R: A Language and Environment for
Statistical Computing

Reference Index

The R Development Core Team

Version 2.13.1 (2011-07-08)

Copyright (©) 1999-2010 R Foundation for Statistical Computing.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in a translation
approved by the R Development Core Team.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute
it under the terms of the GNU General Public License. For more information about these matters, see
http://www.gnu.org/copyleft/gpl.html.

ISBN 3-900051-07-0

Contents

1 The base package 1
base-package L 1
Device ..o e e e e 1
Machine e e e e 2
Platform . . L L L e e e 4
abbreviate e e e e 6
AZTEP . v o o e e e e e e e e e e e e e e e e e e 7
all . . e 9
alllequal 10
alllnames L e e e e e 12
ANY . . o v e e e e e e e e e e e e e e e e e e e 13
APETINL . .« v v v v v e 14
append e e e 15
apply . . e 16
ATES .+ v v e e e e e e e e e e 18
Arithmetic e 19
AITAY © o v o v v e 21
asdataframe L L e e 23
as.Date L e 24
AS.eNVIFONMENt v ot e e e e e e e e e 27
as.function 28
as.POSIX™ . . . e 29
ASIS . e e e 31
ASSIZN . . . L L e e e e e 32
assignOPs L 34
attach e 35
AT . . L e e e e e e e e 37
attributes L L e e e e e 38
autoload L e e 39
backsolve 40
basename e e e 41
Bessel e 43
bindenv e e e e 45
body e e 47
bquote L e 48
browser e e e 49
browserText e e e 51

CONTENTS

builtins e e e e 52
DY e e 52
C e e e e 53
call e e 55
callCC e e e 56
capabilities L 57
CAL . ot e e e e e 59
chind e 60
charexpand L 63
character e 64
charmatch e 65
chartr e e 67
chol e e 68
chol2inv e 70
class . ..o e e e 72
7) 73
Colon e e 74
COISUMS e 76
commandATgs e e e e e e e 77
COMMENE . . . v v v v v e 78
CompariSono e e e 79
COMPIEX . . . v ot e e e e e e e 81
conditionS e e e e e 83
conflicts L. e 86
CONNECLIONS v v v i e i e e e e e e e e e e e e e e e e 87
Constants e e e e e e e e e e e 95
contributors L. e 97
Control 97
CONVETLETS . . & v v v v e 99
copyright 100
Crossprod e e e 101
Cstack_info e 102
CUMSUIM . . & v v vt e 103
CUL . ot e e e 104
cut POSIXt e 106
data.class L. e e 107
dataframe e 108
datamatrixX L. e e e e 110
date e e 112
Dates e e 112
DateTimeClasses o i i e e e e 114
def .o e e 117
debug e 119
Defunct e 120
delayedAssign L 121
deparse e e e e 122
deparseOpts L 124

Deprecated 125

CONTENTS iii

det . . e e 126
detach e e e 127
diag . .. 129
diff . . e 130
difftime e 132
dim ... e 134
dimnames e e 135
do.call e 136
double e e 137
dput . . .o e e 139
drop . . .o e 141
droplevels L 142
dump e e 143
duplicated 144
dyndoad e 147
eapply e 149
CIZEN e 150
encodeString L L. e e e e e e 152
Encoding e 154
ENVIFONMENE ottt e e e e e e 155
EnvVar e e e 158
eval .. e e 160
EXISES . . L e e e e e 162
expand.grid L. 164
EXPIESSION .« . v v v v v e 165
Extract e e 166
Extract.dataframe 171
Extract.factor e e e 174
Extremes e e 176
factor L e e e 178
file.access 181
file.choose 182
fileinfo e 183
filepath oL 184
file.show e 185
files . . . e e e 186
files2 e 189
findipackage L 190
findInterval 191
force L e e e 193
Foreign 194
formals e 197
format e e 198
format.info 201
formatpval 202
formatC e 203
formatDL e 206

function e 207

iv

CONTENTS
funprog e e e 209
BC e e e e e e e 211
GCHMEo 213
GCLOTEUI® . .« . o v v v e e e e e e e e e e e e 214
BEL . e e e e 215
getDLLRegisteredRoutines L L 216
getLoadedDLLs 218
getNativeSymbollnfo 219
GEUEXL . . . o o e e e e e e e 221
getwd ... 223
gl e 224
(<] P 225
grepRaw Lo 229
groupGeneriC e e e 230
SZCOM . v o v e e i e e e e e e e e e e e e e e e e e e 233
hexmode e e 234
Hyperbolic e 235
ICONV . . . o o o e 236
icuSetCollate 238
identical e e e e e 240
identity L 242
ifelse oL 242
INEZET . . . o v o e e e e e e e e e e e e 244
INETACtiONt o v e e e e e e e e e e e e e e e e e e e 245
INTETaCtIVE o o o o et e e e e 246
Internal 247
InternalMethods e 248
invisible L 249
isfinite e 250
is.function L e 252
isdanguage 252
1S.0DJECE e e e e e 253
ISR e 254
ISTECUISIVE . o o v v v o e 254
is.single . . .o 255
isaunsorted L L 256
ISOdatetime e 257
1SS4 L e 257
ISSymmetric L e e e e e e e 259
JIET . L L 260
kappa e 261
kronecker 263
IOn_info e 264
labels e e e 265
lapply . . . e 265
Lastvalue o e 268
length 269

CONTENTS v

libPaths e 272
library e 274
library.dynam 278
LICeNSE e e e 280
O 280
List.files e e 282
LSt2eNV e e e e e e 284
load e 285
locales e e e e 287
log . . o e 289
Logic o e 291
logical e e 293
JowWertri e e e 294
IS . e e e 294
MaKE.NAMES v v v o e e e e e e e e e e e e e e e e 296
make.unique 297
mapply e e e 298
margin.table L e e e 300
MALOLVEC &« v v v v v e 301
match e e 301
match.arg L e e e 303
match.call 304
match.fun 305
MathFun e e 307
matmult e 308
0 16 309
maxCol e e e 311
MEAN v v v v e 312
MEMCOMPIESS .+ . . v v v v e v e 313
Memory e e e 314
Memory-limits 316
memory.profile e e e 318
IMETZE .« o o o v e e e e e e e e e e e e e e e e e e 318
MESSAZE .+« o v o v v e 321
MISSING . . o v ot e e e e e e 322
mode e e e 323
NA . 325
NAME o o v o e e e e e e e e e e e e e e e e 326
NAMES . . . v v v v e e e e e e e e e e e e e e e e e e e 328
DATES . . o v v e e e e e e e e e e e e e e e 329
nchar e e e e 330
nlevels e e 332
NOQUOLE .« v v v o v e 333
103 0 0 O 334
normalizePath 335
NotYet e e e 336
NIOW & & v v v e 337

vi

CONTENTS
NS-hoOKS e e 339
ns-load L L e 340
NS-TOPENV « . o v vt et e e e e e e e e e e e e e e e e e e 341
NULL . . . e e 342
NUMETIC . . . v v v e v e e e e e e e e e e e e e e e e e e e 343
NumericConstants 0 e e e e e e e 345
NUMETIC_VEISION v v v v e e e e e e e e e e e e e e 346
octmode L. e e 347
OMLEXIL . . . vt v o e e e e e e e 348
Ops.Date e 350
OPLIONS . .« . . v v vt e e e e e 350
order e e e e 358
OULET . . . o v v e i e e e e e e e e e e 361
Paren e 362
PATSE . o o o e e e e e e e e e e 363
Pasteo 365
patheexpand 366
pmatch. L e e 367
POlyroot L e 368
POSOENIV L L e 369
PIEttY . o o e 370
Primitive e 371
Print . . . e 372
print.dataframe 374
printdefault L 375
PrMAtTiX o L e e e e e e e e e e e 377
PrOC.IME o ot e e e 378
prod . .o e 379
prop.table e 380
pushBack 381
6) 382
QR.AuxIliaries e e 385
QUIt . L e e 386
QUOLES e e 387
R.Version e 389
Random e 390
Random.user e 394
TANZE « ¢ o e e e e e e e e e e e e e e e e e e e 396
TANK e e e e e 397
rapply . ..o e 399
TAW o o o e e e e e e e e e e e e e e 400
rawConnection e e e e e e e e 401
rawConversiono e e e e e e e e e e e e e 402
RAULS e 404
readBin L e e e 405
readChar e e e 407
readline e e e 409

readLines e 410

CONTENTS vii

readRDS e e e 412
readRenviron L e e 414
real ... e 415
Recall e 416
reg.finalizer L 416
TEEEX . v v e 417
TEIMOVE . v o v v v e e e e e e e e e e e e e e e e e e 421
TED « o v e e e e e e e e e e e e e e e e e e 423
replace L L e 425
Reserved e 426
TEV o o v e e e e e e e e 426
Rhome e 427
le . . e e e e 428
Round e 429
round.POSIXt e e e 430
TOW o o o e e e e e e e e e e e e e e e e 431
TOW.NAIMES . . . 2 v v v e v e 432
row/colnames e e e e e 434
TOWSUIN & o v v v v v e 435
sample L e 436
SAVE ot v e e e e e e e e e 438
scale . .. L e 441
72 Yo 442
search L e 446
seek . .o e 447
SBO « « e e e e e e e e e e e e 449
seg.Date 451
seq.POSIXt e 452
SEQUENICE .+ v v v v v v e 454
serialize e e e 454
SEES o L i e e e e 456
setTimeLimit e 457
showConnections e e e 458
shQuote L 460
SIZN . o o e 461
SignalS. e e e e e 462
SINK . L L e e 462
slicedndex L 464
SIOtODP . . . e e 465
socketSelect e e 466
SOLVE o e 467
SOTL o v vt e e e e e e e e 468
SOUICE & v v v v v e e e e e e e e e e e e e e e e 471
Special 473
SPIIt . . 476
Sprintf . . . L e e 478
SQUOLE e e 482

viii

CONTENTS
STArtup . . . o e e e e e e e e e e e 486
SLOD .« . e e e e e 489
SOPIfNOL e 490
SUPHIME o e e 491
SIISPIit © . . L e e e 496
] 30 498
]33 1 ' 499
SLIUCLUIE . . . o o o v o et e e e e e e e e e e e 500
SITWIAD o o e 501
SUDSEt 502
SUDSLItULE e e 504
SUDSEr . . . L e 506
SUM © . b vt v e e e e e e e e e e e e e e e e e e 508
SUMMATY .+« o v o v e v e e e e e e e e e e e e e e e 509
SVA . e 510
SWEED © . v e e e e e e e e e 512
SWitch e 513
SYNEAX . . o o o e e e e e e e e e e e e e 515
SYS.GEENV . . . v v i e e e e e e e e e e e e 516
Sys.getpid oL 517
Sys.glob . . . e 518
Sysinfo e e 519
Sysdocaleconv 520
SYSPATENL .« o v v vt e 521
Sysareadlink e 524
SYSSEENV .« v v v vt e e e e e e e e e e e e e e e e e e 525
Sys.sleepo 526
SYS.SOUICE .+ o v v v v v v e e e e e e e e e e e e e e e 527
SYSHME . . . o v o e e e e e e e e e e e 528
Sys.which 529
SYSIEIM .« . o o o v e e e e e e e e e e 530
system.file L e 532
SYStEMLLME e e e e e 533
SYStEM2 . . . L L e e e e 534
b e 536
table e 537
tabulate L 540
tapply . . . e 541
taskCallback 542
taskCallbackManager L. 544
taskCallbackNames 546
tempfile L e e 547
textConnection e e e 548
tilde e 550
tIMEZONES v v o e e e e e e e e e e e 551
tOSIIING e e e e e e 553
ErACE v o e e e e e e e e e e e e e e e e e 554

traceback e 558

CONTENTS ix

traCeMEIM v v v e i e e e e e e e e e e e e 559
transform L. L e 561
Trig . . . e 562
Y o o e e 563
typeof . . .o e 564
UNIQUE . . o o oo e e e e e e e e e e e e e e e e e e 565
unlink L L e 567
unlist e e e e e 568
UNNAME . . . v v v v v e 570
UseMethod e 570
userhoOkS L e e e 573
utf8CONVersion e e 574
VECIOT . o v e e e e e e e e e e e 575
WAIMING . . o v v o vt e 578
WarNINGs o e e e e e e e 579
weekdays L 580
which e e 582
which.min 583
With . . e e 584
withVisible e e 586
WIILE . . . o ot o e e e e e e e e e 587
writeLines L. 588
XM . . e 589
zapsmall e e 590
zpackages L e e e 590
ZUtilS . . L e e e 591
2 The datasets package 593
datasets-package L. e 593
ability.cov e 593
airmiles L e 594
AirPassengers 595
airquality 596
anscombe L. L e e e e e e e e 597
AENU o e e e e e e e e e e e e e e e e 598
attitude L e e e 599
AUSHIES & . o vt v o e e e e e e e e e e e e 600
beavers e e e 601
Blsales 602
BOD . . . e e 603
CATS o v v v e 604
ChickWeight e 605
ChickWits e 606
CO2 . e e e 607
COZ . i e e e e e 608
crimtab . . o. oL L L e e e e e 609
diSCOVEIIES o v o e e e e e e e e 611
DNase e e e e 612

CONTENTS

CUIO . o v v e e i e e e e e e e e e e e e e e 614
eurodisto e 615
EuStockMarkets 615
faithful 616
Formaldehyde 617
freenyo e 618
HairEyeColor e 619
Harman23.cor 620
Harman74.cor e 621
Indometh e 621
infert.o 622
InsectSprays e e 624
IS . . o e e e e e e e 624
islands L e 626
JohnsonJohnson 626
LakeHuron e 627
Th e 628
LifeCycleSavings o e e 628
Loblolly e e 629
longley e 630
Lynx . ..o e 631
MOTIEY e e e e e e 632
101172 633
nhtemp 633
Nile . . . o e 634
NOEIM ot v e e e e e e e e e 635
occupationalStatus L. 636
Orange o o e 637
OrchardSprays e 638
PlantGrowth e 639
PIECID .« o o o o e 640
presidents e e e e e 640
PIESSUIE v v v v i it e e e e e e e e e e e 641
Puromycin 642
quakeso 643
randu L e e 644
TIVETS . v v o v e et e 645
TOCK . . e 646
SleeD . . . e 646
stackloss L 647
] 1 648
sunspot.month e e e e 650
SUNSPOLYEAT © . v v v v v v v e 651
SUNSPOLS .« v v v vt e 651
SWISS . . v v v e e e e e e 652
Theoph e 653
Titanic L e e e 655

ToothGrowth e 656

CONTENTS xi

TEETING . . . o o v i e e e e e e e e e e e e e e e e 657
IIEBS « v v v e i e 657
UCBAdmMISSIONS v o it e e e e e e e e e e e 658
UKDriverDeaths e 659
UKgas o e 661
UKLungDeaths 661
USAccDeaths e 662
USAITESES o o e e e e e e e e e e e e e 662
USJudgeRatings 663
USPersonalExpenditure 664
USPOD « ¢ e e e e e e e e e e e e e e e 665
VADeaths e e 665
VOICANO e 666
warpbreaks L e e e e e 667
R Z0) 44 1) 668
WorldPhones e 669
WWWusage o oo e 669
3 The grDevices package 671
grDevices-package 671
adjustcolor. e 671
as.graphicSANNOt e e e e e e e e e 673
ASTASIET e e e e e e e e e e e e e e e e e e e 673
boxplot.stats 675
CATO . . o v vt e e e e e e e e e e e e 677
check.options L 679
chull e 680
CIM . o v et e e e e e e e e e e e e e e e e 681
col2rgb . . L e e e 682
colorRamp. 683
colors e e e 685
contourlines 686
convertColor 687
densCols e e 689
dev . . . e e e 690
devinteractive e e e e e e 692
dev.size e 693
dev2 . o e e 693
dev2bitmap e e e e e 695
devAskNewPage 698
Devices e e 699
embedFonts 700
extendrangeo e e e e e e 701
getGraphicsEvent 702
SIAY o v e e e e e e e e e e e e e e e e e 705
gray.Colors e e e e e e 706
hel .. . e 707
Hershey 709

NSV . e 712

xii CONTENTS
Japanese e e e e 713
make.rgb e e 714
n2mfrow L e e e e e e e e e e 716
NClASS o e e e e e e 717
paletteo e 718
Palettes 719
PAf . e 721
pdfoptions L e 725
PICIEX 726
plotmatho 728
PRE o o o e e 733
POSESCIIPL « . . o v v o e e e e e 736
postscriptFonts L e 742
pretty.Date e 745
PS.OPHONS e 746
QUATTZ . . o v e e e e e e e e e e e e e e e e e e 747
quartzFonts 750
recordGraphics e e e e 751
recordPlot 752
TED . e 753
rgb2hsv . .o 754
savePlot L e e 756
trans3do L 757
TypelFont e e e 758
. 1 759
XT1Fonts e e e e e e 764
XAZ . e 765
XY.COOTdSo e e 767
xyTable L 768
XYZ.COOTAS . . v v o o e e e e e e e e e e 769

4 The graphics package 771
graphics-package 771
abline e 772
AITOWS .« o o ottt e e e e e e e e e e e e e e e e e 773
assocplot 775
AXIS . o . e e e e 776
AXIS .+ v v e e e e e e 777
axis.POSIXct 780
axTicks L 782
barplot L e 783
bOX . e e e e 787
boxplot 788
boxplot.matrix e e 791
DXP . e 792
cdplot e e e e 795
Clip . . e 797
70 1110 1) 798

CONTENTS Xiii

COpPlOt . . . e e 802
CUIVE . o v et i e e e e e e e e e e e e e e e 805
dotchart e 807
filled.contour 809
fourfoldplot e 811
frame e 813
grid ... e 814
hist. . . . e 815
hist POSIXt e 818
identify 820
IMAZE . . . o oo e e 822
layout e e 824
legend L 826
Lines o e 831
locator e 833
matplot 834
mosaicplot L. 836
MEEXE . . o o ot e e e e e e e e e 840
PAITS . . . e e e e 842
panel.smootho 844
PAr .« o o e 845
PEISD -« o o e e e e e e e e e 853
PIE . . o e 857
Plot . e 859
plot.dataframe e 860
plotdefault 861
plotdesign 864
plotfactor 865
plot.formula L 866
plothistogram 868
plottable 869
plot.window e e 870
PIOLXY .« o e 871
POINES o o o e e e 872
polygon 876
polypath e 878
rasterlmage L. 880
TECE o v o i e e e e e 881
TUZ o v e e e e e e e e e e e e e e e e e e e 883
&) (=) 884
SEEMENLS .« . v v vt e 886
smoothScatter e 888
Spineplot. L e e e 890
SEATS . . L L e 892
SEEIM . . o v e e e 896
stripchart L e e 897
strwidth . . 0 L Lo e 899

sunflowerplot 900

Xiv CONTENTS
SYymbols e e e 903
TEXE . L L 905
title . . . e e 907
UNIES . . o o ot e e e e e e e e e e e e 909
xspline L 910

5 The grid package 913
grid-package 913
absolute.SIZe e e 914
AITOW + o v v v v e e e e e e e e e e e e e e 915
convertNativeo e 915
dataViewport e e e e e e 917
drawDetails 918
editDetails e 919
gEdit. 920
GetNAMES e 921
EPAT . . . e e e e e e e e e e e e e 921
gPath 923
Grid 924
Grid VIEWPOItS o oo oo e 925
gridaadd L 928
Srid.aITOWS e e e e e e e e e e e 930
grid.cap e e e e 932
grideircle 933
gridclip . . . L 934
gridcollectiono 936
grid.Convert e 937
grid.COPY .+ . o e e e e e 939
Grid.CUTVE o e e e e e e 940
griddisplaylist 942
griddraw L 943
grideedit L 944
gridframe 945
gridfunction. L. L e e e e 947
grid.get e e e e 948
grid.grab Lo L 950
gridgrillo 951
grid.grob L L 952
gridJayout 953
gridlines e e 955
grid.Jocator L e e 957
gridIs . . . 958
eridmove.to 961
Grid.NeWPAZE e e e 962
gridnull e 963
gridopack e 964
gridipath L 966
gridplace 968

gridplotandlegend 969

CONTENTS XV

grid.points e e e e e e e e 970
grid.polygon L e e e 971
grid.pretty 972
erid prompt e 973
gridraster e 974
gridorecord L 976
GridreCt L e e e e e e 977
gridorefresh L 978
gridremove e 979
grid.segments e e 980
grid.Set . . .o 981
grid.showlayout 982
grid.show.viewport L e e e e 983
griditeXto e e e e e 985
grid.XaxiS 987
gridxspline 988
grid.yaxiS e 991
grobName e e e e e e e e e 992
grobWidth L 993
grobX ..o e 993
plotViewport 994
POP.VIBWPOIt . . o o v v vt ittt e e e e e e e e e 995
PUSh.VIEWPOIT o o e 996
Querying the Viewport Tree e 996
roundreCt e e 998
ShowGrob e 999
showViewport 1000
stringWidth oL 1002
UNIE . .o o 1002
UNILC . . o o e e e e e 1005
unitlengtho 1005
UNIEPMINo o e e 1006
UNIETEP © o v v v v et e e e e e e e e e e e e e e 1007
validjust L 1008
validDetails L 1008
vpPath e 1009
widthDetails 1010
Working with Viewports L 1011
xDetails L 1013
xsplinePoints oL 1014
6 The methods package 1017
methods-package 1017
BasicFunsList 1018
AS o e e e e e e e 1018
BasicClasses e e 1022
callGeneric e e 1024
callNextMethod e 1026

CanCoCICE v v o e e e 1028

XVi

CONTENTS
chind2 e 1029
Classes o e e e e e e e e e e 1030
classesTOAM e 1034
classRepresentation-class 1036
Documentation 1037
dotsMethods e 1039
environment-class L. 1042
envRefClass-class 1042
evalSource e e e 1044
findClass e 1047
findMethods e 1049
fixPrel.8 e 1051
genericFunction-class L 1052
GenericFunctions 1053
getClass L e e e e 1057
getMethod L 1059
getPackageName 1061
hasATZ e e e e 1063
implicitGeneric e e e e e 1064
inheritedSlotNames 1066
initialize-methods 1067
IS o o e e e e e 1068
isSealedMethod e 1074
language-class L. 1075
LinearMethodsList-class 1076
makeClassRepresentation L e 1077
method.skeleton 1078
MethodDefinition-class 1079
Methods e e 1080
MethodsList-class e e e 1088
MethodWithNext-class e 1089
NEW . o o o e 1090
nonStructure-class e e e e 1093
ObjectsWithPackage-class 1093
promptClasso 1094
promptMethods 1096
ReferenceClasses e 1097
IEPresentation e e e e e 1105
S3Part e 1107
SdgroupGeneric e e e 1111
SClassExtension-class 1113
selectSuperClIasses o e e e e e e 1114
SetClass e 1115
setClassUnion e e 1120
SEtGENETIC . . . v . v v e e e e 1121
setMethod 1127
setOIdClass e e e 1130

CONTENTS

showMethods e
signature-class e e e e e
SIOt . . e
StructureClasses e e
testinheritedMethods
TraceClasses o v i v i e e e e e e
validObject e e e e e e

7 The splines package

splines-package
asVeCTOT e
backSpline L
DS e

IS« o e e e e e e e e e e e e
periodicSpline
polySpline L
predict.bs oL e
predict.bSpline
splineDesign
splineKnots L
splineOrder L e
XYVECIOT . . . o o o e e e e

8 The stats package

stats-package
.checkMFClasses e

addl . . .
addmargins

AZEICZALC L e e e e e e e e e e
AIC . .

ANOVA . . . o v et e e e e e e e e e e e e e e
anova.glmo
anova.lm L e
anova.mlm L e e e
ansari.test L e e e e

arimal L e
ARMAacf e
ARMAIOMA e
as.helust

Xviii

CONTENTS
asOneSidedFormula 1212
AVE . o o e 1212
bandwidth 1213
bartlett.test e e e e e 1215
Beta e e 1217
binom.test e e e e e 1219
Binomial 1221
biplot . . . e e e e 1222
biplot.princomp e e 1224
birthday 1225
Box.test e e 1227
C o e e e 1228
CANCOT & & v v v v e 1229
case/variable.names e 1230
Cauchy e e 1231
chisqutest 1233
Chisquare e 1236
cmdscale L L e 1238
coef . L e e e 1240
COMPIELE.CASES . . . v v v v e o e e e e e e e e e e e e e e e e e 1241
confint e e 1242
constrOptim e e e e e e e 1243
COMITASE o o o o e e e e e e e e e e e e e e e e e e 1245
CONIASES v v v e e e e e e e e e e e e e e e e e e 1247
CONVOLVE e e 1248
COPhEnetic o i e e e e e 1250
&7) O 1251
COLLESE . . . o o et e e e e e e e e 1254
COV.WE . o e 1257
CPEIAIL . . . v v v vttt e e e e e e e e e e e e e 1258
CULTEE . . v v v v v e e e e e e e e e e e e e e e e e e e 1259
decompose e e e e e e e 1260
delete.response 1262
dendrapply 1263
dendrogram 1264
density e e e e e e 1269
deriv e e e 1273
deviance e e e e 1276
dfiresidual L. 1276
diffinv e 1277
dist. . . . e e e 1278
Distributions L. e 1281
dummy.coef e 1282
ecdf . . oL 1283
effaovlist e 1286
effects e e 1287
embed L e 1288

expand.model.frame L 1289

CONTENTS Xix

Exponential L e 1290
extractAIC e 1292
factanal 1293
factor.scope 1297
family e 1298
FDist e 1301
i O 1303
filter e 1305
fishertest e e e 1306
fitted e 1309
fivenum e 1310
fligner.test L e e e e e e 1311
formula 1312
formulanls 1315
friedman.test 1316
ftable e e e e 1318
ftableformula 1320
GammaDist 1321
GEOMELIIC o i e e e e e e e e e e e e e 1323
getlnitial L 1325
glm .. 1326
glm.control e 1331
glmsummaries 1332
helust o e e 1333
heatmap L e e e e e e 1337
HoltWinters e 1340
Hypergeometric 1343
identify.hclust o L 1344
influence.measures e e e e 1346
INtegrate e 1349
interaction.plot 1351
IQR . . . e 1354
isemptymodel L 1355
ISOTEE . o o o o i e e e 1355
KalmanLike e 1357
kernapply e 1359
kernel e e 1360
kmeans L e e e 1362
kruskal.test L e 1364
Ks.teSt e e e e 1366
ksmooth e 1368
lag . . . 1369
lag.plot e e e 1370
Line e e e 1372
Im .. e e e 1373
Imfit . . . e 1376
Im.influence e 1378

XX

CONTENTS

loadings e e e e 1381
J0SS . . . o e e e e e e e 1382
loess.control e e e 1385
Logistic e 1386
logLik e e 1387
loglin e 1389
Lognormal L 1391
JOWESS . . . o e e 1392
Isdiag 1394
ISprint L L 1395
Isfit . o e 1396
mad e e e e e e e 1397
mahalanobis 1398
makelink L 1399
makepredictcall oL 1400
MANOVA . . v v v v v v e 1401
mantelhaen.test L L L 1402
mauchly.test e e e e e e 1405
MCNEMALLESt o o v o e o e e e e e e e e e e e e e e e e e e e 1407
median e 1408
medpolish 1409
model.exXtract e e e 1410
model.frame e e 1411
model.matrix e 1414
model.tables 1415
monthplot L e e e 1417
mood.teSt e e e e e e 1419
Multinom e e e e e e 1420
NA.ACHON o ot s e e e e e e e e e e e e e e e e 1422
NA.CONLZUOUS o ittt sttt e 1423
nafail e 1423
NAPTING . . . o v o e e e e e e e e e e e e e e e e e e 1424
naresid L e e e 1425
NegBinomial 1426
NEXIN . . . o o e e e e e e e e e e e e e e 1428
1100 0 1429
nlminb L e e 1431
NIS . . . e 1434
nls.control L e 1440
NLSStASYymptotic o 1441
NLSstClosestX e e e e e e 1442
NLSStLfASYMPtOte o o v o e e e e 1443
NLSStRtASymptote o e e e e 1443
nobs e e e 1444
Normal e e e e 1445
numericDeriv L 1447
offset e e 1448

ONEWAY.LESt o . e e e e e e e 1449

CONTENTS
Xx1

optim
s 1450
oo, 1455
I 1457
et 1458
i L 1461
e 1462
e ot 1463
e IO 1464
e oty 1465
D ot 1466
D oo TS 1467
o 8 1468
T 1469
o 1472
Tl e 1473
e 1474
PIOMEPIUR -+ 1476
DIOUIS |+ 1478
st 1479
Do oIS 1481
o RSO 1482
et 1484
oy 1485
PR IESt 1486
POWSRLIES 1+ v e 1487
AR 1489
PPOINS -+ 1490
D 1491
ey 1494
D i 1497
et 1498
et Mol Winkers | 1499
et o 1501
D et owsy 1502
D ernre . | 1505
D etmonthspine 1506
Doy OIS 1508
e 1509
e | 1510
PROWCENIES o 1512
D evctia | 1513
e 1514
D lonls 1515
POMETIS e 1516
D s 1517
o 1519
............................... 1521

qqnorm
............................ 1522

xxil

CONTENTS
quade.test e e e e e e e e e e e 1524
quantileo 1525
r2dtable L e e e 1528
read.ftable 1529
rect.hclust 1531
relevel e e e e 1532
reorderdefault oL 1533
reorder.dendrogram L. L e e 1534
replications L L e 1535
reshape L 1536
residuals 1539
runmed ... oL e e 1540
scatter.smooth L. L L L 1542
SCreeplot L e 1544
SA 1545
SE.COMLTASE v v v i e e e e e e e e e e e e e e 1545
selfStart e e 1547
setNames e 1549
shapiro.test L e e e e e 1550
SignRank 1551
simulate e 1552
Smooth. e 1554
smooth.spline 1556
smoothEnds e 1560
sortedXyData e e 1561
SPEC.AT « v v o v v e e e e e e e e e e e e e e e e e e e 1562
] 01T O 04 1 1 o 1564
SPECAPET . . o . e e e e e e e e 1566
SPECIIUIMN .+« v v v vt e 1567
splinefun Lo e 1569
SSasymp e 1571
SSasympOff e 1573
SSasympOrig e e e 1574
SSBIEXP . . v o e 1575
SSD . 1576
SSfol . e 1577
SSEpl . e 1578
SSgompertz e 1579
SSlogis . . . e 1580
SSmicmen e e e e 1581
SSweibull e e 1582
] o 1583
StAt.ANOVAo e e e 1584
stats-deprecated L. L e 1585
SEED . e e e e 1585
Stepfun e e e 1588
StL 1590

stimethods e 1592

CONTENTS xxiii

StructTS . . . e 1593
SUMMATY.A0V .+ o v v v v v e 1596
summary.glmo e e 1597
summary.lm 1599
SUMMATY.MANOVA .« . . o v v v e et e e e e e e e e e e e e e e e e 1601
summary.nlso 1603
SUMMATY.PINCOMP . .« v v v v v e e e e e e e e e e e e e e e e e e e 1604
SUPSIIIU . v v v v v v v e 1605
SYIMOUIL v v vttt et et e e e e e e e e e e e e e e 1607
LEESE . . o o e e e 1609
TDist . . . e 1611
termplot L 1613
TBIMS o o e e e e e e e e 1615
terms.formula oL 1616
terms.ObjeCt e e e e e 1617
HIME . . o o e 1619
toeplitz L 1620
IS 1621
ts-methods L L L 1623
tS.plot . . e 1624
ESLUNION o e s e e e e e e e e e e e e e e e e e 1625
tsdiago 1626
1] 1627
tsSmooth 1628
Tukey e e 1629
TukeyHSD e 1630
Uniform e e e e e e 1631
UNITOOL . & v v v e 1633
update e 1635
update.formula L e 1636
VALIESt e e e e e e e 1637
VAMMAX . . v v v v v e 1638
VOOV o o v it et e e e e e e e e e e e e e 1639
Weibull e 1640
weighted.mean L 1642
weighted.residuals L 1643
weights e 1644
WIICOXEESt e e e e 1644
WIICOXON e e e e e 1648
WIndow L e 1650
XtabS . . . e 1651
9 The stats4 package 1655
statsd-package 1655
coef-methods 1655
confint-methods 1656
logLik-methods 1656
mle . . .o e e e e e e 1657

mle-class 1658

XX1V

plot-methods
profile-methods
profilemle-class
show-methods
summary-methods
summary.mle-class
update-methods
veov-methods

10 The tcltk package

teltk-package L oL
Tcllnterface
tclServiceMode
TkCommands
tkpager
tkProgressBar oL,
tkStartGUIL.
TkWidgetemds
TkWidgetso
tk choosedir
tk choosefiles
tk_messageBox
tk_selectdist

11 The tools package

tools-package
add_datalist
bibstyle L.
buildVignettes L.
charsets
checkFF
checkMD5Ssums
checkRd
checkRdaFiles
checkTnF
checkVignettes
codoc e
compactPDF
delimMatch
dependsOnPkgs

encoded_text_to_latex

fileutils, .
getDepList.
HTMLheader
HTMLIinks

installFoundDepends

makeLazylLoading
mdSsum

package.dependencies

CONTENTS

CONTENTS XXV

parselatex L e e e e e e e 1713
parse_Rd . . . L e 1714
QC . e 1716
RAZHTML e 1717
Rd2txt_options 1720
RAiff . . . o e 1721
Rdindex e 1722
RdTextFilter 1723
Rdutils e 1724
read.00Index L e e 1725
readNEWS . . L e 1726
showNonASCII 1727
startDynamicHelp 1728
SweaveTeXFilter e 1729
testInstalledPackage Lo 1730
teXi2AVI e e e e e e e e e e e 1731
toHTML o 1732
tools-deprecated L. e e e 1733
tORd . . . e 1733
undoC e e e 1734
vignetteDepends L Lo e e 1735
write_PACKAGES e 1736
XEOMEXE . . . o o o o e e e 1738
12 The utils package 1741
utils-package 1741
alarm ... 1741
APTOPOS + v v v e 1742
aspell . . . L e e 1744
aspell-utils 1745
available.packages 1747
BATCH e 1748
bibentry 1749
browseEnv. 1752
browseURL e 1754
browseVignettes 1755
bugreport 1756
CaPIUIE.OULPUL o v v v e vt et e e e e e e e e e e e e e e e 1758
chooseBioCmirror. 1759
chooseCRANmMirror e 1760
Citation e 1761
citEntryo 1762
close.socket L e e e e 1763
combn e 1764
CompareVersion v v vt e 1765
COMPILE e e 1766
contribaurl L 1767
count.fields e 1767

CrEAte.POSE . .« . v v v v e e e e e e 1768

XXVi

CONTENTS
data e 1770
dataentry e e e e e 1772
debugger 1774
demo e 1776
download.file 1777
download.packages 1780
edit . .. 1781
edit.dataframe 1782
example e 1784
file.edit 1786
file_test e e 1787
findLineNum L 1788
X . e 1790
flush.console L 1791
format L 1791
getAnywhere L 1792
getFromNamespace 1793
getS3method L. e 1795
glob2rx . .o e e 1796
head 1797
help . . . o e 1798
helprequest L e e e e e 1801
help.search 1802
help.start 1805
INSTALL o e 1806
install.packages L 1808
installed.packages 1812
LINK . e 1813
localeToCharset e 1814
IS.Str . o o e e e 1815
MAINtAINEr oo e e e e e e 1816
make.packages.html L 1817
make.socket 1818
MEMOTY.S1Z€ . . . o v v v v v i e e e e e e e e e e e e e e e 1819
001S) 1LL 1820
methods L 1821
mirrorAdmino L e e 1822
modifyList. 1823
NEWS & o v e et e e e e e e e e e e e e e e e e e e 1824
NSl . e e 1825
Object.Ssize 1826
package.skeleton 1827
packageDescription e e 1829
packageStatus L. e e 1830
PABC . o e 1832
PEISON .« . v o i i e e e e e e e e e e e 1833
PkgUtils e 1835

PIOMPL . . . L o o e e e e e e e 1836

CONTENTS XXVil

promptData e e e 1838
promptPackage 1839
QUESHON e e 1840
e8] 0] 0 (<) 1842
read.DIF e 1848
read.fortran L. L e e e 1850
read Wl . . L L L 1851
read.socket L. 1853
read.table L e 1854
TECOVET © v v vt vt e 1859
reliSt . . . o 1860
REMOVE e 1863
remove.packages Lo 1864
TEMOVESOUICE . . . v v v v v v e v e e e et e e e e e e e e 1864
RHOME e 1865
TOMAN . . v v v v v v e 1865
Rprof . . . e 1866
Rprofmem e 1867
Rscript e 1869
RShowDoc e 1870
RSiteSearch 1871
TEAZS . v o e 1872
Rtangle e 1874
RweavelLatex e e e 1876
SAVEhIStOTY e e e e e e 1880
select.list e 1881
sessionlnfo L e e 1882
SetRepositories 1884
SHLIB e 1885
sourceutils L 1886
Stack . . . L 1888
SEE o e e 1889
summaryRprof o 1892
SWeave e e e 1894
SweaveSyntConv e e e 1896
11 1897
toLateX e e e e e e 1899
txtProgressBar. oL 1899
YPE.CONVEIT . . . v v v v v e e e e e e e e e e e e e e e e e e e 1901
UNEAT . . . v v o e 1902
UNZIP « ¢ v e e e e e e 1904
update.packages 1905
url.show L L 1908
URLencode e e 1908
utils-deprecated L 1909
VIEW . . o e 1910
VINEtte e e 1911

write.table L L e e 1912

XXViil CONTENTS

ZID . o 1915
zipfile.extract 1916

Index 1919

Chapter 1

The base package

base-package The R Base Package

Description

Base R functions

Details

This package contains the basic functions which let R function as a language: arithmetic, in-
put/output, basic programming support, etc. Its contents are available through inheritance from
any environment.

For a complete list of functions, use 1ibrary (help="base").

.Device Lists of Open/Active Graphics Devices

Description

A pairlist of the names of open graphics devices is stored in .Devices. The name of the active
device (see dev.cur) is stored in .Device. Both are symbols and so appear in the base name
space.

Value

.Device is a length-one character vector.

.Devices is a pairlist of length-one character vectors. The first entry is always "null
device™", and there are as many entries as the maximal number of graphics devices which have
been simultaneously active. If a device has been removed, its entry will be "" until the device
number is reused.

.Machine

.Machine

Numerical Characteristics of the Machine

Description

.Machine is a variable holding information on the numerical characteristics of the machine R is
running on, such as the largest double or integer and the machine’s precision.

Usage

.Machine

Details

The algorithm is based on Cody’s (1988) subroutine MACHAR. As all current implementations of
R use 32-bit integers and almost all use IEC 60559 floating-point (double precision) arithmetic, all
but the last two values are the same for almost all R builds.

Note that on most platforms smaller positive values than .Machine$double.xmin can occur.
On a typical R platform the smallest positive double is about 5e—324.

Value

A list with components

double.

eps

the smallest positive floating-point number x such that 1 + x != 1.
It equals double.base ”~ ulp.digits if either double.base is
2 or double.rounding is 0; otherwise, it is (double.base *
double.ulp.digits) / 2.Normally 2.220446e-16.

double.neg.eps

double.

double.

double.

double

xmin

Xmax

base

a small positive floating-point number x such that 1 - x != 1. It
equals double.base ”~ double.neg.ulp.digits if double.base
is 2 or double.rounding is 0; otherwise, it is (double.base "
double.neg.ulp.digits) / 2. Normally 1.110223e-16. As
double.neg.ulp.digits is bounded below by - (double.digits +
3), double.neg.eps may not be the smallest number that can alter 1 by
subtraction.

the smallest non-zero normalized floating-point number, a power of the radix,
i.e.,double.base ~ double.min.exp. Normally 2.225074e-308.

the largest normalized floating-point number. Typically, it is equal to (1
- double.neg.eps) * double.base ”~ double.max.exp,buton
some machines it is only the second or third largest such number, being too small
by 1 or 2 units in the last digit of the significand. Normally 1.797693e+308.
Note that larger unnormalized numbers can occur.

the radix for the floating-point representation: normally 2.

.digits

the number of base digits in the floating-point significand: normally 53.

.Machine

double.

double.

double.

double.

double.

double.

double.

3

rounding

the rounding action, one of

0 if floating-point addition chops;

1 if floating-point addition rounds, but not in the IEEE style;

2 if floating-point addition rounds in the IEEE style;

3 if floating-point addition chops, and there is partial underflow;

4 if floating-point addition rounds, but not in the IEEE style, and there is partial

underflow;

5 if floating-point addition rounds in the IEEE style, and there is partial under-

flow.

Normally 5.
guard the number of guard digits for multiplication with truncating arithmetic. It is

1 if floating-point arithmetic truncates and more than double digits base-
double.base digits participate in the post-normalization shift of the floating-
point significand in multiplication, and 0 otherwise.

ulp.digits
the largest negative integer i suchthat 1 + double.base "~ 1 != 1,ex-
cept that it is bounded below by — (double.digits + 3). Normally -52.
neg.ulp.digits

the largest negative integer i such that 1 - double.base ~ i != 1,ex-

cept that it is bounded below by — (double.digits + 3).Normally -53.
exponent

the number of bits (decimal places if double.base is 10) reserved for the

representation of the exponent (including the bias or sign) of a floating-point

number. Normally 11.

min.exp
the largest in magnitude negative integer i such that double.base ~ 1iis
positive and normalized. Normally —-1022.

max.exp

the smallest positive power of double . base that overflows. Normally 1024.

integer.max the largest integer which can be represented. Always 2147483647.

sizeof.

sizeof.

sizeof.

sizeof.

Note

sizeof.

long the number of bytes in a C long type: 4 or 8 (most 64-bit systems, but not
Windows).

longlong
the number of bytes in a C long long type. Will be zero if there is no such
type, otherwise usually 8.

longdouble
the number of bytes ina C 1long double type. Will be zero if there is no such
type, otherwise possibly 12 (most 32-bit builds) or 16 (most 64-bit builds).

pointer
the number of bytes in a C SEXP type. Will be 4 on 32-bit builds and 8 on
64-bit builds of R.

longdouble only tells you the amount of storage allocated for a long double (which

are used internally by R for accumulators in e.g. sum, and can be read by readBin). Often what

4 .Platform

is stored is the 80-bit extended double type of IEC 60559, padded to the double alignment used on
the platform — this seems to be the case for the common R platforms using ix86 and x86_64 chips.

References

Cody, W. J. (1988) MACHAR: A subroutine to dynamically determine machine parameters. Trans-
actions on Mathematical Software, 14, 4, 303-311.

See Also

.Plat form for details of the platform.

Examples

.Machine
or for a neat printout
noquote (unlist (format (.Machine)))

.Platform Platform Specific Variables

Description

.Platformis a list with some details of the platform under which R was built. This provides
means to write OS-portable R code.

Usage

.Platform

Value

A list with at least the following components:

0S.type character string, giving the Operating System (family) of the computer. One of
"unix" or "windows".

file.sep character string, giving the file separator used on your platform: " /" on both
Unix-alikes and on Windows (but not on the once port to Classic Mac OS).

dynlib.ext character string, giving the file name extension of dymamically loadable
libraries, e.g., ".d11" on Windows and ".so" or ".s1" on Unix-alikes.
(Note for Mac OS X users: these are shared objects as loaded by dyn . load
and not dylibs: see dyn . load.)

GUI character string, giving the type of GUI in use, or "unknown" if no GUI can
be assumed. Possible values are for Unix-alikes the values given via the ‘~g’
command-line flag ("X11", "Tk"), "AQUA" (running under R. app on Mac
OS X), "Rgui" and "RTerm" (Windows) and perhaps others under alternative
front-ends or embedded R.

Platform 5

endian character string, "big" or "1ittle", giving the endianness of the processor
in use. This is relevant when it is necessary to know the order to read/write bytes
of e.g. an integer or double from/to a connection: see readBin.

pkgType character string, the preferred setting for options ("pkgType"). Val-
ues "source", "mac.binary", "mac.binary.leopard" and
"win.binary" are currently in use.

path.sep character string, giving the path separator, used on your platform, e.g., ":"
on Unix-alikes and "; " on Windows. Used to separate paths in environment
variables such as PATH and TEXINPUTS.

r_arch character string, possibly "". The name of an architecture-specific directory
used in this build of R.

AQUA

.Platform$GUI is set to "AQUA" under the Mac OS X GUI, R.app. This has a number of
consequences:

* the DISPLAY environment variable is set to " : 0" if unset.

* appends ‘/usr/local/bin’ to the PATH environment variable.

* the default graphics device is set to quartz.

* selects native (rather than Tk) widgets for the graphics = TRUE options of menu and
select.list.

* HTML help is displayed in the internal browser.

* The spreadsheet-like data editor/viewer uses a Quartz version rather than the X11 one.

See Also

R.version and Sys.info give more details about the OS. In particular,
R.version$platform is the canonical name of the platform under which R was com-
piled.

.Machine for details of the arithmetic used, and system for invoking platform-specific system
commands.

Examples

Note: this can be done in a system—-independent way
by file.info () $isdir
if (.Platform$0S.type == "unix") {
system.test <- function(...) { system(paste("test", ...)) == 0 }
dir.exists <- function(dir)
sapply(dir, function(d)system.test ("-d", d))
dir.exists(c(R.home (), "/tmp", "~", "/NO"))# > T T T F

6 abbreviate

abbreviate Abbreviate Strings

Description

Abbreviate strings to at least minlength characters, such that they remain unique (if they were),
unless strict=TRUE.

Usage
abbreviate (names.arg, minlength = 4, use.classes = TRUE,
dot = FALSE, strict = FALSE,
method = c("left.kept", "both.sides"))
Arguments
names.arg a character vector of names to be abbreviated, or an object to be coerced to a
character vector by as.character.
minlength the minimum length of the abbreviations.

use.classes logical (currently ignored by R).

dot logical: should a dot (" . ") be appended?
strict logical: should minlength be observed strictly? Note that setting
strict=TRUE may return non-unique strings.
method a string specifying the method used with default "1eft . kept", see ‘Details’
below.
Details
The algorithm (method = "left.kept") used is similar to that of S. For a single string it

works as follows. First all spaces at the beginning of the string are stripped. Then (if necessary)
any other spaces are stripped. Next, lower case vowels are removed (starting at the right) followed
by lower case consonants. Finally if the abbreviation is still longer than minlength upper case
letters are stripped.

Characters are always stripped from the end of the word first. If an element of name s . arg contains
more than one word (words are separated by space) then at least one letter from each word will be
retained.

Missing (N2) values are unaltered.

If use.classes is FALSE then the only distinction is to be between letters and space. This has
NOT been implemented.

agrep 7

Value

A character vector containing abbreviations for the strings in its first argument. Duplicates in
the original names.arg will be given identical abbreviations. If any non-duplicated elements
have the same minlength abbreviations then, if method = "both.sides" the basic inter-
nal abbreviate () algorithm is applied to the characterwise reversed strings; if there are still
duplicated abbreviations and if strict=FALSE as by default, minlength is incremented by
one and new abbreviations are found for those elements only. This process is repeated until all
unique elements of names . arg have unique abbreviations.

The character version of names . arg is attached to the returned value as a names argument: no
other attributes are retained.

Warning

This is really only suitable for English, and does not work correctly with non-ASCII characters in
multibyte locales. It will warn if used with non-ASCII characters.

See Also

substr.

Examples

x <— c("abcd", "efgh", "abce")
abbreviate (x, 2)
abbreviate (x, 2, strict=TRUE)# >> 1st and 3rd are == "ab"

(st.abb <- abbreviate (state.name, 2))

table (nchar (st.abb))# out of 50, 3 need 4 letters
as <- abbreviate(state.name, 3, strict=TRUE)
as[which(as == "Mss")]

method="both.sides" helps: no 4-letters, and only 4 3-letters:
st.ab2 <- abbreviate (state.name, 2, method="both")

table (nchar (st.ab2))

Compare the two methods:

cbind (st.abb, st.ab2)

agrep Approximate String Matching (Fuzzy Matching)

Description
Searches for approximate matches to pattern (the first argument) within each element of the
string x (the second argument) using the Levenshtein edit distance.

Usage

agrep (pattern, x, ignore.case = FALSE, value = FALSE,
max.distance = 0.1, useBytes = FALSE)

8 agrep

Arguments
pattern a non-empty character string to be matched (not a regular expression!). Coerced
by as.character to a string if possible.
X character vector where matches are sought. Coerced by as.charactertoa

character vector if possible.
ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

value if FALSE, a vector containing the (integer) indices of the matches determined is
returned and if TRUE, a vector containing the matching elements themselves is
returned.

max.distance Maximum distance allowed for a match. Expressed either as integer, or as a
fraction of the pattern length (will be replaced by the smallest integer not less
than the corresponding fraction of the pattern length), or a list with possible
components

all: maximal (overall) distance

insertions: maximum number/fraction of insertions
deletions: maximum number/fraction of deletions
substitutions: maximum number/fraction of substitutions

If all is missing, it is set to 10%, the other components default to all. The
component names can be abbreviated.

useBytes logical. in a multibyte locale, should the comparison be character-by-character
(the default) or byte-by-byte.

Details

The Levenshtein edit distance is used as measure of approximateness: it is the total number of
insertions, deletions and substitutions required to transform one string into another.

As from R 2.10.0 this uses tre by Ville Laurikari (http://http://laurikari.net/
tre/), which supports MBCS character matching much better than the previous version.

The main effect of useBytes is to avoid errors/warnings about invalid inputs and spurious matches
in multibyte locales. It inhibits the conversion of inputs with marked encodings, and is forced (with
a warning) if any input is found which is marked as "bytes".

Value
Either a vector giving the indices of the elements that yielded a match, or, if value is TRUE, the
matched elements (after coercion, preserving names but no other attributes).

Note
Since someone who read the description carelessly even filed a bug report on it, do note that this
matches substrings of each element of x (just as grep does) and not whole elements.

Author(s)

Original version by David Meyer. Current version by Brian Ripley.

http://http://laurikari.net/tre/
http://http://laurikari.net/tre/

all

See Also
grep

Examples

agrep ("lasy", "1 lazy 2")

(
agrep ("lasy", c(" 1 lazy 2", "1 lasy 2"
agrep ("laysy", c("1 lazy", "1", "1 LAZY"
(
(

agrep

"laysy"’ c("l lazy"’ "1"’ lll LAZY"
agrep ("laysy", c("1 lazy", "1", "1 LAZY"

list (sub = 0))

= 2)

2, value = TRUE)
2, 1lgnore.case = TRUE)

all Are All Values True?

Description

Given a set of logical vectors, are all of the values true?

Usage

all(..., na.rm = FALSE)

Arguments
zero or more logical vectors. Other objects of zero length are ignored, and the
rest are coerced to logical ignoring any class.
na.rm logical. If true NA values are removed before the result is computed.
Details

This is a generic function: methods can be defined for it directly or via the Summary group generic.

For this to work properly, the arguments . . .
argument.

should be unnamed, and dispatch is on the first

Coercion of types other than integer (raw, double, complex, character, list) gives a warning as this

is often unintentional.

This is a primitive function.

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors in .

NAs if requested by na.rm = TRUE.

(after coercion), after removing

The value returned is TRUE if all of the values in x are TRUE (including if there are no values), and
FALSE if at least one of the values in x is FALSE. Otherwise the value is NA (which can only occur
ifna.rm = FALSE and ... contains no FALSE values and at least one NA value).

10 all.equal

S4 methods

This is part of the S4 Summary group generic. Methods for it must use the signature x, ...,
na.rm.

Note
That a1l (logical (0)) is true is a useful convention: it ensures that
all(all(x), all(y)) == all(x,y)
even if x has length zero.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

any, the ‘complement’ of a11, and stopifnot (x) whichisan all (*) ‘insurance’.

Examples
range (x <- sort (round(stats::rnorm(10) - 1.2, 1)))
if(all(x < 0)) cat("all x values are negative\n")

all(logical(0)) # true, as all zero of the elements are true.

all.equal Test if Two Objects are (Nearly) Equal

Description

all.equal (x,y) is a utility to compare R objects x and y testing ‘near equality’. If they
are different, comparison is still made to some extent, and a report of the differences is returned.
Don’tuse all.equal directly in if expressions—either use 1sTRUE (all.equal (....))
or identical if appropriate.

Usage

all.equal (target, current, ...)

S3 method for class 'numeric'

all.equal (target, current,
tolerance = .MachineSdouble.eps ©~ 0.5,
scale = NULL, check.attributes = TRUE, ...)

attr.all.equal (target, current,
check.attributes = TRUE, check.names = TRUE, ...)

all.equal 11

Arguments
target R object.
current other R object, to be compared with target.
Further arguments for different methods, notably the following two, for numer-
ical comparison:
tolerance numeric > 0. Differences smaller than tolerance are not considered.
scale numeric scalar > 0 (or NULL). See ‘Details’.

check.attributes
logical indicating if the attributes (.) of target and current should
be compared as well.

check.names logical indicating if the names (.) of target and current should be com-
pared as well (and separately from the attributes).

Details

all.equal is a generic function, dispatching methods on the target argument. To see the
available methods, use methods ("all.equal"), but note that the default method also does
some dispatching, e.g. using the raw method for logical targets.

Numerical comparisons for scale = NULL (the default) are done by first computing the mean
absolute difference of the two numerical vectors. If this is smaller than tolerance or not finite,
absolute differences are used, otherwise relative differences scaled by the mean absolute difference.

If scale is positive, absolute comparisons are made after scaling (dividing) by scale.

For complex target, the modulus (Mod) of the difference is used: all.equal.numeric is
called so arguments tolerance and scale are available.

attr.all.equal isused for comparing att ributes, returning NULL or a character vec-
tor.

Value

Either TRUE (NULL for attr.all.equal) or a vector of mode "character" describing the
differences between target and current.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for =).

See Also

identical, 1sTRUE, ==, and all for exact equality testing.

Examples

all.equal (pi, 355/113)
not precise enough (default tol) > relative error

d45 <- pi*(1/4 + 1:10)

12 all.names

stopifnot (

all.equal (tan(d45), rep(1,10))) # TRUE, but

all (tan (d45) == rep(1l,10)) # FALSE, since not exactly
(

all.equal (tan(d45), rep(1l,10), tol=0) # to see difference

all.names Find All Names in an Expression

Description

Return a character vector containing all the names which occur in an expression or call.

Usage
all.names (expr, functions = TRUE, max.names = —-1L, unique = FALSE)
all.vars (expr, functions = FALSE, max.names = —-1L, unique = TRUE)
Arguments
expr an expression or call from which the names are to be extracted.
functions a logical value indicating whether function names should be included in the
result.
max.names the maximum number of names to be returned. —1 indicates no limit (other than
vector size limits).
unique a logical value which indicates whether duplicate names should be removed
from the value.
Details

These functions differ only in the default values for their arguments.

Value

A character vector with the extracted names.

See Also

substitute to replace symbols with values in an expression.

Examples

all.names (expression (sin (x+y)))
all.names (quote (sin(x+y))) # or a call
all.vars (expression(sin (x+y)))

any 13

any Are Some Values True?

Description

Given a set of logical vectors, is at least one of the values true?

Usage

any (..., na.rm = FALSE)

Arguments
zero or more logical vectors. Other objects of zero length are ignored, and the
rest are coerced to logical ignoring any class.
na.rm logical. If true NA values are removed before the result is computed.
Details
This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments ... should be unnamed, and dispatch is on the first
argument.

Coercion of types other than integer (raw, double, complex, character, list) gives a warning as this
is often unintentional.

This is a primitive function.

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors in . .. (after coercion), after removing
NAs if requested by na.rm = TRUE.

The value returned is TRUE if at least one of the values in x is TRUE, and FALSE if all of the values
in x are FALSE (including if there are no values). Otherwise the value is NA (which can only occur

ifna.rm = FALSE and ... contains no TRUE values and at least one NA value).

S4 methods
This is part of the S4 Summary group generic. Methods for it must use the signature x, ...,
na.rm

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

14 aperm

See Also

all, the ‘complement’ of any.

Examples
range (x <- sort (round(stats::rnorm(10) - 1.2,1)))
if(any(x < 0)) cat("x contains negative values\n")
aperm Array Transposition
Description

Transpose an array by permuting its dimensions and optionally resizing it.

Usage

aperm(a, perm, ...)
Default S3 method:

aperm(a, perm = NULL, resize = TRUE, ...)

S3 method for class 'table'

aperm(a, perm = NULL, resize = TRUE, keep.class = TRUE, ...)
Arguments

a the array to be transposed.

perm the subscript permutation vector, usually a permutation of the integers 1:n,

where n is the number of dimensions of a. When a has named dimnames, it
can be a character vector of length n giving a permutation of those names. The
default (used whenever perm has zero length) is to reverse the order of the
dimensions.

resize a flag indicating whether the vector should be resized as well as having its ele-
ments reordered (default TRUE).

keep.class logical indicating if the result should be of the same class as a.

potential further arguments of methods.

Value

A transposed version of array a, with subscripts permuted as indicated by the array perm. If
resize is TRUE, the array is reshaped as well as having its elements permuted, the dimnames
are also permuted; if resize = FALSE then the returned object has the same dimensions as a,
and the dimnames are dropped. In each case other attributes are copied from a.

The function t provides a faster and more convenient way of transposing matrices.

append 15

Author(s)

Jonathan Rougier, <J.C.Rougier@durham.ac.uk> did the faster C implementation.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

t, to transpose matrices.

Examples

interchange the first two subscripts on a 3-way array x
x <- array(l:24, 2:4)
xt <- aperm(x, c(2,1,3))

stopifnot (t (xt[,,2]) == x[,,2],
t(xtl,,31) == x[,,31,
t(Xt[II4]) == X[II4J)

UCB <- aperm(UCBAdmissions, c(2,1,3))
ucB[1,,]
summary (UCB)# UCB 1is still a continency table

append Vector Merging

Description

Add elements to a vector.

Usage

append (x, values, after = length(x))

Arguments

x the vector to be modified.

values to be included in the modified vector.

after a subscript, after which the values are to be appended.
Value

A vector containing the values in x with the elements of values appended after the specified
element of x.

16 apply

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

append (1:5, 0:1, after=3)

apply Apply Functions Over Array Margins

Description

Returns a vector or array or list of values obtained by applying a function to margins of an array or
matrix.

Usage

apply (X, MARGIN, FUN, ...)

Arguments
X an array, including a matrix.
MARGIN a vector giving the subscripts which the function will be applied over. E.g., for
a matrix 1 indicates rows, 2 indicates columns, ¢ (1, 2) indicates rows and
columns. Where X has named dimnames, it can be a character vector selecting
dimension names.
FUN the function to be applied: see ‘Details’. In the case of functions like +, $+%,
etc., the function name must be backquoted or quoted.
optional arguments to FUN.
Details

If X is not an array but an object of a class with a non-null dim value (such as a data frame), apply
attempts to coerce it to an array via as.matrix if it is two-dimensional (e.g., a data frame) or via
as.array.

FUN is found by a call to match. fun and typically is either a function or a symbol (e.g. a back-
quoted name) or a character string specifying a function to be searched for from the environment of
the call to apply.

apply 17

Value

If each call to FUN returns a vector of length n, then apply returns an array of dimension c (n,
dim(X) [MARGIN]) if n > 1. If n equals 1, apply returns a vector if MARGIN has length 1
and an array of dimension dim (X) [MARGIN] otherwise. If n is 0, the result has length O but not
necessarily the ‘correct’ dimension.

If the calls to FUN return vectors of different lengths, apply returns a list of length
prod (dim (X) [MARGIN]) with dim set to MARGIN if this has length greater than one.

In all cases the result is coerced by as.vector to one of the basic vector types before the dimen-
sions are set, so that (for example) factor results will be coerced to a character array.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

lapply, tapply, and convenience functions sweep and aggregate.

Examples

Compute row and column sums for a matrix:

X <— cbind(x1l = 3, x2 = c(4:1, 2:5))

dimnames (x) [[1]] <- letters[1:8]

apply(x, 2, mean, trim = .2)

col.sums <- apply(x, 2, sum)

row.sums <- apply(x, 1, sum)

rbind (cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

stopifnot (apply(x, 2, is.vector))

Sort the columns of a matrix
apply(x, 2, sort)

##- function with extra args:
cave <- function(x, cl, c2) c(mean(x[cl]), mean(x[c2]))
apply(x,1, cave, cl="x1", c2=c("x1","x2"))

ma <- matrix(c(l:4, 1, 6:8), nrow = 2)

ma

apply (ma, 1, table) #--> a list of length 2

apply(ma, 1, stats::quantile)# 5 x n matrix with rownames

stopifnot (dim(ma) == dim(apply(ma, 1:2, sum)))

Example with different lengths for each call

z <— array(l:24, dim=2:4)

zseq <- apply(z, 1:2, function(x) seg_len(max(x)))
zseq ## a 2 x 3 matrix

typeof (zseq) ## list

18 args

dim(zseq) ## 2 3

zseql[l,]

apply(z, 3, function(x) seg_len(max(x)))
a list without a dim attribute

args Argument List of a Function

Description

Displays the argument names and corresponding default values of a function or primitive.

Usage

args (name)

Arguments
name a function (a closure or a primitive). If name is a character string then the
function with that name is found and used.
Details

This function is mainly used interactively to print the argument list of a function. For programming,
consider using formals instead.
Value

For a closure, a closure with identical formal argument list but an empty (NULL) body.

For a primitive, a closure with the documented usage and NULL body. Note that some primitives
do not make use of named arguments and match by position rather than name.

NULL in case of a non-function.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

formals, help.

Examples

args (c)
args (graphics::plot.default)

Arithmetic 19

Arithmetic Arithmetic Operators

Description

These binary operators perform arithmetic on numeric or complex vectors (or objects which can be
coerced to them).

> *
KKK KK

XX X X X X X
~

o\

=

oe o
~

o
L

Arguments
X, Yy numeric or complex vectors or objects which can be coerced to such, or other
objects for which methods have been written.
Details

The binary arithmetic operators are generic functions: methods can be written for them individually
or via the Ops group generic function. (See Ops for how dispatch is computed.)

If applied to arrays the result will be an array if this is sensible (for example it will not if the
recycling rule has been invoked).

Logical vectors will be coerced to integer or numeric vectors, FALSE having value zero and TRUE
having value one.

