Everything inside a latexonly environment is ignored by LATEX2HTML. This is a good
place for complex mathematical expressions and tables, for example. On the other hand,
everything inside a htmlonly or rawhtml environment is ignored by LATEX. Material inside
a rawhtml environment is assumed to be HTML code, which is copied directly to the .java

file and eventually the .html file, whereas material inside the htmlonly environment is
translated into HTML by LATEX2HTML.

Header of a class or module. The command \defclass{classname} can be used to
start the documentation of a Java class or interface. The command places its argument
on a line by itself, centered, in a large font. It also adds a corresponding entry to the
table of contents and modifies the page headings to contain the class name. The command
\defmodule{name} has exactly the same effect.

The first block of text is considered as a class or file documentation block. In the .java

file, it will be inserted as a doc comment for javadoc, at the beginning of the class definition.
For this reason, the first block of code processed by texjava must contain the Java class
definition.

Subsequent blocks of code and text. After the first block of code (i.e., code or
longcode environment), there is an alternance of a block of text, a block of code, a block
of text, etc. For each such block of code, the text that follows it immediately is assumed
to be its corresponding LATEX documentation. Therefore, texjava will insert this text as a
(javadoc) doc comment for the last field or method appearing in this block of code (and not
in a hide environment).

When a class has many documented methods, it may be convenient to partition them
into different groups in the LATEX documentation, with a descriptive header above each
group. The command \guisec{header} outputs such a header, centered horizontally, with
horizontal lines on each side. It should not be placed inside a code environment and should
always be alone in its own paragraph. A text block that contains this command will be
splitted in two parts. The contents preceeding the section will be inserted as usual whereas
the sectioning command and all the following contents will be inserted after the previous
code block. With the \unmoved command, one can achieve the same effect of a sectioning
command without displaying anything. Note that javadoc will always ignore this \guisec

and any other sectioning commands, so it cannot be used to regroup class members in the
HTML documentation.

Indenting documentation. The environments tab, tabb, and tabbb have been defined
to indent the documentation and put it in a smaller font. These environments are normally
used to describe fields and methods, they are ignored by LATEX2HTML, and produce the
following results:

This is a text indented with tab.
This text is more indented because it is in a tabb environment.

September 17, 2008 2 LAYOUT OF THE LATEX FILES 5

This text is still more indented because it is in a tabbb environment.

Doc-comment tags for javadoc. The following LATEX commands are mapped by texjava
to the corresponding javadoc doc-comment tags which are used to encode specific information
about classes, fields, methods, etc. (see [2, chapter 7]). These doc comments will also appear
in the LATEX documentation. For doc comments that are to appear only in the java and
HTML files, one can use the javadoc tags directly (provided that texjava is called with the
-nosavelatex option).

The LATEX commands \param, \return, etc., are mapped to the doc-comment tags
@param, @return, etc. These commands should be placed at the end of the method doc-
umentation, in the same order as they are described below. The available commands and
their descriptions are:

\param{param-name}{description}
Gives a description for the parameter param-name of the current method. This parameter name
must be a single word whereas the description is usually a short sentence. Such a description
should appear for every method parameter.

\return{description}
Describes, in one or more sentences, what is returned by the current method. This should
appear for every method returning values.

\exception{class-name}{description}
Gives the class name of an exception raised by Java when the situation described by the sentence
in the second argument occurs.

\class{class-name}
Indicates the name of a class. This is formatted in typed text in the LATEX document and
converted to an hyperlink in the HTML document.
Example: See class \class{GofStat} for more information
Use \class{java.util.List} to store the data.

\externalclass{package}{class-name}
Indicates the fully qualified name of a class. This is formatted in typed text in the LATEX
document, and converted to an hyperlink in the HTML document. This macro can be useful if
one does not want the fully qualified package name to appear in the LATEX and HTML document
whereas it is sometimes necessary for Javadoc to hyperlink to the class. If one wants to have the
full package name, he can write the full qualified name as the argument of the class command.
Example: The \externalclass{umontreal.iro.lecuyer.util}{Num} will show Num as a label
whereas \externalclass{umontreal.iro.lecuyer}{util.Num} will show util.Num.

