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Abstract

This introduction to the object-orientation features of the R package sandwich is a
(slightly) modified version of Zeileis (2006), published in the Journal of Statistical Soft-
ware.

Sandwich covariance matrix estimators are a popular tool in applied regression mod-
eling for performing inference that is robust to certain types of model misspecification.
Suitable implementations are available in the R system for statistical computing for certain
model fitting functions only (in particular lm()), but not for other standard regression
functions, such as glm(), nls(), or survreg().

Therefore, conceptual tools and their translation to computational tools in the pack-
age sandwich are discussed, enabling the computation of sandwich estimators in general
parametric models. Object orientation can be achieved by providing a few extractor
functions—most importantly for the empirical estimating functions—from which various
types of sandwich estimators can be computed.

Keywords: covariance matrix estimators, estimating functions, object orientation, R.

1. Introduction

A popular approach to applied parametric regression modeling is to derive estimates of the
unknown parameters via a set of estimating functions (including least squares and maximum
likelihood scores). Inference for these models is typically based on a central limit theorem
in which the covariance matrix is of a sandwich type: a slice of meat between two slices of
bread, pictorially speaking. Employing estimators for the covariance matrix based on this
sandwich form can make inference for the parameters more robust against certain model
misspecifications (provided the estimating functions still hold and yield consistent estimates).
Therefore, sandwich estimators such as heteroskedasticy consistent (HC) estimators for cross-
section data and heteroskedasitcity and autocorrelation consistent (HAC) estimators for time-
series data are commonly used in applied regression, in particular in linear regression models.

Zeileis (2004) discusses a set of computational tools provided by the sandwich package for
the R system for statistical computing (R Development Core Team 2008) which allows for
computing HC and HAC estimators in linear regression models fitted by lm(). Here, we set
out where the discussion of Zeileis (2004) ends and generalize the tools from linear to general
parametric models fitted by estimating functions. This generalization is achieved by providing
an object-oriented implementation for the building blocks of the sandwich that rely only on
a small set of extractor functions for fitted model objects. The most important of these is



2 Object-oriented Computation of Sandwich Estimators

a method for extracting the empirical estimating functions—based on this a wide variety of
meat fillings for sandwiches is provided.

The paper is organized as follows: Section 2 discusses the model frame and reviews some of
the underlying theory. Section 3 presents some existing R infrastructure which can be re-used
for the computation of sandwich covariance matrices in Section 4. Section 5 gives a brief
illustration of the computational tools before Section 6 concludes the paper.

2. Model frame

To fix notations, let us assume we have data in a regression setup, i.e., (yi, xi) for i = 1, . . . , n,
that follow some distribution that is controlled by a k-dimensional parameter vector θ. In
many situations, an estimating function ψ(·) is available for this type of models such that
E[ψ(y, x, θ)] = 0. Then, under certain weak regularity conditions (see e.g., White 1994), θ
can be estimated using an M-estimator θ̂ implicitely defined as

n∑
i=1

ψ(yi, xi, θ̂) = 0. (1)

This includes cases where the estimating function ψ(·) is the derivative of an objective function
Ψ(·):

ψ(y, x, θ) =
∂Ψ(y, x, θ)

∂θ
. (2)

Examples for estimation techniques included in this framework are maximum likelihood
(ML) and ordinary and nonlinear least squares (OLS and NLS) estimation, where the es-
timator is usually written in terms of the objective function as θ̂ = argminθ

∑
i Ψ(yi, xi, θ).

Other techniques—often expressed in terms of the estimating function rather than the objec-
tive function—include quasi ML, robust M-estimation and generalized estimating equations
(GEE).