1 ~ yandy »~ 0 arel, always. x ~ vy should also give the proper limit result when either
argument is infinite (i.e., +— Inf).

Objects such as arrays or time-series can be operated on this way provided they are conformable.

For real arguments, $% can be subject to catastrophic loss of accuracy if x is much larger than v,
and a warning is given if this is detected.

%% and x %/% vy can be used for non-integer y, e.g. 1 %$/% 0.2, but the results are subject to
representation error and so may be platform-dependent. Because the IEC 60059 representation of
0.2 is a binary fraction slightly larger than 0. 2, the answerto 1 %/% 0.2 should be 4 but most
platforms give 5.

Users are sometimes surprised by the value returned, for example why (-8) ~ (1/3) is NaN. For
double inputs, R makes use of IEC 60559 arithmetic on all platforms, together with the C system
function ‘pow’ for the ~ operator. The relevant standards define the result in many corner cases. In
particular, the result in the example above is mandated by the C99 standard. On many Unix-alike
systems the command man pow gives details of the values in a large number of corner cases.

20 Arithmetic

Arithmetic on type double in R is supposed to be done in ‘round to nearest, ties to even’ mode, but
this does depend on the compiler and FPU being set up correctly.

Value

These operators return vectors containing the result of the element by element operations. The
elements of shorter vectors are recycled as necessary (with a warning when they are recycled
only fractionally). The operators are + for addition, — for subtraction, » for multiplication, / for
division and ~ for exponentiation.

%% indicates x mod y and %/% indicates integer division. It is guaranteed that x == (x
$% y) +y * (x %/% y) (up to rounding error) unless y == 0 where the result is

NA_integer_ or NaN (depending on the typeof of the arguments). See http://en.
wikipedia.org/wiki/Modulo_operation for the rationale.

If either argument is complex the result will be complex, otherwise if one or both arguments are
numeric, the result will be numeric. If both arguments are of type integer, the type of the result of /
and * is numeric and for the other operators it is integer (with overflow, which occurs at +(231 — 1),
returned as NA_integer_ with a warning).

The rules for determining the attributes of the result are rather complicated. Most attributes are
taken from the longer argument, the first if they are of the same length. Names will be copied from
the first if it is the same length as the answer, otherwise from the second if that is. For time series,
these operations are allowed only if the series are compatible, when the class and tsp attribute
of whichever is a time series (the same, if both are) are used. For arrays (and an array result) the
dimensions and dimnames are taken from first argument if it is an array, otherwise the second.

S4 methods

These operators are members of the S4 Arith group generic, and so methods can be written for
them individually as well as for the group generic (or the Ops group generic), with arguments
c(el, e2).

Note

** is translated in the parser to *, but this was undocumented for many years. It appears as an index
entry in Becker et al (1988), pointing to the help for Deprecated but is not actually mentioned
on that page. Even though it had been deprecated in S for 20 years, it was still accepted in R in
2008.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

D. Goldberg (1991) What Every Computer Scientist Should Know about Floating-Point Arithmetic
ACM Computing Surveys, 23(1).

Postscript version available at http://www.validlab.com/goldberg/paper.ps Ex-
tended PDF version at http://www.validlab.com/goldberg/paper.pdf

http://en.wikipedia.org/wiki/Modulo_operation
http://en.wikipedia.org/wiki/Modulo_operation
http://www.validlab.com/goldberg/paper.ps
http://www.validlab.com/goldberg/paper.pdf

array 21

See Also

sqgrt for miscellaneous and Special for special mathematical functions.
Syntax for operator precedence.

% * % for matrix multiplication.

Examples

XX N X X
*
i
+
w

array Multi-way Arrays

Description

Creates or tests for arrays.

Usage

array(data = NA, dim = length(data), dimnames = NULL)
as.array(x, ...)
is.array (x)

Arguments

data a vector (including a list or expression vector) giving data to fill the array.
Other objects are coerced by as.vector.

dim the dim attribute for the array to be created, that is a vector of length one or more
giving the maximal indices in each dimension.

dimnames either NULL or the names for the dimensions. This is a list with one component
for each dimension, either NULL or a character vector of the length given by
dim for that dimension. The list can be named, and the list names will be used
as names for the dimensions. If the list is shorter than the number of dimensions,
it is extended by NULLs to the length required

x an R object.

additional arguments to be passed to or from methods.

22 array

Details

An array in R can have one, two or more dimensions. It is simply a vector which is stored with
additional attributes giving the dimensions (attribute "dim") and optionally names for those di-
mensions (attribute "dimnames").

A two-dimensional array is the same thing as a matrix.

One-dimensional arrays often look like vectors, but may be handled differently by some functions:
str does distinguish them in recent versions of R.

The "dim" attribute is an integer vector of length one or more containing non-negative values: the
product of the values must match the length of the array.

The "dimnames™" attribute is optional: if present it is a list with one component for each dimen-
sion, either NULL or a character vector of the length given by the element of the "dim" attribute
for that dimension.

is.array is a primitive function.

Value

array returns an array with the extents specified in dim and naming information in dimnames.
The values in data are taken to be those in the array with the leftmost subscript moving fastest.
If there are too few elements in data to fill the array, then the elements in data are recycled. If
data has length zero, NA of an appropriate type is used for atomic vectors (0 for raw vectors) and
NULL for lists.

as.array is a generic function for coercing to arrays. The default method does so by attaching a
dim attribute to it. It also attaches dimnames if x has names. The sole purpose of this is to make
it possible to access the dim [names] attribute at a later time.

is.array returns TRUE or FALSE depending on whether its argument is an array (i.e., hasa dim
attribute of positive length) or not. It is generic: you can write methods to handle specific classes of
objects, see InternalMethods.

Note

is.array is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

aperm,matrix, dim, dimnames.

Examples

dim(as.array(letters))

array(1:3, c(2,4)) # recycle 1:3 "2 2/3 times"
[,11 [,2] [,3] [,4]

#11,] 1 3 2 1

#12,] 2 1 3 2

as.data.frame 23

as.data.frame Coerce to a Data Frame

Description

Functions to check if an object is a data frame, or coerce it if possible.

Usage
as.data.frame (x, row.names = NULL, optional = FALSE, ...)
S3 method for class 'character'

as.data.frame(x, ...,
stringsAsFactors = default.stringsAsFactors())

S3 method for class 'matrix'
as.data.frame (x, row.names = NULL, optional = FALSE, ...,

stringsAsFactors = default.stringsAsFactors())

is.data.frame (x)

Arguments
x any R object.
row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.
optional logical. If TRUE, setting row names and converting column names (to syntactic

names: see make .names) is optional.

additional arguments to be passed to or from methods.
stringsAsFactors
logical: should the character vector be converted to a factor?

Details

as.data.frame is a generic function with many methods, and users and packages can supply
further methods.

If a list is supplied, each element is converted to a column in the data frame. Similarly, each column
of a matrix is converted separately. This can be overridden if the object has a class which has a
method for as.data.frame: two examples are matrices of class "model .matrix" (which
are included as a single column) and list objects of class "POSIX1t" which are coerced to class
"POSIXct".

Arrays can be converted to data frames. One-dimensional arrays are treated like vectors and two-
dimensional arrays like matrices. Arrays with more than two dimensions are converted to matrices
by ‘flattening’ all dimensions after the first and creating suitable column labels.

Character variables are converted to factor columns unless protected by I.

24

as.Date

If a data frame is supplied, all classes preceding "data.frame" are stripped, and the row names
are changed if that argument is supplied.

If row.names = NULL, row names are constructed from the names or dimnames of x, otherwise
are the integer sequence starting at one. Few of the methods check for duplicated row names. Names
are removed from vector columns unless I.

Value

as.data. frame returns a data frame, normally with all row names "" if optional

= TRUE.

is.data.frame returns TRUE if its argument is a data frame (that is, has "data.frame"
amongst its classes) and FALSE otherwise.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, as.data.frame.table for the table method (which has additional argu-
ments if called directly).

as.Date

Date Conversion Functions to and from Character

Description

Functions to convert between character representations and objects of class "Date" representing
calendar dates.

Usage

as.

##
as
##

as.

##
as

##

Date(x, ...)

S3 method for class 'character'
.Date(x, format = "", ...)

S3 method for class 'numeric'
Date (x, origin, ...)
S3 method for class 'POSIXct'

.Date(x, tz = "UTC", ...)

S3 method for class 'Date'

format (x, ...)

##

as.

S3 method for class 'Date'
character(x, ...)

as.Date 25

Arguments
X An object to be converted.
format A character string. If not specified, it will try "$Y-%m-%d" then
"$Y/%m/%d" on the first non-NA element, and give an error if neither works.
origin a Date object, or something which can be coerced by as.Date (origin,
.) to such an object.
tz a timezone name.
Further arguments to be passed from or to other methods, including format
for as.character and as.Date methods.
Details

The usual vector re-cycling rules are applied to x and format so the answer will be of length that
of the longer of the vectors.

Locale-specific conversions to and from character strings are used where appropriate and available.
This affects the names of the days and months.

The as.Date methods accept character strings, factors, logical NA and objects of classes
"POSIX1t" and "POSIXct". (The last is converted to days by ignoring the time after midnight
in the representation of the time in specified timezone, default UTC.) Also objects of class "date"
(from package date) and "dates" (from package chron). Character strings are processed as far
as necessary for the format specified: any trailing characters are ignored.

as.Date will accept numeric data (the number of days since an epoch), but only if origin is
supplied.

The format and as.character methods ignore any fractional part of the date.

Value

The format and as.character methods return a character vector representing the date. NA
dates are returned as NA_ character .

The as .Date methods return an object of class "Date".

Note

The default formats follow the rules of the ISO 8601 international standard which expresses a day
as "2001-02-03".

If the date string does not specify the date completely, the returned answer may be system-specific.
The most common behaviour is to assume that a missing year, month or day is the current one. If
it specifies a date incorrectly, reliable implementations will give an error and the date is reported as
NA. Unfortunately some common implementations (such as ‘glibc’) are unreliable and guess at
the intended meaning.

Years before 1CE (aka 1AD) will probably not be handled correctly.

26

as.Date

References

International Organization for Standardization (2004, 1988, 1997, ...) ISO 8601. Data elements

and interchange formats — Information interchange — Representation of dates and times.

For

links to versions available on-line see (at the time of writing) http://www.gsl.net/glsmd/
isopdf.htm; for information on the current official version, see http://www.iso.org/

iso/en/prods—-services/popstds/datesandtime.html.

See Also

Date for details of the date class; 1ocales to query or set a locale.

Your system’s help pages on strftime and strptime to see how to specify their formats.
Windows users will find no help page for st rpt ime: code based on ‘glibc’ is used (with cor-
rections), so all the format specifiers described here are supported, but with no alternative number

representation nor era available in any locale.

Examples

locale-specific version of the date
format (Sys.Date (), "%a %b %d")

read in date info in format 'ddmmmyyyy'

This will give NA(s) in some locales; setting the C locale

as in the commented lines will overcome this on most systems.
lct <- Sys.getlocale ("LC_TIME"); Sys.setlocale("LC_TIME", "C")
x <— c("1janl960", "2janl960", "31lmarl960", "30jull960")

z <- as.Date(x, "%d%b%Y")

Sys.setlocale("LC_TIME", lct)

Z

read in date/time info in format 'm/d/y'
dates <- c("02/27/92", "02/27/92", "01/14/92", "02/28/92", "02/01/92")
as.Date (dates, "Sm/%d/Sy")

date given as number of days since 1900-01-01 (a date in 1989)
as.Date (32768, origin="1900-01-01")

Excel 1s said to use 1900-01-01 as day 1 (Windows default) or

1904-01-01 as day 0 (Mac default), but this is complicated by Excel
treating 1900 as a leap year.

So for dates (post-1901) from Windows Excel

as.Date (35981, origin="1899-12-30") # 1998-07-05

and Mac Excel

as.Date (34519, origin="1904-01-01") # 1998-07-05

(these values come from http://support.microsoft.com/kb/214330)

Timezone effect

z <- ISOdate (2010, 04, 13, c¢(0,12)) # midnight and midday UTC
as.Date(z) # in UTC

these timezone names are common

as.Date(z, tz ="Nz")

as.Date(z, tz ="HST") # Hawaii

http://www.qsl.net/g1smd/isopdf.htm
http://www.qsl.net/g1smd/isopdf.htm
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html

as.environment 27

as.environment Coerce to an Environment Object

Description
A generic function coercing an R object to an environment. A number or a character string is
converted to the corresponding environment on the search path.

Usage

as.environment (x)

Arguments
X an R object to convert. If it is already an environment, just return it. If it is a

number, return the environment corresponding to that position on the search list.
If it is a character string, match the string to the names on the search list.
If it is a list, the equivalent of 1ist2env (x, parent=emptyenv()) is
returned.
If is.object(x) 1is true and it has a class for which an
as.environment method is found, that is used.

Value

The corresponding environment object.

Note

This is a primitive function.

Author(s)
John Chambers

See Also

environment for creation and manipulation, search; 1ist2env.

Examples

as.environment (1) ## the global environment
identical (globalenv (), as.environment (1)) ## is TRUE
try(## <<- stats need not be attached
as.environment ("package:stats"))
ee <- as.environment (list(a = "A", b = pi, ch = letters([1:8]))
ls (ee) # names of objects in ee
utils::1ls.str (ee)

28 as.function

as.function Convert Object to Function

Description

as.function is a generic function which is used to convert objects to functions.

as.function.default works on a list x, which should contain the concatenation of a formal
argument list and an expression or an object of mode "call" which will become the function
body. The function will be defined in a specified environment, by default that of the caller.

Usage

as.function(x, ...)

Default S3 method:

as.function(x, envir = parent.frame(), ...)
Arguments
x object to convert, a list for the default method.

additional arguments, depending on object

envir environment in which the function should be defined

Value

The desired function.

Note

For ancient historical reasons, envir = NULL uses the global environment rather than the base
environment. Please use envir = globalenv () instead if this is what you want, as the special
handling of NULL may change in a future release.

Author(s)

Peter Dalgaard

See Also

function; alist which is handy for the construction of argument lists, etc.

Examples
as.function(alist (a=,b=2,a+b))
as.function(alist (a=,b=2,a+b)) (3)

as.POSIX*

29

as.POSIXx*

Date-time Conversion Functions

Description

Functions to manipulate objects of classes "POSIX1t" and "POSIXct" representing calendar

dates and times.

Usage

as.POSIXct (x,
as.POSIX1t (x,

tz = "", ...)
tz = "", ...)

S3 method for class 'character'

as.POSIX1t (x,

tz = "", format, ...)

S3 method for class 'numeric'

as.POSIX1t (x,

tz = "", origin, ...)

S3 method for class 'POSIXI1t'

as.double (%,

Arguments

X

tz

format

origin

Details

-)

An object to be converted.

A timezone specification to be used for the conversion, if one is required.
System-specific (see time zones), but " " is the current timezone, and "GMT"
is UTC (Universal Time, Coordinated).

further arguments to be passed to or from other methods.
character string giving a date-time format as used by st rpt ime.

a date-time object, or something which can be coerced by
as.POSIXct (tz="GMT") to such an object.

The as.POSIX« functions convert an object to one of the two classes used to represent date/times
(calendar dates plus time to the nearest second). They can convert a wide variety of objects, includ-
ing objects of the other class and of classes "Date", "date" (from package date), "chron"
and "dates" (from package chron) to these classes. Dates without times are treated as being at

midnight UTC.

They can also convert character strings of the formats "2001-02-03" and "2001/02/03"
optionally followed by white space and a time in the format "14:52" or "14:52:03". (For-
mats such as "01/02/03" are ambiguous but can be converted via a format specification by
strptime.) Fractional seconds are allowed. Alternatively, format can be specified for charac-
ter vectors or factors: if it is not specified and no standard format works for all non-NA inputs an

error is thrown.

30 as.POSIX*

If format is specified, remember that some of the format specifications are locale-specific, and
you may need to set the LC__TIME category appropriately via Sys.setlocale. This most often
affects the use of $b, $B (month names) and $p (AM/PM).

Logical NAs can be converted to either of the classes, but no other logical vectors can be.

The as.double method converts "POSIX1t" objects to "POSIXct".

If you are given a numeric time as the number of seconds since an epoch, see the examples.

Character input is first converted to class "POSIX1t" by strptime: numeric input is first con-
verted to "POSIXct". Any conversion that needs to go between the two date-time classes requires
atimezone: conversion from "POSIX1t" to "POSIXct" will validate times in the selected time-
zone. One issue is what happens at transitions to and from DST, for example in the UK

o\°

M:%S")
$Y-%$m—-%d SH:%M:%S

o\

as.POSIXct (strptime('2011-03-27 01:30:00"', '$Y-%m-%d %H:
|l

)
as.POSIXct (strptime('2010-10-31 01:30:00", !

))

are respectively invalid (the clocks went forward at 1:00 GMT to 2:00 BST) and ambiguous (the
clocks went back at 2:00 BST to 1:00 GMT). What happens in such cases is OS-specific: one should
expect the first to be NA, but the second could be interpreted as either BST or GMT (and common
OSes give both possible values).

Value

as.POSIXct and as.POSIX1t return an object of the appropriate class. If tz was specified,
as .P0OSIX1t will give an appropriate "t zone™" attribute. Date-times known to be invalid will be
returned as NA.

Note

If you want to extract specific aspects of a time (such as the day of the week) just convert it to
class "POSIX1t" and extract the relevant component(s) of the list, or if you want a character
representation (such as a named day of the week) use format .POSIX1t or format .POSIXct.

If a timezone is needed and that specified is invalid on your system, what happens is system-specific
but it will probably be ignored.

See Also

DateTimeClasses for details of the classes; st rpt ime for conversion to and from character repre-
sentations.

Sys.timezone for details of the (system-specific) naming of time zones.

locales for locale-specific aspects.

Examples
(z <— Sys.time()) # the current datetime, as class "POSIXct"
unclass (z) # a large integer
floor (unclass (z) /86400) # the number of days since 1970-01-01 (UTC)

(z <- as.POSIX1t (Sys.time())) # the current datetime, as class "POSIX1t"
unlist (unclass(z)) # a list shown as a named vector

Asls 31

suppose we have a time in seconds since 1960-01-01 00:00:00 GMT
(the origin used by SAS)

z <— 1472562988

ways to convert this

as.POSIXct(z, origin="1960-01-01") # local
as.POSIXct(z, origin="1960-01-01", tz="GMT") # in UTC
as.POSIXct (z, origin=ISOdatetime(1960,1,1,0,0,0)) # local
ISOdatetime (1960,1,1,0,0,0) + =z # local

SPSS dates (R-help 2006-02-16)

z <- ¢ (10485849600, 10477641600, 10561104000, 10562745600)
as.Date (as.POSIXct (z, origin="1582-10-14", tz="GMT"))
as.POSIX1lt (Sys.time(), "GMT") # the current time in UTC

Not run: ## These may not be correct names on your system

as.POSIX1lt (Sys.time (), "America/New_York") # in New York
as.POSIX1lt (Sys.time (), "ESTSEDT") # alternative.
as.POSIX1lt (Sys.time (), "EST") # somewhere in Eastern Canada
as.POSIX1t (Sys.time (), "HST") # in Hawaii

as.POSIX1lt (Sys.time (), "Australia/Darwin")

End (Not run)

AsIs Inhibit Interpretation/Conversion of Objects

Description

Change the class of an object to indicate that it should be treated ‘as is’.

Usage

I(x)

Arguments

X an object

Details
Function I has two main uses.

* In function data.frame. Protecting an object by enclosing it in I () in a call to
data.frame inhibits the conversion of character vectors to factors and the dropping of
names, and ensures that matrices are inserted as single columns. I can also be used to
protect objects which are to be added to a data frame, or converted to a data frame via
as.data.frame.

It achieves this by prepending the class "AsIs" to the object’s classes. Class "AsIs" has a
few of its own methods, including for [, as.data.frame, print and format.

32 assign

* In function formula. There it is used to inhibit the interpretation of operators such as "+",
" "«"and "~" as formula operators, so they are used as arithmetical operators. This is
interpreted as a symbol by terms . formula.

Value

A copy of the object with class "AsIs" prepended to the class(es).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, formula

assign Assign a Value to a Name

Description

Assign a value to a name in an environment.

Usage
assign(x, value, pos = -1, envir = as.environment (pos),
inherits = FALSE, immediate = TRUE)
Arguments
X a variable name, given as a character string. No coercion is done, and the first
element of a character vector of length greater than one will be used, with a
warning.
value a value to be assigned to x.
pos where to do the assignment. By default, assigns into the current environment.
See ‘Details’ for other possibilities.
envir the environment to use. See ‘Details’.
inherits should the enclosing frames of the environment be inspected?

immediate an ignored compatibility feature.

assign 33

Details

There are no restrictions on name: it can be a non-syntactic name (see make . names).

The pos argument can specify the environment in which to assign the object in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys . frame to access the currently
active function calls). The envir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

assign does not dispatch assignment methods, so it cannot be used to set elements of vectors,
names, attributes, etc.

Note that assignment to an attached list or data frame changes the attached copy and not the original
object: see attach and with.

Value

This function is invoked for its side effect, which is assigning value to the variable x. If no envir
is specified, then the assignment takes place in the currently active environment.

If inherits is TRUE, enclosing environments of the supplied environment are searched until the
variable x is encountered. The value is then assigned in the environment in which the variable
is encountered (provided that the binding is not locked: see lockBinding: if it is, an error is
signaled). If the symbol is not encountered then assignment takes place in the user’s workspace (the
global environment).

If inherits is FALSE, assignment takes place in the initial frame of envir, unless an existing
binding is locked or there is no existing binding and the environment is locked.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

<-,get, exists, environment.

Examples

for(i in 1:6) { #-- Create objects 'r.1', 'r.2', ... 'r.6' ——
nam <- paste("r",i, sep=".")
assign(nam, 1:1i)

}

ls (pattern = "*r..s")
##-— Global assignment within a function:
myf <- function (x) {
innerf <- function(x) assign("Global.res", x"2, envir = .GlobalEnv)

innerf (x+1)

}
myf (3)
Global.res # 16

34 assignOps
a <- 1:4
assign("af[l]l", 2)
all] == 2 #FALSE
get ("a[l]") == 2 #TRUE
assignOps Assignment Operators
Description

Assign a value to a name.

Usage

x <—- value
X <<—- value
value —> x
value —>> x

x = value
Arguments
X a variable name (possibly quoted).
value a value to be assigned to x.
Details

There are three different assignment operators: two of them have leftwards and rightwards forms.

The operators <— and = assign into the environment in which they are evaluated. The operator
<— can be used anywhere, whereas the operator = is only allowed at the top level (e.g., in the
complete expression typed at the command prompt) or as one of the subexpressions in a braced list
of expressions.

The operators <<— and —>> cause a search to made through the environment for an existing defi-
nition of the variable being assigned. If such a variable is found (and its binding is not locked) then
its value is redefined, otherwise assignment takes place in the global environment. Note that their
semantics differ from that in the S language, but are useful in conjunction with the scoping rules of
R. See ‘“The R Language Definition’ manual for further details and examples.

In all the assignment operator expressions, x can be a name or an expression defining a part of an
object to be replaced (e.g., z[[1]1). A syntactic name does not need to be quoted, though it can
be (preferably by backticks).

The leftwards forms of assignment <— = <<- group right to left, the other from left to right.

attach 35

Value

value. Thusonecanusea <- b <- c <- 6.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chamber, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for =).

See Also

assign, environment.

attach Attach Set of R Objects to Search Path

Description

The database is attached to the R search path. This means that the database is searched by R when
evaluating a variable, so objects in the database can be accessed by simply giving their names.

Usage
attach (what, pos = 2, name = deparse (substitute (what)),
warn.conflicts = TRUE)
Arguments
what ‘database’. This can be a data.frame ora list ora R data file created with
save or NULL or an environment. See also ‘Details’.
pos integer specifying position in search () where to attach.
name name to use for the attached database.

warn.conflicts
logical. If TRUE, warnings are printed about conflicts from attaching the
database, unless that database contains an object . conflicts.OK. A conflict
is a function masking a function, or a non-function masking a non-function.

Details

When evaluating a variable or function name R searches for that name in the databases listed by
search. The first name of the appropriate type is used.

By attaching a data frame (or list) to the search path it is possible to refer to the variables in the
data frame by their names alone, rather than as components of the data frame (e.g. in the example
below, height rather than womenSheight).

36

attach

By default the database is attached in position 2 in the search path, immediately after the user’s
workspace and before all previously attached packages and previously attached databases. This can
be altered to attach later in the search path with the pos option, but you cannot attach at pos = 1.

The database is not actually attached. Rather, a new environment is created on the search path and
the elements of a list (including columns of a data frame) or objects in a save file or an environment
are copied into the new environment. If you use <<- or assign to assign to an attached database,
you only alter the attached copy, not the original object. (Normal assignment will place a modified
version in the user’s workspace: see the examples.) For this reason attach can lead to confusion.

One useful ‘trick’ is to use what = NULL (or equivalently a length-zero list) to create a new
environment on the search path into which objects can be assigned by assign or load or
Sys.source.

Names starting "package: " are reserved for 1 ibrary and should not be used by end users. The
name given for the attached environment will be used by search and can be used as the argument
to as.environment.

There are hooks to attach user-defined table objects of class "UserDefinedDatabase",
supported by the Omegahat package RObjectTables. See http://www.omegahat.org/
RObjectTables/.

Value

The environment is returned invisibly with a "name™" attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

library, detach, search, objects, environment, with.

Examples

require (utils)

summary (womenS$Sheight) # refers to variable 'height' in the data frame
attach (women)
summary (height) # The same variable now available by name

height <- height=*2.54 # Don't do this. It creates a new variable
in the user's workspace
find ("height")

summary (height) # The new variable in the workspace
rm (height)
summary (height) # The original wvariable.

height <<- height*25.4 # Change the copy in the attached environment
find ("height")

summary (height) # The changed copy

detach ("women")

summary (women$height) # unchanged

http://www.omegahat.org/RObjectTables/
http://www.omegahat.org/RObjectTables/

attr 37

Not run: ## create an environment on the search path and populate it
sys.source ("myfuns.R", envir=attach (NULL, name="myfuns"))

End(Not run)

attr Object Attributes

Description

Get or set specific attributes of an object.

Usage

attr(x, which, exact = FALSE)
attr(x, which) <- wvalue

Arguments
b an object whose attributes are to be accessed.
which a non-empty character string specifying which attribute is to be accessed.
exact logical: should which be matched exactly?
value an object, the new value of the attribute, or NULL to remove the attribute.
Details

These functions provide access to a single attribute of an object. The replacement form causes the
named attribute to take the value specified (or create a new attribute with the value given).

The extraction function first looks for an exact match to which amongst the at-
tributes of x, then (unless exact = TRUE) a unique partial match. (Setting
options (warnPartialMatchAttr=TRUE) causes partial matches to give warnings.)

The replacement function only uses exact matches.

Note that some attributes (namely class, comment, dim, dimnames, names, row.names
and t sp) are treated specially and have restrictions on the values which can be set. (Note that this
is not true of 1evels which should be set for factors via the 1evels replacement function.)

The extractor function allows (and does not match) empty and missing values of which: the re-
placement function does not.

Both are primitive functions.

Value

For the extractor, the value of the attribute matched, or NULL if no exact match is found and no or
more than one partial match is found.

38 attributes

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attributes

Examples

create a 2 by 5 matrix
x <= 1:10
attr (x, "dim") <= c(2, 5)

attributes Object Attribute Lists

Description

These functions access an object’s attributes. The first form below returns the object’s attribute
list. The replacement forms uses the list on the right-hand side of the assignment as the object’s
attributes (if appropriate).

Usage

attributes (obj)
attributes (obj) <- value
mostattributes (obj) <- value

Arguments

obj an object

value an appropriate named list of attributes, or NULL.
Details

Unlike attr it is possible to set attributes on a NULL object: it will first be coerced to an empty
list.

Note that some attributes (namely class, comment, dim, dimnames, names, row.names
and t sp) are treated specially and have restrictions on the values which can be set. (Note that this
is not true of 1levels which should be set for factors via the 1evels replacement function.)

Attributes are not stored internally as a list and should be thought of as a set and not a vector. They
must have unique names (and NA is taken as "NA", not a missing value).

Assigning attributes first removes all attributes, then sets any dim attribute and then the remain-
ing attributes in the order given: this ensures that setting a dim attribute always precedes the
dimnames attribute.

autoload 39

The mostattributes assignment takes special care for the dim, names and dimnames at-
tributes, and assigns them only when known to be valid whereas an attributes assignment
would give an error if any are not. It is principally intended for arrays, and should be used with care
on classed objects. For example, it does not check that row . names are assigned correctly for data
frames.

The names of a pairlist are not stored as attributes, but are reported as if they were (and can be set
by the replacement form of attributes).

Both assignment and replacement forms of attributes are primitive functions.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attr.

Examples

x <- cbind(a=1:3, pi=pi) # simple matrix w/ dimnames
attributes (x)

strip an object's attributes:
attributes (x) <- NULL
x # now just a vector of length 6

mostattributes (x) <- list (mycomment = "really special", dim = 3:2,
dimnames = 1list (LETTERS[1:3], letters[l:5]), names = paste(l:6))
X # dim(), but not {dim}names
autoload On-demand Loading of Packages
Description

autoload creates a promise-to-evaluate autoloader and stores it with name name in
.AutoloadEnv environment. When R attempts to evaluate name, autoloader is run, the
package is loaded and name is re-evaluated in the new package’s environment. The result is that R
behaves as if £i1le was loaded but it does not occupy memory.

.Autoloaded contains the names of the packages for which autoloading has been promised.

Usage

autoload (name, package, reset = FALSE, ...)
autoloader (name, package, ...)

.AutoloadEnv
.Autoloaded

40 backsolve

Arguments
name string giving the name of an object.
package string giving the name of a package containing the object.
reset logical: for internal use by autoloader.
other arguments to 1ibrary.
Value

This function is invoked for its side-effect. It has no return value.

See Also

delayedAssign, library

Examples

require (stats)

autoload ("interpSpline", "splines")
search ()

l1s ("Autoloads")

.Autoloaded

x <— sort(stats::rnorm(1l2))
y <- x"2

is <- interpSpline(x,y)
search () ## now has splines
detach ("package:splines")
search ()

is2 <- interpSpline (x,y+x)
search () ## and again
detach ("package:splines")

backsolve Solve an Upper or Lower Triangular System

Description
Solves a system of linear equations where the coefficient matrix is upper (or ‘right’, ‘R’) or lower

(‘left’, ‘L") triangular.

x <- backsolve (R, b) solves Rx = b, and
x <- forwardsolve (L, b) solves Lx = b, respectively.
Usage

backsolve (r, x, k=ncol(r), upper.tri=TRUE, transpose=FALSE)
forwardsolve (l, x, k=ncol(l), upper.tri=FALSE, transpose=FALSE)

basename 41

Arguments
r,1l an upper (or lower) triangular matrix giving the coefficients for the system to be
solved. Values below (above) the diagonal are ignored.
X a matrix whose columns give the right-hand sides for the equations.
k The number of columns of r and rows of x to use.
upper.tri logical; if TRUE (default), the upper triangular part of r is used. Otherwise, the
lower one.
transpose logical; if TRUE, solve r’ x y = xz for y, i.e.,, t (r) %x% y == x.
Value

The solution of the triangular system. The result will be a vector if x is a vector and a matrix if x is
a matrix.

Note that forwardsolve(L, b) is just a wrapper for backsolve (L, b,
upper.tri=FALSE).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch,J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.
See Also

chol, gr, solve.

Examples

upper triangular matrix 'r':
r <- rbind(c(1,2,3),

c(0,1,1),

c(0,0,2))
(y <- backsolve(r, x <- c(8,4,2))) # -1 31
r $x% Yy == x = (8,4,2)

backsolve (r, x, transpose = TRUE) # 8 -12 -5

basename Manipulate File Paths

Description

basename removes all of the path up to and including the last path separator (if any).

dirname returns the part of the path up to but excluding the last path separator, or " . " if there
is no path separator.

42 basename

Usage

basename (path)
dirname (path)

Arguments

path character vector, containing path names.

Details

For dirname tilde expansion of the path is done.

Trailing path separators are removed before dissecting the path, and for dirname any trailing file
separators are removed from the result.

Value

A character vector of the same length as path. A zero-length input will give a zero-length output
with no error.

If an element of path is NA, so is the result.

Behaviour on Windows

On Windows this will accept either \ or / as the path separator, but di rname will return a path
using / (except if on a network share, when the leading \ \ will be preserved). Expect these only to
be able to handle complete paths, and not for example just a share or a drive.

UTF-8-encoded dirnames not valid in the current locale can be used.

Note
These are not wrappers for the POSIX system functions of the same names: in particular they do not
have the special handling of the path " /" and of returning " . " for empty strings in basename.
See Also

file.path, path.expand.

Examples

basename (file.path("", "pl", "p2", "p3", c("filel", "file2")))
dirname (file.path ("","pl", "p2", "p3", "filename"))

Bessel 43

Bessel Bessel Functions

Description

Bessel Functions of integer and fractional order, of first and second kind, J,, and Y,,, and Modified
Bessel functions (of first and third kind), I,, and K.

Usage
besselI (x, nu, expon.scaled = FALSE)
besselK(x, nu, expon.scaled = FALSE)
besselJ(x, nu)
besselY (x, nu)
Arguments
X numeric, > 0.
nu numeric; The order (maybe fractional!) of the corresponding Bessel function.

expon.scaled logical; if TRUE, the results are exponentially scaled in order to avoid overflow
(1) or underflow (K,), respectively.
Details

If expon.scaled = TRUE, e *I, (), or e* K, (x) are returned.

For v < 0, formulae 9.1.2 and 9.6.2 from Abramowitz & Stegun are applied (which is probably
suboptimal), except for besse 1K which is symmetric in nu.
Value
Numeric vector of the same length of x with the (scaled, if expon.scaled=TRUE) values of the
corresponding Bessel function.
Author(s)
Original Fortran code: W. J. Cody, Argonne National Laboratory
Translation to C and adaption to R: Martin Maechler <maechler@stat .math.ethz.ch>.
Source
The C code is a translation of Fortran routines from http://www.netlib.org/specfun/
ribesl, ‘. ./rjbesl’, etc.
References

Abramowitz, M. and Stegun, 1. A. (1972) Handbook of Mathematical Functions. Dover, New York;
Chapter 9: Bessel Functions of Integer Order.

http://www.netlib.org/specfun/ribesl
http://www.netlib.org/specfun/ribesl

44 Bessel

See Also

Other special mathematical functions, such as gamma, I'(x), and beta, B(z).

Examples

require (graphics)
nus <- c¢(0:5, 10, 20)

x <- seq(0, 4, length.out = 501)

plot(x, x, ylim = c(0, 6), ylab = "", type = "n",
main = "Bessel Functions I_nu(x)")
for(nu in nus) lines(x, bessellI(x, nu=nu), col = nu+2)
legend (0, 6, legend = paste("nu=", nus), col = nus+2, lwd = 1)

x <- seq(0, 40, length.out = 801); yl <- c(-.8, .8)

plot(x, x, ylim = yl, ylab = "", type = "n",
main = "Bessel Functions J_nu(x)")
for(nu in nus) lines(x, besselJ(x, nu=nu), col = nu+2)

legend(32,-.18, legend = paste("nu=", nus), col = nus+2, lwd = 1)

Negative nu's

xx <—= 2:7

nu <- seqg(-10, 9, length.out = 2001)
op <- par(lab = c(le, 5, 7))

matplot (nu, t (outer (xx, nu, bessell)), type = "1", ylim = c(-50, 200),
main = expression(paste("Bessel ", I[nu](x), " for fixed ", x,
", as ", f(nu))),
xlab = expression (nu))
abline (v=0, col = "light gray", lty = 3)
legend (5, 200, legend = paste("x=", xx), col=seq(xx), lty=seq(xx))
par (op)

x0 <= 27(-20:10)
plot (x0, x07-8, log="xy", ylab="",type="n",

main = "Bessel Functions J_nu(x) near 0\n log - log scale")
for (nu in sort (c(nus, nus+.5)))

lines (x0, besseld(x0, nu=nu), col = nu+2)
legend (3, 1e50, legend = paste("nu=", paste(nus, nus+.5, sep=",")),

col = nus + 2, 1lwd = 1)

plot (x0, x07-8, log="xy", ylab="", type="n"

main = "Bessel Functions K_nu(x) near 0\n log - log scale")
for(nu in sort (c(nus, nus+.5)))

lines (x0, besselK(x0, nu=nu), col = nu+2)
legend (3, 1e50, legend = paste("nu=", paste(nus, nus+.5, sep=",")),

col = nus + 2, lwd = 1)

x <= xX[x > 0]

plot (x, x, ylim=c(le-18, 1lell), log = "y", ylab = "", type = "n",
main = "Bessel Functions K_nu(x)")
for(nu in nus) lines(x, besselK(x, nu=nu), col = nu+2)

bindenv 45

legend (0, le-5, legend=paste("nu=", nus), col = nus+2, lwd = 1)

yl <= c(-1.6, .6)

plot(x, x, ylim = yl, ylab = "", type = "n",
main = "Bessel Functions Y_nu(x)")

for (nu in nus) {
xx <— X[xX > .6*xnu]

lines (xx, besselY(xx, nu=nu), col = nu+2)
}
legend (25, -.5, legend = paste("nu=", nus), col = nus+2, lwd = 1)
negative nu in bessel Y -- was bogus for a long time
curve (besselY(x, -0.1), 0, 10, ylim = c(-3,1), ylab = '")
for(nu in c(seq(-0.2, -2, by = -0.1)))
curve (besselY (x, nu), add = TRUE)
title (expression (besselY (x, nu) * " "ok
{nu == list(-0.1, -0.2, ..., =-2)1}))
bindenv Binding and Environment Adjustments
Description

These functions represent an experimental interface for adjustments to environments and bindings
within environments. They allow for locking environments as well as individual bindings, and for
linking a variable to a function.

Usage

lockEnvironment (env, bindings = FALSE)
environmentIsLocked (env)

lockBinding (sym, env)
unlockBinding (sym, env)
bindingIsLocked (sym, env)
makeActiveBinding (sym, fun, env)
bindingIsActive (sym, env)

Arguments
env an environment.
bindings logical specifying whether bindings should be locked.
sym a name object or character string

fun a function taking zero or one arguments

46 bindenv

Details

The function lockEnvironment locks its environment argument, which must be a normal en-
vironment (not base). (Locking the base environment and name space may be supported later.)
Locking the environment prevents adding or removing variable bindings from the environment.
Changing the value of a variable is still possible unless the binding has been locked. The name
space environments of packages with name spaces are locked when loaded.

lockBinding locks individual bindings in the specified environment. The value of a locked
binding cannot be changed. Locked bindings may be removed from an environment unless the
environment is locked.

makeActiveBindinginstalls fun so that getting the value of sym calls fun with no arguments,
and assigning to sym calls fun with one argument, the value to be assigned. This allows the
implementation of things like C variables linked to R variables and variables linked to databases. It
may also be useful for making thread-safe versions of some system globals.

Value
The xisLocked functions return a length-one logical vector. The remaining functions return
NULL, invisibly.

Author(s)

Luke Tierney

Examples

locking environments

e <— new.env ()
assign("x", 1, envir = e)
get ("x", envir = e)
lockEnvironment (e)

get ("x", envir e)
assign("x", 2, envir = e)
try(assign("y", 2, envir = e)) # error

locking bindings

e <- new.env ()

assign("x", 1, envir = e)

get ("x", envir = e)

lockBinding ("x", e)

try(assign("x", 2, envir = e)) # error
unlockBinding ("x", e)

assign("x", 2, envir = e)

get ("x", envir = e)

active bindings
f <= local({
x <= 1
function (v) {
if (missing(v))
cat ("get\n")

body

else {
cat ("set\n")
X <<— v

})

makeActiveBinding ("fred", f, .GlobalEnv)
bindingIsActive ("fred", .GlobalEnv)

fred

fred <- 2

fred

47

body Access to and Manipulation of the Body of a Function

Description

Get or set the body of a function.

Usage

body (fun = sys.function(sys.parent()))

body (fun, envir = environment (fun)) <- value
Arguments

fun a function object, or see ‘Details’.

envir environment in which the function should be defined.

value an object, usually a language object: see section ‘Value’.
Details

For the first form, fun can be a character string naming the function to be manipulated, which is

searched for from the parent frame. If it is not specified, the function calling body is used.

The bodies of all but the simplest are braced expressions, that is calls to {: see the ‘Examples’

section for how to create such a call.

Value

body returns the body of the function specified. This is normally a language object, most often a

call to {, but it can also be an object (e.g. pi) to be the return value of the function.

The replacement form sets the body of a function to the object on the right hand side, and (po-
tentially) resets the environment of the function. If value is of class "expression" the first

element is used as the body: any additional elements are ignored, with a warning.

48 bquote

See Also

alist, args, function.

Examples

body (body)

f <- function(x) x"5

body (f) <- quote (57x)

or equivalently body(f) <- expression (5"x)
£(3) # = 125

body (f)

creating a multi-expression body

e <- expression(y <- x"2, return(y)) # or a list
body (f) <- as.call(c(as.name("{"), e))
f
£(8)
bquote Partial substitution in expressions
Description

An analogue of the LISP backquote macro. bquote quotes its argument except that terms wrapped
in . () are evaluated in the specified where environment.
Usage

bguote (expr, where = parent.frame())

Arguments

expr A language object.

where An environment.

Value

A language object.

See Also

quote, substitute

browser 49

Examples

require (graphics)

a <- 2

bgquote (a == a)

quote (a == a)

bguote (a == . (a))

substitute(a == A, list(A = a))

plot(1:10, ax(1:10), main = bquote(a == . (a)))

to set a function default arg
default <=1

bquote (function(x, y = . (default)) x+y)
browser Environment Browser
Description

Interrupt the execution of an expression and allow the inspection of the environment where
browser was called from.

Usage

browser (text="", condition=NULL, expr=TRUE, skipCalls=0L)

Arguments
text a text string that can be retrieved once the browser is invoked.
condition a condition that can be retrieved once the browser is invoked.
expr An expression, which if it evaluates to TRUE the debugger will invoked, other-
wise control is returned directly.
skipCalls how many previous calls to skip when reporting the calling context.
Details

A call to browser can be included in the body of a function. When reached, this causes a pause
in the execution of the current expression and allows access to the R interpreter.

The purpose of the text and condition arguments are to allow helper programs (e.g. external
debuggers) to insert specific values here, so that the specific call to browser (perhaps its location in
a source file) can be identified and special processing can be achieved. The values can be retrieved
by calling browserText and browserCondition.

The purpose of the expr argument is to allow for the illusion of conditional debugging. It is an
illusion, because execution is always paused at the call to browser, but control is only passed to the

50

browser

evaluator described below if expr evaluates to TRUE. In most cases it is going to be more efficient
to use an i f statement in the calling program, but in some cases using this argument will be simpler.

The skipCalls argument should be used when the browser () call is nested within another
debugging function: it will look further up the call stack to report its location.

At the browser prompt the user can enter commands or R expressions, followed by a newline. The
commands are

c (or just an empty line, by default) exit the browser and continue execution at the next statement.
cont synonym for c.

n enter the step-through debugger. This changes the meaning of c: see the documentation for
debug.

where print a stack trace of all active function calls.

Q exit the browser and the current evaluation and return to the top-level prompt.

(Leading and trailing whitespace is ignored, except for an empty line).

Anything else entered at the browser prompt is interpreted as an R expression to be evaluated in
the calling environment: in particular typing an object name will cause the object to be printed, and
1s () lists the objects in the calling frame. (If you want to look at an object with a name such as n,
print it explicitly.)

The number of lines printed for the deparsed call can be limited by setting
options (deparse.max.lines).

Setting option "browserNLdisabled" to TRUE disables the use of an empty line as a synonym
for c. If this is done, the user will be re-prompted for input until a valid command or an expression
is entered.

This is a primitive function but does argument matching in the standard way.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

debug, and t raceback for the stack on error. browserText for how to retrieve the text and
condition.

browserText 51

browserText Functions to Retrieve Values Supplied by Calls to the Browser

Description

A call to browser can provide context by supplying either a text argument or a condition argument.
These functions can be used to retrieve either of these arguments.

Usage

browserText (n=1)
browserCondition (n=1)
browserSetDebug (n=1)

Arguments

n The number of contexts to skip over, it must be non-negative.

Details

Each call to browser can supply either a text string or a condition. The functions browserText
and browserCondition provide ways to retrieve those values. Since there can be multiple
browser contexts active at any time we also support retrieving values from the different contexts.
The innermost (most recently initiated) browser context is numbered 1: other contexts are numbered
sequentially.

browserSetDebug provides a mechanism for initiating the browser in one of the calling
functions. See sys.frame for a more complete discussion of the calling stack. To use
browserSetDebug you select some calling function, determine how far back it is in the call
stack and call browserSetDebug with n set to that value. Then, by typing c at the browser
prompt you will cause evaluation to continue, and provided there are no intervening calls to browser
or other interrupts, control will halt again once evaluation has returned to the closure specified. This
is similar to the up functionality in gdb or the "step out" functionality in other debuggers.

Value

browserText returns the text, while browserCondit ion returns the condition from the spec-
ified browser context.

browserSetDebug returns NULL, invisibly.

Note

It may be of interest to allow for querying further up the set of browser contexts and this function-
ality may be added at a later date.

Author(s)

R. Gentleman

52 by

See Also

browser

builtins Returns the Names of All Built-in Objects

Description

Return the names of all the built-in objects. These are fetched directly from the symbol table of the
R interpreter.

Usage

builtins (internal = FALSE)

Arguments
internal a logical indicating whether only ‘internal’ functions (which can be called via
.Internal) should be returned.
Details

builtins () returns an unsorted list of the objects in the symbol table, that is all the objects in
the base environment. These are the built-in objects plus any that have been added subsequently
when the base package was loaded. It is less confusing to use 1s (baseenv (), all=TRUE).

builtins (TRUE) returns an unsorted list of the names of internal functions, that is those which
can be accessed as . Internal (foo (args ...)) for foo in the list.

Value

A character vector.

by Apply a Function to a Data Frame Split by Factors

Description

Function by is an object-oriented wrapper for tapply applied to data frames.

Usage

by (data, INDICES, FUN, ..., simplify = TRUE)

Arguments
data an R object, normally a data frame, possibly a matrix.
INDICES a factor or a list of factors, each of length nrow (data).
FUN a function to be applied to data frame subsets of data.
further arguments to FUN.
simplify logical: see tapply.
Details

A data frame is split by row into data frames subsetted by the values of one or more factors, and
function FUN is applied to each subset in turn.

Object data will be coerced to a data frame by the default method, but if this results in a 1-column
data frame, the objects passed to FUN are dropped to a subsets of that column. (This was the
long-term behaviour, but only documented since R 2.7.0.)

Value

An object of class "by", giving the results for each subset. This is always a list if simplify is
false, otherwise a list or array (see tapply).

See Also

tapply

Examples

require (stats)
by (warpbreaks|[, 1:2], warpbreaks[,"tension"], summary)
by (warpbreaks[, 11, warpbreaks[, -1], summary)
by (warpbreaks, warpbreaks|[,"tension"],

function(x) 1lm(breaks ~ wool, data = x))

now suppose we want to extract the coefficients by group
tmp <- with (warpbreaks,
by (warpbreaks, tension,
function(x) 1m(breaks ~ wool, data = x)))
sapply (tmp, coef)

c Combine Values into a Vector or List

Description

This is a generic function which combines its arguments.

The default method combines its arguments to form a vector. All arguments are coerced to a com-
mon type which is the type of the returned value, and all attributes except names are removed.

54 c
Usage
c(..., recursive=FALSE)
Arguments
objects to be concatenated.
recursive logical. If recursive = TRUE, the function recursively descends through
lists (and pairlists) combining all their elements into a vector.
Details

The output type is determined from the highest type of the components in the hierarchy NULL <
raw < logical < integer < real < complex < character < list < expression. Pairlists are treated as lists,
but non-vector components (such names and calls) are treated as one-element lists which cannot be
unlisted even if recursive = TRUE.

c is sometimes used for its side effect of removing attributes except names, for example to turn an
array into a vector. as.vector is a more intuitive way to do this, but also drops names. Note
too that methods other than the default are not required to do this (and they will almost certainly
preserve a class attribute).

This is a primitive function.

Value

NULL or an expression or a vector of an appropriate mode. (With no arguments the value is NULL.)

S4 methods

This function is S4 generic, but with argument list (x, ..., recursive = FALSE).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

unlist and as.vector to produce attribute-free vectors.

Examples

c(l,7:9)
c(l:5, 10.5, "next")

uses with a single argument to drop attributes

x <- 1:4

names (x) <— letters[l:4]
X

c(x) # has names

as.vector(x) # no names

call 55

dim(x) <= c(2,2)
X

c(x)
as.vector (x)

append to a list:

11 <= list(A =1, c="C")

do *not* use

c(ll, d = 1:3) # which is == c (11, as.list(c(d=1:3))
but rather

c(ll, d = 1ist(1:3))# c() combining two lists

c(list (A=c(B=1)), recursive=TRUE)

c(options (), recursive=TRUE)
c(list (A=c(B=1,C=2), B=c(E=7)), recursive=TRUE)

call Function Calls

Description

Create or test for objects of mode "call".

Usage

call (name, ...)
is.call (x)
as.call (x)

Arguments
name a non-empty character string naming the function to be called.
arguments to be part of the call.
x an arbitrary R object.
Details

call returns an unevaluated function call, that is, an unevaluated expression which consists of
the named function applied to the given arguments (name must be a quoted string which gives the
name of a function to be called). Note that although the call is unevaluated, the arguments . . . are
evaluated.

call is a primitive, so the first argument is taken as name and the remaining arguments as argu-
ments for the constructed call: if the first argument is named the name must partially match name.

is.call is used to determine whether x is a call (i.e., of mode "call™").

Objects of mode "1ist" can be coerced to mode "call". The first element of the list becomes
the function part of the call, so should be a function or the name of one (as a symbol; a quoted string
will not do).

All three are primitive functions. call is ‘special’: it only evaluates its first argument.

56

References

callCC

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

See Also

do.call for calling a function by name and argument list; Recall for recursive calling of func-
tions; further is.language, expression, function.

Examples

is.call(call) #-> FALSE:

Functions are NOT calls

set up a function call to round with argument 10.5
cl <= call ("round", 10.5)

is.call(cl)# TRUE

cl

such a call can also
eval (cl)# [1] 10

b

e evaluated.

A <- 10.5

call ("round", A) # round(10.5)

call ("round", quote(A)) # round(A)

f <= "round"

call (f, quote (A)) # round (A)

if we want to supply a function we need to use as.call or similar
f <- round

Not run: call(f, quote(A)) # error: first arg must be character

(g <= as.call(list (f, quote(A))))

eval (g)

alternatively but less transparently

g <- list (f, quote(Ad))
mode (g) <— "call"

°)
eval (g)

see also the examples in the help for do.call

callcCcC Call With Current Continuation

Description

A downward-only version of Scheme’s call with current continuation.

Usage

callCC (fun)

capabilities 57

Arguments

fun function of one argument, the exit procedure.

Details

callcCcC provides a non-local exit mechanism that can be useful for early termination of a com-
putation. callCC calls fun with one argument, an exit function. The exit function takes a single
argument, the intended return value. If the body of fun calls the exit function then the call to
callcCC immediately returns, with the value supplied to the exit function as the value returned by
callcCcC.

Author(s)
Luke Tierney

Examples

The following all return the value 1
callCC (function(k) 1)

(
callCC (function (k) k(1))
callCC (function (k) {k(1); 2})
callCC (function (k) repeat k(1))
capabilities Report Capabilities of this Build of R
Description

Report on the optional features which have been compiled into this build of R.

Usage

capabilities (what = NULL)

Arguments
what character vector or NULL, specifying required components. NULL implies that
all are required.
Value

A named logical vector. Current components are

jpeg Is the jpeg function operational?

png Is the png function operational?

tiff Is the t i £ £ function operational?

tcltk Is the teltk package operational? Note that to make use of Tk you will almost

always need to check that "X11" is also available.

58

capabilities

X11 Are the X11 graphics device and the X11-based data editor available? This
loads the X11 module if not already loaded, and checks that the default display
can be contacted unless a X11 device has already been used.

aqua Are the R. app GUI components and the quart z function operational? Only
on some Mac OS X builds. Note that this is distinct from .Plat form$GUI
== "AQUA", which is true when using the Mac R. app console.

http/ftp Are url and the internal method for download. £file available?

sockets Are make . socket and related functions available?

libxml Is there support for integrating 1 ibxm1 with the R event loop?

fifo are FIFO connections supported?

cledit Is command-line editing available in the current R session? This is false in non-
interactive sessions. It will be true for the command-line interface if readline
support has been compiled in and ‘~—no-readline’ was not used when R
was invoked.

iconv is internationalization conversion via i conv supported? Always true as from R
2.10.0.

NLS is there Natural Language Support (for message translations)?

profmem is there support for memory profiling?

cairo is there support for type = "cairo" in X11, png,jpeg, tiff and bmp,
and for the svg, cairo_pdf and cairo_ps devices?

Note to Mac OS X users

Capabilities " jpeg", "png" and "tiff" refer to the X11-based versions of these devices. If
capabilities ("agqua") is true, then these devices with type="quartz" will be available,
and out-of-the-box will be the default type. Thus for example the t i £ £ device will be available if
capabilities ("aqua") || capabilities ("tiff") if the defaults are unchanged.

See Also

.Platform

Examples

capabilities()

if (!capabilities ("http/ftp"))
warning ("internal download.file() is not available")

See also the examples for 'connections'.

cat 59

cat Concatenate and Print

Description
Outputs the objects, concatenating the representations. cat performs much less conversion than
print.

Usage

cat (... , file = "", sep =" ", fill = FALSE, labels = NULL,
append = FALSE)

Arguments
R objects (see ‘Details’ for the types of objects allowed).
file A connection, or a character string naming the file to print to. If " " (the default),
cat prints to the standard output connection, the console unless redirected by
sink. Ifitis " | cmd", the output is piped to the command given by ‘cmd’, by
opening a pipe connection.
sep a character vector of strings to append after each element.
fill a logical or (positive) numeric controlling how the output is broken into suc-
cessive lines. If FALSE (default), only newlines created explicitly by “"\n"’
are printed. Otherwise, the output is broken into lines with print width equal to
the option width if £i11 is TRUE, or the value of £111 if this is numeric.
Non-positive £111 values are ignored, with a warning.
labels character vector of labels for the lines printed. Ignored if £i11 is FALSE.
append logical. Only used if the argument £ile is the name of file (and not a connec-
tion or " | cmd"). If TRUE output will be appended to £1i1e; otherwise, it will
overwrite the contents of file.
Details

cat is useful for producing output in user-defined functions. It converts its arguments to character
vectors, concatenates them to a single character vector, appends the given sep= string(s) to each
element and then outputs them.

No linefeeds are output unless explicitly requested by ‘" \n"’ or if generated by filling (if argument
f£i11 is TRUE or numeric.)

If £ile is a connection and open for writing it is written from its current position. If it is not open,
it is opened for the duration of the call in "wt " mode and then closed again.

Currently only atomic vectors and names are handled, together with NULL and other zero-length
objects (which produce no output). Character strings are output ‘as is’ (unlike print.default
which escapes non-printable characters and backslash — use encodeString if you want to
output encoded strings using cat). Other types of R object should be converted (e.g. by
as.character or format) before being passed to cat.

60 cbind

cat converts numeric/complex elements in the same way as print (and not in the same way as
as.character which is used by the S equivalent), so options "digits" and "scipen"
are relevant. However, it uses the minimum field width necessary for each element, rather than the
same field width for all elements.

Value

None (invisible NULL).

Note

If any element of sep contains a newline character, it is treated as a vector of terminators rather
than separators, an element being output after every vector element and a newline after the last.
Entries are recycled as needed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

print, format, and paste which concatenates into a string.

Examples

iter <- stats::rpois(l, lambda=10)
print an informative message
cat ("iteration = ", iter <- iter + 1, "\n")

'fill' and label lines:
cat (paste (letters, 100« 1:26), fill = TRUE,
labels = paste("{",1:10,"}:",sep=""))

cbind Combine R Objects by Rows or Columns

Description

Take a sequence of vector, matrix or data frames arguments and combine by columns or rows,
respectively. These are generic functions with methods for other R classes.

Usage

cbind(..., deparse.level = 1)
rbind (..., deparse.level

I
-

cbind 61

Arguments

vectors or matrices. These can be given as named arguments. Other R ob-
jects will be coerced as appropriate: see sections ‘Details’ and ‘Value’. (For
the "data.frame" method of cbind these can be further arguments to
data.frame such as stringsAsFactors.)

deparse.level

integer controlling the construction of labels in the case of non-matrix-like ar-
guments (for the default method):

deparse.level = 0 constructs no labels; the default, deparse.level
= 1 or 2 constructs labels from the argument names, see the ‘Value’ section
below.

Details

The functions cbind and rbind are S3 generic, with methods for data frames. The data frame
method will be used if at least one argument is a data frame and the rest are vectors or matrices.
There can be other methods; in particular, there is one for time series objects. See the section on
‘Dispatch’ for how the method to be used is selected.

In the default method, all the vectors/matrices must be atomic (see vector) or lists. Expressions
are not allowed. Language objects (such as formulae and calls) and pairlists will be coerced to lists:
other objects (such as names and external pointers) will be included as elements in a list result.
Any classes the inputs might have are discarded (in particular, factors are replaced by their internal
codes).

If there are several matrix arguments, they must all have the same number of columns (or rows)
and this will be the number of columns (or rows) of the result. If all the arguments are vectors,
the number of columns (rows) in the result is equal to the length of the longest vector. Values in
shorter arguments are recycled to achieve this length (with a warning if they are recycled only
fractionally).

When the arguments consist of a mix of matrices and vectors the number of columns (rows) of the
result is determined by the number of columns (rows) of the matrix arguments. Any vectors have
their values recycled or subsetted to achieve this length.

For cbind (rbind), vectors of zero length (including NULL) are ignored unless the result would
have zero rows (columns), for S compatibility. (Zero-extent matrices do not occur in S3 and are not
ignored in R.)

Value

For the default method, a matrix combining the . . . arguments column-wise or row-wise. (Excep-
tion: if there are no inputs or all the inputs are NULL, the value is NULL.)

The type of a matrix result determined from the highest type of any of the inputs in the hierarchy
raw < logical < integer < real < complex < character < list .

For cbind (rbind) the column (row) names are taken from the colnames (rownames) of
the arguments if these are matrix-like. Otherwise from the names of the arguments or where
those are not supplied and deparse.level > 0, by deparsing the expressions given, for
deparse.level = 1 only if that gives a sensible name (a ‘symbol’, see is.symbol).

62 cbind

For cbind row names are taken from the first argument with appropriate names: rownames for a
matrix, or names for a vector of length the number of rows of the result.

For rbind column names are taken from the first argument with appropriate names: colnames for
a matrix, or names for a vector of length the number of columns of the result.

Data frame methods

The cbind data frame method is just a wrapper for data.frame (..., check.names =
FALSE) . This means that it will split matrix columns in data frame arguments, and convert charac-
ter columns to factors unless stringsAsFactors = FALSE is specified.

The rbind data frame method first drops all zero-column and zero-row arguments. (If that leaves
none, it returns the first argument with columns otherwise a zero-column zero-row data frame.)
It then takes the classes of the columns from the first data frame, and matches columns by name
(rather than by position). Factors have their levels expanded as necessary (in the order of the levels
of the levelsets of the factors encountered) and the result is an ordered factor if and only if all
the components were ordered factors. (The last point differs from S-PLUS.) Old-style categories
(integer vectors with levels) are promoted to factors.

Dispatch

The method dispatching is not done via UseMethod (), but by C-internal dispatching. Therefore
there is no need for, e.g., rbind.default.

The dispatch algorithm is described in the source file (‘. . . /src/main/bind.c’) as

1. For each argument we get the list of possible class memberships from the class attribute.
2. We inspect each class in turn to see if there is an applicable method.

3. If we find an applicable method we make sure that it is identical to any method determined for
prior arguments. If it is identical, we proceed, otherwise we immediately drop through to the
default code.

If you want to combine other objects with data frames, it may be necessary to coerce them to data
frames first. (Note that this algorithm can result in calling the data frame method if all the arguments
are either data frames or vectors, and this will result in the coercion of character vectors to factors.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

c to combine vectors (and lists) as vectors, data.frame to combine vectors and matrices as a
data frame.

char.expand 63

Examples
m <- cbind (1, 1:7) # the 'l' (= shorter vector) is recycled
m
m <- cbind(m, 8:14)[, c(1, 3, 2)] # insert a column
m

cbind(1:7, diag(3))# vector is subset -> warning

cbind (0, rbind(1l, 1:3))

cbind (I=0, X=rbind(a=1l, b=1:3)) # use some names
xx <- data.frame (I=rep(0,2))
cbind (xx, X=rbind(a=1, b=1:3)) # named differently

cbind (0, matrix (1, nrow=0, ncol=4))#> Warning (making sense)
dim(cbind (0, matrix (1, nrow=2, ncol=0)))#-> 2 x 1

deparse.level

dd <- 10
rbind(1:4, c=2, "a++" = 10, dd, deparse.level=0)# middle 2 rownames
rbind(1:4, c=2, "a++" = 10, dd, deparse.level=1)# 3 rownames (default)
rbind(1:4, c=2, "a++" = 10, dd, deparse.level=2)# 4 rownames
char.expand Expand a String with Respect to a Target Table
Description

Seeks a unique match of its first argument among the elements of its second. If successful, it returns
this element; otherwise, it performs an action specified by the third argument.

Usage

char.expand (input, target, nomatch = stop("no match"))
Arguments

input a character string to be expanded.

target a character vector with the values to be matched against.

nomatch an R expression to be evaluated in case expansion was not possible.
Details

This function is particularly useful when abbreviations are allowed in function arguments, and need
to be uniquely expanded with respect to a target table of possible values.
Value

A length-one character vector, one of the elements of target (unless nomatch is changed to be
a non-error, when it can be a zero-length character string).

