
MNP: R Package for Fitting the

Multinomial Probit Model∗

Kosuke Imai†

David A. van Dyk‡

Version 2.6–1

Abstract

MNP is a publicly available R package that fits the Bayesian multinomial probit model via

Markov chain Monte Carlo. The multinomial probit model is often used to analyze the discrete

choices made by individuals recorded in survey data. Examples where the multinomial probit

model may be useful include the analysis of product choice by consumers in market research and

the analysis of candidate or party choice by voters in electoral studies. The MNP software can

also fit the model with different choice sets for each individual, and complete or partial individual

choice orderings of the available alternatives from the choice set. The estimation is based on the

efficient marginal data augmentation algorithm that is developed by Imai and van Dyk (2005).

∗An earlier version of this paper appeared in Journal of Statistical Software, Vol. 14, No. 3 (May 2005), pp.1–32. We

thank Jordan Vance for his valuable contribution to this project and Shigeo Hirano for providing the Japanese election

dataset. We also thank Doug Bates for helpful advice on Lapack routines and Andrew Martin, Kevin Quinn, users of

MNP, and anonymous reviewers and the associate editor for useful suggestions. We gratefully acknowledge funding for

this project partially provided by NSF grants DMS-01-04129, DMS-04-38240, and DMS-04-06085, and by the Committee

on Research in the Humanities and Social Sciences at Princeton University.
†Assistant Professor, Department of Politics, Princeton University, Princeton, NJ 08544. Phone: 609–258–6610,

Fax: 973–556–1929, Email: kimai@Princeton.Edu, URL: http://imai.princeton.edu Department of Politics, Princeton

University
‡Associate Professor, Department of Statistics, University of California, Irvine, CA 92697-1205. Phone: 949–824–

5679, Fax: 949–824–9863, Email: dvd@uci.edu

1

mailto:kimai@Princeton.Edu
http://imai.princeton.edu
mailto:dvd@uci.edu

1 Introduction

This paper illustrates how to use MNP, a publicly available R (R Development Core Team, 2009)

package, in order to fit the Bayesian multinomial probit model via Markov chain Monte Carlo. The

multinomial probit model is often used to analyze the discrete choices made by individuals recorded

in survey data. Examples where the multinomial probit model may be useful include the analysis

of product choice by consumers in market research and the analysis of candidate or party choice by

voters in electoral studies. The MNP software can also fit the model with different choice sets for

each individual, and complete or partial individual choice orderings of the available alternatives from

the choice set. We use Markov chain Monte Carlo (MCMC) for estimation and computation. In

particular, we use the efficient marginal data augmentation MCMC algorithm that is developed by

Imai and van Dyk (2005).

MNP can be installed in the same way as other R packages via the install.packages("MNP")

command. Appendix A gives instructions for obtaining R and installing MNP on Windows, Mac

OS X, and Linux/UNIX platforms. Only three commands are necessary to use the MNP software;

mnp() fits the multinomial probit model, summary() summarizes the MCMC output, and predict()

gives posterior prediction based on the fitted model (In addition, coef() and cov.mnp() allow one to

extract the posterior draws of model coefficients and covariance matrix). To run an example script,

start R and run the following commands:

library(MNP) # loads the MNP package
example(mnp) # runs the example script

Details of the example script are given in Sections 3 and 4. Three appendices describe installation,

the commands, and version history. We begin in Section 2 with a brief description of the multinomial

probit model that MNP is designed to fit.

2 The Method

MNP implements the marginal data augmentation algorithms for posterior sampling in the multino-

mial probit model. The MCMC algorithm we implement here is fully described in Imai and van Dyk

(2005); we use Scheme 1 of their Algorithm 1.

2

2.1 The Multinomial Probit Model

Suppose we have a dataset of size n with p > 2 choices and k covariates. Here, choices refer to the

number of classes in the multinomial model. The word “choices” is used because the model is often

used to describe how individuals choose among a number of alternatives, e.g., how a voter chooses

which candidate to vote for among four candidates running for a particular office. We focus on the case

when p > 2 because when p = 2, the model reduces to the standard binomial probit model, which can

be fit via the glm(, family = binomial(probit)) command in R. The multinomial probit model

differs from the ordinal probit model in that the former does not assume any inherent ordering on

the choices. Thus, although the individuals may have preferences among the available alternatives

these ordering are individual specific rather than being characteristics of the alternatives themselves.

The ordinal probit model can be fitted via an MCMC algorithm in R by installing a package called

MCMCpack (Martin and Quinn, 2006).

Under the multinomial probit model, we assume a multivariate normal distribution on the latent

variables, Wi = (Wi1, . . . ,Wi,p−1).

Wi = Xiβ + ei, ei ∼ N(0,Σ), for i = 1, . . . , n, (1)

where Xi is a (p−1)×k matrix of covariates, β is k×1 vector of fixed coefficients, ei is (p−1)×1 vector

of disturbances, and Σ is a (p−1)×(p−1) positive definite matrix. For the model to be identified, the

first diagonal element of Σ is constrained, σ11 = 1. Please note that starting with version 2.6-1, we

use the restriction trace(Σ) = p as the default identification strategy following the recommendation

of Burgette and Nordheim (2009). This avoids the arbitrariness of fixing one particular diagonal

element. The response variable, Yi, is the index of the choice of individual i among the alternatives

in the choice set and is modeled in terms of this latent variable, Wi, via

Yi(Wi) =

 0 if max(Wi) < 0

j if max(Wi) = Wij > 0
, for i = 1, . . . , n, and j = 1, . . . , p− 1, (2)

where Yi equal to 0 corresponds to a base category.

The matrix Xi may include both choice-specific and individual-specific variables. A choice-specific

variable is a variable that has a value for each of the p choices, and these p values may be different for

each individual (e.g., the price of a product in a particular region where an individual lives). Choice-

specific variables are recorded relative to the baseline choice and thus there are p− 1 recorded values

3

for each individual. In this way a choice-specific variable is tabulated as a column in Xi. Individual-

specific variables, on the other hand, take on a value for each individual, but are constant across the

choices, e.g., the age or gender of the individual. These variables are tabulated via their interaction

with each of the choice indicator variables. Thus, an individual-specific variable corresponds to p− 1

columns of Xi and p− 1 components of β.

2.2 The Multinomial Probit Model with Ordered Preferences

In some cases, we observe a complete or partial ordering of p alternatives. For example, we may

observe the preferences of each individual among different brands of a product. We denote the

outcome variable in such situations by Yi = {Yi1, . . . ,Yip} where i = 1, . . . , n indexes individuals and

j = 1, . . . , p represent alternatives. If Yij > Yij′ for some j 6= j′, we say j is preferred to j′. If Yij = Yij′

for some j 6= j′, we say individual i is indifferent to the choice between alternatives j and j′, but treat

the data as if the actual ordering is unknown. In other words, formally we insist on strict inequalities

among the preferences, but allow for some inequalities to be unobserved. The preference ordering is

assumed to satisfy the usual axioms of preference comparability. Namely, preference is connected: For

any j and j′, either Yij ≤ Yij′ or Yij ≥ Yij′ . Preference also must be transitive: for any j,j′, and j′′,

Yij ≤ Yij′ and Yij′ ≤ Yij′′ imply Yij ≤ Yij′′ . For notational simplicity and without loss of generality,

we assume that Yij takes an integer value ranging from 0 to p − 1. We emphasize that we have not

changed the model from Section 2.1. Rather, we simply have more observed data: the index of the

choice of the individual i, Yi, can be computed from Yi. Thus, we continue to model the preference

ordering, Yi, in terms of a latent (multivariate normal) random vector, Wi = (Wij , . . . ,Wi,p−1), via

Yij(Wi) = #{Wij′ : Wij′ < Wij} for i = 1, . . . , n, and j = 1, . . . , p, (3)

where Wip = 0, the distribution of Wi is specified in equation 1, and #{· · · } indicates the number

of elements in a finite set. This model can be fitted via a slightly modified version of the MCMC

algorithm in Imai and van Dyk (2005). In particular, we need only modify the way in which Wij is

sampled and use a truncation rule based on Equation 3.