Inference about θ is typically performed relying on a central limit theorem (CLT) of type
√
n (θ̂ − θ) d−→ N(0, S(θ)), (3)

where d−→ denotes convergence in distribution. For the covariance matrix S(θ), a sandwich
formula can be given

S(θ) = B(θ)M(θ)B(θ) (4)

B(θ) =
(
E[−ψ′(y, x, θ)]

)−1 (5)
M(θ) = VAR[ψ(y, x, θ)] (6)

see Theorem 6.10 in White (1994), Chapter 5 in Cameron and Trivedi (2005), or Stefanski
and Boos (2002) for further details. The “meat” of the sandwich M(θ) is the variance of the
estimating function and the “bread” is the inverse of the expectation of its first derivative ψ′

(again with respect to θ). Note that we use the more evocative names S, B and M instead
of the more conventional notation V (θ) = A(θ)−1B(θ)A(θ)−1.

In correctly specified models estimated by ML (or OLS and NLS with homoskedastic errors),
this sandwich expression for S(θ) can be simplified because M(θ) = B(θ)−1, corresponding
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to the Fisher information matrix. Hence, the variance S(θ) in the CLT from Equation 3
is typically estimated by an empirical version of B(θ). However, more robust covariance
matrices can be obtained by employing estimates for M(θ) that are consistent under weaker
assumptions (see e.g., Lumley and Heagerty 1999) and plugging these into the sandwich
formula for S(θ) from Equation 4. Robustness can be achieved with respect to various types
of misspecification, e.g., heteroskedasticity—however, consistency of θ̂ has to be assured,
which implies that at least the estimating functions have to be correctly specified.

Many of the models of interest to us, provide some more structure: the objective function
Ψ(y, x, θ) depends on x and θ in a special way, namely it does only depend on the univariate
linear predictor η = x>θ. Then, the estimating function is of type

ψ(y, x, θ) =
∂Ψ
∂η
· ∂η
∂θ

=
∂Ψ
∂η
· x. (7)

The partial derivative r(y, η) = ∂Ψ(y, η)/∂η is in some models also called “working residual”
corresponding to the usual residuals in linear regression models. In such linear-predictor-based
models, the meat of the sandwich can also be sloppily written as

M(θ) = xVAR[r(y, x>θ)]x>. (8)

Whereas employing this structure for computing HC covariance matrix estimates is well-
established practice for linear regression models (see MacKinnon and White 1985; Long and
Ervin 2000, among others), it is less commonly applied in other regression models such as
GLMs.

3. Existing R infrastructure

To make use of the theory outlined in the previous section, some computational infrastructure
is required translating the conceptual to computational tools. R comes with a multitude of
model-fitting functions that compute estimates θ̂ and can be seen as special cases of the frame-
work above. They are typically accompanied by extractor and summary methods providing
inference based on the CLT from Equation 3. For extracting the estimated parameter vector
θ̂ and some estimate of the covariance matrix S(θ), there are usually a coef() and a vcov()
method, respectively. Based on these estimates, inference can typically be performed by the
summary() and anova() methods. By convention, the summary() method performs partial t
or z tests and the anova() method performs F or χ2 tests for nested models. The covariance
estimate used in these tests (and returned by vcov()) usually relies on the assumption of
correctly specified models and hence is simply an empirical version of the bread B(θ) only
(divided by n).

For extending these tools to inference based on sandwich covariance matrix estimators, two
things are needed: 1. generalizations of vcov() that enable computations of sandwich esti-
mates, 2. inference functions corresponding to the summary() and anova() methods which
allow other covariance matrices to be plugged in. As for the latter, the package lmtest
(Zeileis and Hothorn 2002) provides coeftest() and waldtest() and car (Fox 2002) pro-
vides linear.hypothesis()—all of these can perform model comparisons in rather general
parametric models, employing user-specified covariance matrices. As for the former, only
specialized solutions of sandwich covariances matrices are currently available in R packages,
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e.g., HAC estimators for linear models in previous versions of sandwich and HC estimators
for linear models in car and sandwich. Therefore, we aim at providing a tool kit for plugging
together sandwich matrices (including HC and HAC estimators and potentially others) in
general parametric models, re-using the functionality that is already provided.

