
Getting Started With the R Commander:

A Basic-Statistics Graphical User Interface to R

John Fox*

McMaster University

Hamilton, Ontario, Canada

21 June 2004

Abstract

Unlike S-PLUS, R does not include a statistical graphical user interface (GUI), but it does

include tools for building GUIs. Based on the tcltk package (which furnishes an

interface to the Tcl/Tk GUI builder) the Rcmdr package provides a basic-statistics

graphical user interface to R called the “R Commander.”

The design objectives of the R Commander were as follows: to support, through an easy-

to-use, extensible, cross-platform GUI, the statistical functionality required for a basic-

statistics course (though its current functionality has grown to include support for linear

and generalized-linear models); to make it relatively difficult to do unreasonable things;

and to render visible the relationship between choices made in the GUI and the R

commands that they generate.

The R Commander uses a simple and familiar menu/dialog-box interface. Top-level

menus include File, Edit, Data, Statistics, Graphs, Models, Distributions, and Help, with

the complete menu tree given in the paper. Each dialog box includes a Help button,

which leads to a relevant help page.

Menu and dialog-box selections generate R commands, which are recorded in a log/script

window and are echoed, along with output, to an output window. The log/script window

also provides the ability to edit, enter, and re-execute commands.

Data sets in the R Commander are simply R data frames, and can be read from attached

packages or imported from files. Although several data frames may reside in memory,

only one is “active” at any given time.

The purpose of this paper is to introduce and describe the basic use of the R Commander

GUI and the manner in which it can be extended. Most of the paper can serve as an

introductory guide for students who will use the R Commander

*Please address correspondence to jfox@mcmaster.ca. The work described in this paper was

supported by a grant from the Social Science Research Board of McMaster University. Many individuals –

too numerous to name here – have made helpful suggestions for the Rcmdr package; please see the

Changes file distributed with the package for their names. I am also grateful to Tony Christensen for

research assistance and to Bob Andersen for comments on a draft of this paper. This is a revised version of
a paper presented at the useR! Conference, Vienna, May 2004.

 1

Background

R (Ihaka and Gentleman, 1996; R Development Core Team, 2004) is a free, open-source

implementation of the S statistical computing language and programming environment. R

is a command-driven system: One normally specifies a statistical analysis in R by typing

commands – that is, statements in the S language that are executed by the R interpreter.

S-PLUS (a commercial implementation of the S language), also provides a graphical user

interface (a “GUI”) to much of the statistical functionality of S.

In my opinion, a GUI for statistical software is a mixed blessing: On the one hand, a GUI

doesn’t require that the user remember the names and arguments of commands, and

decreases the chances of syntax and typing errors. These characteristics make GUIs

particularly attractive for introductory, casual, or infrequent use of software. On the other

hand, having to drill one’s way through successive layers of menus and dialog boxes can

be tedious and can make it difficult to reproduce a statistical analysis, perhaps with

variations. Moreover, providing a GUI for a statistical system that includes hundreds (or

even thousands) of commands, many incorporating extensive options, can produce a

labyrinth.

Unlike S-PLUS, R does not include a statistical GUI, but it does furnish tools for building

GUIs.
1
 The Rcmdr package provides a basic-statistics GUI for R, which I call the “R

Commander.” The design objectives of the R Commander were as follows:

• Most important, to provide, through an easy-to-use, cross-platform
2
, extensible

GUI, the statistical functionality required for a basic-statistics course. The original

target text was David Moore’s The Basic Practice of Statistics, Second Edition

(Freeman, 2000). With the help of a research assistant (Tony Christensen), I’ve

since examined several other texts (including the third edition of Moore, 2004),

collected suggestions from a number of individuals, and slightly expanded the

horizons of the R Commander – for example, to include linear and generalized-

linear models.

• To make it relatively difficult to do unreasonable things (such as specifying a

categorical variable as the response in a linear regression).

• To render visible the relationship between choices made in the GUI and the R

commands that they generate. Commands are both pasted into a log/script

window in the R Commander and echoed to an output window (see below). The

1 The R Commander, described in this paper, is based on the tcltk package (Dalgaard, 2001, 2002),

which provides an interface to Tcl/Tk.
2
 The examples in this document use the Windows version of R, and parts of the document are specific to

the Windows version. R, however, is available on other computing platforms as well (Macintosh computers

and Unix/Linux systems), and the use of R and the R Commander on these other systems is very similar to

their use under Windows. I focus here on the Windows version of the software because I believe that the
large majority of students in basic-statistics classes are Windows users.

 2

log/script window is editable, commands in the window can be executed or re-

executed, and new commands can be entered. Scripts can also be saved to and

loaded from files.