2.3 Prior Specification

Our prior distribution for the multinomial probit model is

β ∼ N(0, A−1) and p(Σ) ∝ |Σ|−(ν+p)/2
[
trace(SΣ−1)

]−ν(p−1)/2
, (4)

4

where A is the prior precision matrix of β, ν is the prior degrees of freedom parameter for Σ, and the

(p−1)×(p−1) positive definite matrix S is the prior scale for Σ; we assume the first diagonal element

of S is one. The prior distribution on Σ is proper if ν ≥ p− 1, the prior mean of Σ is approximately

equal to S if ν > p − 2, and the prior variance of Σ increase as ν decreases as long as this variance

exists. We also allow for an improper prior on β, which is p(β) ∝ 1 (i.e., A = 0).1

Alternate prior specifications were introduced by McCulloch and Rossi (1994) and McCulloch

et al. (2000). The relative advantage of the various prior distributions are discussed by McCulloch

et al. (2000), Nobile (2000), and Imai and van Dyk (2005). We prefer our choice because it allows

us to directly specify the prior distribution on the identifiable model parameters, allows us to specify

an improper prior distribution on regression coefficient, and results in a Monte Carlo sampler that is

relatively quick to converge. An implementation of of the sampler proposed by McCulloch and Rossi

(1994) has recently been released in the R package bayesm (Rossi and McCulloch, 2005).

2.4 Prediction under the Multinomial Probit Model

Predictions of individual preferences given particular values of the covariates can be useful in inter-

preting the fitted model. Consider a value of the (p−1)×k matrix of covariates, X?, that may or may

not correspond to the values for one of the observed individuals. We are interested in the distribution

of the preferences among the alternatives in the choice set given this value of the covariates. Let Y ?

be the preferred choice and Y? = (Y?1 , . . . ,Y?p) indicate the ordering of the preferences among the

available alternatives. As an example, one might be interested in Pr(Y ? = j | X?) for some j. By

varying X?, one could explore how preferences are expected to change with covariates. Similarly, one

might be interested in how relative preferences such as Pr(Y?j > Y?j′ | X?) are expected to change with

the covariates.

In the context of a Bayesian analysis, such predictive probabilities are computed via the posterior

predictive distribution. This distribution conditions on the observed data, Y = (Y1, . . . , Yn) or Y =

(Y1, . . . ,Yn), but averages over the uncertainty in the model parameters. For example,

Pr(Y ? = j | X?, Y) =
∫

Pr(Y ? = j | X?, β,Σ, Y) p(β,Σ | Y) d(β,Σ). (5)

Thus, the posterior predictive distribution accounts for both variability in the response variable given
1Algorithm 2 of Imai and van Dyk (2005) allows for a non zero prior mean for β. Because the update for Σ in this

sampler is not exactly its complete conditional distribution, however, this algorithm may exhibit undesirable convergence

properties in some situations.

5

the model parameters (i.e., the likelihood or sampling distribution) and the uncertainty in the model

parameters as quantified in the posterior distribution. Monte Carlo evaluation of the posterior pre-

dictive distribution is easy once we obtain a Monte Carlo sample of the model parameters from the

posterior distribution: We simply sample according to the likelihood for each Monte Carlo sample

from the posterior distribution. This involves sampling the latent variable under the model in (1) and

computing the preferred choice using (2) or the ordering of preferences using (3).

3 Example 1: Detergent Brand Choice

In this and the next section, we describe the details of two examples of MNP. In this section we use

a market research dataset to illustrate the fitting of the multinomial probit model. In Section 4 we

fit the multinomial probit model with ordered preference to a Japanese election dataset. We also

describe how to perform convergence diagnostics of the MCMC sampler and analysis of the Monte

Carlo output of MNP using an existing R package. Additional examples of MNP can be found in

Imai and van Dyk (2005).

3.1 Preliminaries

Our first example analyzes a typical dataset in market research. The dataset contains information

about the brand and price of the laundry detergent purchased by 2657 households originally analyzed

by Chintagunta and Prasad (1998). The dataset contains the log prices of six detergent brands – Tide,

Wisk, EraPlus, Surf, Solo, and All – as well as the brand chosen by each household (see Appendix C.1

for details about the dataset).

We fit the multinomial probit model by using choice as the outcome variable and the other six

variables as choice-specific covariates. After loading the MNP package, this can be accomplished using

the following three commands,

data(detergent)
res <- mnp(choice ~ 1, choiceX = list(Surf=SurfPrice, Tide=TidePrice,

Wisk=WiskPrice, EraPlus=EraPlusPrice,
Solo=SoloPrice, All=AllPrice),

cXnames = c("price"), data = detergent, n.draws = 10000,
burnin = 2000, thin = 3, verbose = TRUE)

summary(res)

The first command loads the example dataset and stores it as the data frame called detergent. The

6

second command fits the multinomial probit model. The default base category in this case is All.

(The default base category in MNP is the first factor level of the outcome variable, Y .) Each household

chooses among the six brands of laundry detergent, i.e., p = 6. We specify the choice-specific variables,

choiceX, using a named list. The elements of the list are the log price of each detergent brand and

they are named after the levels of factor variable, choice. We also name the coefficient for this set of

choice-specific variables by using cXnames. The argument data allows us to specify the name of the

data frame where the data are stored. The model estimates five intercepts and the price coefficient

as well as 14 parameters in the covariance matrix, Σ.

We use the default prior distribution; an improper prior distribution for β and a diffuse prior

distribution for Σ with ν = p = 6 and S = I. We sample 10,000 replications of the parameter from

the resulting posterior distribution, saving every fourth sample after discarding the first 2,000 samples

as specified by the arguments, n.draws, thin, and burnin. The argument verbose = TRUE specifies

that a progress report and other useful messages be printed while the MCMC sampler is running. The

summary(res) command gives a summary of the output including the posterior means and standard

deviations of the parameters. The summary is based on the single MCMC chain produced with this

call of MNP. Before we can reliably draw conclusions based on these results, we must be sure the

chain has converged. Convergence diagnostics are discussed and illustrated in Section 3.2. The result

of the call of summary(res) are as follows.

Call:
mnp(formula = choice ~ 1, data = detergent, choiceX = list(Surf = SurfPrice,

Tide = TidePrice, Wisk = WiskPrice, EraPlus = EraPlusPrice,
Solo = SoloPrice, All = AllPrice), cXnames = c("price"),
n.draws = 10000, burnin = 2000, thin = 3, verbose = TRUE)

Coefficients:
mean std.dev. 2.5% 97.5%

(Intercept):EraPlus 2.567 0.238 2.123 3.03
(Intercept):Solo 1.722 0.247 1.248 2.25
(Intercept):Surf 1.572 0.163 1.259 1.91
(Intercept):Tide 2.716 0.252 2.269 3.22
(Intercept):Wisk 1.620 0.162 1.328 1.96
price -82.102 8.952 -99.896 -66.32

Covariances:
mean std.dev. 2.5% 97.5%

EraPlus:EraPlus 1.00000 0.00000 1.00000 1.00

7

EraPlus:Solo 0.82513 0.26942 0.31029 1.36
EraPlus:Surf 0.17021 0.16115 -0.15810 0.48
EraPlus:Tide 0.24872 0.12956 0.00253 0.52
EraPlus:Wisk 0.88170 0.16614 0.54500 1.20
Solo:Solo 2.56481 0.68678 1.53276 4.25
Solo:Surf 0.45246 0.34572 -0.28018 1.13
Solo:Tide 0.50836 0.32706 -0.09069 1.22
Solo:Wisk 1.46997 0.44596 0.65506 2.45
Surf:Surf 1.69005 0.50978 0.92334 2.82
Surf:Tide 0.80762 0.30381 0.34019 1.44
Surf:Wisk 1.01614 0.36503 0.44121 1.85
Tide:Tide 1.32024 0.41669 0.62898 2.25
Tide:Wisk 1.05396 0.30137 0.59323 1.74
Wisk:Wisk 2.58761 0.55076 1.68773 3.82

Base category: All
Number of alternatives: 6
Number of observations: 2657
Number of stored MCMC draws: 2000

We emphasize that these results are preliminary because convergence has not yet been assessed.

Thus, we delay interpretation of the fit until Section 3.3, after we discuss convergence diagnostics

in Section 3.2. Note that coef(res) and cov.mnp(res) allow one to extract the posterior draws of

model coefficients and covariance matrix if desired. See Appendix B for details.