64 character

See Also

charmatch and pmatch for performing partial string matching.

Examples

locPars <- c("mean", "median", "mode")
char.expand ("me", locPars, warning("Could not expand!"))
char.expand ("mo", locPars)

character Character Vectors

Description

Create or test for objects of type "character".

Usage

character (length = 0)
as.character (x,)
is.character (x)

Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one will give a
warning.
X object to be coerced or tested.
further arguments passed to or from other methods.
Details

as.character and is.character are generic: you can write methods to handle specific
classes of objects, see InternalMethods. Further, for as.character the default method calls
as.vector, so dispatch is first on methods for as.character and then for methods for
as.vector.

as.character represents real and complex numbers to 15 significant digits (technically the
compiler’s setting of the ISO C constant DBL_DIG, which will be 15 on machines supporting
IEC60559 arithmetic according to the C99 standard). This ensures that all the digits in the result will
be reliable (and not the result of representation error), but does mean that conversion to character
and back to numeric may change the number. If you want to convert numbers to character with the
maximum possible precision, use format.

charmatch 65

Value

character creates a character vector of the specified length. The elements of the vector are all
equalto "".

as.character attempts to coerce its argument to character type; like as.vector it strips
attributes including names. For lists it deparses the elements individually, except that it extracts the
first element of length-one character vectors.

is.character returns TRUE or FALSE depending on whether its argument is of character type
or not.

Note

as.character truncates components of language objects to 500 characters (was about 70 before
1.3.1).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

paste, substr and strsplit for character concatenation and splitting, chartr for character
translation and casefolding (e.g., upper to lower case) and sub, grep etc for string matching and
substitutions. Note that help.search (keyword = "character") gives even more links.

deparse, which is normally preferable to as . character for language objects.

Examples

form <-y ~ a + b + ¢
as.character (form) ## length 3
deparse (form) ## like the input

a0 <- 11/999 # has a repeating decimal representation
(al <- as.character (a0))

format (a0, digits=16) # shows one more digit

a2 <- as.numeric(al)

a2 - a0 # normally around -le-17

as.character (a2) # normally different from al

print (c (a0, a2), digits = 16)

charmatch Partial String Matching

Description

charmatch seeks matches for the elements of its first argument among those of its second.

66 charmatch

Usage
charmatch (x, table, nomatch = NA_integer_)
Arguments
X the values to be matched: converted to a character vector by as.character.
table the values to be matched against: converted to a character vector.
nomatch the (integer) value to be returned at non-matching positions.
Details

Exact matches are preferred to partial matches (those where the value to be matched has an exact
match to the initial part of the target, but the target is longer).

If there is a single exact match or no exact match and a unique partial match then the index of the
matching value is returned; if multiple exact or multiple partial matches are found then 0 is returned
and if no match is found then nomat ch is returned.

NA values are treated as the string constant "NA".

Value

An integer vector of the same length as x, giving the indices of the elements in table which
matched, or nomatch.

Author(s)

This function is based on a C function written by Terry Therneau.

See Also

pmatch, match.

grep or regexpr for more general (regexp) matching of strings.

Examples
charmatch ("", "") # returns 1
charmatch ("m", c("mean", "median", "mode")) # returns 0

charmatch ("med", c("mean", "median", "mode")) # returns 2

chartr 67

chartr Character Translation and Casefolding

Description

Translate characters in character vectors, in particular from upper to lower case or vice versa.

Usage

chartr (old, new, Xx)
tolower (x)

toupper (x)

casefold(x, upper = FALSE)

Arguments
X a character vector, or an object that can be coerced to character by
as.character.
old a character string specifying the characters to be translated. If a character vector
of length 2 or more is supplied, the first element is used with a warning.
new a character string specifying the translations. If a character vector of length 2 or
more is supplied, the first element is used with a warning.
upper logical: translate to upper or lower case?.
Details

chartr translates each character in x that is specified in old to the corresponding character
specified in new. Ranges are supported in the specifications, but character classes and repeated
characters are not. If o1d contains more characters than new, an error is signaled; if it contains
fewer characters, the extra characters at the end of new are ignored.

tolower and t oupper convert upper-case characters in a character vector to lower-case, or vice
versa. Non-alphabetic characters are left unchanged.

casefoldis a wrapper for tolower and toupper provided for compatibility with S-PLUS.

Value

A character vector of the same length and with the same attributes as x (after possible coercion).

Elements of the result will be have the encoding declared as that of the current locale (see
Encoding if the corresponding input had a declared encoding and the current locale is either
Latin-1 or UTF-8. The result will be in the current locale’s encoding unless the corresponding input
was in UTF-8, when it will be in UTF-8 when the system has Unicode wide characters.

See Also

sub and gsub for other substitutions in strings.

68 chol

Examples

x <— "MiXeD cAskE 123"
chartr ("iXs", "why", x)
chartr ("a-cX", "D-Fw", x)
tolower (x)

toupper (x)

"Mixed Case" Capitalizing - toupper(every first letter of a word)

.simpleCap <- function (x) {

s <— strsplit(x, "™ ")[[1]]
paste (toupper (substring(s, 1,1)), substring(s, 2),
sep="", collapse=" ")

}
.simpleCap ("the quick red fox Jjumps over the lazy brown dog")
—-> [1] "The Quick Red Fox Jumps Over The Lazy Brown Dog"

and the better, more sophisticated version:
capwords <- function (s, strict = FALSE) {

cap <- function(s) paste (toupper (substring(s,1,1)),

{s <= substring(s,2); if(strict) tolower(s) else s},
sep = "", collapse =" ")

sapply (strsplit (s, split = " "), cap, USE.NAMES = !is.null (names(s)))
}
capwords (c ("using AIC for model selection"))
-> [1] "Using AIC For Model Selection"
capwords (c ("using AIC", "for MODEL selection"), strict=TRUE)

—> [1] "Using Aic" "For Model Selection"
AN ANAAN
"bad' 'good'
—-— Very simple insecure crypto —-—
rot <- function(ch, k = 13) {
pO0 <- function(...) paste(c(...), collapse="")

A <- c(letters, LETTERS, " '")
I <- seq_len(k); chartr(p0O(A), pO(c(A[-I], A[I])), ch)

pw <- "my secret pass phrase"
(crypw <- rot(pw, 13)) #-> you can send this off

now " “decrypt''
rot (crypw, 54 - 13)# -> the original:
stopifnot (identical (pw, rot (crypw, 54 - 13)))

chol The Choleski Decomposition

Description

Compute the Choleski factorization of a real symmetric positive-definite square matrix.

chol 69

Usage

chol (x, ...)

Default S3 method:

chol (x, pivot = FALSE, LINPACK = pivot, ...)
Arguments
X an object for which a method exists. The default method applies to real sym-

metric, positive-definite matrices.
arguments to be based to or from methods.
pivot Should pivoting be used?

LINPACK logical. Should LINPACK be used in the non-pivoting case (for compatibility
with R < 1.7.0)?

Details

chol is generic: the description here applies to the default method.

This is an interface to the LAPACK routine DPOTRF and the LINPACK routines DPOFA and
DCHDC.

Note that only the upper triangular part of x is used, so that R’ R = x when x is symmetric.

If pivot = FALSE and x is not non-negative definite an error occurs. If x is positive semi-
definite (i.e., some zero eigenvalues) an error will also occur, as a numerical tolerance is used.

If pivot TRUE, then the Choleski decomposition of a positive semi-definite x can be com-
puted. The rank of x is returned as attr (Q, "rank"), subject to numerical errors. The pivot is
returned as attr (Q, "pivot"). Itisno longerthe casethatt (Q) %$+% Qequals x. However,
setting pivot <- attr(Q, "pivot") and oo <- order (pivot),itistruethatt (Q[,
ool) %*% Q[, oo] equals x, or, alternatively, t (Q) $x% Q equals x[pivot, pivot].
See the examples.

Value

The upper triangular factor of the Choleski decomposition, i.e., the matrix R such that R'R = x
(see example).

If pivoting is used, then two additional attributes "pivot" and "rank" are also returned.

Warning

The code does not check for symmetry.

If pivot = TRUE and x is not non-negative definite then there will be a warning message but a
meaningless result will occur. So only use pivot = TRUE when x is non-negative definite by
construction.

70 chol2inv

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

See Also

chol2inv for its inverse (without pivoting), backsolve for solving linear systems with upper
triangular left sides.

gr, svd for related matrix factorizations.

Examples

(m <- matrix(c(5,1,1,3),2,2))
(cm <= chol (m))

t(cm) %$*x% cm #-—— = 'm'

crossprod(cm) #-—- = 'm'

now for something positive semi-definite
X <- matrix(c(l:5, (1:5)72), 5, 2)

x <- cbind(x, x[, 1] + 3=*x[, 2])

m <- crossprod(x)

gr (m) Srank # is 2, as it should be

chol () may fail, depending on numerical rounding:
chol () unlike gr() does not use a tolerance.
try (chol (m))

(Q <= chol(m, pivot = TRUE)) # NB wrong rank here - see Warning section.
we can use this by

pivot <- attr(Q, "pivot")

crossprod (Q[, order (pivot)]) # recover m

now for a non-positive-definite matrix
(m <- matrix(c(5,-5,-5,3),2,2))
try(chol(m)) # fails

try(chol (m, LINPACK=TRUE)) # fails

(Q <= chol(m, pivot = TRUE)) # warning
crossprod (Q) # not equal to m

chol2inv Inverse from Choleski (or QR) Decomposition

http://www.netlib.org/lapack/lug/lapack_lug.html

chol2inv 71

Description

Invert a symmetric, positive definite square matrix from its Choleski decomposition. Equivalently,
compute (X’X)~! from the (R part) of the QR decomposition of X.

Usage

chol2inv (x, size = NCOL(x), LINPACK = FALSE)

Arguments
X a matrix. The first size columns of the upper triangle contain the Choleski
decomposition of the matrix to be inverted.
size the number of columns of x containing the Choleski decomposition.
LINPACK logical. Should LINPACK be used (for compatibility with R < 1.7.0)?
Details

This is an interface to the LAPACK routine DPOTRI and the LINPACK routine DPODI.

Value

The inverse of the matrix whose Choleski decomposition was given.

References

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. STAM. Available on-line
athttp://www.netlib.org/lapack/lug/lapack_lug.html.

See Also

chol, solve.

Examples

cma <- chol(ma <- cbind(1, 1:3, c(1,3,7)))
ma %$*% chol2inv(cma)

http://www.netlib.org/lapack/lug/lapack_lug.html

72 class
class Object Classes
Description
R possesses a simple generic function mechanism which can be used for an object-oriented style of
programming. Method dispatch takes place based on the class of the first argument to the generic
function.
Usage
class (x)
class (x) <- value
unclass (x)
inherits(x, what, which = FALSE)
oldClass (x)
oldClass (x) <- value
Arguments
x a R object
what, value acharacter vector naming classes. value can also be NULL.
which logical affecting return value: see ‘Details’.
Details

Many R objects have a class attribute, a character vector giving the names of the classes from
which the object inherits. If the object does not have a class attribute, it has an implicit class,
"matrix", "array" or the result of mode (x) (except that integer vectors have implicit class
"integer"). (Functions c1dClass and 01dClass<-— get and set the attribute, which can also
be done directly.)

When a generic function fun is applied to an object with class attribute c ("first",
"second"), the system searches for a function called fun.first and, if it finds it, applies
it to the object. If no such function is found, a function called fun. second is tried. If no class
name produces a suitable function, the function fun.default is used (if it exists). If there is no
class attribute, the implicit class is tried, then the default method.

The function class prints the vector of names of classes an object inherits from. Correspondingly,
class<- sets the classes an object inherits from. Assigning a zero-length vector or NULL removes
the class attribute.

unclass returns (a copy of) its argument with its class attribute removed. (It is not allowed for
objects which cannot be copied, namely environments and external pointers.)

inherits indicates whether its first argument inherits from any of the classes specified in the
what argument. If which is TRUE then an integer vector of the same length as what is returned.
Each element indicates the position in the class (x) matched by the element of what; zero

col 73

indicates no match. If which is FALSE then TRUE is returned by inherits if any of the names
in what match with any class.

All but inherits are primitive functions.

Formal classes

An additional mechanism of formal classes is available in packages methods which is attached by
default. For objects which have a formal class, its name is returned by class as a character vector
of length one. However, S3 method selection attempts to treat objects from an S4 class as if they
had the appropriate S3 class attribute, as does inherits. Therefore, S3 methods can be defined
for S4 classes. See Methods for details.

The replacement version of the function sets the class to the value provided. For classes that have
a formal definition, directly replacing the class this way is strongly deprecated. The expression
as (object, value) isthe way to coerce an object to a particular class.

The analogue of inherits for formal classes is i s. The two functions behave consistently objects
with one exception: S4 classes can have conditional inheritance, with an explicit test. In this case,
is will test the condition, but inherits ignores all conditional superclasses.

Note

Functions o01dClass and o1dClass<— behave in the same way as functions of those names
in S-PLUS 5/6, but in R UseMethod dispatches on the class as returned by class (with some
interpolated classes: see the link) rather than o1dClass. However, group generics dispatch on the
oldClass for efficiency, and internal generics only dispatch on objects for which is.object is
true.

See Also

UseMethod, NextMethod, ‘group generic’, ‘internal generic’

Examples

x <- 10

class (x) # "numeric"

oldClass (x) # NULL

inherits(x, "a") #FALSE

class (x) <= c("a", "b")

inherits (x,"a") #TRUE

inherits(x, "a", TRUE) # 1

inherits(x, c("a", "b", "c"), TRUE) # 1 2 0

col Column Indexes

Description

Returns a matrix of integers indicating their column number in a matrix-like object, or a factor of
column labels.

74 Colon

Usage

col (x, as.factor = FALSE)

Arguments
X a matrix-like object, that is one with a two-dimensional dim.
as.factor a logical value indicating whether the value should be returned as a factor of
column labels (created if necessary) rather than as numbers.
Value

An integer (or factor) matrix with the same dimensions as x and whose i j-th element is equal to j
(or the j-th column label).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.
See Also

row to get rows.

Examples

extract an off-diagonal of a matrix
ma <- matrix(l:12, 3, 4)
ma[row(ma) == col(ma) + 1]

create an identity 5-by-5 matrix

x <—- matrix (0, nrow = 5, ncol = 5)
x[row(x) == col(x)] <- 1
Colon Colon Operator
Description

Generate regular sequences.

Usage

from:to
a:b

Colon 75

Arguments
from starting value of sequence.
to (maximal) end value of the sequence.
a, b factors of the same length.
Details

The binary operator : has two meanings: for factors a : b is equivalent to interaction(a, b)
(but the levels are ordered and labelled differently).

For other arguments from: to is equivalent to seq (from, to), and generates a sequence from
fromto to in steps of 1 or —1. Value to will be included if it differs from from by an integer up
to a numeric fuzz of about 1e-7. Non-numeric arguments are coerced internally (hence without
dispatching methods) to numeric—complex values will have their imaginary parts discarded with a
warning.

Value

For numeric arguments, a numeric vector. This will be of type integer if from is integer-valued
and the result is representable in the R integer type, otherwise of type "double™ (aka mode
"numeric").

For factors, an unordered factor with levels labelled as 1a: 1b and ordered lexicographically (that
is, 1b varies fastest).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.
(for numeric arguments: S does not have : for factors.)

See Also

seq (a generalization of from:to).
As an alternative to using : for factors, interaction.

For : used in the formal representation of an interaction, see formula.

Examples

1:4
pi:6 # real
6:pi # integer

f1 <- gl(2,3); f1
£f2 <= gl(3,2); f2
fl:f2 # a factor, the "cross" fl1 x f2

76 colSums
colSums Form Row and Column Sums and Means
Description
Form row and column sums and means for numeric arrays.
Usage
colSums (x, na.rm = FALSE, dims = 1)
rowSums (X, na.rm = FALSE, dims = 1)
colMeans (x, na.rm = FALSE, dims = 1)
rowMeans (X, na.rm = FALSE, dims = 1)
Arguments
X an array of two or more dimensions, containing numeric, complex, integer or
logical values, or a numeric data frame.
na.rm logical. Should missing values (including NaN) be omitted from the calcula-
tions?
dims integer: Which dimensions are regarded as ‘rows’ or ‘columns’ to sum over. For
rowx*, the sum or mean is over dimensions dims+1, ...;for colx itisover
dimensions 1:dims.
Details

These functions are equivalent to use of apply with FUN = meanor FUN = sum with appropri-
ate margins, but are a lot faster. As they are written for speed, they blur over some of the subtleties
of NaN and NA. If na.rm = FALSE and either NaN or NA appears in a sum, the result will be one
of NaN or NA, but which might be platform-dependent.

Notice that omission of missing values is done on a per-column or per-row basis, so column means
may not be over the same set of rows, and vice versa. To use only complete rows or columns, first
select them with na.omit or complete.cases (possibly on the transpose of x).

Value

A numeric or complex array of suitable size, or a vector if the result is one-dimensional. The
dimnames (or names for a vector result) are taken from the original array.

If there are no values in a range to be summed over (after removing missing values with na.rm =
TRUE), that component of the output is set to 0 (xSums) or NA (xMeans), consistent with sum
and mean.

See Also

apply, rowsum

commandArgs 77

Examples

Compute row and column sums for a matrix:

x <= cbind(x1l = 3, x2 = c(4:1, 2:5))

rowSums (x); colSums (x)

dimnames (x) [[1]] <- letters[1:8]

rowSums (x); colSums (x); rowMeans (x); colMeans (x)
x[] <- as.integer (x)

rowSums (x); colSums (x)

x[] <- x < 3

rowSums (x); colSums (x)

x <— cbind(x1l = 3, x2 = c(4:1, 2:5))

x[3,] <= NA; x[4, 2] <- NA

rowSums (x); colSums (x); rowMeans (x); colMeans (x)
rowSums (x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans (x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

an array

dim (UCBAdmissions)

rowSums (UCBAdmissions); rowSums (UCBAdmissions, dims 2)
colSums (UCBAdmissions); colSums (UCBAdmissions, dims = 2)

complex case

X <— cbind(x1l = 3 + 2i, x2 = c(4:1, 2:5) - 5i)

x[3,] <= NA; x[4, 2] <- NA

rowSums (x); colSums (x); rowMeans (x); colMeans (x)
rowSums (x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans (x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

commandArgs Extract Command Line Arguments

Description

Provides access to a copy of the command line arguments supplied when this R session was invoked.

Usage

commandArgs (trailingOnly = FALSE)

Arguments

trailingOnly logical. Should only arguments after ‘~—args’ be returned?

Details

These arguments are captured before the standard R command line processing takes place. This
means that they are the unmodified values. This is especially useful with the ‘~-args’ command-
line flag to R, as all of the command line after that flag is skipped.

78 comment

Value

A character vector containing the name of the executable and the user-supplied command line argu-
ments. The first element is the name of the executable by which R was invoked. The exact form of
this element is platform dependent: it may be the fully qualified name, or simply the last component
(or basename) of the application, or for an embedded R it can be anything the programmer supplied.

If trailingOnly = TRUE, a character vector of those arguments (if any) supplied after
‘——args’.
See Also

Startup BATCH

Examples

commandArgs ()

Spawn a copy of this application as it was invoked,
subject to shell quoting issues

system(paste (commandArgs (), collapse=" "))

comment Query or Set a "comment " Attribute

Description

These functions set and query a comment attribute for any R objects. This is typically useful for
data.frames or model fits.

Contrary to other attributes, the comment is not printed (by print or print.default).

Assigning NULL or a zero-length character vector removes the comment.

Usage

comment (x)
comment (x) <- value

Arguments

x any R object

value a character vector, or NULL.
See Also

attributes and attr for other attributes.

Comparison 79

Examples

x <- matrix(1:12, 3,4)

comment (x) <- c("This is my very important data from experiment #0234",
"Jun 5, 1998")

X

comment (x)

Comparison Relational Operators

Description

Binary operators which allow the comparison of values in atomic vectors.

Usage

x <y

X >y

X <=y

X >=Yy

X == y

x =y
Arguments

X, Vy atomic vectors, symbols, calls, or other objects for which methods have been

written.

Details

The binary comparison operators are generic functions: methods can be written for them individu-
ally or via the Ops) group generic function. (See Ops for how dispatch is computed.)

Comparison of strings in character vectors is lexicographic within the strings using the collating
sequence of the locale in use: see locales. The collating sequence of locales such as ‘en_US’
is normally different from ‘C’ (which should use ASCII) and can be surprising. Beware of making
any assumptions about the collation order: e.g. in Estonian Z comes between S and T, and collation
is not necessarily character-by-character — in Danish aa sorts as a single letter, after z. In Welsh
ng may or may not be a single sorting unit: if it is it follows g. Some platforms may not respect
the locale and always sort in numerical order of the bytes in an 8-bit locale, or in Unicode point
order for a UTF-8 locale (and may not sort in the same order for the same language in different
character sets). Collation of non-letters (spaces, punctuation signs, hyphens, fractions and so on) is
even more problematic.

Character strings can be compared with different marked encodings (see Encoding): they are
translated to UTF-8 before comparison.

At least one of x and y must be an atomic vector, but if the other is a list R attempts to coerce it to
the type of the atomic vector: this will succeed if the list is made up of elements of length one that
can be coerced to the correct type.

80 Comparison

If the two arguments are atomic vectors of different types, one is coerced to the type of the other,
the (decreasing) order of precedence being character, complex, numeric, integer, logical and raw.

Missing values (NA) and NaN values are regarded as non-comparable even to themselves, so com-
parisons involving them will always result in NA. Missing values can also result when character
strings are compared and one is not valid in the current collation locale.

Language objects such as symbols and calls are deparsed to character strings before comparison.

Value

A logical vector indicating the result of the element by element comparison. The elements of shorter
vectors are recycled as necessary.

Objects such as arrays or time-series can be compared this way provided they are conformable.

S4 methods

These operators are members of the S4 Compare group generic, and so methods can be written
for them individually as well as for the group generic (or the Ops group generic), with arguments
c(el, e2).

Note

Do not use == and != for tests, such as in if expressions, where you must get a single TRUE
or FALSE. Unless you are absolutely sure that nothing unusual can happen, you should use the
identical function instead.

For numerical and complex values, remember == and != do not allow for the finite representa-
tion of fractions, nor for rounding error. Using all.equal with identical is almost always
preferable. See the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Collation of character strings is a complex topic. For an introduction see http://
en.wikipedia.org/wiki/Collating_sequence. The Unicode Collation Algorithm
(http://unicode.org/reports/trl0/) is likely to be increasingly influential. Where
available R makes use of ICU (http://site.icu-project.org/ for collation.

See Also

factor for the behaviour with factor arguments.
Syntax for operator precedence.

icuSetCollate to tune the string collation algorithm when ICU is in use.

http://en.wikipedia.org/wiki/Collating_sequence
http://en.wikipedia.org/wiki/Collating_sequence
http://unicode.org/reports/tr10/
http://site.icu-project.org/

complex

Examples

x <— stats::rnorm(20)

X
x[

x1
X2
x1

< 1
x > 0]

== x2

identical (all.equal (x1, x2

#

z

), TRUE)

range of most 8-bit charsets,

<- c¢(32:126,

160:255)

x <— 1f(110n_info () $MBCS)
intToUtf8 (z, multiple

}
##

writelines (strwrap (paste (x,

else rawToChar (as.raw(z),

by number

by locale collation
writelLines (strwrap (paste (sort (x),

{

as well as of Latin-1 in Unicode

= TRUE)

multiple= TRUE)

collapse="

collapse="

FALSE on most machines
TRUE everywhere

60))

81

complex

Complex Vectors

Description

Basic functions which support complex arithmetic in R.

Usage

complex (length.out = 0,

as.complex (x,
is.complex (x)

modulus = 1, argument

Arguments

length.out

real

imaginary

modulus

)

real

numeric (), imaginary

numeric(),

numeric. Desired length of the output vector, inputs being recycled as needed.

numeric vector.
numeric vector.

numeric vector.

82 complex

argument numeric vector.

X an object, probably of mode complex.

z an object of mode complex, or one of a class for which a methods has been
defined.

further arguments passed to or from other methods.

Details

Complex vectors can be created with complex. The vector can be specified either by giving its
length, its real and imaginary parts, or modulus and argument. (Giving just the length generates a
vector of complex zeroes.)

as.complex attempts to coerce its argument to be of complex type: like as.vector it strips
attributes including names. All forms of NA and NaN are coerced to a complex NA, for which both
the real and imaginary parts are NA.

Note that 1s.complex and is.numeric are never both TRUE.

The functions Re, Im, Mod, Arg and Conj have their usual interpretation as returning the real
part, imaginary part, modulus, argument and complex conjugate for complex values. The modulus
and argument are also called the polar coordinates. If z = x + iy with real x and y, for r =
Mod(z) = v/z% 4+ y2, and ¢ = Arg(z), z = r * cos(¢) and y = r * sin(¢). They are all internal
generic primitive functions: methods can be defined for them individually or via the Complex
group generic.

In addition, the elementary trigonometric, logarithmic, exponential, square root and hyperbolic
functions are implemented for complex values.

Internally, complex numbers are stored as a pair of double precision numbers, either or both of
which can be NaN or plus or minus infinity.
S4 methods

as.complex is primitive and can have S4 methods set.

Re, Im, Mod, Arg and Conj constitute the S4 group generic Complex and so S4 methods can be
set for them individually or via the group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

require (graphics)
0i ~ (=3:3)

matrix (11~ (-6:5), nrow=4) #- all columns are the same
0 ~ 1i # a complex NaN

create a complex normal vector

conditions

83

z <—- complex (real = stats::rnorm(100), imaginary = stats::rnorm(100))
or also (less efficiently):
z2 <= 1:2 + 11i%(8:9)
The Arg(.) is an angle:
zz <- (rep(l:4,len=9) + 1ix(9:1))/10
zz.shift <- complex(modulus = Mod(zz), argument= Arg(zz) + pi)
plot(zz, xlim=c(-1,1), ylim=c(-1,1), col="red", asp = 1,

main = expression (paste ("Rotation by "," ", pi == 180%0)))
abline (h=0,v=0, col="blue", 1lty=3)
points(zz.shift, col="orange")

conditions

Condition Handling and Recovery

Description

These functions provide a mechanism for handling unusual conditions, including errors and warn-

ings.

Usage

tryCatch (expr, ..., finally)
withCallingHandlers (expr, ...)

signalCondition (cond)

simpleCondition (message, call = NULL
simpleError (message, call = NULL
simpleWarning (message, call = NULL
simpleMessage (message, call = NULL
S3 method for class 'condition'
as.character(x, ...)

S3 method for class 'error'
as.character(x, ...)

S3 method for class 'condition'
print(x, ...)

S3 method for class 'restart'
print(x, ...)

conditionCall (c)

S3 method for class 'condition'
conditionCall (c)

conditionMessage (c)

S3 method for class 'condition'

conditionMessage (c)

)
)
)
)

84 conditions

withRestarts (expr, ...)

computeRestarts (cond = NULL)
findRestart (name, cond = NULL)
invokeRestart (r, ...)
invokeRestartInteractively (r)

isRestart (x)
restartDescription (r)
restartFormals (r)

.signalSimpleWarning (msg, call)
.handleSimpleError (h, msg, call)

Arguments

c a condition object.

call call expression.

cond a condition object.

expr expression to be evaluated.

finally expression to be evaluated before returning or exiting.

h function.

message character string.

msg character string.

name character string naming a restart.

r restart object.

x object.

additional arguments; see details below.

Details

The condition system provides a mechanism for signaling and handling unusual conditions, includ-
ing errors and warnings. Conditions are represented as objects that contain information about the
condition that occurred, such as a message and the call in which the condition occurred. Currently
conditions are S3-style objects, though this may eventually change.

Conditions are objects inheriting from the abstract class condition. Errors and warnings are
objects inheriting from the abstract subclasses error and warning. The class simpleError
is the class used by stop and all internal error signals. Similarly, simpleWarning is used
by warning, and simpleMessage is used by message. The constructors by the same
names take a string describing the condition as argument and an optional call. The functions
conditionMessage and conditionCall are generic functions that return the message and
call of a condition.

Conditions are signaled by signalCondition. In addition, the st op and warning functions
have been modified to also accept condition arguments.

conditions 85

The function tryCatch evaluates its expression argument in a context where the handlers pro-
vided in the . . . argument are available. The finally expression is then evaluated in the context
in which tryCatch was called; that is, the handlers supplied to the current tryCatch call are
not active when the finally expression is evaluated.

Handlers provided in the ... argument to tryCatch are established for the duration of the
evaluation of expr. If no condition is signaled when evaluating expr then t ryCat ch returns the
value of the expression.

If a condition is signaled while evaluating expr then established handlers are checked, starting
with the most recently established ones, for one matching the class of the condition. When several
handlers are supplied in a single t ryCatch then the first one is considered more recent than the
second. If a handler is found then control is transferred to the t ryCatch call that established the
handler, the handler found and all more recent handlers are disestablished, the handler is called with
the condition as its argument, and the result returned by the handler is returned as the value of the
tryCatch call.

Calling handlers are established by withCallingHandlers. If a condition is signaled and the
applicable handler is a calling handler, then the handler is called by signalCondition in the
context where the condition was signaled but with the available handlers restricted to those below
the handler called in the handler stack. If the handler returns, then the next handler is tried; once
the last handler has been tried, signalCondition returns NULL.

User interrupts signal a condition of class interrupt that inherits directly from class
condition before executing the default interrupt action.

Restarts are used for establishing recovery protocols. They can be established using
withRestarts. One pre-established restart is an abort restart that represents a jump to top
level.

findRestart and computeRestarts find the available restarts. findRestart returns the
most recently established restart of the specified name. computeRestarts returns a list of all
restarts. Both can be given a condition argument and will then ignore restarts that do not apply to
the condition.

invokeRestart transfers control to the point where the specified restart was established
and calls the restart’s handler with the arguments, if any, given as additional arguments to
invokeRestart. The restart argument to invokeRestart can be a character string, in which
case findRestart is used to find the restart.

New restarts for withRestarts can be specified in several ways. The simplest is in
name=function form where the function is the handler to call when the restart is invoked. An-
other simple variant is as name=st ring where the string is stored in the description field of
the restart object returned by findRestart; in this case the handler ignores its arguments and
returns NULL. The most flexible form of a restart specification is as a list that can include several
fields, including handler, description, and test. The test field should contain a function
of one argument, a condition, that returns TRUE if the restart applies to the condition and FALSE if
it does not; the default function returns TRUE for all conditions.

One additional field that can be specified for a restart is interactive. This should
be a function of no arguments that returns a list of arguments to pass to the restart han-
dler. The list could be obtained by interacting with the user if necessary. The function
invokeRestartInteractively calls this function to obtain the arguments to use when in-
voking the restart. The default interactive method queries the user for values for the formal
arguments of the handler function.

86 conflicts

.signalSimpleWarningand .handleSimpleError are used internally and should not be
called directly.

References

The t ryCatch mechanism is similar to Java error handling. Calling handlers are based on Com-
mon Lisp and Dylan. Restarts are based on the Common Lisp restart mechanism.

See Also

stop and warning signal conditions, and t ry is essentially a simplified version of t ryCatch.

Examples

tryCatch(l, finally=print ("Hello"))
e <- simpleError ("test error")

Not run:

stop (e)

tryCatch(stop(e), finally=print ("Hello"))
tryCatch (stop ("fred"), finally=print ("Hello"))

End (Not run)

tryCatch(stop(e), error = function(e) e, finally=print ("Hello"))
tryCatch (stop("fred"), error = function(e) e, finally=print ("Hello"))
withCallingHandlers ({ warning("A"); 1+2 }, warning = function(w) {})

Not run:
{ withRestarts(stop("A"), abort = function() {}); 1 }

End (Not run)
withRestarts (invokeRestart ("foo", 1, 2), foo = function(x, y) {x + yv})

##-—> More examples are part of

#H——> demo (error.catching)
conflicts Search for Masked Objects on the Search Path
Description

conflicts reports on objects that exist with the same name in two or more places on the search
path, usually because an object in the user’s workspace or a package is masking a system object of
the same name. This helps discover unintentional masking.

Usage

conflicts (where = search (), detail = FALSE)

connections 87

Arguments
where A subset of the search path, by default the whole search path.
detail If TRUE, give the masked or masking functions for all members of the search
path.
Value

If detail=FALSE, a character vector of masked objects. If detail=TRUE, a list of character
vectors giving the masked or masking objects in that member of the search path. Empty vectors are
omitted.

Examples

Im <- 1:3

conflicts(, TRUE)

gives something like
$.GlobalEnv

[l] " lm"

#
#
Spackage:base

[1] "Im"

Remove things from your "workspace" that mask others:
remove (list = conflicts (detail=TRUE) $.GlobalEnv)

connections Functions to Manipulate Connections

Description

Functions to create, open and close connections.

Usage
file(description = "", open = "", blocking = TRUE,
encoding = getOption ("encoding"), raw = FALSE)
url (description, open = "", blocking = TRUE,
encoding getOption ("encoding"))
gzfile(description, open = "", encoding = getOption("encoding"),
compression = 6)
bzfile(description, open = "", encoding getOption ("encoding"),
compression = 9)

xzfile (description, open "", encoding = getOption("encoding"),

88

compression 6)

unz (description,

filename,

connections

nn
14

open =

encoding = getOption ("encoding"))
pipe (description, open = "", encoding = getOption ("encoding"))
fifo(description, open = "", blocking = FALSE,
encoding = getOption ("encoding"))
socketConnection (host = "localhost", port, server = FALSE,
blocking = FALSE, open = "a+",
encoding = getOption ("encoding"))

open(con, ...)

S3 method for class 'connection'

open (con, open = "r", blocking = TRUE, ...)
close(con, ...)

S3 method for class 'connection'

close(con, type = "rw",

flush (con)

isOpen (con, ")

isIncomplete (con)

rw =

Arguments

description

open

-)

character string. A description of the connection: see ‘Details’.

character. A description of how to open the connection (if it should be opened

initially). See section ‘Modes’ for possible values.

blocking
encoding

raw

logical. See the ‘Blocking’ section.
The name of the encoding to be used. See the ‘Encoding’ section.

logical. If true, a ‘raw’ interface is used which will be more suitable for argu-

ments which are not regular files, e.g. character devices. This suppresses the
check for a compressed file when opening for text-mode reading, and asserts
that the ‘file’ may not be seekable.

compression

integer in 0-9.

The amount of compression to be applied when writing, from

none to maximal available. For xzfile can also be negative: see the ‘Com-
pression’ section.

filename
host
port
server

con a connection.

a filename within a zip file.
character. Host name for port.
integer. The TCP port number.

logical. Should the socket be a client or a server?

connections 89

type character. Currently ignored.
rw character. Empty or "read" or "write", partial matches allowed.

arguments passed to or from other methods.

Details

The first nine functions create connections. By default the connection is not opened (except for
socketConnection), but may be opened by setting a non-empty value of argument open.

For £ile the description is a path to the file to be opened or a complete URL (when it is the same as
calling url), or "" (the default) or "clipboard™" (see the ‘Clipboard’ section). Use "stdin"
to refer to the C-level ‘standard input’ of the process (which need not be connected to anything in a
console or embedded version of R). See also stdin () for the subtly different R-level concept of
stdin.

For url the description is a complete URL, including scheme (such as ‘http://’, ‘ftp://’
or ‘file://’). Proxies can be specified for HTTP and FTP url connections: see
download. file.

For gz file the description is the path to a file compressed by gzip: it can also open for reading
uncompressed files and (as from R 2.10.0) those compressed by bzip2, xz or 1zma.

For bz file the description is the path to a file compressed by bzip2.

For xzfile the description is the path to a file compressed by xz (http://en.wikipedia.
org/wiki/Xz) or (for reading only) 1zma (http://en.wikipedia.org/wiki/LZMA).

unz reads (only) single files within zip files, in binary mode. The description is the full path to the
zip file, with ‘. zip’ extension if required.

For pipe the description is the command line to be piped to or from. This is run in a shell, on
Windows that specified by the COMSPEC environment variable.

For fifo the description is the path of the fifo. (Windows does not have fifos, so attempts to
use this function there are an error. It was possible to use file with fifos prior to R 2.10.0, but
raw=TRUE is now required for reading, and £i fo was always the documented interface.)

All platforms support file, pipe, gzfile,bzfile, xzfile, unz and url ("file://")
connections. The other connections may be partially implemented or not implemented at all. (They
do work on most Unix platforms, and all but £i fo on Windows.)

The intention is that £ile and gz file can be used generally for text input (from files and URLs)
and binary input respectively.

open, close and seek are generic functions: the following applies to the methods relevant to
connections.

open opens a connection. In general functions using connections will open them if they are not
open, but then close them again, so to leave a connection open call open explicitly.

close closes and destroys a connection. This will happen automatically in due course (with a
warning) if there is no longer an R object referring to the connection.

A maximum of 128 connections can be allocated (not necessarily open) at any one time. Three of
these are pre-allocated (see stdout). The OS will impose limits on the numbers of connections of
various types, but these are usually larger than 125.

flush flushes the output stream of a connection open for write/append (where implemented, cur-
rently for file and clipboard connections, stdout and stderr).

http://en.wikipedia.org/wiki/Xz
http://en.wikipedia.org/wiki/Xz
http://en.wikipedia.org/wiki/LZMA

90 connections

If for a file or £ifo connection the description is " ", the file/fifo is immediately opened (in
"w+" mode unless open = "w+b" is specified) and unlinked from the file system. This provides
a temporary file/fifo to write to and then read from.

Value

file,pipe, fifo,url,gzfile,bzfile, xzfile, unz and socketConnection return
a connection object which inherits from class "connection™" and has a first more specific class.

isOpen returns a logical value, whether the connection is currently open.

isIncomplete returns alogical value, whether the last read attempt was blocked, or for an output
text connection whether there is unflushed output.

URLs

url and f£ile support URL schemes ‘http://’, ‘ftp:// and ‘file://’.

A note on ‘file://’ URLs. The most general form (from RFC1738) is
‘file://host/path/to/file’, but R only accepts the form with an empty host field refer-
ring to the local machine. This is then ‘file:///path/to/file’, where ‘path/to/file’
is relative to ‘/’. So although the third slash is strictly part of the specification not part of the path,
this can be regarded as a way to specify the file ‘/path/to/file’. Itis not possible to specify a
relative path using a file URL.

No attempt is made to decode an encoded URL: call URLdecode if necessary.
Note that “https://’ connections are not supported (with some exceptions on Windows).

Contributed package RCurl provides more comprehensive facilities to download from URLs.

Modes
Possible values for the argument open are

"r"or "rt" Open for reading in text mode.

"w" or "wt" Open for writing in text mode.

"a" or "at" Open for appending in text mode.

"rb" Open for reading in binary mode.

"wb" Open for writing in binary mode.

"ab" Open for appending in binary mode.

"r+", "r+b" Open for reading and writing.

"w+", "w+b" Open for reading and writing, truncating file initially.

"a+", "a+b" Open for reading and appending.

Not all modes are applicable to all connections: for example URLs can only be opened for reading.

Only file and socket connections can be opened for both reading and writing. An unsupported mode
is usually silently substituted.

If a file or fifo is created on a Unix-alike, its permissions will be the maximal allowed by the current
setting of umask (see Sys.umask).

connections 91

For many connections there is little or no difference between text and binary modes. For file-like
connections on Windows, translation of line endings (between LF and CRLF) is done in text mode
only (but text read operations on connections such as readLines, scan and source work for
any form of line ending). Various R operations are possible in only one of the modes: for example
pushBack is text-oriented and is only allowed on connections open for reading in text mode, and
binary operations such as readBin, 1oad and save operations can only be done on binary-mode
connections.

The mode of a connection is determined when actually opened, which is deferred if open = ""
is given (the default for all but socket connections). An explicit call to open can specify the mode,
but otherwise the mode willbe "r". (gzfile,bzfile and xzfile connections are exceptions,
as the compressed file always has to be opened in binary mode and no conversion of line-endings
is done even on Windows, so the default mode is interpreted as "rb".) Most operations that need
write access or text-only or binary-only mode will override the default mode of a non-yet-open
connection.

Append modes need to be considered carefully for compressed-file connections. They do not pro-
duce a single compressed stream on the file, but rather append a new compressed stream to the file.
Readers (including R) may or may not read beyond end of the first stream: currently R does so for
gzfile,bzfile and xzfile connections, but earlier versions did not.

Compression

R has for a long time supported gzip and bzip2 compression, and support for xz compression
(and read-only support for its precursor 1zma compression) was added in R 2.10.0.

For reading, the type of compression (if any) can be determined from the first few bytes of the
file, and this is exploited as from R 2.10.0. Thus for file (raw = FALSE) connections, if
openis "", "r" or "rt" the connection can read any of the compressed file types as well as
uncompressed files. (Using "rb" will allow compressed files to be read byte-by-byte.) Similarly,
gzfile connections can read any of the forms of compression and uncompressed files in any read
mode.

(The type of compression is determined when the connection is created if open is unspecified and
a file of that name exists. If the intention is to open the connection to write a file with a different
form of compression under that name, specify open = "w" when the connection is created or
unlink the file before creating the connection.)

For write-mode connections, compress specifies now hard the compressor works to minimize the
file size, and higher values need more CPU time and more working memory (up to ca 800Mb for
xzfile (compress = 9)). For xzfile negative values of compress correspond to adding
the xz argument ‘—e’: this takes more time (double?) to compress but may achieve (slightly) better
compression. The default (6) has good compression and modest (100Mb memory usage): but if
you are using xz compression you are probably looking for high compression.

Choosing the type of compression involves tradeoffs: gzip, bzip2 and xz are successively less
widely supported, need more resources for both compression and decompression, and achieve more
compression (although individual files may buck the general trend). Typical experience is that
bzip2 compression is 15% better on text files than gzip compression, and xz with maximal
compression 30% better. The experience with R save files is similar, but on some large ‘. rda’
files xz compression is much better than the other two. With current computers decompression
times even with compress = 9 are typically modest and reading compressed files is usually
faster than uncompressed ones because of the reduction in disc activity.

92 connections

Encoding

The encoding of the input/output stream of a connection can be specified by name in the same
way as it would be given to iconv: see that help page for how to find out what encoding names
are recognized on your platform. Additionally, "" and "native.enc" both mean the ‘native’
encoding, that is the internal encoding of the current locale and hence no translation is done.

Re-encoding only works for connections in text mode: reading from a connection with re-encoding
specified in binary mode will read the stream of bytes, but mixing text and binary mode reads (e.g.
mixing calls to readLines and readChar) is likely to lead to incorrect results.

The encodings "UCS-2LE" and "UTF-16LE" are treated specially, as they are appropriate values
for Windows ‘Unicode’ text files. If the first two bytes are the Byte Order Mark 0xFFFE then these
are removed as some implementations of iconv do not accept BOMs. Note that whereas most
implementations will handle BOMs using encoding "UCS-2" and choose the appropriate byte
order, some (including earlier versions of glibc) will not. There is a subtle distinction between
"UTF-16" and "UCS-2" (see http://en.wikipedia.org/wiki/UTF-16/UCS~-2: the
use of surrogate pairs is very rare so "UCS—2LE" is an appropriate first choice.

Requesting a conversion that is not supported is an error, reported when the connection is opened.
Exactly what happens when the requested translation cannot be done for invalid input is in general
undocumented. On output the result is likely to be that up to the error, with a warning. On input, it
will most likely be all or some of the input up to the error.

Blocking

Whether or not the connection blocks can be specified for file, url (default yes) fifo and socket
connections (default not).

In blocking mode, functions using the connection do not return to the R evaluator until the
read/write is complete. In non-blocking mode, operations return as soon as possible, so on in-
put they will return with whatever input is available (possibly none) and for output they will return
whether or not the write succeeded.

The function readLines behaves differently in respect of incomplete last lines in the two modes:
see its help page.

Even when a connection is in blocking mode, attempts are made to ensure that it does not block the
event loop and hence the operation of GUI parts of R. These do not always succeed, and the whole
R process will be blocked during a DNS lookup on Unix, for example.

Most blocking operations on HTTP/FTP URLs and on sockets are subject to the timeout set by
options ("timeout"). Note that this is a timeout for no response, not for the whole operation.
The timeout is set at the time the connection is opened (more precisely, when the last connection of
that type — ‘http:’, ‘“ftp:’ or socket — was opened).

Fifos

Fifos default to non-blocking. That follows S version 4 and is probably most natural, but it does
have some implications. In particular, opening a non-blocking fifo connection for writing (only)
will fail unless some other process is reading on the fifo.

Opening a fifo for both reading and writing (in any mode: one can only append to fifos) connects
both sides of the fifo to the R process, and provides an similar facility to file ().

http://en.wikipedia.org/wiki/UTF-16/UCS-2

connections 93

Clipboard

filecanbeused withdescription = "clipboard" inmode "r" only. This reads the X11
primary selection (see http://standards.freedesktop.org/clipboards-spec/
clipboards—-latest.txt), which can also be specified as "X11_primary" and the sec-
ondary selection as "X11_secondary". On most systems the clipboard selection (that used by
‘Copy’ from an ‘Edit’ menu) can be specified as "X11_clipboard".

When a clipboard is opened for reading, the contents are immediately copied to internal storage in
the connection.

Unix users wishing to write to one of the selections may be able to do so via xclip (http:
//sourceforge.net/projects/xclip/), for example by pipe ("xclip —-i", "w")
for the primary selection.

Mac OS X users can use pipe ("pbpaste") and pipe ("pbcopy", "w") toread from and
write to that system’s clipboard.

Note

R’s connections are modelled on those in S version 4 (see Chambers, 1998). However R goes
well beyond the S model, for example in output text connections and URL, compressed and socket
connections.

The default open mode in R is "r" except for socket connections. This differs from S, where it is
the equivalent of "r+", known as "« ".

On (rare) platforms where vsnprintf does not return the needed length of output there is a
100,000 byte output limit on the length of line for text output on fifo, gzfile, bzfile and
xzfile connections: longer lines will be truncated with a warning.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

Ripley, B. D. (2001) Connections. R News, 1/1, 16-7. http://www.r—-project.org/doc/
Rnews/Rnews_2001-1.pdf

See Also

textConnection, seek, showConnections, pushBack.

Functions making direct use of connections are (text-mode) readLines, writeLines, cat,
sink, scan, parse, read.dcf, dput, dump and (binary-mode) readBin, readChar,
writeBin, writeChar, load and save.

capabilities to see if HTTP/FTP url, fifo and socketConnection are supported by
this build of R.

gzcon to wrap gz ip (de)compression around a connection.

memCompress for more ways to (de)compress and references on data compression.

http://standards.freedesktop.org/clipboards-spec/clipboards-latest.txt
http://standards.freedesktop.org/clipboards-spec/clipboards-latest.txt
http://sourceforge.net/projects/xclip/
http://sourceforge.net/projects/xclip/
http://www.r-project.org/doc/Rnews/Rnews_2001-1.pdf
http://www.r-project.org/doc/Rnews/Rnews_2001-1.pdf

94 connections

Examples
zz <—- file("ex.data", "w") # open an output file connection
cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
cat ("One more line\n", file = zz)

close(zz)
readLines ("ex.data")
unlink ("ex.data")

zz <- gzfile("ex.gz", "w") # compressed file

cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)

readLines (zz <- gzfile("ex.gz"))

close(zz)

unlink ("ex.gz")

zz <— bzfile("ex.bz2", "w") # bzip2-ed file

cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)

print (readLines (zz <- bzfile("ex.bz2")))

close(zz)

unlink ("ex.bz2")

An example of a file open for reading and writing
Tfile <- file("testl", "w+")

c(isOpen(Tfile, "r"), isOpen(Tfile, "w")) # both TRUE
cat ("abc\ndef\n", file=Tfile)

readLines (Tfile)

seek (Tfile, 0, rw="r") # reset to beginning
readLines (Tfile)

cat ("ghi\n", file=Tfile)

readLines (Tfile)

close (Tfile)

unlink ("testl")

We can do the same thing with an anonymous file.
Tfile <- file()

cat ("abc\ndef\n", file=Tfile)

readLines (Tfile)

close (Tfile)

fifo example —-- may fail even with OS support for fifos
if (capabilities ("fifo")) {

zz <— fifo("foo-fifo", "w+")

writeLines ("abc", zz)

print (readLines (zz))

close(zz)

unlink ("foo-fifo")

Unix examples of use of pipes

read listing of current directory

Constants 95

readLines (pipe("1ls —-1"))
remove trailing commas. Suppose

Not run: % cat data2

450, 390, 467, 654, 30, 542, 334, 432, 421,
357, 497, 493, 550, 549, 467, 575, 578, 342,
446, 547, 534, 495, 979, 479

End (Not run)

Then read this by

scan (pipe("sed -e s/,$// data2_"), sep=",")

convert decimal point to comma in output: see also write.table
both R strings and (probably) the shell need \ doubled

zz <- pipe (paste("sed s/\\\\./,/ >", "outfile"), "w")

cat (format (round(stats::rnorm(48), 4)), £ill=70, file = zz)
close(zz)

file.show ("outfile", delete.file=TRUE)

example for a machine running a finger daemon

con <- socketConnection(port = 79, blocking = TRUE)
writeLines (paste (system("whoami", intern=TRUE), "\r", sep=""), con)
gsub (" *$", "", readLines(con))

close (con)

Not run:

two R processes communicating via non-blocking sockets
R process 1

conl <- socketConnection (port = 6011, server=TRUE)
writeLines (LETTERS, conl)

close (conl)

R process 2

con2 <- socketConnection(Sys.info () ["nodename"], port = 6011)
as non-blocking, may need to loop for input

readLines (con2)

while (isIncomplete (con2)) {Sys.sleep(l); readLines(con2)}
close (con?2)

examples of use of encodings
write a file in UTF-38

cat (x, file = (con <- file("foo", "w", encoding="UTF-8"))); close(con)
read a 'Windows Unicode' file
A <- read.table(con <- file("students", encoding="UCS-2LE")); close(con)

End (Not run)

Constants Built-in Constants

96

Description

Constants built into R.

Usage

LETTERS
letters
month.abb
month.name

Pr1

Details

R has a small number of built-in constants.

The following constants are available:

Constants

* LETTERS: the 26 upper-case letters of the Roman alphabet;

* letters: the 26 lower-case letters of the Roman alphabet;

* month.abb: the three-letter abbreviations for the English month names;

* month.name: the English names for the months of the year;

e pi: the ratio of the circumference of a circle to its diameter.

These are implemented as variables in the base name space taking appropriate values.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

See Also

data,DateTimeClasses.

Quotes for the parsing of character constants, NumericConstants for numeric constants.

Examples

John Machin (ca 1706) computed pi
using the Taylor series expansion
pi - 4% (4xatan(1/5) - atan(1/239))

months in English

month.name

months in your current locale
format (ISOdate (2000, 1:12, 1), "%B")
format (ISOdate (2000, 1:12, 1), "%b")

to over 100 decimal places
of the second term of

contributors 97

contributors R Project Contributors

Description

The R Who-is-who, describing who made significant contributions to the development of R.

Usage

contributors ()

Control Control Flow

Description

These are the basic control-flow constructs of the R language. They function in much the same way
as control statements in any Algol-like language. They are all reserved words.

Usage

if (cond) expr
if (cond) cons.expr else alt.expr

for (var in seq) expr
while (cond) expr
repeat expr

break
next
Arguments

cond A length-one logical vector that is not NA. Conditions of length greater than one
are accepted with a warning, but only the first element is used. Other types are
coerced to logical if possible, ignoring any class.

var A syntactical name for a variable.

seq An expression evaluating to a vector (including a list and an expression) or to a

pairlist or NULL. A factor value will be coerced to a character vector.

expr, cons.expr, alt.expr
An expression in a formal sense. This is either a simple expression or a so called
compound expression, usually of the form { exprl ; expr2 }.

98 Control

Details

break breaks out of a for, while or repeat loop; control is transferred to the first statement
outside the inner-most loop. next halts the processing of the current iteration and advances the
looping index. Both break and next apply only to the innermost of nested loops.

Note that it is a common mistake to forget to put braces ({ .. }) around your statements, e.g.,
after if (..) or for (....). In particular, you should not have a newline between } and else
to avoid a syntax error in enteringa if ... else construct at the keyboard or via source.
For that reason, one (somewhat extreme) attitude of defensive programming is to always use braces,
e.g., for i f clauses.

The seqgin a for loop is evaluated at the start of the loop; changing it subsequently does not affect
the loop. If seq has length zero the body of the loop is skipped. Otherwise the variable var is
assigned in turn the value of each element of seq. You can assign to var within the body of the
loop, but this will not affect the next iteration. When the loop terminates, var remains as a variable
containing its latest value.

Value

1if returns the value of the expression evaluated, or NULL invisibly if none was (which may happen
if there isno else).

for, while and repeat return NULL invisibly. for sets var to the last used element of seq,
or to NULL if it was of length zero.

break and next do not return a value as they transfer control within the loop.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Syntax for the basic R syntax and operators, Paren for parentheses and braces.

ifelse, switch for other ways to control flow.

Examples

for(i in 1:5) print(l:1i)
for(n in c¢(2,5,10,20,50)) {
x <— stats::rnorm(n)
cat (n,":", sum(x”"2),"\n")
}
f = factor (sample(letters[1l:5], 10, replace=TRUE))
for(i in unique(f)) print (i)

converters 99

converters Management of .C argument conversion list

Description

These functions provide facilities to manage the extensible list of converters used to translate R
objects to C pointers for use in . C calls. The number and a description of each element in the list
can be retrieved. One can also query and set the activity status of individual elements, temporarily
ignoring them. And one can remove individual elements.

Usage

getNumCConverters ()
getCConverterDescriptions ()
getCConverterStatus ()
setCConverterStatus (id, status)
removeCConverter (id)

Arguments
id either a number or a string identifying the element of interest in the converter list.
A string is matched against the description strings for each element to identify
the element. Integers are specified starting at 1 (rather than 0).
status a logical value specifying whether the element is to be considered active (TRUE)
or not (FALSE).
Details

The internal list of converters is potentially used when converting individual arguments in a .C
call. If an argument has a non-trivial class attribute, we iterate over the list of converters looking
for the first that matches. If we find a matching converter, we have it create the C-level pointer
corresponding to the R object. When the call to the C routine is complete, we use the same converter
for that argument to reverse the conversion and create an R object from the current value in the C
pointer. This is done separately for all the arguments.

The functions documented here provide R user-level capabilities for investigating and managing
the list of converters. There is currently no mechanism for adding an element to the converter list
within the R language. This must be done in C code using the routine R_addToCConverter ().

Value

getNumCConverters returns an integer giving the number of elements in the list, both active
and inactive.

getCConverterDescriptions returns a character vector containing the description string of
each element of the converter list.

getCConverterStatus returns a logical vector with a value for each element in the converter
list. Each value indicates whether that converter is active (TRUE) or inactive (FALSE). The names
of the elements are the description strings returned by getCConverterDescriptions.

100 copyright

setCConverterStatus returns the logical value indicating the activity status of the specified
element before the call to change it took effect. This is TRUE for active and FALSE for inactive.

removeCConverter returns TRUE if an element in the converter list was identified and removed.
In the case that no such element was found, an error occurs.
Author(s)

Duncan Temple Lang

References

http://developer.R-project.org/CObjectConversion.pdf

See Also

.C

Examples

getNumCConverters ()
getCConverterDescriptions ()
getCConverterStatus ()

Not run:

old <- setCConverterStatus (1, FALSE)

setCConverterStatus (1, old)
End (Not run)

Not run:
removeCConverter (1)

removeCConverter (getCConverterDescriptions () [1])

End (Not run)

copyright Copyrights of Files Used to Build R

Description

R is released under the ‘GNU Public License’: see 1icense for details. The license describes
your right to use R. Copyright is concerned with ownership of intellectual rights, and some of the
software used has conditions that the copyright must be explicitly stated: see the ‘Details’ section.
We are grateful to these people and other contributors (see contributors) for the ability to use
their work.

Details
The file ‘R_HOME/COPYRIGHTS’ lists the copyrights in full detail.

http://developer.R-project.org/CObjectConversion.pdf

crossprod 101

crossprod Matrix Crossproduct

Description

Given matrices x and y as arguments, return a matrix cross-product. This is formally equiva-
lent to (but usually slightly faster than) the call t (x) %*% y (crossprod)or x %$x% t (y)
(tcrossprod).

Usage

crossprod(x, y = NULL)

tcrossprod(x, y = NULL)

Arguments
X, Yy numeric or complex matrices: y = NULL is taken to be the same matrix as x.
Vectors are promoted to single-column or single-row matrices, depending on the
context.
Value

A double or complex matrix, with appropriate dimnames taken from x and y.

Note
When x or y are not matrices, they are treated as column or row matrices, but their names are
usually not promoted to dimnames. Hence, currently, the last example has empty dimnames.
References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.
See Also

%% and outer product $0%.

Examples
(z <— crossprod(1l:4)) # = sum(l + 272 + 372 + 4"2)
drop (z) # scalar
x <= 1:4; names (x) <- letters[1l:4]; x
tcrossprod(as.matrix(x)) # is

identical (tcrossprod(as.matrix (x)),
crossprod (t (x)))
tcrossprod (x) # no dimnames

102 Cstack_info

m <- matrix(l:6, 2,3) ; v <= 1:3; v2 <= 2:1
stopifnot (identical (tcrossprod(v, m), v %*% t(m)),
identical (
identical (

tcrossprod(v, m), crossprod(v, t(m))),
crossprod(m, v2), t(m) %*x% v2))

Cstack_info Report Information on C Stack Size and Usage

Description

Report information on the C stack size and usage (if available).

Usage

Cstack_info ()

Details

On most platforms, C stack information is recorded when R is initialized and used for stack-
checking. If this information is unavailable, the size will be returned as NA, and stack-checking
is not performed.

The information on the stack base address is thought to be accurate on Windows, Linux and
FreeBSD (including Mac OS X), but a heuristic is used on other platforms. Because this might
be slightly inaccurate, the current usage could be estimated as negative. (The heuristic is not used
on embedded uses of R on platforms where the stack base is not thought to be accurate.)

Value

An integer vector. This has named elements

size The size of the stack (in bytes), or NA if unknown.
current The estimated current usage (in bytes), possibly NA.
direction 1 (stack grows down, the usual case) or —1 (stack grows up).

eval_depth The current evaluation depth (including two calls for the call to
Cstack_info).

Examples

Cstack_info ()

cumsum 103

cumsum Cumulative Sums, Products, and Extremes

Description

Returns a vector whose elements are the cumulative sums, products, minima or maxima of the
elements of the argument.

Usage

cumsum (x)
cumprod (x)
cummax (x)
cummin (x)

Arguments
x a numeric or complex (not cummin or cummax) object, or an object that can
be coerced to one of these.
Details

These are generic functions: methods can be defined for them individually or via the Math group
generic.

Value

A vector of the same length and type as x (after coercion), except that cumprod returns a numeric
vector for integer input (for consistency with). Names are preserved.

An NA value in x causes the corresponding and following elements of the return value to be NA, as
does integer overflow in cumsum (with a warning).

S4 methods

cumsum and cumprod are S4 generic functions: methods can be defined for them individually or
via the Math group generic. cummax and cummin are individually S4 generic functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (cumsum only.)

Examples

cumsum (1:10)
cumprod (1:10)
cummin (c(3:1, 2:0

cummax (c(3:1, 2:0, 4:2))

104 cut

cut Convert Numeric to Factor

Description
cut divides the range of x into intervals and codes the values in x according to which interval they
fall. The leftmost interval corresponds to level one, the next leftmost to level two and so on.
Usage
cut (x, ...)
Default S3 method:

cut (x, breaks, labels = NULL,
include.lowest = FALSE, right = TRUE, dig.lab = 3,

ordered_result = FALSE, ...)
Arguments
x a numeric vector which is to be converted to a factor by cutting.
breaks either a numeric vector of two or more cut points or a single number (greater
than or equal to 2) giving the number of intervals into which x is to be cut.
labels labels for the levels of the resulting category. By default, labels are constructed

using " (a, b] " interval notation. If labels = FALSE, simple integer codes
are returned instead of a factor.

include.lowest
logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for right =
FALSE) ‘breaks’ value should be included.

right logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa.

dig.lab integer which is used when labels are not given. It determines the number of
digits used in formatting the break numbers.

ordered_result
logical: should the result be an ordered factor?

further arguments passed to or from other methods.

Details

When breaks is specified as a single number, the range of the data is divided into breaks pieces
of equal length, and then the outer limits are moved away by 0.1% of the range to ensure that the
extreme values both fall within the break intervals. (If x is a constant vector, equal-length intervals
are created that cover the single value.)

If a 1abels parameter is specified, its values are used to name the factor levels. If none is specified,
the factor level labels are constructed as " (b1, b2]1", " (b2, b3]" etc. for right = TRUE
and as " [bl, b2)", ...if right = FALSE. In this case, dig.lab indicates the minimum

cut 105

number of digits should be used in formatting the numbers b1, b2, A larger value (up to
12) will be used if needed to distinguish between any pair of endpoints: if this fails labels such as
"Range3" will be used.

Value

A factor isreturned, unless labels = FALSE which results in the mere integer level codes.

Note

Instead of table (cut (x, br)), hist (x, br, plot = FALSE) is more efficient and
less memory hungry. Instead of cut (x, labels = FALSE), findInterval () is more
efficient.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

split for splitting a variable according to a group factor; factor, tabulate, table,
findInterval ().

quantile for ways of choosing breaks of roughly equal content (rather than length).