The principal purpose of this paper is to introduce and describe the basic use of the R

Commander GUI. In particular, most of the paper can serve as an introductory guide for

students who will use the R Commander. In addition, the penultimate section of the paper

explains how the R Commander can be extended, and the final section provides some

information for instructors. The help files for the Rcmdr package appear as an appendix

to the paper.

Starting R and the R Commander

Once R has started up, simply loading the Rcmdr package by typing the command

library(Rcmdr) into the R Console, starts the R Commander GUI. To function

properly under Windows, the R Commander requires the single-document interface (SDI)

to R.
3
 After loading the package, R Console and R Commander windows should appear

more or less as in Figure 1. Figure 1 and other screen images in this document were

created under Windows XP configured to “classic” appearance; if you use another

version of Windows (or, of course, another computing platform), then the appearance of

the screen may differ.

3 The Windows version of R is normally run from a multiple-document interface (“MDI”), which contains

the Console window and Graphical Device windows created during the session. In contrast, under the

single-document interface (“SDI”), the R Console and Graphical Device windows are not contained within

a master window. There are several ways to run R in SDI mode – for example, by editing the Rconsole

file in R’s etc subdirectory, or by adding --sdi to the Target field in the Shortcut tab of the R desktop

icon’s Properties. This limitation of the Rcmdr package is inherited from the tcltk package, on which

Rcmdr depends.

 3

Figure 1: The R Console and R Commander windows at start-up.

The R Commander and R Console windows float freely on the desktop.
4
 You will

normally use the menus and dialog boxes of the R Commander to read, manipulate, and

analyze data. Printed output appears by default in the lower text window in the R

Commander window. When you create graphs, these will appear in a separate Graphics

Device window. You can also type R commands at the > (greater-than) prompt in the R

Console or into the upper text window in the R Commander; the main purpose of the R

Commander, however, is to avoid typing commands.

Notice the menus along the top of the R Commander window:

• File: Menu items for loading and saving log files; setting options; and exiting.

• Edit: Menu items (Cut, Copy, Paste, etc.) for editing the contents of the log/script

and output windows. Right clicking in the script or output window also brings up

an edit “context” menu.

4 Notice that Rcmdr requires some packages in addition to several of the “recommended” packages that are

normally distributed with R, and loads these packages at startup. Rcmdr, the required packages, and many

other contributed packages are available for download from the Comprehensive R Archive Network

(CRAN) at <http://cran.r-project.org/>.

 4

• Data: Submenus containing menu items for reading and manipulating data.

• Statistics: Submenus containing menu items for a variety of basic statistical

analyses.

• Graphs: Menu items for creating simple statistical graphs.

• Models: Menu items for obtaining numerical summaries and graphs for a linear or

generalized linear model, and for adding diagnostic quantities, such as residuals,

to the data set.

• Distributions: Probabilities, quantiles, and graphs of standard statistical

distributions (to be used, for example, as a substitute for statistical tables).

• Help: Menu items to obtain information about the R Commander (including this

paper). As well, each R Commander dialog box has a Help button (see below).

 5

The complete menu “tree” for the R Commander (version 0.9-9) is shown in Figure 2.

Most menu items lead to dialog boxes, as illustrated later in this document.

File - Load log from file

 |- Save log

 |- Save log as

 |- Options

 |- Reset output width

 |- Exit - from Commander

 |- from Commander and R

Edit - Clear window

 |- Cut

 |- Copy

 |- Paste

 |- Delete

 |- Find

 |- Select all

Data - New data set

 |- Import data - from text file

 | |- from SPSS data set

 | |- from Minitab data set

 |- Data in packages - List data sets in packages

 | |- Read data set from attached package

 |- Active data set - Select active data set

 | |- Help on active data set (if available)