\method{method-name}{signature}
Indicates the name of a method in the current class. This is formatted in typed text in the
LATEX document, and converted to an hyperlink in HTML. If the signature is empty, Javadoc
will link to the first method with that name. The signature will never be shown in the link
labels. If one wants to show the signatures, he must write it in parentheses after the method
name. One can also use \method and the following \externalmethod to link to fields. In this
case, the signature argument will be empty.
Examples: \method{density}{} and \method{density}{double} will generate the density
label whereas \method{density(double)}{} will generate density(double).

\externalmethod{package}{class-name}{method-name}{signature}
Indicates the name of a method in another class. This is formatted in typed text in the LATEX

September 17, 2008 2 LAYOUT OF THE LATEX FILES 6

document, and converted to an hyperlink in HTML. The package name, class name and the
signature will not appear in the label name.
Example: \externalmethod{umontreal.iro.lecuyer.gof}{GofStat}{andersonDarling}{}
will typeset andersonDarling

\clsexternalmethod{package}{class-name}{method-name}{signature}
This is the same as \externalmethod except that the class name is prepended. Since this macro
can generate long strings in typed text which can easily result in overful boxes, a discretionary
hyphen is added between class name and method name.
Example:
\clsexternalmethod{umontreal.iro.lecuyer.gof}{GofStat}{andersonDarling}{} will be
formated GofStat.andersonDarling
\clsexternalmethod{umontreal.iro.lecuyer}{gof.GofStat}{andersonDarling}{} will for-
mat gof.GofStat.andersonDarling

An example.

\defclass{Complex}

This class allows one to work with complex numbers of

the form $a + bi$, where a is the \emph{real} part of

the number, \emph{b} is the imaginary part and

$i=\sqrt{-1}$.

\bigskip\hrule\bigskip

\begin{code}

public class Complex\begin{hide} {

private double realPart;

private double imagPart;\end{hide}

public Complex (double realPart, double imagPart)\begin{hide} {

this.realPart = realPart;

this.imagPart = imagPart;

}\end{hide}

\end{code}

\begin{tabb} Constructs a new {\tt Complex} number.

\param{realPart}{The real part corresponding to a}

\param{imagPart}{The imaginary part corresponding to b}

\end{tabb}

\begin{code}

public Complex add (Complex c)\begin{hide} {

realPart += c.realPart;

imagPart += c.realPart;

return this;

}\end{hide}

September 17, 2008 3 RUNNING TEXJAVA 7

\end{code}

\begin{tabb} Adds two complex numbers.

\param{c}{The complex number to add to this one.}

\return{This object, allowing to perform more than one operation

on a single line of code.}

\end{tabb}

\begin{code}

// other methods...

public String toString()\begin{hide} {

return "(" + realPart + " + " + imagPart + "i)";

}

}\end{hide}

\end{code}

\begin{tabb} Converts the number to a {\tt String} of

the form {\tt a + bi}.

\end{tabb}

3 Running Texjava

The Perl script texjava.pl converts LATEX documents into Java code with javadoc-style
comments. Everything inside a code or longcode environment is considered as Java code.
Since LATEX has a better error-detection scheme than texjava and LATEX2HTML, it is a good
idea to compile the documents first with LATEX, before using texjava.

The LATEX commands defined in the tcode package are implemented for LATEX2HTML in
the tcode.perl file. This file should therefore be accessible to LATEX2HTML, i.e., it should
be in a directory known by the $LATEX2HTMLSTYLES environment variable. See [3, page
99] for details about this. The script has been tested on Perl 5.8.0 but it should work
with any version 5 Perl interpreter. Under non-Unix operating systems, such as Microsoft
Windows, it is necessary to install a Perl distribution, such as ActivePerl [1], before using
texjava.pl. For Linux environments using C-Shell, Tcoderc shell script can be used to
set the environment. It needs the environment variable TCODEHOME to be set. It sets the
TEXINPUTS variable, creates .latex2html-init if it does not already exist, and defines a
texjava alias to allow running texjava.pl more easily.