Examples

7 <— stats::rnorm(10000)

table (cut (Z, breaks = -6:06))
sum (table (cut (2, breaks = -6:6, labels=FALSE)))
sum (graphics::hist (Z, breaks = -6:6, plot=FALSE) $counts)

cut (rep(1,5),4)#-— dummy

tx0 <- c¢(9, 4, 6, 5, 3, 10, 5, 3, 5)
x <—= rep(0:8, tx0)

stopifnot (table(x) == tx0)

table(cut(x, b = 8))
table(cut (x, breaks = 3x(-2:5)))
table(cut(x, breaks = 3x(-2:5), right = FALSE))

##—-—— some values OUTSIDE the breaks

table (cx <- cut(x, breaks = 2%x(0:4)))

table (cxl <- cut(x, breaks = 2%(0:4), right = FALSE))
which(is.na(cx)); x[is.na(cx)] #—— the first 9 wvalues O
which(is.na(cxl)); x[is.na(cxl)] #-- the last 5 wvalues 38

Label construction:
y <- stats::rnorm(100)
table (cut (y, breaks = pi/3x(-3:3)))

106 cut. POSIXt

table (cut (y, breaks = pi/3*(-3:3), dig.lab=4))

table (cut (y, breaks = 1%(-3:3), dig.lab=4))
extra digits don't "harm" here
table (cut (y, breaks = 1x(-3:3), right = FALSE))

#— the same, since no exact INT!

sometimes the default dig.lab is not enough to be avoid confusion:
aaa <- c¢(1,2,3,4,5,2,3,4,5,6,7)

cut (aaa, 3)

cut (aaa, 3, dig.lab=4, ordered = TRUE)

one way to extract the breakpoints
labs <- levels(cut (aaa, 3))

cbind(lower = as.numeric(sub ("\\((.+),.x", "\\1", labs)),
upper = as.numeric(sub("[",]1*, (["11*)\\1", "\\1", labs)))
cut .POSIXt Convert a Date or Date-Time Object to a Factor
Description

Method for cut applied to date-time objects.

Usage

S3 method for class 'POSIXt'
cut (x, breaks, labels = NULL, start.on.monday
right = FALSE, ...)

TRUE,

S3 method for class 'Date'
cut (x, breaks, labels = NULL, start.on.monday = TRUE,

right = FALSE, ...)
Arguments
x an object inheriting from class "POSIXt" or "Date".
breaks a vector of cut points or number giving the number of intervals which x is to be

cut into or an interval specification, one of "sec", "min", "hour", "day",
"DSTday", "week", "month", "quarter" or "year", optionally pre-
ceded by an integer and a space, or followed by "s". For "Date" objects only
"day", "week", "month", "quarter" and "year" are allowed.

labels labels for the levels of the resulting category. By default, labels are constructed
from the left-hand end of the intervals (which are include for the default value
of right). If labels = FALSE, simple integer codes are returned instead
of a factor.

data.class 107

start.on.monday

logical. If breaks = "weeks", should the week start on Mondays or Sun-
days?
right, ... arguments to be passed to or from other methods.

Details

Using both right = TRUE and include.lowest = TRUE will include both ends of the
range of dates.

Using breaks = "quarter" will create intervals of 3 calendar months, with the intervals be-
ginning on January 1, April 1, July 1 or October 1, based upon min (x) as appropriate.
Value

A factor is returned, unless 1abels = FALSE which returns the integer level codes.

See Also

seq.POSIXt, seg.Date, cut

Examples

random dates in a 10-week period
cut (ISOdate (2001, 1, 1) + 70%x86400xstats::runif (100), "weeks")
cut (as.Date ("2001/1/1") 4+ 70xstats::runif (100), "weeks")

data.class Object Classes

Description

Determine the class of an arbitrary R object.

Usage

data.class (x)

Arguments

X an R object.

Value

character string giving the class of x.

The class is the (first element) of the class attribute if this is non-NULL, or inferred from the
object’s dim attribute if this is non-NULL, or mode (x) .

Simply speaking, data.class (x) returns what is typically useful for method dispatching. (Or,
what the basic creator functions already and maybe eventually all will attach as a class attribute.)

108 data.frame

Note

For compatibility reasons, there is one exception to the rule above: When x is integer, the result
of data.class (x) is "numeric" even when x is classed.

See Also

class

Examples

X <- LETTERS

data.class (factor (x)) # has a class attribute

data.class (matrix(x, ncol = 13)) # has a dim attribute

data.class (list (x)) # the same as mode (x)

data.class (x) # the same as mode (x)

stopifnot (data.class(1l:2) == "numeric")# compatibility "rule"
data.frame Data Frames

Description

This function creates data frames, tightly coupled collections of variables which share many of the
properties of matrices and of lists, used as the fundamental data structure by most of R’s modeling

software.
Usage
data.frame(..., row.names = NULL, check.rows = FALSE,
check.names = TRUE,
stringsAsFactors = default.stringsAsFactors())

default.stringsAsFactors ()

Arguments
these arguments are of either the form value or tag = value. Component
names are created based on the tag (if present) or the deparsed argument itself.
row.names NULL or a single integer or character string specifying a column to be used as
row names, or a character or integer vector giving the row names for the data
frame.

check.rows if TRUE then the rows are checked for consistency of length and names.

check.names logical. If TRUE then the names of the variables in the data frame are checked
to ensure that they are syntactically valid variable names and are not duplicated.
If necessary they are adjusted (by make . names) so that they are.

data.frame 109

stringsAsFactors
logical: ~ should character vectors be converted to factors? The
‘factory-fresh’ default is TRUE, but this can be changed by setting
options (stringsAsFactors = FALSE).

Details

A data frame is a list of variables of the same number of rows with unique row names, given class
"data.frame". If no variables are included, the row names determine the number of rows.

The column names should be non-empty, and attempts to use empty names will have unsupported
results. Duplicate column names are allowed, but you need to use check.names = FALSE
for data. frame to generate such a data frame. However, not all operations on data frames will
preserve duplicated column names: for example matrix-like subsetting will force column names in
the result to be unique.

data.frame converts each of its arguments to a data frame by calling
as.data.frame (optional=TRUE). As that is a generic function, methods can be
written to change the behaviour of arguments according to their classes: R comes with many such
methods. Character variables passed to data.frame are converted to factor columns unless
protected by I or argument stringsAsFactors is false. If a list or data frame or matrix is
passed to data.frame it is as if each component or column had been passed as a separate
argument (except for matrices of class "model.matrix" and those protected by I).

Objects passed to data . frame should have the same number of rows, but atomic vectors, fac-
tors and character vectors protected by I will be recycled a whole number of times if necessary
(including as from R 2.9.0, elements of list arguments).

If row names are not supplied in the call to data . frame, the row names are taken from the first
component that has suitable names, for example a named vector or a matrix with rownames or a
data frame. (If that component is subsequently recycled, the names are discarded with a warning.)
If row.names was supplied as NULL or no suitable component was found the row names are the
integer sequence starting at one (and such row names are considered to be ‘automatic’, and not
preserved by as.matrix).

If row names are supplied of length one and the data frame has a single row, the row.names is
taken to specify the row names and not a column (by name or number).

Names are removed from vector inputs not protected by I.

default.stringsAsFactorsisautility that takes getOption ("stringsAsFactors")
and ensures the result is TRUE or FALSE (or throws an error if the value is not NULL).

Value

A data frame, a matrix-like structure whose columns may be of differing types (numeric, logical,
factor and character and so on).

How the names of the data frame are created is complex, and the rest of this paragraph is only the ba-
sic story. If the arguments are all named and simple objects (not lists, matrices of data frames) then
the argument names give the column names. For an unnamed simple argument, a deparsed version
of the argument is used as the name (with an enclosing I (...) removed). For a named ma-
trix/list/data frame argument with more than one named column, the names of the columns are the
name of the argument followed by a dot and the column name inside the argument: if the argument
is unnamed, the argument’s column names are used. For a named or unnamed matrix/list/data frame

110 data.matrix

argument that contains a single column, the column name in the result is the column name in the ar-
gument. Finally, the names are adjusted to be unique and syntactically valid unless check . names
= FALSE.

Note

In versions of R prior to 2.4.0 row.names had to be character: to ensure compatibility with such
versions of R, supply a character vector as the row . names argument.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

I,plot.data.frame, print.data.frame, row.names, names (for the column names),
[.data.frame for subsetting methods, Math.data.frame etc, about Group methods for
data.frames; read.table, make.names.

Examples

L3 <- LETTERS[1:3]
(d <= data.frame (cbind(x=1, y=1:10), fac=sample (L3, 10, replace=TRUE)))

The same with automatic column names:
data.frame (cbind(1, 1:10), sample (L3, 10, replace=TRUE))

is.data.frame (d)

do not convert to factor, using I()

(dd <= cbind(d, char = I(letters[1:10])))
rbind(class=sapply(dd, class), mode=sapply(dd, mode))

stopifnot (1:10 == row.names (d))# {coercion}

(d0 <- d[, FALSE]) # NULL data frame with 10 rows

(d.0 <- d[FALSE,]) # <0 rows> data frame (3 cols)
(d00 <- dO[FALSE,]) # NULL data frame with 0 rows
data.matrix Convert a Data Frame to a Numeric Matrix
Description

Return the matrix obtained by converting all the variables in a data frame to numeric mode and then
binding them together as the columns of a matrix. Factors and ordered factors are replaced by their
internal codes.

data.matrix 111

Usage
data.matrix (frame, rownames.force = NA)
Arguments
frame a data frame whose components are logical vectors, factors or numeric vectors.

rownames. force
logical indicating if the resulting matrix should have character (rather than
NULL) rownames. The default, NA, uses NULL rownames if the data frame
has ‘automatic’ row.names or for a zero-row data frame.

Details

Logical and factor columns are converted to integers. Any other column which is not numeric (ac-
cording to is.numeric)isconverted by as.numeric or, for S4 objects, as (, "numeric").
If all columns are integer (after conversion) the result is an integer matrix, otherwise a numeric
(double) matrix.

Value

If frame inherits from class "data.frame", an integer or numeric matrix of the same di-
mensions as frame, with dimnames taken from the row.names (or NULL, depending on
rownames . force) and names.

Otherwise, the result of as .matrix.

Note

The default behaviour for data frames differs from R < 2.5.0 which always gave the result character
rownames.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

as.matrix,data.frame, matrix.

Examples

DF <- data.frame(a=1:3, b=letters[10:12],
c=seqg(as.Date("2004-01-01"), by = "week", len = 3),
stringsAsFactors = TRUE)

data.matrix (DF[1:2])

data.matrix (DF)

112 Dates

date System Date and Time

Description

Returns a character string of the current system date and time.

Usage

date ()

Value

The string has the form "Fri Aug 20 11:11:00 1999", i.e., length 24, since it relies on
POSIX’s ct ime ensuring the above fixed format. Timezone and Daylight Saving Time are taken
account of, but not indicated in the result.

The day and month abbreviations are always in English, irrespective of locale.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
Sys.Date and Sys.time; Date and DateTimeClasses for objects representing date and
time.
Examples
(d <= date())
nchar (d) == 24

something similar in the current locale
format (Sys.time (), "%a %$b %d $H:%M:%S %Y")

Dates Date Class

Description

Description of the class "Date" representing calendar dates.

Dates 113

Usage
S3 method for class 'Date'
summary (object, digits = 12, ...)
Arguments
object An object summarized.
digits Number of significant digits for the computations.

Further arguments to be passed from or to other methods.

Details

Dates are represented as the number of days since 1970-01-01, with negative values for earlier
dates. They are always printed following the rules of the current Gregorian calendar, even though
that calendar was not in use long ago (it was adopted in 1752 in Great Britain and its colonies).

It is intended that the date should be an integer, but this is not enforced in the internal representation.
Fractional days will be ignored when printing. It is possible to produce fractional days via the mean
method or by adding or subtracting (see Ops .Date).

See Also

Sys.Date for the current date.

Ops .Date for operators on "Date" objects.

format .Date for conversion to and from character strings.
axis.Date and hist.Date for plotting.

weekdays for convenience extraction functions.

seq.Date, cut.Date, round.Date for utility operations.

DateTimeClasses for date-time classes.

Examples
Not run:
(today <- Sys.Date())
format (today, "%d %b %Y") # with month as a word

(tenweeks <- seqg(today, length.out=10, by="1 week")) # next ten weeks
weekdays (today)

months (tenweeks)

as.Date(.leap.seconds)

End (Not run)

114

DateTimeClasses

DateTimeClasses Date-Time Classes

Description

Description of the classes "POSIX1t" and "POSIXct " representing calendar dates and times (to
the nearest second).

Usage

S3 method for class 'POSIXct'

print (x,

-)

S3 method for class 'POSIXct'
summary (object, digits = 15, ...)

time +

Z

z + time

time -

Z

timel lop time2

Arguments

x, object

digits

time

timel,

Z

lop

Details

time?2

An object to be printed or summarized from one of the date-time classes.

Number of significant digits for the computations: should be high enough to
represent the least important time unit exactly.

Further arguments to be passed from or to other methods.
date-time objects

date-time objects or character vectors. (Character vectors are converted by
as.P0OSIXct.)

a numeric vector (in seconds)

One of ==, ! =, <, <=, > or >=.

There are two basic classes of date/times. Class "POSIXct" represents the (signed) number of
seconds since the beginning of 1970 (in the UTC timezone) as a numeric vector. Class "POSIX1t"
is a named list of vectors representing

sec 0-61: seconds

min 0-59: minutes

hour 0-23: hours

mday 1-31: day of the month

mon 0-11: months after the first of the year.

DateTimeClasses 115

year years since 1900.
wday 0-6 day of the week, starting on Sunday.
yday 0-365: day of the year.

isdst Daylight Savings Time flag. Positive if in force, zero if not, negative if unknown.

Note that the internal list structure is somewhat hidden, as many methods, including print ()
or str, apply to the abstract date-time vector, as for "POSIXct". The classes correspond to the
POSIX/C99 constructs of ‘calendar time’ (the t ime_ t data type) and ‘local time’ (or broken-down
time, the struct tm data type), from which they also inherit their names. The components of
"POSIX1t" are integer vectors, except sec.

"POSIXct" is more convenient for including in data frames, and "POSIX1t " is closer to human-
readable forms. A virtual class "POSIXt " exists from which both of the classes inherit: it is used
to allow operations such as subtraction to mix the two classes. Note that length (x) is the length
of the corresponding (abstract) date/time vector, also in the "POSIX1t" case.

Components wday and yday of "POSIX1t" are for information, and are not used in the conver-
sion to calendar time. However, i sdst is needed to distinguish times at the end of DST: typically
lam to 2am occurs twice, first in DST and then in standard time. At all other times i sdst can be
deduced from the first six values, but the behaviour if it is set incorrectly is platform-dependent.

Logical comparisons and limited arithmetic are available for both classes. One can add or subtract
a number of seconds from a date-time object, but not add two date-time objects. Subtraction of
two date-time objects is equivalent to using di fftime. Be aware that "POSIX1t" objects will
be interpreted as being in the current timezone for these operations, unless a timezone has been
specified.

"POSIX1t" objects will often have an attribute "t zone", a character vector of length 3 giving
the timezone name from the TZ environment variable and the names of the base timezone and the
alternate (daylight-saving) timezone. Sometimes this may just be of length one, giving the timezone
name.

"POSIXct" objects may also have an attribute "tzone", a character vector of length one. If
set to a non-empty value, it will determine how the object is converted to class "POSIX1t" and
in particular how it is printed. This is usually desirable, but if you want to specify an object in a
particular timezone but to be printed in the current timezone you may want to remove the "t zone"
attribute (e.g. by c (x)).

Unfortunately, the conversion is complicated by the operation of time zones and leap seconds
(24 days have been 86401 seconds long so far: the times of the extra seconds are in the object
.leap.seconds). The details of this are entrusted to the OS services where possible. This al-
ways covers the period 1970-2037, and on most machines back to 1902 (when time zones were in
their infancy). Outside the platform limits we use our own C code. This uses the offset from GMT
in use either for 1902 (when there was no DST) or that predicted for one of 2030 to 2037 (chosen so
that the likely DST transition days are Sundays), and uses the alternate (daylight-saving) timezone
only if i sdst is positive or (if —1) if DST was predicted to be in operation in the 2030s on that day.
(There is no reason to suppose that the DST rules will remain the same in the future, and indeed the
US legislated in 2005 to change its rules as from 2007, with a possible future reversion.)

It seems that some rare systems use leap seconds, but most ignore them (as required by POSIX).
This is detected and corrected for at build time, so all "POSTIXct " times used by R do not include
leap seconds. (Conceivably this could be wrong if the system has changed since build time, just
possibly by changing locales or the ‘zoneinfo’ database.)

116 DateTimeClasses

Using c on "POSIX1t" objects converts them to the current time zone, and on "POSIXct"
objects drops any "t zone™" attributes (even if they are all marked with the same time zone).

A few times have specific issues. First, the leap seconds are ignored, and real times such as "2005—
12-31 23:59:60" are (probably) treated as the next second. However, they will never be gen-
erated by R, and are unlikely to arise as input. Second, on some OSes there is a problem in the
POSIX/C99 standard with "1969-12-31 23:59:59 UTC", which is —1 in calendar time and
that value is on those OSes also used as an error code. Thus as.POSIXct ("1969-12-31

23:59:59", format = "%$Y-%m-%d %$H:%$M:%S", tz = "UTC") may give NA, and
hence as.POSIXct ("1969-12-31 23:59:59", tz = "UTC") will give "1969-12—

31 23:59:00". Other OSes (including the code used by R on Windows) report errors separately
and so are able to handle that time as valid.

Sub-second Accuracy

Classes "POSIXct" and "POSIX1t" are able to express fractions of a second. (Conversion of
fractions between the two forms may not be exact, but will have better than microsecond accuracy.)

Fractional seconds are printed only if options ("digits.secs") isset: see strftime.

Warning

Some Unix-like systems (especially Linux ones) do not have environment variable TZ set, yet have
internal code that expects it (as does POSIX). We have tried to work around this, but if you get
unexpected results try setting TZ. See Sys .t imezone for valid settings.

References

Ripley, B. D. and Hornik, K. (2001) Date-time classes. R News, 1/2, 8-11. http://www.
r-project.org/doc/Rnews/Rnews_2001-2.pdf

See Also

Dates for dates without times.

as.POSIXct and as.POSIX1t for conversion between the classes.
strptime for conversion to and from character representations.
Sys.time for clock time as a "POSIXct" object.

difftime for time intervals.

cut .POSIXt, seq.POSIXt, round.POSIXt and trunc.POSIXt for methods for these
classes.

weekdays for convenience extraction functions.

Examples

(z <— Sys.time()) # the current date, as class "POSIXct"

Sys.time () - 3600 # an hour ago

http://www.r-project.org/doc/Rnews/Rnews_2001-2.pdf
http://www.r-project.org/doc/Rnews/Rnews_2001-2.pdf

dcf 117

as.POSIX1lt (Sys.time (), "GMT") # the current time in GMT
format (.leap.seconds) # all 24 leap seconds in your timezone
print (.leap.seconds, tz="PST8PDT") # and in Seattle's

look at xinternalx representation of "POSIX1t"
leapS <- as.POSIXlt(.leap.seconds)
names (leapS) ; is.list (leapS)

utils::str(unclass(leapS), vec.len = 7)
dcf Read and Write Data in DCF Format
Description

Reads or writes an R object from/to a file in Debian Control File format.

Usage
read.dcf (file, fields = NULL, all = FALSE)
write.dcf (x, file = "", append = FALSE,

indent = 0.1 % getOption("width"),
width = 0.9 % getOption ("width"))

Arguments
file either a character string naming a file or a connection. " " indicates output to the
console. For read.dcf this can name a compressed file (see gzfile).
fields Fields to read from the DCF file. Default is to read all fields.
all a logical indicating whether in case of multiple occurrences of a field in a record,
all these should be gathered. If a1l is false (default), only the last such occur-
rence is used.
X the object to be written, typically a data frame. If not, it is attempted to coerce
x to a data frame.
append logical. If TRUE, the output is appended to the file. If FALSE, any existing file
of the name is destroyed.
indent a positive integer specifying the indentation for continuation lines in output en-
tries.
width a positive integer giving the target column for wrapping lines in the output.
Details

DCEF is a simple format for storing databases in plain text files that can easily be directly read and
written by humans. DCF is used in various places to store R system information, like descriptions
and contents of packages.

The DCF rules as implemented in R are:

118 dcf

1. A database consists of one or more records, each with one or more named fields. Not every
record must contain each field. Fields may appear more than once in a record.

2. Regular lines start with a non-whitespace character.

3. Regular lines are of form tag:value, i.e., have a name tag and a value for the field, sepa-
rated by : (only the first : counts). The value can be empty (=whitespace only).

4. Lines starting with whitespace are continuation lines (to the preceding field) if at least one
character in the line is non-whitespace. Continuation lines where the only non-whitespace
characteris a ‘.’ are taken as blank lines (allowing for multi-paragraph field values).

5. Records are separated by one or more empty (=whitespace only) lines.
Note that read.dcf (all = FALSE) reads the file byte-by-byte. This allows a

‘DESCRIPTION’ file to be read and only its ASCII fields used, or its ‘Encoding’ field used
to re-encode the remaining fields.

write.dcf does not write NA fields.

Value

The default read.dcf (all = FALSE) returns a character matrix with one row per record and
one column per field. Leading and trailing whitespace of field values is ignored. If a tag name is
specified in the file, but the corresponding value is empty, then an empty string is returned. If the
tag name of a field is specified in £ields but never used in a record, then the corresponding value
is NA. If fields are repeated within a record, the last one encountered is returned. Malformed lines
lead to an error.

For read.dcf (all = TRUE) a data frame is returned, again with one row per record and one
column per field. The columns are lists of character vectors for fields with multiple occurrences,
and character vectors otherwise.

Note that an empty £1ile is a valid DCF file, and read . dcf will return a zero-row matrix or data
frame.

For write.dcf, invisible NULL.

References

http://www.debian.org/doc/debian-policy/ch-controlfields.html. Note
that R does not require encoding in UTF-8, which is a recent Debian requirement.

See Also

write.table.

Examples
Not run:
Create a reduced version of the 'CONTENTS' file in package 'splines'
x <- read.dcf(file = system.file ("CONTENTS", package = "splines"),

fields = c("Entry", "Description"))
write.dcf (x)

End (Not run)

http://www.debian.org/doc/debian-policy/ch-controlfields.html

debug 119

debug Debug a Function

Description

Set, unset or query the debugging flag on a function. The text and condit ion arguments are the
same as those that can be supplied via a call to browser. They can be retrieved by the user once
the browser has been entered, and provide a mechanism to allow users to identify which breakpoint
has been activated.

Usage

debug (fun, text="", condition=NULL)
debugonce (fun, text="", condition=NULL)
undebug (fun)

isdebugged (fun)

Arguments
fun any interpreted R function.
text a text string that can be retrieved when the browser is entered.
condition a condition that can be retrieved when the browser is entered.
Details

When a function flagged for debugging is entered, normal execution is suspended and the body of
function is executed one statement at a time. A new browser context is initiated for each step (and
the previous one destroyed).

At the debug prompt the user can enter commands or R expressions, followed by a newline. The
commands are

n (or just an empty line, by default). Advance to the next step.

c continue to the end of the current context: e.g. to the end of the loop if within a loop or to the
end of the function.

cont synonym for c.
where print a stack trace of all active function calls.

Q exit the browser and the current evaluation and return to the top-level prompt.

(Leading and trailing whitespace is ignored, except for an empty line).

Anything else entered at the debug prompt is interpreted as an R expression to be evaluated in the
calling environment: in particular typing an object name will cause the object to be printed, and
1s () lists the objects in the calling frame. (If you want to look at an object with a name such as n,
print it explicitly.)

120 Defunct

Setting option "browserNLdisabled" to TRUE disables the use of an empty line as a synonym
for n. If this is done, the user will be re-prompted for input until a valid command or an expression
is entered.

To debug a function is defined inside a function, single-step though to the end of its definition, and
then call debug on its name.

If you want to debug a function not starting at the very beginning, use trace (..., at = x)
or setBreakpoint.

Using debug is persistent, and unless debugging is turned off the debugger will be entered on every
invocation (note that if the function is removed and replaced the debug state is not preserved). Use
debugonce to enter the debugger only the next time the function is invoked.

In order to debug S4 methods (see Methods), you need to use t race, typically calling browser,

e.g., as
trace("plot", browser, exit=browser, signature = c("track",
"missing"))

The number of lines printed for the deparsed call when a function is entered for debugging can be
limited by setting options (deparse.max.lines).
See Also

browser, trace; traceback to see the stack after an Error: ... Inessage, recover
for another debugging approach.

Defunct Marking Objects as Defunct

Description

When a function is removed from R it should be replaced by a function which calls .Defunct.

Usage

.Defunct (new, package = NULL, msqg)

Arguments
new character string: A suggestion for a replacement function.
package character string: The package to be used when suggesting where the defunct
function might be listed.
msg character string: A message to be printed, if missing a default message is used.
Details

.Defunct is called from defunct functions. Functions should be listed in help ("pkg—
defunct") for an appropriate pkg, including base.

delayedAssign 121

See Also

Deprecated.

base—defunct and so on which list the defunct functions in the packages.

delayedAssign Delay Evaluation

Description

delayedAssign creates a promise to evaluate the given expression if its value is requested. This
provides direct access to the lazy evaluation mechanism used by R for the evaluation of (interpreted)

functions.
Usage
delayedAssign (x, value, eval.env = parent.frame(l),
assign.env = parent.frame (1))
Arguments
X a variable name (given as a quoted string in the function call)
value an expression to be assigned to x
eval.env an environment in which to evaluate value

assign.env anenvironment in which to assign x

Details

Both eval.env and assign.env default to the currently active environment.

The expression assigned to a promise by delayedAssign will not be evaluated until it is even-
tually ‘forced’. This happens when the variable is first accessed.

When the promise is eventually forced, it is evaluated within the environment specified by
eval.env (whose contents may have changed in the meantime). After that, the value is fixed
and the expression will not be evaluated again.

Value
This function is invoked for its side effect, which is assigning a promise to evaluate value to the
variable x.

See Also

substitute, to see the expression associated with a promise.

122 deparse

Examples

msg <- "old"

delayedAssign ("x", msqg)

msg <- "new!"

X #- new!

substitute (x) #- x (was 'msg' ?)

delayedAssign ("x", {
for(i in 1:3)
cat ("yippee!\n")
10
H)

x"2 #- yippee
x"2 #- simple number

e <- (function(x, yv = 1, z) environment()) (1+2, "y", {cat ("™ HO! "); pi+2})
(le <- as.list(e)) # evaluates the promises
deparse Expression Deparsing
Description

Turn unevaluated expressions into character strings.

Usage

deparse (expr, width.cutoff = 60L,
backtick = mode (expr) %in%
c("call", "expression", " (", "function"),
control = c("keepInteger", "showAttributes", "keepNA"),

nlines = -1L)
Arguments

expr any R expression.

width.cutoff integer in [20,500] determining the cutoff (in bytes) at which line-breaking is
tried.

backtick logical indicating whether symbolic names should be enclosed in backticks if
they do not follow the standard syntax.

control character vector of deparsing options. See . deparseOpts.

nlines integer: the maximum number of lines to produce. Negative values indicate no

limit.

deparse 123

Details

This function turns unevaluated expressions (where ‘expression’ is taken in a wider sense than the
strict concept of a vector of mode "expression" used in expression) into character strings
(akind of inverse to parse).

A typical use of this is to create informative labels for data sets and plots. The example shows a
simple use of this facility. It uses the functions deparse and substitute to create labels for a
plot which are character string versions of the actual arguments to the function myplot.

The default for the backtick option is not to quote single symbols but only composite expres-
sions. This is a compromise to avoid breaking existing code.

Using control = "all" comes closestto making deparse () aninverse of parse (). How-
ever, not all objects are deparse-able even with this option and a warning will be issued if the func-
tion recognizes that it is being asked to do the impossible.

Numeric and complex vectors are converted using 15 significant digits: see as.character for
more details.

width.cutoff is a lower bound for the line lengths: deparsing a line proceeds until at least
width.cutoff bytes have been output and e.g. arg = value expressions will not be split
across lines.

Note

To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be deparsed as an attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

substitute, parse, expression.

Quotes for quoting conventions, including backticks.

Examples

require (stats); require (graphics)

deparse (args (1m))
deparse (args (1lm), width = 500)
myplot <-
function(x, y) {
plot (x, y, xlab=deparse(substitute(x)),
ylab=deparse (substitute(y)))
t
e <- quote(foo bar")
deparse (e)
deparse (e, backtick=TRUE)
e <- quote(foo bar +1)

124 deparseOpts

deparse (e)

deparse (e, control = "all")
deparseOpts Options for Expression Deparsing
Description

Process the deparsing options for deparse, dput and dump.

Usage

.deparseOpts (control)

Arguments

control character vector of deparsing options.

Details

This is called by deparse, dput and dump to process their control argument.

The control argument is a vector containing zero or more of the following strings. Partial string
matching is used.

keepInteger Either surround integer vectors by as.integer () or use suffix L, so they
are not converted to type double when parsed. This includes making sure that integer
NAs are preserved (via NA_integer_ if there are no non-NA values in the vector, unless
"S_compatible" is set).

quoteExpressions Surround expressions with quote (), so they are not evaluated when re-
parsed.

showAttributes If the object has attributes (other than a source attribute), use
structure () to display them as well as the object value. This is the default for deparse
and dput.

useSource If the object has a source attribute, display that instead of deparsing the object.
Currently only applies to function definitions.

warnIncomplete Some exotic objects such as environments, external pointers, etc. can not be
deparsed properly. This option causes a warning to be issued if the deparser recognizes one of
these situations.
Also, the parser in R < 2.7.0 would only accept strings of up to 8192 bytes, and this option
gives a warning for longer strings.

keepNA Integer, real and character NAs are surrounded by coercion where necessary to ensure that
they are parsed to the same type.

all An abbreviated way to specify all of the options listed above. This is the default for dump,
and the options used by edit (which are fixed).

Deprecated 125

delayPromises Deparse promises in the form <promise: expression> rather than evaluating
them. The value and the environment of the promise will not be shown and the deparsed code
cannot be sourced.

S_compatible Make deparsing as far as possible compatible with S and R < 2.5.0. For com-
patibility with S, integer values of double vectors are deparsed with a trailing decimal point.
Backticks are not used.

For the most readable (but perhaps incomplete) display, use control = NULL. This displays
the object’s value, but not its attributes. The default in deparse is to display the attributes as
well, but not to use any of the other options to make the result parseable. (dput and dump do
use more default options, and printing of functions without sources uses c ("keepInteger",
"keepNA").)

Using control = "all" comes closestto making deparse () aninverse of parse (). How-
ever, not all objects are deparse-able even with this option. A warning will be issued if the function
recognizes that it is being asked to do the impossible.

Value

A numerical value corresponding to the options selected.

Deprecated Marking Objects as Deprecated

Description

When an object is about removed from R it is first deprecated and should include a call to
.Deprecated.

Usage

.Deprecated (new, package=NULL, msqg)

Arguments
new character string: A suggestion for a replacement function.
package character string: The package to be used when suggesting where the deprecated
function might be listed.
msg character string: A message to be printed, if missing a default message is used.
Details

.Deprecated ("<new name>") is called from deprecated functions. The original help page
for these functions is often available at help ("oldName—-deprecated") (note the quotes).
Functions should be listed in help ("pkg-deprecated") for an appropriate pkg, including
base.

126 det

See Also

Defunct

base—-deprecated and so on which list the deprecated functions in the packages.

det Calculate the Determinant of a Matrix

Description

det calculates the determinant of a matrix. determinant is a generic function that returns
separately the modulus of the determinant, optionally on the logarithm scale, and the sign of the
determinant.

Usage

det (x, ...)
determinant (x, logarithm = TRUE, ...)

Arguments
X numeric matrix.
logarithm logical; if TRUE (default) return the logarithm of the modulus of the determi-
nant.
Optional arguments. At present none are used. Previous versions of det al-
lowed an optional method argument. This argument will be ignored but will
not produce an error.
Details

The determinant function uses an LU decomposition and the det function is simply a wrapper
around a call to determinant.

Often, computing the determinant is not what you should be doing to solve a given problem.

Value

For det, the determinant of x. For determinant, a list with components
modulus a numeric value. The modulus (absolute value) of the determinant if
logarithmis FALSE; otherwise the logarithm of the modulus.

sign integer; either +1 or —1 according to whether the determinant is positive or
negative.

detach 127

Examples

(x <- matrix(1l:4, ncol=2))
unlist (determinant (x))
det (x)

det (print (cbind(1,1:3,c(2,0,1))))

detach Detach Objects from the Search Path

Description
Detach a database, i.e., remove it from the search () path of available R objects. Usually this is
either a data . frame which has been at tached or a package which was attached by 1ibrary.
Usage

detach (name, pos = 2, unload = FALSE, character.only = FALSE,
force = FALSE)

Arguments
name The object to detach. Defaults to search () [pos]. This can be an unquoted
name or a character string but not a character vector. If a number is supplied this
is taken as pos.
pos Index position in search () of the database to detach. When name is a num-
ber, pos = name is used.
unload A logical value indicating whether or not to attempt to unload the names-

pace when a package is being detached. If the package has a namespace and
unload is TRUE, then detach will attempt to unload the namespace via
unloadNamespace: if the namespace is imported by another namespace or
unload is FALSE, no unloading will occur.

character.only
a logical indicating whether name can be assumed to be character strings.

force logical: should a package be detached even though other attached packages de-
pend on it?

Details

This is most commonly used with a single number argument referring to a position on the search
list, and can also be used with a unquoted or quoted name of an item on the search list such as
package:tools.

If a package has a namespace, detaching it does not by default unload the namespace (and may
not even with unload=TRUE), and detaching will not in general unload any dynamically loaded
compiled code (DLLs). Further, registered S3 methods from the namespace will not be removed.
If you use 1ibrary on a package whose name space is loaded, it attaches the exports of the
already loaded name space. So detaching and re-attaching a package may not refresh some or all
components of the package, and is inadvisable.

128 detach

Value

The return value is invisible. It is NULL when a package is detached, otherwise the environment
which was returned by attach when the object was attached (incorporating any changes since it
was attached).

Note

You cannot detach either the workspace (position 1) nor the base package (the last item in the search
list), and attempting to do so will throw an error.

Unloading some name spaces has undesirable side effects: e.g. unloading grid closes all graphics
devices, and on most systems teltk cannot be reloaded once it has been unloaded and may crash R
if this is attempted.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attach, library, search, objects,unloadNamespace, library.dynam.unload.

Examples

require (splines) # package
detach (package:splines)

or also
library(splines)

pkg <- "package:splines"

detach (pkg, character.only = TRUE)

careful: do not do this unless 'splines' is not already attached.
library(splines)
detach (2) # 'pos' used for 'name'

an example of the name argument to attach
and of detaching a database named by a character vector
attach_and_detach <- function (db, pos=2)
{
name <- deparse (substitute (db))
attach (db, pos=pos, name=name)
print (search () [pos])
detach (name, character.only = TRUE)
}

attach_and_detach (women, pos=3)

diag 129

diag Matrix Diagonals

Description

Extract or replace the diagonal of a matrix, or construct a diagonal matrix.

Usage

diag(x = 1, nrow, ncol)
diag(x) <- value

Arguments

x a matrix, vector or 1D array, or missing.
nrow, ncol Optional dimensions for the result when x is not a matrix.

value either a single value or a vector of length equal to that of the current diagonal.
Should be of a mode which can be coerced to that of x.

Details

diag has four distinct usages:

1. x is a matrix, when it extracts the diagonal.
2. x is missing and nrow is specified, it returns an identity matrix.

3. x is a scalar (length-one vector) and the only argument, it returns a square identity matrix of
size given by the scalar.

4. x is a vector, either of length at least 2 or there were further arguments. This returns a matrix
with the given diagonal and zero off-diagonal entries.

It is an error to specify nrow or ncol in the first case.

Value

If x is a matrix then diag (x) returns the diagonal of x. The resulting vector will have names if
the matrix x has matching column and rownames.

The replacement form sets the diagonal of the matrix x to the given value(s).

In all other cases the value is a diagonal matrix with nrow rows and ncol columns (if ncol is not
given the matrix is square). Here nrow is taken from the argument if specified, otherwise inferred
from x: if that is a vector (or 1D array) of length two or more, then its length is the number of rows,
but if it is of length one and neither nrow nor ncol is specified, nrow = as.integer (x).

When a diagonal matrix is returned, the diagonal elements are one except in the fourth case, when
x gives the diagonal elements: it will be recycled or truncated as needed, but fractional recycling
and truncation will give a warning.

130 diff

Note
Using diag (x) can have unexpected effects if x is a vector that could be of length one. Use

diag(x, nrow = length (x)) for consistent behaviour.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

upper.tri, lower.tri, matrix.

Examples

require (stats)

dim(diag(3))
diag(10,3,4) # guess what?
all(diag(l:3) == {m <- matrix(0,3,3); diag(m) <- 1:3; m})

diag(var (M <- cbind(X = 1:5, Y = stats::rnorm(5))))
#-> vector with names "X" and "Y"

rownames (M) <- c(colnames (M), rep("",3));
M; diag(M) # named as well

diff Lagged Differences

Description

Returns suitably lagged and iterated differences.

Usage

diff(x, ...)

Default S3 method:
diff(x, lag = 1, differences = 1, ...)

S3 method for class 'POSIXt'
diff(x, lag = 1, differences =1, ...)

S3 method for class 'Date'
diff(x, lag = 1, differences

1, ...)

diff 131

Arguments
X a numeric vector or matrix containing the values to be differenced.
lag an integer indicating which lag to use.

differences an integer indicating the order of the difference.

further arguments to be passed to or from methods.

Details

diff is a generic function with a default method and ones for classes "ts", "POSIXt" and
"Date".

NA’s propagate.

Value

If x is a vector of length n and dif ferences=1, then the computed result is equal to the succes-
sive differences x [(1+1lag) :n] - x[1: (n-lag)].

If di fference is larger than one this algorithm is applied recursively to x. Note that the returned
value is a vector which is shorter than x.

If x is a matrix then the difference operations are carried out on each column separately.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

diff.ts,diffinv.

Examples

diff(1:10, 2)

diff(1:10, 2, 2)

x <— cumsum (cumsum(1:10))
diff(x, lag = 2)

diff (x, differences = 2)

diff (.leap.seconds)

132 difftime

difftime Time Intervals

Description

Time intervals creation, printing, and some arithmetic.

Usage
timel - time2
difftime (timel, time2, tz,
units = c("auto", "secs", "mins", "hours",
"daysll, "weeks"))

as.difftime (tim, format = "%X", units = "auto")

S3 method for class 'difftime'

format (x, ...)
S3 method for class 'difftime'
units (x)

S3 replacement method for class 'difftime'
units (x) <- value

S3 method for class 'difftime'
as.double (x, units = "auto", ...)

Group methods, notably for round(), signif(), floor(),

ceiling (), trunc(), abs(); called directly, #*not* as Math():
S3 method for class 'difftime'

Math (x, ...)

Arguments

timel, time2 date-time or date objects.

tz an optional timezone specification to be used for the conversion, mainly for
"POSIX1t" objects.

units character string. Units in which the results are desired. Can be abbreviated.

value character string. Like units, except that abbreviations are not allowed.

tim character string or numeric value specifying a time interval.

format character specifying the format of t im: see st rpt ime. The default is a locale-

specific time format.
x an object inheriting from class "difftime".

arguments to be passed to or from other methods.

difftime 133

Details

Function di f ft ime calculates a difference of two date/time objects and returns an object of class
"difftime" with an attribute indicating the units. The Math group method provides round,
signif, floor, ceiling, trunc, abs, and sign methods for objects of this class, and there
are methods for the group-generic (see Ops) logical and arithmetic operations.

Ifunits = "auto", asuitable set of units is chosen, the largest possible (excluding "weeks™")
in which all the absolute differences are greater than one.

Subtraction of date-time objects gives an object of this class, by calling di fft ime withunits =
"auto". Alternatively, as.difftime () works on character-coded or numeric time intervals;
in the latter case, units must be specified, and format has no effect.

Limited arithmetic is available on "difftime" objects: they can be added or subtracted, and
multiplied or divided by a numeric vector. In addition, adding or subtracting a numeric vector by
a "difftime" object implicitly converts the numeric vector to a "difftime" object with the
same units as the "difftime" object. There are methods for mean and sum (via the Summary
group generic).

The units of a "difftime" object can be extracted by the units function, which also has an
replacement form. If the units are changed, the numerical value is scaled accordingly.

The as . double method returns the numeric value expressed in the specified units. Using units
= "auto" means the units of the object.

The format method simply formats the numeric value and appends the units as a text string.

The default behaviour when timel or time2 was a "POSIX1t" object changed in R 2.12.0:
previously such objects were regarded as in the timezone given by t z which defaulted to the current

timezone.
See Also
DateTimeClasses.
Examples
(z <— Sys.time () - 3600)
Sys.time() - z # just over 3600 seconds.

time interval between releases of R 1.2.2 and 1.2.3.
ISOdate (2001, 4, 26) - ISOdate (2001, 2, 26)

as.difftime(c("0:3:20", "11:23:15"))

as.difftime(c("3:20", "23:15", "2:"), format= "$H:$M")# 3rd gives NA
(z <= as.difftime(c(0,30,60), units="mins"))

as.numeric(z, units="secs")

as.numeric(z, units="hours")

format (z)

134 dim

dim Dimensions of an Object

Description

Retrieve or set the dimension of an object.

Usage

dim (x)
dim(x) <- value

Arguments
x an R object, for example a matrix, array or data frame.
value For the default method, either NULL or a numeric vector, which is coerced to
integer (by truncation).
Details

The functions dim and dim<- are internal generic primitive functions.

dim has a method for data . frames, which returns the lengths of the row . names attribute of x
and of x (as the numbers of rows and columns respectively).

Value

For an array (and hence in particular, for a matrix) dim retrieves the dim attribute of the object. It
is NULL or a vector of mode integer.

The replacement method changes the "dim" attribute (provided the new value is compatible) and
removes any "dimnames" and "names" attributes.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

ncol, nrow and dimnames.

Examples

x <—= 1:12 ; dim(x) <- c(3,4)
X

simple versions of nrow and ncol could be defined as follows
nrow(0 <- function(x) dim(x) [1]
ncol0 <- function(x) dim(x) [2]

dimnames 135

dimnames Dimnames of an Object

Description

Retrieve or set the dimnames of an object.

Usage

dimnames (x)
dimnames (x) <- value

Arguments
x an R object, for example a matrix, array or data frame.
value a possible value for dimnames (x) : see the “Value’ section.
Details

The functions dimnames and dimnames<- are generic.

For an array (and hence in particular, for a mat rix), they retrieve or set the dimnames attribute
(see attributes) of the object. A list value can have names, and these will be used to label the
dimensions of the array where appropriate.

The replacement method for arrays/matrices coerces vector and factor elements of value to char-
acter, but does not dispatch methods for as.character. It coerces zero-length elements to
NULL, and a zero-length list to NULL. If value is a list shorter than the number of dimensions, as
from R 2.8.0 it is extended with NULLS to the needed length.

Both have methods for data frames. The dimnames of a data frame are its row.names
and its names. For the replacement method each component of value will be coerced by
as.character.

For a 1D matrix the names are the same thing as the (only) component of the dimnames.

Both are primitive functions.

Value

The dimnames of a matrix or array can be NULL or a list of the same length as dim (x) . If a list, its
components are either NULL or a character vector with positive length of the appropriate dimension
of x. The list can be named.

For the "data.frame" method both dimnames are character vectors, and the rownames must
contain no duplicates nor missing values.

Note

Setting components of the dimnames, e.g. dimnames (A) [[1]] <- value is a common
paradigm, but note that it will not work if the value assigned is NULL. Use rownames instead,
or (as it does) manipulate the whole dimnames list.

136 do.call

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

rownames, colnames; array,matrix, data. frame.

Examples

simple versions of rownames and colnames
could be defined as follows
rownames(0 <- function(x) dimnames (x) [[1]]
colnamesO0 <- function(x) dimnames (x) [

do.call Execute a Function Call

Description

do.call constructs and executes a function call from a name or a function and a list of arguments
to be passed to it.

Usage

do.call (what, args, quote = FALSE, envir = parent.frame())

Arguments
what either a function or a non-empty character string naming the function to be
called.
args a list of arguments to the function call. The names attribute of args gives the
argument names.
quote a logical value indicating whether to quote the arguments.
envir an environment within which to evaluate the call. This will be most useful if
what is a character string and the arguments are symbols or quoted expressions.
Details

If quote is FALSE, the default, then the arguments are evaluated (in the calling environment, not
in envir). If quote is TRUE then each argument is quoted (see quote) so that the effect of
argument evaluation is to remove the quotes — leaving the original arguments unevaluated when the
call is constructed.

The behavior of some functions, such as subst itute, will not be the same for functions evaluated
using do . call as if they were evaluated from the interpreter. The precise semantics are currently
undefined and subject to change.

double

Value

The result of the (evaluated) function call.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.

Brooks/Cole.

See Also

call which creates an unevaluated call.

Examples

do.call ("complex", list(imag = 1:3))

if we already have a list (e.g. a data frame)
we need c() to add further arguments

tmp <- expand.grid(letters([l:2], 1:3, c("+", "-"))
do.call ("paste", c(tmp, sep=""))

do.call (paste, list (as.name("A"), as.name("B")), quote=TRUE)

examples of where objects will be found.
A <- 2

f <- function(x) print (x"2)

env <- new.env ()

assign("A", 10, envir = env)

137

Wadsworth &

assign("f", f, envir = env)
f <- function(x) print (x)
f(A) # 2
do.call("f", list (A)) # 2
do.call("f", list(A), envir=env) # 4
do.call(f, list(A), envir=env) # 2
do.call("f", list(quote(A)), envir=env) # 100
do.call(f, list(quote(A)), envir=env) # 10
do.call("f", list(as.name("A")), envir=env) # 100
eval (call("f", A)) # 2
eval (call("f", quote(A))) # 2
eval (call("f", A), envir=env) # 4
eval (call("f", quote(A)), envir=env) # 100
double Double-Precision Vectors
Description

Create, coerce to or test for a double-precision vector.

138 double

Usage

double (length
as.double(x, ...)
is.double (x)

Il
o

single (length = 0)

as.single(x, ...)
Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one will give a
warning.
X object to be coerced or tested.

further arguments passed to or from other methods.

Details

double creates a double-precision vector of the specified length. The elements of the vector are
all equal to 0. It is identical to numeric (and real).

as.double is a generic function. It is identical to as.numeric (and as.real). Methods
should return an object of base type "double".

is.double is a test of double type.

R has no single precision data type. All real numbers are stored in double precision format. The
functions as.single and single are identical to as .double and double except they set the
attribute Csingle that is used in the .C and .Fortran interface, and they are intended only to
be used in that context.

Value

double creates a double-precision vector of the specified length. The elements of the vector are
all equal to 0.

as.double attempts to coerce its argument to be of double type: like as.vector it strips at-
tributes including names. (To ensure that an object is of double type without stripping attributes,
use storage .mode.) Character strings containing optional whitespace followed by either a dec-
imal representation or a hexadecimal representation (starting with 0x or 0X) can be converted.
as.double for factors yields the codes underlying the factor levels, not the numeric representa-
tion of the labels, see also factor.

is.double returns TRUE or FALSE depending on whether its argument is of double type or not.

Double-precision values

All R platforms are required to work with values conforming to the IEC 60559 (also known as IEEE
754) standard. This basically works with a precision of 53 bits, and represents to that precision a
range of absolute values from about 2 x 1073% to 2 x 103%8. It also has special values NaN (many
of them), plus and minus infinity and plus and minus zero (although R acts as if these are the same).

dput 139

There are also denormal(ized) (or subnormal) numbers with absolute values above or below the
range given above but represented to less precision.

See .Machine for precise information on these limits. Note that ultimately how double precision
numbers are handled is down to the CPU/FPU and compiler.

In IEEE 754-2008/TEC60559:2011 this is called ‘binary64’ format.

Note on names

It is a historical anomaly that R has three names for its floating-point vectors, double, numeric
and real.

double is the name of the type. numeric is the name of the mode and also of the implicit class.
As an S4 formal class, use "numeric".

real is deprecated and should not be used in new code.

The potential confusion is that R has used mode "numeric" to mean ‘double or integer’, which
conflicts with the S4 usage. Thus is.numeric tests the mode, not the class, but as.numeric
(which is identical to as . double) coerces to the class.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

http://en.wikipedia.org/wiki/IEEE_754-1985, http://en.wikipedia.
org/wiki/IEEE_754-2008, http://en.wikipedia.org/wiki/Double_
precision,http://en.wikipedia.org/wiki/Denormal_number.

http://grouper.ieee.org/groups/754/ for links to information on the standards.

See Also

integer, numeric, storage.mode.

Examples

is.double (1)
all (double (3) == 0)

dput Write an Object to a File or Recreate it

Description

Writes an ASCII text representation of an R object to a file or connection, or uses one to recreate
the object.

http://en.wikipedia.org/wiki/IEEE_754-1985
http://en.wikipedia.org/wiki/IEEE_754-2008
http://en.wikipedia.org/wiki/IEEE_754-2008
http://en.wikipedia.org/wiki/Double_precision
http://en.wikipedia.org/wiki/Double_precision
http://en.wikipedia.org/wiki/Denormal_number
http://grouper.ieee.org/groups/754/

140 dput
Usage
dput (x, file = "",
control = c("keepNA", "keepInteger", "showAttributes"))
dget (file)
Arguments
X an object.
file either a character string naming a file or a connection. " " indicates output to the
console.
control character vector indicating deparsing options. See .deparseOpts for their
description.
Details
dput opens f£ile and deparses the object x into that file. The object name is not written (unlike
dump). If x is a function the associated environment is stripped. Hence scoping information can be
lost.
Deparsing an object is difficult, and not always possible. With the default control, dput ()
attempts to deparse in a way that is readable, but for more complex or unusual objects (see dump,
not likely to be parsed as identical to the original. Use control = "all" for the most complete
deparsing; use control = NULL for the simplest deparsing, not even including attributes.
dput will warn if fewer characters were written to a file than expected, which may indicate a full
or corrupt file system.
To display saved source rather than deparsing the internal representation include "useSource"
in control. R currently saves source only for function definitions.
Value
For dput, the first argument invisibly.
For dget, the object created.
Note
To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be written as an attribute.
References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.
See Also

deparse, dump, write.

drop

Examples

Write an ASCII version of mean to the file
dput (mean, "foo")
And read it back into 'bar'
bar <- dget ("foo")
unlink ("foo")
Create a function with comments
baz <- function(x) {
Subtract from one
1-x
}
and display it

"fool

141

dput (baz)
and now display the saved source
dput (baz, control = "useSource")
drop Drop Redundant Extent Information
Description

Delete the dimensions of an array which have only one level.

Usage

drop (x)

Arguments

X an array (including a matrix).

Value

See

If x is an object with a dim attribute (e.g., a matrix or array), then drop returns an object like x,
but with any extents of length one removed. Any accompanying dimnames attribute is adjusted
and returned with x: if the result is a vector the names are taken from the dimnames (if any). If

the result is a length-one vector, the names are taken from the first dimension with a dimname.

Array subsetting ([) performs this reduction unless used with drop

is useful to invoke drop directly.

Also

dropl which is used for dropping terms in models.

Examples

dim(drop (array(1:12, dim=c(1,3,1,1,2,1,2))))#
drop(1l:3 %$x% 2:4)# scalar product

3

2

2

FALSE, but sometimes it

142 droplevels

droplevels droplevels

Description

The function droplevels is used to drop unused levels from a factor or, more commonly, from
factors in a data frame.

Usage
S3 method for class 'factor'
droplevels (x,...)
S3 method for class 'data.frame'
droplevels (x, except, ...)
Arguments
X an object from which to drop unused factor levels.
further arguments passed to methods
except indices of columns from which not to drop levels
Details

The method for class "factor" is essentially equivalent to factor (x).

The except argument follow the usual indexing rules.

Value

droplevels returns an object of the same class as x

Note

This function was introduced in R 2.12.0. It is primarily intended for cases where one or more
factors in a data frame contains only elements from a reduced level set after subsetting. (Notice that
subsetting does not in general drop unused levels). By default, levels are dropped from all factors in
a data frame, but the except argument allows you to specify columns for which this is not wanted.

See Also

subset for subsetting data frames. factor for definition of factors. drop for dropping array
dimensions. drop1l for dropping terms from a model. [.factor for subsetting of factors.

Examples

aqg <- transform(airquality, Month=factor (Month, labels=month.abb[5:9]))
ag <- subset (ag, Month != "Jul")

table (ag$Month)

table (droplevels (aqg) SMonth)

dump 143

dump Text Representations of R Objects

Description

This function takes a vector of names of R objects and produces text representations of the objects
on a file or connection. A dump file can usually be sourced into another R (or S) session.

Usage
dump (list, file = "dumpdata.R", append = FALSE,
control = "all", envir = parent.frame(), evaluate = TRUE)
Arguments
list character. The names of one or more R objects to be dumped.
file either a character string naming a file or a connection. " " indicates output to the
console.
append if TRUE and file is a character string, output will be appended to £i1le; oth-
erwise, it will overwrite the contents of £ile.
control character vector indicating deparsing options. See .deparseOpts for their
description.
envir the environment to search for objects.
evaluate logical. Should promises be evaluated?
Details

If some of the objects named do not exist (in scope), they are omitted, with a warning. If fileisa
file and no objects exist then no file is created.

sourceing may not produce an identical copy of dumped objects. A warning is issued if it is likely
that problems will arise, for example when dumping exotic or complex objects (see the Note).

dump will also warn if fewer characters were written to a file than expected, which may indicate a
full or corrupt file system.

A dump file can be sourced into another R (or perhaps S) session, but the function save is
designed to be used for transporting R data, and will work with R objects that dump does not
handle.

To produce a more readable representation of an object, use control = NULL. This will skip
attributes, and will make other simplifications that make source less likely to produce an identical
copy. See deparse for details.

To deparse the internal representation of a function rather than displaying the saved source, use
control = c("keepInteger", "warnIncomplete", "keepNA"). This willlose all
formatting and comments, but may be useful in those cases where the saved source is no longer
correct.

144 duplicated

Promises will normally only be encountered by users as a result of lazy-loading (when the default
evaluate = TRUE is essential) and after the use of delayedAssign, when evaluate =
FALSE might be intended.

Value

An invisible character vector containing the names of the objects which were dumped.

Note

As dump is defined in the base name space, the base package will be searched before the global
environment unless dump is called from the top level prompt or the envir argument is given
explicitly.

To avoid the risk of a source attribute becoming out of sync with the actual function definition, the

source attribute of a function will never be dumped as an attribute.

Currently environments, external pointers, weak references and objects of type S4 are not deparsed
in a way that can be sourced. In addition, language objects are deparsed in a simple way what-
ever the value of control, and this includes not dumping their attributes (which will result in a
warning).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

dput, dget, write.
save for a more reliable way to save R objects.

Examples

x <= 1; y <= 1:10

dump (1s (pattern = ""[xyz]'), "xyz.Rdmped")
print (.Last.value)

unlink ("xyz.Rdmped")

duplicated Determine Duplicate Elements

Description

Determines which elements of a vector or data frame are duplicates of elements with smaller sub-
scripts, and returns a logical vector indicating which elements (rows) are duplicates.

duplicated 145

Usage
duplicated(x, incomparables = FALSE, ...)
Default S3 method:
duplicated(x, incomparables = FALSE,

fromLast = FALSE, ...)

S3 method for class 'array'
duplicated(x, incomparables = FALSE, MARGIN = 1,
fromLast = FALSE, ...)

anyDuplicated(x, incomparables

Default S3 method:

anyDuplicated(x, incomparables = FALSE,
fromLast = FALSE, ...)

S3 method for class 'array'

anyDuplicated(x, incomparables = FALSE,
MARGIN = 1, fromLast = FALSE, ...)

FALSE, ...)

Arguments
x a vector or a data frame or an array or NULL.
incomparables
a vector of values that cannot be compared. FALSE is a special value, meaning
that all values can be compared, and may be the only value accepted for methods
other than the default. It will be coerced internally to the same type as x.
fromLast logical indicating if duplication should be considered from the reverse
side, i.e., the last (or rightmost) of identical elements would correspond to
duplicated=FALSE.
arguments for particular methods.
MARGIN the array margin to be held fixed: see apply.
Details

These are generic functions with methods for vectors (including lists), data frames and arrays (in-
cluding matrices).

For the default methods, and whenever there are equivalent method definitions for duplicated
and anyDuplicated, anyDuplicated(x,...) is a “generalized” shortcut for
any (duplicated(x, ...)),in the sense that it returns the index i of the first duplicated entry
x [1i] if there is one, and O otherwise. Their behaviours may be different when at least one of
duplicated and anyDuplicated has a relevant method.

duplicated(x, fromLast=TRUE) is equivalent to but faster than
rev (duplicated (rev(x))).

The data frame method works by pasting together a character representation of the rows separated
by \r, so may be imperfect if the data frame has characters with embedded carriage returns or
columns which do not reliably map to characters.

146 duplicated

The array method calculates for each element of the sub-array specified by MARGIN if the remaining
dimensions are identical to those for an earlier (or later, when fromLast=TRUE) element (in row-
major order). This would most commonly be used to find duplicated rows (the default) or columns
(with MARGIN = 2).

Missing values are regarded as equal, but NaN is not equal to NA_real_.

Values in incomparables will never be marked as duplicated. This is intended to be used for a
fairly small set of values and will not be efficient for a very large set.

When used on a data frame with more than one column, or an array or matrix when comparing
dimensions of length greater than one, this tests for identity of character representations. This will
catch people who unwisely rely on exact equality of floating-point numbers!

Character strings with marked encoding "bytes" cannot be compared, so give an error.

Value

duplicated/(): For a vector input, a logical vector of the same length as x. For a data frame, a
logical vector with one element for each row. For a matrix or array, a logical array with the same
dimensions and dimnames.

anyDuplicated (): anon-negative integer (of length one).

Warning

Using this for lists is potentially slow, especially if the elements are not atomic vectors (see
vector) or differ only in their attributes. In the worst case it is O(n?).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

unique.

Examples

x <= c¢(9:20, 1:5, 3:7, 0:8)

extract unique elements

(xu <—- x[!duplicated(x)])

similar, but not the same:

(xu2 <- x[!duplicated(x, fromLast = TRUE)])

xu == unique (x) but unique (x) is more efficient
stopifnot (identical (xu, unique(x)),
identical (xu2, unique (x, fromLast = TRUE)))

duplicated(iris) [140:143]

duplicated(iris3, MARGIN = c (1, 3))
anyDuplicated(iris) ## 143

dyn.load

147

anyDuplicated (x)
anyDuplicated(x, fromLast = TRUE)

dyn.load

Foreign Function Interface

Description

Load or unload DLLs (also known as shared objects), and test whether a C function or Fortran
subroutine is available.

Usage

dyn.load(x, local = TRUE, now = TRUE, ...)

dyn.unload (x)

is.loaded (symbol, PACKAGE = "", type = "")
Arguments
X a character string giving the pathname to a DLL, also known as a dynamic shared

local

now

symbol
PACKAGE

type

object. (See ‘Details’ for what these terms mean.)

a logical value controlling whether the symbols in the DLL are stored in their
own local table and not shared across DLLs, or added to the global symbol table.
Whether this has any effect is system-dependent.

a logical controlling whether all symbols are resolved (and relocated) immedi-
ately the library is loaded or deferred until they are used. This control is useful
for developers testing whether a library is complete and has all the necessary
symbols, and for users to ignore missing symbols. Whether this has any effect
is system-dependent.

other arguments for future expansion.
a character string giving a symbol name.

if supplied, confine the search for the name to the DLL given by this argument
(plus the conventional extension, ‘. so’, “.s1’, *.d11’,...). This is intended
to add safety for packages, which can ensure by using this argument that no
other package can override their external symbols. Use PACKAGE="base"
for symbols linked in to R. This is used in the same way as in .C, .Call,
.Fortran and .External functions

The type of symbol to look for: can be any ("", the default), "Fortran",
"Call" or "External".

148 dyn.load

Details

The objects dyn . load loads are called ‘dynamically loadable libraries’ (abbreviated to ‘DLL’ on
all platforms except Mac OS X, which unfortunately uses the term for a different sort of sobject.
On Unix-alikes they are also called ‘dynamic shared objects’ (‘DSO’), or ‘shared objects’ for short.
(The POSIX standards use ‘executable object file’, but no one else does.)

See ‘See Also’ and the ‘Writing R Extensions’ and ‘R Installation and Administration” manuals for
how to create and install a suitable DLL.

Unfortunately a very few platforms (e.g. Compaq Tru64) do not handle the PACKAGE argument
correctly, and may incorrectly find symbols linked into R.

The additional arguments to dyn . load mirror the different aspects of the mode argument to the
dlopen () routine on POSIX systems. They are available so that users can exercise greater control
over the loading process for an individual library. In general, the default values are appropriate and
you should override them only if there is good reason and you understand the implications.

The local argument allows one to control whether the symbols in the DLL being attached are
visible to other DLLs. While maintaining the symbols in their own name space is good practice, the
ability to share symbols across related ‘chapters’ is useful in many cases. Additionally, on certain
platforms and versions of an operating system, certain libraries must have their symbols loaded
globally to successfully resolve all symbols.

One should be careful of the potential side-effect of using lazy loading via the now argument as
FALSE. If a routine is called that has a missing symbol, the process will terminate immediately.
The intended use is for library developers to call with value TRUE to check that all symbols are
actually resolved and for regular users to call with FALSE so that missing symbols can be ignored
and the available ones can be called.

The initial motivation for adding these was to avoid such termination in the _init () routines
of the Java virtual machine library. However, symbols loaded locally may not be (read probably)
available to other DLLs. Those added to the global table are available to all other elements of the
application and so can be shared across two different DLLs.

Some (very old) systems do not provide (explicit) support for local/global and lazy/eager symbol
resolution. This can be the source of subtle bugs. One can arrange to have warning messages
emitted when unsupported options are used. This is done by setting either of the options verbose
or warn to be non-zero via the opt ions function.

There is a short discussion of these additional arguments with some example code available at
http://cm.bell-labs.com/stat/duncan/R/dynload.

Value

The function dyn . load is used for its side effect which links the specified DLL to the executing
R image. Callsto .C, .Call, .Fortran and .External can then be used to execute compiled
C functions or Fortran subroutines contained in the library. The return value of dyn.load is an
object of class DLLInfo. See get LoadedDLLs for information about this class.

The function dyn.unload unlinks the DLL. Note that unloading a DLL and then re-loading a
DLL of the same name may or may not work: on Solaris it uses the first version loaded.

is.loaded checks if the symbol name is loaded and hence available for use in .C or . Fortran
or .Call or .External. It will succeed if any one of the four calling functions would succeed

http://cm.bell-labs.com/stat/duncan/R/dynload

eapply 149

in using the entry point unless type is specified. (See .Fortran for how Fortran symbols are
mapped.)