4. Covariance matrix estimators

In the following, the conceptual tools outlined in Section 2 are translated to computational
tools preserving their flexibility through the use of the estimating functions framework and
re-using the computational infrastructure that is already available in R. Separate methods are
suggested for computing estimates for the bread B(θ) and the meat M(θ), along with some
convenience functions and wrapper interfaces that build sandwiches from bread and meat.

4.1. The bread

Estimating the bread B(θ) is usually relatively easy and the most popular estimate is the
Hessian, i.e., the mean crossproduct of the derivative of the estimating function evaluated at
the data and estimated parameters:

B̂ =

(
1
n

n∑
i=1

−ψ′(yi, xi, θ̂)
)−1

. (9)

If an objective function Ψ(·) is used, this is the crossproduct of its second derivative, hence
the name Hessian.
This estimator is what the vcov() method is typically based on and therefore it can usually
be extracted easily from the fitted model objects, e.g., for “lm” and “glm” it is essentially
the cov.unscaled element returned by the summary() method. To unify the extraction of
a suitable estimate for the bread, sandwich provides a new bread() generic that should by
default return the bread estimate that is also used in vcov(). This will usually be the Hessian
estimate, but might also be the expected Hessian (Cameron and Trivedi 2005, Equation 5.36)
in some models.
The package sandwich provides bread() methods for “lm” (including “glm” by inheritance),
“coxph”, “survreg” and “nls” objects. All of them simply re-use the information provided in
the fitted models (or their summaries) and perform hardly any computations, e.g., for “lm”
objects:

bread.lm <- function(obj, ...)

{

so <- summary(obj)

so$cov.unscaled * as.vector(sum(so$df[1:2]))

}

4.2. The meat

While the bread B(θ) is typically estimated by the Hessian matrix B̂ from Equation 9, various
different types of estimators are available for the meat M(θ), usually offering certain robust-
ness properties. Most of these estimators are based on the empirical values of estimating
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functions. Hence, a natural idea for object-oriented implementation of such estimators is the
following: provide various functions that compute different estimators for the meat based on
an estfun() extractor function that extracts the empirical estimating functions from a fitted
model object. This is what sandwich does: the functions meat(), meatHAC() and meatHC()
compute outer product, HAC and HC estimators for M(θ), respectively, relying on the exis-
tence of an estfun() method (and potentially a few other methods). Their design is described
in the following.

Estimating functions

Whereas (different types of) residuals are typically available as discrepancy measure for a
model fit via the residuals() method, the empirical values of the estimating functions
ψ(yi, xi, θ̂) are often not readily implemented in R. Hence, sandwich provides a new estfun()
generic whose methods should return an n×k matrix with the empirical estimating functions:

ψ(y1, x1, θ̂)
...

ψ(yn, xn, θ̂)

 .
Suitable methods are provided for “lm”, “glm”, “rlm”, “nls”, “survreg” and “coxph” ob-
jects. Usually, these can easily re-use existing methods, in particular residuals() and
model.matrix() if the model is of type (7). As a simple example, the most important
steps of the “lm” method are

estfun.lm <- function (obj, ...)

{

wts <- weights(obj)

if(is.null(wts)) wts <- 1

residuals(obj) * wts * model.matrix(obj)

}

Outer product estimators

A simple and natural estimator for the meat matrix M(θ) = VAR[ψ(y, x, θ)] is the outer
product of the empirical estimating functions:

M̂ =
1
n

n∑
i=1

ψ(yi, xi, θ̂)ψ(yi, xi, θ̂)> (10)

This corresponds to the Eicker-Huber-White estimator (Eicker 1963; Huber 1967; White 1980)
and is sometimes also called outer product of gradients estimator. In practice, a degrees of
freedom adjustment is often used, i.e., the sum is scaled by n− k instead of n, corresponding
to the HC1 estimator from MacKinnon and White (1985). In non-linear models this has no
theoretical justification, but has been found to have better finite sample performance in some
simulation studies.

In sandwich, these two estimators are provided by the function meat() which only relies on
the existence of an estfun() method. A simplified version of the R code is
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meat <- function(obj, adjust = FALSE, ...)