The following command runs the script:

perl texjava.pl [-(no)images] [-(no)html] [-(no)savelatex] [-htmloutdir dir]
[-master masterfile] [-htmlonly] [-htmltitle title] infile [outfile]

Here, texjava.pl has to be replaced by a path to the script if it is not executed in the
tcode directory. Its arguments and options are as follows:

infile
The name of the input file, which should have the .tex extension. If the extension is not given
and no file with such a name exists, .tex is appended to the file name. The input file is parsed
but not modified.

September 17, 2008 3 RUNNING TEXJAVA 8

outfile
The name of the output file. Normally, it should be a program file, e.g., with the .java
extension. If no extension is specified, .java is assumed. When using the HTML option, .html
is used. If no output file is given, the name of the input file is taken, with a .java or .html
extension. The file will be created or replaced in the same directory as the input file. If outfile
already exists, it will be replaced without notice, otherwise the file will be created. If infile and
outfile are the same, an error will occur.

-(no)images

A switch to enable or disable image generation by LATEX2HTML. With the -images option, images
are generated and stored in the HTML output directory. They are copied into a subdirectory
corresponding to the package of the Java file. With the -noimages option, the conversion can
be much faster, but no images (e.g., complicated mathematical formulas) will appear in the
HTML file and if it does not already exist, the HTML output directory will not be created.
Images will be replaced by placeholders in the generated files. Default value: -noimages.

-(no)html

With the -html option, LATEX2HTML is invoked to convert from LATEX to HTML. With the
-nohtml option, LATEX2HTML is not called, so the script can run faster, but no HTML conversion
of the LATEX documentation is produced. This can be useful for environments which do not have
LATEX2HTML installed. The LATEX contents is nevertheless saved as HTML doc comments in the
Java code if -savelatex is passed. Default value: -nohtml.

-(no)savelatex

With the -savelatex option, the script will save LATEX contents into Java doc comments, using
special encoding. This results in rather ugly Java files, but permits one to recover the original
LATEX file (at least to some extent) from the .java file. The -nosavelatex option unclutters the
output file, but prevents reverting to LATEX. The combination -nohtml -nosavelatex disables
insertion in the output file of all doc comments generated from the LATEX source. Default value:
-nosavelatex.

-htmloutdir dir
Specifies where the HTML output will be placed when Javadoc processes the Java files. This will
indicate to texjava.pl where to put the image files generated by LATEX2HTML. If not specified,
the images will be copied into an html subdirectory of the output directory where the Java
file is created. This option has no effet if the -html option is not given. The HTML output
directory is automatically created unless it already exists or the -noimages option is specified.
It is never emptied or removed by texjava.pl.

-master masterfile
The name of a master LATEX file for the infile file. This file should compile successfully with the
command latex master. Usually, it will contain the \begin{document} command and include
the infile file. Its preamble may contain macros used in infile. The script will read only the
preamble, i.e., everything before \begin{document}. This preamble is used when constructing
the document intended for LATEX2HTML processing. If no master file is specified, it is assumed
that infile itself is the master file. Forgetting to specify the master file when it is needed could
prevent some required packages from being loaded into LATEX2HTML and generate unwanted
additional images in the HTML file.

-htmlonly

Indicates that the script only has to convert a LATEX document to HTML, not processing Java
code blocks. This option is useful to convert overviews into package.html files. It is simpler
and better than calling LATEX2HTML directly because texjava.pl passes a bunch of options
to LATEX2HTML and transforms the .tex and .html contents to avoid some images from math

September 17, 2008 3 RUNNING TEXJAVA 9

formulas.