3.2 Using coda for Convergence Diagnostics and Output Analysis

It is possible to use coda (Plummer, Best, Cowles, and Vines, 2005), to perform various convergence

diagnostics, as well as to summarize results. The coda package requires a matrix of posterior draws for

relevant parameters to be saved as an mcmc object. Here, we illustrate how to use coda to calculate the

Gelman-Rubin convergence diagnostic statistic (Gelman and Rubin, 1992). This diagnostic is based

on multiple independent Markov chains initiated at over-dispersed starting values. Here, we obtain

these chains by independently running the mnp() command three times, specifying different starting

values for each time. This can be accomplished by typing the following commands at the R prompt,

data(detergent)
res1 <- mnp(choice ~ 1, choiceX = list(Surf=SurfPrice, Tide=TidePrice,

Wisk=WiskPrice, EraPlus=EraPlusPrice,
Solo=SoloPrice, All=AllPrice),

cXnames = c("price"), data = detergent, n.draws = 50000,
verbose = TRUE)

8

res2 <- mnp(choice ~ 1, choiceX = list(Surf=SurfPrice, Tide=TidePrice,
Wisk=WiskPrice, EraPlus=EraPlusPrice,
Solo=SoloPrice, All=AllPrice),

coef.start = c(1, -1, 1, -1, 1, -1)*10,
cov.start = matrix(0.5, ncol=5, nrow=5) + diag(0.5, 5),
cXnames = c("price"), data = detergent, n.draws = 50000,
verbose = TRUE)

res3 <- mnp(choice ~ 1, choiceX = list(Surf=SurfPrice, Tide=TidePrice,
Wisk=WiskPrice, EraPlus=EraPlusPrice,
Solo=SoloPrice, All=AllPrice),

coef.start=c(-1, 1, -1, 1, -1, 1)*10,
cov.start = matrix(0.9, ncol=5, nrow=5) + diag(0.1, 5),
cXnames = c("price"), data = detergent, n.draws = 50000,
verbose = TRUE)

where we save the output of each chain separately as res1, res2, and res3. The first chain is initiated

at the default starting values for all parameters; i.e., a vector of zeros for β and an identity matrix for

Σ. The second chain is run starting from a vector of three 10’s and three −10’s for β and a matrix

with all diagonal elements equal to 1 and all correlations equal to 0.5 for Σ. Finally, the third chain

is run starting from a permutation of the starting value used for β in the second chain, and a matrix

with all diagonal elements equal to 1 and all correlations equal to 0.9 for Σ. We again use the default

prior specification and obtain 50,000 draws for each chain.

We store the output from each of the three chains as an object of class mcmc, and then combine

them into a single list using the following commands,

library(coda)
res.coda <- mcmc.list(chain1=mcmc(res1$param[,-7]),

chain2=mcmc(res2$param[,-7]),
chain3=mcmc(res3$param[,-7]))

where the first command loads the coda package2 and the second command saves the results as an

object of class mcmc.list, which is called res.coda. We exclude the 7th column of each chain, because

this column corresponds to the first diagonal element of the covariance matrix which is always equal

to 1. The following command computes the Gelman-Rubin statistic from these three chains,

gelman.diag(res.coda, transform = TRUE)

2If you have not used the coda package before, you must install it. At the R prompt, type install.packages("coda").

9

where transform = TRUE applies log or logit transformation as appropriate to improve the normality

of each of the marginal distributions. Gelman et al. (2004) suggest computing the statistic for each

scalar estimate of interest, and to continue to run the chains until the statistics are all less than

1.1. Inference is then based on the Monte Carlo sample obtained by combining the second half of

each of the chains. The output of the coda command lists the value and a 97.5% upper limit of the

Gelman-Rubin statistic for each parameter.

Potential scale reduction factors:

Point est. 97.5% quantile
(Intercept):EraPlus 1.01 1.02
(Intercept):Solo 1.03 1.08
(Intercept):Surf 1.01 1.05
(Intercept):Tide 1.01 1.02
(Intercept):Wisk 1.01 1.04
price 1.01 1.02
EraPlus:Solo 1.02 1.03
EraPlus:Surf 1.02 1.04
EraPlus:Tide 1.03 1.08
EraPlus:Wisk 1.04 1.13
Solo:Solo 1.01 1.04
Solo:Surf 1.01 1.02
Solo:Tide 1.02 1.07
Solo:Wisk 1.00 1.00
Surf:Surf 1.00 1.00
Surf:Tide 1.01 1.04
Surf:Wisk 1.02 1.06
Tide:Tide 1.02 1.06
Tide:Wisk 1.02 1.08
Wisk:Wisk 1.01 1.04

Multivariate psrf

1.07+0i

The Gelman-Rubin statistics are all less than 1.1, suggesting satisfactory convergence has been

achieved. (Note that the 97.5conservative user might want to obtain a set of longer Markov chains

and recompute the Gelman-Rubin statistics.) It may also be useful to examine the change in the

value of the Gelman-Rubin statistic over the iterations. The following commands produce a graphical

summary of the progression of the statistics over iterations.

gelman.plot(res.coda, transform = TRUE, ylim = c(1,1.2))

10

where ylim = c(1,1.2) specifies the range of the vertical axis of the plot. The results appear in

Figure 1, as a cumulative evaluation of the Gelman-Rubin statistic over iterations for nine selected

parameters. (Three coefficients appear in the first row; three covariance parameters appear in the

second row; and three variance parameters appear in the third row.)

The coda package can also be used to produce univariate time-series plots of the three chains and

univariate density estimate of the posterior distribution. The following commands create these graphs

for the price coefficient.

res.coda <- mcmc.list(chain1=mcmc(res1$param[25001:50000, "price"], start=25001),
chain2=mcmc(res2$param[25001:50000, "price"], start=25001),
chain3=mcmc(res3$param[25001:50000, "price"], start=25001))

plot(res.coda, ylab = "price coefficient")

Figure 2 presents the resulting plots. The left panel overlays the time-series plot for each chain with

a different color representing each chain. The right panel shows the kernel-smoothed density estimate

of the posterior distribution. One can also apply an array of other functions to res.coda. See the

coda homepage, http://www-fis.iarc.fr/coda, for details.

3.3 Final Analysis and Conclusions

In the final analysis, we combine the second half of each of the three chains. This is accomplished

using the following command that saves the last 25,000 draws from each chain as an mcmc object and

combines the mcmc objects into a list,

res.coda <- mcmc.list(chain1=mcmc(res1$param[25001:50000,-7], start=25001),
chain2=mcmc(res2$param[25001:50000,-7], start=25001),
chain3=mcmc(res3$param[25001:50000,-7], start=25001))

summary(res.coda)

The second command produces the following summary of the posterior distribution for each pa-

rameter based on the combined Monte Carlo sample.

Iterations = 25001:50000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 25000

1. Empirical mean and standard deviation for each variable,

11

http://www-fis.iarc.fr/coda

0 20000 40000

1.
00

1.
10

1.
20

last iteration in chain

sh
rin

k
fa

ct
or

(Intercept):EraPlus

0 20000 40000

1.
00

1.
10

1.
20

last iteration in chain

sh
rin

k
fa

ct
or

(Intercept):Solo

0 20000 40000

1.
00

1.
10

1.
20

last iteration in chain

sh
rin

k
fa

ct
or

price

0 20000 40000

1.
00

1.
10

1.
20

last iteration in chain

sh
rin

k
fa

ct
or

EraPlus:Surf

0 20000 40000

1.
00

1.
10

1.
20

last iteration in chain

sh
rin

k
fa

ct
or

Solo:Tide

0 20000 40000

1.
00

1.
10

1.
20
last iteration in chain

sh
rin

k
fa

ct
or

Surf:Wisk

0 20000 40000

1.
00

1.
10

1.
20

last iteration in chain

sh
rin

k
fa

ct
or

Solo:Solo

0 20000 40000

1.
00

1.
10

1.
20

last iteration in chain

sh
rin

k
fa

ct
or

Surf:Surf

0 20000 40000

1.
00

1.
10

1.
20

last iteration in chain

sh
rin

k
fa

ct
or

Tide:Tide

Figure 1: The Gelman-Rubin Statistic Computed with Three Independent Markov Chains for Selected
Parameters in the Detergent Example. The first row represents three coefficients, the second row
represents three covariances, and the third row represents three variance parameters.