{

psi <- estfun(obj)

k <- NCOL(psi)

n <- NROW(psi)

rval <- crossprod(as.matrix(psi))/n

if(adjust) rval <- n/(n - k) * rval

rval

}

HAC estimators

More elaborate methods for deriving consistent covariance matrix estimates in the presence of
autocorrelation in time-series data are also available. Such HAC estimators M̂HAC are based
on the weighted empirical autocorrelations of the empirical estimating functions:

M̂HAC =
1
n

n∑
i,j=1

w|i−j| ψ(yi, xi, θ̂)ψ(yj , xj , θ̂)> (11)

where different strategies are available for the choice of the weights w` at lag ` = 0, . . . , n− 1
(Andrews 1991; Newey and West 1994; Lumley and Heagerty 1999). Again, an additional
finite sample adjustment can be applied by multiplication with n/(n− k).

Once a vector of weights is chosen, the computation of M̂HAC in R is easy, the most important
steps are given by

meatHAC <- function(obj, weights, ...)

{

psi <- estfun(obj)

n <- NROW(psi)

rval <- 0.5 * crossprod(psi) * weights[1]

for(i in 2:length(weights))

rval <- rval + weights[i] * crossprod(psi[1:(n-i+1),], psi[i:n,])

(rval + t(rval))/n

}

The actual function meatHAC() in sandwich is much more complex as it also interfaces different
weighting and bandwidth selection functions. The details are the same compared to Zeileis
(2004) where the selection of weights had been discussed for fitted “lm” objects.

HC estimators

In addition to the two HC estimators that can be written as outer product estimators (also
called HC0 and HC1), various other HC estimators (usually called HC2–HC4) have been
suggested, in particular for the linear regression model (MacKinnon and White 1985; Long
and Ervin 2000; Cribari-Neto 2004). In fact, they can be applied to more general models
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provided the estimating function depends on the parameters only through a linear predictor
as described in Equation 7. Then, the meat matrix M(θ) is of type (8) which naturally
leads to HC estimators of the form M̂HC = 1/nX>Ω̂X, where X is the regressor matrix
and Ω̂ is a diagonal matrix estimating the variance of r(y, η). Various functions ω(·) have
been suggested that derive estimates of the variances from the observed working residuals
(r(y1, x

>
1 θ̂), . . . , r(yn, x

>
n θ̂))

>—possibly also depending on the hat values and the degrees of
freedom. Thus, the HC estimators are of the form

M̂HC =
1
n
X>

 ω(r(y1, x
>
1 θ)) · · · 0

...
. . .

...
0 · · · ω(r(y, x>θ))

X. (12)

To transfer these tools into software in the function meatHC(), we need infrastructure for three
elements in Equation 12: 1. the model matrix X, 2. the function ω(·), and 3. the empirical
working residuals r(yi, x>i θ̂). As for 1, the model matrix X can easily be accessed via the
model.matrix() method. Concerning 2, the specification of ω(·) is discussed in detail in
Zeileis (2004). Hence, we omit the details here and only assume that we have either a vector
omega of diagonal elements or a function omega that computes the diagonal elements from
the residuals, diagonal values of the hat matrix (provided by the hatvalues() method) and
the degrees of freedom n− k. For 3, the working residuals, some fitted model classes provide
infrastructure in their residuals() method. However, there is no unified interface available
for this and instead of setting up a new separate generic, it is also possible to recover this
information from the estimating function. As ψ(yi, xi, θ̂) = r(yi, x>i θ̂) · xi, we can simply
divide the empirical estimating function by xi to obtain the working residual.

Based on these functions, all necessary information can be extracted from fitted model objects
and a condensed version of meatHC() can then be written as

meatHC <- function(obj, omega, ...)