-htmltitle title
When using HTML-only mode, allows to give a title to the generated HTML file. This title will
be placed in the TITLE element of HEAD. If one wants to have a title containing spaces, it must
be surrounded by quotation marks for the shell to pass it as one argument to the script. If no
title is given, an empty string will be used as the title for the HTML document.

Examples. To extract Java code from the LATEX file Event.tex, assuming that the master
file is guide.tex, and place the result in the file Event.java, one can use:

perl texjava.pl -master guide.tex Event.tex

which will create the Event.java file and, if needed, a html subdirectory that will contain
images. To generate the javadoc documentation (in HTML), one can use a command of the
form:

javadoc -d html javafilesorpackages Event.java javafilesorpackages

As another example, to extract the C code from the LATEX file chrono.tex and place it
in the header file chrono.h, assuming that the preamble is in guide.tex, one can use:

perl texjava.pl -master guide.tex chrono.tex chrono.h

Here, one must not forget to specify the target name otherwise chrono.java would be
created instead of chrono.h.

Restrictions, limitations, and special cases.

• Due to the structure of the code environment, every LATEX command taking no argu-
ment will be interpreted. Braces delimiting arguments will however display as contents
in the code. This cannot be avoided because LATEX must interpret \begin and \end

to support contents hiding and code environment termination.

• If a package declaration is found before the class declaration in a given Java file, the
script will place generated image files in an appropriate subdirectory of the HTML out-
put directory. For exemple, if one writes the line package a.b.c; in its Java program,
texjava.pl will copy the images into a subdirectory named a/b/c. This reflects the
Javadoc generated structure and allows proper image retrieval by the browser.

• Althought the script allows white spaces within commands (e.g., \begin {code}), it
can cause problems to LATEX. Such spaces must be avoided in commands controling
the hide environment inside a code environment, and in the \end{code} command.

• When hiding method bodies, one must add at least one space between \begin{hide}

and the open brace. If one writes

\begin{hide}{

LATEX will treat the rest of the file as an argument to the hide environment and an
error will occur.

• The method bodies should always be hidden, otherwise, the insertion point of the
documentation may be incorrectly computed.

September 17, 2008 4 THE JAVATEX SCRIPT 10

• The first sentence of a doc comment is used by javadoc as a brief (a one-sentence
summary) of the corresponding class, interface, field, or method. The first sentence
of a LATEX documentation block which is to be converted to a doc comment should
therefore be short and simple. It should not contain special commands, mathematical
formulas, etc., and should not be in a latexonly environment. If a formatting problem
arises with a too complicated first sentence, the script will simply insert a period on
a single line (to represent an empty brief). This artefact will appear in the javadoc
documentation, but it will prevent badly formated HTML on the rest of the concerned
page.

• With the -savelatex option, the strings /*HIDE*/, /*ENDHIDE*/, and /** will be
converted to /* HIDE */, /* ENDHIDE */, and /* * everywhere. This implies in par-
ticular that javadoc comments already in the code will be ignored!

• If a package, class or interface keyword is found in a long comment before the Java
class or interface declaration, and if there is no star preceeding the keyword on the
line, the script will get confused about where to insert the class documentation or will
put images at the wrong place.

• Problems may arise for Java because of the saved LATEX contents. If a text block
contains a LATEX command starting with u, e.g., \unitlength, it will be replaced, in
the comments, by \@unitlength. When reverting to LATEX, this substitution will be
undone by javatex, so one has to worry about it only when modifying the (hidden)
saved LATEX contents directly in the .java file before reverting to LATEX.

• If no code or longcode environment is found in the input file, the output file will
contain only a single doc comment.

• The script uses HTML 4.0 with Unicode for mathematical symbols. For the symbols
to be displayed correctly, one should use a recent version of major browsers.

• To perform the conversion, a recent version of LATEX2HTML is required. Version 2002
(1.62) does not convert greek letters to Unicode properly unless we use MathML which
is not compatible with major browsers, whereas version 2002-2-1 (1.70) works properly.

