R-Gtk Bindings

Duncan Temple Lang

October 31, 2002

Abstract

The Gnome desktop and related tools are becoming quite mature and are available on many machines and different
platforms. Building GUIs within R is also becoming more common and important. While we can use Tk, bindings
for Gtk would also be useful. They provide users with an alternative to Tk but more importantly

1. provide access to an actively developed toolkit with a large and increasing number of widgets;

2. allow direct access to and integration with Gtk-based applications from within R, allowing direct inclusion
within GUIs rather than needing to create separate windows;

3. provide an easy environment for experimenting with and learning Gtk and the different libraries.
4. avoid Tcl!

We provide an automated mechanism for developing bindings for Gtk from R. The result is a “one-to-one” mapping
of the Gtk API to R. Other packages can provide more R-like interfaces to unify and simplify the interface, and these
will probably require more human intervention and design.

1

The Gnome desktop (window manager, office applications, etc.) and the underlying Gtk windowing toolkit are evolv-
ing into widely used and stable software that receive a great deal of attention. Gtk is available on both Windows and
Mac OS X. Gtk provides a rich set of core and auxillary user-interface components (widgets). And, unlike other GUI
toolkits, the development is continuing at a lively pace as evidenced by the recent release of Gtk 2.0.

Gtk underlies many of the Gnome applications, including

Gnumeric A spreadsheet application.
AbiWord A word-processor similar to Microsoft Word.
Gimp An image manipulation program for creating and editing images.
Desktop Numerous window managers and desktop components such as a task bar.

Tools Many applications such as mail programs, running process viewers, etc.

2 The wxWindows Alternative

Why not? Simply because we don’t have as much experience. In the future, we may use Slcc to generate bindings for
it. This work is an initial effort in this respect of automated code generation for R to C.

3 Generating the Bindings

While we could develop an interface manually, it is more practical to write code that generates the interface. While this
is more in direct and results in a less natural or “human” interface, the approach is easy to reproduce for new versions
of Gtk and is vastly less error-prone and time consuming. Importantly, it will allow us to update the interface/bindings

for new releases of Gtk and the different toolkits. This is important given the speed at which Gnome development
moves.

At present, | see three potential approaches to the automated construction of bindings. One is Gtk/Ghome-specific
and uses a collection of class and method description files available as part of Gdk, Gtk, Ghomeui, etc. This is the
approach used in generating most of the Gtk bindings. A more general approach to automated C binding generation is
to use a mechanism that reads C code (or header files) and generates the code from these definitions. Both SWIG or
our own Slcc package can be used in this approach.

3.1 Using the .defs files

The basic idea is that we have a complete description of the different libraries to which we wisht to interface. These
come in.defsfiles that look something like

(define-object GtkTreeltem (Gtkitem)
(fields (GtkWidget subtree)))

(define-func gtk _tree_item_new
Gtkwidget
0)

(define-func gtk tree_item_new_with_label
Gtkwidget
((string label)))

Figure 1: GtkTree

Figure 2 gives the definitions related to tBattonclass. The primary question is what should the the R interface
to this class contain? Specifically, what is the minimal interface that provides complete acess to the class and on which
we can build an R interface that is consistent across the different Gtk classes.

We can create the class hierarchy specification in C or R. We can also maintain it separately in R so that it can
provide reflectance information.

For each of the widget constructors, we can add a show argument which controls whether the widget is automati-
cally shown. This can default to TRUE if the object is not a container that can have other widgets added to it.

Each of thes “methods” are quite simple. They take the button object as their only argument and have no return
value.

More interestind-ayout Table HBox

Optional arguments, i.e. null-ok.

gtkLayout <-
function(hadjustment = NULL, vadjustment = NULL)

{
gtkinheritsCheck(hadjustment, vadjustment, "GtkAdjustment")

or two separate calls.
gtkinheritsCheck(vadjustment, "GtkAdjustment")

w <- .Call("S_gtk _layout_new", hadjustment, vadjustment)
class(w) <- gtkClass("GtkLayout")

}

Again, all the methods are relatively simple mappings.

gtkLayoutMove <-

(define-object GtkButton (GtkContainer) (fields (bool in_button) (bool
button_down)))

(define-func gtk _button_get_type GtkType ()

(define-func gtk_button_new GtkButton ())