12

25000 30000 35000 40000 45000 50000

−
11

0
−

90
−

70

Iterations

−110 −90 −80 −70 −60 −50

0.
00

0.
01

0.
02

0.
03

0.
04

N = 75000 Bandwidth = 0.9464

Figure 2: Time-series Plot of Three Independent Markov Chains (Left Panel) and A Density Estimate
of the Posterior Distribution of the Price Coefficient (Right Panel). The time-series plot overlays the
three chains, each in a different color. A lowess smoothed line is also plotted for each of the three
chains. The density estimate is based on all three chains.

plus standard error of the mean:

Mean SD Naive SE Time-series SE
(Intercept):EraPlus 2.5398 0.2300 0.0008400 0.014332
(Intercept):Solo 1.7218 0.2227 0.0008131 0.012972
(Intercept):Surf 1.5634 0.1663 0.0006072 0.010462
(Intercept):Tide 2.6971 0.2374 0.0008670 0.015153
(Intercept):Wisk 1.6155 0.1594 0.0005822 0.010221
price -80.9097 8.4292 0.0307791 0.556483
EraPlus:Solo 0.8674 0.2954 0.0010787 0.021698
EraPlus:Surf 0.1226 0.1991 0.0007269 0.014043
EraPlus:Tide 0.2622 0.1525 0.0005568 0.009833
EraPlus:Wisk 0.9062 0.1912 0.0006982 0.012893
Solo:Solo 2.6179 0.7883 0.0028785 0.055837
Solo:Surf 0.5348 0.4307 0.0015728 0.030113
Solo:Tide 0.5570 0.3544 0.0012941 0.024548
Solo:Wisk 1.5442 0.4643 0.0016954 0.031574
Surf:Surf 1.6036 0.4758 0.0017374 0.031269
Surf:Tide 0.7689 0.2992 0.0010926 0.020253
Surf:Wisk 0.9949 0.3548 0.0012955 0.022963
Tide:Tide 1.2841 0.3660 0.0013364 0.024095
Tide:Wisk 1.0658 0.3147 0.0011492 0.020229

13

Wisk:Wisk 2.5801 0.5523 0.0020167 0.034974

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
(Intercept):EraPlus 2.09105 2.38514 2.5321 2.6926 3.0022
(Intercept):Solo 1.28315 1.57316 1.7219 1.8705 2.1639
(Intercept):Surf 1.24132 1.45272 1.5583 1.6701 1.9023
(Intercept):Tide 2.23562 2.53443 2.6886 2.8544 3.1721
(Intercept):Wisk 1.31120 1.50841 1.6104 1.7191 1.9429
price -97.62406 -86.61736 -80.7783 -75.1013 -64.9720
EraPlus:Solo 0.32811 0.65755 0.8480 1.0694 1.4666
EraPlus:Surf -0.24159 -0.01596 0.1131 0.2507 0.5491
EraPlus:Tide -0.02109 0.16081 0.2571 0.3527 0.5957
EraPlus:Wisk 0.54089 0.77643 0.9035 1.0331 1.2917
Solo:Solo 1.37468 2.02720 2.5225 3.0985 4.4160
Solo:Surf -0.31143 0.25493 0.5251 0.8180 1.3880
Solo:Tide -0.05172 0.30518 0.5297 0.7740 1.3106
Solo:Wisk 0.74682 1.21192 1.5131 1.8380 2.5445
Surf:Surf 0.86883 1.25552 1.5377 1.8834 2.6935
Surf:Tide 0.30606 0.55218 0.7285 0.9413 1.4556
Surf:Wisk 0.40231 0.74907 0.9579 1.1957 1.8026
Tide:Tide 0.69841 1.02206 1.2396 1.4999 2.1100
Tide:Wisk 0.51732 0.84824 1.0411 1.2556 1.7579
Wisk:Wisk 1.60662 2.18760 2.5407 2.9238 3.7722

The output shows the mean, standard deviation, and various percentiles of the posterior distribu-

tions of the coefficients and the elements of the variance-covariance matrix. The base category is the

detergent All. Separate intercepts are estimated for each detergent. The price coefficient is negative

and highly statistically significant, agreeing with the standard economic expectation that consumers

are less likely to buy more expensive goods.

MNP also allows one to calculate the posterior predictive probabilities of each alternative being

most preferred given a particular value of the covariates. For example, one can calculate the posterior

predictive probabilities using the covariate values of the first two observations by using the predict()

command,

predict(res1, newdata = detergent[1:2,],
newdraw = rbind(res1$param[25001:50000,],

res2$param[25001:50000,],
res3$param[25001:50000,]), type = "prob")

14

where res1 is the output object from the mnp() command, and we set newdata to the first two

observations of the detergent data set and newdraw to the combined draws from the second half of

three chains. Setting type = "prob" causes the function predict() to return the posterior predictive

probabilities. Moreover, a new n.draws option in predict() command allows one to compute the

uncertainty estimates about these predicted probabilities. It is also possible to return a Monte Carlo

sample of the the alternative that is most preferred (type = "choice"), a Monte Carlo sample of the

latent variables (type = "latent"), or a Monte Carlo sample of the preference-ordered alternatives

(type = "order"). (See Appendix B or type help(predict.mnp) in R for more details about the

predict() function in MNP.) The above command yields the following output,

All EraPlus Solo Surf Tide Wisk
[1,] 0.01281333 0.1946400 0.12292 0.46208000 0.1401733 0.06737333
[2,] 0.04649333 0.1262133 0.05996 0.03169333 0.3589867 0.37665333

The result indicates that the posterior predictive probability of purchasing Surf is the largest for

households with covariates equal to those in the first household in the data set. Under the model,

approximately 46% of such households will purchase Surf. On the other hand, All is the brand

least likely to be purchased by these households. The households with covariates equal to the second

household are most likely to buy Wisk. Also, they are almost equally likely to purchase Tide. (The

posterior predictive probabilities of buying Wisk and Tide are both around 0.35)

4 Example 2: Voters’ Preference of Political Parties

Our second example illustrates how to fit the multinomial probit model with ordered preferences (see

Section 2.2).

4.1 Preliminaries

We analyze a survey dataset describing the preferences of individual voters in Japan among the

political parties. Political scientists may be interested in using the gender, age and education level

of voters to predict their party preferences (see Appendix C.2 for details about the dataset). The

outcome variable is a vector of relative preferences for each of the four parties, i.e., p = 4. Each of

418 voters is asked to give a score between 0 and 100 to each party. For example, the first voter in

the dataset has the following preferences.

LDP NFP SKG JCP

15

80 75 80 0

That is, this voter prefers LDP and SKG to NFP and JCP, and between the latter two, she prefers NFP to

JCP. Although LDP and SKG have the same preference, we do not constrain the estimated preferences

to be the same for these two alternatives. Under the Gaussian random utility model, the probability

that the two alternatives having exactly the same preferences is zero. Therefore, inequality constraints

are respected, but equality constraints are not.

Furthermore, we only preserve the ranking, not the relative numerical values. Therefore, the

following coding of the variables, for our purposes, is equivalent to that given above,

LDP NFP SKG JCP
3 2 3 1

Finally, it is possible to have non-response for one of the categories; e.g., no candidate from a particular

party may run in a certain district. If NFP = NA, we have no information about the relative ranking

of NFP.

LDP NFP SKG JCP
3 NA 3 1

In this case, there is no constraint when estimating the preference for this alternative; only the

inequality constraint, (LDP, SKG) > JCP, is imposed.

All three covariates – gender, education, and age of voters – are individual-specific variables

rather than choice-specific ones. The model estimates three intercepts and 9 coefficients along with 6

parameters in the covariance matrix. The following commands fit the model,

data(japan)
res <- mnp(cbind(LDP, NFP, SKG, JCP) ~ gender + education + age, data = japan,

n.draws = 10000, verbose = TRUE)
summary(res)

The first command loads the dataset, and the second command fits the model. The base category

is JCP, which is the last column of the outcome matrix. The default prior distribution is used as in

the previous example: an improper prior distribution for β and a diffuse prior distribution for Σ with

ν = p = 4 and S = I. 10,000 draws are obtained with no burnin or thinning. The final command

summarizes the Monte Carlo sample and gives the following output,

16

Call:
mnp(formula = cbind(LDP, NFP, SKG, JCP) ~ gender + education + age,

data = japan, n.draws = 10000, verbose = TRUE)

Coefficients:
mean std.dev. 2.5% 97.5%

(Intercept):LDP 0.615184 0.517157 -0.386151 1.61
(Intercept):NFP 0.689753 0.568109 -0.419521 1.79
(Intercept):SKG 0.133961 0.455960 -0.758883 1.02
gendermale:LDP 0.099748 0.152323 -0.194786 0.40
gendermale:NFP 0.216824 0.166103 -0.102108 0.54
gendermale:SKG 0.132661 0.134605 -0.127145 0.40
education:LDP -0.107038 0.074792 -0.253483 0.04
education:NFP -0.107222 0.082324 -0.270127 0.05
education:SKG -0.003728 0.066429 -0.132496 0.13
age:LDP 0.013518 0.006122 0.001492 0.03
age:NFP 0.006948 0.006783 -0.006572 0.02
age:SKG 0.009653 0.005431 -0.000812 0.02

Covariances:
mean std.dev. 2.5% 97.5%

LDP:LDP 1.0000 0.0000 1.0000 1.00
LDP:NFP 1.0502 0.0585 0.9373 1.16
LDP:SKG 0.7070 0.0622 0.5822 0.82
NFP:NFP 1.4068 0.1359 1.1682 1.70
NFP:SKG 0.7452 0.0864 0.5800 0.91
SKG:SKG 0.6913 0.0874 0.5296 0.87

Base category: JCP
Number of alternatives: 4
Number of observations: 418
Number of stored MCMC draws: 10000

4.2 Convergence Diagnostics, Final Analysis, and Conclusions

In order to evaluate convergence of the MCMC sampler, we again obtain three independent Markov

chains by running the mnp() command three times with three sets of different starting values. We

use starting values that are relatively dispersed given the preliminary analysis of the previous section.