4 The Javatex Script

Warning: This script is experimental and not very reliable, so one should use it with care.
It is strongly recommended to make a backup copy of the original LATEX file before using it.
The script assumes that the code intended for conversion is syntactically correct and can be
compiled without errors.

The Perl script javatex.pl can convert Java source files to LATEX documents. The .java
source files may have been produced by texjava, but not necessarily. For example, one may
want to use a special editor for Java programs to edit the Java file and encode the LATEX
documentation in it by hand, in the same format as it would have been saved by texjava.

The Java source file intended for conversion should normally contain Java doc comments,
of the form /** comments */, where comments can be any (multi-line) text. The contents of
these comments is converted into LATEX documentation blocks for classes, interfaces, fields,

September 17, 2008 5 RUNNING JAVATEX 11

and methods. Other types of comments in the code are simply ignored and preserved intact
into code blocks.

The contents of HTML commented blocks of the form <!--LATEX ... --> will be in-
serted directly into the LATEX document. This construct allows hiding LATEX code inside Java
doc comments. Note that a doc comment should never begin with such an HTML comment,
otherwise javadoc could get mixed up and produce badly-formatted documentation. If a
block contains only LATEX code, it can be entered as a comment of the form /*LATEX ...

*/ rather than as a doc comment, in order to avoid confusion of javadoc.

The /*HIDE*/ . . . /*ENDHIDE*/ constructs found in the code are converted respectively
to \begin{hide} . . . \end{hide} constructs.

The /*CODE*/, /*SMALLCODE*/, and /*LONGCODE*/ constructs are converted to the code,
smallcode, and longcode environments.

All java doc-comment markers /** and */ will be removed, since these doc comments
are converted to LATEX documentation. Any star at the beginning of a line in a doc comment
will also be removed to follow Java doc-comment formatting conventions. Doc comment are
considered converted from texjava and should contain some special indications. Since HTML
to LATEX conversion is not supported, unmarked text in comments is simply discarded.

The first doc comment is considered as the class or interface documentation and will
appear at the top of the resulting document. In the code, it should be placed on the top
of the class or interface declaration. A block of code containing the code before the class
documentation and until a new doc-comment block appears will be converted to a LATEX
code block. Any subsequent block of comments will be inserted as LATEX contents after the
declaration or body following the documentation. A declaration is detected by the presence
of a semicolon (;) on a line. An end of body is detected when a balanced set of opening and
closing brackets is found.

The tab characters will be replaced by individual spaces, in order to be correctly displayed
by LATEX.

5 Running Javatex

As for texjava.pl, the script requires a Perl 5 interpreter to be installed but LATEX2HTML
is not necessary for javatex.pl. The following command runs the script:

perl javatex.pl [-tabsize i] infile outfile

Here, javatex.pl has to be replaced by a path to the script if it is not executed in the
tcode directory. Its arguments and option are as follows:

infile
The name of the input file, which should have the .java extension. The input file is parsed but
not modified.

outfile
The name of the output file, which should have the .tex extension. If outfile already exists, it
will be replaced without notice, otherwise the file will be created in the working directory. If
infile and outfile are the same, an error will occur.

September 17, 2008 6 ANT TASKS 12

-tabsize i
By using the -tabsize i option, where i is a non-negative integer, one can specify the number
of spaces that corresponds to a tab character. The default value is 8.