(define-func gtk _button_new_with_label GtkButton ((string label)))
(define-func gtk _button_pressed none ((GtkButton button)))
(define-func gtk_button_released none ((GtkButton button)))
(define-func gtk _button_clicked none ((GtkButton button)))
(define-func gtk_button_enter none ((GtkButton button)))

(define-func gtk_button_leave none ((GtkButton button)))

Figure 2: GtkButton

gtkButton <-
function(label = NULL, show = T)

if(is.null(label))
w <- .Call("S_gtk button_new")
else
w <- .Call("S_gtk_button_new_with_label", as.character(label))

class(w) <- c("GtkButton", "GtkContainer", "GtkWidget", "GtkObject")

if(show)
gtkShow(w)

Figure 3:Button

pressed.GtkButton <-
function(w)

{
gtkChecklnherits(w, "GtkButton")

.Call("S_gtk_button_pressed", w)
}

Figure 4:Buttonpressed method

(define-object GtkLayout (GtkContainer))

(define-func gtk _layout_new
Gtkwidget

((GtkAdjustment hadjustment (null-ok) (=

"NULL"))

(GtkAdjustment vadjustment (null-ok) (= "NULL")))

(define-func gtk _layout_put
none
((GtkLayout layout)
(GtkWidget child)

(int x) (int y)))

(define-func gtk_layout_move
none
((GtkLayout layout)
(GtkWidget child)

(int x) (int y)))

(define-func gtk_layout_set_size
none
((GtkLayout layout)
(uint width) (uint height)))

(define-func gtk_layout_freeze
none
((GtkLayout layout)))

(define-func gtk_layout_thaw
none
((GtkLayout layout)))

(define-func gtk _layout get hadjustment
GtkAdjustment
((GtkLayout layout)))

(define-func gtk _layout_get vadjustment
GtkAdjustment
((GtkLayout layout)))

(define-func gtk _layout_set_hadjustment
none
((GtkLayout layout)
(GtkAdjustment adjustment)))

(define-func gtk_layout_set_vadjustment
none
((GtkLayout layout)
(GtkAdjustment adjustment)))

Figure 5: Layout

function(w, child, x, y)
{
gtkChecklnherits(w, "GtkLayout")
gtkChecklnherits(child, "GtkWidget")
.Call("S_gtk_layout_move", w, child, as.integer(x), as.integer(y))

}

We might want to have S-like arguments which would allow x to be specified as an integer vector of length 2 to
provide both x and y values. This can be added by an additional library.

Converting to uints (in thgtk_layout_set_size() method) can be done by enforcing non-negativity. We
want a general set of converters here.

3.2 Table
Enums. See GtkAttachOptionsgtk_table_attach() . Optional arguments also gtk_table_attach()

3.3 Notebook

Fields. Enum GtkPositionType. Want accessors for the fields: set and get methods. Can we do a set? What if there
are set methods in the API routines. Look fagth _notebook set <field _name>()
Enum GtkPackType igtk_notebook_set_tab label spacing()

3.4 Checking Gtk Object Types
The check for a valid Gtk object type is given by.

gtkinheritsCheck <-

if critical is TRUE, an error is generated

in the case that w does not inherit from the

specified class.

If it is FALSE, a warning is generated.

If critical is a string (character vector of length 1)

it is passed directly to stop() and used as the error message.
This allows the caller to give more context-specific

messages.

unction(w, klass, critical = TRUE)

HoHH O HHHH

~ =h

if(linherits(w, klass)) {
if(is.character(critical))
stop(critical)
else if(is.logical(critical) && critical)
stop(paste("object ", w, "of class", class(w), "isn't a"klass))

}

return(TRUE)
}

We only have single inheritance.

The key step in the generation of the code is to process the defs files. Fortunately, others have done this already.
We can leverage the code used in generating bindings for other languages. Specifically, we will use the Python code
that is used in the pygtk bindings. Others are also available to us, such as the Java and Perl mechanisms for generating
bindings in those languages. We will focus on the Python mechanism. Note that there exist packages (from Omegahat)
to invoke from R functions and methods in each of these languages and we will exploit

(define-object GtkTable (GtkContainer))

(define-func gtk_table_new
GtkWidget
((int rows)
(int columns)
(bool homogenous)))

(define-func gtk table_attach
none
((GtkTable table)
(GtkWidget child)
(int left_attach)
(int right_attach)
(int top_attach)
(int bottom_attach)
(GtkAttachOptions xoptions (= "GTK_EXPAND|GTK_FILL"))
(GtkAttachOptions yoptions (= "GTK_EXPAND|GTK_FILL"))
(int xpadding (= "0")
(int ypadding (= "0v)))