 | |- Variables in active data set

 | |- Set case names

 | |- Subset active data set

 | |- Remove cases with missing data

 | |- Export active data set

 |- Manage variables in active data set - Recode variable

 |- Compute new variable

 |- Standardize variables

 |- Convert numeric variable to factor

 |- Reorder factor levels

 |- Define contrasts for a factor

 |- Rename variables

 |- Delete variables from data set

 6

Statistics - Summaries - Active data set

 | |- Numerical summaries

 | |- Frequency distribution

 | |- Table of statistics

 | |- Correlation matrix

 |- Contingency Tables - Two-way table

 | |- Multi-way table

 | |- Enter and analyze two-way table

 |- Means - Single-sample t-test

 | |- Independent-samples t-test

 | |- Paired t-test

 | |- One-way ANOVA

 | |- Multi-way ANOVA

 |- Proportions - Single-sample proportion test

 | |- Two-sample proportions test

 |- Variances - Two-variances F-test

 | |- Bartlett's test

 | |- Levene's test

 |- Nonparametric tests - Two-sample Wilcoxon test

 | |- Paired-samples Wilcoxon test

 | |- Kruskal-Wallis test

 |- Dimensional analysis - Scale reliability

 | |- Principal-components analysis

 | |- Factor analysis

 |- Fit models - Linear regression

 |- Linear model

 |- Generalized linear model

Graphs - Index plot

 |- Histogram

 |- Stem-and-leaf display

 |- Boxplot

 |- Quantile-comparison plot

 |- Scatterplot

 |- Scatterplot matrix

 |- 3D scatterplot

 |- Line graph

 |- Plot of means

 |- Bar graph

 |- Pie chart

 7

Models - Select active model

 |- Summarize model

 |- Add observation statistics to data

 |- Hypothesis tests - ANOVA table

 | |- Compare two models

 | |- Linear hypothesis

 |- Numerical diagnostics - Variance-inflation factors

 | |- Breusch-Pagan test for heteroscedasticity

 | |- Durbin-Watson test for autocorrelation

 | |- RESET test for nonlinearity

 | |- Bonferroni outlier test

 |- Graphs - Basic diagnostic plots

 |- Residual quantile-comparison plot

 |- Component+residual plots

 |- Added-variable plots

 |- Influence plot

 |- Effect plots

Distributions - Normal distribution - Normal quantiles

 | |- Normal probabilities

 | |- Plot normal distribution

 |- t distribution - t quantiles

 | |- t probabilities

 | |- Plot t distribution

 |- Chi-squared distribution - Chi-squared quantiles

 | |- Chi-squared probabilities

 | |- Plot chi-squared distribution

 |- F distribution - F quantiles

 | |- F probabilities

 | |- Plot F distribution

 |- Binomial distribution - Binomial quantiles

 | |- Binomial tail probabilities

 | |- Binomial probabilities

 | |- Plot binomial distribution

 |- Poisson distribution - Poisson probabilities

 |- Plot Poisson distribution

Help - Commander help

 |- About Rcmdr

 |- Introduction to the R Commander

Figure 2: The R-Commander menu tree.

 8

The R Commander interface includes a few elements in addition to the menus and

dialogs:

• Below the menus is “toolbar” with a row of buttons.

o The leftmost (flat) button shows the name of the active data set. Initially

there is no active data set. If you press this button, you will be able to

choose among data sets currently in memory. Most of the menus and

dialogs in the R Commander reference the active data set. (The

Distributions and Models menus are exceptions.)

o Two buttons allow you to open a data editor to modify the active data set

or a viewer to examine it. The data-set viewer can remain open while other

operations are performed.

o A flat button indicates the name of the active statistical model – either a

linear model (such as a linear-regression model) or a generalized linear

model. Initially there is no active model. If there is more than one model

in memory, you can choose among them by pressing the button.

o A Submit button, at the far right of the toolbar, allows you to execute

selected commands from the script window.

• Immediately below the toolbar is the log/script window, a large scrollable text

window. As mentioned, commands generated by the GUI are normally copied

into this window. You can edit the text in the log/script window or even type your

own R commands into the window. Pressing the Submit button (or, alternatively,

the key combination Ctrl-s) causes the line containing the cursor to be submitted

(or resubmitted) for execution. If several lines are selected (e.g., by left-clicking

and dragging the mouse over them), then pressing Submit will cause all of them to

be executed. Commands entered into the log-script window can extend over more

than one line, but if they do, lines after the first must be indented with one or

more spaces or tabs.

• At the bottom is a large scrollable and editable text window for output.

Commands echoed to this window appear in red, output in blue.

Once you have loaded the Rcmdr package, you can minimize the R Console. The R

Commander window can also be resized or maximized in the normal manner. If you

make the R Commander window wider, then you may wish to reset the width of printed

output from R via the File → Reset output width… menu.
 5

The R Commander is highly configurable: I have described the default configuration

here. Changes to the configuration can be made via the File → Options… menu, or by

setting options in R. See the Rcmdr help files for details.

5 A menu item that terminates in ellipses (i.e., the dots, ...) leads to a dialog box; this is a standard GUI
convention. . In this document, → represents selecting a menu item or submenu from a menu.

 9

Data Input

Most of the procedures in the R Commander assume that there is an active data set.
6
 If

there are several data sets in memory, you can choose among them, but only one is

active. When the R Commander starts up, there is no active data set.

The R Commander provides several ways to get data into R:

• You can enter data directly via Data → New data set.... This is a reasonable choice

for a very small data set.

• You can import data from a plain-text (“ascii”) file or from another statistical package

(Minitab or SPSS).

• You can read a data set that is included in an R package, either typing the name of the

data set (if you know it), or selecting the data set in a dialog box.