Example: To extract the LATEX code from the Java file Chrono.java and place it in file
Chrono.tex, one can use:

perl javatex.pl Chrono.java Chrono.tex

6 Ant tasks

Apache Ant is becoming the de facto build system for Java applications. An XML build file
instructs Ant how to build the Java package in a portable way. Unfortunately, Ant is not
a scripting language and can only deal with plain .java file. It could be possible to call
texjava.pl manually using the Ant built-in exec task, but this would fastly because tedious
and no dependency checking would be performed at all. On each build cycle, every .tex file
would be turned into a .java and recompiled, since it would be freshly created, into a new
.class file. However, it is possible to extend Ant using user-defined tasks. TCode provides
some Ant tasks to work with the LATEX files. The texjava task allows one to process a batch
of .tex files into texjava.pl, producing output .java files. The pdflate task allows one
to construct, using pdfLATEX, the PDF documentation for a package. To use these tasks,
one must include tcode.jar in the CLASSPATH environment variable and declare the use
tasks in the build.xml file, using the taskdef task. For example, to use texjava task, one
must write, in the project section of build.xml,

<taskdef name="texjava" classname=’’umontreal.iro.lecuyer.tcode.Texjava"/>

September 17, 2008 13

Texjava

This Ant task invokes texjava.pl to extract Java code from LATEX files. Given a list of
files, it can invoke texjava.pl once for each, creating Java file that can be processed with
Ant. The Texjava task checks for depencies, avoiding to run texjava.pl for .tex files
with a more recent .java file. It acts like a proxy to texjava.pl so all of its options are
supported by the task through attributes. It is possible to set default values for most of
these attributes using system properties. See the documentation of texjava.pl for more
detailed information about the options.

Note: For this class to work, the Perl interpreter must be in the PATH environment
variable.

Supported system properties The system properties allows one to set default attributes
common to all texjava task usage. It reduces the tedium of writing the texjava calls and
provides an easier way to modify parameters later.

texjava.html

texjava.images

texjava.savelatex

texjava.htmloutdir

texjava.texjava

This property specifies the path to the texjava.pl file, including the name of the script.
Since no assumption can be made about the current directory, it is recommended to give an
absolute path or a path relative to one’s project base directory. If the path is not specified,
tcode/texjava.pl will be assumed. This imply that one’s project will have a tcode directory
containing texjava.pl.

Available attributes. Attributes are use to customize a single call to the texjava task.
They have precedence on system properties.

html

images

savelatex

htmlonly

htmloutdir

master

texjava

This specifies the path to the texjava.pl script.

overviewtopackage

Normally, any .tex file is mapped to a corresponding .java for dependency checking and
conversion. If htmlonly is true, .tex files will be mapped to .html files. This attribute, if
set to true, will define a mapping from overview.tex to package.html. This allows one to
generate package overviews without converting them every time.

September 17, 2008 Texjava 14

Nested elements Two nested elements are supported: file sets and file lists. These ele-
ments allows one to construct the list of .tex files to be converted to .java files.

texfileset

Corresponds to an Ant FileSet element which should only contain .tex files. A set can include
files matching patterns.

texfilelist

Corresponds to an Ant FileList element which should only contain .tex files. When making
a file list, one must specify the names of each individual files.

Example. For example, the compile target of Probdist uses the task to create the Java
files and compiles them.

<target name="probdist"

description="Compiles probability distribution package">

<texjava master="src/${pprobdist}/guideprobdist.tex">

<texfilelist dir="src/${pprobdist}"

files="DiscreteDistribution.tex,ContinuousDistribution.tex"/>

<texfileset dir="src/${pprobdist}" includes="*Dist.tex"/>

</texjava>

<javac srcdir="src" destdir="build" includes="${pprobdist}/*.java"/>

<texjava overviewtopackage="yes" html="yes" htmlonly="yes"

master=’’src/${pprobdist}/guideprobdist.tex">

<texfilelist dir="src/${pprobdist}" files="overview.tex"/>

</texjava>

</target>

Here, the pprobdist system property refers to the location of the Probdist package, i.e.,
umontreal/iro/lecuyer/probdist. This will generate only the needed Java file and one is
free to add classes ending with the Dist suffix without modifying the build file.

package umontreal.iro.lecuyer.tcode;

public class Texjava extends Task

public boolean getHtml()

Returns true if the task generates HTML contents.

public void setHtml (boolean html)

If set to true, HTML contents will be generated.

public boolean getImages()

Returns true if the image generation is activated.

public void setImages (boolean images)

If set to true, LATEX2HTML will generate images when converting the documentation.

public boolean getSavelatex()

Returns true if the LATEX contents is saved to allow reverting to LATEX using javatex.