Warning

Do not wuse dyn.unload on a DLL loaded by library.dynam: use
library.dynam.unload. This is needed for system housekeeping.

Note

is.loadedrequires the name you would give to . C etc and not (as in S) that remapped by defunct
functions symbol.C or symbol.For.

The creation of DLLs and the runtime linking of them into executing programs is very platform de-
pendent. In recent years there has been some simplification in the process because the C subroutine
call dlopen has become the POSIX standard for doing this. Under Unix-alikes dyn . load uses
the d1open mechanism and should work on all platforms which support it. On Windows it uses
the standard mechanism (LoadLibrary) for loading DLLs.

The original code for loading DLLs in Unix-alikes was provided by Heiner Schwarte.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

library.dynam to be used inside a package’s .First . 1lib initialization.
SHLIB for how to create suitable DLLs.

.C, .Fortran, .External, .Call.

Examples
is.loaded ("hcass2") #-> probably TRUE, as stats is loaded
is.loaded ("supsmu") # Fortran entry point in stats
is.loaded ("supsmu", "stats", "Fortran")
is.loaded ("PDF", type = "External")
eapply Apply a Function Over Values in an Environment

Description

eapply applies FUN to the named values from an environment and returns the results as a list.
The user can request that all named objects are used (normally names that begin with a dot are not).
The output is not sorted and no enclosing environments are searched.

This is a primitive function.

150 eigen

Usage
eapply(env, FUN, ..., all.names = FALSE, USE.NAMES = TRUE)
Arguments
env environment to be used.
FUN the function to be applied, found via match. fun. In the case of functions like
+, $ %%, etc., the function name must be backquoted or quoted.
optional arguments to FUN.
all.names a logical indicating whether to apply the function to all values.
USE.NAMES logical indicating whether the resulting list should have names.
Value

A named (unless USE.NAMES = FALSE) list. Note that the order of the components is arbitrary
for hashed environments.

See Also

environment, lapply.

Examples

require (stats)

env <—- new.env (hash = FALSE) # so the order is fixed
envSa <- 1:10

env$beta <- exp(-3:3)

env$logic <- ¢ (TRUE, FALSE, FALSE, TRUE)

what have we there?

utils::1ls.str (env)

compute the mean for each list element
eapply (env, mean)
unlist (eapply (env, mean, USE.NAMES = FALSE))

median and quartiles for each element (making use of "..." passing):
eapply (env, quantile, probs = 1:3/4)
eapply (env, quantile)

eigen Spectral Decomposition of a Matrix

Description

Computes eigenvalues and eigenvectors of real (double, integer, logical) or complex matrices.

eigen 151

Usage

eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE)

Arguments
X a matrix whose spectral decomposition is to be computed.
symmetric if TRUE, the matrix is assumed to be symmetric (or Hermitian if complex) and

only its lower triangle (diagonal included) is used. If symmetric is not speci-
fied, the matrix is inspected for symmetry.

only.values if TRUE, only the eigenvalues are computed and returned, otherwise both eigen-
values and eigenvectors are returned.

EISPACK logical. Should EISPACK be used (for compatibility with R < 1.7.0)?

Details

By default eigen uses the LAPACK routines DSYEVR, DGEEV, ZHEEV and ZGEEV whereas
eigen (EISPACK = TRUE) provides an interface to the EISPACK routines RS, RG, CH and CG.

If symmetric is unspecified, the code attempts to determine if the matrix is symmetric up to
plausible numerical inaccuracies. It is faster and surer to set the value yourself.

eigen is preferred to eigen (EISPACK = TRUE) for new projects, but its eigenvectors may
differ in sign and (in the asymmetric case) in normalization. (They may also differ between methods
and between platforms.)

Computing the eigenvectors is the slow part for large matrices.

Computing the eigendecomposition of a matrix is subject to errors on a real-world computer: the
definitive analysis is Wilkinson (1965). All you can hope for is a solution to a problem suitably
close to x. So even though a real asymmetric x may have an algebraic solution with repeated real
eigenvalues, the computed solution may be of a similar matrix with complex conjugate pairs of
eigenvalues.

Value

The spectral decomposition of x is returned as components of a list with components

values a vector containing the p eigenvalues of x, sorted in decreasing order, according
to Mod (values) in the asymmetric case when they might be complex (even
for real matrices). For real asymmetric matrices the vector will be complex only
if complex conjugate pairs of eigenvalues are detected.

vectors either a p X p matrix whose columns contain the eigenvectors of x, or NULL if
only.values is TRUE.
For eigen(, symmetric = FALSE, EISPACK =TRUE) the choice of
length of the eigenvectors is not defined by EISPACK. In all other cases the
vectors are normalized to unit length.
Recall that the eigenvectors are only defined up to a constant: even when the
length is specified they are still only defined up to a scalar of modulus one (the
sign for real matrices).

encodeString

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Smith, B. T, Boyle, J. M., Dongarra, J. J., Garbow, B. S., Ikebe,Y., Klema, V., and Moler, C.
B. (1976). Matrix Eigensystems Routines — EISPACK Guide. Springer-Verlag Lecture Notes in

Computer Science 6.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

Wilkinson, J. H. (1965) The Algebraic Eigenvalue Problem. Clarendon Press, Oxford.

See Also

svd, a generalization of eigen; gr, and chol for related decompositions.

To compute the determinant of a matrix, the gr decomposition is much more efficient: det.

Examples

eigen (cbind(c(1,-1),c(-1,1)))
eigen(cbind(c(1,-1),c(-1,1)), symmetric = FALSE)
same (different algorithm).

eigen(cbind(l,c(1,-1)), only.values = TRUE)
eigen(cbind(-1,2:1)) # complex values
eigen (print (cbind(c(0,11), c(-11i,0))))# Hermite ==> real Eigen values
3 x 3:
eigen(cbind(1,3:1,1:3))
eigen(cbind(-1,c(1:2,0),0:2)) # complex values
encodeString Encode Character Vector as for Printing
Description

encodeString escapes the strings in a character vector in the same way print.default

does, and optionally fits the encoded strings within a field width.

Usage

encodeString(x, width = 0, gquote = "", na.encode = TRUE,
Justify = c("left", "right", "centre", "none"))

http://www.netlib.org/lapack/lug/lapack_lug.html

encodeString

Arguments

X

width

quote
na.encode

Jjustify

Details

153

A character vector, or an object that can be coerced to one by as.character.

integer: the minimum field width. If NULL or NA, this is taken to be the largest
field width needed for any element of x.

character: quoting character, if any.
logical: should NA strings be encoded?

character: partial matches are allowed. If padding to the minimum field width is
needed, how should spaces be inserted? justify == "none" is equivalent
towidth = 0, for consistency with format .default.

This escapes backslash and the control characters ‘\a’ (bell), ‘\b’ (backspace), ‘\ £’ (formfeed),
‘An’ (line feed), ‘\r’ (carriage return), ‘\t’ (tab) and ‘\v’ (vertical tab) as well as any non-
printable characters in a single-byte locale, which are printed in octal notation (‘\xyz’ with leading

ZEeroes).

Which characters are non-printable depends on the current locale. Windows’ reporting of printable
characters is unreliable, so there all other control characters are regarded as non-printable, and all
characters with codes 32-255 as printable in a single-byte locale. See print .default for how
non-printable characters are handled in multi-byte locales.

If quote is a single or double quote any embedded quote of the same type is escaped. Note that
justification is of the quoted string, hence spaces are added outside the quotes.

Value

A character vector of the same length as x, with the same attributes (including names and dimen-
sions) but with no class set.

Note

The default for width is different from format .default, which does similar things for char-
acter vectors but without encoding using escapes.

See Also

print.default

Examples

x <- "ab\bc\ndef"

print (x)

cat (x) # interprets escapes
cat (encodeString(x), "\n", sep="") # similar to print /()

factor (x)

x <— c("a",

makes use of this to print the levels

"ab", "abcde")

encodeString(x, width = NA) # left justification

154 Encoding

encodeString(x, width = NA, justify = "c")

encodeString(x, width = NA, justify = "r")

encodeString(x, width = NA, quote = "'", Justify = "r")
Encoding Read or Set the Declared Encodings for a Character Vector

Description

Read or set the declared encodings for a character vector.

Usage

Encoding (x)
Encoding(x) <- value

enc2native (x)
enc2utf8 (x)

Arguments

X A character vector.

value A character vector of positive length.
Details

Character strings in R can be declared to be in "latinl" or "UTF-8" or "bytes". These
declarations can be read by Encoding, which will return a character vector of values "latinl",
"UTF-8" "bytes" or "unknown", or set, when value is recycled as needed and other values
are silently treated as "unknown". ASCII strings will never be marked with a declared encoding,
since their representation is the same in all supported encodings. Strings marked as "bytes" are
intended to be non-ASCII strings which should be manipulated as bytes, and never converted to a
character encoding.

enc2native and enc2utf8 convert elements of character vectors to the native encoding or
UTF-8 respectively, taking any marked encoding into account. They are primitive functions, de-
signed to do minimal copying.

There are other ways for character strings to acquire a declared encoding apart from explic-
itly setting it (and these have changed as R has evolved). Functions scan, read.table,
readLines, and parse have an encoding argument that is used to declare encodings,
iconv declares encodings from its from argument, and console input in suitable locales is
also declared. intToUtf8 declares its output as "UTF-8", and output text connections (see
textConnection) are marked if running in a suitable locale. Under some circumstances (see its
help page) source (encoding=) will mark encodings of character strings it outputs.

Most character manipulation functions will set the encoding on output strings if it was de-
clared on the corresponding input. These include chartr, strsplit (useBytes = FALSE),

environment 155

tolower and toupper as well as sub (useBytes = FALSE) and gsub (useBytes =
FALSE) . Note that such functions do not preserve the encoding, but if they know the input en-
coding and that the string has been successfully re-encoded (to the current encoding or UTF-8),
they mark the output.

substr does preserve the encoding, and chartr, tolower and toupper preserve UTF-
8 encoding on systems with Unicode wide characters. With their fixed and perl options,
strsplit, sub and gsub will give a marked UTF-8 result if any of the inputs are UTF-8.

paste and sprint f return a UTF-8 marked element if any of the inputs to that element is marked
as UTF-8.

match, pmatch, charmatch, duplicated and unique all match in UTF-8 if any of the
elements are marked as UTF-8.
Value

A character vector.

Examples

x is intended to be in latinl
x <— "fa\xE7ile"
Encoding (x)

Encoding(x) <- "latinl"

X

xx <- iconv(x, "latinl", "UTF-8")
Encoding(c(x, xx))

c(x, xx)

Encoding (xx) <- "bytes"
xx # will be encoded in hex

cat("xx — n’ XX, "\nll, sep = u")
environment Environment Access
Description

Get, set, test for and create environments.

Usage
environment (fun = NULL)
environment (fun) <- wvalue

is.environment (x)

.GlobalEnv
globalenv ()
.BaseNamespaceEnv

156 environment

emptyenv ()
baseenv ()

new.env (hash = TRUE, parent = parent.frame(), size = 29L)

parent.env (env)
parent.env (env) <- value

environmentName (env)

env.profile (env)

Arguments
fun a function,a formula, or NULL, which is the default.
value an environment to associate with the function
x an arbitrary R object.
hash a logical, if TRUE the environment will use a hash table.
parent an environment to be used as the enclosure of the environment created.
env an environment
size an integer specifying the initial size for a hashed environment. An internal de-
fault value will be used if size is NA or zero. This argument is ignored if hash
is FALSE.
Details

Environments consist of a frame, or collection of named objects, and a pointer to an enclosing envi-
ronment. The most common example is the frame of variables local to a function call; its enclosure
is the environment where the function was defined. The enclosing environment is distinguished
from the parent frame: the latter (returned by parent . frame) refers to the environment of the
caller of a function. Since confusion is so easy, it is best never to use ‘parent’ in connection with an
environment (despite the presence of the function parent . env).

When get or exists search an environment with the default inherits = TRUE, they look
for the variable in the frame, then in the enclosing frame, and so on.

The global environment . GlobalEnv, more often known as the user’s workspace, is the first item
on the search path. It can also be accessed by globalenv (). On the search path, each item’s
enclosure is the next item.

The object .BaseNamespaceEnv is the name space environment for the base package. The
environment of the base package itself is available as baseenv ().

If one follows the chain of enclosures found by repeatedly calling parent .env from any envi-
ronment, eventually one reaches the empty environment emptyenv (), into which nothing may be
assigned.

The replacement function parent .env<- is extremely dangerous as it can be used to destruc-
tively change environments in ways that violate assumptions made by the internal C code. It may
be removed in the near future.

environment 157

The replacement form of environment, is.environment, baseenv, emptyenv and
globalenv are primitive functions.

System environments, such as the base, global and empty environments, have names as do the
package and namespace environments and those generated by attach (). Other environments
can be named by giving a "name" attribute, but this needs to be done with care as environments
have unusual copying semantics.

Value
If fun is a function or a formula then environment (fun) returns the environment associated
with that function or formula. If fun is NULL then the current evaluation environment is returned.
The replacement form sets the environment of the function or formula fun to the value given.
is.environment (obj) returns TRUE if and only if obj is an environment.
new.env returns a new (empty) environment with (by default) enclosure the parent frame.
parent .env returns the enclosing environment of its argument.
parent .env<- sets the enclosing environment of its first argument.

environmentName returns a character string, that given when the environment is printed or " "
if it is not a named environment.

env.profile returns a list with the following components: size the number of chains that can
be stored in the hash table, nchains the number of non-empty chains in the table (as reported
by HASHPRI), and counts an integer vector giving the length of each chain (zero for empty
chains). This function is intended to assess the performance of hashed environments. When env is
a non-hashed environment, NULL is returned.

See Also

For the performance implications of hashing or not, see http://en.wikipedia.org/wiki/
Hash_table.

The envir argument of eval, get, and exists.

1s may be used to view the objects in an environment, and hence 1s.str may be useful for an
overview.

sys.source can be used to populate an environment.
Examples
f <- function() "top level function"
##-— all three give the same:
environment ()
environment (f)
.GlobalEnv
ls(envir=environment (stats::approxfun(l:2,1:2, method="const")))

is.environment (.GlobalEnv) # TRUE

el <- new.env(parent = baseenv()) # this one has enclosure package:base.

http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Hash_table

158 EnvVar

e2 <- new.env(parent = el)

assign("a", 3, envir=el)

1s (el)

1ls (e2)

exists("a", envir=e2) # this succeeds by inheritance
exists("a", envir=e2, inherits = FALSE)

exists ("+", envir=e2) # this succeeds by inheritance

eh <- new.env(hash = TRUE, size = NA)

with (env.profile(eh), stopifnot(size == length (counts)))
EnvVar Environment Variables
Description

Details of some of the environment variables which affect an R session.

Details

It is impossible to list all the environment variables which can affect an R session: some affect
the OS system functions which R uses, and others will affect add-on packages. But here are notes
on some of the more important ones. Those that set the defaults for options are consulted only at
startup (as are some of the others).

DVIPS: The path to dvips. Used at startup to set the default for options ("dvipscmd")
which used by help (help_type="ps").
HOME: The user’s ‘home’ directory.

LANGUAGE: Optional. The language(s) to be used for message translations. This is consulted
when needed.

LC_ALL: (etc) Optional. Use to set various aspects of the locale — see Sys.getlocale. Con-
sulted at startup.

MAKEINDEX: The path to makeindex. If unset to a value determined when R was built. Used
by the emulation mode of texi2dvi.

R_BATCH: Optional — set in a batch session.

R_BROWSER: The path to the default browser. Used to set the default value of
options ("browser").

R_COMPLETION: Optional. If set to FALSE, command-line completion is not used. (Not used by
Mac OS GUL)

R_DEFAULT_PACKAGES: A comma-separated list of packages which are to be attached in every
session. See options.

R_DOC_DTR: The location of the R ‘doc’ directory. Set by R.
R_ENVIRON: Optional. The path to the site environment file: see Startup. Consulted at startup.

R_GSCMD: Optional. The path to Ghostscript, used by dev2bitmap, bitmap and
embedFonts. Consulted when those functions are invoked.

EnvVar 159

R_HISTFILE: Optional. The path of the history file: see Startup. Consulted at startup and when
the history is saved.

R_HISTSIZE: Optional. The maximum size of the history file, in lines. Exactly how this is used
depends on the interface. For the readline command-line interface it takes effect when the
history is saved (by savehistory or at the end of a session).

R_HOME: The top-level directory of the R installation: see R.home. Set by R.
R_INCLUDE_DIR: The location of the R ‘include’ directory. Set by R.
R_LIBS: Optional. Used for initial setting of . 1ibPaths.

R_LIBS_SITE: Optional. Used for initial setting of . LibPaths.
R_LIBS_USER: Optional. Used for initial setting of . LibPaths.

R_PAPERSIZE: Optional. Used to set the default for options ("papersize"), e.g. used by
pdf and postscript.

R_PDFVIEWER: The path to the default PDF viewer. Used by R CMD Rd2dvi --pdf.
R_PLATFORM: The platform — a string of the form cpu-vendor-os, see R.Version.
R_PROFILE: Optional. The path to the site profile file: see Startup. Consulted at startup.
R_RD4DVI: Options for latex processing of Rd files. Used by R CMD Rd2dvi.
R_RD4PDF: Options for pdflatex processing of Rd files. Used by R CMD Rd2dvi.
R_SHARE_DIR: The location of the R ‘share’ directory. Set by R.

R_TEXI2DVICMD: The path to texi2dvi. Defaults to the value of TEXI2DVI, and if that is
unset to a value determined when R was built. Consulted at startup to set the default for
options ("texi2dvi"), used by texi2dvi in package tools.

R_UNZIPCMD: The path to unzip. Sets the initial value for options ("unzip") on a Unix-
alike when name space utils is loaded.

R_ZIPCMD: The pathto zip. Used by zip and by R CMD INSTALL --build on Windows.

TMPDIR, TMP, TEMP: Consulted (in that order) when setting the temporary directory for the ses-
sion: see tempdir. TMPDIR is also used by some of the utilities see the help for build.

TZ: Optional. The current timezone. See Sys .timezone for the system-specific formats. Con-
sulted as needed.

no_proxy, http_proxy, ftp_proxy: (and more). Optional. Settings for
download. file: see its help for further details.

Unix-specific
Some variables set on Unix-alikes, and not (in general) on Windows.

DISPLAY: Optional: used by Xx11, Tk (in package teltk), the data editor and various packages.

EDITOR: The path to the default editor: sets the default for options ("editor") when name
space utils is loaded.

PAGER: The path to the pager with the default setting of options ("pager"). The default
value is chosen at configuration, usually as the path to less.

R_PRINTCMD: Sets the default for options ("printcmd"), which sets the default print com-
mand to be used by postscript.

160 eval

See Also

Sys.getenv and Sys . setenv to read and set environmental variables in an R session.

eval Evaluate an (Unevaluated) Expression

Description

Evaluate an R expression in a specified environment.

Usage

eval (expr, envir = parent.frame(),
enclos = if(is.list (envir) || is.pairlist(envir))
parent.frame () else baseenv())
evalg(expr, envir, enclos)
eval.parent (expr, n = 1)
local (expr, envir = new.env())

Arguments

expr an object to be evaluated. See ‘Details’.

envir the environment in which expr is to be evaluated. May also be NULL, a
list, a data frame, a pairlist or an integer as specified to sys.call.

enclos Relevant when envir is a (pair)list or a data frame. Specifies the enclosure, i.e.,
where R looks for objects not found in envir. This can be NULL (interpreted
as the base package environment, baseenv ()) or an environment.

n number of parent generations to go back

Details

eval evaluates the expr argument in the environment specified by envir and returns the com-
puted value. If envir is not specified, then the default is parent . frame () (the environment
where the call to eval was made).

Objects to be evaluated can be of types call or expression or name (when the name is looked
up in the current scope and its binding is evaluated), a promise or any of the basic types such as
vectors, functions and environments (which are returned unchanged).

The evalqg form is equivalent to eval (quote (expr), ...). eval evaluates its first argu-
ment in the current scope before passing it to the evaluator: evalq avoids this.

eval .parent (expr, n) isa shorthand for eval (expr, parent.frame (n)).

If envir is alist (such as a data frame) or pairlist, it is copied into a temporary environment (with
enclosure enclos), and the temporary environment is used for evaluation. So if expr changes
any of the components named in the (pair)list, the changes are lost.

If envir is NULL it is interpreted as an empty list so no values could be found in envir and
look-up goes directly to enclos.

161

local evaluates an expression in a local environment. It is equivalent to evalqg except that its
default argument creates a new, empty environment. This is useful to create anonymous recursive
functions and as a kind of limited name space feature since variables defined in the environment are

not visible from the outside.

Value

The result of evaluating the object: for an expression vector this is the result of evaluating the last

element.

Note

Due to the difference in scoping rules, there are some differences between R and S in this area. In
particular, the default enclosure in S is the global environment.

When evaluating expressions in a data frame that has been passed as an argument to a func-

tion, the relevant enclosure is often the caller’s environment, i.e., one needs eval (x,

parent.frame()).

References

data,

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole. (eval only.)

See Also

expression, quote, sys.frame, parent.frame, environment.

Further, force to force evaluation, typically of function arguments.

Examples

eval (2 ~ 2 ©~ 3)
mEx <- expression(27273); mEx;
eval ({ xx <- pi; xx"2}) ; xx
a <- 3 ; aa <- 4 ; evalg(evalg(atb+taa,
a <- 3 ; aa <- 4 ; evalg(evalg(atb+taa,
ev <- function() {

el <- parent.frame ()

Evaluate a in el
aa <- eval (expression(a),el)
evaluate the expression bound to

a <- expression (x+y)

list (aa = aa, eval = eval(a, el))
}
tst.ev <- function(a = 7) { x <= pi; vy
tst.ev()#-> aa : 7, eval 4.14
a <- list (a=3, b=4)

with(a, a <- 5) # alters the copy of a

1 + eval (mEx)

list(a=1)), list(b=5)) # == 10
-1), list (b=5)) # == 12
a in el

<= 1; ev() }

from the list, discarded.

162 exists

##

Example of evalqg()
##

N <- 3

env <- new.env()

assign("N", 27, envir=env)

this version changes the visible copy of N only, since the argument
passed to eval is '4'.

eval (N <= 4, env)

N

get ("N", envir=env)

this version does the assignment in env, and changes N only there.
evalg(N <= 5, env)

N

get ("N", envir=env)

##
Uses of local()
#4#

Mutually recursive.
gg gets value of last assignment, an anonymous version of f.

gg <- local ({
k <- function(y) f (vy)
f <- function(x) if(x) xxk(x-1) else 1
})
gg (10)
sapply (1:5, g9)

Nesting locals: a is private storage accessible to k
gg <- local ({
k <= local ({
a <-1
function (y) {print (a <<- a+l1l);f(y)}
})
f <- function(x) 1f(x) x*xk(x-1) else 1
})
sapply(1:5, gg)

ls (envir=environment (gg))
ls (envir=environment (get ("k", envir=environment (gg))))

exists Is an Object Defined?

Description

Look for an R object of the given name.

exists 163

Usage
exists(x, where = -1, envir = , frame, mode = "any",
inherits = TRUE)
Arguments
X a variable name (given as a character string).
where where to look for the object (see the details section); if omitted, the function will
search as if the name of the object appeared unquoted in an expression.
envir an alternative way to specify an environment to look in, but it is usually simpler
to just use the where argument.
frame a frame in the calling list. Equivalent to giving where as
sys.frame (frame).
mode the mode or type of object sought: see the ‘Details’ section.
inherits should the enclosing frames of the environment be searched?
Details

The where argument can specify the environment in which to look for the object in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys.frame to access the currently
active function calls). The envir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

This function looks to see if the name x has a value bound to it in the specified environment. If
inherits is TRUE and a value is not found for x in the specified environment, the enclosing
frames of the environment are searched until the name x is encountered. See environment
and the ‘R Language Definition’ manual for details about the structure of environments and their
enclosures.

Warning: inherits = TRUE is the default behaviour for R but not for S.

If mode is specified then only objects of that type are sought. The mode may specify one of the
collections "numeric" and "function" (see mode): any member of the collection will suffice.
(This is true even if a member of a collection is specified, so for example mode="special" will
seek any type of function.)

Value

Logical, true if and only if an object of the correct name and mode is found.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

get.

164 expand.grid

Examples

Define a substitute function if necessary:
if('exists ("some.fun", mode="function"))

some.fun <- function(x) { cat("some.fun(x)\n"); x }
search ()
exists("1ls", 2) # true even though 1ls is in pos=3
exists("1ls", 2, inherits = FALSE) # false

expand.grid Create a Data Frame from All Combinations of Factors

Description

Create a data frame from all combinations of the supplied vectors or factors. See the description of
the return value for precise details of the way this is done.

Usage

expand.grid(..., KEEP.OUT.ATTRS = TRUE, stringsAsFactors = TRUE)

Arguments

.. vectors, factors or a list containing these.

KEEP.OUT.ATTRS
a logical indicating the "out .attrs" attribute (see below) should be com-
puted and returned.

stringsAsFactors
logical specifying if character vectors are converted to factors.

Value

A data frame containing one row for each combination of the supplied factors. The first factors vary
fastest. The columns are labelled by the factors if these are supplied as named arguments or named
components of a list. The row names are ‘automatic’.

Attribute "out .attrs" is a list which gives the dimension and dimnames for use by predict
methods.

Note

Character vectors have always been converted to factors: this became optional in R 2.9.1. Conver-
sion is done with levels in the order they occur in the character vectors (and not alphabetically, as is
most common when converting to factors).

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

expression 165

See Also

combn (package ut ils) for the generation of all combinations of n elements, taken m at a time.

Examples

require (utils)

expand.grid(height = seqg(60, 80, 5), weight = seqg (100, 300, 50),
sex = c("Male", "Female"))

x <— seqg(0,10, length.out=100)

y <= seq(-1,1, length.out=20)

dl <- expand.grid(x=x, y=y)

d2 <- expand.grid(x=x, y=y, KEEP.OUT.ATTRS = FALSE)
object.size(dl) - object.size(d2)

##-> 5992 or 8832 (on 32- / 64-bit platform)

expression Unevaluated Expressions

Description

Creates or tests for objects of mode "expression".

Usage

expression(...)

is.expression (x)
as.expression(x, ...)

Arguments
expression: R objects, typically calls, symbols or constants.
as.expression: arguments to be passed to methods.

x an arbitrary R object.

Details

‘Expression’ here is not being used in its colloquial sense, that of mathematical expressions. Those
are calls (see call) in R, and an R expression vector is a list of calls, symbols etc, for example as
returned by parse.

As an object of mode "expression" is a list, it can be subsetted by [, [[or $, the latter two
extracting individual calls etc. The replacement forms of these operators can be used to replace or
delete elements.

expressionand is.expression are primitive functions. expression is ‘special’: it does
not evaluate its arguments.

166 Extract

Value

expression returns a vector of type "expression" containing its arguments (unevaluated).
is.expression returns TRUE if expr is an expression object and FALSE otherwise.

as.expression attempts to coerce its argument into an expression object. It is
generic, and only the default method is described here. (The default method calls
as.vector (type="expression") and so may dispatch methods for as.vector.) NULL,
calls, symbols (see as.symbol) and pairlists are returned as the element of a length-one expres-
sion vector. Atomic vectors are placed element-by-element into an expression vector (without using
any names): lists are changed type to an expression vector (keeping all attributes). Other types are
not currently supported.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call, eval, function. Further, text and 1egend for plotting mathematical expressions.

Examples

length (exl <- expression(l+ 0:9))# 1
exl
eval (ex1)# 1:10

length (ex3 <—- expression(u,v, 1+ 0:9))# 3

mode (ex3 [3]) # expression
mode (ex3[[3]])# call
rm(ex3)
Extract Extract or Replace Parts of an Object
Description

Operators acting on vectors, matrices, arrays and lists to extract or replace parts.

Usage
x[1]
x[i, 3, ... , drop = TRUE]
x[[i, exact = TRUE]]
x[[i, 3, ..., exact = TRUE]]
x$name

x[1] <= value
x[i, 3, ...] <= value
x$1 <- value

Extract 167

Arguments

X object from which to extract element(s) or in which to replace element(s).

i, 3, ... indices specifying elements to extract or replace. Indices are numeric or

character vectors or empty (missing) or NULL. Numeric values are coerced
to integer as by as.integer (and hence truncated towards zero). Character
vectors will be matched to the names of the object (or for matrices/arrays, the
dimnames): see ‘Character indices’ below for further details.
For [-indexing only: i, j, ... can be logical vectors, indicating ele-
ments/slices to select. Such vectors are recycled if necessary to match the
corresponding extent. i, j, ... can also be negative integers, indicating el-
ements/slices to leave out of the selection.

When indexing arrays by [a single argument i can be a matrix with as many
columns as there are dimensions of x; the result is then a vector with elements
corresponding to the sets of indices in each row of 1.

An index value of NULL is treated as if it were integer (0).

name A literal character string or a name (possibly backtick quoted). For extraction,
this is normally (see under ‘Environments’) partially matched to the names of
the object.

drop For matrices and arrays. If TRUE the result is coerced to the lowest possible
dimension (see the examples). This only works for extracting elements, not for
the replacement. See drop for further details.

exact Controls possible partial matching of [[when extracting by a character vec-
tor (for most objects, but see under ‘Environments’). The default is no partial
matching. Value NA allows partial matching but issues a warning when it occurs.
Value FALSE allows partial matching without any warning.

value typically an array-like R object of a similar class as x.

Details

These operators are generic. You can write methods to handle indexing of specific classes of objects,
see InternalMethods as well as [. data.frameand [. factor. The descriptions here apply only
to the default methods. Note that separate methods are required for the replacement functions [<-,
[[<- and $<- for use when indexing occurs on the assignment side of an expression.

The most important distinction between [, [[and $ is that the [can select more than one element
whereas the other two select a single element.

The default methods work somewhat differently for atomic vectors, matrices/arrays and for recur-
sive (list-like, see is.recursive) objects. $ is only valid for recursive objects, and is only
discussed in the section below on recursive objects. Its use on non-recursive objects was deprecated
in R 2.5.0 and removed in R 2.7.0.

Subsetting (except by an empty index) will drop all attributes except names, dim and dimnames.

Indexing can occur on the right-hand-side of an expression for extraction, or on the left-hand-side
for replacement. When an index expression appears on the left side of an assignment (known as
subassignment) then that part of x is set to the value of the right hand side of the assignment. In this
case no partial matching of character indices is done, and the left-hand-side is coerced as needed to
accept the values. Attributes are preserved (although names, dim and dimnames will be adjusted

168 Extract

suitably). Subassignment is done sequentially, so if an index is specified more than once the latest
assigned value for an index will result.

It is an error to apply any of these operators to an object which is not subsettable (e.g. a function).

Atomic vectors

The usual form of indexing is " [". " [[" can be used to select a single element dropping names,
whereas " [" keeps them, e.g.,in c (abc = 123) [1].

The index object i can be numeric, logical, character or empty. Indexing by factors is allowed and
is equivalent to indexing by the numeric codes (see factor) and not by the character values which
are printed (for which use [as.character (i)]).

An empty index selects all values: this is most often used to replace all the entries but keep the
attributes.

Matrices and arrays

Matrices and arrays are vectors with a dimension attribute and so all the vector forms of indexing
can be used with a single index. The result will be an unnamed vector unless x is one-dimensional
when it will be a one-dimensional array.

The most common form of indexing a k-dimensional array is to specify k indices to [. As for vector
indexing, the indices can be numeric, logical, character, empty or even factor. An empty index (a
comma separated blank) indicates that all entries in that dimension are selected. The argument
drop applies to this form of indexing.

A third form of indexing is via a numeric matrix with the one column for each dimension: each row
of the index matrix then selects a single element of the array, and the result is a vector. Negative
indices are not allowed in the index matrix. NA and zero values are allowed: rows of an index matrix
containing a zero are ignored, whereas rows containing an NA produce an NA in the result.

Indexing via a character matrix with one column per dimensions is also supported if the array has
dimension names. As with numeric matrix indexing, each row of the index matrix selects a single
element of the array. Indices are matched against the appropriate dimension names. NA is allowed
and will produce an NA in the result. Unmatched indices as well as the empty string (" ") are not
allowed and will result in an error.

A vector obtained by matrix indexing will be unnamed unless x is one-dimensional when the row
names (if any) will be indexed to provide names for the result.

Recursive (list-like) objects

Indexing by [is similar to atomic vectors and selects a list of the specified element(s).

Both [[and $ select a single element of the list. The main difference is that $ does not allow com-
puted indices, whereas [[does. x$name is equivalent to x [["name", exact = FALSE]].
Also, the partial matching behavior of [[can be controlled using the exact argument.

[and [[are sometimes applied to other recursive objects such as calls and expressions. Pairlists
are coerced to lists for extraction by [, but all three operators can be used for replacement.

[[can be applied recursively to lists, so that if the single index i is a vector of length p,
alist[[i]] is equivalentto alist[[1i1]]...[[ip]] providing all but the final indexing
results in a list.

Extract 169

When either [[or $ is used for replacement, a value of NULL deletes the corresponding item of
the list.

When $<- is applied to a NULL x, it first coerces x to 1ist (). This is what also happens with
[[<~ if the replacement value value is of length greater than one: if value has length 1 or 0, x
is first coerced to a zero-length vector of the type of value.

Environments

Both $ and [[can be applied to environments. Only character indices are allowed and no
partial matching is done. The semantics of these operations are those of get (i, env=x,
inherits=FALSE). If no match is found then NULL is returned. The replacement versions,
$<—and [[<-, can also be used. Again, only character arguments are allowed. The semantics
in this case are those of assign (i, value, env=x, inherits=FALSE). Such an assign-
ment will either create a new binding or change the existing binding in x.

NAs in indexing

When extracting, a numerical, logical or character NA index picks an unknown element and so
returns NA in the corresponding element of a logical, integer, numeric, complex or character result,
and NULL for a list. (It returns 00 for a raw result.]

When replacing (that is using indexing on the lhs of an assignment) NA does not select any element
to be replaced. As there is ambiguity as to whether an element of the rhs should be used or not,
this is only allowed if the rhs value is of length one (so the two interpretations would have the same
outcome).

Argument matching

Note that these operations do not match their index arguments in the standard way: argument names
are ignored and positional matching only is used. Som[j=2, i=1] is equivalenttom[2, 1] and
nottom([1,2].

This may not be true for methods defined for them; for example it is not true for the data . frame
methods described in [.data.frame which warn if i or j is named and have undocumented
behaviour in that case.

To avoid confusion, do not name index arguments (but drop and exact must be named).

S4 methods

These operators are also implicit S4 generics, but as primitives, S4 methods will be dispatched only
on S4 objects x.

The implicit generics for the $ and $<- operators do not have name in their signature because the
grammar only allows symbols or string constants for the name argument.

Character indices

Character indices can in some circumstances be partially matched (see pmatch) to the names or
dimnames of the object being subsetted (but never for subassignment). Unlike S (Becker et al p.
358)), R has never used partial matching when extracting by [, and as from R 2.7.0 partial matching
is not by default used by [[(see argument exact).

170 Extract

Thus the default behaviour is to use partial matching only when extracting from recursive
objects (except environments) by $. Even in that case, warnings can be switched on by
options (warnPartialMatchAttr = TRUE).

Neither empty (" ") nor NA indices match any names, not even empty nor missing names. If any
object has no names or appropriate dimnames, they are taken as all "" and so match nothing.

Note

The documented behaviour of S is that an NA replacement index ‘goes nowhere’ but uses up an
element of value (Becker et al p. 359). However, that has not been true of other implementations.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

names for details of matching to names, and pmat ch for partial matching.
list,array,matrix.
[.data.frame and [.factor for the behaviour when applied to data.frame and factors.

Syntax for operator precedence, and the R Language reference manual about indexing details.

Examples

x <= 1:12
m <- matrix(1:6, nrow=2, dimnames=list (c("a", "b"), LETTERS[1:3]))
1i <= list (pi=pi, e = exp(l))

x[10] # the tenth element of x

x <- x[-1] # delete the 1lst element of x
m(1l,] # the first row of matrix m
m(l, , drop = FALSE] # is a l-row matrix

m[, c (TRUE, FALSE, TRUE)]# logical indexing

m[cbind(c(1,2,1),3:1)]1# matrix numeric index
Cj. <7 Cbil’ld(C("a", "b", lla"), C("A", "C", "B"))

m[ci] # matrix character index

m <— m[,-1] # delete the first column of m

1i[[11] # the first element of list 11

y <= list(1,2,a=4,5)

yvic(3,4)] # a list containing elements 3 and 4 of y
y$a # the element of y named a

non-integer indices are truncated:
(1 <= 3.999999999) # "4" is printed
(1:5)[1]1 # 3

named atomic vectors, compare "[" and "[["

nx <- c(Abc = 123, pi = pi)

nx[1l] ; nx["pi"] # keeps names, whereas "[[" does not:
nx[[1]] ; nx[["pi"]]

Extract.data.frame 171

recursive indexing into lists
z <— list(a=list(b=9, c='hello'), d=1:5)
unlist (z)

z[[c(1, 2)]]
z[[c(l, 2, 1)]] # both "hello"
Va [[C ("a", l‘b")]:| <_ "new"

unlist (z)

check $ and [[for environments
el <- new.env ()

el$Sa <- 10

el[["a"]]

el[["b"]] <= 20

el$b

1s(el)

Extract.data.frame Extract or Replace Parts of a Data Frame

Description

Extract or replace subsets of data frames.

Usage

S3 method for class 'data.frame'

x[i, j, drop = 1]

S3 replacement method for class 'data.frame'
x[i, J] <= wvalue

S3 method for class 'data.frame'

x[[..., exact = TRUE]]

S3 replacement method for class 'data.frame'
x[[1, J11 <- value

S3 replacement method for class 'data.frame'
x$name <- value

Arguments

X data frame.

i, 3, ... elements to extract or replace. For [and [[, these are numeric or
character or, for [only, empty. Numeric values are coerced to integer as
if by as. integer. For replacement by [, a logical matrix is allowed.

name A literal character string or a name (possibly backtick quoted).

drop logical. If TRUE the result is coerced to the lowest possible dimension. The

default is to drop if only one column is left, but not to drop if only one row is
left.

172 Extract.data.frame

value A suitable replacement value: it will be repeated a whole number of times if
necessary and it may be coerced: see the Coercion section. If NULL, deletes the
column if a single column is selected.

exact logical: see [, and applies to column names.

Details

Data frames can be indexed in several modes. When [and [[are used with a single index (x [1]
or x [[1] 1), they index the data frame as if it were a list. In this usage a drop argument is ignored,
with a warning.

Note that there is no data . £ rame method for $, so xSname uses the default method which treats
x as a list. There is a replacement method which checks value for the correct number of rows,
and replicates it if necessary.

When [and [[are used with two indices (x[1, J] and x[[1i, 3j]11) they act like indexing
a matrix: [[can only be used to select one element. Note that for each selected column, x j
say, typically (if it is not matrix-like), the resulting column will be xj [1], and hence rely on the
corresponding [method, see the examples section.

If [returns a data frame it will have unique (and non-missing) row names, if necessary transforming
the row names using make.unique. Similarly, if columns are selected column names will be
transformed to be unique if necessary (e.g. if columns are selected more than once, or if more than
one column of a given name is selected if the data frame has duplicate column names).

When drop = TRUE, this is applied to the subsetting of any matrices contained in the data frame
as well as to the data frame itself.

The replacement methods can be used to add whole column(s) by specifying non-existent col-
umn(s), in which case the column(s) are added at the right-hand edge of the data frame and numer-
ical indices must be contiguous to existing indices. On the other hand, rows can be added at any
row after the current last row, and the columns will be in-filled with missing values. Missing values
in the indices are not allowed for replacement.

For [the replacement value can be a list: each element of the list is used to replace (part of) one
column, recycling the list as necessary. If columns specified by number are created, the names (if
any) of the corresponding list elements are used to name the columns. If the replacement is not
selecting rows, list values can contain NULL elements which will cause the corresponding columns
to be deleted. (See the Examples.)

Matrix indexing (x [1] with a logical or a 2-column integer matrix i) using [is not recommended,
and barely supported. For extraction, x is first coerced to a matrix. For replacement, a logical matrix
(only) can be used to select the elements to be replaced in the same way as for a matrix.

Both [and [[extraction methods partially match row names. By default neither partially match
column names, but [[will unless exact=TRUE. If you want to do exact matching on row names
use match as in the examples.

Value

For [a data frame, list or a single column (the latter two only when dimensions have been dropped).
If matrix indexing is used for extraction a matrix results. If the result would be a data frame an error
results if undefined columns are selected (as there is no general concept of a "missing’ column in a
data frame). Otherwise if a single column is selected and this is undefined the result is NULL.

Extract.data.frame 173

For [[a column of the data frame or NULL (extraction with one index) or a length-one vector
(extraction with two indices).

For $, a column of the data frame (or NULL).

For [<—, [[<- and $<-, a data frame.

Coercion
The story over when replacement values are coerced is a complicated one, and one that has changed
during R’s development. This section is a guide only.

When [and [[are used to add or replace a whole column, no coercion takes place but value will
be replicated (by calling the generic function rep) to the right length if an exact number of repeats
can be used.

When [is used with a logical matrix, each value is coerced to the type of the column into which it
is to be placed.

When [and [[are used with two indices, the column will be coerced as necessary to accommodate
the value.

Note that when the replacement value is an array (including a matrix) it is not treated as a series of
columns (as data. frame and as.data. frame do) but inserted as a single column.
Warning

The default behaviour when only one row is left is equivalent to specifying drop = FALSE. To
drop from a data frame to a list, drop = TRUE has to be specified explicitly.

Arguments other than drop and exact should not be named: there is a warning if they are and
the behaviour differs from the description here.

See Also

subset which is often easier for extraction, data. frame, Extract.

Examples
sw <- swiss[1l:5, 1:4] # select a manageable subset
sw([l:3] # select columns
sw[, 1:3] # same
sw[4:5, 1:3] # select rows and columns
swl[l] # a one—-column data frame
sw[, 1, drop = FALSE] # the same
sw[, 1] # a (unnamed) vector
sw[[1]] # the same
swll,] # a one-row data frame

sw[l,, drop=TRUE] # a list

sw["C",] # partially matches
sw[match ("C", row.names (sw)),] # no exact match
try(sw[, "Ferti"]) # column names must match exactly

174 Extract.factor

swiss[c(1, 1:2),] # duplicate row, unique row names are created

sw[sw <= 6] <- 6 # logical matrix indexing
sw

adding a column

sw["newl"] <- LETTERS[1:5] # adds a character column
sw[["new2"]] <- letters[1l:5] # ditto

sw[, "new3"] <- LETTERS[1:5] # ditto

swSnewd <- 1:5

sapply (sw, class)

swSnewd4 <- NULL # delete the column
sw

sw[6:8] <- list(letters[10:14], NULL, aa=1:5)

update col. 6, delete 7, append

sw

matrices in a data frame

A <- data.frame(x=1:3, y=I(matrix(4:6)), z=I(matrix(letters[1:9],3,3)))
A[l:3, "y"] # a matrix

A[l1:3, "z"] # a matrix

Al, "y"] # a matrix

keeping special attributes: use a class with a
"as.data.frame" and "[" method:

as.data.frame.avector <- as.data.frame.vector

‘[.avector® <- function(x,i,...) {
r <- NextMethod("[")
mostattributes (r) <- attributes (x)
r

d <- data.frame(i= 0:7, f= gl(2,4),
u= structure(11:18, unit = "kg", class="avector"))
str(d[2:4, -1]1) # 'u' keeps its "unit"

Extract.factor Extract or Replace Parts of a Factor

Description

Extract or replace subsets of factors.

Extract.factor

Usage
S3 method for class 'factor'
x[..., drop = FALSE]
S3 method for class 'factor'
x[[...]]

S3 replacement method for class 'factor'

x[...] <= value
S3 replacement method for class 'factor'
x[[...]] <= value
Arguments
X a factor

a specification of indices — see Extract.

175

drop logical. If true, unused levels are dropped.
value character: a set of levels. Factor values are coerced to character.
Details

When unused levels are dropped the ordering of the remaining levels is preserved.

If valueisnotin levels (x), a missing value is assigned with a warning.

Any contrasts assigned to the factor are preserved unless drop=TRUE.

The [[method supports argument exact.

Value

A factor with the same set of levels as x unless drop=TRUE.

See Also

factor, Extract.

Examples

following example (factor)

(ff <- factor(substring("statistics", 1:10, 1:10),

ff[, drop=TRUE]
factor (letters[7:10]) [2:3, drop = TRUE]

levels=letters))

176 Extremes

Extremes Maxima and Minima

Description

Returns the (parallel) maxima and minima of the input values.

Usage

max(..., na.rm = FALSE)
min(..., na.rm = FALSE)

pmax (..., na.rm = FALSE)

pmin(..., na.rm = FALSE)

pmax.int (..., na.rm = FALSE)

pmin.int (..., na.rm = FALSE)
Arguments

numeric or character arguments (see Note).

na.rm a logical indicating whether missing values should be removed.

Details

max and min return the maximum or minimum of all the values present in their arguments, as
integerifallare logical or integer, as double if all are numeric, and character otherwise.

If na.rmis FALSE an NA value in any of the arguments will cause a value of NA to be returned,
otherwise NA values are ignored.

The minimum and maximum of a numeric empty set are +Inf and —Inf (in this order!) which
ensures transitivity, e.g., min (x1, min(x2)) == min(xl, x2). For numeric x max (x)
== -Infandmin (x) == +Inf whenever length (x) == 0 (after removing missing values
if requested). However, pmax and pmin return NA if all the parallel elements are NA even for
na.rm = TRUE.

pmax and pmin take one or more vectors (or matrices) as arguments and return a single vector
giving the ‘parallel’ maxima (or minima) of the vectors. The first element of the result is the
maximum (minimum) of the first elements of all the arguments, the second element of the result
is the maximum (minimum) of the second elements of all the arguments and so on. Shorter inputs
are recycled if necessary. attributes (such as names or dim) are transferred from the first
argument (if applicable).

pmax.int and pmin.int are faster internal versions only used when all arguments are atomic
vectors and there are no classes: they drop all attributes. (Note that all versions fail for raw and
complex vectors since these have no ordering.)

max and min are generic functions: methods can be defined for them individually or via the
Summary group generic. For this to work properly, the arguments . . . should be unnamed, and
dispatch is on the first argument.

Extremes 177

By definition the min/max of a numeric vector containing an NaN is NaN, except that the min/max
of any vector containing an NA is NA even if it also contains an NaN. Note that max (NA, Inf)
== NA even though the maximum would be Inf whatever the missing value actually is.

Character versions are sorted lexicographically, and this depends on the collating sequence of the
locale in use: the help for ‘Comparison’ gives details. The max/min of an empty character vector
is defined to be a character NA. (One could argue that as " " is the smallest character element, the
maximum should be " ", but there is no obvious candidate for the minimum.)

Value

For min or max, alength-one vector. For pmin or pmax, a vector of length the longest of the input
vectors.

The type of the result will be that of the highest of the inputs in the hierarchy integer < real <
character.

For min and max if there are only numeric inputs and all are empty (after possible removal of NAs),
the result is double (Inf or —Inf).

S4 methods
max and min are part of the S4 Summary group generic. Methods for them must use the signature
X, ..., Da.rm

Note

‘Numeric’ arguments are vectors of type integer and numeric, and logical (coerced to integer). For
historical reasons, NULL is accepted as equivalent to integer (0).

pmax and pmin will also work on classed objects with appropriate methods for comparison,
is.na and rep (if recycling of arguments is needed).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

range (both min and max) and which.min (which.max) for the arg min, i.e., the location
where an extreme value occurs.

‘plotmath’ for the use of min in plot annotation.

Examples

require (stats); require (graphics)
min(5:1, pi) #-> one number
pmin(5:1, pi) #-> 5 numbers

x <- sort (rnorm(100)); <cH <- 1.35
pmin (cH, quantile(x)) # no names
pmin (quantile (x), cH) # has names

178

factor

plot (x, pmin(cH, pmax(-cH, x)), type='b', main= "Huber's function")

factor Factors

Description

The function factor is used to encode a vector as a factor (the terms ‘category’ and ‘enumerated
type’ are also used for factors). If argument ordered is TRUE, the factor levels are assumed to be
ordered. For compatibility with S there is also a function ordered.

is.

factor, is.ordered, as.factor and as.ordered are the membership and coercion

functions for these classes.

Usage

factor (x = character (), levels, labels = levels,

exclude = NA, ordered = is.ordered(x))

ordered(x, ...)

is.
is.
as.
as.

factor (x)
ordered (x)

factor (x)
ordered (x)

addNA (x, ifany=FALSE)

Arguments

X a vector of data, usually taking a small number of distinct values.

levels an optional vector of the values that x might have taken. The default is the
unique set of values taken by as . character (x), sorted into increasing order
of x. Note that this set can be smaller than sort (unique (x)).

labels either an optional vector of labels for the levels (in the same order as levels
after removing those in exclude), or a character string of length 1.

exclude a vector of values to be excluded when forming the set of levels. This should be
of the same type as x, and will be coerced if necessary.

ordered logical flag to determine if the levels should be regarded as ordered (in the order

given).

(in ordered (.)): any of the above, apart from ordered itself.

ifany (in addN2): Only add an NA level if it is used, i.e. if any (is.na (x)).

factor 179

Details

The type of the vector x is not restricted; it only must have an as.character method and be
sortable (by sort.list).

Ordered factors differ from factors only in their class, but methods and the model-fitting functions
treat the two classes quite differently.

The encoding of the vector happens as follows. First all the values in exclude are removed from
levels. If x[1] equals levels[j], then the i-th element of the result is j. If no match is
found for x [1] in 1levels, then the i-th element of the result is set to NA.

Normally the ‘levels’ used as an attribute of the result are the reduced set of levels after removing
those in exclude, but this can be altered by supplying Labels. This should either be a set of
new labels for the levels, or a character string, in which case the levels are that character string with
a sequence number appended.

factor (x, exclude=NULL) applied to a factor is a no-operation unless there are unused lev-
els: in that case, a factor with the reduced level set is returned. If exclude is used it should also
be a factor with the same level set as x or a set of codes for the levels to be excluded.

The codes of a factor may contain NA. For a numeric x, set exclude=NULL to make NA an extra
level (prints as <NA>); by default, this is the last level.

If N2 is a level, the way to set a code to be missing (as opposed to the code of the missing level) is
to use is.na on the left-hand-side of an assignment (as in is.na (f) [1] <- TRUE; indexing
inside is.na does not work). Under those circumstances missing values are currently printed as
<NA>, i.e., identical to entries of level NA.

is.factor is generic: you can write methods to handle specific classes of objects, see Internal-
Methods.

Value

factor returns an object of class "factor" which has a set of integer codes the length of
x with a "levels™" attribute of mode character and unique (!anyDuplicated(.)) en-
tries. If argument ordered is true (or ordered () is used) the result has class ¢ ("ordered",
"factor").

Applying factor to an ordered or unordered factor returns a factor (of the same type) with just
the levels which occur: see also [. factor for a more transparent way to achieve this.

is.factor returns TRUE or FALSE depending on whether its argument is of type factor or not.
Correspondingly, is.ordered returns TRUE when its argument is an ordered factor and FALSE
otherwise.

as.factor coerces its argument to a factor. It is an abbreviated form of factor.
as.ordered (x) returns x if this is ordered, and ordered (x) otherwise.

addNA modifies a factor by turning NA into an extra level (so that NA values are counted in tables,
for instance).

Warning

The interpretation of a factor depends on both the codes and the "1levels" attribute. Be careful
only to compare factors with the same set of levels (in the same order). In particular, as . numeric
applied to a factor is meaningless, and may happen by implicit coercion. To transform a factor £

180 factor

to approximately its original numeric values, as .numeric (levels (f)) [f] is recommended
and slightly more efficient than as .numeric (as.character (f)).

The levels of a factor are by default sorted, but the sort order may well depend on the locale at the
time of creation, and should not be assumed to be ASCII.

There are some anomalies associated with factors that have NA as a level. It is suggested to use
them sparingly, e.g., only for tabulation purposes.

Comparison operators and group generic methods

There are "factor" and "ordered" methods for the group generic Ops which provide meth-
ods for the Comparison operators, and for the min,max, and range generics in Summary of
"ordered". (The rest of the groups and the Math group generate an error as they are not mean-
ingful for factors.)

Only == and ! = can be used for factors: a factor can only be compared to another factor with an
identical set of levels (not necessarily in the same ordering) or to a character vector. Ordered factors
are compared in the same way, but the general dispatch mechanism precludes comparing ordered
and unordered factors.

All the comparison operators are available for ordered factors. Collation is done by the levels of the
operands: if both operands are ordered factors they must have the same level set.

Note

In earlier versions of R, storing character data as a factor was more space efficient if there is even a
small proportion of repeats. Since R 2.6.0 identical character strings share storage, so the difference
is now small in most cases. (Integer values are stored in 4 bytes whereas each reference to a
character string needs a pointer of 4 or 8 bytes.)

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

[. factor for subsetting of factors.

gl for construction of balanced factors and C for factors with specified contrasts. levels and
nlevels for accessing the levels, and unclass to get integer codes.

Examples

(ff <- factor(substring("statistics", 1:10, 1:10), levels=letters))
as.integer (ff) # the internal codes

(f. <- factor(ff))# drops the levels that do not occur

ff[, drop=TRUE] # the same, more transparently

factor (letters[1:20], labels="letter")
class (ordered(4:1)) # "ordered", inheriting from "factor"

z <- factor (LETTERS[3:1], ordered = TRUE)
and "relational" methods work:

file.access

stopifnot (sort(z) [c(1,3)] == range(z),

suppose you want "NA" as a level,
(x <= factor(c(l, 2, NA), exclude

is.na(x) [2] <- TRUE

x # [1]1 1 <NA> <NA>
is.na (x)
[1] FALSE TRUE FALSE

Using addNA ()
Month <- airquality$Month
table (addNA (Month))

table (addNA (Month, ifany=TRUE))

min(z)

181

< max(z))

and to allow missing values.
NULL))

file.access

Ascertain File Accessibility

Description

Utility function to access information about files on the user’s file systems.

Usage

file.access (names, mode =

Arguments

names
path.expand.

mode

Details

0)

character vector containing file names.

Tilde-expansion will be done: see

integer specifying access mode required: see ‘Details’.

The mode value can be the exclusive or of the following values

0 test for existence.
1 test for execute permission.
2 test for write permission.

4 test for read permission.

Permission will be computed for real user ID and real group ID (rather than the effective IDs).

Please note that it is not a good idea to use this function to test before trying to open a file. On a
multi-tasking system, it is possible that the accessibility of a file will change between the time you
call file.access () and the time you try to open the file. It is better to wrap file open attempts

intry.

182 file.choose

Value

An integer vector with values 0 for success and -1 for failure.

Note

This is intended as a replacement for the S-PLUS function access, a wrapper for the C function
of the same name, which explains the return value encoding. Note that the return value is false for
success.

See Also

file.info for more details on permissions, Sys.chmod to change permissions, and try for a
‘test it and see’ approach.

file_test for shell-style file tests.

Examples

fa <- file.access (dir("."))
table(fa) # count successes & failures

file.choose Choose a File Interactively

Description

Choose a file interactively.

Usage

file.choose (new = FALSE)

Arguments
new Logical: choose the style of dialog box presented to the user: at present only
new = FALSE is used.
Value

A character vector of length one giving the file path.

See Also

list . files for non-interactive selection.

file.info 183

file.info Extract File Information

Description

Utility function to extract information about files on the user’s file systems.

Usage

file.info(...)

Arguments

character vectors containing file paths. Tilde-expansion is done: see
path.expand.

Details

What constitutes a ‘file’ is OS-dependent but includes directories. (However, directory names must
not include a trailing backslash or slash on Windows.)

The file ‘mode’ follows POSIX conventions, giving three octal digits summarizing the permissions
for the file owner, the owner’s group and for anyone respectively. Each digit is the logical or of read
(4), write (2) and execute/search (1) permissions.

On most systems symbolic links are followed, so information is given about the file to which the
link points rather than about the link.

Value

A data frame with row names the file names and columns

size double: File size in bytes.

isdir logical: Is the file a directory?

mode integer of class "octmode". The file permissions, printed in octal, for example
644.

mtime, ctime, atime
integer of class "POSIXct": file modification, ‘last status change’ and last
access times.

uid integer: the user ID of the file’s owner.
gid integer: the group ID of the file’s group.
uname character: uid interpreted as a user name.

grname character: gid interpreted as a group name.

184 file.path

Unknown user and group names will be NA.

Entries for non-existent or non-readable files will be NA. The uid, gid, uname and grname
columns may not be supplied on a non-POSIX Unix-alike system, and will not be on Windows.

What is meant by the three file times depends on the OS and file system. On Windows native file
systems ct ime is the file creation time (something which is not recorded on most Unix-alike file
systems). What is meant by ‘file access’ and hence the ‘last access time’ is system-dependent.

The times are reported to an accuracy of a second. Many file systems only record times in seconds,
and some (e.g. modification time on FAT systems) are recorded in increments of 2 or more seconds.

Note

Some systems allow files of more than 2Gb to be created but not accessed by the stat system
call. Such files will show up as non-readable (and very likely not be readable by any of R’s input
functions) — fortunately such file systems are becoming rare.

See Also

Sys.readlink to find out about symbolic links, files, file.access, list.files, and
DateTimeClasses for the date formats.

Sys . chmod to change permissions.

Examples

ncol (finf <- file.info(dir()))# at least six

Not run: finf # the whole list

Those that are more than 100 days old

finf[difftime(Sys.time (), finf[,"mtime"], units="days") > 100 , 1:4]

file.info("no-such-file-exists")

file.path Construct Path to File

Description

Construct the path to a file from components in a platform-independent way.

Usage

file.path(..., fsep = .Platform$file.sep)

Arguments

character vectors.

fsep the path separator to use.

file.show 185

Details

The implementation is designed to be fast (faster than paste) as this function is used extensively
in R itself.

It can also be used for environment paths such as PATH and R_LIBS with fsep =
.PlatformS$Spath. sep.

Value
A character vector of the arguments concatenated term-by-term and separated by fsep if all argu-
ments have positive length; otherwise, an empty character vector (unlike paste).

Note

The components are separated by / (not \) on Windows.

file.show Display One or More Files

Description

Display one or more files.

Usage
file.show (..., header = rep("", nfiles),
title = "R Information",
delete.file = FALSE, pager = getOption ("pager"),
encoding = "")
Arguments
one or more character vectors containing the names of the files to be displayed.
Paths with have tilde expansion.
header character vector (of the same length as the number of files specified in .. .)
giving a header for each file being displayed. Defaults to empty strings.
title an overall title for the display. If a single separate window is used for the display,

title will be used as the window title. If multiple windows are used, their
titles should combine the title and the file-specific header.

delete.file should the files be deleted after display? Used for temporary files.
pager the pager to be used: not used on all platforms

encoding character string giving the encoding to be assumed for the file(s).

186 files

Details

This function provides the core of the R help system, but it can be used for other purposes as well,
such as page.

How the pager is implemented is highly system-dependent.

The basic Unix version concatenates the files (using the headers) to a temporary file, and displays
it in the pager selected by the pager argument, which is a character vector specifying a system
command to run on the set of files. The ‘factory-fresh’ default is to use ‘R_HOME /bin/pager’,
which is a shell script running the command specified by the environment variable PAGER whose
default is set at configuration, usually to 1ess. On a Unix-alike more is used if pager is empty.

Most GUI systems will use a separate pager window for each file, and let the user leave it up while
R continues running. The selection of such pagers could either be done using special pager names
being intercepted by lower-level code (such as "internal" and "console" on Windows), or
by letting pager be an R function which will be called with the same first four arguments as
file.show and take care of interfacing to the GUL

The R. app Mac OS X GUI uses its internal pager irrespective of the setting of pager.

Not all implementations will honour delete.file. In particular, using an external pager on
Windows does not, as there is no way to know when the external application has finished with the
file.

Author(s)

Ross Thaka, Brian Ripley.

See Also

files,list.files, help.

file.edit.

Examples

file.show(file.path (R.home ("doc"), "COPYRIGHTS"))

files File Manipulation

Description

These functions provide a low-level interface to the computer’s file system.

files 187
Usage

file.create(..., showWarnings = TRUE)

file.exists(...)

file.remove (...)

file.rename (from, to)

file.append(filel, file2)

file.copy(from, to, overwrite = recursive, recursive = FALSE,

copy.mode = TRUE)

file.symlink (from, to)

file.link (from, to)
Arguments

., filel, file2
character vectors, containing file names or paths.
from, to character vectors, containing file names or paths. For file.copy and

file.symlink to can alternatively be the path to a single existing directory.
overwrite logical; should existing destination files be overwritten?

showWarnings logical; should the warnings on failure be shown?

recursive logical. If to is a directory, should directories in from be copied (and their
contents)?
copy .mode logical: should file permission bits be copied where possible? This applies to

both files and directories.