Reading Data From a Text File

For example, consider the data file Nations.txt.
7
 The first few lines of the file are

shown in Figure 3:

• The first line of the file contains variable names: TFR (the total fertility rate,

expressed as number of children per woman), contraception (the rate of

contraceptive use among married women, in percent), infant.mortality

(the infant-mortality rate per 1000), GDP (gross domestic product per capita, in

U.S. dollars), and region.

• Subsequent lines contain the data values themselves, one line per country. The

data values are separated by “white space” – one or more blanks or tabs. Although

it is helpful to make the data values line up vertically, it is not necessary to do so.

Notice that the data lines begin with the country names. Because we want these to

be the “row names” for the data set, there is no corresponding variable name: That

is, there are five variable names but six data values on each line. When this

happens, R will interpret the first value on each line as the row name.

• Some of the data values are missing. In R, it is most convenient to use NA

(representing “not available”) to encode missing data, as I have done here.

• The variables TFR, contraception, infant.mortality, and GDP are

numeric (quantitative) variables; in contrast, region contains region names.

6 Procedures selected under via the Distributions menu are exceptions, as is Enter and analyze two-way
table under the Statistics → Contingency tables menu.
7 This file is included in the etc subdirectory of the Rcmdr package.

 10

When the data are read, R will treat region as a “factor” – that is, as a

categorical variable. In most contexts, the R Commander distinguishes between

numerical variables and factors.

 TFR contraception infant.mortality GDP region

Afghanistan 6.90 NA 154 2848 Asia

Albania 2.60 NA 32 863 Europe

Algeria 3.81 52 44 1531 Africa

American-Samoa NA NA 11 NA Oceania

Andorra NA NA NA NA Europe

Angola 6.69 NA 124 355 Africa

Antigua NA 53 24 6966 Americas

Argentina 2.62 NA 22 8055 Americas

Armenia 1.70 22 25 354 Europe

Australia 1.89 76 6 20046 Oceania

.

.

.

Figure 3: The first few lines of the data file Nations.txt.

To read the data file into R, select Data → Import data → from text file ... from the R

Commander menus. This operation brings up a Read Data From Text File dialog, as

shown in Figure 4. The default name of the data set is Dataset. I’ve changed the name

to Nations.

Valid R names begin with an upper- or lower-case letter (or a period, .) and consist

entirely of letters, periods, underscores (_), and numerals (i.e., 0-9); in particular, do not

include any embedded blanks in a data-set name. You should also know that R is case-

sensitive, and so, for example, nations, Nations, and NATIONS are distinguished,

and could be used to represent different data sets.

Clicking the OK button in the Read Data From Text File dialog brings up an Open file

dialog, also shown in Figure 4. Here I navigated to the file Nations.txt. Clicking the

Open button in the Open file dialog will cause the data file to be read. Once the data file

is read, it becomes the active data set in the R Commander. As a consequence, in Figure

5, the name of the data set appears in the data set button near the top left of the R

Commander window.

I clicked the View data set button to bring up the data viewer window (from David Firth’s

relimp package) also shown in Figure 5. Notice that the commands to read and attach

the Nations data set (the R read.table and attach commands) appear, partially

obscured by the display of the data set, in log/script and output windows.

 11

The read.table command creates an R data frame, which is a representation of a

rectangular cases-by-variables data set: The rows of the data set represent cases or

observations and the columns represent variables. Data sets in the R Commander are R

data frames.

Figure 4: Reading data from a text file.

 12

Figure 5: Displaying the active data set.

 Entering Data Directly

To enter data directly into the spreadsheet data editor you can proceed as follows. As an

example, I use a very small data set from Problem 2.44 in Moore (2000):

• Select Data → New data set... from the R Commander menus. Optionally enter a name for

the data set, such as Problem2.44, in the resulting dialog box, and click the OK button.

(Remember that R names cannot include intervening blanks.) This will bring up a Data

Editor window with an empty data set.

 13

• Enter the data from the problem into the first two columns of the data editor. You can move

from one cell to another by using the arrow keys on your keyboard, by tabbing, by pressing

the Enter key, or by pointing with the mouse and left-clicking. When you are finished

entering the data, the window should look like Figure 6.

Figure 6: Data editor after the data are entered.

• Next, click on the name var1 above the first column. This will bring up a Variable editor

dialog box, as in Figure 7.

Figure 7: Dialog box for changing the name of a variable in the data editor.

• Type the variable name age in the box, just as I have, and click the ⌧ button in the upper-

right corner of the Variable editor window, or press the Enter key, to close the window.

Repeat this procedure to name the second column height.

 14

The Data Editor window should now look like Figure 8.

Figure 8: The data editor window after box variable names have been changed.

• Select File → Close from the Data Editor menus or click the ⌧ at the upper-right of the

Data Editor window. The data set that you entered is now the active data set in the R

Commander.

