
RTAI Port to MCF5329

Developer's manual

M5329/RTAI3.8

Rev. 0.1 02/2010

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

1



CONTENTS

1. Introduction..................................................................................6

1.1. RTAI Features for MCF5329................................................................6

1.2. RTAI's Services Overview...................................................................7

1.2.1. Module rtai_hal.............................................................................7
1.2.2. Module rtai_lxrt.............................................................................7
1.2.3. Module rtai_sched.........................................................................7
1.2.4. Module rtai_fifos............................................................................7
1.2.5. Module rtai_wd..............................................................................7
1.2.6. Module rtai_msg...........................................................................7
1.2.7. Module rtai_bits.............................................................................8
1.2.8. Module rtai_mq.............................................................................8
1.2.9. Module rtai_sem...........................................................................8
1.2.10. Module rtai_netrpc......................................................................8
1.2.11. Module rtai_tbx............................................................................8
1.2.12. Module rtai_mbx.........................................................................8
1.2.13. Module rtai_tasklets....................................................................8
1.2.14. Module rtai_shm.........................................................................8

1.3. Related files.........................................................................................8

2. RTAI Installation and Usage.......................................................9

2.1. RTAI General Overview.......................................................................9

2.1.1. Hard real time...............................................................................9
2.1.2. RTAI and other real time projects..................................................9
2.1.3. RTAI implementation.....................................................................9

2.2. Linux BSP for MCF5329 Setup.........................................................10

2.3.  RTAI installation. .............................................................................10

2.4. RTAI test-suite running.....................................................................12

2.5. I-Pipe important notices....................................................................14

3. Changes in the Linux kernel and I-Pipe Source Code...........15

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

2



About This Document

This document describes  setting up and usage of RTAI for MCF5329 installed into 
Linux embedded OS, and the changes in RTAI and Linux kernel source code, which 
allow using RTAI with MCF5329.

Audience

This document targets Linux software developers using the MCF5329 processor.

Suggested Reading

[1] MCF5329 Reference Manual Rev. 0

[2] RTAI 3.4 User Manual Rev 0.3

[3] Advanced Linux Programming. M. Mitchel, J. Oldham, A. Samuel

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

3



Definitions Acronyms and Abbreviation

The following list defines the acronyms and abbreviations used in this document.

ADEOS Adaptive Domain Environment for Operating Systems, a nanokernel 
used by RTAI

FEC ColdFire Fast Ethernet Controller

FIFO First Input First Output

HAL Hardware Abstraction Layer

I-Pipe Interrupt Pipeline

LED Light-Emitting Diode

OS Operating System

RDTSC Read Time Stamp Counter – the function returning number of ticks 
from the system start.

RTAI Real Time Application Interface

RTC Real Time Clock

SRQ System Request

UART Universal Asynchronous Receiver/Transmitter

BSP Board Support Package

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

4



LTIB Linux Target Image Builder

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

5



1. Introduction

This document describes the Real Time Application Interface (RTAI), ported to the 
MCF5329. RTAI is a Linux kernel extension, that allows preemption of the Linux 
kernel at any time in order to perform real time operations with interrupt latencies in 
the microseconds range.  The standard Linux kernel  can  have latencies of  several 
milliseconds. 

The document is divided logically into five parts. 

The first part contains a general overview of RTAI.

The second part contains the description of its installation and usage. 

The third part describes the changes, which were made in the Linux kernel 2.6.26 and 
Linux drivers.  Mainly it  contains information about modifications of the interrupt 
handling routines and timer routines. 

The fourth part is a description of the changes made in the RTAI source code during 
porting.

The fifth part gives a short manual of creation of RTAI applications.

1.1. RTAI Features for MCF5329

● Correct execution of the real time tasks in periodic mode with the frequencies 
3 kHz and less (In this mode real time task period have to be a multiple of the 
timer period).

● Correct execution of the real time tasks in oneshot mode with the frequencies 
5 kHz and less (In this mode real time task period have to be a variable value 
based on the timer clock frequency).

● RTAI services are provided by 14 kernel modules, which allow hard real time, 
fully preemptive scheduling. These modules are: rtai_hal, rtai_sched, rtai_lxrt, 
rtai_fifos, rtai_wd, rtai_msg, rtai_bits, rtai_mq, rtai_sem, rtai_netrpc, rtai_tbx, 
rtai_mbx, rtai_tasklets, rtai_shm. Note that 15-th module, rtai_usi, contains no 
code, so there is no reason to use it.