Note that when fitting the multinomial probit model with ordered preferences, the algorithm requires

the starting values of the latent variable to respect the order constraints of equation (3). Therefore,

the starting values of the parameters cannot be too far away from the posterior mode. The following

17

commands fits the model with the default starting value and two sets of overdispersed starting values,

res1 <- mnp(cbind(LDP, NFP, SKG, JCP) ~ gender + education + age, data = japan,
n.draws = 50000, verbose = TRUE)

res2 <- mnp(cbind(LDP, NFP, SKG, JCP) ~ gender + education + age, data = japan,
coef.start = c(1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1),
cov.start = matrix(0.5, ncol=3, nrow=3) + diag(0.5, 3),
n.draws = 50000, verbose = TRUE)

res3 <- mnp(cbind(LDP, NFP, SKG, JCP) ~ gender + education + age, data = japan,
coef.start = c(-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1),
cov.start = matrix(0.9, ncol=3, nrow=3) + diag(0.1, 3),
n.draws = 50000, verbose = TRUE)

We follow the commands used in Section 3.2 and compute the Gelman-Rubin statistic for each pa-

rameter. Upon examination of the resulting statistics, we determined that satisfactory convergence

has been achieved. For example, the value of the Gelman-Rubin statistic is less than 1.01 for all the

parameters. Hence, we base our final analysis on the combined draws from the second half of the

three chains (i.e., a total of 75,000 draws using 25,000 draws from each chain). Posterior summaries

can be obtained using the coda package as before,

Iterations = 25001:50000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 25000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
(Intercept):LDP 0.60167 0.51421 1.88e-03 8.05e-03
(Intercept):NFP 0.68294 0.56867 2.08e-03 7.95e-03
(Intercept):SKG 0.12480 0.45680 1.67e-03 7.25e-03
gendermale:LDP 0.10668 0.15448 5.64e-04 2.95e-03
gendermale:NFP 0.22240 0.16983 6.20e-04 2.91e-03
gendermale:SKG 0.13897 0.13753 5.02e-04 2.70e-03
education:LDP -0.10517 0.07643 2.79e-04 1.35e-03
education:NFP -0.10634 0.08448 3.08e-04 1.28e-03
education:SKG -0.00258 0.06766 2.47e-04 1.18e-03
age:LDP 0.01361 0.00617 2.25e-05 9.90e-05
age:NFP 0.00698 0.00680 2.48e-05 1.01e-04

18

age:SKG 0.00972 0.00547 2.00e-05 9.13e-05
LDP:NFP 1.05535 0.05508 2.01e-04 1.15e-03
LDP:SKG 0.71199 0.06125 2.24e-04 1.59e-03
NFP:NFP 1.41860 0.13540 4.94e-04 2.45e-03
NFP:SKG 0.75391 0.08262 3.02e-04 2.12e-03
SKG:SKG 0.70007 0.08488 3.10e-04 2.16e-03

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
(Intercept):LDP -0.405757 0.25198 0.60033 0.9476 1.6172
(Intercept):NFP -0.428421 0.30016 0.68058 1.0657 1.7981
(Intercept):SKG -0.769018 -0.18476 0.12335 0.4303 1.0258
gendermale:LDP -0.197199 0.00328 0.10643 0.2105 0.4096
gendermale:NFP -0.110730 0.10856 0.22135 0.3361 0.5566
gendermale:SKG -0.131661 0.04702 0.13905 0.2307 0.4096
education:LDP -0.254631 -0.15718 -0.10519 -0.0533 0.0447
education:NFP -0.271657 -0.16329 -0.10654 -0.0496 0.0595
education:SKG -0.135829 -0.04833 -0.00248 0.0429 0.1306
age:LDP 0.001591 0.00941 0.01361 0.0177 0.0257
age:NFP -0.006336 0.00240 0.00697 0.0115 0.0203
age:SKG -0.000947 0.00603 0.00967 0.0134 0.0206
LDP:NFP 0.944577 1.01919 1.05564 1.0924 1.1623
LDP:SKG 0.587135 0.67120 0.71364 0.7544 0.8266
NFP:NFP 1.181667 1.32454 1.40803 1.5028 1.7125
NFP:SKG 0.590798 0.69778 0.75463 0.8104 0.9125
SKG:SKG 0.538858 0.64219 0.69806 0.7564 0.8711

Here, one of the findings is that older voters tend to prefer LDP as indicated by the statistically

significant positive age coefficient for LDP. This is consistent with the conventional wisdom of Japanese

politics that the stronghold of LDP is elderly voters.

To further investigate the marginal effect of age, we calculate the posterior predictive probabilities

of party preference under two scenarios. First, we choose the 10th individual in the survey data and

compute the predictive probability that a voter with this set of covariates prefers each of the parties.

This can be accomplished by the following commands,

japan10a <- japan[10,]
predict(res1, newdata = japan10a,

newdraw = rbind(res1$param[25001:50000,],
res2$param[25001:50000,],
res3$param[25001:50000,]), type = "prob")

19

where the first command extracts the 10th observation from the Japan data, and the second command

computes the predictive probabilities. Note that this individual has the following attributes,

gender education age
male 4 50

The resulting posterior predictive probabilities of being the most preferred party are,

JCP LDP NFP SKG
[1,] 0.107707 0.359267 0.324613 0.208413

The result indicates that under the model, we should expect 36% of voters with these covariates

to prefer LDP, 32% to prefer NFP, 21% to prefer SKG, and 11% to prefer JCP. Next, we change the

value of the age variable of this voter from 50 to 75, while holding the other variables constant. We

then recompute the posterior predictive probabilities and examine how they change. This can be

accomplished using the following commands,

japan10b <- japan10a
japan10b[,"age"] <- 75
predict(res1, newdata = japan10b,

newdraw = rbind(res1$param[25001:50000,],
res2$param[25001:50000,],
res3$param[25001:50000,]), type = "prob")

where the first two commands recode the age variable for the voter and the second command makes

the prediction. We obtain the following results,

JCP LDP NFP SKG
[1,] 0.06548 0.485467 0.249667 0.199387

The comparison of the two results shows that changing the value of the age variable from 50 to 75

increases the estimated posterior predictive probability of preferring LDP most and by more than 10

percentage points. Interestingly, the predictive probability for SKG changes very little, while that of

NFP decreases significantly. This suggests that older voters tend to prefer LDP over NFP.

20

Appendices

A Installation

To use MNP, you must install the statistical software R (if it is not already installed) as well as the

MNP package.

A.1 Windows systems

1. Installing the latest version of R. You may skip this step if the latest version of R is already

installed on your system. If R is not installed on your system, go to the Comprehensive R Archive

Network (CRAN) website (http://cran.r-project.org) and download the latest R installer for

Windows. Double-click on the .exe file to launch the installer. We recommend that you accept

the default installation options.

2. Installing MNP. Start R and type at the prompt:

install.packages("MNP")

A.2 Unix/Linux systems

1. Installing the latest version of R. You may skip this step if the latest version of R is already

installed on your system. If R is not installed on your system, it may either be installed locally

(e.g., in an individual user’s bin directory) or globally (e.g., in the /bin directory). The latter

requires administrative privileges. In either case, the latest release of R may be downloaded

from the CRAN website (http://cran.r-project.org).