Creating Numerical Summaries and Graphs

Once there is an active data set, you can use the R Commander menus to produce a

variety of numerical summaries and graphs. I will describe just a few basic examples

here. A good GUI should be largely self-explanatory: I hope that once you see how the R

Commander works, you will have little trouble using it, assisted perhaps by the on-line

help files.

In the examples below, I assume that the active data set is the Nations data set, read

from a text file in the previous section. If you typed in the five-observation data set from

Moore (2000) also described in the previous section, then that is the active data set.

Recall that you can change the active data set by clicking on the flat button with the

active data set’s name near the top of the R Commander window, selecting from among a

list of data sets currently resident in memory.

 15

Selecting Statistics → Summaries → Active data set produces the results shown in Figure

9. For each numerical variable in the data set (TFR, contraception,

infant.mortality, and GDP), R reports the minimum and maximum values, the

first and third quartiles, the median, and the mean, along with the number of missing

values. For the categorical variable region, we get the number of observations at each

“level” of the factor. Had the data set included more than ten variables, the R

Commander would have asked us whether we really want to proceed – potentially

protecting us from producing unwanted voluminous output.

Similarly, selecting Statistics → Summaries → Numerical summaries. . . brings up the

dialog box shown in Figure 10. Only numerical variables are shown in the variable list in

this dialog; the factor region is missing, because it is not sensible to compute

numerical summaries for a factor. Clicking on infant.mortality, and then clicking

OK, produces the following output:

> mean(Nations$infant.mortality, na.rm=TRUE)

[1] 43.47761

> sd(Nations$infant.mortality, na.rm=TRUE)

[1] 38.75604

> quantile(Nations$infant.mortality, c(0,.25,.5,.75,1),

na.rm=TRUE)

 0% 25% 50% 75% 100%

 2 12 30 66 169

By default, the R commands that are executed print out the mean and standard deviation

of the variables, along with quantiles (percentiles) corresponding to the minimum, the

first quartile, the median, the third quartile, and the maximum.

As is typical of R Commander dialogs, the Numerical Summaries dialog box in Figure 10

includes OK, Cancel, and Help buttons. The Help button leads to a help page either for

the dialog itself or (as here) for an R function that the dialog invokes.

Making graphs with the R Commander is also straightforward. For example, selecting

Graphs → Histogram from the R Commander menus brings up the Histogram dialog

box in Figure 11, and clicking on infant.mortality followed by OK, opens up a

Graphics Device window with the histogram shown in Figure 12.

If you make several graphs in a session, then only the most recent normally appears in the

Graphics Device window. You can recall previous graphs using the Page Up and Page

Down keys on your keyboard.
8

8 At startup, the R Commander turns on the graph history mechanism; this feature is available only in

Windows systems.

 16

Figure 9: Getting variable summaries for the active data set.

Figure 10: The Numerical Summaries dialog box.

 17

Figure 11: The Histogram dialog.

Nations$infant.mortality

F
re
q
u
e
n
c
y

0 50 100 150

0
2
0

4
0

6
0

8
0

Figure 12: A graphics window containing the histogram for infant mortality.

 18

Saving and Printing Output

You can save text output directly from the File menu in the R Commander; likewise you

can save or print a graph from the File menu in an R Graphics Device window. It is

generally more convenient, however, to collect the text output and graphs that you want

to keep in a word-processor document. In this manner, you can intersperse R output with

your typed notes and explanations.

Open a word processor such as Word, WordPerfect, or even Windows WordPad. To copy

text output from the output window, block the text with the mouse, select Copy from the

Edit menu (or press the key combination Ctrl-c, or right-click in the window and select

Copy from the context menu), and then paste the text into the word-processor window via

Edit → Paste (or Ctrl-v), as you would for any Windows application. One point worth

mentioning is that you should use a mono-spaced (“typewriter”) font, such as

Courier New, for text output from R; otherwise the output will not line up neatly.

Likewise to copy a graph, select File → Copy to the clipboard → as a Metafile from the

R Graphics Device menus; then paste the graph into the word-processor document via

Edit → Paste (or Ctrl-v). Alternatively, you can use Ctrl-w to copy the graph from the R

Graphics Device, or right-click on the graph to bring up a context menu, from which you

can select Copy as metafile.
9
 At the end of your R session, you can save or print the

document that you have created, providing an annotated record of your work.

Terminating the R Session

There are several ways to terminate your session. For example, you can select File →

Exit → From Commander and R from the R Commander menus. You will be asked to

confirm, and then asked whether you want to save the contents of the script and output

windows. Likewise, you can select File → Exit from the R Console menus; in this case,

you will be asked whether you want to save the R workspace (i.e., the data that R keeps

in memory); you would normally answer No.