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

6



1.2. RTAI's Services Overview

This section briefly describes RTAI’s real time services. They are provided via kernel 
modules, which can be loaded and unloaded using the standard Linux  insmod and 
rmmod commands. Although the  rtai_hal and  rtai_sched(or  rtai_lxrt) modules are 
required every time any real time service is needed, all other modules are necessary 
only when their associated real time services are desired. 

1.2.1. Module rtai_hal

It's  the  RTAI  hardware  abstraction  layer  used  by  other  RTAI  modules.  It  offers 
interrupt handling and timing functions.

1.2.2. Module rtai_lxrt

It's a real time, preemptive, priority-based scheduler, modified to work on MCF5329. 
It's simply a GNU/Linux co-scheduler. This means that it supports hard real time for 
all Linux schedulable objects like processes/threads/kthreads.

1.2.3. Module rtai_sched

It's a real time, preemptive, priority-based scheduler, modified to work on MCF5329. 
The  rtai_sched instead supports not only hard real time for all Linux schedulable 
objects, like processes/threads/kthreads, but also for RTAI own kernel tasks, which 
are very light kernel space only schedulable objects proper to RTAI.

1.2.4. Module rtai_fifos

Real time FIFOs are included into this module.

1.2.5. Module rtai_wd

It's a watchdog module intended for controlling RTAI tasks for overruns that is able 
to perform some actions, like killing those tasks.

1.2.6. Module rtai_msg

It's RTAI message handling and rpc functions.

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

7



1.2.7. Module rtai_bits

It's RTAI event flags functions.

1.2.8. Module rtai_mq

It's POSIX-like message queues.

1.2.9. Module rtai_sem

It's RTAI semaphore functions.

1.2.10. Module rtai_netrpc

It's a module for network real time communications.

1.2.11. Module rtai_tbx

It's RTAI message queues.

1.2.12. Module rtai_mbx

It's RTAI mailbox functions.

1.2.13. Module rtai_tasklets

It's an RTAI's implementation of tasklets. RTAI tasklets are used when functions are 
needed to be called from user- and kernel-space.

1.2.14. Module rtai_shm

It's RTAI shared memory functions.

1.3. Related files

The following files are relevant to RTAI:

● rtai-3.8.tar.bz2 – RTAI 3.8 original package.

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

8



2. RTAI Installation and Usage

This chapter describes how to install and patch Linux BSP and RTAI and deploy it 
on  M5329  evaluation  board.  It  also  contains  a  general  overview  of  RTAI  and 
information about RTAI installation. 

2.1. RTAI General Overview

2.1.1. Hard real time

True  multi-tasking  operating  systems,  such  as  Linux,  are  adopted  for  use  in 
increasingly  complex  systems,  where  the  need  for  hard  real  time  often  becomes 
apparent. “Hard real time” can be found in the systems, which are dependent from 
guaranteed system responses of thousandths or millionths of a second. Since these 
control deadlines can never be missed, a hard real time system cannot use average 
case performance to compensate for worst-case performance.

2.1.2. RTAI and other real time projects

There are four primary variants of hard real time Linux available: RTLinux, Xenomai 
and RTAI. 

RTLinux  was developed at  the  New Mexico Institute  of  Technology  by Michael 
Barabanov under the direction of Professor Victor Yodaiken. Real Time Application 
Interface  (RTAI)  was  developed  at  the  Dipartimento  di  Ingeneria  Aerospaziale, 
Politecnico di Milano by Professor Paolo Mantegazza. One of the main advantages of 
RTAI is the support of periodic mode scheduling and its performance. Xenomai, that 
was launched in 2001 provides slightly worser performance comparing to RTAI.

2.1.3. RTAI implementation

For the real  time Linux scheduler the Linux OS kernel  is  an idle task.  Therefore 
Linux executes only when the real time tasks aren’t running and the real time kernel 
isn’t  active.  RTAI 3.8  uses  ADEOS nanokernel  for  managing  interrupts.  ADEOS 
provides Interrupt Pipeline (called I-Pipe), that delivers interrupts to domains. One of 
these domains is Linux, the second – RTAI. In hard real time mode (when there is a 
real time task running) Linux domain is in “stalled” state, which means it doesn't 
receive interrupts. So Linux kernel doesn't schedule, because timer interrupt never 

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

9



occurs. In hard real time interrupts are delivered to RTAI scheduler, which manages 
RTAI tasks.