2. Installing MNP.

(a) Create a local library directory if it does not exist already. Here, we use ~/Rlib/library
but you can specify a different directory. This directory can be created by typing the
following command at the command prompt,

mkdir ~/Rlib ~/Rlib/library

(b) Open the ~/.Renviron file in your home directory (or create it if it does not exist) and
add the following line,

R_LIBS="~/Rlib/library"

Alternatively, one can define the environmental variable. For example, add the following
line to your Bourne shell startup file (e.g., .bashrc file if you are using a bash shell),

export R_LIBS="$HOME/Rlib/library"

21

http://cran.r-project.org
http://cran.r-project.org

(c) Start R and type at the prompt:

install.packages("MNP", lib="~/Rlib/library/")

A.3 MacOS X systems

1. Installing the latest version of R. You may skip this step if the latest version of R is already

installed on your system. If R is not installed on your system, you may download it from the

CRAN website (http://cran.r-project.org).

2. Installing MNP. If you are using RAqua, typing the following command at the prompt,

install.packages("MNP")

will install MNP into the default local library directory, ~/Library/R/library.

If you are using the command line R, then the installation of the MNP package can be done ex-

actly in the same way as in Unix/Linux systems. You might want to set R LIBS to ~/Library/R/library

so that the command line R and RAqua can share the same local library directory.

B Command References

This section gives the command references which detail all the available options. Users can also

access these references by typing help(mnp), help(summary.mnp), and help(predict.mnp) at the R

prompt.

mnp Fitting the Multinomial Probit Model via Markov chain Monte Carlo

Description

mnp is used to fit (Bayesian) multinomial probit model via Markov chain Monte Carlo. mnp can

also fit the model with different choice sets for each observation, and complete or partial ordering

of all the available alternatives. The computation uses the efficient marginal data augmentation

algorithm that is developed by Imai and van Dyk (2005a).

22

http://cran.r-project.org

Usage

mnp(formula, data = parent.frame(), choiceX = NULL, cXnames = NULL,

base = NULL, latent = FALSE, invcdf = FALSE, trace = TRUE, n.draws = 5000,

p.var = "Inf", p.df = n.dim+1, p.scale = 1, coef.start = 0,

cov.start = 1, burnin = 0, thin = 0, verbose = FALSE)

Arguments

formula A symbolic description of the model to be fit specifying the response variable and

covariates. The formula should not include the choice-specific covariates. Details

and specific examples are given below.

data An optional data frame in which to interpret the variables in formula and choiceX.

The default is the environment in which mnp is called.

choiceX An optional list containing a matrix of choice-specific covariates for each category.

Details and examples are provided below.

cXnames A vector of the names for the choice-specific covariates specified in choiceX. The

details and examples are provided below.

base The name of the base category. For the standard multinomial probit model, the

default is the lowest level of the response variable. For the multinomial probit

model with ordered preferences, the default base category is the last column in

the matrix of response variables.

latent logical. If TRUE, then the latent variable W will be returned. See Imai and van

Dyk (2005) for the notation. The default is FALSE.

invcdf logical. If TRUE, then the inverse cdf method is used for truncated normal sam-

pling. If FALSE, then the rejection sampling method is used. The default is FALSE.

trace logical. If TRUE, then the trace of the variance covariance matrix is set to a

constant (here, it is equal to n.dim) instead of setting its first diagonal element to

1. The former avoids the arbitrariness of fixing one particular diagonal element

in order to achieve identification (see Burgette and Nordheim, 2009).

n.draws A positive integer. The number of MCMC draws. The default is 5000.

23

p.var A positive definite matrix. The prior variance of the coefficients. A scalar input

can set the prior variance to the diagonal matrix whose diagonal element is equal

to that value. The default is "Inf", which represents an improper noninformative

prior distribution on the coefficients.

p.df A positive integer greater than n.dim-1. The prior degrees of freedom parameter

for the covariance matrix. The default is n.dim+1, which is equal to the total

number of alternatives.

p.scale A positive definite matrix. When trace = FALSE, its first diagonal element is

set to 1 if it is not equal to 1 already. The prior scale matrix for the covariance

matrix. A scalar input can be used to set the scale matrix to a diagonal matrix

with diagonal elements equal to the scalar input value. The default is 1.

coef.start A vector. The starting values for the coefficients. A scalar input sets the starting

values for all the coefficients equal to that value. The default is 0.

cov.start A positive definite matrix. When trace = FALSE, its first diagonal element is set

to 1 if it is not equal to 1 already. The starting values for the covariance matrix.

A scalar input can be used to set the starting value to a diagonal matrix with

diagonal elements equal to the scalar input value. The default is 1.

burnin A positive integer. The burnin interval for the Markov chain; i.e., the number of

initial Gibbs draws that should not be stored. The default is 0.

thin A positive integer. The thinning interval for the Markov chain; i.e., the number

of Gibbs draws between the recorded values that are skipped. The default is 0.

verbose logical. If TRUE, helpful messages along with a progress report of the Gibbs

sampling are printed on the screen. The default is FALSE.

Details

To fit the multinomial probit model when only the most preferred choice is observed, use the

syntax for the formula, y ~ x1 + x2, where y is a factor variable indicating the most preferred

choice and x1 and x2 are individual-specific covariates. The interactions of individual-specific

variables with each of the choice indicator variables will be fit.

24

To specify choice-specific covariates, use the syntax, choiceX=list(A=cbind(z1, z2), B=cbind(z3,

z4), C=cbind(z5, z6)), where A, B, and C represent the choice names of the response variable,

and z1 and z2 are each vectors of length n that record the values of the two choice-specific covari-

ates for each individual for choice A, likewise for z3, . . ., z6. The corresponding variable names

via cXnames=c("price", "quantity") need to be specified, where price refers to the coefficient

name for z1, z3, and z5, and quantity refers to that for z2, z4, and z6.

If the choice set varies from one observation to another, use the syntax, cbind(y1, y2, y3) ~

x1 + x2, in the case of a three choice problem, and indicate unavailable alternatives by NA. If only

the most preferred choice is observed, y1, y2, and y3 are indicator variables that take on the value

one for individuals who prefer that choice and zero otherwise. The last column of the response

matrix, y3 in this particular example syntax, is used as the base category.

To fit the multinomial probit model when the complete or partial ordering of the available alterna-

tives is recorded, use the same syntax as when the choice set varies (i.e., cbind(y1, y2, y3, y4)

~ x1 + x2). For each observation, all the available alternatives in the response variables should

be numerically ordered in terms of preferences such as 1 2 2 3. Ties are allowed. The missing

values in the response variable should be denoted by NA. The software will impute these missing

values using the specified covariates. The resulting uncertainty estimates of the parameters will

properly reflect the amount of missing data. For example, we expect the standard errors to be

larger when there is more missing data.

Value

An object of class mnp containing the following elements:

param A matrix of the Gibbs draws for each parameter; i.e., the coefficients and covari-

ance matrix. For the covariance matrix, the elements on or above the diagonal

are returned.

call The matched call.

x The matrix of covariates.

y The vector or matrix of the response variable.

w The three dimensional array of the latent variable, W. The first dimension rep-

resents the alternatives, and the second dimension indexes the observations. The

25

third dimension represents the Gibbs draws. Note that the latent variable for the

base category is set to 0, and therefore omitted from the output.

alt The names of alternatives.

n.alt The total number of alternatives.

base The base category used for fitting.

invcdf The value of invcdf.

p.var The prior variance for the coefficients.

p.df The prior degrees of freedom parameter for the covariance matrix.

p.scale The prior scale matrix for the covariance matrix.

burnin The number of initial burnin draws.

thin The thinning interval.

Author(s)

Kosuke Imai, Department of Politics, Princeton University 〈kimai@Princeton.Edu〉, http://imai.

princeton.edu; David A. van Dyk, Department of Statistics, University of California, Irvine

〈dvd@uci.edu〉, http://www.ics.uci.edu/~dvd.

References

Imai, Kosuke and David A. van Dyk. (2005a) “A Bayesian Analysis of the Multinomial Probit

Model Using the Marginal Data Augmentation,” Journal of Econometrics, Vol. 124, No. 2

(February), pp.311-334.

Imai, Kosuke and David A. van Dyk. (2005b) “MNP: R Package for Fitting the Multinomial

Probit Models,” Journal of Statistical Software, Vol. 14, No. 3 (May), pp.1-32.

Burgette, L.F. and E.V. Nordheim. (2009). “An alternate identifying restriction for the Bayesian

multinomial probit model,” Technical report, Department of Statistics, University of Wisconsin,

Madison.