Extending the R Commander

As is the case for any R package, a user can modify the code for the Rcmdr package and

recompile the package. Two features make it possible, however, to modify or add to the

Rcmdr package without recompiling it:

1. The R Commander menus are defined in the plain-text (ASCII) file Rcmdr-

menus.txt, which resides in the package’s etc directory. Modifying this file

changes the menus. The format of the file is described below.

9 As you will see when you examine these menus, you can save graphs in a variety of formats, and to files
as well as to the clipboard. The procedure suggested here is particularly simple, however, and generally

results in high-quality graphs.

 19

2. Files with extension (file type) .R in the etc directory are “sourced” (read into

memory) when the R Commander starts up. Consequently, functions and variables

defined in .R files are available in the global environment.

Suppose, for example, that we want to provide a menu-item and dialog box for

multivariate Box-Cox transformations to normality. The car package, which is one of

the packages that Rcmdr loads at startup, contains a function to perform the necessary

computations, box.cox.powers (see Fox, 2002, pp. 111-112). Because none of the

existing R Commander menus seems appropriate, I will add a Transform menu under

Statistics, with the single item Multivariate Box-Cox transformations… . This item will

lead to a dialog box to select the variables to be transformed. Finally, I will write a

function, named BoxCox, to construct the dialog box and invoke box.cox.powers.

The modified Rcmdr-menus.txt appears in Figure 12 (eliding most of the lines in the

file). I believe that the format of the file is largely self-explanatory, but allow me to draw

your attention to the following points:

• Each line in the file contains five entries (fields) and defines either a menu or a menu

item.

• Each menu has a “parent” menu; top-level menus, such as File or Statistics, have

topMenu as their parent. Menu definition requires two lines: One to create the menu

and another to place it under its parent.

• The “operation” field in each line contains the parent menu (for menu creation),

cascade (for placing a menu under its parent), or command (for a menu item that

invokes a command).

• The “label” field contains the text that labels a menu or menu item. By convention,

menu items leading to dialog boxes have labels ending in ellipses,

• The final field contains the name of a function to be invoked by a menu item, or the

name of a menu to be installed.

• The last two fields are empty ("") for menu (as opposed to item) lines.

Note the line in the modified Rcmdr-menus.txt file creating transformMenu as a

child of statisticsMenu; the line creating the Box-Cox item under

transformMenu; and the line cascading transformMenu under

statisticsMenu.

R Commander Menu Definitions

last modified 30 April 04 by J. Fox

type menu/item operation/parent label command/menu

 menu fileMenu topMenu "" ""

 item fileMenu command "Load log from file..." loadLog

 item fileMenu command "Save log..." saveLog

. . .

 menu statisticsMenu topMenu "" ""

 menu summariesMenu statisticsMenu "" ""

 item summariesMenu command "Active data set" summarizeDataSet

. . .

 item modelsMenu command "Linear model..." linearModel

 item modelsMenu command "Generalized linear model..." generalizedLinearModel

 menu transformMenu statisticsMenu "" ""

 item transformMenu command "Multivariate Box-Cox transformations..." BoxCox

 item topMenu cascade "Statistics" statisticsMenu

 item statisticsMenu cascade "Summaries" summariesMenu

 item statisticsMenu cascade "Contingency tables" tablesMenu

 item statisticsMenu cascade "Means" meansMenu

 item statisticsMenu cascade "Proportions" proportionsMenu

 item statisticsMenu cascade "Variances" variancesMenu

 item statisticsMenu cascade "Nonparametric tests" nonparametricMenu

 item statisticsMenu cascade "Dimensional analysis" dimensionalMenu

 item statisticsMenu cascade "Fit models" modelsMenu

 item statisticsMenu cascade "Transform" transformMenu

 menu graphsMenu topMenu "" ""

. . .

Figure 12: Rcmdr-menus.txt file containing new lines for Statistics → Transform → Multivariate Box-Cox transformations;

. . . indicates elided lines

 21

The remaining task is to write the BoxCox function. The Rcmdr package exports a

number of functions and global variables to assist in writing dialogs and performing

computations:
10

Variables

Variable Contents

.activeDataSet Name of the active data set; starts as NULL.

.activeModel Name of the active linear or generalized-linear

model; starts as NULL

.factors Names of factors in the active data set; length

0 if there are no factors.

.modelNumber Number of the active statistical model; starts at

0.

.numeric Names of numeric variables in the active data

set; length 0 if there are no numeric variables.

.twoLevelFactors Names of two-level factors in the active data

set; length 0 if there are no two-level factors.

.variables Names of all variables in the active data set.