Details

The ... arguments are concatenated to form one character string: you can specify the files sepa-
rately or as one vector. All of these functions expand path names: see path.expand.

file.create creates files with the given names if they do not already exist and truncates them if
they do. They are created with the maximal read/write permissions allowed by the ‘umask’ setting
(where relevant). By default a warning is given (with the reason) if the operation fails.

file.exists returns a logical vector indicating whether the files named by its argument exist.
(Here ‘exists’ is in the sense of the system’s stat call: a file will be reported as existing only if
you have the permissions needed by stat. Existence can also be checked by file.access,
which might use different permissions and so obtain a different result. Note that the existence of
a file does not imply that it is readable: for that use file.access.) What constitutes a ‘file’ is
system-dependent, but should include directories. (However, directory names must not include a
trailing backslash or slash on Windows.) Note that if the file is a symbolic link on a Unix-alike, the
result indicates if the link points to an actual file, not just if the link exists.

file.remove attempts to remove the files named in its argument. On most Unix platforms ‘“file’
includes empty directories, symbolic links, fifos and sockets. On Windows, ‘file’ means a regular
file and not, say, an empty directory.

file.rename attempts to rename files (and from and t o must be of the same length). Where
file permissions allow this will overwrite an existing element of t o. This is subject to the limitations
of the OS’s corresponding system call (see something like man 2 rename on a Unix-alike): in

188 files

particular in the interpretation of ‘file’: most platforms will not rename files across file systems.
(On Windows, file.rename nowadays works for files (but not directories) across volumes.)

file.append attempts to append the files named by its second argument to those named by its
first. The R subscript recycling rule is used to align names given in vectors of different lengths.

file.copy works in a similar way to £ile.append but with the arguments in the natural order
for copying. Copying to existing destination files is skipped unless overwrite = TRUE. The
to argument can specify a single existing directory. If copy .mode = TRUE (added in R 2.13.0)
file read/write/execute permissions are copied where possible, restricted by ‘umask’. Other security
attributes such as ACLs are not copied.

file.symlink and file.link make symbolic and hard links on those file systems which
support them. For file.symlink the to argument can specify a single existing directory. (Unix
and Mac OS X native filesystems support both. Windows has hard links on NTFS file systems.
What happens on a FAT or SMB-mounted file system is OS-specific.)

Value

These functions return a logical vector indicating which operation succeeded for each of the files
attempted. Using a missing value for a file or path name will always be regarded as a failure.

If showWarnings = TRUE, file.create will give a warning for an unexpected failure.

Author(s)

Ross Thaka, Brian Ripley

See Also

file.info, file.access, file.path, file.show, list.files, unlink,
basename, path.expand.

dir.create.
Sys.glob to expand wildcards in file specifications.
file_test, Sys.readlink.

http://en.wikipedia.org/wiki/Hard_link and http://en.wikipedia.org/
wiki/Symbolic_1link for the concepts of links and their limitations.

Examples

cat ("file A\n", file="A")

cat ("file B\n", file="B")
file.append ("A", "B")
file.create ("A")

file.append ("A", rep("B", 10))
if (interactive()) file.show ("A")
file.copy ("A", "C")
dir.create("tmp")
file.copy(c("A", "B"), "tmp")
list.files ("tmp")

setwd ("tmp")

file.remove ("B")

http://en.wikipedia.org/wiki/Hard_link
http://en.wikipedia.org/wiki/Symbolic_link
http://en.wikipedia.org/wiki/Symbolic_link

files2 189

file.symlink (file.path("..", c("A", "B")), ".")
setwd ("..")

unlink ("tmp", recursive=TRUE)

file.remove ("A", "B", "C")

files?2 Manipulaton of Directories and File Permissions

Description

These functions provide a low-level interface to the computer’s file system.

Usage
dir.create (path, showWarnings = TRUE, recursive = FALSE,
mode = "0777")
Sys.chmod (paths, mode = "0777", use_umask=TRUE)

Sys.umask (mode = NA)

Arguments
path a character vector containing a single path name. Tilde expansion (see
path.expand) is done.
paths character vectors containing file or directory paths. Tilde expansion (see

path.expand) is done.

showWarnings logical; should the warnings on failure be shown?

recursive logical. Should elements of the path other than the last be created? If true, like
the Unix command mkdir -p.
mode the mode to be used on Unix-alikes: it will be coerced by as.octmode. For
Sys.chmod itis recycled along paths.
use_umask logical: should the mode be restricted by the umask setting?
Details
dir.create creates the last element of the path, unless recursive = TRUE. Trailing path

separators are discarded. The mode will be modified by the umask setting in the same way as for
the system function mkdir. What modes can be set is OS-dependent, and it is unsafe to assume
that more than three octal digits will be used. For more details see your OS’s documentation on the
system call mkdir, e.g. man 2 mkdir (and not that on the command-line utility of that name).

One of the idiosyncrasies of Windows is that directory creation may report success but create a
directory with a different name, for example dir.create ("G.S.") creates ‘"G.S"’. This
is undocumented, and what are the precise circumstances is unknown (and might depend on the
version of Windows). Also avoid directory names with a trailing space.

Sys.chmod sets the file permissions of one or more files. It may not be supported on a system
(when a warning is issued). See the comments for dir.create for how modes are interpreted.

190 find.package

Changing mode on a symbolic link is unlikely to work (nor be necessary). For more details see
your OS’s documentation on the system call chmod, e.g. man 2 chmod (and not that on the
command-line utility of that name).

Sys.umask sets the umask and returns the previous value: as a special case mode = NA just
returns the current value. It may not be supported (when a warning is issued and "0" is returned).
For more details see your OS’s documentation on the system call umask, e.g. man 2 umask.

How modes are handled depends on the file system, even on Unix-alikes (although their documen-
tation is often written assuming a POSIX file system). So treat documentation cautiously if you are
using, say, a FAT/FAT32 or network-mounted file system.

Value

dir.create and Sys.chmod return invisibly a logical vector indicating if the operation suc-
ceeded for each of the files attempted. Using a missing value for a path name will always
be regarded as a failure. dir.create indicates failure if the directory already exists. If
showWarnings = TRUE, dir.create will give a warning for an unexpected failure (e.g.
not for a missing value nor for an already existing component for recursive = TRUE).

Sys . umask returns the previous value of the umask, as a length-one object of class "octmode":
the visibility flag is off unless mode is NA.

Author(s)

Ross Thaka, Brian Ripley

See Also

file.info, file.exists, file.path, 1list.files, wunlink, basename,
path.expand.

Examples

Not run:
Fix up maximal allowed permissions in a file tree

Sys.chmod (list.dirs("."), "777")

f <— list.files(".", all.files = TRUE, full.names = TRUE,
recursive =TRUE)

Sys.chmod (f, (file.info(f)Smode | "664"))

End (Not run)

find.package Find Packages

Description

Find the paths to one or more packages.

findInterval 191

Usage

find.package (package, lib.loc = NULL, quiet = FALSE,
verbose = getOption ("verbose"))

path.package (package, quiet = FALSE)

Arguments
package character vector: the names of packages.
lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to checking the attached pack-
ages, then all libraries currently known in . 1ibPaths ().
quiet logical. Should this not give warnings or an error if the package is not found?
verbose alogical. If TRUE, additional diagnostics are printed.
Details

find.package returns path to the locations where the given packages are found. If 1ib. loc
is NULL, then attached packages are searched before the libraries. If a package is found more
than once, the first match is used. Unless quiet = TRUE a warning will be given about the
named packages which are not found, and an error if none are. If verbose is true, warnings about
packages found more than once are given. For a package to be returned it must contain a either a
‘Meta’ subdirectory or a ‘DESCRIPTION’ file containing a valid version field, but it need not
be installed.

path.package returns the paths from which the named packages were loaded, or if none were
named, for all currently attached packages. Unless quiet = TRUE it will warn if some of the
packages named are not attached, and given an error if none are.

Value

A character vector of paths of package directories.

Note

.find.package and .path.package were internal-only versions prior to R 2.13.0, and are
now wrappers for these public versions.

findInterval Find Interval Numbers or Indices

Description

Find the indices of x in vec, where vec must be sorted (non-decreasingly); i.e., if 1 <-—
findInterval (x,v), we have vi; < < V41 where vy := —00, Un41 = +00, and N
<- length (vec). At the two boundaries, the returned index may differ by 1, depending on the
optional arguments rightmost.closedand all.inside.

192 findInterval

Usage

findInterval (x, vec, rightmost.closed = FALSE, all.inside = FALSE)

Arguments
X numeric.
vec numeric, sorted (weakly) increasingly, of length N, say.

rightmost.closed
logical; if true, the rightmost interval, vec [N-1] .. vec[N] is treated as
closed, see below.

all.inside logical; if true, the returned indices are coerced into 1, ...,N-1, ie., 0 is
mapped to 1 and N to N-1.

Details

The function findInterval finds the index of one vector x in another, vec, where the lat-
ter must be non-decreasing. Where this is trivial, equivalent to apply (outer (x, vec,
">="), 1, sum), as a matter of fact, the internal algorithm uses interval search ensuring
O(nlog N) complexity where n <- length(x) (and N <- length (vec)). For (almost)
sorted x, it will be even faster, basically O(n).

This is the same computation as for the empirical distribution function, and indeed,
findInterval (t, sort (X)) is identical to nF,(t; X1,...,X,) where F,, is the empirical
distribution function of X1, ..., X,.

When rightmost.closed = TRUE, the result for x[j] = vec[N] (= maxwvec), is N —
1 as for all other values in the last interval.

Value

vector of length 1ength (x) with values in 0 : N (and NA) where N <- length (vec), or val-
ues coercedto 1: (N-1) ifandonlyifall.inside = TRUE (equivalently coercing all x values
inside the intervals). Note that NAs are propagated from x, and Inf values are allowed in both x
and vec.

Author(s)

Martin Maechler

See Also

approx (x, method = "constant") which is a generalization of findInterval (),
ecdf for computing the empirical distribution function which is (up to a factor of n) also basi-
cally the same as findInterval(.).

force 193

Examples

N <- 100

X <- sort (round(stats::rt (N, df=2), 2))

tt <- ¢ (=100, seg(-2,2, len=201), +100)

it <- findInterval (tt, X)

tt[it < 1 | it >= N] # only first and last are outside range (X)

force Force Evaluation of an Argument

Description

Forces the evaluation of a function argument.

Usage

force (x)

Arguments

X a formal argument of the enclosing function.

Details

force forces the evaluation of a formal argument. This can be useful if the argument will be
captured in a closure by the lexical scoping rules and will later be altered by an explicit assignment
or an implicit assignment in a loop or an apply function.

Note

This is semantic sugar: just evaluating the symbol will do the same thing (see the examples).

force does not force the evaluation of other promises. (It works by forcing the promise that is
created when the actual arguments of a call are matched to the formal arguments of a closure, the
mechanism which implements lazy evaluation.)

Examples

f <- function(y) function() vy

1f <- vector("list", 5)

for (i in seqg_along(lf)) 1f[[1i]] <- £(1)
1£f[[111() # returns 5

g <- function(y) { force(y); function() y }
lg <- vector("list", 5)

for (i in seg_along(lg)) 1lg[[i]] <- g(i)
1g[[1]1]1() # returns 1

This is identical to
g <- function(y) { y; function() vy }

194 Foreign
Foreign Foreign Function Interface
Description
Functions to make calls to compiled code that has been loaded into R.
Usage
.C(.NAME, ..., NAOK = FALSE, DUP = TRUE, PACKAGE, ENCODING)
.Fortran(.NAME, ..., NAOK = FALSE, DUP = TRUE, PACKAGE, ENCODING)
.External (.NAME, ..., PACKAGE)
.Call (.NAME, ..., PACKAGE)
Arguments

. NAME a character string giving the name of a C function or Fortran subroutine, or an
object of class "NativeSymbolInfo", "RegisteredNativeSymbol"
or "NativeSymbol" referring to such a name.
arguments to be passed to the foreign function.

NAOK if TRUE then any NA or NaN or Inf values in the arguments are passed on to
the foreign function. If FALSE, the presence of NA or NaN or Inf values is
regarded as an error.

DUP if TRUE then arguments are duplicated before their address is passed to C or
Fortran.

PACKAGE if supplied, confine the search for the . NAME to the DLL given by this argument
(plus the conventional extension, ‘.so’, ‘.s1’, *.d11’,...). This is intended
to add safety for packages, which can ensure by using this argument that no
other package can override their external symbols. Use PACKAGE="base"
for symbols linked in to R.

ENCODING optional name for an encoding to be assumed for character vectors. See ‘De-
tails’.

Details

The functions . C and .Fortran can be used to make calls to compiled C and Fortran code.

.Call can be used to call compiled code which makes use of internal R objects, passing the
arguments to the C code as a sequence of R objects.

.External can be used to call compiled code that uses R objects in the same way as internal R
functions: this allows for a variable number of arguments.

Specifying ENCODING overrides any declared encodings (see Encoding) which are otherwise
used to translate to the current locale before passing the strings to the compiled code.

These functions are all primitive, and .NAME is always matched to the first argument supplied
(which if named must partially match .NAME). The other named arguments follow . .. and so

Foreign 195

cannot be abbreviated. You should avoid using names in the arguments passed to . . . that match
or partially match .NAME in case the argument handling in .C or .Fortran should change to
follow standard argument matching conventions.

For details about how to write code to use with .Call and .External, see the chapter on “Sys-
tem and foreign language interfaces” in the “Writing R Extensions” manual.
Value

The functions .C and .Fortran return a list similar to the . . . list of arguments passed in, but
reflecting any changes made by the C or Fortran code.

.External and .Call return an (arbitrary) R object.

These calls are typically made in conjunction with dyn . 1oad which links DLLs to R.

Argument types

The mapping of the types of R arguments to C or Fortran arguments in .C or .Fortran is

R C Fortran

integer int * integer

numeric double * double precision
—or-— float * real

complex Rcomplex * double complex
logical int * integer
character char ** [see below]

raw unsigned char * not allowed

list SEXP * not allowed
other SEXP not allowed

Numeric vectors in R will be passed as type double * to C (and as double precision to
Fortran) unless (i) .C or .Fortran is used, (ii) DUP is true and (iii) the argument has attribute
Csingle set to TRUE (use as.single or single). This mechanism is only intended to be
used to facilitate the interfacing of existing C and Fortran code.

The C type Rcomplex is defined in ‘Complex.h’ as a typedef struct {double r;
double 1ij;}. Fortran type double complex is an extension to the Fortran standard, and the
availability of a mapping of complex to Fortran may be compiler dependent.

Logical values are sent as 0 (FALSE), 1 (TRUE) or INT_MIN = -2147483648 (NA, but only if
NAOK = TRUE), and the compiled code should return one of these three values: however non-zero
value other than INT_MIN are mapped to TRUE as from R 2.12.0.

Note: The C types corresponding to integer and logical are int, not long as in S. This
difference matters on most 64-bit platforms, where int is 32-bit and long is 64-bit (but not on
64-bit Windows).

Note: The Fortran type corresponding to logical is integer, not logical: the difference
matters on some older Fortran compilers.

The first character string of a character vector is passed as a C character array to Fortran: that
string may be usable as character«255 if its true length is passed separately. Only up to 255

196 Foreign

characters of the string are passed back. (How well this works, or even if it works at all, depends on
the C and Fortran compilers and the platform.)

Missing (NA) string values are passed to . C as the string "NA". As the C char type can represent
all possible bit patterns there appears to be no way to distinguish missing strings from the string
"NA". If this distinction is important use . Call.

Functions, expressions, environments and other language elements are passed as the internal R
pointer type SEXP. This type is defined in ‘Rinternals.h’ or the arguments can be declared as
generic pointers, void =. Lists are passed as C arrays of SEXP and can be declared as void =
or SEXP «. Note that you cannot assign values to the elements of the list within the C routine.
Assigning values to elements of the array corresponding to the list bypasses R’s memory manage-
ment/garbage collection and will cause problems. Essentially, the array corresponding to the list is
read-only. If you need to return S objects created within the C routine, use the . Call interface.

R functions can be invoked using call_S or call_R and can be passed lists or the simple types
as arguments.

Warning

DUP=FALSE is dangerous.
There are two dangers with using DUP=FALSE.

The first is that if you pass a local variable to .C/.Fortran with DUP=FALSE, your compiled
code can alter the local variable and not just the copy in the return list. Worse, if you pass a local
variable that is a formal parameter of the calling function, you may be able to change not only the
local variable but the variable one level up. This will be very hard to trace.

The second is that lists are passed as a single R SEXP with DUP=FALSE, not as an array of SEXP.
This means the accessor macros in ‘Rinternals.h’ are needed to get at the list elements and
the lists cannot be passed to call_S/call_R. New code using R objects should be written using
.Callor .External, so this is now only a minor issue.

In addition, character vectors and lists cannot be used with DUP=FALSE.

It is safe and useful to set DUP=FALSE if you do not change any of the variables that might be
affected, e.g.,

.C("Cfunction", input=x, output=numeric(10)).
In this case the output variable did not exist before the call so it cannot cause trouble. If the input

variable is not changed in the C code of Cfunction you are safe.

Neither .Call nor .External copy their arguments. You should treat arguments you receive
through these interfaces as read-only.

Fortran symbol names

All Fortran compilers that can be used to compile R map symbol names to lower case, and so does
.Fortran.

Symbol names containing underscores are not valid Fortran 77 (although they are valid in Fortran
9x). Many Fortran 77 compilers will allow them but may translate them in a different way to names
not containing underscores. Such names will often work with .Fortran (since how they are
translated is detected when R is built and the information used by .Fortran), but portable code
should not use Fortran names containing underscores.

formals 197

Use . Fortran with care for compiled Fortran 9x code: it may not work if the Fortran 9x compiler
used differs from the Fortran compiler used when configuring R, especially if the subroutine name
is not lower-case or includes an underscore. It is also possible to use .C and do any necessary
symbol-name translation yourself.

Header files for external code

Writing code for use with .External and .Call will need to use internal R structures. If
possible use just those defined in ‘Rinternals.h’ and/or the macros in ‘Rdefines.h’, as
other header files are not installed and are even more likely to be changed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (.C and .Fortran.)

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer. (.Call.)

See Also

dyn.load.

formals Access to and Manipulation of the Formal Arguments

Description

Get or set the formal arguments of a function.

Usage
formals (fun = sys.function(sys.parent ()))
formals (fun, envir = environment (fun)) <- wvalue
Arguments
fun a function object, or see ‘Details’.
envir environment in which the function should be defined.
value a list (or pairlist) of R expressions.
Details

For the first form, fun can also be a character string naming the function to be manipulated, which
is searched for from the parent frame. If it is not specified, the function calling formals is used.

Only closures have formals, not primitive functions.

198

Value

formals returns the formal argument list of the function specified, as a pairlist, or NULL for

a non-function or primitive.

The replacement form sets the formals of a function to the list/pairlist on the right hand side, and

(potentially) resets the environment of the function.

See Also

args for a human-readable version, alist, body, function.

Examples
require (stats); require (graphics)
length (formals (1m)) # the number of formal arguments
names (formals (boxplot)) # formal arguments names

f <- function(x) a+b
formals (f) <- alist (a=,b=3) # function (a,b=3)a+b
£f(2) # result =5

format Encode in a Common Format

Description

Format an R object for pretty printing.
Usage
format (x, ...)

Default S3 method:
format (x, trim = FALSE, digits = NULL, nsmall = 0L,

Justify = c("left", "right", "centre", "none"),
width = NULL, na.encode = TRUE, scientific = NA,
big.mark = "", big.interval = 3L,

small.mark = "", small.interval = 5L,
decimal.mark = ".", zero.print = NULL,

dropOtrailing = FALSE, ...)

S3 method for class 'data.frame'
format (x, ..., justify = "none")

S3 method for class 'factor'
format (x, ...)

S3 method for class 'AsIs'
format (x, width = 12, ...)

format 199

Arguments

X any R object (conceptually); typically numeric.

trim logical; if FALSE, logical, numeric and complex values are right-justified to a
common width: if TRUE the leading blanks for justification are suppressed.

digits how many significant digits are to be used for numeric and complex x. The
default, NULL, uses getOption (digits). This is a suggestion: enough
decimal places will be used so that the smallest (in magnitude) number has this
many significant digits, and also to satisfy nsmall. (For the interpretation for
complex numbers see signif.)

nsmall the minimum number of digits to the right of the decimal point in format-
ting real/complex numbers in non-scientific formats. Allowed values are 0 <=
nsmall <= 20.

justify should a character vector be left-justified (the default), right-justified, centred
or left alone.

width default method: the minimum field width or NULL or O for no restriction.

AsIs method: the maximum field width for non-character objects. NULL cor-
responds to the default 12.

na.encode logical: should NA strings be encoded? Note this only applies to elements of
character vectors, not to numerical or logical NAs, which are always encoded as
" NA n .

scientific Either a logical specifying whether elements of a real or complex vec-
tor should be encoded in scientific format, or an integer penalty (see
options ("scipen")). Missing values correspond to the current default
penalty.

further arguments passed to or from other methods.

big.mark, big.interval, small.mark, small.interval, decimal.mark, zero.print, drop(
used for prettying (longish) decimal sequences, passed to prettyNum: that
help page explains the details.

Details

format is a generic function. Apart from the methods described here there are methods for
dates (see format .Date), date-times (see format .POSIXct)) and for other classes such as
format.octmode and format .dist.

format.data.frame formats the data frame column by column, applying the appropriate
method of format for each column. Methods for columns are often similar to as.character
but offer more control. Matrix and data-frame columns will be converted to separate columns in the
result, and character columns (normally all) will be given class "AsIs".

format . factor converts the factor to a character vector and then calls the default method (and
so justify applies).

format .AsIs deals with columns of complicated objects that have been extracted from a data
frame. Character objects are passed to the default method (and so width does not apply). Other-
wise it calls toString to convert the object to character (if a vector or list, element by element)
and then right-justifies the result.

200 format

Justification for character vectors (and objects converted to character vectors by their methods)
is done on display width (see nchar), taking double-width characters and the rendering of spe-
cial characters (as escape sequences, including escaping backslash but not double quote: see
print.default) into account. Thus the width is as displayed by print (quote = FALSE)
and not as displayed by cat. Character strings are padded with blanks to the display width of
the widest. (If na.encode = FALSE missing character strings are not included in the width
computations and are not encoded.)

Numeric vectors are encoded with the minimum number of decimal places needed to display all
the elements to at least the digits significant digits. However, if all the elements then have
trailing zeroes, the number of decimal places is reduced until at least one element has a non-zero
final digit; see also the argument documentation for big. x, small. x etc, above. See the note in
print.default aboutdigits >= 16.

Raw vectors are converted to their 2-digit hexadecimal representation by as.character.

Value
An object of similar structure to x containing character representations of the elements of the first
argument x in a common format, and in the current locale’s encoding.

For character, numeric, complex or factor x, dims and dimnames are preserved on matrices/arrays
and names on vectors: no other attributes are copied.

If x is a list, the result is a character vector obtained by applying format .default (x, ...)
to each element of the list (after unlisting elements which are themselves lists), and then col-
lapsing the result for each element with paste (collapse = ", "). The defaults in this case
are trim = TRUE, justify = "none" since one does not usually want alignment in the
collapsed strings.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

format .info indicates how an atomic vector would be formatted.

formatC, paste, as.character, sprintf, print, prettyNum, toString,
encodeString.

Examples

format (1:10)
format (1:10, trim = TRUE)

zz <- data.frame (" (row names)"= c("aaaaa", "b"), check.names=FALSE)
format (zz)
format (zz, justify = "left")

use of nsmall
format (13.7)
format (13.7, nsmall = 3)

format.info 201

format (c (6.0, 13.1), digits = 2)
format (c (6.0, 13.1), digits = 2, nsmall = 1)

use of scientific
format (2731-1)
format (2731-1, scientific = TRUE)

a list

z <- list (a=letters[1l:3], b=(-pi+0i)~((-2:2)/2), c=c(1,10,100,1000),
d=c("a", "longer", "character", "string"))

format (z, digits = 2)

format (z, digits = 2, justify = "left", trim = FALSE)
format.info format(.) Information
Description

Information is returned on how format (x, digits, nsmall) would be formatted.

Usage

format.info(x, digits = NULL, nsmall = 0)

Arguments
X an atomic vector; a potential argument of format (x, ...).
digits how many significant digits are to be used for numeric and complex x. The
default, NULL, uses getOption (digits).
nsmall (see format (..., nsmall)).
Value

An integer vector of length 1, 3 or 6, say r.

For logical, integer and character vectors a single element, the width which would be used by
format ifwidth = NULL.

For numeric vectors:

r[l] width (in characters) used by format (x)

r(2] number of digits after decimal point.

r[3] in 0:2; if >1, exponential representation would be used, with exponent length
of r[3]+1.

For a complex vector the first three elements refer to the real parts, and there are three further
elements corresponding to the imaginary parts.

202 format.pval

See Also

format (notably about digits >= 16), formatC.

Examples

dd <- options("digits") ; options(digits = 7) #-- for the following

format.info (123) # 300
format.info (pi) # 8 60
format.info (1le8) # 5 0 1 - exponential "le+08"
format.info (1e222) # 6 0 2 - exponential "le+222"

x <- pix10”c(-10,-2,0:2,8,20)

names (x) <- formatC(x, width=1, digits=3, format="g")
cbind (sapply (x, format))

t (sapply (x, format.info))

using at least 8 digits right of "."
t (sapply (x, format.info, nsmall = 8))

Reset old options:

options (dd)

format.pval Format P Values

Description

format.pval is intended for formatting p-values.

Usage

format.pval (pv, digits = max(l, getOption("digits") - 2),

eps = .Machine$double.eps, na.form = "NA", ...)

Arguments

pv a numeric vector.

digits how many significant digits are to be used.

eps a numerical tolerance: see ‘Details’.

na.form character representation of NASs.

further arguments to be passed to format such as nsmall.

Details

format .pval is mainly an auxiliary function for print . summary . 1m etc., and does separate
formatting for fixed, floating point and very small values; those less than eps are formatted as "<
[eps]" (where ‘[eps] stands for format (eps, digits)).

formatC

Value

203

A character vector.

Examples

format.pval (c(stats::runif (5), pi~-100, NA))
format.pval(c (0.1, 0.0001, le-27))

formatC

Formatting Using C-style Formats

Description

Formatting numbers individually and flexibly, using C style format specifications.

Usage

formatC(x, digits = NULL, width = NULL,

format = NULL, flag = "", mode = NULL,

big.mark = "", big.interval = 3L,

small.mark = "", small.interval = 5L,
" "w

decimal.mark = ".", preserve.width = "individual",
zero.print = NULL, dropOtrailing = FALSE)

prettyNum(x, big.mark = "", big.interval = 3L,
small.mark = "", small.interval = 5L,
decimal.mark = ".",
preserve.width = c("common", "individual", "none"),

Arguments

X

digits

width

zero.print = NULL, dropOtrailing = FALSE, is.cmplx = NA,
-)

an atomic numerical or character object, possibly complex only for
prettyNum (), typically a vector of real numbers.

the desired number of digits after the decimal point (format = "£") or sig-
nificant digits (format = "g",= "e"or= "fg").

Default: 2 for integer, 4 for real numbers. If less than 0, the C default of 6 digits
is used. If specified as more than 50, 50 will be used with a warning unless
format = "f" where it is limited to typically 324. (Not more than 15-21
digits need be accurate, depending on the OS and compiler used. This limit is
just a precaution against segfaults in the underlying C runtime.)

the total field width; if both digits and width are unspecified, width
defaults to 1, otherwise to digits + 1. width = 0 will use width
digits,width < 0 means left justify the number in this field (equivalent to
flag ="-"). If necessary, the result will have more characters than width.
For character data this is interpreted in characters (not bytes nor display width).

204

format

flag

mode

big.mark

big.interval

small.mark

formatC

equal to "d" (for integers), "f", "e", "E", "g", "G", "fg" (for reals), or
"s" (for strings). Default is "d" for integers, "g" for reals.

"f" gives numbers in the usual xxx.xxx format; "e" and "E" give
n.ddde+nn or n.dddE+nn (scientific format); "g" and "G" put x [1] into
scientific format only if it saves space to do so.

"fg" uses fixed format as "£", but digits as the minimum number of signif-
icant digits. This can lead to quite long result strings, see examples below. Note
that unlike signif this prints large numbers with more significant digits than
digits. Trailing zeros are dropped in this format, unless £ 1ag contains "#".

For formatC, a character string giving a format modifier as in Kernighan and

Ritchie (1988, page 243). "0" pads leading zeros; "~-" does left adjustment,
others are "+", " ", and "#". There can be more than one of these, in any
order.

"double" (or "real"), "integer" or "character". Default: Deter-
mined from the storage mode of x.

character; if not empty used as mark between every big. interval decimals
before (hence big) the decimal point.

see big.mark above; defaults to 3.

character; if not empty used as mark between every small.interval deci-
mals after (hence small) the decimal point.

small.interval

see small.mark above; defaults to 5.

decimal.mark the character to be used to indicate the numeric decimal point.

preserve.width

zero.print

string specifying if the string widths should be preserved where possible in those
cases where marks (big.mark or small.mark) are added. "common", the
default, corresponds to format-like behavior whereas "individual™" is the
default in formatC ().

logical, character string or NULL specifying if and how zeros should be format-
ted specially. Useful for pretty printing ‘sparse’ objects.

dropOtrailing

is.cmplx

Details

logical, indicating if trailing zeros, i.e., "0" after the decimal mark, should be
removed; also drops "e+00" in exponential formats.

optional logical, to be used when x is "character" to indicate if it stems
from complex vector or not. By default (NA), x is checked to ‘look like’
complex.

arguments passed to format.

If you set format it overrides the setting of mode, so formatC (123.45, mode="double",
format="d") gives 123.

The rendering of scientific format is platform-dependent: some systems use n.ddde+nnn or
n.dddenn rather than n.ddde+nn.

formatC 205

formatC does not necessarily align the numbers on the decimal point, so formatC (c(6.11,
13.1), digits=2, format="fg") givesc("6.1", " 13").If you want common for-
matting for several numbers, use format.

prettyNum is the utility function for prettifying x. x can be complex (or
format (<complex>), here. If x is not a character, format (x[1], ...) is applied
to each element, and then it is left unchanged if all the other arguments are at their defaults. Note
that prettyNum (x) may behave unexpectedly if x is a character vector not resulting from
something like format (<number>): in particular it assumes that a period is a decimal mark.

Because gsub is used to insert the big.mark and small.mark, special characters need escap-
ing. In particular, to insert a single backslash, use "\\\\".

In versions of R before 2.13.0, the big.mark would be reversed on insertion if it contained more
than one character.

Value

A character object of same size and attributes as x, in the current locale’s encoding. Unlike
format, each number is formatted individually. Looping over each element of x, the C function
sprintf (...) iscalled for numeric inputs (inside the C function str_signif).

formatC: for character x, do simple (left or right) padding with white space.

Author(s)

formatC was originally written by Bill Dunlap, later much improved by Martin Maechler. It was
first adapted for R by Friedrich Leisch.

References

Kernighan, B. W. and Ritchie, D. M. (1988) The C Programming Language. Second edition. Pren-
tice Hall.

See Also

format.

sprintf for more general C like formatting.

Examples

xx <= pi x 10" (-5:4)
cbind (format (xx, digits=4)

, formatC (xx))
cbind (formatC (xx, width = 9

flag — "_"))

(

(’
cbind (formatC(xx, digits = 5, width = 8, format = "f", flag = "0"))
cbind (format (xx, digits=4), formatC(xx, digits = 4, format = "fg"))
formatC (c("a", "Abc", "no way"), width = -7) # <=> flag = "-"

formatC(c((-1:1)/0,c(1,100)*pi), width=8, digits=1)

xx <—= c(le-12,-3.98765e-10,1.45645e-69,1e-70,pi*x1e37,3.44e4)
1 2 3 4 5 6
formatC (xx)

206 formatDL

formatC (xx, format="fg") # special "fixed" format.
formatC(xx[1:4], format="f", digits=75) #>> even longer strings

formatC(c(3.24, 2.3e-6), format="f", digits=11, dropOtrailing=TRUE)

r <- c("76491283764.97430", "29.12345678901", "-7.1234", "-100.1","1123")
American:
prettyNum(r, big.mark
Some Europeans:
prettyNum(r, big.mark = "'", decimal.mark = ",")

ll,ll)

(dd <- sapply(1:10, function(i)paste((9:0)[1:1i],collapse="")))
prettyNum (dd, big‘mark:" UL

examples of 'small.mark'

pN <- stats::pnorm(l:7, lower.tail = FALSE)

cbind (format (pN, small.mark = " ", digits = 15))

cbind (formatC (pN, small.mark = " ", digits = 17, format = "f"))

cbind (ff <- format(1.2345 + 107(0:5), width = 11, big.mark = "'"))
all with same width (one more than the specified minimum)

individual formatting to common width:
fc <- formatC(1.234 + 107(0:8), format="fg", width=11, big.mark = "'")
cbind (fc)

complex numbers:
r <- 10.0000001; rv <— (r/10)7(1:10)
(zv <= (rv + lis*rv))
op <- options(digits=7) ## (system default)
(pnv <— prettyNum(zv))
stopifnot (pnv == "1+1i", pnv == format (zv),
pnv == prettyNum(zv, dropOtrailing=TRUE))
more digits change the picture:
options (digits=8)
head (fv <- format (zv), 3)
prettyNum (£fv)
prettyNum(fv, dropOtrailing=TRUE) # a bit nicer
options (op)

formatDL Format Description Lists

Description

Format vectors of items and their descriptions as 2-column tables or LaTeX-style description lists.

Usage

formatDL(x, y, style = c("table", "list"),
width = 0.9 % getOption("width"), indent = NULL)

function

Arguments

X

style

width

indent

Details

207

a vector giving the items to be described, or a list of length 2 or a matrix with 2
columns giving both items and descriptions.

a vector of the same length as x with the corresponding descriptions. Only used
if x does not already give the descriptions.

a character string specifying the rendering style of the description information.
If "table", a two-column table with items and descriptions as columns is
produced (similar to Texinfo’s @table environment. If "1ist", a LaTeX-style
tagged description list is obtained.

a positive integer giving the target column for wrapping lines in the output.

a positive integer specifying the indentation of the second column in table style,
and the indentation of continuation lines in list style. Must not be greater than
width/2, and defaults to width/3 for table style and width/9 for list style.

After extracting the vectors of items and corresponding descriptions from the arguments, both are
coerced to character vectors.

In table style, items with more than indent - 3 characters are displayed on a line of their own.

Value

a character vector with the formatted entries.

Examples

Not run:

Use R to create the 'INDEX' for package 'splines' from its 'CONTENTS'
x <—- read.dcf(file = system.file ("CONTENTS", package = "splines"),

fields = c("Entry", "Description"))

x <—- as.data.frame (x)

writeLines (formatDL (x$Entry, x$Description))

or equivalently: writelLines (formatDL (x))

Same information in tagged description list style:
writeLines (formatDL (x$Entry, x$Description, style = "list"))
or equivalently: writelLines (formatDL(x, style = "list"))

End (Not run)

function

Function Definition

Description

These functions provide the base mechanisms for defining new functions in the R language.

208

function

Usage

function(arglist) expr
return (value)

Arguments
arglist Empty or one or more name or name=expression terms.
value An expression.

Details

The names in an argument list can be back-quoted non-standard names (see ‘backquote”’).

If value is missing, NULL is returned. If it is a single expression, the value of the evaluated
expression is returned. (The expression is evaluated as soon as return is called, in the evaluation
frame of the function and before any on.exit expression is evaluated.)

If the end of a function is reached without calling return, the value of the last evaluated expression
is returned.

Warning

Prior to R 1.8.0, value could be a series of non-empty expressions separated by commas. In that
case the value returned is a list of the evaluated expressions, with names set to the expressions where
these are the names of R objects. That is, a=foo () names the list component a and gives it the
value which results from evaluating foo ().

This has been deprecated (and a warning is given), as it was never documented in S, and whether or
not the list is named differs by S versions. Supply a (named) list value instead.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

args and body for accessing the arguments and body of a function.

debug for debugging; using invisible inside return (.) for returning invisibly.

Examples

norm <- function (x) sgrt (x%$*%$x)
norm(1:4)

An anonymous function:
(function(x,y){ z <= x"2 + y"2; x+y+z }) (0:7, 1)

funprog 209

funprog Common Higher-Order Functions in Functional Programming Lan-
guages

Description

Reduce uses a binary function to successively combine the elements of a given vector and a pos-
sibly given initial value. Filter extracts the elements of a vector for which a predicate (logical)
function gives true. Find and Position give the first or last such element and its position in
the vector, respectively. Map applies a function to the corresponding elements of given vectors.
Negate creates the negation of a given function.

Usage

Reduce (f, x, 1init, right = FALSE, accumulate = FALSE)
Filter (f, x)

Find(f, x, right = FALSE, nomatch = NULL)

Map (£, ...)

Negate (f)

Position(f, x, right = FALSE, nomatch = NA_integer_)

Arguments
f a function of the appropriate arity (binary for Reduce, unary for Filter,
Find and Position, k-ary for Map if this is called with k& arguments). An
arbitrary predicate function for Negate.
x a vector.
init an R object of the same kind as the elements of x.
right a logical indicating whether to proceed from left to right (default) or from right

to left.

accumulate a logical indicating whether the successive reduce combinations should be ac-
cumulated. By default, only the final combination is used.

nomatch the value to be returned in the case when “no match” (no element satisfying the
predicate) is found.

vectors.

Details

If init is given, Reduce logically adds it to the start (when proceeding left to right) or the end
of x, respectively. If this possibly augmented vector v has n > 1 elements, Reduce successively
applies f to the elements of v from left to right or right to left, respectively. ILe., a left reduce
computes I = f(v1,v2), la = f(l1,v3), etc., and returns I, = f(l,—2,vy), and a right reduce
does r—1 = f(vp—1,Vn), Tne2 = f(Up_2,7,—1) and returns 7y = f(vy,7r2). (E.g., if v is the
sequence (2, 3, 4) and f is division, left and right reduce give (2/3)/4 = 1/6 and 2/(3/4) = 8/3,
respectively.) If v has only a single element, this is returned; if there are no elements, NULL is
returned. Thus, it is ensured that f is always called with 2 arguments.

funprog

The current implementation is non-recursive to ensure stability and scalability.

Reduce is patterned after Common Lisp’s reduce. A reduce is also known as a fold (e.g., in
Haskell) or an accumulate (e.g., in the C++ Standard Template Library). The accumulative version
corresponds to Haskell’s scan functions.

Filter applies the unary predicate function £ to each element of x, coercing to logical if neces-
sary, and returns the subset of x for which this gives true. Note that possible NA values are currently
always taken as false; control over NA handling may be added in the future. Filter corresponds
to filter in Haskell or remove-1if-not in Common Lisp.

Find and Position are patterned after Common Lisp’s find-if and position-if, re-
spectively. If there is an element for which the predicate function gives true, then the first or last
such element or its position is returned depending on whether right is false (default) or true, re-
spectively. If there is no such element, the value specified by nomatch is returned. The current
implementation is not optimized for performance.

Map is a simple wrapper to mapply which does not attempt to simplify the result, similar to
Common Lisp’s mapcar (with arguments being recycled, however). Future versions may allow
some control of the result type.

Negate corresponds to Common Lisp’s complement. Given a (predicate) function f, it creates
a function which returns the logical negation of what f returns.

Examples

A general-purpose adder:

add <- function(x) Reduce ("+", x)

add(list (1, 2, 3))

Like sum (), but can also used for adding matrices etc., as it will
use the appropriate '+' method in each reduction step.

More generally, many generics meant to work on arbitrarily many

arguments can be defined via reduction:

FOO <- function(...) Reduce (FO02, list(...))

FOO2 <- function(x, y) UseMethod ("FOO2")

FOO() methods can then be provided via FOO02 () methods.

A general-purpose cumulative adder:
cadd <- function(x) Reduce ("+", x, accumulate = TRUE)
cadd (seqg_len (7))

A simple function to compute continued fractions:

cfrac <- function(x) Reduce (function(u, v) u + 1 / v, x, right = TRUE)
Continued fraction approximation for pi:

cfrac(c (3, 7, 15, 1, 292))

Continued fraction approximation for Euler's number (e):

cfrac(c(2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8))

Iterative function application:
Funcall <- function(f, ...) f(...)
Compute log (exp (acos(cos(0))
Reduce (Funcall, list(log, exp, acos, cos), 0, right = TRUE)
n-fold iterate of a function, functional style:
Iterate <- function(f, n = 1)
function (x) Reduce (Funcall, rep.int(list(f), n), x, right = TRUE)

gc 211

Continued fraction approximation to the golden ratio:

Iterate (function(x) 1 + 1 / x, 30) (1)

which is the same as

cfrac(rep.int (1, 31))

Computing square root approximations for x as fixed points of the
function t |-> (t + x / t) / 2, as a function of the initial value:
asqgrt <- function(x, n) Iterate(function(t) (t + x / t) / 2, n)

asqgrt (2, 30) (10) # Starting from a positive value => +sqgrt (2)

asqgrt (2, 30) (-1) # Starting from a negative value => -sqgrt (2)

A list of all functions in the base environment:

funs <- Filter(is.function, sapply(ls(baseenv()), get, baseenv()))
Functions in base with more than 10 arguments:
names (Filter (function(f) length(formals(args(f))) > 10, funs))
Number of functions in base with a '...' argument:
length(Filter (function (f)

any (names (formals (args (f))) %in% "..."),

funs))

Find all objects in the base environment which are *not* functions:

Filter (Negate (is.function), sapply (ls (baseenv()), get, baseenv()))
gc Garbage Collection
Description

A call of gc causes a garbage collection to take place. gcinfo sets a flag so that automatic collec-
tion is either silent (verbose=FALSE) or prints memory usage statistics (verbose=TRUE).

Usage

gc (verbose = getOption ("verbose"), reset=FALSE)
gcinfo (verbose)

Arguments
verbose logical; if TRUE, the garbage collection prints statistics about cons cells and the
space allocated for vectors.
reset logical; if TRUE the values for maximum space used are reset to the current
values.
Details

A call of gc causes a garbage collection to take place. This will also take place automatically
without user intervention, and the primary purpose of calling gc is for the report on memory usage.

However, it can be useful to call gc after a large object has been removed, as this may prompt R to
return memory to the operating system.

212 gc

R allocates space for vectors in multiples of 8 bytes: hence the report of "Vcells™, a relict of an
earlier allocator (that used a vector heap).

When gcinfo (TRUE) is in force, messages are sent to the message connection at each garbage
collection of the form

Garbage collection 12 = 10+0+2 (level 0)
6.4 Mbytes of cons cells used (58%)
2.0 Mbytes of vectors used (32%)

Here the last two lines give the current memory usage rounded up to the next 0.1Mb and as a
percentage of the current trigger value. The first line gives a breakdown of the number of garbage
collections at various levels (for an explanation see the ‘R Internals’ manual).

Value

gc returns a matrix with rows "Ncells" (cons cells), usually 28 bytes each on 32-bit systems and
56 bytes on 64-bit systems, and "Vcells" (vector cells, 8 bytes each), and columns "used" and
"gc trigger", each also interpreted in megabytes (rounded up to the next 0.1Mb).

If maxima have been set for either "Ncells" or "Vcells", a fifth column is printed giving the
current limits in Mb (with NA denoting no limit).

The final two columns show the maximum space used since the last call to gc (reset=TRUE) (or
since R started).

gcinfo returns the previous value of the flag.

See Also

The ‘R Internals’ manual.
Memory on R’s memory management, and gctorture if you are an R developer.

reg.finalizer for actions to happen at garbage collection.

Examples

gc() #- do it now

gcinfo (TRUE) #-- in the future, show when R does it
X <— 1integer (100000); for(i in 1:18) x <- c(x,1)
gcinfo (verbose = FALSE) #-— don't show it anymore

gc (TRUE)

gc (reset=TRUE)

gc.time 213

gc.time Report Time Spent in Garbage Collection

Description

This function reports the time spent in garbage collection so far in the R session while GC timing
was enabled.

Usage

gc.time (on = TRUE)

Arguments

on logical; if TRUE, GC timing is enabled.

Details

The timings are rounded up by the sampling interval for timing processes, and so are likely to be
over-estimates.

It is a primitive.

Value

A numerical vector of length 5 giving the user CPU time, the system CPU time, the elapsed time and
children’s user and system CPU times (normally both zero), of time spent doing garbage collection
whilst GC timing was enabled.

Times of child processes are not available on Windows and will always be given as NA.

See Also

gc, proc.time for the timings for the session.

Examples

gc.time ()

214 gctorture

gctorture Torture Garbage Collector

Description

Provokes garbage collection on (nearly) every memory allocation. Intended to ferret out memory
protection bugs. Also makes R run very slowly, unfortunately.

Usage

gctorture (on = TRUE)
gctorture2 (step, wait = step, inhibit_release = FALSE)

Arguments
on logical; turning it on/off.
step integer; run GC every step allocations; step = 0 turns the GC torture off.
wait integer; number of allocations to wait before starting GC torture.

inhibit_release
logical; do not release free objects for re-use: use with caution.

Details

Calling gctorture (TRUE) instructs the memory manager to force a full GC on every allocation.
gctorture?2 provides a more refined interface that allows the start of the GC torture to be deferred
and also gives the option of running a GC only every step allocations.

The third argument to gctorture? is only used if R has been configured with a strict write barrier
enabled. When this is the case all garbage collections are full collections, and the memory manager
marks free nodes and enables checks in many situations that signal an error when a free node is
used. This can greatly help in isolating unprotected values in C code. It does not detect the case
where a node becomes free and is reallocated. The inhibit_release argument can be used to
prevent such reallocation. This will cause memory to grow and should be used with caution and in
conjunction with operating system facilities to monitor and limit process memory use.

Value

Previous value of first argument.

Author(s)

Peter Dalgaard and Luke Tierney

get 215

get Return the Value of a Named Object

Description

Search for an R object with a given name and return it.

Usage
get (x, pos = -1, envir = as.environment (pos), mode = "any",
inherits = TRUE)
mget (x, envir, mode = "any",
ifnotfound = list (function (x)
stop (paste ("value for '"", x, "' not found", sep = ""),
call. = FALSE)),
inherits = FALSE)
Arguments
X a variable name (given as a character string).
pos where to look for the object (see the details section); if omitted, the function will
search as if the name of the object appeared unquoted in an expression.
envir an alternative way to specify an environment to look in; see the ‘Details’ section.
mode the mode or type of object sought: see the ‘Details’ section.
inherits should the enclosing frames of the environment be searched?

ifnotfound A 1ist of values to be used if the item is not found: it will be coerced to list if
necessary.

Details

The pos argument can specify the environment in which to look for the object in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys.frame to access the currently
active function calls). The envir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

This function looks to see if the name x has a value bound to it in the specified environment. If
inherits is TRUE and a value is not found for x in the specified environment, the enclosing
frames of the environment are searched until the name x is encountered. See environment
and the ‘R Language Definition’ manual for details about the structure of environments and their
enclosures.

Warning: inherits = TRUE is the default behaviour for R but not for S.

If mode is specified then only objects of that type are sought. The mode may specify one of the
collections "numeric" and "function" (see mode): any member of the collection will suffice.

216 getDLLRegisteredRoutines

Using a NULL environment is equivalent to using the current environment.

For mget multiple values are returned in a named 1ist. This is true even if only one value is
requested. The value in mode and i fnot found can be either the same length as the number of
requested items or of length 1. The argument i fnot found must be a list containing either the
value to use if the requested item is not found or a function of one argument which will be called
if the item is not found, with argument the name of the item being requested. The default value for
inherits is FALSE, in contrast to the default behavior for get.

mode here is a mixture of the meanings of typeof and mode: "function" covers primitive
functions and operators, "numeric", "integer", "real" and "double™" all refer to any
numeric type, "symbol" and "name" are equivalent but "1language" must be used.

Value

The object found. (If no object is found an error results.)

Note

The reverse of a <— get (nam) is assign (nam, a).

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

exists,assign.

Examples

get ("%o0%")

##test mget
el <- new.env()
mget (letters, el, ifnotfound = as.list (LETTERS))

getDLLRegisteredRoutines
Reflectance Information for C/Fortran routines in a DLL

Description

This function allows us to query the set of routines in a DLL that are registered with R to enhance
dynamic lookup, error handling when calling native routines, and potentially security in the future.
This function provides a description of each of the registered routines in the DLL for the different
interfaces, i.e. .C, .Call, .Fortranand .External.

getDLLRegisteredRoutines 217

Usage

getDLLRegisteredRoutines (dll, addNames = TRUE)

Arguments

dll

addNames

Details

a character string or DLLInfo object. The character string specifies the
file name of the DLL of interest, and is given without the file name ex-
tension (e.g., the ‘.d11’ or ‘.so’) and with no directory/path informa-
tion. So a file ‘MyPackage/libs/MyPackage.so’ would be specified as
‘MyPackage’.

The DLLInfo objects can be obtained directly in calls to dyn.load and
library.dynam, or can be found after the DLL has been loaded using
getLoadedDLLs, which returns a list of DLLInfo objects (index-able by
DLL file name).

The DLLInfo approach avoids any ambiguities related to two DLLs having the
same name but corresponding to files in different directories.

a logical value. If this is TRUE, the elements of the returned lists are named
using the names of the routines (as seen by R via registration or raw name).
If FALSE, these names are not computed and assigned to the lists. As a re-
sult, the call should be quicker. The name information is also available in the
NativeSymbolInfo objects in the lists.

This takes the registration information after it has been registered and processed by the R internals.
In other words, it uses the extended information

Value

A list with four elements corresponding to the routines registered for the .C, .Call, .Fortran and
.External interfaces. Each element is a list with as many elements as there were routines registered
for that interface. Each element identifies a routine and is an object of class Nat iveSymbolInfo.
An object of this class has the following fields:

name

address

dll

the registered name of the routine (not necessarily the name in the C code).

the memory address of the routine as resolved in the loaded DLL. This may be
NULL if the symbol has not yet been resolved.

an object of class DLLInfo describing the DLL. This is same for all elements
returned.

numParameters

Author(s)

the number of arguments the native routine is to be called with. In the future,
we will provide information about the types of the parameters also.

Duncan Temple Lang <duncan@wald.ucdavis.edu>

218 getLoadedDLLs

References
"Writing R Extensions Manual" for symbol registration. R News, Volume 1/3, September 2001. "In
search of C/C++ & Fortran Symbols"

See Also

getLoadedDLLs

Examples

dlls <- getLoadedDLLs ()
getDLLRegisteredRoutines (dlls[["base"]])

getDLLRegisteredRoutines ("stats")

getLoadedDLLs Get DLLs Loaded in Current Session

Description
This function provides a way to get a list of all the DLLs (see dyn . 1oad) that are currently loaded
in the R session.

Usage

getLoadedDLLs ()

Details

This queries the internal table that manages the DLLs.

Value

An object of class "DLLInfoList" which is a list with an element corresponding to each DLL
that is currently loaded in the session. Each element is an object of class "DLLInfo" which has
the following entries.

name the abbreviated name.
path the fully qualified name of the loaded DLL.
dynamicLookup

a logical value indicating whether R uses only the registration information to
resolve symbols or whether it searches the entire symbol table of the DLL.

handle a reference to the C-level data structure that provides access to the contents of
the DLL. This is an object of class "DLLHandle".

Note that the class DLLInfo has an overloaded method for $ which can be used to resolve native
symbols within that DLL. Therefore, one must access the R-level elements described above using
[[,e.g. x[["name"]] orx[["handle"]].

getNativeSymbollnfo 219

Note

We are starting to use the handle elements in the DLL object to resolve symbols more directly in

R.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>.

See Also

getDLLRegisteredRoutines, getNativeSymbolInfo

Examples

getLoadedDLLs ()

getNativeSymbolInfo
Obtain a Description of one or more Native (C/Fortran) Symbols

Description

This finds and returns as comprehensive a description of one or more dynamically loaded or ‘ex-
ported’ built-in native symbols. For each name, it returns information about the name of the symbol,
the library in which it is located and, if available, the number of arguments it expects and by which
interface it should be called (i.e .Call, .C, .Fortran,or . External). Additionally, it returns
the address of the symbol and this can be passed to other C routines which can invoke. Specifically,
this provides a way to explicitly share symbols between different dynamically loaded package li-
braries. Also, it provides a way to query where symbols were resolved, and aids diagnosing strange
behavior associated with dynamic resolution.

This is vectorized in the name argument so can process multiple symbols in a single call. The result
is a list that can be indexed by the given symbol names.

Usage

getNativeSymbolInfo (name, PACKAGE, unlist = TRUE,
withRegistrationInfo = FALSE)

Arguments
name the name(s) of the native symbol(s) as used in a call to is.loaded, etc. Note
that Fortran symbols should be supplied as-is, not wrapped in symbol.For.
PACKAGE an optional argument that specifies to which DLL we restrict the search for this

symbol. If this is "base", we search in the R executable itself.

220

getNativeSymbollnfo

unlist a logical value which controls how the result is returned if the function is called
with the name of a single symbol. If unlist is TRUE and the number of sym-
bol names in name is one, then the NativeSymbolInfo object is returned.
If it is FALSE, then a list of Nat iveSymbolInfo objects is returned. This
is ignored if the number of symbols passed in name is more than one. To be
compatible with earlier versions of this function, this defaults to TRUE.

withRegistrationInfo
a logical value indicating whether, if TRUE, to return information that was reg-
istered with R about the symbol and its parameter types if such information is
available, or if FALSE to return the address of the symbol.

Details

This uses the same mechanism for resolving symbols as is used in all the native interfaces (. Call,
etc.). If the symbol has been explicitly registered by the DLL in which it is contained, information
about the number of arguments and the interface by which it should be called will be returned.
Otherwise, a generic native symbol object is returned.

Value

Generally, a list of NativeSymbolInfo elements whose elements can be indexed by the ele-
ments of name in the call. Each NativeSymbolInfo object is a list containing the following
elements:

name the name of the symbol, as given by the name argument.

address if withRegistrationInfo is FALSE, this is the native memory address
of the symbol which can be used to invoke the routine, and also to com-
pare with other symbol addresses. This is an external pointer object and of
class NativeSymbol. If withRegistrationInfo is TRUE and regis-
tration information is available for the symbol, then this is an object of class
RegisteredNativeSymbol and is a reference to an internal data type that
has access to the routine pointer and registration information. This too can be
usedincallsto .Call, .C, .Fortranand .External.

package a list containing 3 elements:
name the short form of the library name which can be used as the value of the
PACKAGE argument in the different native interface functions.
path the fully qualified name of the DLL.
dynamicLookup alogical value indicating whether dynamic resolution is used

when looking for symbols in this library, or only registered routines can be
located.

If the routine was explicitly registered by the dynamically loaded library, the list contains a fourth
field
numParameters

the number of arguments that should be passed in a call to this routine.

Additionally, the list will have an additional class, being CRoutine, CallRoutine,
FortranRoutine or ExternalRoutine corresponding to the R interface by which it should
be invoked.

gettext 221

If any of the symbols is not found, an error is immediately raised.

If name contains only one symbol name and unlist is TRUE, then the single
NativeSymbolInfo is returned rather than the list containing that one element.

Note

One motivation for accessing this reflectance information is to be able to pass native routines to
C routines as function pointers in C. This allows us to treat native routines and R functions in a
similar manner, such as when passing an R function to C code that makes callbacks to that function
at different points in its computation (e.g., n1s). Additionally, we can resolve the symbol just once
and avoid resolving it repeatedly or using the internal cache. In the future, one may be able to treat
NativeSymbol objects directly as callback objects.

Author(s)

Duncan Temple Lang

References

For information about registering native routines, see “In Search of C/C++ & FORTRAN Rou-
tines”, R-News, volume 1, number 3, 2001, p20-23 (http://CRAN.R-project.org/doc/
Rnews/).

See Also
getDLLRegisteredRoutines, is.loaded, .C, .Fortran, .External, .Call,
dyn.load.

Examples

library(stats) # normally loaded
getNativeSymbolInfo ("dansari")

getNativeSymbolInfo ("hcass2") # a Fortran symbol
gettext Translate Text Messages
Description

If Native Language Support was enabled in this build of R, attempt to translate character vectors or
set where the translations are to be found.

Usage

gettext (..., domain = NULL)
ngettext (n, msgl, msg2, domain = NULL)

bindtextdomain (domain, dirname = NULL)

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

222 gettext
Arguments
One or more character vectors.

domain The ‘domain’ for the translation.

n a non-negative integer.

msgl the message to be used in English forn = 1.

msg2 the message to be used in English forn = 0, 2, 3,....

dirname The directory in which to find translated message catalogs for the domain.
Details

If domain is NULL or "", a domain is searched for based on the name space which contains the

function calling gettext or ngettext. If a suitable domain can be found, each character string
is offered for translation, and replaced by its translation into the current language if one is found.

Conventionally the domain for R warning/error messages in package pkg is "R-pkg", and that for
C-level messages is "pkg".

For gettext, leading and trailing whitespace is ignored when looking for the translation.

ngettext is used where the message needs to vary by a single integer. Translating such messages
is subject to very specific rules for different languages: see the GNU Gettext Manual. The string
will often contain a single instance of $d to be used in sprintf. If English is used, msgl is
returned if n == 1 and msg?2 in all other cases.

Value

For gettext, a character vector, one element per string in If translation is not enabled or no
domain is found or no translation is found in that domain, the original strings are returned.

For ngettext, a character string.

For bindtextdomain, a character string giving the current base directory, or NULL if setting it
failed.

See Also

stop and warning make use of gettext to translate messages.

xgettext for extracting translatable strings from R source files.

Examples

bindtextdomain ("R") # non-null if and only if NLS is enabled

for(n in 0:3)
print (sprintf (ngettext (n, "%d variable has missing values",
"$d variables have missing values"),

n))

Not run:
for translation, those strings should appear in R-pkg.pot as
msgid "$d variable has missing values"

getwd 223

msgid_plural "%d variables have missing values"
msgstr[0] ""
msgstr[1l] ""

End(Not run)

miss <- c("one", "or", "another")
cat (ngettext (length (miss), "variable", "variables"),
paste (sQuote (miss), collapse=", "),
ngettext (length (miss), "contains", "contain"), "missing values\n")

better for translators would be to use
cat (sprintf (ngettext (length (miss),
"variable %s contains missing values\n",
"variables %s contain missing values\n"),
paste (sQuote (miss), collapse=", ")))

getwd Get or Set Working Directory

Description
getwd returns an absolute filepath representing the current working directory of the R process;
setwd (dir) isused to set the working directory to dir.
Usage
getwd ()
setwd (dir)
Arguments

dir A character string: tilde expansion will be done.

Value

getwd returns a character string or NULL if the working directory is not available. On Windows
the path returned will use / as the path separator and be encoded in UTF-8. The path will not have
a trailing / unless it is the root directory (of a drive or share on Windows).

setwd returns the current directory before the change, invisibly and with the same conventions as
getwd. It will give an error if it does not succeed (including if it is not implemented).

Note

Note that the return value is said to be an absolute filepath: there can be more than one repre-
sentation of the path to a directory and on some OSes the value returned can differ after changing
directories and changing back to the same directory (for example if symbolic links have been tra-
versed).

224 gl

See Also

list.files for the contents of a directory.

Examples

(WD <—- getwd())
if (!is.null (WD)) setwd (WD)

gl Generate Factor Levels

Description

Generate factors by specifying the pattern of their levels.

Usage

gl(n, k, length = nxk, labels = 1l:n, ordered = FALSE)

Arguments
n an integer giving the number of levels.
k an integer giving the number of replications.
length an integer giving the length of the result.
labels an optional vector of labels for the resulting factor levels.
ordered a logical indicating whether the result should be ordered or not.
Value

The result has levels from 1 to n with each value replicated in groups of length k out to a total
length of length.

gl is modelled on the GLIM function of the same name.

See Also

The underlying factor ().

Examples

First control, then treatment:

gl(2, 8, labels = c("Control", "Treat"))
20 alternating 1ls and 2s

gl(2, 1, 20)

alternating pairs of 1s and 2s

gl(2, 2, 20)

grep 225

grep Pattern Matching and Replacement

Description

grep, grepl, regexpr and gregexpr search for matches to argument pattern within each
element of a character vector: they differ in the format of and amount of detail in the results.

sub and gsub perform replacement of the first and all matches respectively.

Usage

grep (pattern, x, ignore.case = FALSE, perl = FALSE, value = FALSE,
fixed = FALSE, useBytes FALSE, invert = FALSE)

grepl (pattern, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes FALSE)

sub (pattern, replacement, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

gsub (pattern, replacement, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

regexpr (pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

gregexpr (pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

Arguments
pattern character string containing a regular expression (or character string for
fixed = TRUE) to be matched in the given character vector. Coerced by
as.character to a character string if possible. If a character vector of length
2 or more is supplied, the first element is used with a warning. Missing values
are allowed except for regexpr and gregexpr
X, text a character vector where matches are sought, or an object which can be coerced

by as.character to a character vector.

ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

perl logical. Should perl-compatible regexps be used? Has priority over extended.

value if FALSE, a vector containing the (integer) indices of the matches deter-
mined by grep is returned, and if TRUE, a vector containing the matching ele-
ments themselves is returned.

226 grep

fixed logical. If TRUE, pattern is a string to be matched as is. Overrides all con-
flicting arguments.

useBytes logical. If TRUE the matching is done byte-by-byte rather than character-by-
character. See ‘Details’.

invert logical. If TRUE return indices or values for elements that do not match.

replacement a replacement for matched pattern in sub and gsub. Coerced to character
if possible. For fixed = FALSE this can include backreferences "\1" to
"\ 9" to parenthesized subexpressions of pattern. Forperl = TRUE only,
it can also contain "\U" or "\L" to convert the rest of the replacement to upper
or lower case and "\E" to end case conversion. If a character vector of length 2
or more is supplied, the first element is used with a warning. If NA, all elements
in the result corresponding to matches will be set to NA.

Details

Arguments which should be character strings or character vectors are coerced to character if possi-
ble.

Each of these functions operates in one of three modes:

1. fixed = TRUE: use exact matching.
2. perl = TRUE: use Perl-style regular expressions.

3. fixed = FALSE, perl = FALSE: use POSIX 1003.2 extended regular expressions.

See the help pages on regular expression for details of the different types of regular expressions.

The two = sub functions differ only in that sub replaces only the first occurrence of a pattern
whereas gsub replaces all occurrences. If replacement contains backreferences which are not
defined in pattern the result is undefined (but most often the backreference is taken to be "").

For regexpr and gregexpr itis an error for pattern to be NA, otherwise NA is permitted and
gives an NA match.

The main effect of useBytes is to avoid errors/warnings about invalid inputs and spurious matches
in multibyte locales, but for regexpr it changes the interpretation of the output. It inhibits the
conversion of inputs with marked encodings, and is forced (with a warning) if any input is found
which is marked as "bytes".

Caseless matching does not make much sense for bytes in a multibyte locale, and you should expect
it only to work for ASCII characters if useBytes = TRUE.

Value

grep (value = FALSE) returns an integer vector of the indices of the elements of x that yielded
a match (or not, for invert = TRUE.

grep (value = TRUE) returns a character vector containing the selected elements of x (after
coercion, preserving names but no other attributes).

grepl returns a logical vector (match or not for each element of x).