2.2. Linux BSP for MCF5329 Setup

To install  the Linux BSP for MCF5329 refer to the “BSP Targeting the Freescale 
ColdFire M5329EVB” User's Guide from the Linux BSP distribution.

2.3.  RTAI installation. 

To install RTAI, the following steps must be performed:

1. Add RTAI to Linux BSP

Create RTAI archive md5 sum:

$ md5sum rtai-3.8.tar.bz2 > rtai-3.8.tar.bz2.md5

Copy the following files to the Local Package Pool. (/opt/freescale/pkgs 
directory):

rtai-3.8.tar.bz2
rtai-3.8.tar.bz2.md5

Extract  RTAI  archive.  Copy  the  following  files  from 
<rtai-dir>/base/arch/m68k/patches/MCF5329/BSP20081215/patches 
to the Local Package Pool. (/opt/freescale/pkgs directory):

0069-ipipe-mcf5329_2.6.26.patch
0069-ipipe-mcf5329_2.6.26.patch.md5

Copy  file  'ltib-rtai-3.8-mcf5329.patch'  from 
<rtai-dir>/base/arch/m68k/patches/MCF5329/BSP20081215/patches
to the directory where BSP is installed.

Go to BSP dir and apply this patch:

$ patch -p1 < ltib-rtai-3.8-mcf5329.patch

2. Build target image

After the path is applied, run LTIB configuration script:

$ ./ltib --configure

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

10



Afterwards do the following selections:

Configure the kernel = y
Package list->rtai = y

Selecting RTAI will automatically select "Leave sources after 
building" option (it is required for building RTAI kernel modules).

If you want to configure RTAI, set the following item:

Package List->RTAI->Configure RTAI at build time = y

Then exit with saving options.

In the kernel configuration window select "Processor type and 
features->Interrupt pipeline"

Exit from kernel configuration with saving options.

If you have selected "Configure RTAI at build time", then RTAI 
configuration dialog will appear. Make your changes and exit.

After this command completes, RTAI modules and testsuite will be deployed 
in the rootfs.

RTAI creates device files for RTAI FIFOs, so the following command must be 
run to add those files to rootfs:

$ ./ltib -p dev -f

3. Now it is possible to load and run Linux on the target board as described in the 
“BSP Targeting the Freescale ColdFire M5329EVB” User's Guide.

Load RTAI modules:

# cd /usr/realtime/modules

# insmod rtai_hal.ko

# insmod rtai_sched.ko

# insmod rtai_fifos.ko

... (and so on, all RTAI modules you need)

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

11



2.4. RTAI test-suite running

To launch RTAI test-suite, some additional steps must be performed:

1. Insert required modules:

# insmod rtai_hal.ko

# insmod rtai_sched.ko

# insmod rtai_sem.ko

# insmod rtai_fifos.ko

# insmod rtai_mbx.ko

# insmod rtai_msg.ko

2. Launch RTAI tests:

Kernel-space latency test in oneshot mode:

# insmod latency_rt.ko

# ../testsuite/kern/latency/display

Latency test will start displaying its results, until you press Ctrl+C.

# rmmod latency_rt.ko

Kernel-space latency test in periodic mode:

# insmod latency_rt.ko timer_mode=1

# ../testsuite/kern/latency/display

Latency test will start displaying its results, until you press Ctrl+C.

# rmmod latency_rt.ko

Kernel-space preempt test:

# insmod preempt_rt.ko

# ../testsuite/kern/preempt/display

Preempt test will start displaying its results, until you press Ctrl+C.

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

12



# rmmod preempt_rt.ko

Kernel-space switches test:

# insmod switches_rt.ko

Switches test will display its results in a few seconds.

# rmmod switches_rt.ko

User-space latency test in oneshot mode:

# cd /usr/realtime/testsuite/user/latency

# ./latency&

# ./display

Latency test will start displaying its results, until you press ENTER.

User-space preempt test:

# cd /usr/realtime/testsuite/user/preempt

# ./preempt&

# ./display

Preempt test will start displaying its results, until you press Ctrl+C. Also you 
will need to type 

# killall preempt

in order to stop user-space preempt test.