Functions

Function Purpose

activeDataSet Returns or sets the name of the active data set.

activeModel Returns or sets the name of the active model.

doItAndPrint Executes a command, given as a character

string, and echoes the command to the

Commander log window.

is.valid.name Checks that a character string is a valid R

name.

listDataSets Lists names of data frames, by default in the

global environment.

listGeneralizedLinearModels Lists names of glm objects, by default in the

global environment.

listLinearModels Lists names of lm objects, by default in the

global environment.

logger Echoes a character string to the Commander

log window without executing it as a

command.

justDoIt Executes a character string without echoing it

to the Commander log window.

10 There are, in addition, several statistical functions exported by the Rcmdr package: colPercents and

rowPercents for nicely formatted percentage tables; reliability to estimate the reliability of

composite scales; partial.cor for matrices of partial correlations; stem.leaf for high-quality stem-

and-leaf displays (generously made available to me by Peter Wolf); Hist for enhanced histograms; and

scatter3d for dynamic 3D scatterplots.

 22

The dialog box to be created is very simple: It should have a variable list from which one

or more numeric variables are to be selected, along with OK, Cancel, and Help buttons. A

generally simple way to proceed is to find an Rcmdr dialog that is similar and modify it,

rather than creating code from scratch. In this case, I started with the code for the

scatterPlotMatrix dialog, removing unnecessary elements and making small

changes. The resulting code is shown in Figure 13 . This example assumes some

familiarity with Tcl/Tk and the tcltk package. An illustrative dialog box appears in

Figure 14.

BoxCox <- function(){

 if (activeDataSet() == FALSE) {

 tkfocus(.commander)

 return()

 }

 if (length(.numeric) < 1){

 tkmessageBox(

 message="There no numeric variables in the active data set.",

 icon="error", type="ok")

 tkfocus(.commander)

 return()

 }

 top <- tktoplevel()

 tkwm.title(top, "Box-Cox Transformations")

 variablesFrame <- tkframe(top)

 variablesBox <- tklistbox(variablesFrame, height=min(4, length(.numeric)),

 selectmode="multiple", background="white", exportselection="FALSE")

 variablesScroll <- tkscrollbar(variablesFrame,

 repeatinterval=5, command=function(...) tkyview(variablesBox, ...))

 tkconfigure(variablesBox, yscrollcommand=function(...)

tkset(variablesScroll, ...))

 for (variable in .numeric) tkinsert(variablesBox, "end", variable)

 onOK <- function(){

 variables <- .numeric[as.numeric(tkcurselection(variablesBox)) + 1]

 if (length(variables) < 1) {

 tkmessageBox(message="You must select one or more variables.",

 icon="error", type="ok")

 tkdestroy(top)

 BoxCox()

 return()

 }

 if (.grab.focus) tkgrab.release(top)

 tkdestroy(top)

 command <- paste("box.cox.powers(na.omit(cbind(",

 paste(variables, collapse=","), ")))", sep="")

 doItAndPrint(command)

 tkfocus(.commander)

 }

 onCancel <- function() {

 if (.grab.focus) tkgrab.release(top)

 tkfocus(.commander)

 tkdestroy(top)

 }

 buttonsFrame <- tkframe(top)

 OKbutton <- tkbutton(buttonsFrame, text="OK", fg="darkgreen", width="12",

 command=onOK, default="active")

 cancelButton <- tkbutton(buttonsFrame, text="Cancel", fg="red", width="12",

 command=onCancel)

 23

 onHelp <- function() {

 if (.Platform$OS.type != "windows") if (.grab.focus)

tkgrab.release(top)

 help(box.cox.powers)

 }

 helpButton <- tkbutton(buttonsFrame, text="Help", width="12",

command=onHelp)

 tkgrid(tklabel(top, text="Select variables (one or more)"), sticky="w")

 tkgrid(variablesBox, variablesScroll, sticky="nw")

 tkgrid(variablesFrame, sticky="nw")

 tkgrid(OKbutton, cancelButton, tklabel(buttonsFrame, text=" "),

helpButton, sticky="w")

 tkgrid(buttonsFrame, sticky="w")

 for (row in 0:2) tkgrid.rowconfigure(top, row, weight=0)

 for (col in 0:0) tkgrid.columnconfigure(top, col, weight=0)

 .Tcl("update idletasks")

 tkwm.resizable(top, 0, 0)

 tkgrid.configure(variablesScroll, sticky="ns")

 tkgrid.configure(helpButton, sticky="e")

 tkbind(top, "<Return>", onOK)

 if (.double.click) tkbind(top, "<Double-ButtonPress-1>", onOK)

 tkwm.deiconify(top)

 if (.grab.focus) tkgrab.set(top)

 tkfocus(top)

 tkwait.window(top)

 }

Figure 13: A function to create a dialog box for Box-Cox transformations. The function is

placed in the file BoxCox.R in the Rcmdr etc directory.