For sub and gsub return a character vector of the same length and with the same attributes as x
(after possible coercion to character). Elements of character vectors x which are not substituted will

grep 227

be returned unchanged (including any declared encoding). If useBytes = FALSE a non-ASCII
substituted result will often be in UTF-8 with a marked encoding (e.g. if there is a UTF-8 input, and
in a multibyte locale unless fixed = TRUE). Such strings can be re-encoded by enc2native.

regexpr returns an integer vector of the same length as text giving the starting position of the
first match or —1 if there is none, with attribute "match.length", an integer vector giving the
length of the matched text (or —1 for no match). The match positions and lengths are in characters
unless useBytes = TRUE is used, when they are in bytes.

gregexpr returns a list of the same length as text each element of which is of the same form as
the return value for regexpr, except that the starting positions of every (disjoint) match are given.

Warning

POSIX 1003.2 mode of gsub and gregexpr does not work correctly with repeated word-
boundaries (e.g. pattern = "\b"). Use perl = TRUE for such matches (but that may not
work as expected with non-ASCII inputs, as the meaning of ‘word’ is system-dependent).

Performance considerations

If you are doing a lot of regular expression matching, including on very long strings, you will want to
consider the options used. Generally PCRE will be faster than the default regular expression engine,
and fixed = TRUE faster still (especially when each pattern is matched only a few times).

If you are working in a single-byte locale and have marked UTF-8 strings that are representable
in that locale, convert them first as just one UTF-8 string will force all the matching to be done in
Unicode, which attracts a penalty of around 3 x for the default POSIX 1003.2 mode.

If you can make use of useBytes = TRUE, the strings will not be checked before matching, and
the actual matching will be faster. Often byte-based matching suffices in a UTF-8 locale since byte
patterns of one character never match part of another.

Note

Prior to R 2.11.0 there was an argument extended which could be used to select ‘basic’ regular
expressions: this was often used when fixed = TRUE would be preferable. In the actual imple-
mentation (as distinct from the POSIX standard) the only difference was that ‘2, “+’, “{’, “|’, * (’,
and ‘)’ were not interpreted as metacharacters.

Source

The C code for POSIX-style regular expression matching has changed over the years. As from
R 2.10.0 the TRE library of Ville Laurikari (http://laurikari.net/tre/)is used. From
2005 to R 2.9.2, code based on glibc was used (and before that, code from GNU grep). The
POSIX standard does give some room for interpretation, especially in the handling of invalid regular
expressions and the collation of character ranges, so the results will have changed slightly.

For Perl-style matching PCRE (http://www.pcre.orq) is used.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole (grep)

http://laurikari.net/tre/
http://www.pcre.org

228

See Also

regular expression (aka regexp) for the details of the pattern specification.
glob2rx to turn wildcard matches into regular expressions.

agrep for approximate matching.

charmatch, pmatch for partial matching, mat ch for matching to whole strings.
tolower, toupper and chartr for character translations.

apropos uses regexps and has more examples.

grepRaw for matching raw vectors.

Examples

grep ("[a-z]", letters)

txt <= c("arm","foot","lefroo", "bafoobar")
if (length (i <- grep("foo",txt)))

cat ("'foo' appears at least once in\n\t",txt,"\n")
i # 2 and 4
txt[i]

Double all 'a' or 'b's; "\" must be escaped, i.e., 'doubled'
gsub (" ([ab]l)", "\\1_\\1_", "abc and ABC")

txt <= ¢ ("The", "licenses", "for", "most", "software", "are",
"designed", "to", "take", "away", "your", "freedom",
"tOH, "Share", lland", "Change", llit-"’

&rep

", "By", "contrast,", "the", "GNU", "General", "Public", "License",

"is", "intended", "to", "guarantee", "your", "freedom", "to",
"share", "and", "change", "free", "software", "--",
"tO", "make", "Sure", "the"’ "SOftware", "iS",
llfreell, llforll, Ilallll, Ilitsll’ Ilusersll)
(i <= grep("[gul", txt)) # indices
stopifnot (txt[i] == grep("[gul]", txt, value = TRUE))

Note that in locales such as en_US this includes B as the
collation order is aAbBcCdEe
(ot <= sub("[b-e]",".", txt))

txt[ot != gsub("[b-e]",".", txt)]#- gsub does "global" substitution

txt [gsub ("g","#", txt) !=
gsub ("g","#", txt, ignore.case = TRUE)] # the "G" words

regexpr ("en", txt)

gregexpr ("e", txt)

trim trailing white space
str <- 'Now is the time !

sub (' +$', '', str) ## spaces only
sub('[[:space:]]+$', '', str) ## white space, POSIX-style

grepRaw

sub ("\\s+s$"',

229

', str, perl = TRUE) ## Perl-style white space

capitalizing

txt <- "a test of capitalizing"
gsub (" (\\w) (\\w»*) ", "\\UN\I\\L\\2", txt, perl=TRUE)
gsub ("\\b (\\w) ", "\AUNNL", txt, perl=TRUE)

txt2 <- "useRs may fly into JFK or laGuardia"
gsub (" (\\w) (\\w=*) (\\w) ", "\\U\\IN\E\\2\\U\\3", txt2, perl=TRUE)
sub (" (\\w) (\\wx) (\\w) ", "\\U\\I\\EA\2\\U\\3", txt2, perl=TRUE)

grepRaw

Pattern Matching for Raw Vectors

Description

grepRaw searches for substring pattern matches within a raw vector x.

Usage

grepRaw (pattern, x, offset = 1L, ignore.case = FALSE,
value = FALSE, fixed = FALSE, all = FALSE, invert = FALSE)

Arguments

pattern

ignore.case

offset

value
fixed
all

invert

raw vector containing a regular expression (or fixed pattern for fixed =
TRUE) to be matched in the given raw vector. Coerced by charToRaw to a
character string if possible.

a raw vector where matches are sought, or an object which can be coerced by
charToRaw to a raw vector.

if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

An integer specifying the offset from which the search should start. Must be
positive. The beginning of line is defined to be at that offset so "~ " will match
there.

logical. Determines the return value: see ‘Value’.
logical. If TRUE, pattern is a pattern to be matched as is.
logical. If TRUE all matches are returned, otherwise just the first one.

logical. If TRUE return indices or values for elements that do not match. Ignored
(with a warning) unless value = TRUE.

230 groupGeneric

Details

Unlike grep, seeks matching patterns within the raw vector x . This has implications especially in
the a11 = TRUE case, e.g., patterns matching empty strings are inherently infinite and thus may
lead to unexpected results.

The argument i nvert is interpreted as asking to return the complement of the match, which is only
meaningful for value = TRUE. Argument of fset determines the start of the search, not of the
complement. Note that invert = TRUE withall = TRUE will split x into pieces delimited by
the pattern including leading and trailing empty strings (consequently the use of regular expressions
with "~" or "$" in that case may lead to less intuitive results).

Some combinations of arguments such as fixed = TRUE with value = TRUE are supported
but are less meaningful.

Value

grepRaw (value = FALSE) returns an integer vector of the offsets at which matches have
occurred. If all = FALSE then it will be either of length zero (no match) or length one (first
matching position).

grepRaw (value = TRUE, all = FALSE) returns a raw vector which is either empty (no
match) or the matched part of x.

grepRaw (value = TRUE, all = TRUE) returns a (potentially empty) list of raw vectors
corresponding to the matched parts.

Source
The TRE library of Ville Laurikari (http://laurikari.net/tre/) is used except for
fixed = TRUE.

See Also

regular expression (aka regexp) for the details of the pattern specification.

grep for matching character vectors.

groupGeneric S3 Group Generic Functions

Description

Group generic methods can be defined for four pre-specified groups of functions, Math, Ops,
Summary and Complex. (There are no objects of these names in base R, but there are in the
methods package.)

A method defined for an individual member of the group takes precedence over a method defined
for the group as a whole.

http://laurikari.net/tre/

groupGeneric 231

Usage
S3 methods for group generics have prototypes:
Math (x, ...)
Ops (el, e2)
Complex (z)
Summary (..., na.rm = FALSE)
Arguments
x, z, el, e2 objects.
further arguments passed to methods.
na.rm logical: should missing values be removed?
Details
There are four groups for which S3 methods can be written, namely the "Math", "Ops",

"Summary" and "Complex" groups. These are not R objects in base R, but methods can be
supplied for them and base R contains factor, data.frame and di fftime methods for the
first three groups. (There is also a ordered method for Ops, POSIXt and Date methods for
Math and Ops, package_version methods for Ops and Summary, as well as a t s method
for Ops in package stats.)

1. Group "Math":

* abs, sign, sqrt,
floor,ceiling, trunc,
round, signif

* exp, 1log, expml, loglp,
cos, sin, tan,
acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh

¢ lgamma, gamma, digamma, t rigamma
e cumsum, cumprod, cummax, cummin

Members of this group dispatch on x. Most members accept only one argument, but members
log, round and signif accept one or two arguments, and t runc accepts one or more.

. Group "Ops™":
Y "+ll’ "_"’ "*"’ "/"’ "/\"’ "%%"’ ll%/%"
° "&ll, "l", "!ll
° "=="’ n !="’ "<"’ "<=", ">="’ ">"

This group contains both binary and unary operators (+, — and !): when a unary operator is
encountered the Ops method is called with one argument and e2 is missing.

The classes of both arguments are considered in dispatching any member of this group. For
each argument its vector of classes is examined to see if there is a matching specific (preferred)
or Ops method. If a method is found for just one argument or the same method is found
for both, it is used. If different methods are found, there is a warning about ‘incompatible

232 groupGeneric

methods’: in that case or if no method is found for either argument the internal method is
used.

If the members of this group are called as functions, any argument names are removed to
ensure that positional matching is always used.

3. Group "Summary":
e all,any
* sum, prod
* min, max
* range
Members of this group dispatch on the first argument supplied.
4. Group "Complex":
* Arg, Conj, Im, Mod, Re
Members of this group dispatch on z.
Note that a method will be used for one of these groups or one of its members only if it corresponds

toa "class" attribute, as the internal code dispatches on o1dClass and not on class. Thisis
for efficiency: having to dispatch on, say, Ops . integer would be too slow.

The number of arguments supplied for primitive members of the "Math" group generic methods
is not checked prior to dispatch.

There is no lazy evaluation of arguments for group-generic functions.

Technical Details

These functions are all primitive and internal generic.

The details of method dispatch and variables such as .Generic are discussed in the help for
UseMethod. There are a few small differences:

* For the operators of group Ops, the object .Method is a length-two character vector with
elements the methods selected for the left and right arguments respectively. (If no method was
selected, the corresponding element is " ".)

* Object . Group records the group used for dispatch (if a specific method is used this is " ").

Note
Package methods does contain objects with these names, which it has re-used in confusing similar
(but different) ways. See the help for that package.
References
Appendix A, Classes and Methods of
Chambers, J. M. and Hastie, T. J. eds (1992) Statistical Models in S. Wadsworth & Brooks/Cole.
See Also

methods for methods of non-internal generic functions.

S4groupGeneric for group generics for S4 methods.

gzcon 233

Examples

require (utils)

d.fr <- data.frame(x=1:9, y=stats::rnorm(9))

class(l + d.fr) == "data.frame" ##-—- add to d.f.
methods ("Math")
methods ("Ops™")
methods ("Summary")
methods ("Complex") # none in base R
gzcon (De)compress I/O Through Connections
Description

gzcon provides a modified connection that wraps an existing connection, and decompresses reads
or compresses writes through that connection. Standard gzip headers are assumed.

Usage

gzcon (con, level = 6, allowNonCompressed = TRUE)
Arguments

con a connection.

level integer between 0 and 9, the compression level when writing.

allowNonCompressed
logical. When reading, should non-compressed input be allowed?

Details
If con is open then the modified connection is opened. Closing the wrapper connection will also
close the underlying connection.

Reading from a connection which does not supply a gzip magic header is equivalent to reading
from the original connection if allowNonCompressed is true, otherwise an error.

Compressed output will contain embedded NUL bytes, and so con is not permitted to be a
textConnection opened with open="w". Use a writable rawConnection to compress
data into a variable.

The original connection becomes unusable: any object pointing to it will now refer to the modified
connection.

Value

An object inheriting from class "connection™". This is the same connection number as supplied,
but with a modified internal structure. It has binary mode.

234

See Also

gzfile

Examples

Uncompress a data file from a URL
z <- gzcon(url ("http://www.stats.ox.ac.uk/pub/datasets/csb/chl2.dat.gz"))
read.table can only read from a text-mode connection.
raw <- textConnection (readLines (z))
close (z)

dat <- read.table (raw)

close (raw)

dat[1l:4,]

##
##
##

zzZ

gzfile and gzcon can inter-work.

Of course here one would use gzfile, but file() can be

any other connection generator.
<- gzfile("ex.gz", "w")

cat ("TITLE extra line", "2 3 5 7",
close(zz)

readLines (zz <- gzcon(file("ex.gz",
close(zz)

unlink ("ex.gz")

Z7Z

<- gzcon (file("ex2.gz", "wb"))

cat ("TITLE extra line", "2 3 5 7",
close(zz)

readLines (zz <- gzfile("ex2.gz"))
close(zz)

unlink ("ex2.gz")

wr,o"11 13 17", file

"rb")))

", "11 13 17", file

hexmode

replaced by

2z,

2z,

sep

sep

= "\1'1")

— "\D")

hexmode

Display Numbers in Hexadecimal

Description

Convert or print integers in hexadecimal format, with as many digits as are needed to display the
largest, using leading zeroes as necessary.

Usage

as

##
as

##

.hexmode (x)

S3 method for class 'hexmode'

.character(x, ...)

S3 method for class 'hexmode'

format (x, width = NULL, upper.case = FALSE, ...)

Hyperbolic 235

S3 method for class 'hexmode'

print(x, ...)
Arguments
X An object, for the methods inheriting from class "hexmode".
width NULL or a positive integer specifying the minimum field width to be used, with

padding by leading zeroes.

upper.case a logical indicating whether to use upper-case letters or lower-case letters (de-
fault).

further arguments passed to or from other methods.

Details
Class "hexmode™" consists of integer vectors with that class attribute, used merely to ensure that
they are printed in hex.

If width = NULL (the default), the output is padded with leading zeroes to the smallest width
needed for all the non-missing elements.

as.hexmode can convert integers (of type "integer" or "double") and character vectors
whose elements contain only 0-9, a—f, A-F (or are NA) to class "hexmode".

There is a ! method and |, & and xor methods: these recycle their arguments to the length of the
longer and then apply the operators bitwise to each element.
See Also

octmode, sprintf for other options in converting integers to hex, strtoi to convert hex
strings to integers.

Hyperbolic Hyperbolic Functions

Description
These functions give the obvious hyperbolic functions. They respectively compute the hyperbolic
cosine, sine, tangent, and their inverses, arc-cosine, arc-sine, arc-tangent (or ‘area cosine’, etc).
Usage

cosh (
sinh (
(

236 iconv

Arguments

x a numeric or complex vector

Details

These are internal generic primitive functions: methods can be defined for them individually or via
the Math group generic.

Branch cuts are consistent with the inverse trigonometric functions asin et seq, and agree with
those defined in Abramowitz and Stegun, figure 4.7, page 86. The behaviour actually on the cuts fol-
lows the C99 standard which requires continuity coming round the endpoint in a counter-clockwise
direction.

S4 methods

All are S4 generic functions: methods can be defined for them individually or via the Math group
generic.

References

Abramowitz, M. and Stegun, 1. A. (1972) Handbook of Mathematical Functions. New York: Dover.
Chapter 4. Elementary Transcendental Functions: Logarithmic, Exponential, Circular and Hyper-
bolic Functions

See Also

The trigonometric functions, cos, sin, tan, and their inverses acos, asin, atan.

The logistic distribution function plogis is a shifted version of tanh () for numeric x.

iconv Convert Character Vector between Encodings

Description

This uses system facilities to convert a character vector between encodings: the ‘i’ stands for ‘in-

ternationalization’.
Usage
iconv(x, from = "", to = "", sub = NA, mark = TRUE)

iconvlist ()

iconv 237

Arguments
X A character vector, or an object to be converted to a character vector by
as.character.
from A character string describing the current encoding.
to A character string describing the target encoding.
sub character string. If not NA it is used to replace any non-convertible bytes in the
input. (This would normally be a single character, but can be more.) If "byte",
the indication is " <xx>" with the hex code of the byte.
mark logical, for expert use. Should encodings be marked?
Details

The names of encodings and which ones are available are platform-dependent. All R platforms
support "" (for the encoding of the current locale), "latinl" and "UTF-8". Generally case is
ignored when specifying an encoding.

On many platforms, including Windows, i conv1i st provides an alphabetical list of the supported
encodings. On others, the information is on the man page for iconv (5) or elsewhere in the man
pages (but beware that the system command iconv may not support the same set of encodings as
the C functions R calls). Unfortunately, the names are rarely valid across all platforms.

Elements of x which cannot be converted (perhaps because they are invalid or because they cannot
be represented in the target encoding) will be returned as NA unless sub is specified.

Most versions of iconv will allow transliteration by appending ‘//TRANSLIT’ to the to encod-
ing: see the examples.

Encoding "ASCII" is also accepted, and on most systems "C" and "POSIX" are synonyms for
ASCIL

Any encoding bits (see Encoding) on elements of x are ignored: they will always be translated
as if from from even if declared otherwise.

"UTF8" will be accepted as meaning the (more correct) "UTF-8".

Value

A character vector of the same length and the same attributes as x (after conversion).

If mark = TRUE (the default) the elements of the result have a declared encoding if from is
"latinl" or "UTF-8",orif from = "" and the current locale’s encoding is detected as Latin-
1 or UTFE-8.

For iconvlist (), acharacter vector (typically of a few hundred elements).

Implementation Details

iconv was optional before R 2.10.0, but its absence was deprecated in R 2.5.0.

There are three main implementations of iconv in use. ‘glibc’ (as used on Linux) contains
one. Several platforms supply GNU ‘libiconv’, including Mac OS X, FreeBSD and Cyg-
win. On Windows we use a version of Yukihiro Nakadaira’s ‘win_iconv’, which is based on
Windows’ codepages. All three have iconvlist, ignore case in encoding names and support

238 icuSetCollate

‘//TRANSLIT’ (but with different results, and for ‘win_iconv’ currently a ‘best fit’ strategy is
used except forto = "ASCII").

Most commercial Unixes contain an implemetation of iconv but none we have encountered have
supported the encoding names we need: the “R Installation and Administration Manual” recom-
mends installing GNU ‘1ibiconv’ on Solaris and AIX, for example.

There are other implementations, e.g. NetBSD uses one from the Citrus project (which does not
support °//TRANSLIT’) and there is an older FreeBSD port (‘1ibiconv’ is usually used there):
it has not been reported whether or not these work with R.

See Also

localeToCharset, file.

Examples

not all systems have iconvlist
try(utils::head(iconvlist (), n = 50))

Not run:

convert from Latin-2 to UTF-8: two of the glibc iconv variants.
iconv(x, "ISO_8859-2", "UTF-8")

iconv(x, "LATIN2", "UTF-8")

End (Not run)
Both x below are in latinl and will only display correctly in a

locale that can represent and display latinl.
x <- "fa\xE7ile"

Encoding(x) <- "latinl"

X

charToRaw (xx <- iconv(x, "latinl", "UTF-8"))

XX

iconv(x, "latinl", "ASCII") # NA
iconv(x, "latinl"™, "ASCII", "2") # "fazile"
iconv(x, "latinl", "ASCII", "") # "faile"
iconv(x, "latinl", "ASCII", "byte") # "fa<e7>ile"

Extracts from old R help files (they are nowadays in UTF-8)
x <— c("Ekstr\xf8m", "J\xf6reskog", "bi\xdfchen Z\xfcrcher")

Encoding(x) <- "latinl"
X
try(iconv(x, "latinl", "ASCII//TRANSLIT")) # platform-dependent

iconv(x, "latinl", "ASCII", sub="byte")

icuSetCollate Setup Collation by ICU

icuSetCollate 239

Description

Controls the way collation is done by ICU (an optional part of the R build).

Usage

icuSetCollate(...)

Arguments

Named arguments, see ‘Details’.

Details

Optionally, R can be built to collate character strings by ICU (http://site.icu-project.
org). For such systems, icuSetCollate can be used to tune the way collation is done. On
other builds calling this function does nothing, with a warning.

Possible arguments are

locale: A character string such as "da_DK" giving the country whose collation rules are to be
used. If present, this should be the first argument.

case_first: "upper", "lower" or "default", asking for upper- or lower-case characters
to be sorted first. The default is usually lower-case first, but not in all languages (see the
Danish example).

alternate_handling: Controls the handling of ‘variable’ characters (mainly punctuation and
symbols). Possible values are "non_ignorable" (primary strength) and "shifted"
(quaternary strength).

strength: Which components should be used? Possible values "primary", "secondary",
"tertiary" (default), "quaternary" and "identical™".

french_collation: In a French locale the way accents affect collation is from right to left,
whereas in most other locales it is from left to right. Possible values "on", "off" and
"default".

normalization: Should strings be normalized? Possible values are "on" and "off" (de-
fault). This affects the collation of composite characters.

case_level: An additional level between secondary and tertiary, used to distinguish large and
small Japanese Kana characters. Possible values "on" and "of£f" (default).

hiragana_qguaternary: Possible values "on" (sort Hiragana first at quaternary level) and
n o) f f " .

Only the first three are likely to be of interest except to those with a detailed understanding of

collation and specialized requirements.

Some examples are case_level="on", strength="primary" to ignore accent differ-
ences and alternate_handling="shifted" toignore space and punctuation characters.

Note that these settings have no effect if collation is set to the C locale, unless 1ocale is specified.

http://site.icu-project.org
http://site.icu-project.org

240 identical

Note

As from R 2.9.0, ICU is used by default wherever it is available: this include Mac OS >= 10.4 and
many Linux installations.

See Also

Comparison, sort

The ICU user guide chapter on collation (http://userguide.icu-project.org/
collation).

Examples

these examples depend on having ICU available, and on the locale
x <- c("Aarhus", "aarhus", "safe", "test", "Zoo")

sort (x)

icuSetCollate (case_first="upper"); sort (x)

icuSetCollate (case_first="lower"); sort (x)

icuSetCollate (locale="da_DK", case_first="default"); sort (x)
icuSetCollate (locale="et_EE"); sort (x)

identical Test Objects for Exact Equality

Description
The safe and reliable way to test two objects for being exactly equal. It returns TRUE in this case,
FALSE in every other case.

Usage

identical(x, y, num.eq = TRUE, single.NA = TRUE,
attrib.as.set = TRUE)

Arguments
X, Y any R objects.
num.eq logical indicating if (double and complex non-NA) numbers should be com-
pared using == (‘equal’), or by bitwise comparison. The latter (non-default)
differentiates between —0 and +0.
single.NA logical indicating if there is conceptually just one numeric NA and one NaN;

single.NA = FALSE differentiates bit patterns.

attrib.as.set
logical indicating if attributes of x and y should be treated as unordered
tagged pairlists (“sets”); this currently also applies to s1lots of S4 objects. It
may well be too strict to set attrib.as.set = FALSE.

http://userguide.icu-project.org/collation
http://userguide.icu-project.org/collation

identical 241

Details

A call to identical is the way to test exact equality in 1 f and while statements, as well as in
logical expressions that use && or | |. In all these applications you need to be assured of getting a
single logical value.

Users often use the comparison operators, such as == or ! =, in these situations. It looks natural,
but it is not what these operators are designed to do in R. They return an object like the arguments.
If you expected x and y to be of length 1, but it happened that one of them wasn’t, you will not get
a single FALSE. Similarly, if one of the arguments is NA, the result is also NA. In either case, the
expression if (x == y).... won't work as expected.

The function all.equal is also sometimes used to test equality this way, but was intended for
something different: it allows for small differences in numeric results.

The computations in identical are also reliable and usually fast. There should never be an error.
The only known way to kill identical is by having an invalid pointer at the C level, generating a
memory fault. It will usually find inequality quickly. Checking equality for two large, complicated
objects can take longer if the objects are identical or nearly so, but represent completely independent
copies. For most applications, however, the computational cost should be negligible.

If single.NA is true, as by default, identical sees NaN as different from NA_real_, but all
NaNs are equal (and all NA of the same type are equal).

Character strings are regarded as identical if they are in different marked encodings but would agree
when translated to UTF-8.

If attrib.as.set is true, as by default, comparison of attributes view them as a set (and not a
vector, so order is not tested).

Note that identical (x,y, FALSE,FALSE,FALSE) pickily tests for very exact equality.

Value

A single logical value, TRUE or FALSE, never NA and never anything other than a single value.

Author(s)
John Chambers and R Core

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

all.equal for descriptions of how two objects differ; Comparison for operators that generate
elementwise comparisons. 1 sTRUE is a simple wrapper based on identical.

Examples
identical (1, NULL) ## FALSE -- don't try this with ==
identical (1, 1.) ## TRUE in R (both are stored as doubles)

identical (1, as.integer(l)) ## FALSE, stored as different types

242 ifelse

x <= 1.0; y <= 0.99999999999

how to test for object equality allowing for numeric fuzz

(E <-= all.equal(x,v))

isTRUE (E) # which is simply defined to just use

identical (TRUE, E)

If all.equal thinks the objects are different, it returns a
character string, and the above expression evaluates to FALSE

even for unusual R objects
identical (.GlobalEnv, environment ())

#HE ——————— Pickyness Flags : —————————————————————————————

the infamous example:

identical (0., -0.) # TRUE, i.e. not differentiated
identical (0., -0., num.eq = FALSE)

similar:

identical (NaN, -NaN) # TRUE

identical (NaN, -NaN, single.NA=FALSE) # differ on bit-level

identity Identity Function

Description

A trivial identity function returning its argument.

Usage

identity (x)

Arguments
x an R object.
ifelse Conditional Element Selection
Description

ifelse returns a value with the same shape as test which is filled with elements selected from
either yes or no depending on whether the element of test is TRUE or FALSE.

Usage

ifelse(test, yes, no)

ifelse 243

Arguments
test an object which can be coerced to logical mode.
yes return values for true elements of test.
no return values for false elements of test.
Details

If yes or no are too short, their elements are recycled. yes will be evaluated if and only if any
element of test is true, and analogously for no.

Missing values in test give missing values in the result.

Value

A vector of the same length and attributes (including dimensions and "class") as test and data
values from the values of yes or no. The mode of the answer will be coerced from logical to
accommodate first any values taken from yes and then any values taken from no.

Warning

The mode of the result may depend on the value of test (see the examples), and the class attribute
(see 01dClass) of the result is taken from test and may be inappropriate for the values selected
from yes and no.

Sometimes it is better to use a construction such as (tmp <- yes; tmp[!test] <-
no[!test]; tmp), possibly extended to handle missing values in test.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
if.

Examples

X <= c(6:-4)
sqrt (x) #- gives warning
sgrt (ifelse(x >= 0, x, NA)) # no warning

Note: the following also gives the warning !
ifelse(x >= 0, sqgrt(x), NA)

example of different return modes:

yes <—- 1:3

no <- pi~(0:3)

typeof (ifelse (NA, yes, no)) # logical
typeof (ifelse (TRUE, yes, no)) # integer

typeof (ifelse (FALSE, yes, no)) # double

244 integer

integer Integer Vectors

Description

Creates or tests for objects of type "integer".

Usage

integer (length = 0)
as.integer (x,)
is.integer (x)

Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one will give a
warning.
X object to be coerced or tested.
further arguments passed to or from other methods.
Details

Integer vectors exist so that data can be passed to C or Fortran code which expects them, and so that
(small) integer data can be represented exactly and compactly.

Note that current implementations of R use 32-bit integers for integer vectors, so the range of
representable integers is restricted to about +2 x 10%: doubles can hold much larger integers
exactly.

Value

integer creates a integer vector of the specified length. Each element of the vector is equal to O.

as.integer attempts to coerce its argument to be of integer type. The answer will be NA unless
the coercion succeeds. Real values larger in modulus than the largest integer are coerced to NA
(unlike S which gives the most extreme integer of the same sign). Non-integral numeric values are
truncated towards zero (i.e., as.integer (x) equals trunc (x) there), and imaginary parts of
complex numbers are discarded (with a warning). Character strings containing optional whitespace
followed by either a decimal representation or a hexadecimal representation (starting with 0x or
0X) can be converted, as well as any allowed by the platform for real numbers. Like as.vector
it strips attributes including names. (To ensure that an object x is of integer type without stripping
attributes, use storage.mode (x) <- "integer".)

is.integer returns TRUE or FALSE depending on whether its argument is of integer type or
not, unless it is a factor when it returns FALSE.

interaction 245

Note

is.integer (x) does not test if x contains integer numbers! For that, use round, as in the
function is.wholenumber (x) in the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

numeric, storage.mode.

round (and ceiling and floor on that help page) to convert to integral values.

Examples

as.integer () truncates:
X <= pi x c(-1:1,10)
as.integer (x)

is.integer (1) # is FALSE !

is.wholenumber <-
function(x, tol = .MachineS$double.eps”0.5) abs(x - round(x)) < tol
is.wholenumber (1) # is TRUE
(x <- seq(l,5, by=0.5))
is.wholenumber (x) #-—> TRUE FALSE TRUE

interaction Compute Factor Interactions

Description

interaction computes a factor which represents the interaction of the given factors. The result
of interaction is always unordered.

Usage
interaction(..., drop = FALSE, sep = ".", lex.order = FALSE)
Arguments
the factors for which interaction is to be computed, or a single list giving those
factors.
drop if drop is TRUE, unused factor levels are dropped from the result. The default
is to retain all factor levels.
sep string to construct the new level labels by joining the constituent ones.
lex.order logical indicating if the order of factor concatenation should be lexically or-

dered.

246 interactive

Value

A factor which represents the interaction of the given factors. The levels are labelled as the levels
of the individual factors joined by sep which is . by default.

By default, when lex.order = FALSE, the levels are ordered so the level of the first factor
varies fastest, then the second and so on. This is the reverse of lexicographic ordering (which you
can get by lex.order = TRUE), and differs from :. (It is done this way for compatibility with
S.)

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

factor; : where f:g is similar to interaction(f, g, sep=":") when f and g are
factors.

Examples

a <- gl(2, 4, 8)

b <- gl(2, 2, 8, labels = c("ctrl", "treat"))
1
(

s <- gl(2, 1, 8, labels = c("M", "F"))
interaction(a, b)
interaction(a, b, s, sep = ":")
stopifnot (identical (a:s,

interaction(a, s, sep = ":", lex.order = TRUE)),
identical (a:s:b,
interaction(a, s, b, sep = ":", lex.order = TRUE)))
interactive Is R Running Interactively?

Description

Return TRUE when R is being used interactively and FALSE otherwise.

Usage

interactive ()

Details

An interactive R session is one in which it is assumed that there is a human operator to interact
with, so for example R can prompt for corrections to incorrect input or ask what to do next or if it
is OK to move to the next plot.

GUI consoles will arrange to start R in an interactive session. When R is run in a terminal
(via Rterm.exe on Windows), it assumes that it is interactive if ‘stdin’ is connected to a

Internal

247

(pseudo-)terminal and not if ‘stdin’ is redirected to a file or pipe. Command-line options

o
-—1

tion.

‘——i

nteractive’ (Unix) and ‘--ess’ (Windows, Rterm. exe) override the default assump-
(On a Unix-alike, whether the readline command-line editor is used is not overridden by
nteractive’.)

Embedded uses of R can set a session to be interactive or not.

Internally, whether a session is interactive determines

how some errors are handled and reported, e.g. see stop and
options ("showWarnCalls").

whether one of ‘--save’, ‘——no-save’ or ‘——vanilla’ is required, and if R ever asks
whether to save the workspace.

the choice of default graphics device launched when needed and by dev.new: see
options ("device")

whether graphics devices ever ask for confirmation of a new page.

In addition, R’s own R code makes use of interactive (): for example help, debugger and
install.packages do.

Note

This is a primitive function.

See Also

source, .First

Examples
.First <- function() if (interactive()) x11()
Internal Call an Internal Function
Description
.Internal performs a call to an internal code which is built in to the R interpreter.

Only true R wizards should even consider using this function, and only R developers can add to the
list of internal functions.

Usage

.Internal (call)

Arguments

call

a call expression

248 InternalMethods

See Also

.Primitive, .External (the nearest equivalent available to users).

InternalMethods Internal Generic Functions

Description

Many R-internal functions are generic and allow methods to be written for.

Details

The following primitive and internal functions are generic, i.e., you can write methods for them:
LIS, [<= [[<=, $<-,

length, length<-, dimnames, dimnames<-, dim, dim<-, names, names<-,
levels<—,

c,unlist, cbind, rbind,

as.character, as.complex, as.double, as.integer, as.logical, as.raw,
as.vector, is.array, is.matrix, is.na, is.nan, is.numeric, rep, seq.int
(which dispatches methods for "seg") and xt frm

In addition, is .name is a synonym for is.symbol and dispatches methods for the latter.

Note that all of the group generic functions are also internal/primitive and allow methods to be
written for them.

.S3PrimitiveGenerics is a character vector listing the primitives which are internal generic
and not group generic. Currently as.vector, cbind, rbind and unlist are the internal
non-primitive functions which are internally generic.

For efficiency, internal dispatch only occurs on objects, that is those for which is.object returns
true.

See Also

methods for the methods which are available.

invisible 249

invisible Change the Print Mode to Invisible

Description

Return a (temporarily) invisible copy of an object.

Usage

invisible (x)

Arguments

x an arbitrary R object.

Details

This function can be useful when it is desired to have functions return values which can be assigned,
but which do not print when they are not assigned.

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

withVisible, return, function.

Examples

These functions both return their argument
fl <- function(x) x

f2 <- function(x) invisible (x)

f1(1)# prints

f2(1)# does not

250 is.finite

is.finite Finite, Infinite and NaN Numbers

Description

is.finite and is.infinite return a vector of the same length as x, indicating which ele-
ments are finite (not infinite and not missing) or infinite.

Inf and —Inf are positive and negative infinity whereas NaN means ‘Not a Number’. (These
apply to numeric values and real and imaginary parts of complex values but not to values of integer
vectors.) Inf and NaN are reserved words in the R language.

Usage

is.finite (x)
is.infinite (x)
Inf

NaN

is.nan (x)

Arguments
x R object to be tested: the default methods handle atomic vectors, lists and
pairlists.
Details

is.finite returns a vector of the same length as x the jth element of which is TRUE if x [] is
finite (i.e., it is not one of the values NA, NaN, Inf or —Inf) and FALSE otherwise. All elements
of types other than logical, integer, numeric and complex vectors are false. Complex numbers are
finite if both the real and imaginary parts are.

is.infinite returns a vector of the same length as x the jth element of which is TRUE if x [J]
is infinite (i.e., equal to one of Inf or —Inf) and FALSE otherwise. This will be false unless x is
numeric or complex. Complex numbers are infinite if either the real or the imaginary part is.

is.nan tests if a numeric value is NaN. Do not test equality to NaN, or even use identical,
since systems typically have many different NaN values. One of these is used for the numeric
missing value NA, and is.nan is false for that value. A complex number is regarded as NaN if
either the real or imaginary part is NaN but not NA. All elements of logical, integer and raw vectors
are considered not to be NaN, and elements of lists and pairlists are also unless the element is a
length-one numeric or complex vector whose single element is NaN.

All three functions are generic: you can write methods to handle specific classes of objects, see
InternalMethods. The default methods handle atomic vectors.

Value

A logical vector of the same length as x: dim, dimnames and names attributes are preserved.

is.finite 251

Note

In R, basically all mathematical functions (including basic Arithmetic), are supposed to work
properly with +/- Inf and NaN as input or output.

The basic rule should be that calls and relations with Infs really are statements with a proper
mathematical limit.

Computations involving NaN will return NaN or perhaps NA: which of those two is not guaranteed
and may depend on the R platform (since compilers may re-order computations).

References

The IEC 60559 standard, also known as the ANSI/IEEE 754 Floating-Point Standard.
http://en.wikipedia.org/wiki/NaN.

D. Goldberg (1991) What Every Computer Scientist Should Know about Floating-Point Arithmetic
ACM Computing Surveys, 23(1).

Postscript version available at http://www.validlab.com/goldberg/paper.ps Ex-
tended PDF version at http://www.validlab.com/goldberg/paper.pdf

The C99 function isfinite isused for is.finite if available.

See Also

NA, ‘Not Available’ which is not a number as well, however usually used for missing values and
applies to many modes, not just numeric and complex.

Arithmetic, double.

Examples

pi / O ## = Inf a non-zero number divided by zero creates infinity
0/ 0 ## = NaN

1/0 + 1/0 # Inf
1/0 - 1/0 # NaN

stopifnot (
1/0 == Inf,
1/Inf == 0
)
sin (Inf)
cos (Inf)

tan (Inf)

http://en.wikipedia.org/wiki/NaN
http://www.validlab.com/goldberg/paper.ps
http://www.validlab.com/goldberg/paper.pdf

252 is.language

is.function Is an Object of Type (Primitive) Function?

Description

Checks whether its argument is a (primitive) function.

Usage
is.function (x)
is.primitive (x)

Arguments

x an R object.

Details
is.primitive (x) tests if x is a primitive function (either a "builtin" or "special™" as
described for typeo£)? It is a primitive function.

Value

TRUE if x is a (primitive) function, and FALSE otherwise.

Examples

is.function (1) # FALSE

is.function(is.primitive) # TRUE: it is a function, but
is.primitive (is.primitive) # FALSE:it's not a primitive one, whereas
is.primitive (is.function) # TRUE: that one xisx
is.language Is an Object a Language Object?
Description

is.language returns TRUE if x is a variable name, a call, or an expression.

Usage

is.language (x)

Arguments

X object to be tested.

is.object

Note

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.

Brooks/Cole.

Examples

as.name ("Jim"),

11 <- list(a = expression(x”2 - 2xx + 1), b =
= call("sin", pi))

c = as.expression(exp(l)), d
sapply (11, typeof)
sapply (11, mode)
stopifnot (sapply(ll, is.language))

253

Wadsworth &

is.object Is an Object ‘internally classed’?

Description

A function rather for internal use. It returns TRUE if the object x has the R internal OBJECT bit set,
and FALSE otherwise. The OBJECT bit is set when a "class" attribute is added and removed
when that attribute is removed, so this is a very efficient way to check if an object has a class

attribute. (S4 objects always should.)

Usage

is.object (x)

Arguments

X object to be tested.

Note

This is a primitive function.

See Also

class, and methods.

isS54.

Examples

is.object (1) # FALSE
is.object (as.factor(1:3)) # TRUE

254 is.recursive

is.R Are we using R, rather than S?

Description

Test if running under R.

Usage

is.R()

Details

The function has been written such as to correctly run in all versions of R, S and S-PLUS. In order

for code to be runnable in both R and S dialects previous to S-PLUS 8.0, your code must either
define is.R or use it as

if (exists("is.R") && is.function(is.R) && is.R()) {
R-specific code

} else {

S-version of code

}

Value
is.Rreturns TRUE if we are using R and FALSE otherwise.

See Also

R.version, system.

Examples

x <— stats::runif (20); small <- x < 0.4
In the early years of R, 'which()' only existed in R:
if(is.R()) which(small) else seg(along=small) [small]

is.recursive Is an Object Atomic or Recursive?

Description

is.atomic returns TRUE if x is an atomic vector (or NULL) and FALSE otherwise.

is.recursive returns TRUE if x has a recursive (list-like) structure and FALSE otherwise.

is.single 255

Usage

is.atomic (x)
is.recursive (x)

Arguments
X object to be tested.
Details
is.atomic is true for the atomic vector types ("logical", "integer", "numeric",

"complex", "character" and "raw") and NULL.

Most types of objects are regarded as recursive, except for atomic vector types, NULL and symbols
(as given by as . name).

These are primitive functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

is.list, is.language, etc, and the demo ("is.things").

Examples

require (stats)

is.a.r <- function(x) c(is.atomic(x), is.recursive (x))

is.a.r(c(a=1,b=3)) # TRUE FALSE

is.a.r(list ()) # FALSE TRUE - a list is a list
is.a.r(list (2)) # FALSE TRUE

is.a.r (1lm) # FALSE TRUE

is.a.r(y ~ x) # FALSE TRUE

is.a.r (expression(x+1l)) # FALSE TRUE (nowadays)

is.single Is an Object of Single Precision Type?
Description

is.single reports an error. There are no single precision values in R.

Usage

is.single (x)

256 is.unsorted

Arguments

X object to be tested.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

is.unsorted Test if an Object is Not Sorted

Description

Test if an object is not sorted, without the cost of sorting it.

Usage

is.unsorted(x, na.rm = FALSE, strictly = FALSE)

Arguments
X an R object with a class or a numeric, complex, character or logical vector.
na.rm logical. Should missing values be removed before checking?
strictly logical indicating if the check should be for strictly increasing values.
Value

A length-one logical value. All objects of length 0 or 1 are sorted: the result will be NA for objects
of length 2 or more except for atomic vectors and objects with a class (where the >= or > method is

used).

See Also

sort, order.

ISOdatetime 257

ISOdatetime Date-time Conversion Functions from Numeric Representations

Description

Convenience wrappers to cread Date-times from numeric representations.

Usage

ISOdatetime (year, month, day, hour, min, sec, tz = "")

ISOdate (year, month, day, hour = 12, min = 0, sec = 0, tz = "GMT")
Arguments

year, month, day
numerical values to specify a day.

hour, min, sec
numerical values for a time within a day. Fractional seconds are allowed.

tz A timezone specification to be used for the conversion. "" is the current time
zone and "GMT" is UTC.
Details

ISOdatetime and ISOdate are convenience wrappers for st rpt ime that differ only in their
defaults and that ISOdate sets UTC as the timezone. For dates without times it would normally
be better to use the "Date" class.

Value

An object of class "POSIXct".

See Also
DateTimeClasses for details of the date-time classes; st rpt ime for conversions from character
strings.
isS4 Test for an S4 object
Description

Tests whether the object is an instance of an S4 class.

258 isS4

Usage

isS4 (object)

asS4 (object, flag TRUE, complete = TRUE)
asS3 (object, flag = TRUE, complete = TRUE)

Arguments

object Any R object.

flag, complete
Optional arguments to indicate direction of conversion and whether conversion
to S3 is completed. Not usually needed, but see the details section.

Details

Note that isS4 does not rely on the methods package, so in particular it can be used to detect the
need to require that package. (The other functions do depend on methods.)

asS3 uses the value of complete to control whether an attempt is made to transform object
into a valid object of the implied S3 class. If complete is TRUE, then an object from an S4 class
extending an S3 class will be transformed into an S3 object with the corresponding S3 class (see
S3Part). This includes classes extending the pseudo-classes array and matrix: such objects
will have their class attribute set to NULL.

Value

i1sS4 always returns TRUE or FALSE according to whether the internal flag marking an S4 object
has been turned on for this object.

asS4 and asS3 will turn this flag on or off, and asS3 will set the class from the objects
.S3Class slot if one exists. Note that asS3 will not turn the object into an S3 object unless
there is a valid conversion; that is, an object of type other than "S4" for which the S4 object is an
extension, unless argument complete is FALSE.

See Also

is.object for a more general test; Methods for general information on S4.

Examples

isS4 (pi) # FALSE
isS4 (getClass ("MethodDefinition")) # TRUE

isSymmetric 259

isSymmetric Test if a Matrix or other Object is Symmetric

Description

Generic function to test if object is symmetric or not. Currently only a matrix method is imple-

mented.
Usage
isSymmetric (object, ...)
S3 method for class 'matrix'
isSymmetric (object, tol = 100 x .Machine$double.eps, ...)
Arguments
object any R object; a mat rix for the matrix method.
tol numeric scalar >= 0. Smaller differences are not considered, see
all.equal.numeric.
further arguments passed to methods; the matrix method passes these to
all.equal.
Details

The mat rix method is used inside eigen by default to test symmetry of matrices up fo rounding
error,using all.equal. It might not be appropriate in all situations.

Note that a matrix is only symmetric if its rownames and colnames are identical.

Value

logical indicating if object is symmetric or not.

See Also

eigen which calls 1 sSymmetric when its symmet ric argument is missing.

Examples

isSymmetric (D3 <- diag(3)) # -> TRUE

D3[2,1] <- 1le-100

D3

isSymmetric (D3) # TRUE

isSymmetric (D3, tol = 0) # FALSE for zero-tolerance

260 Jjitter

jitter ‘Jitter’ (Add Noise) to Numbers

Description

Add a small amount of noise to a numeric vector.

Usage

jitter (x, factor=1l, amount = NULL)

Arguments
X numeric vector to which jitter should be added.
factor numeric
amount numeric; if positive, used as amount (see below), otherwise, if = 0 the default
is factor * z/50.
Default (NULL): factor = d/5 where d is about the smallest difference be-
tween x values.
Details

The result, say r,is r <- x + runif(n, -a, a) where n <- length (x) and a is the
amount argument (if specified).

Let z <- max(x) - min(x) (assuming the usual case). The amount a to be added is either
provided as positive argument amount or otherwise computed from z, as follows:

If amount == 0,weseta <- factor = z/50 (same as S).

If amount is NULL (default), we set a <— factor = d/5 where d is the smallest difference
between adjacent unique (apart from fuzz) x values.

Value

jitter (x, ...) returns a numeric of the same length as x, but with an amount of noise added
in order to break ties.

Author(s)
Werner Stahel and Martin Maechler, ETH Zurich

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P.A. (1983) Graphical Methods for Data
Analysis. Wadsworth; figures 2.8, 4.22, 5.4.

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

kappa 261

See Also

rug which you may want to combine with jitter.

Examples

round(jitter (c(rep (1, 3), rep(l.2, 4), rep(3,3))), 3)
These two 'fail' with S-plus 3.x:

jitter (rep (0, 7))

jitter (rep(10000,5))

kappa Compute or Estimate the Condition Number of a Matrix

Description

The condition number of a regular (square) matrix is the product of the norm of the matrix and the
norm of its inverse (or pseudo-inverse), and hence depends on the kind of matrix-norm.

kappa () computes by default (an estimate of) the 2-norm condition number of a matrix or of the
R matrix of a QR decomposition, perhaps of a linear fit. The 2-norm condition number can be
shown to be the ratio of the largest to the smallest non-zero singular value of the matrix.

rcond () computes an approximation of the reciprocal condition number, see the details.

Usage

kappa(z, ...)
Default S3 method:
kappa (z, exact = FALSE,
norm = NULL, method = c("gr", "direct"), ...)
S3 method for class 'lm'

kappa(z, ...)
S3 method for class 'qgr'
kappa(z, ...)
kappa.tri(z, exact = FALSE, LINPACK = TRUE, norm=NULL, ...)
rcond(x, norm = c("O","I","1"), triangular = FALSE, ...)
Arguments
zZ, X A matrix or a the result of gqr or a fit from a class inheriting from " 1m".
exact logical. Should the result be exact?
norm character string, specifying the matrix norm with respect to which the condition

number is to be computed, see also norm. For rcond, the default is "O",
meaning the One- or 1-norm. The (currently only) other possible value is "I"
for the infinity norm.

262 kappa

method character string, specifying the method to be used; "gr" is default for back-
compatibility, mainly.

triangular logical. If true, the matrix used is just the lower triangular part of z.

LINPACK logical. If true and z is not complex, the Linpack routine dtrco () is called;
otherwise the relevant Lapack routine is.

further arguments passed to or from other methods; for kappa . x (), notably
LINPACK when normisnot "2".

Details

For kappa (), if exact = FALSE (the default) the 2-norm condition number is estimated by a
cheap approximation. Following S, by default, this uses the LINPACK routine dt rco () . However,
in R (or S) the exact calculation (via svd) is also likely to be quick enough.

Note that the 1- and Inf-norm condition numbers are much faster to calculate, and rcond () com-
putes these reciprocal condition numbers, also for complex matrices, using standard Lapack rou-
tines.

kappa and rcond are different interfaces to partly identical functionality.

kappa.tri is an internal function called by kappa . gr.

Value

The condition number, kappa, or an approximation if exact = FALSE.

Author(s)

The design was inspired by (but differs considerably from) the S function of the same name de-
scribed in Chambers (1992).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

norm; svd for the singular value decomposition and gr for the Q) R one.

Examples

kappa (x1 <- cbind(1,1:10))# 15.71
kappa (x1, exact = TRUE) # 13.68
kappa (x2 <- cbind(x1,2:11))# high! [x2 is singular!]

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }

sv9 <- svd(h9 <- hilbert(9))$ d

kappa (h9) # pretty high!

kappa (h9, exact = TRUE) == max(sv9) / min(sv9)

kappa (h9, exact = TRUE) / kappa(h9) # .677 (i.e., rel.error = 32%)

kronecker 263

kronecker Kronecker Products on Arrays

Description

Computes the generalised kronecker product of two arrays, X and Y. kronecker (X, Y) returns
an array A with dimensions dim (X) * dim(Y).

Usage
kronecker (X, Y, FUN = "x", make.dimnames = FALSE, ...)
X %x% Y
Arguments
X A vector or array.
Y A vector or array.
FUN a function; it may be a quoted string.

make.dimnames
Provide dimnames that are the product of the dimnames of X and Y.

optional arguments to be passed to FUN.

Details

If X and Y do not have the same number of dimensions, the smaller array is padded with dimensions
of size one. The returned array comprises submatrices constructed by taking X one term at a time
and expanding that term as FUN (x, Y, ...).

%$x% 1s an alias for kronecker (where FUN is hardwired to " ").

Author(s)

Jonathan Rougier, <J.C.Rougier@durham.ac.uk>

References

Shayle R. Searle (1982) Matrix Algebra Useful for Statistics. John Wiley and Sons.

See Also

outer, on which kronecker is built and % +% for usual matrix multiplication.

264

Examples

simple scalar multiplication
(M <- matrix(1:6, ncol=2))
kronecker (4, M)

Block diagonal matrix:
kronecker (diag (1, 3), M)

ask for dimnames
fred <- matrix(1:12, 3, 4, dimnames=1ist (LETTERS[1:3],
bill <- c¢("happy" = 100, "sad" = 1000)

kronecker (fred, bill, make.dimnames = TRUE)

bill <- outer (bill, c("cat"=3, "dog"=4))

110n_info

LETTERS([4:7]))

kronecker (fred, bill, make.dimnames = TRUE)
110n_info Localization Information
Description

Report on localization information.

Usage

110n_info ()

Value

A list with three logical components:

MBCS If a multi-byte character set in use?
UTF-8 Is this a UTF-8 locale?
Latin-1 Is this a Latin-1 locale?

See Also

Sys.getlocale, localeconv

Examples

110n_info ()

labels 265

labels Find Labels from Object

Description

Find a suitable set of labels from an object for use in printing or plotting, for example. A generic
function.

Usage

labels (object, ...)

Arguments
object Any R object: the function is generic.
further arguments passed to or from other methods.
Value

A character vector or list of such vectors. For a vector the results is the names or seq_along (x)
and for a data frame or array it is the dimnames (with NULL expanded to seq_len (d[i]).

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

lapply Apply a Function over a List or Vector

Description

lapply returns a list of the same length as X, each element of which is the result of applying FUN
to the corresponding element of X.

sapply is a user-friendly version and wrapper of lapply by default returning a
vector, matrix or, if simplify="array", an array if appropriate, by applying
simplify2array (). sapply (x, f, simplify=FALSE, USE.NAMES=FALSE)
is the same as lapply (x,).

vapply is similar to sapply, but has a pre-specified type of return value, so it can be safer (and
sometimes faster) to use.

replicate is a wrapper for the common use of sapply for repeated evaluation of an expression
(which will usually involve random number generation).

simplify2array () is the utility called from sapply () when simplify is not false and is
similarly called from mapply ().

266

Usage

lapply

lapply (X, FUN, ...)

sapply (X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)

vapply (X, FUN, FUN.VALUE, ..., USE.NAMES = TRUE)

replicate (n,

expr, simplify = "array")

simplify2array(x, higher=TRUE)

Arguments

X

FUN

simplify

USE.NAMES

FUN.VALUE
n

expr

higher

Details

a vector (atomic or list) or an expression object. Other objects (including
classed objects) will be coerced by base: :as.list.

the function to be applied to each element of X: see ‘Details’. In the case of
functions like +, %+ %, the function name must be backquoted or quoted.

optional arguments to FUN.

logical or character string; should the result be simplified to a vector, matrix or
higher dimensional array if possible? For sapply it must be named and not
abbreviated. The default value, TRUE, returns a vector or matrix if appropriate,
whereas if simplify = "array" the result may be an array of “rank”
(=length (dim(.))) one higher than the result of FUN (X[[1]]).

logical; if TRUE and if X is character, use X as names for the result unless
it had names already. Since this argument follows ... its name cannot be
abbreviated.

a (generalized) vector; a template for the return value from FUN. See ‘Details’.
integer: the number of replications.

the expression (language object, usually a call) to evaluate repeatedly.

a list, typically returned from lapply ().

logical; if true, simplify2array () will produce a (“higher rank™) ar-
ray when appropriate, whereas higher = FALSE would return a matrix (or
vector) only. These two cases correspond to sapply (*, simplify =
"array") or simplify = TRUE, respectively.

FUN is found by a call to match. fun and typically is specified as a function or a symbol (e.g. a
backquoted name) or a character string specifying a function to be searched for from the environ-
ment of the call to lapply.

Function FUN must be able to accept as input any of the elements of X. If the latter is an atomic
vector, FUN will always be passed a length-one vector of the same type as X.

Arguments in . . .

cannot have the same name as any of the other arguments, and care may be

needed to avoid partial matching to FUN. In general-purpose code it is good practice to name the
first two arguments X and FUN if . . . is passed through: this both avoids partial matching to FUN

lapply 267
and ensures that a sensible error message is given if arguments named X or FUN are passed through

Simplification in sapply is only attempted if X has length greater than zero and if the return values
from all elements of X are all of the same (positive) length. If the common length is one the result
is a vector, and if greater than one is a matrix with a column corresponding to each element of X.

Simplification is always done in vapply. This function checks that all values of FUN are com-
patible with the FUN.VALUE, in that they must have the same length and type. (Types may be
promoted to a higher type within the ordering logical < integer < real < complex, but not demoted.)

Users of S4 classes should pass a list to lapply and vapply: the internal coercion is done by the
as.list in the base namespace and not one defined by a user (e.g. by setting S4 methods on the
base function).

lapply and vapply are primitive functions.

Value

For lapply, sapply (simplify = FALSE) and replicate (simplify = FALSE),a
list.

For sapply (simplify = TRUE) and replicate (simplify = TRUE): if X has length
zero or n = 0, an empty list. Otherwise an atomic vector or matrix or list of the same length as
X (of length n for replicate). If simplification occurs, the output type is determined from the
highest type of the return values in the hierarchy NULL < raw < logical < integer < real < complex
< character < list < expression, after coercion of pairlists to lists.

vapply returns a vector or array of type matching the FUN.VALUE. If length (FUN.VALUE)
== 1 a vector of the same length as X is returned, otherwise an array. If FUN.VALUE is not
an array, the result is a matrix with length (FUN.VALUE) rows and length (X) columns,
otherwise an array a with dim (a) == c(dim (FUN.VALUE), length (X)).

The (Dim)names of the array value are taken from the FUN . VALUE if it is named, otherwise from
the result of the first function call. Column names of the matrix or more generally the names of the
last dimension of the array value or names of the vector value are set from X as in sapply.

Note

sapply (*, simplify = FALSE, USE.NAMES = FALSE) is equivalent to
lapply (x).

For historical reasons, the calls created by lapply are unevaluated, and code has been writ-
ten (e.g. bguote) that relies on this. This means that the recorded call is always of the form
FUN(X[[OL]], ...), with OL replaced by the current integer index. This is not normally a
problem, but it can be if FUN uses sys.call ormatch.call orifitis a primitive function that
makes use of the call. This means that it is often safer to call primitive functions with a wrapper,
sothate.g. lapply (11, function(x) is.numeric (x)) isrequiredin R 2.7.1 to ensure
that method dispatch for is.numeric occurs correctly.

If expr is a function call, be aware of assumptions about where it is evaluated, and in particular
what . . . might refer to. You can pass additional named arguments to a function call as additional
named arguments to replicate: see ‘Examples’.

268

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

See Also

apply, tapply, mapply for applying a function to multiple arguments, and rapply for
a recursive version of lapply (), eapply for applying a function to each entry in an

environment.

Examples

require (stats); require (graphics)

Last.value

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE, TRUE))

compute the list mean for each list element
lapply (x,mean)
median and quartiles for each list element
lapply (x, quantile, probs = 1:3/4)
sapply (x, quantile)
139 <- sapply(3:9, seq) # list of vectors
sapply (139, fivenum)
vapply (i39, fivenum,
c(Min. = 0, "l1st Qu." = 0, Median = 0, "3rd Qu." = 0,

sapply(*, "array") -- artificial example

(v <= structure (10 (5:8), names=LETTERS[1:4]))

£f2 <- function(x,y) outer(rep(x, length.out=3), vy)
(a2 <- sapply (v, f2, y = 2%x(1:5), simplify="array"))
a.z2 <- vapply(v, f2, outer(l1:3, 1:5), yv = 2x(1:5))
stopifnot (dim(a2) == c(3,5,4), all.equal (a2, a.2),

Max.

identical (dimnames (a2), list (NULL,NULL,LETTERS[1:4]1)))

hist (replicate (100, mean (rexp(10))))

use of replicate() with parameters:
foo <- function(x=1l, y=2) c(x,Vy)

does not work: bar <- function(n, ...) replicate(n, foo(...))
bar <- function(n, x) replicate(n, foo(x=x))
bar (5, x=3)
Last.value Value of Last Evaluated Expression
Description

The value of the internal evaluation of a top-level R expression is always assigned to

.Last .value (in package :base) before further processing (e.g., printing).

length 269

Usage

.Last.value

Details

The value of a top-level assignment is put in . Last .value, unlike S.

Do not assign to . Last .value in the workspace, because this will always mask the object of the
same name in package:base.

See Also

eval

Examples

These will not work correctly from example(),

but they will in make check or if pasted in,

as example () does not run them at the top level

gamma (1:15) # think of some intensive calculation...
facl4 <- .Last.value # keep them

library ("splines") # returns invisibly
.Last.value # shows what library(.) above returned
length Length of an Object
Description

Get or set the length of vectors (including lists) and factors, and of any other R object for which a
method has been defined.

Usage
length (%)
length (x) <- wvalue
Arguments

X an R object. For replacement, a vector or factor.

value an integer: double values will be coerced to integer.

270 length

Details

Both functions are generic: you can write methods to handle specific classes of objects, see Inter-
nalMethods. length<-has a "factor" method.

The replacement form can be used to reset the length of a vector. If a vector is shortened, extra
values are discarded and when a vector is lengthened, it is padded out to its new length with NAs
(nul for raw vectors).

Both are primitive functions.

Value

The default method currently returns an integer of length 1. Since this may change in the future
and may differ for other methods, programmers should not rely on it. (Should the length exceed the
maximum representable integer, it is returned as NA.)

For vectors (including lists) and factors the length is the number of elements. For an environment it
is the number of objects in the environment, and NULL has length 0. For expressions and pairlists
(including language objects and dotlists) it is the length of the pairlist chain. All other objects
(including functions) have length one: note that for functions this differs from S.

The replacement form removes all the attributes of x except its names.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

nchar for counting the number of characters in character vectors.

Examples

length
length
length
length

diag(4))# = 16 (4 x 4)

options())# 12 or more

y ~ x1 + x2 + x3)# 3

expression(x, {y <- x"2; y+2}, x"y)) # 3

from example (warpbreaks)
require (stats)

fml <- lm(breaks ~ wool % tension, data = warpbreaks)
length (fml1$call) # 3, 1lm() and two arguments.
length (formula (fml)) # 3, ~ lhs rhs

levels 271

levels Levels Attributes

Description
levels provides access to the levels attribute of a variable. The first form returns the value of the
levels of its argument and the second sets the attribute.

Usage

levels (x)
levels (x) <- value

Arguments
X an object, for example a factor.
value A valid value for levels (x). For the default method, NULL or a character
vector. For the factor method, a vector of character strings with length at
least the number of levels of x, or a named list specifying how to rename the
levels.
Details

Both the extractor and replacement forms are generic and new methods can be written for them.
The most important method for the replacement function is that for factors.

For the factor replacement method, a NA in value causes that level to be removed from the levels
and the elements formerly with that level to be replaced by NA.

Note that for a factor, replacing the levels via levels (x) <- value is not the same as (and is
preferred to) attr (x, "levels") <- value.

The replacement function is primitive.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

nlevels, relevel, reorder.

Examples

assign individual levels
x <- gl(2, 4, 8)

levels (x) [1] <= "low"
levels (x) [2] <= "high"

X

272 libPaths

or as a group

vy <- gl(2, 4, 8)

levels(y) <= c("low", "high")
Yy

combine some levels

z <- gl(3, 2, 12)

levels(z) <— C("A", "Bll, IIA")
Z

same, using a named list

z <= gl(3, 2, 12)

levels(z) <- list (A=c(1,3), B=2)
z

we can add levels this way:
f <- factor(c("a","b"))
levels(f) <— C(llcll’ llaH’ "bll)
f

f <- factor(c("a","b"))
levels (f) <- list(Cc="C", A="a", B="b")
f

libPaths Search Paths for Packages

Description

.libPaths gets/sets the library trees within which packages are looked for.

Usage

.1libPaths (new)

.Library
.Library.site

Arguments

new a character vector with the locations of R library trees. Tilde expansion
(path.expand) is done, and if any element contains one of *? [, globbing
is done where supported by the platform: see Sys.glob.

libPaths 273

Details

.Library is a character string giving the location of the default library, the ‘1ibrary’ subdirec-
tory of R_HOME.

.Library.site is a (possibly empty) character vector giving the locations of the site libraries,
by default the ‘site-1library’ subdirectory of R_HOME (which may not exist).

.libPaths is used for getting or setting the library trees that R knows about (and hence uses
when looking for packages). If called with argument new, the library search path is set to the exist-
ing directories in unique (c (new, .Library.site, .Library)) and this is returned. If
given no argument, a character vector with the currently active library trees is returned.