User-space switches test:

# cd /usr/realtime/testsuite/user/switches

# ./switches

Switches test will display its results in a few seconds.

Note: The description for each test can be found in README file in the test 
directory.

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

13



2.5. I-Pipe important notices

Notice 1:

You should enable I-Pipe (interrupt pipeline) in your kernel only if you want to use 
RTAI. I-Pipe slows down interrupt processing in Linux, that will  be visible when 
working with drivers that use lots of interrupts for data transfers instead of DMA. If 
both I-Pipe and fast interrupt processing is required, then either use RTAI drivers 
(that should be written by you) or use hacks in I-Pipe to pass some interrupts directly 
to drivers (not via I-Pipe). The second way must be used very carefully and with full 
understanding of what you are doing.

Notice 2:

If  RTAI is  active  then Linux interrupts  are  not  called immediately.  Instead,  each 
captured interrupt  is  masked and then hardware interrupts  will  be enabled.  Linux 
handler (if it exists) will be called when all RTAI tasks will become inactive. The 
interrupt  will  be  unmasked immediately  after  the  Linux  handler.  This  will  not 
interfere with existing Linux BSP drivers, because all of them use kernel functions 
for  masking/unmasking  interrupts  instead  of  working  directly  with  interrupt 
controller  registers.  These kernel  functions are  modified by I-Pipe patch to make 
I-Pipe masking/unmasking described earlier transparent to drivers. If you are writing 
your  own  driver  you  must  use  these  kernel  functions  (enable_vector  and 
disable_vector)  for  masking  and unmasking interrupts  instead of  direct  access  to 
interrupt controller registers.

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

14



3.  Changes  in  the  Linux  kernel and  I-Pipe 
Source Code

Both Linux kernel and I-Pipe source code has been changed during porting. Changes 
affect architecture-dependent part. I-Pipe was ported to the m68knommu architecture.

1. The  return function  from  arch/m68knommu/platform/coldfire/entry.S  was 
modified to call EMULATE_ROOT_IRET macro. It was made to process syscalls 
correctly with the I-Pipe;

2. The  system_call function from  arch/m68knommu/platform/coldfire/entry.S 
was modified to  call  CATCH_ROOT_SYSCALL macro.  It  was made to  deliver 
syscall to the I-Pipe;

3. The trap function from arch/m68knommu/kernel/entry.S was modified to call 
__ipipe_handle_exception() function. It was made to deliver exceptions 
to the I-Pipe;

4. The inthandler function from arch/m68knommu/platform/5307/entry.S was 
modified to call  ipipe_irq_handler() function instead of Linux interrupt 
handler. It was made to deliver interrupts to the I-Pipe;

5. All  interrupt  enabling/disabling  routines  from  include/asm-
m68knommu/system.h were  modified  to  use  the  I-Pipe  stall/unstall  domain 
functions  instead  of  hardware  interrupt  managing.  The  functions  with  _hw 
suffix which implement hardware interrupts enabling/disabling were added;

6. The  read_timer_cnt() function was  added  to  arch/m68knommu/ 
platform/coldfire/timers.c. This function calculates the number of timer ticks 
passed  from the  timer  initialization.  It  is  used  to  implement  the  rdtsc() 
function in the m68knommu RTAI part;

7. The  ack_linux_disable() function  was  added  to 
arch/m68knommu/kernel/ipipe.c. It was made to perform temporary masking 
of interrupts of different devices in the I-Pipe;

8. post_linux_enable() function  was  added  to 
arch/m68knommu/kernel/ipipe.c.  This function must  be called after  interrupt 
handling. This allows to enable interrupt disabled in  ack_linux_disable() 
function after it is properly handled;

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

15



9. The  ack_linux_tmr() function  was  added  to 
arch/m68knommu/coldfire/timers.c to  perform  correct  timer  interrupt 
acknowledgment in I-Pipe;

10.The  ipipe_disable_vector() and  ipipe_endable_vector() routines 
were  added  to  arch/m68knommu/coldfire/mcfdual_ints.c to  add  a 
possibility  to  perform  interrupt  masking  and  unmasking  (see  10  and  11) 
transparently for Linux drivers. Also, all Linux masking unmasking routines 
were modified to not unmask interrupts if they are already masked by I-Pipe.

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

16