September 17, 2008 Texjava 15

public void setSavelatex (boolean savelatex)

If set to true the LATEX contents will be saved in the produced Java file.

public boolean getHtmlonly()

Returns true if only HTML code is to be produced.

public void setHtmlonly (boolean htmlonly)

If set to true, only HTML code will be produced. No Java code and comments will appear.

public boolean getOverviewtopackage()

Returns true if package.html will be created from overview.tex.

public void setOverviewtopackage (boolean pack)

If set to true, a file named overview.tex will be mapped to package.html instead of
overview.html.

public File getMaster()

Gets the name of the master file.

public void setMaster (File masterFile)

Sets the name of the master file.

public File getHtmloutdir()

Gets the directory where the HTML files will be created.

public void setHtmloutdir (File htmloutdir)

Sets the directory where the HTML files will be created.

public String getHtmltitle()

Gets the title of the HTML page.

public void setHtmltitle (String title)

Sets the title of the HTML page.

public File getTexjava()

Returns the path to texjava.pl.

public void setTexjava (File texjava)

Sets the path to texjava.pl.

public void addTexfileset (FileSet fs)

Adds a set of .tex files to be converted to .java files.

public void addTexfilelist (FileList fl)

Adds a list of .tex files to be converted to .java files.

public void execute() throws BuildException

Executes the conversion task, using the Ant exec task to invoke texjava.pl on each .tex
file.

September 17, 2008 16

PdfLatex

This task allows one to automate the PDF documentation generation. It uses pdfLATEX to
convert the LATEX documentation into PDF. To avoid errors when using the LATEX hyperref

package, all .aux files are first deleted. The pdfLATEX program is then called one time to
make an initial run. BIBTEX is called to generate to bibliography file, then pdfLATEX is
called two more times to fix references and table of contents. It always runs pdfLATEX in
nonstop interaction mode, preventing it from blocking on errors. It is therefore recommended
to sometimes run pdfLATEX manually to ensure that all documentation is free from syntax
errors. This seems a lot of work, but it is necessary to get a fully-automated documentation
building system.

Supported attributes. This task supports only one attribute.

latexfile

This gives the name of the file to be converted.

Example. As an example, this is the command used to produce the PDF file for the util

package.

<pdflatex latexfile="src/umontreal/iro/lecuyer/util/guideutil.tex"/>

package umontreal.iro.lecuyer.tcode;

public class PdfLatex extends Task

public File getLatexfile()

Returns the name of the LATEX file to be processed.

public void setLatexfile (File latexFile)

Sets the name of the LATEX file to be processed.

public void execute() throws BuildException

Executes the task.

September 17, 2008 REFERENCES 17

References

[1] ActiveState. ASPN: Reference—ActivePerl Docs, 2003. Available online at http://

aspn.activestate.com/ASPN/Reference/Products/ASPNTOC-ACTIVEPERL.

[2] D. Flanagan. Java in a Nutshell. O’Reilly, Sebastopol, CA, third edition, 1999.

[3] M. Goossens and S. Rahtz. The LATEX Web Companion. Addison-Wesley, 1999.

[4] D. E. Knuth and S. Levy. The CWEB System of Structured Documentation. Addison-
Wesley, Reading, MA, 1994.

http://aspn.activestate.com/ASPN/Reference/Products/ASPNTOC-ACTIVEPERL
http://aspn.activestate.com/ASPN/Reference/Products/ASPNTOC-ACTIVEPERL

	Introduction
	Layout of the LaTeX files
	Running Texjava
	The Javatex Script
	Running Javatex
	Ant tasks
	Texjava
	PdfLatex