{

X <- model.matrix(obj)

res <- rowMeans(estfun(obj)/X, na.rm = TRUE)

diaghat <- hatvalues(obj)

df <- NROW(X) - NCOL(X)

if(is.function(omega)) omega <- omega(res, diaghat, df)

rval <- sqrt(omega) * X

crossprod(rval)/NROW(X)

}

4.3. The sandwich

Based on the building blocks described in the previous sections, computing a sandwich esti-
mate from a fitted model object is easy: the function sandwich() computes an estimate (by
default the Eicker-Huber-White outer product estimate) for 1/nS(θ) via
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sandwich <- function(obj, bread. = bread, meat. = meat, ...)

{

if(is.function(bread.)) bread. <- bread.(obj)

if(is.function(meat.)) meat. <- meat.(obj, ...)

1/NROW(estfun(obj)) * (bread. %*% meat. %*% bread.)

}

For computing other estimates, the argument meat. could also be set to meatHAC or meatHC.

Therefore, all that an R user/developer would have to do to make a new class of fitted models,
“foo”say, fit for this framework is: provide an estfun() method estfun.foo() and a bread()
method bread.foo(). See also Figure 1.

Only for HC estimators (other than HC0 and HC1 which are available via meat()), it has to
be assured in addition that

� the model only depends on a linear predictor (this cannot be easily checked by the
software, but has to be done by the user),

� the model matrix X is available via a model.matrix.foo() method,

� a hatvalues.foo() method exists (for HC2–HC4).

For both, HAC and HC estimators, the complexity of the meat functions was reduced for
exposition in the paper: choosing the weights in meatHAC and the diagonal elements omega
in meatHC can be controlled by a number of further arguments. To make these explicit for the
user, wrapper functions vcovHAC() and vcovHC() with suitable default methods are provided
in sandwich which work as advertised in Zeileis (2004) and are the recommended interfaces
for computing HAC and HC estimators, respectively. Furthermore, the convenience interfaces
kernHAC(), NeweyWest() and weave() setting the right defaults for (Andrews 1991), Newey
and West (1994), and Lumley and Heagerty (1999), respectively, continue to be provided by
sandwich.

5. Illustrations

This section briefly illustrates how the tools provided by sandwich can be applied to various
models and re-used in other functions. Predominantly, sandwich estimators are used for
inference, such as partial t or z tests of regression coefficients or restriction testing in nested
regression models. As pointed out in Section 3, the packages lmtest (Zeileis and Hothorn
2002) and car (Fox 2002) provide some functions for this type of inference.

The model for which sandwich estimators are employed most often is surely the linear regres-
sion model. Part of the reason for this is (together with the ubiquity of linear regression) that
in linear regression mean and variance can be specified independently from each other. Thus,
the model can be seen as a model for the conditional mean of the response with the vari-
ance left unspecified and captured only for inference by a robust sandwich estimator. Zeileis
(2004) presents a collection of applications of sandwich estimators to linear regression, both
for cross-section and time-series data. These examples are not affected by making sandwich
object oriented, therefore, we do not present any examples for linear regression models here.
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fitted model object
(class: foo)

estfun foo

meatHC meatHAC meat bread foo

Figure 1: Structure of sandwich estimators

To show that with the new object-oriented tools in sandwich, the functions can be applied as
easily to other models we consider some models from microeconometrics: count data regression
and probit and tobit models. In all examples, we compare the usual summary (coefficients,
standard errors and partial z tests) based on vcov() with the corresponding summary based
on HC standard errors as provided by sandwich(). coeftest() from lmtest is always used
for computing the summaries.

5.1. Count data regression

To illustrate the usage of sandwich estimators in count data regressions, we use artifical data
simulated from a negative binomial model. The mean of the response y depends on a regressor
x through a log link, the size parameter of the negative binomial distribution is 1, and the
regressor is simply drawn from a standard normal distribution. After setting the random seed
for reproducibility, we draw 250 observations from this model:

R> set.seed(123)

R> x <- rnorm(250)

R> y <- rnbinom(250, mu = exp(1 + x), size = 1)

In the following, we will fit various count models to this data employing the overspecification
y ~ x + I(x^2) and assessing the significance of I(x^2). First, we use glm() with family
= poisson to fit a poisson regression as the simplest model for count data. Of course, this
model is not correctly specified as y is from a negative binomial distribution. Hence, we are
not surprised that the resulting test of I(x^2) is spuriously significant:

R> fm_pois <- glm(y ~ x + I(x^2), family = poisson)

R> coeftest(fm_pois)

z test of coefficients:
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Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.063268 0.041357 25.7094 < 2e-16 ***
x 0.996072 0.053534 18.6062 < 2e-16 ***
I(x^2) -0.049124 0.023146 -2.1223 0.03381 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

However, the specification of the conditional mean of y is correct in this model which is
reflected by the coefficient estimates that are close to their true value. Only the dispersion
which is fixed at 1 in the poisson family is misspecified. In this situation, the problem can
be alleviated by employing sandwich standard errors in the partial z tests, capturing the
overdispersion in y.

R> coeftest(fm_pois, vcov = sandwich)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.063268 0.083776 12.6918 <2e-16 ***
x 0.996072 0.105217 9.4668 <2e-16 ***
I(x^2) -0.049124 0.036284 -1.3539 0.1758
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Clearly, sandwich standard errors are not the only way of dealing with this situation. Other
obvious candidates would be to use a quasi-poisson or, of course, a negative binomial model
(McCullagh and Nelder 1989). The former is available through the quasipoisson family for
glm() that leads to the same coefficient estimates as poisson but additionally estimates the
dispersion for inference. The associated model summary is very similar to that based on the
sandwich standard errors, leading to qualitatively identical results.

R> fm_qpois <- glm(y ~ x + I(x^2), family = quasipoisson)

R> coeftest(fm_qpois)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.063268 0.090435 11.7572 <2e-16 ***
x 0.996072 0.117063 8.5088 <2e-16 ***
I(x^2) -0.049124 0.050613 -0.9706 0.3318
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Negative binomial models can be fitted by glm.nb() from MASS (Venables and Ripley 2002).

R> fm_nbin <- glm.nb(y ~ x + I(x^2))

R> coeftest(fm_nbin)
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z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.066057 0.088574 12.0358 <2e-16 ***
x 0.999616 0.094894 10.5340 <2e-16 ***
I(x^2) -0.052652 0.064883 -0.8115 0.4171
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here, the estimated parameters are very similar to those from the poisson regression and the
z tests lead to the same conclusions as in the previous two examples.

More details on various techniques for count data regression in R are provided in Zeileis,
Kleiber, and Jackman (2008).

5.2. Probit and tobit models

In this section, we consider an example from Greene (2003, Section 22.3.6) that reproduces
the analysis of extramarital affairs by Fair (1978). The data, famously known as Fair’s affairs,
is available in the AER package (Kleiber and Zeileis 2008) and provides cross-section infor-
mation on the number of extramarital affairs of 601 individuals along with several covariates
such as age, yearsmarried, religiousness, occupation and a self-rating of the marriage.
Table 22.3 in Greene (2003) provides the parameter estimates and corresponding standard
errors of a tobit model (for the number of affairs) and a probit model (for infidelity as a
binary variable). In R, these models can be fitted using tobit() from AER (a convenience
interface to survreg() from the survival package by Therneau and Lumley 2008) and glm(),
respectively:

R> library("AER")

R> data("Affairs", package = "AER")

R> fm_tobit <- tobit(affairs ~ age + yearsmarried + religiousness +

+ occupation + rating, data = Affairs)

R> fm_probit <- glm(I(affairs > 0) ~ age + yearsmarried + religiousness +

+ occupation + rating, data = Affairs, family = binomial(link = "probit"))

Using coeftest(), we compare the usual summary based on the standard errors as computed
by vcov() (which reproduces the results in Greene 2003) and compare them to the HC
standard errors provided by sandwich().