See Also

coef.mnp, cov.mnp, predict.mnp, summary.mnp; MNP home page at http://imai.princeton.

edu/research/MNP.html

26

http://imai.princeton.edu
http://imai.princeton.edu
http://www.ics.uci.edu/~dvd
http://imai.princeton.edu/research/MNP.html
http://imai.princeton.edu/research/MNP.html

Examples

###

NOTE: this example is not fully analyzed. In particular, the

convergence has not been assessed. A full analysis of these data

sets appear in Imai and van Dyk (2005b).

###

load the detergent data

data(detergent)

run the standard multinomial probit model with intercepts and the price

res1 <- mnp(choice ~ 1, choiceX = list(Surf=SurfPrice, Tide=TidePrice,

Wisk=WiskPrice, EraPlus=EraPlusPrice,

Solo=SoloPrice, All=AllPrice),

cXnames = "price", data = detergent, n.draws = 500, burnin = 100,

thin = 3, verbose = TRUE)

summarize the results

summary(res1)

calculate the quantities of interest for the first 3 observations

pre1 <- predict(res1, newdata = detergent[1:3,])

load the Japanese election data

data(japan)

run the multinomial probit model with ordered preferences

res2 <- mnp(cbind(LDP, NFP, SKG, JCP) ~ gender + education + age, data = japan,

verbose = TRUE)

summarize the results

summary(res2)

calculate the predicted probabilities for the 10th observation

averaging over 100 additional Monte Carlo draws given each of MCMC draw.

pre2 <- predict(res2, newdata = japan[10,], type = "prob", n.draws = 100,

verbose = TRUE)

coef.mnp Extract Multinomial Probit Model Coefficients

27

Description

coef.mnp is a function which extracts multinomial probit model coefficients from ojbects returned

by mnp. coefficients.mnp is an alias for it. coef method for class mnp.

Usage

S3 method for class 'mnp':

coef(object, subset = NULL, ...)

Arguments

object An output object from mnp.

subset A scalar or a numerical vector specifying the row number(s) of param in the output

object from mnp. If specified, the posterior draws of coefficients for those rows are

extracted. The default is NULL where all the posterior draws are extracted.

... further arguments passed to or from other methods.

Value

coef.mnp returns a matrix (when a numerical vector or NULL is specified for subset argument) or

a vector (when a scalar is specified for subset arugment) of multinomila probit model coefficients.

Author(s)

Kosuke Imai, Department of Politics, Princeton University 〈kimai@Princeton.Edu〉

See Also

mnp, cov.mnp; MNP home page at http://imai.princeton.edu/research/MNP.html

cov.mnp Extract Multinomial Probit Model Covariance Matrix

Description

cov.mnp is a function which extracts the posterior draws of covariance matrix from objects re-

turned by mnp.

28

http://imai.princeton.edu/research/MNP.html

Usage

cov.mnp(object, subset = NULL, ...)

Arguments

object An output object from mnp.

subset A scalar or a numerical vector specifying the row number(s) of param in the

output object from mnp. If specified, the posterior draws of covariance matrix for

those rows are extracted. The default is NULL where all the posterior draws are

extracted.

... further arguments passed to or from other methods.

Value

When a numerical vector or NULL is specified for subset argument, cov.mnp returns a three

dimensional array where the third dimension indexes posterior draws. When a scalar is specified

for subset arugment, cov.mnp returns a matrix.

Author(s)

Kosuke Imai, Department of Politics, Princeton University 〈kimai@Princeton.Edu〉

See Also

mnp, coef.mnp; MNP home page at http://imai.princeton.edu/research/MNP.html

predict.mnp Posterior Prediction under the Bayesian Multinomial Probit Models

Description

Obtains posterior predictions under a fitted (Bayesian) multinomial probit model. predict

method for class mnp.

Usage

S3 method for class 'mnp':

predict(object, newdata = NULL, newdraw = NULL, n.draws = 1,

type = c("prob", "choice", "order"), verbose = FALSE, ...)

29

http://imai.princeton.edu/research/MNP.html

Arguments

object An output object from mnp.

newdata An optional data frame containing the values of the predictor variables. Predic-

tions for multiple values of the predictor variables can be made simultaneously if

newdata has multiple rows. The default is the original data frame used for fitting

the model.

newdraw An optional matrix of MCMC draws to be used for posterior predictions. The

default is the original MCMC draws stored in object.

n.draws The number of additional Monte Carlo draws given each MCMC draw of coef-

ficients and covariance matrix. The specified number of latent variables will be

sampled from the multivariate normal distribution, and the quantities of interest

will be calculated by averaging over these draws. This will be particularly useful

calculating the uncertainty of predicted probabilities. The default is 1.

type The type of posterior predictions required. There are four options: type =

"prob" returns the predictive probabilities of being the most preferred choice

among the choice set. type = "choice" returns the Monte Carlo sample of the

most preferred choice, and type = "order" returns the Monte Carlo sample of

the ordered preferences,

verbose logical. If TRUE, helpful messages along with a progress report on the Monte Carlo

sampling from the posterior predictive distributions are printed on the screen. The

default is FALSE.

... additional arguments passed to other methods.

Details

The posterior predictive values are computed using the Monte Carlo sample stored in the mnp out-

put (or other sample if newdraw is specified). Given each Monte Carlo sample of the parameters

and each vector of predictor variables, we sample the vector-valued latent variable from the appro-

priate multivariate Normal distribution. Then, using the sampled predictive values of the latent

variable, we construct the most preferred choice as well as the ordered preferences. Averaging

over the Monte Carlo sample of the preferred choice, we obtain the predictive probabilities of each

30

choice being most preferred given the values of the predictor variables. Since the predictive values

are computed via Monte Carlo simulations, each run may produce somewhat different values. The

computation may be slow if predictions with many values of the predictor variables are required

and/or if a large Monte Carlo sample of the model parameters is used. In either case, setting

verbose = TRUE may be helpful in monitoring the progress of the code.

Value

predict.mnp yields a list of class predict.mnp containing at least one of the following elements:

o A three dimensional array of the Monte Carlo sample from the posterior predictive

distribution of the ordered preferences. The first dimension corresponds to the

rows of newdata (or the original data set if newdata is left unspecified), the

second dimension corresponds to the alternatives in the choice set, and the third

dimension indexes the Monte Carlo sample. If n.draws is greater than 1, then

each entry will be an average over these additional draws.

p A two or three dimensional array of the posterior predictive probabilities for each

alternative in the choice set being most preferred. The first demension corresponds

to the rows of newdata (or the original data set if newdata is left unspecified), the

second dimension corresponds to the alternatives in the choice set, and the third

dimension (if it exists) indexes the Monte Carlo sample. If n.draws is greater

than 1, then the third diemsion exists and indexes the Monte Carlo sample.

y A matrix of the Monte Carlo sample from the posterior predictive distribution of

the most preferred choice. The first dimension correspond to the rows of newdata

(or the original data set if newdata is left unspecified), and the second dimension

indexes the Monte Carlo sample. n.draws will be set to 1 when computing this

quantity of interest.

x A matrix of covariates used for prediction

Author(s)

Kosuke Imai, Department of Politics, Princeton University 〈kimai@Princeton.Edu〉

31

See Also

mnp; MNP home page at http://imai.princeton.edu/research/MNP.html

summary.mnp Summarizing the results for the Multinomial Probit Models

Description

summary method for class mnp.

Usage

S3 method for class 'mnp':

summary(object, CI=c(2.5, 97.5), ...)

S3 method for class 'summary.mnp':

print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

object An output object from mnp.

CI A 2 dimensional vector of lower and upper bounds for the credible intervals used

to summarize the results. The default is the equal tail 95 percent credible interval.

x An object of class summary.mnp.

digits the number of significant digits to use when printing.

... further arguments passed to or from other methods.

Value

summary.mnp yields an object of class summary.mnp containing the following elements:

call The call from mnp.

n.alt The total number of alternatives.

base The base category used for fitting.

32

http://imai.princeton.edu/research/MNP.html

n.obs The number of observations.

n.param The number of estimated parameters.

n.draws The number of Gibbs draws used for the summary.

coef.table The summary of the posterior distribution of the coefficients.

cov.table The summary of the posterior distribution of the covariance matrix.

This object can be printed by print.summary.mnp

Author(s)

Kosuke Imai, Department of Politics, Princeton University 〈kimai@Princeton.Edu〉

See Also

mnp; MNP home page at http://imai.princeton.edu/research/MNP.html

C Dataset References

The following descriptions of the datasets can also be obtained by typing help(detergent) and

help(japan) at the R prompt.