(define-func gtk _table attach_defaults
none
((GtkTable table)
(GtkWidget child)
(int left_attach)
(int right_attach)
(int top_attach)
(int bottom_attach)))

(define-func gtk_table_set_row_spacing
none
((GtkTable table)
(int row)
(int spacing)))

(define-func gtk_table_set_col_spacing
none
((GtkTable table)
(int column)

(int spacing)))

(define-func gtk _table_set_row_spacings
none
((GtkTable table)

(int spacing)))

(define-func gtk _table_set col_spacings
none
((GtkTable table)

(int spacing)))

(define-func gtk _table set homogeneous
none
((GtkTable table)
(bool homogeneous)))

(define-func gtk table resize
none

3.5 PyGTK

The PyGTK distribution provides Python code for parsing the defs files and generating the C and Python code to

interface to the code represented by those defs files. Basically, this runs through a defs file and calls methods for

defining objects, functions, enumerations, etc. We can extend this primary class that does the parsing and bypass

the code generation. Let's call our claSPefsParser We can arrange for this Python class to call R functions

that accumulate the information about these different types. Then, when we have processed all of the defs files, the

complete information about the code described in the defs files will be in R and we can process it using standard tools.
We want to define a Python claSDefsParserwith essentially five methods and a constructor function. The

methods are
define func()

define ‘object()
define 'boxed()
define ‘enum()
define ‘flags()
3.5.1 Objects
This is called when the contents of a define-object element in a defs file is completed. We are given the name of the
class being defined, the name of the parent class and a list of any fields defined for that class.
3.5.2 Functions

This is called each time a define-func element is completed when parsing a defs file. The arguments are the name of
the function, the name of the return type and a list of the arguments for the function. Each element of the argument
list is a pair giving the name of the type of the argument and the name for the argument.

3.5.3 enumerations

We use this to collect definitions of enumerations, i.e. symbolic constant groups. We are given the name of the
enumeration (e.g. GdklnputMode) and a tuple of name-value pairs. These are all symbolic, but we can infer the actual
values since they start at 0. (Check this!) We don’t want users to specify values by number anyway.

3.5.4 flags

Not certain what the difference are between a flag and an enumeration.

3.5.5 Boxed

Not quite certain yet. These are opaque data types that are to be treated as references to foreign objects.

3.6 SDefsParser

Given the basic mechanism from tRéteringParser, we can extend the class in at least two different ways. We can
use Python to gather the information and query it from R at the end of the parsing. Alternatively, we can have Python
inform R as each entity is processed.

3.6.1 Collection in Python

Perhaps the simplest and most practical approach is to create and start the parser from R and cumulate the different
definitions in the Python code. When the entire parsing is complete, then we can query transfer the results from
Python to R by accessing the fields of the parser in which the results have been stored. The Python code for this is
straightforward, merely storing functions, objects, etc in dictionaries/hash tables. You can fiSddriarate.py

3.6.2 Notifying R for Each Entity

The definition of ouiSDefsParselis quite simple. Each method is simply a call to an R function passing the method'’s
arguments to that function. When we create an instance of this class, we pass it a list of five functions corresponding
to the different methods.

import generate

class SDefsParser(generate.FilteringParser):
""An interactive parser for examining the output from the real parser
def __init_ (self, input, handlers):
generate.FilteringParser.__init__(self, input)
self.handlers = handlers

def define_object(self, name, parent=(), fields=()):
R.call(handlers[0], name, parent, fields)

def define_func(self, name, retType, args):
R.call(handlers[1], name, retType, args)

def define_enum(self, name, *values):
R.call(handlers[2], name, retType, args)

def define_flags(self, name, *values):
R.call(handlers[3], name, retType, args)

def define_boxed(self, name, reffunc = None, unreffunc=None, size=None):
R.call(handlers[4], name, reffunc, unreffunc, size)

From within R, we use a closure to define the collection of five functions.

SDefsHandlers <-
function()

{

classes <- list()
functions <- list()
enums <- list()
boxes <- list()

object <- function(name, parent, fields) {

}

func <- function(name, retType, args) {
functions[[name]] <- list(retType, args)
}

return(list(object=object, func=func, enum=enum, flags=flags, boxed=boxed))

3.7 The Java-Gnome Binding Generator
3.8 Perl-GTK

3.9 Slcc

3.10 SWIG