R> coeftest(fm_tobit)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 8.174197 2.741446 2.9817 0.002866 **
age -0.179333 0.079093 -2.2674 0.023368 *
yearsmarried 0.554142 0.134518 4.1195 3.798e-05 ***
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religiousness -1.686220 0.403752 -4.1764 2.962e-05 ***
occupation 0.326053 0.254425 1.2815 0.200007
rating -2.284973 0.407828 -5.6028 2.109e-08 ***
Log(scale) 2.109859 0.067098 31.4444 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> coeftest(fm_tobit, vcov = sandwich)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 8.174197 3.077933 2.6557 0.007913 **
age -0.179333 0.088915 -2.0169 0.043706 *
yearsmarried 0.554142 0.137162 4.0400 5.344e-05 ***
religiousness -1.686220 0.399854 -4.2171 2.475e-05 ***
occupation 0.326053 0.245978 1.3255 0.184993
rating -2.284973 0.393479 -5.8071 6.356e-09 ***
Log(scale) 2.109859 0.054837 38.4754 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

For the tobit model fm_tobit, the HC standard errors are only slightly different and yield
qualitatively identical results. The picture is similar for the probit model fm_probit which
leads to the same interpretations, both for the standard and the HC estimate.

R> coeftest(fm_probit)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.976668 0.365375 2.6731 0.0075163 **
age -0.022024 0.010319 -2.1343 0.0328214 *
yearsmarried 0.059901 0.017121 3.4986 0.0004677 ***
religiousness -0.183646 0.051715 -3.5511 0.0003836 ***
occupation 0.037513 0.032845 1.1421 0.2533995
rating -0.272983 0.052574 -5.1923 2.077e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> coeftest(fm_probit, vcov = sandwich)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.976668 0.393033 2.4850 0.0129569 *
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age -0.022024 0.011274 -1.9534 0.0507678 .
yearsmarried 0.059901 0.017557 3.4119 0.0006452 ***
religiousness -0.183646 0.053047 -3.4620 0.0005363 ***
occupation 0.037513 0.032922 1.1395 0.2545089
rating -0.272983 0.053327 -5.1190 3.071e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

See Greene (2003) for a more detailed discussion of these and other regression models for
Fair’s affairs data.

6. Discussion

Object-oriented computational infrastructure in the R package sandwich for estimating sand-
wich covariance matrices in a wide class of parametric models is suggested. Re-using existing
building blocks, all an R developer has to implement for adapting a new fitted model class
to the sandwich estimators are methods for extracting a bread estimator and the empirical
estimating functions (and possibly model matrix and hat values).

Although the most important area of application of sandwich covariance matrices is inference,
particularly restriction testing, the package sandwich does not contain any inference functions
but rather aims at providing modular building blocks that can be re-used in or supplied
to other computational tools. In this paper, we show how the sandwich functions can be
plugged into some functions made available by other packages that implement tools for Wald
tests. However, it should be pointed out that this is not the only strategy for employing
sandwich covariances for restriction testing; recent research provides us with at least two other
promising strategies: For cross-section data, Godfrey (2006) shows that the finite sample
performance of quasi t or z tests can be improved by computing HC estimators based on
the residuals of the restricted model and assessing their significance based on their bootstrap
distribution. For time-series data, Kiefer and Vogelsang (2002) consider t-type statistics based
on HAC estimators where the bandwidth is equal to the sample size, leading to a non-normal
asymptotic distribution of the t statistic. For both strategies, some tools from sandwich could
be easily re-used but further infrastructure, in particular for the inference, is required. As
this is beyond the scope of the sandwich package, we leave this for future developments in
packages focused on inference in regression models.

As the new tools in sandwich provide “robust” covariances for a wide class of parametric
models, it is worth pointing out that this should not encourage the user to employ them
automatically for every model in every analysis. First, the use of sandwich estimators when
the model is correctly specified leads to a loss of power. Second, if the model is not correctly
specified, the sandwich estimators are only useful if the parameters estimates are still consis-
tent, i.e., if the misspecification does not result in bias. Whereas it is well understood what
types of misspecification can be dealt with in linear regression models, the situation is less
obvious for general regression models. Some further expository discussion of this issue for ML
and quasi ML estimators can be found in Freedman (2006) and Koenker (2006).
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