C.1 Detergent Brand Choice Data

detergent Detergent Brand Choice

Description

This dataset gives the laundry detergent brand choice by households and the price of each brand.

Usage

data(detergent)

33

http://imai.princeton.edu/research/MNP.html

Format

A data frame containing the following 7 variables and 2657 observations.

choice factor a brand chosen by each household

TidePrice numeric log price of Tide

WiskPrice numeric log price of Wisk

EraPlusPrice numeric log price of EraPlus

SurfPrice numeric log price of Surf

SoloPrice numeric log price of Solo

AllPrice numeric log price of All

References

Chintagunta, P. K. and Prasad, A. R. (1998) “An Empirical Investigation of the ‘Dynamic McFad-

den’ Model of Purchase Timing and Brand Choice: Implications for Market Structure”. Journal

of Business and Economic Statistics vol. 16 no. 1 pp.2-12.

C.2 Japanese Survey Dataset

japan Voters’ Preferences of Political Parties in Japan (1995)

Description

This dataset gives voters’ preferences of political parties in Japan on the 0 (least preferred) - 100

(most preferred) scale. It is based on the 1995 survey data of 418 individual voters. The data also

include the sex, education level, and age of the voters. The survey allowed voters to choose among

four parties: Liberal Democratic Party (LDP), New Frontier Party (NFP), Sakigake (SKG), and

Japanese Communist Party (JCP).

Usage

data(japan)

Format

A data frame containing the following 7 variables for 418 observations.

34

LDP numeric preference for Liberal Democratic Party 0 - 100

NFP numeric preference for New Frontier Party 0 - 100

SKG numeric preference for Sakigake 0 - 100

JCP numeric preference for Japanese Communist Party 0 - 100

gender factor gender of each voter male or female

education numeric levels of education for each voter

age numeric age of each voter

35

D What’s New?

version date changes
2.6− 1 09.23.09 trace restriction used as the default (thanks to Lane Burgette).
2.5− 6 03.24.08 an important bug fix for the treatment of base categories

(thanks to Ryan Black and Taeyoung Park)
2.5− 5 08.01.07 returning X matrix from predict()
2.5− 4 05.24.07 another bug fix in predict() (thanks to Andrew Owen).
2.5− 3 12.04.06 a minor change.
2.5− 2 11.30.06 a bug fix in predict()
2.5− 1 11.21.06 rewrite predict() in C for speedup. Changed moredraw to n.draws.
2.4− 2 10.17.06 bug fix in moredraw option (thanks to Ken Benoit).
2.4− 1 10.05.06 added an option, moredraw, to predict.mnp() (thanks to Ken Benoit).
2.3− 9 09.21.06 minor changes to be consistent with R version 2.4-0.
2.3− 8 04.26.06 removing C warnings for Windows platform.
2.3− 7 04.24.06 some very minor fixes to the C code.
2.3− 6 01.11.06 print the number of estimated parameters in summary() (thanks to S.C. Wang)
2.3− 5 12.27.05 -1 is allowed in formula (thanks to Daeyoung Koh)
2.3− 4 09.06.05 added inverse CDF method option for truncated normal sampling
2.3− 3 06.23.05 made Gibbs sampler slightly more efficient
2.3− 2 06.02.05 minor changes to NAMESPACE and DESCRIPTOIN files
2.3− 1 05.27.05 added coef.mnp() and cov.mnp() (thanks to Natasha Zharinova).
2.2− 3 05.12.05 minor changes to the documentation;

version published in Journal of Statistical Software
2.2− 2 05.09.05 minor changes to the documentation
2.2− 1 05.01.05 stable release for R 2.1.0; The observations with missing values in X

will be deleted in mnp() and predict() (thanks to Natasha Zharinova).
2.1− 2 03.22.05 added an option, newdraw, for predict() method
2.1− 1 02.25.05 improved predict() method; documentation enhanced and edited
2.0− 1 02.12.05 added predict() method (thanks to Xavier Gerard and Saleem Shaik)
1.4− 1 12.16.04 improved error handling (thanks to Kjetil Halvorsen)
1.3− 2 11.17.04 stable release for R 2.0.1; minor updates of the documentation
1.3− 1 10.09.04 stable release for R 2.0.0; updating vector.c
1.2− 1 09.26.04 optionally stores the latent variable (thanks to Colin McCulloch)
1.1− 2 09.14.04 minor fix in mnp() (thanks to Ken Shultz)
1.1− 1 08.28.04 major and minor changes: namespace implemented
1.0− 4 07.14.04 users can interrupt the C process within R (thanks to Kevin Quinn)
1.0− 3 06.30.04 bug fix in xmatrix.mnp() (thanks to Andrew Martin)
1.0− 2 06.29.04 removed p.alpha0 parameter
1.0− 1 06.23.04 official release

36

version date changes
0.9− 13 05.28.04 bug fix in ymatrix.mnp()
0.9− 12 05.23.04 updating the documentation and help files
0.9− 11 05.08.04 bug fix in cXnames() (thanks to Liming Wang)
0.9− 10 05.03.04 first stable version; bug fix in labeling
0.9− 9 05.02.04 bug fix in sampling of W;

added summary.mnp() and print.summary.mnp()
0.9− 8 04.29.04 improving sampling of W, replace printf() with Rprintf()
0.9− 7 04.27.04 missing data allowed for all models, varying choice sets allowed.
0.9− 6 04.26.04 missing data allowed in the response variable for standard MNP;

a major bug fixed for MoP (thanks to Shigeo Hirano)
0.9− 5 04.25.04 improper prior handled by algorithm 1
0.9− 4 04.21.04 bug fix in MoP, R 1.9.0 compatible, changes in mprobit.R
0.9− 3 04.10.04 rWish() modified with an improved algorithm
0.9− 2 03.22.04 first public beta version
0.9− 1 03.20.04 first beta version

37

References

Burgette, L. and Nordheim, E. (2009). An alternate identifying restriction for the bayesian multinomial

probit model. Tech. rep., Department of Statistics, University of Wisconsin, Madison.

Chintagunta, P. K. and Prasad, A. R. (1998). An empirical investigation of the “Dynamic McFadden”

model of purchase timing and brand choice: Implications for market structure. Journal of Business

& Economic Statistics 16, 1, 2–12.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). Bayesian Data Analysis. Chapman

& Hall, London, 2nd edn.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulations using multiple sequences

(with discussion). Statistical Science 7, 4, 457–472.

Imai, K. and van Dyk, D. A. (2005). A Bayesian analysis of the multinomial probit model using

marginal data augmentation. Journal of Econometrics 124, 2, 311–334.

Martin, A. D. and Quinn, K. M. (2006). MCMCpack: Markov chain Monte Carlo (MCMC) Package.

McCulloch, R., Polson, N. G., and Rossi, P. (2000). A Bayesian analysis of the multinomial probit

model with fully identified parameters. Journal of Econometrics 99, 173–193.

McCulloch, R. and Rossi, P. (1994). An exact likelihood analysis of the multinomial probit model.

Journal of Econometrics 64, 207–240.

Nobile, A. (2000). Comment: Bayesian multinomial probit models with normalization constraint.

Journal of Econometrics 99, 335–345.

Plummer, M., Best, N., Cowles, K., and Vines, K. (2005). coda: Output analysis and diagnostics for

MCMC. R package version 0.9-2.

R Development Core Team (2009). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Rossi, P. and McCulloch, R. (2005). bayesm: Bayesian Inference for Marketing/Micro-econometrics.

R package version 0.0-2.

38

	Title Page
	1 Introduction
	2 The Method
	2.1 The Multinomial Probit Model
	2.2 The Multinomial Probit Model with Ordered Preferences
	2.3 Prior Specification
	2.4 Prediction under the Multinomial Probit Model

	3 Example 1: Detergent Brand Choice
	3.1 Preliminaries
	3.2 Using coda for Convergence Diagnostics and Output Analysis
	3.3 Final Analysis and Conclusions

	4 Example 2: Voters' Preference of Political Parties
	4.1 Preliminaries
	4.2 Convergence Diagnostics, Final Analysis, and Conclusions

	Appendices
	A Installation
	A.1 Windows systems
	A.2 Unix/Linux systems
	A.3 MacOS X systems

	B Command References
	mnp
	coef.mnp
	cov.mnp
	predict.mnp
	summary.mnp

	C Dataset References
	C.1 Detergent Brand Choice Data
	detergent
	C.2 Japanese Survey Dataset
	japan

	D What's New?
	References