Figure 14: An illustrative dialog box produced by the code in Figure 13.

Notice the use of the doItAndPrint to execute the command, send the command to

the log, and send the command and output to the output window. This approach will

work in most cases.

The code for this example is in the file BoxCox.demo in the etc directory of the

Rcmdr package. Rename the file to BoxCox.R to activate it. Likewise, the Rcmdr-

menus.txt file distributed with the package contains commented-out lines for the

example; remove the comment characters (#) from the beginnings of these lines to

activate them.

 24

Some Suggestions for Instructors

The social-science students that I encounter in introductory statistics classes often have

difficulty installing and configuring software. I imagine that this situation varies with

discipline and locale, but I also expect that it is reasonably common. I assume here that

students will be using R and the R Commander under Windows, but it should not be hard

to transpose these suggestions to other operating systems.

I distribute to students a CD/ROM with a live, installed version of R, including all

necessary packages, and configured to open R in SDI mode, to the load the Rcmdr

package at startup, and to use compiled HTML help in R. Students can simply double

click on the file Run-R.bat in the root directory of the CD to start R. This batch file

contains a single line:

start rw1090\bin\Rgui.exe

There is another batch file in the root directory of the CD for installing R on the student’s

computer. This batch file runs the R installer (located in the R directory of the CD) and

then copies over the necessary installed packages and configuration files. The contents of

Install-R.bat are as follows (note that some batch commands are wrapped to fit on

the page but are single lines in the file):

R\rw1090.exe

xcopy rw1090\library\abind*.*

"c:\program files\R\rw1090\library\abind\" /I /E /Y

xcopy rw1090\library\car*.*

"c:\program files\R\rw1090\library\car\" /I /E /Y

xcopy rw1090\library\effects*.*

"c:\program files\R\rw1090\library\effects\" /I /E /Y

xcopy rw1090\library\lmtest*.*

"c:\program files\R\rw1090\library\lmtest\" /I /E /Y

xcopy rw1090\library\multcomp*.*

"c:\program files\R\rw1090\library\multcomp\" /I /E /Y

xcopy rw1090\library\mvtnorm*.*

"c:\program files\R\rw1090\library\mvtnorm\" /I /E /Y

xcopy rw1090\library\Rcmdr*.*

"c:\program files\R\rw1090\library\Rcmdr\" /I /E /Y

xcopy rw1090\library\relimp*.*

"c:\program files\R\rw1090\library\relimp\" /I /E /Y

xcopy rw1090\library\rgl*.*

"c:\program files\R\rw1090\library\rgl\" /I /E /Y

 25

xcopy rw1090\etc\Rconsole "c:\program files\R\rw1090\etc\Rconsole" /Y

xcopy rw1090\etc\Rprofile "c:\program files\R\rw1090\etc\Rprofile" /Y

This procedure is a bit awkward, and I expect that it will eventually be superseded by

facilities for customizing the R Windows installer.

There is a ReadMe.txt file in the root directory of the CD with the following contents:

This CD/ROM is intended for Windows 9x, ME, NT, 2000, and

XP systems.

The CD/ROM contains the following files and directories:

o The file Install-R.bat will install the R software on your computer

 and configure it for use in the course. Double-click on the file in

 the Windows Explorer to initiate the installation process. Take all

 of the defaults in the R installer. In particular, make sure that R

 is installed into the directory C:\Program Files\R\rw1090\.

o The directory rw1090\ contains a pre-installed copy of R that can

 be run directly from the CD/ROM. Double-click on the file Run-R.bat

 in the Windows Explorer to run R from the CD/ROM.

o The directory R\Packages\ contains zip files for all of the

 packages on CRAN (the Comprehensive R Archive Network).

Finally, the Rprofile file has the following contents

options(chmhelp=TRUE)

library(Rcmdr)

while the Rconsole file contains the line

MDI = no

along with its other, unmodified, contents.

 26

References

Dalgaard, P. “A primer on the R-Tcl/Tk package.” R News, 1(3):27-31, 2001.

Dalgaard, P. “Changes to the R-Tcl/Tk package.” R News, 2(3):25-27, 2002.

Fox, J. An R and S-PLUS Companion to Applied Regression. Newbury Park, CA: 2002.

Ihaka, R. and R. Gentleman. R. “A language for data analysis and graphics.” Journal of

Computational and Graphical Statistics, 5:299-314, 1996.

Moore, D.S. The Basic Practice of Statistics, Second Edition. New York: Freeman, 2000.

Moore, D.S. The Basic Practice of Statistics, Third Edition. New York: Freeman, 2004.

R Development Core Team. R: A Language and Environment for Statistical Computing.

Vienna: R Foundation for Statistical Computing, 2004.