The library search path is initialized at startup from the environment variable R_LIBS (which
should be a colon-separated list of directories at which R library trees are rooted) followed by those
in environment variable R_LIBS_USER. Only directories which exist at the time will be included.

By default R_LIBS is unset, and R_LIBS_USER is set to directory
‘R/R.version$platform-1ibrary/x.y’ of the home directory (or ‘Library/R/x.y/library’
for Mac OS X AQUA builds), for R x.y.z.

.Library.site can be set via the environment variable R_LIBS_SITE (as a colon-separated
list of library trees).

Both R_L.IBS_USER and R_LIBS_SITE feature possible expansion of specifiers for R version
specific information as part of the startup process. The possible conversion specifiers all start with a
‘%’ and are followed by a single letter (use ‘%%’ to obtain ‘%’), with currently available conversion
specifications as follows:

‘v’ R version number including the patchlevel (e.g., ‘2.5.0’).

¢ b

$v’ R version number excluding the patchlevel (e.g., ‘2. 5).

3 9

o\

p’ the platform for which R was built, the value of R.version$platform.

o\

‘%0’ the underlying operating system, the value of R.version$os.
3 % a 9

the architecture (CPU) R was built on/for, the value of R.versionS$arch.

(See version for details on R version information.)

Function . 1ibPaths always uses the values of .Library and .Library.site in the base
name space. .Library.site can be set by the site in ‘Rprofile.site’, which should be
followed by acallto . 1ibPaths (.1ibPaths ()) to make use of the updated value.

For consistency, the paths are always normalized by normalizePath (winslash="/").

Value

A character vector of file paths.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

library

274 library

Examples
.1libPaths () # all library trees R knows about
library Loading and Listing of Packages
Description

library and require load add-on packages.

.First.1lib is called when a package without a name space is attached; .Last .1ib is called
when a package is detached.

Usage

library (package, help, pos = 2, lib.loc = NULL,
character.only = FALSE, logical.return = FALSE,
warn.conflicts = TRUE, quietly = FALSE,
keep.source = getOption ("keep.source.pkgs"),
verbose = getOption ("verbose"))

require (package, lib.loc = NULL, quietly = FALSE,
warn.conflicts = TRUE,
keep.source = getOption ("keep.source.pkgs"),
character.only = FALSE, save = FALSE)

.First.lib(libname, pkgname)
.Last.lib(libpath)

Arguments

package, help
the name of a package, given as a name or literal character string, or a char-
acter string, depending on whether character.only is FALSE (default) or
TRUE).

pos the position on the search list at which to attach the loaded package. Note
that .First.lib may attach other packages, and pos is computed after
.First.1lib has been run. Can also be the name of a position on the cur-
rent search list as given by search ().

lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to all libraries currently known
to . 1ibPaths (). Non-existent library trees are silently ignored.
character.only
a logical indicating whether package or help can be assumed to be character
strings.
logical.return
logical. If it is TRUE, FALSE or TRUE is returned to indicate success.

library 275

warn.conflicts
logical. If TRUE, warnings are printed about conflicts from attaching the
new package, unless that package contains an object . conflicts.OK. A con-
flict is a function masking a function, or a non-function masking a non-function.

keep.source logical. If TRUE, functions ‘keep their source’ including comments, see argu-
ment keep.source to options. This applies only to the named package,
and not to any packages or name spaces which might be loaded to satisfy depen-
dencies or imports.
This argument does not apply to packages using lazy-loading. Whether they
have kept source is determined when they are installed (and is most likely false).

verbose a logical. If TRUE, additional diagnostics are printed.
quietly a logical. If TRUE, no message confirming package loading is printed, and most
often, no errors/warnings are printed if package loading fails.
save For back-compatibility: only FALSE is allowed.
libname a character string giving the library directory where the package was found.
pkgname a character string giving the name of the package.
libpath a character string giving the complete path to the package.
Details

library (package) and require (package) both load the package with name package.
require is designed for use inside other functions; it returns FALSE and gives a warning (rather
than an error as 1ibrary () does by default) if the package does not exist. Both functions check
and update the list of currently loaded packages and do not reload a package which is already
loaded. (Furthermore, if the package has a name space and a name space of that name is already
loaded, they work from the existing name space rather than reloading from the file system. If you
want to reload such a package, call detach (unload = TRUE) or unloadNamespace first.)

To suppress messages during the loading of packages use
suppressPackageStartupMessages: this will suppress all messages from R itself
but not necessarily all those from package authors.

If 1ibrary is called with no package or help argument, it lists all available packages in the
libraries specified by 1ib.loc, and returns the corresponding information in an object of class
"libraryIQR". The structure of this class may change in future versions. In earlier versions of
R, only the names of all available packages were returned; use .packages (all = TRUE) for
obtaining these. Note that installed.packages () returns even more information.

library (help = somename) computes basic information about the package somename,
and returns this in an object of class "packageInfo". The structure of this class may change in
future versions. When used with the default value (NULL) for 1ib. loc, the attached packages are
searched before the libraries.

.First.1lib is called when a package without a name space is attached by library. (For
packages with name spaces see . onLoad.) It is called with two arguments, the name of the library
directory where the package was found (i.e., the corresponding element of 1ib . 1oc), and the name
of the package. It is a good place to put calls to 1ibrary.dynam which are needed when load-
ing a package into this function (don’t call 1ibrary.dynam directly, as this will not work if the
package is not installed in a standard location). .First.1ib isinvoked after the search path inter-
rogated by search () has been updated, so as.environment (match ("package:name",

276 library

search ())) will return the environment in which the package is stored. If calling .First.1lib
gives an error the loading of the package is abandoned, and the package will be unavailable. Sim-
ilarly, if the option " .First.lib" has a list element with the package’s name, this element is
called in the same manner as .First.lib when the package is attached. This mechanism al-
lows the user to set package ‘load hooks’ in addition to startup code as provided by the package
maintainers, but set Hook is preferred.

.Last.1libis called when a package is detached. Beware that it might be called if .First.1lib
has failed, so it should be written defensively. (It is called within t ry, so errors will not stop the
package being detached.)

Value

Normally library returns (invisibly) the list of attached packages, but TRUE or FALSE
if logical.return is TRUE. When called as library () it returns an object of class
"libraryIQR",and for library (help=), one of class "packageInfo".

require returns (invisibly) a logical indicating whether the required package is available. (Before
R 2.12.0 it could also fail with an error.)

Licenses

Some packages have restrictive licenses, and as from R 2.11.0 there is a mechanism to ensure that
users are aware of such licenses. If getOption ("checkPackageLicense") == TRUE,
then at first use of a package with a not-known-to-be-FOSS (see below) license the user is asked
to view and accept the license: a list of accepted licenses is stored in file ‘~/.R/1licensed’. In
a non-interactive session it is an error to use such a package whose license has not already been
accepted.

Free or Open Source Software (FOSS, e.g., http://en.wikipedia.org/wiki/FOSS)
packages are determined by the same filters used by available.packages but applied to just
the current package, not its dependencies.

There can also be a site-wide file ‘R_HOME /etc/licensed.site’ of packages (one per line).

Formal methods

library takes some further actions when package methods is attached (as it is by default). Pack-
ages may define formal generic functions as well as re-defining functions in other packages (notably
base) to be generic, and this information is cached whenever such a package is loaded after meth-
ods and re-defined functions (implicit generics) are excluded from the list of conflicts. The caching
and check for conflicts require looking for a pattern of objects; the search may be avoided by defin-
ing an object . noGenerics (with any value) in the package. Naturally, if the package does have
any such methods, this will prevent them from being used.

Note

library and require can only load an installed package, and this is detected by having a
‘DESCRIPTION’ file containing a ‘Built :’ field.

Under Unix-alikes, the code checks that the package was installed under a similar operating system
as given by R.version$platform (the canonical name of the platform under which R was
compiled), provided it contains compiled code. Packages which do not contain compiled code can

http://en.wikipedia.org/wiki/FOSS

library 277

be shared between Unix-alikes, but not to other OSes because of potential problems with line end-
ings and OS-specific help files. If sub-architectures are used, the OS similarity is not checked since
the OS used to build may differ (e.g. 1386-pc—1inux—gnu code can be built on an x86_64—
unknown-1inux-gnu OS).

The package name given to 1ibrary and require must match the name given in the package’s
‘DESCRIPTION’ file exactly, even on case-insensitive file systems such as are common on MS
Windows and Mac OS X.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

.libPaths, .packages.

attach, detach, search, objects, autoload, library.dynam, data,
install.packages and installed.packages; INSTALL, REMOVE.

The initial set of packages attached is set by options (defaultPackages=): see also
Startup.

Examples
library () # list all available packages
library(lib.loc = .Library) # list all packages in the default library
library (help = splines) # documentation on package 'splines'
library(splines) # load package 'splines'
require (splines) # the same
search () # "splines", too

detach ("package:splines")

if the package name is in a character vector, use

pkg <- "splines"

library (pkg, character.only = TRUE)

detach (pos = match (paste ("package", pkg, sep=":"), search()))

require (pkg, character.only = TRUE)
detach (pos = match (paste ("package", pkg, sep=":"), search()))

require (nonexistent) # FALSE
Not run:
Suppose a package needs to call a DLL named 'fooEXT',
where 'EXT' is the system-specific extension. Then you should use
.First.lib <- function(lib, pkg)
library.dynam("foo", pkg, 1lib)

1f you want to mask as little as possible, use
library (mypkg, pos = "package:base")

End(Not run)

278 library.dynam

library.dynam Loading DLLs from Packages

Description

Load the specified file of compiled code if it has not been loaded already, or unloads it.

Usage

library.dynam(chname, package = NULL, lib.loc = NULL,
verbose = getOption ("verbose"),
file.ext = .Platform$dynlib.ext, ...)

library.dynam.unload (chname, libpath,
verbose = getOption ("verbose"),

file.ext = .Platform$Sdynlib.ext)
.dynLibs (new)
Arguments

chname a character string naming a DLL (also known as a dynamic shared object or
library) to load.

package a character vector with the names of packages to search through, or NULL. By
default, all packages in the search path are used.

lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to all libraries currently known
to .1ibPaths ().

libpath the path to the loaded package whose DLL is to be unloaded.

verbose a logical value indicating whether an announcement is printed on the console
before loading the DLL. The default value is taken from the verbose entry in the
system options.

file.ext the extension (including ‘.’ if used) to append to the file name to specify the
library to be loaded. This defaults to the appropriate value for the operating
system.
additional arguments needed by some libraries that are passed to the call to
dyn. load to control how the library and its dependencies are loaded.

new a list of "DLLInfo" objects corresponding to the DLLs loaded by packages.
Can be missing.

Details

See dyn . load for what sort of objects these functions handle.

library.dynam is designed to be used inside a package rather than at the command line, and
should really only be used inside .First.lib or .onLoad. The system-specific extension for

library.dynam 279

DLLs (e.g., “.so’ or ‘.s1’ on Unix systems, ‘. so’ on Mac OS X, ‘.d11’ on Windows) should
not be added.

library.dynam.unload is designed for use in . Last.lib or .onUnload: it unloads the
DLL and updates the value of . dynLibs ()

.dynLibs is used for getting (with no argument) or setting the DLLs which are currently loaded
by packages (using library.dynam).

1ib. loc should contain absolute paths: versions of R prior to 2.12.0 may get confused by relative
paths.

Value

If chname is not specified, 1ibrary.dynam returns an object of class "DLLInfoList" cor-
responding to the DLLs loaded by packages.

If chname is specified, an object of class "DLLInfo" that identifies the DLL and can be used
in future calls is returned invisibly. For packages that have name spaces, a list of these objects is
stored in the name space’s environment for use at run-time.

Note that the class "DLLInfo" has a method for $ which can be used to resolve native symbols
within that DLL.

library.dynam.unload invisibly returns an object of class "DLLInfo" identifying the DLL
successfully unloaded.

.dynLibs returns an object of class "DLLInfoList" corresponding corresponding to its cur-
rent value.

Warning

Do not wuse dyn.unload on a DLL loaded by library.dynam: use
library.dynam.unload to ensure that .dynLibs gets updated. Otherwise a subse-
quent call to library.dynam will be told the object is already loaded.

Note that whether or not it is possible to unload a DLL and then reload a revised version of the same
file is OS-dependent: see the ‘Value’ section of the help for dyn.unload.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

getLoadedDLLs for information on "DLLInfo" and "DLLInfoList" objects.
.First.lib, library,dyn.load, .packages, .1libPaths
SHLIB for how to create suitable DLLs.

Examples

Which DLLs were "dynamically loaded" by packages?
library.dynam/()

280 list

license The R License Terms

Description

The license terms under which R is distributed.

Usage

license ()
licence ()

Details

R is distributed under the terms of the GNU GENERAL PUBLIC LICENSE, either Version 2, June
1991 or Version 3, June 2007. A copy of the version 2 license is in file ‘R_HOME/COPYING’
and can be viewed by RShowDoc ("COPYING"). Version 3 of the license can be displayed by
RShowDoc ("GPL-3").

A small number of files (some of the API header files) are distributed under the LESSER
GNU GENERAL PUBLIC LICENSE, version 2.1 or later. A copy of this license is in
file ‘SR_SHARE_DIR/licenses/LGPL-2.1" and can be viewed by RShowDoc ("LGPL—
2.1"). Version 3 of the license can be displayed by RShowDoc ("LGPL-3").

list Lists — Generic and Dotted Pairs

Description

Functions to construct, coerce and check for both kinds of R lists.

Usage

list(...)
pairlist(...)

as.list(x, ...)

S3 method for class 'environment'
as.list(x, all.names = FALSE, ...)
as.pairlist (x)

is.list (x)
is.pairlist (x)

alist(...)

Iist 281
Arguments
objects, possibly named.
X object to be coerced or tested.
all.names a logical indicating whether to copy all values or (default) only those whose
names do not begin with a dot.
Details

Most lists in R internally are Generic Vectors, whereas traditional dotted pair lists (as in LISP) are
available but rarely seen by users (except as formals of functions).

The arguments to 1ist or pairlist are of the form value or tag = value. The functions
return a list or dotted pair list composed of its arguments with each value either tagged or untagged,
depending on how the argument was specified.

alist handles its arguments as if they described function arguments. So the values are not evalu-
ated, and tagged arguments with no value are allowed whereas 11 st simply ignores them. alist
is most often used in conjunction with formals.

as.list attempts to coerce its argument to a list. For functions, this returns the concatenation of
the list of formal arguments and the function body. For expressions, the list of constituent elements
is returned. as.list is generic, and as the default method calls as.vector (mode="1ist")

for a non-list, methods for as.vector may be invoked. as.list turns a factor into a list of
one-element factors. Attributes may be dropped unless the argument already is a list or expression.
(This is inconsistent with functions such as as.character which always drop attributes, and is
for efficiency since lists can be expensive to copy.)

is.list returns TRUE if and only if its argument is a 1ist or apairlist of length > 0.
is.pairlist returns TRUE if and only if the argument is a pairlist or NULL (see below).

The "environment" method for as.list copies the name-value pairs (for names not begin-
ning with a dot) from an environment to a named list. The user can request that all named objects
are copied. The list is in no particular order (the order depends on the order of creation of objects
and whether the environment is hashed). No enclosing environments are searched. (Objects copied
are duplicated so this can be an expensive operation.) Note that there is an inverse operation, the
as.environment () method for list objects.

An empty pairlist, pairlist () isthe same as NULL. This is different from 1ist ().

as.pairlist is implemented as as.vector (x, "pairlist"), and hence will dispatch
methods for the generic function as . vector. Lists are copied element-by-element into a pairlist
and the names of the list used as tags for the pairlist: the return value for other types of argument is
undocumented.

list,is.listand is.pairlist are primitive functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

282 list.files

See Also

vector ("1list", length) forcreation of alist with empty components; c, for concatenation;
formals. unlist is an approximate inverse to as.list ().

‘plotmath’ for the use of 1ist in plot annotation.
Examples

require (graphics)

create a plotting structure

pts <- list (x=cars|[,1l], y=cars[,2])

plot (pts)

is.pairlist (.Options) # a user-level pairlist

"pre-allocate" an empty list of length 5
vector ("list"™, 5)

Argument lists
f <- function() x

Note the specification of a "..." argument:
formals (f) <- al <- alist(x=, y=2+3, ...=)

f

al

environment->list coercion

el <- new.env ()
el$Sa <- 10
elsSb <- 20
as.list (el)

list.files List the Files in a Directory/Folder

Description

These functions produce a character vector of the names of files or directories in the named direc-
tory.

Usage

list.files(path = ".", pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE,
ignore.case = FALSE, include.dirs = FALSE)

dir(path = ".", pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE,

list.files 283

ignore.case = FALSE, include.dirs = FALSE)

list.dirs(path = ".", full.names = TRUE)
Arguments
path a character vector of full path names; the default corresponds to the working di-

rectory, getwd () . Tilde expansion (see path.expand) is performed. Miss-
ing values will be ignored.

pattern an optional regular expression. Only file names which match the regular expres-
sion will be returned.

all.files a logical value. If FALSE, only the names of visible files are returned. If TRUE,
all file names will be returned.

full.names a logical value. If TRUE, the directory path is prepended to the file names to give
a relative file path. If FALSE, the file names (rather than paths) are returned.

recursive logical. Should the listing recurse into directories?
ignore.case logical. Should pattern-matching be case-insensitive?

include.dirs logical. Should subdirectory names be included in recursive listings? (There
always are in non-recursive ones).

Value

A character vector containing the names of the files in the specified directories, or " " if there were
no files. If a path does not exist or is not a directory or is unreadable it is skipped, with a warning.

The files are sorted in alphabetical order, on the full path if full.names = TRUE.

list.dirs implicitly hasall.files = TRUE, recursive = TRUE, and the answer in-
cludes path itself (provided it is a readable directory).
Note

File naming conventions are platform dependent. The pattern matching works with the case of file
names as returned by the OS

Author(s)

Ross Thaka, Brian Ripley

See Also

file.info, file.access and files for many more file handling functions and
file.choose for interactive selection.

glob2rx to convert wildcards (as used by system file commands and shells) to regular expressions.

Sys.glob for wildcard expansion on file paths.

284 list2env

Examples

list.files (R.home())

Only files starting with a-1 or r

Note that a-1 is locale-dependent, but using case-insensitive

matching makes it unambiguous in English locales

dir("../..", pattern = ""[a-1lr]", full.names=TRUE, ignore.case = TRUE)

list.dirs (R.home ("doc"))

list2env From A List, Build or Add To an Environment

Description

From a named 1ist x, create an environment containing all list components as objects, or
“multi-assign” from x into a pre-existing environment.

Usage
list2env(x, envir = NULL, parent = parent.frame(),
hash = (length(x) > 100), size = max(29L, length(x)))
Arguments
X a list, where names (x) must not contain empty (" ") elements.
envir an environment or NULL.
parent (for the case envir = NULL): a parent frame aka enclosing environment, see
new.env.
hash (for the case envir = NULL): logical indicating if the created environment
should use hashing, see new.env.
size (in the case envir = NULL, hash = TRUE): hash size, see new.env.
Details

This will be very slow for large inputs unless hashing is used on the environment.

Environments must have uniquely named entries, but named lists need not: where the list has du-
plicate names it is the /ast element with the name that is used. Empty names throw an error.
Value

An environment, either newly created (as by new.env) if the envir argument was NULL,
otherwise the updated environment envir. Since environments are never duplicated, the argument
envir is also changed.

Author(s)

Martin Maechler

load 285

See Also

environment, new.env, as.environment; further, assign.

The (semantical) “inverse”: as.list.environment.

Examples

L <- list(a=1, b=2:4, p = pi, ff = gl(3,4,1labels=LETTERS[1:3]))
e <—- list2env (L)
1s (e)
stopifnot (1s(e) == sort (names (L)),
identical (Lb, eb)) # "$" working for environments as for lists

consistency, when we do the inverse:

11 <- as.list (e) # —-> dispatching to the as.list.environment () method
rbind (names (L), names(l1l)) # not in the same order, typically,

but the same content:
stopifnot (identical (L [sort.list (names(L))],

1l[sort.list (names (11))]))

now add to e ——- can be seen as a fast "multi-assign":
list2env(list (abc = LETTERS, note = "just an example",
df = data.frame (x=rnorm(20), y = rbinom(20,1, pr=0.2))),
envir = e)

utils::1ls.str (e)

load Reload Saved Datasets

Description

Reload datasets written with the function save.

Usage

load(file, envir parent.frame())

Arguments
file a (readable binary-mode) connection or a character string giving the name of the
file to load (when tilde expansion is done).
envir the environment where the data should be loaded.
Details

load can load R objects saved in the current or any earlier format. It can read a compressed file
(see save) directly from a file or from a suitable connection (including a call to ur1).

286 load

A not-open connection will be opened in mode "rb" and closed after use. Any connection other
than a gzfile or gzcon connection will be wrapped in gzcon to allow compressed saves to be
handled: note that this leaves the connection in an altered state (in particular, binary-only).

Only R objects saved in the current format (used since R 1.4.0) can be read from a connection. If
no input is available on a connection a warning will be given, but any input not in the current format
will result in a error.

Loading from an earlier version will give a warning about the ‘magic number’: magic numbers
1971:1977 are from R <0.99.0, and RD [ABX] 1 from R 0.99.0 to R 1.3.1. These are all obsolete,
and you are strongly recommended to re-save such files in a current format.

Value

A character vector of the names of objects created, invisibly.

Warning

Saved R objects are binary files, even those saved with ascii = TRUE, so ensure that they are
transferred without conversion of end of line markers. 1oad tries to detect such a conversion and
gives an informative error message.

See Also

save, download.file.

For other interfaces to the underlying serialization format, see unserialize and readRDS.

Examples

save all data

xx <— pil # to ensure there is some data
save (list = 1ls(all=TRUE), file= "all.RData")
rm(xx)

restore the saved values to the current environment
local ({

load("all.RData")

1s()
1)
restore the saved values to the user's workspace
load("all.RData", .GlobalEnv)

unlink ("all.RData")

Not run:

con <- url ("http://some.where.net/R/data/example.rda")
print the value to see what objects were created.
print (load(con))

close(con) # url() always opens the connection

End(Not run)

locales 287

locales Query or Set Aspects of the Locale

Description

Get details of or set aspects of the locale for the R process.

Usage
Sys.getlocale(category = "LC_ALL")
Sys.setlocale (category = "LC_ALL", locale = "")
Arguments
category character string. The following categories should always be sup-
ported: "LC_ALL", "LC_COLLATE", "LC_CTYPE", "LC_MONETARY",
"LC_NUMERIC" and "LC_TIME". Some systems (not Windows) will also
support "LC_MESSAGES", "LC_PAPER" and "LC_MEASUREMENT".
locale character string. A valid locale name on the system in use. Normally "" (the
default) will pick up the default locale for the system.
Details

The locale describes aspects of the internationalization of a program. Initially most aspects of
the locale of R are set to "C" (which is the default for the C language and reflects North-American
usage). Rsets "LLC_CTYPE" and "LC_COLLATE", which allow the use of a different character set
and alphabetic comparisons in that character set (including the use of sort), "LC_MONETARY"
(foruse by Sys.localeconv)and "LC_TIME" may affect the behaviour of as.POSIX1t and
strptime and functions which use them (but not date).

R can be built with no support for locales, but it is normally available on Unix and is available on
Windows.

The first seven categories described here are those specified by POSIX. "LC_MESSAGES" will be
"C" on systems that do not support message translation, and is not supported on Windows. Trying
to use an unsupported category is an error for Sys.setlocale.

Note that setting category "LC_ALL" sets only "LC_COLLATE", "LC_CTYPE",
"IL,C_MONETARY" and "LC_TIME".

Attempts to set an invalid locale are ignored. There may or may not be a warning, depending on the
OS.

Attempts to change the character set (by Sys.setlocale ("LC_TYPE",), if that implies a
different character set) during a session may not work and are likely to lead to some confusion.

288 locales

Value

A character string of length one describing the locale in use (after setting for Sys.setlocale),
or an empty character string if the current locale settings are invalid or NULL if locale information
is unavailable.

For category = "LC_ALL" the details of the string are system-specific: it might be a single
locale name or a set of locale names separated by " /" (Solaris, Mac OS X) or "; " (Windows,
Linux). For portability, it is best to query categories individually: it is not necessarily the case
that the result of foo <- Sys.getlocale () canbeusedin Sys.setlocale ("LC_ALL",
locale = foo0).

Warning

Setting "LC_NUMERIC" may cause R to function anomalously, so gives a warning. Input conver-
sions in R itself are unaffected, but the reading and writing of ASCII save files will be, as may
packages. Setting it temporarily to produce graphical or text output may work well enough, but
options (OutDec) is often preferable.

Note

Changing the values of locale categories whilst R is running ought to be noticed by the OS services,
and usually is but exceptions have been seen (usually in collation services).

See Also

strptime for uses of category = "LC_TIME". Sys.localeconv for details of numeri-
cal and monetary representations.

110n_info gives some summary facts about the locale and its encoding.

The ‘R Installation and Administration’ manual for background on locales and how to find out
locale names on your system.

Examples

Sys.getlocale ()
Sys.getlocale ("LC_TIME")
Not run:

Sys.setlocale ("LC_TIME", "de") # Solaris: details are OS-dependent
Sys.setlocale ("LC_TIME", "de_DE.utf8") # Modern Linux etc.
Sys.setlocale ("LC_TIME", "de_DE") # Mac 0OS X

Sys.setlocale ("LC_TIME", "German") # Windows

End (Not run)
Sys.getlocale ("LC_PAPER") # may or may not be set

Sys.setlocale ("LC_COLLATE", "C") # turn off locale-specific sorting,
usually

log 289

log Logarithms and Exponentials

Description

log computes logarithms, by default natural logarithms, 10g10 computes common (i.e., base
10) logarithms, and 10g2 computes binary (i.e., base 2) logarithms. The general form log (x,
base) computes logarithms with base base.

loglp (x) computes log(1 + x) accurately also for |z| < 1 (and less accurately when x ~ —1).
exp computes the exponential function.

expml (x) computes exp(z) — 1 accurately also for |z] < 1.

Usage

log(x, base = exp/(
logb(x, base = exp
1logl0 (x)
log2 (x)

loglp (x)

exp (x)
expml (x)

Arguments

X a numeric or complex vector.

base a positive or complex number: the base with respect to which logarithms are
computed. Defaults to e=exp (1) .

Details

All except 1ogb are generic functions: methods can be defined for them individually or via the
Math group generic.

logl0 and log2 are only convenience wrappers, but logs to bases 10 and 2 (whether computed
via 1og or the wrappers) will be computed more efficiently and accurately where supported by the
OS. Methods can be set for them individually (and otherwise methods for 1og will be used).

logb is a wrapper for 1 og for compatibility with S. If (S3 or S4) methods are set for 1 og they will
be dispatched. Do not set S4 methods on 1ogb itself.

All except Log are primitive functions.

290 log

Value

A vector of the same length as x containing the transformed values. l1og (0) gives —Inf, and
log (x) for negative values of x is NaN. exp (-Inf) is 0.

For complex inputs to the log functions, the value is a complex number with imaginary part in the
range [—m, 7]: which end of the range is used might be platform-specific.

S4 methods

exp, expml, 1og, 1ogl0, log2 and 1oglp are S4 generic and are members of the Math group
generic.

Note that this means that the S4 generic for 1og has a signature with only one argument, x, but that
base can be passed to methods (but will not be used for method selection). On the other hand, if
you only set a method for the Math group generic then base argument of 1og will be ignored for
your class.

Source

loglp and expml may be taken from the operating system, but if not available there are based on
the Fortran subroutine d1nrel by W. Fullerton of Los Alamos Scientific Laboratory (see http:
//www.netlib.org/slatec/fnlib/dlnrel. f and (for small x) a single Newton step for
the solution of Loglp (y) = x respectively.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (for 1og, 10g10 and exp.)

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer. (for 1ogb.)

See Also

Trig, sqrt,Arithmetic.

Examples

log (exp(3))
loglO(le7)# = 7

X <= 10"=(1+2%1:9)
cbind(x, log(l+x), loglp(x), exp(x)-1, expml (x))

http://www.netlib.org/slatec/fnlib/dlnrel.f
http://www.netlib.org/slatec/fnlib/dlnrel.f

Logic 291

Logic Logical Operators

Description

These operators act on logical and number-like vectors.

Usage

I x

&y
&& Y
Iy

Iy
xXor (X, y)

XXX X

1sTRUE (x)
Arguments
X, Yy logical or ‘number-like’ vectors (i.e., of type double (class numeric),
integer, complex or raw), or objects for which methods have been written.
Details

! indicates logical negation (NOT).

& and && indicate logical AND and | and | | indicate logical OR. The shorter form performs
elementwise comparisons in much the same way as arithmetic operators. The longer form evaluates
left to right examining only the first element of each vector. Evaluation proceeds only until the
result is determined. The longer form is appropriate for programming control-flow and typically
preferred in i f clauses.

xor indicates elementwise exclusive OR.

isTRUE (x) is an abbreviation of identical (TRUE, x), and so is true if and only if x is a
length-one logical vector whose only element is TRUE and which has no attributes (not even names).

Numeric and complex vectors will be coerced to logical values, with zero being false and all non-
zero values being true. Raw vectors are handled without any coercion for !, &, | and xor, with
these operators being applied bitwise (so ! is the 1s-complement).

The operators !, & and | are generic functions: methods can be written for them individually or
via the Ops (or S4 Logic, see below) group generic function. (See Ops for how dispatch is
computed.)

NA is a valid logical object. Where a component of x or y is NA, the result will be NA if the
outcome is ambiguous. In other words NA & TRUE evaluates to NA, but NA & FALSE evaluates
to FALSE. See the examples below.

See Syntax for the precedence of these operators: unlike many other languages (including S) the
AND and OR operators do not have the same precedence (the AND operators are higher than the
OR operators).

292 Logic

Value

For !, a logical or raw vector of the same length as x: names, dims and dimnames are copied from
X.

For |, & and xor alogical or raw vector. The elements of shorter vectors are recycled as necessary
(with awarning when they are recycled only fractionally). The rules for determining the attributes
of the result are rather complicated. Most attributes are taken from the longer argument, the first
if they are of the same length. Names will be copied from the first if it is the same length as the
answer, otherwise from the second if that is. For time series, these operations are allowed only if
the series are compatible, when the class and t sp attribute of whichever is a time series (the same,
if both are) are used. For arrays (and an array result) the dimensions and dimnames are taken from
first argument if it is an array, otherwise the second.

For | |, && and isTRUE, a length-one logical vector.

S4 methods

!, & and | are S4 generics, the latter two part of the Logic group generic (and hence methods
need argument names el, e2).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

TRUE or logical.
any and all for OR and AND on many scalar arguments.

Syntax for operator precedence.

Examples

y <= 1 + (x <- stats::rpois (50, lambda=1.5) / 4 - 1)
x[(x > 0) & (x < 1)] # all x values between 0 and 1
if (any(x == 0) || any(y == 0)) "zero encountered"

construct truth tables

x <- c(NA, FALSE, TRUE)
names (x) <- as.character (x)
outer (x, x, "&")## AND table
outer (x, x, "|")## OR table

logical 293

logical Logical Vectors

Description

Create or test for objects of type "1ogical™, and the basic logical constants.

Usage

TRUE
FALSE
T, F

logical (length = 0)
as.logical (x,)
is.logical (x)

Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one will give a
warning.
X object to be coerced or tested.
further arguments passed to or from other methods.
Details

TRUE and FALSE are reserved words denoting logical constants in the R language, whereas T and
F are global variables whose initial values set to these. All four are 1ogical (1) vectors.

Logical vectors are coerced to integer vectors in contexts where a numerical value is required, with
TRUE being mapped to 1L, FALSE to OL and NA to NA_integer_.

Value

logical creates a logical vector of the specified length. Each element of the vector is equal to
FALSE.

as.logical attempts to coerce its argument to be of logical type. For factors, this
uses the levels (labels). Like as.vector it strips attributes including names. Character
strings ¢ ("T", "TRUE", "True", "true") are regarded as true, c ("F", "FALSE",
"False", "false") as false, and all others as NA.

is.logical returns TRUE or FALSE depending on whether its argument is of logical type or
not.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

294 Is

See Also

NA, the other logical constant.

lower.tri Lower and Upper Triangular Part of a Matrix

Description

Returns a matrix of logicals the same size of a given matrix with entries TRUE in the lower or upper
triangle.

Usage

lower.tri(x, diag FALSE)
upper.tri(x, diag = FALSE)

Arguments

x a matrix.

diag logical. Should the diagonal be included?
See Also

diag,matrix.

Examples

(m2 <- matrix(1:20, 4, 5))
lower.tri (m2)

m2[lower.tri(m2)] <- NA
m2
1s List Objects
Description

1s and object s return a vector of character strings giving the names of the objects in the specified
environment. When invoked with no argument at the top level prompt, 1s shows what data sets and
functions a user has defined. When invoked with no argument inside a function, 1s returns the
names of the functions local variables. This is useful in conjunction with browser.

Is

Usage

ls (name, pos
all.names
objects (name,

295

= -1, envir = as.environment (pos),
= FALSE, pattern)
pos= -1, envir = as.environment (pos),

all.names = FALSE, pattern)

Arguments

name

pos

envir

all.names

pattern

Details

which environment to use in listing the available objects. Defaults to the cur-
rent environment. Although called name for back compatibility, in fact this
argument can specify the environment in any form; see the details section.

an alternative argument to name for specifying the environment as a position in
the search list. Mostly there for back compatibility.

an alternative argument to name for specifying the environment. Mostly there
for back compatibility.

a logical value. If TRUE, all object names are returned. If FALSE, names which
begin with a ‘.’ are omitted.

an optional regular expression. Only names matching pattern are returned.
glob2rx can be used to convert wildcard patterns to regular expressions.

The name argument can specify the environment from which object names are taken in one of
several forms: as an integer (the position in the search list); as the character string name of an
element in the search list; or as an explicit environment (including using sys . frame to access
the currently active function calls). By default, the environment of the call to 1s or obJjects is
used. The pos and envir arguments are an alternative way to specify an environment, but are
primarily there for back compatibility.

Note that the order of the resulting strings is locale dependent, see Sys.getlocale.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

See Also

glob2rx for converting wildcard patterns to regular expressions.

1s.str for a long listing based on str. apropos (or £ind) for finding objects in the whole

search path; grep

for more details on ‘regular expressions’; class, methods, etc., for object-

oriented programming.

Examples

.0b <=1

ls (pattern = "O")
ls(pattern= " O", all.names = TRUE) # also shows ".[foo]"

296 make.names

shows an empty list because inside myfunc no variables are defined
myfunc <- function() {ls()}
myfunc ()

define a local variable inside myfunc

myfunc <- function() {y <- 1; 1ls{()}
myfunc () # shows "y"
make.names Make Syntactically Valid Names
Description

Make syntactically valid names out of character vectors.

Usage
make.names (names, unique = FALSE, allow_ = TRUE)
Arguments
names character vector to be coerced to syntactically valid names. This is coerced to
character if necessary.
unique logical; if TRUE, the resulting elements are unique. This may be desired for,
e.g., column names.
allow_ logical. For compatibility with R prior to 1.9.0.
Details

A syntactically valid name consists of letters, numbers and the dot or underline characters and
starts with a letter or the dot not followed by a number. Names such as " . 2way" are not valid, and
neither are the reserved words.

The definition of a letter depends on the current locale, but only ASCII digits are considered to be
digits.
The character "X" is prepended if necessary. All invalid characters are translated to ".". A

missing value is translated to "NA". Names which match R keywords have a dot appended to them.
Duplicated values are altered by make . unique.

Value

A character vector of same length as names with each changed to a syntactically valid name, in the
current locale’s encoding.

make.unique 297

Note

Prior to R version 1.9.0, underscores were not valid in variable names, and code that relies on them
being converted to dots will no longer work. Use allow_ = FALSE for back-compatibility.

allow_ = FALSE is also useful when creating names for export to applications which do not
allow underline in names (for example, S-PLUS and some DBMSs).

See Also

make.unique, names, character, data.frame.

Examples

make.names (c("a and b", "a-and-b"), unique=TRUE)

"a.and.b" "a.and.b.1"
make.names (c ("a and b", "a_and_b"), unique=TRUE)
"a.and.b" "a_and_b"

make.names (c ("a and b", "a_and_b"), unique=TRUE, allow_=FALSE)
"a.and.b" "a.and.b.l"

state.name [make.names (state.name) != state.name] # those 10 with a space
make.unique Make Character Strings Unique
Description

Makes the elements of a character vector unique by appending sequence numbers to duplicates.

Usage

make.unigque (names, sep = ".")

Arguments

names a character vector

sep a character string used to separate a duplicate name from its sequence number.
Details

The algorithm used by make.unique has the property that make.unique (c (A, B)) ==
make.unique (c (make.unique (A), B)).

In other words, you can append one string at a time to a vector, making it unique each time, and get
the same result as applying make . unique to all of the strings at once.

If character vector A is already unique, then make .unique (c (A, B)) preserves A.

298 mapply

Value
A character vector of same length as name s with duplicates changed, in the current locale’s encod-
ing.

Author(s)
Thomas P. Minka

See Also

make.names

Examples

make.unique (c("a", "a", "a"))
make.unique (c (make.unique (c ("a", "a")), "a"))

make.unique (c("a", "a", "a.2", "a"))
make.unique (c (make.unique (c("a", "a")), "a.z2", "a"))

rbind (data.frame (x=1), data.frame(x=2), data.frame (x=3))
rbind (rbind (data.frame (x=1), data.frame (x=2)), data.frame (x=3))

mapply Apply a Function to Multiple List or Vector Arguments

Description

mapply is a multivariate version of sapply. mapply applies FUN to the first elements of each
...argument, the second elements, the third elements, and so on. Arguments are recycled if neces-
sary.

Vectorize returns a new function that acts as if mapply was called.

Usage
mapply (FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE,
USE.NAMES = TRUE)

Vectorize (FUN, vectorize.args = arg.names, SIMPLIFY = TRUE,
USE.NAMES = TRUE)

Arguments
FUN function to apply, found viamatch. fun.
arguments to vectorize over (list or vector).

MoreArgs a list of other arguments to FUN.

mapply 299

SIMPLIFY logical or character string; attempt to reduce the result to a vector, matrix or
higher dimensional array; see the simplify argument of sapply.

USE .NAMES logical; use names if the first . . . argument has names, or if it is a character vector,
use that character vector as the names.

vectorize.args
a character vector of arguments which should be vectorized. Defaults to all
arguments to FUN.

Details

The arguments named in the vectorize.args argument to Vectorize correspond to the
arguments passed in the . . . list to mapply. However, only those that are actually passed will be
vectorized; default values will not. See the example below.

Vectorize cannot be used with primitive functions as they have no formal list.

Value

mapp ly returns a list, vector, or matrix.

Vectorize returns a function with the same arguments as FUN, but wrapping a call to mapply.

See Also

sapply, after which mapply () is built, notably on simplification; outer

Examples
require (graphics)
mapply(rep, 1:4, 4:1)
mapply (rep, times=1:4, x=4:1)
mapply (rep, times=1:4, MoreArgs=list (x=42))
Repeat the same using Vectorize: use rep.int as rep is primitive
vrep <- Vectorize(rep.int)
vrep(l:4, 4:1)

vrep (times=1:4, x=4:1)

vrep <- Vectorize(rep.int, "times")
vrep (times=1:4, x=42)

mapply (function(x,y) seqg_len(x) + vy,
c(a= 1, b=2, c= 3), # names from first

c(A=10, B=0, C=-10))

word <- function(C,k) paste(rep.int(C,k), collapse='")
utils::str (mapply (word, LETTERS[1:6], 6:1, SIMPLIFY = FALSE))

f <- function(x=1:3, y) c(x,V)

300 margin.table

vf <- Vectorize(f, SIMPLIFY = FALSE)
£(1:3,1:3)
vi(l:3,1:3)
vE(y=1:3) # Only vectorizes y, not x

Nonlinear regression contour plot, based on nls() example

SS <- function(Vm, K, resp, conc) {
pred <- (Vm *x conc)/ (K + conc)
sum((resp — pred)”2 / pred)
}
v3S <- Vectorize(SS, c("vm", "K"))
Treated <- subset (Puromycin, state == "treated")

Vm <- seqg(140, 310, len=50)

K <- seq(0, 0.15, len=40)

SSvals <- outer (Vm, K, vSS, TreatedS$rate, Treated$conc)
contour (Vm, K, SSvals, levels=(1:10)"2, xlab="vm", ylab="K")

margin.table Compute table margin

Description

For a contingency table in array form, compute the sum of table entries for a given index.

Usage

margin.table (x, margin=NULL)

Arguments

x an array

margin index number (1 for rows, etc.)
Details

This is really just apply (x, margin, sum) packaged up for newbies, except that if margin
has length zero you get sum (x) .

Value
The relevant marginal table. The class of x is copied to the output table, except in the summation
case.

Author(s)

Peter Dalgaard

mat.or.vec 301

See Also

prop.table and addmargins.

Examples

m <—- matrix(1:4,2)
margin.table (m, 1)
margin.table (m, 2)

mat.or.vec Create a Matrix or a Vector

Description
mat .or.vec creates an nr by nc zero matrix if nc is greater than 1, and a zero vector of length
nr if nc equals 1.

Usage

mat.or.vec (nr, nc)

Arguments

nr, nc numbers of rows and columns.

Examples

mat.or.vec (3, 1)
mat.or.vec (3, 2)

match Value Matching

Description

match returns a vector of the positions of (first) matches of its first argument in its second.

%$1in% is a more intuitive interface as a binary operator, which returns a logical vector indicating if
there is a match or not for its left operand.

Usage

match (x, table, nomatch = NA_integer_, incomparables = NULL)

302 match
Arguments
X vector or NULL: the values to be matched.
table vector or NULL: the values to be matched against.
nomatch the value to be returned in the case when no match is found. Note that it is
coerced to integer.
incomparables
a vector of values that cannot be matched. Any value in x matching a value in
this vector is assigned the nomatch value. For historical reasons, FALSE is
equivalent to NULL.
Details

%$1n% is currently defined as
"$in%" <- function(x, table) match(x, table, nomatch = 0) > 0

Factors, raw vectors and lists are converted to character vectors, and then x and t able are coerced
to a common type (the later of the two types in R’s ordering, logical < integer < numeric < complex
< character) before matching. If incomparables has positive length it is coerced to the common

type.
Matching for lists is potentially very slow and best avoided except in simple cases.

Exactly what matches what is to some extent a matter of definition. For all types, NA matches NA
and no other value. For real and complex values, NaN values are regarded as matching any other
NaN value, but not matching NA.

That $1in% never returns NA makes it particularly useful in i £ conditions.

Character strings with marked encoding "bytes" cannot be compared, so give an error.

Value

A vector of the same length as x.

match: An integer vector giving the position in table of the first match if there is a match,
otherwise nomatch.

If x[i] is found to equal table[]j] then the value returned in the i-th position of the return
value is J, for the smallest possible j. If no match is found, the value is nomatch.

%$1n%: A logical vector, indicating if a match was located for each element of x: thus the values are
TRUE or FALSE and never NA.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

pmatch and charmatch for (partial) string matching, mat ch. arg, etc for function argument
matching. findInterval similarly returns a vector of positions, but finds numbers within inter-
vals, rather than exact matches.

is.element for an S-compatible equivalent of $in%.

match.arg 303

Examples

The intersection of two sets can be defined via match{():
Simple version:

intersect <- function(x, y) yl[match(x, y, nomatch = 0)]
intersect # the R function in base, slightly more careful
intersect (1:10, 7:20)

1:10 %$in% c(1,3,5,9)
SStr <_ C("C","ab","B","bba","C",NA, "@","bla",lla","Ba","%")
sstr[sstr %in% c(letters, LETTERS)]

"$w/o%" <- function(x, y) x[!x %in% y] #-— x without y
(1:10) %w/0% c(3,7,12)

match.arg Argument Verification Using Partial Matching

Description

match.arg matches arg against a table of candidate values as specified by choices, where
NULL means to take the first one.

Usage
match.arg(arg, choices, several.ok = FALSE)

Arguments
arg a character vector (of length one unless several . ok is TRUE) or NULL.
choices a character vector of candidate values

several.ok logical specifying if arg should be allowed to have more than one element.

Details

In the one-argument form match.arg (arg), the choices are obtained from a default setting
for the formal argument arg of the function from which match.arg was called. (Since default
argument matching will set arg to choices, this is allowed as an exception to the ‘length one
unless several. ok is TRUE’ rule, and returns the first element.)

Matching is done using pmat ch, so arg may be abbreviated.

Value

The unabbreviated version of the exact or unique partial match if there is one; otherwise, an error is
signalled if several. ok is false, as per default. When several. ok is true and more than one
element of arg has a match, all unabbreviated versions of matches are returned.

304 match.call

See Also

pmatch, match.fun,match.call.

Examples

require (stats)

Extends the example for 'switch'

center <- function(x, type = c("mean", "median", "trimmed")) {
type <- match.arg(type)
switch (type,

mean = mean (x),
median = median (x),
trimmed = mean(x, trim = .1))

}
x <— rcauchy (10)

center(x, "t") # Works
center (x, "med") # Works
try (center(x, "m")) # Error
stopifnot (identical (center (x), center (x, "mean")),

identical (center (x, NULL), center(x, "mean")))

Allowing more than one match:

match.arg(c ("gauss", "rect", "ep"),
c("gaussian"”, "epanechnikov", "rectangular", "triangular"),

several.ok = TRUE)

match.call Argument Matching

Description

match.call returns a call in which all of the specified arguments are specified by their full
names.

Usage

match.call (definition = NULL, call = sys.call(sys.parent()),
expand.dots = TRUE)

Arguments

definition a function, by default the function from which match.call is called. See

details.

call an unevaluated call to the function specified by definition, as generated by
call.

expand.dots logical. Should arguments matching . . . in the call be included or leftasa . . .

argument?

match.fun 305

Details

‘function’ on this help page means an interpreted function (also known as a ‘closure’):
match.call does not support primitive functions (where argument matching is normally po-
sitional).

match.call is most commonly used in two circumstances:

* To record the call for later re-use: for example most model-fitting functions record the call as
element call of the list they return. Here the default expand.dots = TRUE is appropri-
ate.

* To pass most of the call to another function, often model . frame. Here the common idiom is
that expand.dots = FALSEisused, andthe . .. element of the matched call is removed.
An alternative is to explicitly select the arguments to be passed on, as is done in 1m.

Calling match.call outside a function without specifying definition is an error.

Value

An object of class call.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

sys.call () is similar, but does not expand the argument names; call, pmatch, match.arg,
match. fun.

Examples

match.call (get, call("get", "abc", i1 = FALSE, p = 3))

—-> get(x = "abc", pos = 3, inherits = FALSE)
fun <- function(x, lower = 0, upper = 1) {
structure ((x — lower) / (upper - lower), CALL = match.call())
}
fun(4 » atan(l), u = pi)
match. fun Extract a Function Specified by Name
Description

When called inside functions that take a function as argument, extract the desired function object
while avoiding undesired matching to objects of other types.

Usage

match. fun (FUN, descend = TRUE)

306 match.fun

Arguments
FUN item to match as function: a function, symbol or character string. See ‘Details’.
descend logical; control whether to search past non-function objects.

Details

match. fun is not intended to be used at the top level since it will perform matching in the parent
of the caller.

If FUN is a function, it is returned. If it is a symbol (for example, enclosed in backquotes) or a
character vector of length one, it will be looked up using get in the environment of the parent of
the caller. If it is of any other mode, it is attempted first to get the argument to the caller as a symbol
(using substitute twice), and if that fails, an error is declared.

If descend = TRUE, match. fun will look past non-function objects with the given name;
otherwise if FUN points to a non-function object then an error is generated.

This is used in base functions such as apply, lapply, outer, and sweep.

Value

A function matching FUN or an error is generated.

Bugs
The descend argument is a bit of misnomer and probably not actually needed by anything. It may
go away in the future.

It is impossible to fully foolproof this. If one at taches a list or data frame containing a length-one
character vector with the same name as a function, it may be used (although name spaces will help).

Author(s)

Peter Dalgaard and Robert Gentleman, based on an earlier version by Jonathan Rougier.

See Also

match.arg, get

Examples

Same as get ("x"):

match.fun ("*")

Overwrite outer with a vector

outer <- 1:5

Not run:

match. fun (outer, descend = FALSE) #-> Error: not a function

End (Not run)
match. fun (outer) # finds it anyway
is.function (match. fun ("outer")) # as well

MathFun 307

MathFun Miscellaneous Mathematical Functions

Description

These functions compute miscellaneous mathematical functions. The naming follows the standard
for computer languages such as C or Fortran.

Usage
abs (x)
sgrt (x)
Arguments

x a numeric or complex vector or array.

Details

These are internal generic primitive functions: methods can be defined for them individually or
via the Math group generic. For complex arguments (and the default method), z, abs (z) ==
Mod (z) and sgrt (z) == z”0.5.

abs (x) returns an integer vector when x is integer or logical.

S4 methods

Both are S4 generic and members of the Math group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Arithmetic for simple, Log for logarithmic, sin for trigonometric, and Special for special
mathematical functions.

‘plotmath’ for the use of sgrt in plot annotation.

Examples

require (stats) # for spline

require (graphics)

Xxx <— =-9:9

plot (xx, sqgrt (abs(xx)), col = "red")

lines (spline (xx, sqgrt (abs(xx)), n=101), col = "pink")

308 matmult

matmult Matrix Multiplication

Description

Multiplies two matrices, if they are conformable. If one argument is a vector, it will be promoted to
either a row or column matrix to make the two arguments conformable. If both are vectors it will
return the inner product (as a matrix).

Usage

X

o°

*

o\
L

Arguments

X, ¥V numeric or complex matrices or vectors.

Details

When a vector is promoted to a matrix, its names are not promoted to row or column names, unlike
as.matrix.

This operator is S4 generic but not S3 generic. S4 methods need to be written for a function of two
arguments named x and y.

Value

A double or complex matrix product. Use drop to remove dimensions which have only one level.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

matrix, Arithmetic, diag.

Examples
x <- 1:4
(z <= X %*% X) # scalar ("inner") product (1 x 1 matrix)
drop (z) # as scalar
y <- diag(x)
z <— matrix(1:12, ncol = 3, nrow = 4)
y %%% z
Yy $*%% x
X $*x% z

matrix

309

matrix

Matrices

Description

matrix creates a matrix from the given set of values.

as.matrix attempts to turn its argument into a matrix.

is.matrix tests if its argument is a (strict) matrix.

Usage

matrix (data

= NA, nrow = 1, ncol =1, byrow = FALSE,

dimnames = NULL)

as.matrix (x,

)

S3 method for class 'data.frame'

as.matrix (x,

is.matrix (x)

Arguments

data

nrow
ncol

byrow

dimnames

rownames.force = NA, ...)

an optional data vector (including a list or expression vector). Other R
objects are coerced by as.vector.

the desired number of rows.
the desired number of columns.

logical. If FALSE (the default) the matrix is filled by columns, otherwise the
matrix is filled by rows.

A dimnames attribute for the matrix: NULL or a 1ist of length 2 giving the
row and column names respectively. An empty list is treated as NULL, and a list
of length one as row names. The list can be named, and the list names will be
used as names for the dimensions.

an R object.

additional arguments to be passed to or from methods.

rownames.force

Details

logical indicating if the resulting matrix should have character (rather than
NULL) rownames. The default, NA, uses NULL rownames if the data frame
has ‘automatic’ row.names or for a zero-row data frame.

If one of nrow or ncol is not given, an attempt is made to infer it from the length of data and
the other parameter. If neither is given, a one-column matrix is returned.

310 matrix

If there are too few elements in data to fill the matrix, then the elements in data are recycled. If
data has length zero, NA of an appropriate type is used for atomic vectors (0 for raw vectors) and
NULL for lists.

is.matrix returns TRUE if x is a vector and has a "dim" attribute of length 2) and FALSE
otherwise. Note that a data . frame is not a matrix by this test. The function is generic: you can
write methods to handle specific classes of objects, see InternalMethods.

as.matrix is a generic function. The method for data frames will return a character matrix if
there is any non-(numeric/logical/complex) column, applying format to non-character columns.
Otherwise, the usual coercion hierarchy (logical < integer < double < complex) will be used, e.g.,
all-logical data frames will be coerced to a logical matrix, mixed logical-integer will give a integer
matrix, etc.

When coercing a vector, it produces a one-column matrix, and promotes the names (if any) of the
vector to the rownames of the matrix.

is.matrix is a primitive function.

Note
If you just want to convert a vector to a matrix, something like

dim(x) <- c(nx, ny)
dimnames (x) <- list (row_names, col_names)

will avoid duplicating x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

data.matrix, which attempts to convert to a numeric matrix.

A matrix is the special case of a two-dimensional array.

Examples

is.matrix(as.matrix (1:10))
lis.matrix (warpbreaks)# data.frame, NOT matrix!

warpbreaks[1:10,]
as.matrix (warpbreaks[1:10,]) #using as.matrix.data.frame(.) method

Example of setting row and column names
mdat <- matrix(c(1,2,3, 11,12,13), nrow = 2, ncol=3, byrow=TRUE,
dimnames = list (c("rowl", "row2"),
c("c.lll, "C.Z", "C‘3")))

mdat

maxCol 311

maxCol Find Maximum Position in Matrix

Description

Find the maximum position for each row of a matrix, breaking ties at random.

Usage

max.col (m, ties.method=c("random", "first", "last"))

Arguments

m numerical matrix

ties.method a character string specifying how ties are handled, "random" by default; can
be abbreviated; see ‘Details’.

Details

When ties.method = "random", as per default, ties are broken at random. In this case, the
determination of a tie assumes that the entries are probabilities: there is a relative tolerance of 1075,
relative to the largest (in magnitude, omitting infinity) entry in the row.

Ifties.method = "first",max.col returns the column number of the first of several max-
ima in every row, the same as unname (apply (m, 1, which.max)).
Correspondingly, ties.method = "last" returns the /ast of possibly several indices.

Value

index of a maximal value for each row, an integer vector of length nrow (m) .

References
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York: Springer
(4th ed).

See Also

which.max for vectors.

Examples

table (mc <- max.col(swiss))# mostly "1" and "5", 5 x "2" and once "4"
swiss[unique (print (mr <- max.col (t(swiss)))) , 1 # 3 33 45 45 33 6

set.seed (1) # reproducible example:

(mm <- rbind(x = round(2+«stats::runif (12)),
y = round(5xstats::runif(12)),
z = round(8*«stats::runif (12))))

312

mean
Not run:
(.11 [,21 ,3) [,4] [,5) (,e] [,7) [,8] [,9] [,10] [,11] [,12]
b4 1 1 1 2 0 2 2 1 1 0 0 0
\ 3 2 4 2 4 5 2 4 5 1 3 1
b4 2 3 0 3 7 3 4 5 4 1 7 5
End (Not run)
column indices of all row maxima
utils::str(lapply(1:3, function(i) which(mm[i,] == max(mm[i,]))))
max.col (mm) ; max.col (mm) # "random"
max.col (mm, "first")# -> 4 6 5
max.col (mm, "last") # -> 7 9 11
mean Arithmetic Mean
Description
Generic function for the (trimmed) arithmetic mean.
Usage
mean (X, ...)
Default S3 method:
mean (x, trim = 0, na.rm = FALSE, ...)
Arguments
x An R object. Currently there are methods for numeric/logical vectors and date,

date-time and time interval objects, and for data frames all of whose columns
have a method. Complex vectors are allowed for trim = 0, only.

trim the fraction (0 to 0.5) of observations to be trimmed from each end of x before
the mean is computed. Values of trim outside that range are taken as the nearest
endpoint.

na.rm a logical value indicating whether NA values should be stripped before the com-

putation proceeds.

further arguments passed to or from other methods.

Value

For a data frame, a named vector with the appropriate method being applied column by column.

If trim is zero (the default), the arithmetic mean of the values in x is computed, as a numeric or

complex vector of length one. If x is not logical (coerced to numeric), numeric (including integer)
or complex, NA_real__ is returned, with a warning.

If t rim is non-zero, a symmetrically trimmed mean is computed with a fraction of t rim observa-
tions deleted from each end before the mean is computed.

memCompress 313

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

weighted.mean, mean.POSIXct, colMeans for row and column means.

Examples

x <-= c¢(0:10, 50)
xm <-— mean (x)
c(xm, mean(x, trim = 0.10))

mean (USArrests, trim = 0.2)

memCompress In-memory Compression and Decompression

Description

In-memory compression or decompression for raw vectors.

Usage
memCompress (from, type = c("gzip", "bzip2", "xz", "none"))
memDecompress (from,

type = c("unknown", "gzip", "bzip2", "xz", "none"),
asChar = FALSE)

Arguments
from A raw vector. For memCompress a character vector will be converted to a raw
vector with character strings separated by "\n".
type character string, the type of compression. May be abbreviated to a single letter,
defaults to the first of the alternatives.
asChar logical: should the result be converted to a character string?
Details
type = "none" passes the input through unchanged, but may be useful if t ype is a variable.
type = "unknown" attempts to detect the type of compression applied (if any): this will always

succeed for bzip2 compression, and will succeed for other forms if there is a suitable header. It
will auto-detect the ‘magic’ header ("\x1£f\x8b") added to files by the gzip program (and to
files written by gzfile), but memCompress does not add such a header.

314 Memory

bzip2 compression always adds a header ("BzZh").

Compressing with type = "xz" is equivalent to compressing a file with xz —9e (including
adding the ‘magic’ header): decompression should cope with the contents of any file compressed
with xz version 4.999 and some versions of 1zma. There are other versions, in particular ‘raw’
streams, that are not currently handled.

All the types of compression can expand the input: for "gzip" and "bzip" the maximum expan-
sion is known and so memCompress can always allocate sufficient space. For "xz" it is possible
(but extremely unlikely) that compression will fail if the output would have been too large.

Value

A raw vector or a character string (if asChar = TRUE).

See Also

connections.

http://en.wikipedia.org/wiki/Data_compression for background on data com-
pression, http://zlib.net/, http://en.wikipedia.org/wiki/Gzip, http://
www.bzip.org/, http://en.wikipedia.org/wiki/Bzip2, http://tukaani.
org/xz/ and http://en.wikipedia.org/wiki/Xz for references about the particular
schemes used.

Examples

txt <- readLines (file.path (R.home ("doc"), "COPYING"))

sum (nchar (txt))

txt.gz <- memCompress (txt, "g")

length (txt.gz)

txt2 <- strsplit (memDecompress (txt.gz, "g", asChar = TRUE), "\n")[[1]]
stopifnot (identical (txt, txt2))

txt.bz2 <- memCompress (txt, "b")

length (txt.bz2)

can auto-detect bzip2:

txt3 <- strsplit (memDecompress (txt.bz2, asChar = TRUE), "\n")[[1]]
stopifnot (identical (txt, txt3))

xz compression is only worthwhile for large objects

txt.xz <- memCompress (txt, "x")

length (txt.xz)

txt3 <- strsplit (memDecompress (txt.xz, asChar = TRUE), "\n")[[1]]
stopifnot (identical (txt, txt3))

Memory Memory Available for Data Storage

Description

Use command line options to control the memory available for R.

http://en.wikipedia.org/wiki/Data_compression
http://zlib.net/
http://en.wikipedia.org/wiki/Gzip
http://www.bzip.org/
http://www.bzip.org/
http://en.wikipedia.org/wiki/Bzip2
http://tukaani.org/xz/
http://tukaani.org/xz/
http://en.wikipedia.org/wiki/Xz

Memory 315

Usage
R ——min-vsize=vl —-—-max-vsize=vu —--min-nsize=nl —--max-nsize=nu \
——max-ppsize=N
mem.limits (nsize = NA, vsize = NA)
Arguments

vl, vu, vsize

Heap memory in bytes.
nl, nu, nsize

Number of cons cells.

N Number of nested PROTECT calls..

Details

R has a variable-sized workspace. There is much less need to set memory options than prior to R
1.2.0, and most users will never need to set these. They are provided both as a way to control the
overall memory usage (which can also be done by operating-system facilities such as 1imit on
Unix and by using the command-line option ‘~-max-mem-size’ on Windows), and since setting
larger values of the minima will make R slightly more efficient on large tasks.

To understand the options, one needs to know that R maintains separate areas for fixed and variable
sized objects. The first of these is allocated as an array of cons cells (Lisp programmers will know
what they are, others may think of them as the building blocks of the language itself, parse trees,
etc.), and the second are thrown on a heap of “Vcells’ of 8 bytes each. Effectively, the inputs v1
and vu are rounded up to the next multiple of 8.

Each cons cell occupies 28 bytes on a 32-bit build of R, (usually) 56 bytes on a 64-bit build.

The ‘——+—-nsize’ options can be used to specify the number of cons cells and the ‘——+-vsize’
options specify the size of the vector heap in bytes. Both options must be integers or integers
followed by G, M, K, or k meaning Giga (230 = 1073741824) Mega (2?° = 1048576), (computer)
Kilo (2'° = 1024), or regular kilo (1000).

The ‘~-min-»’ options set the minimal sizes for the number of cons cells and for the vector heap.
These values are also the initial values, but thereafter R will grow or shrink the areas depending on
usage, but never exceeding the limits set by the ‘~—max—«’ options nor decreasing below the initial
values.

The default values are currently minima of 350k cons cells, 6Mb of vector heap and no max-
ima (other than machine resources). The maxima can be changed during an R session by calling
mem. limits. (If this is called with the default values, it reports the current settings.)

You can find out the current memory consumption (the heap and cons cells used as numbers and
megabytes) by typing gc () at the R prompt. Note that following gcinfo (TRUE), automatic
garbage collection always prints memory use statistics. Maxima will never be reduced below the
current values for triggering garbage collection, and attempts to do so will be silently ignored.

The command-line option ‘~-max-ppsize’ controls the maximum size of the pointer protection
stack. This defaults to 50000, but can be increased to allow deep recursion or large and complicated
calculations to be done. Note that parts of the garbage collection process goes through the full

316 Memory-limits

reserved pointer protection stack and hence becomes slower when the size is increased. Currently
the maximum value accepted is 500000.

Value

mem.limits () returns an integer vector giving the current settings of the maxima, possibly NA.

See Also

An Introduction to R for more command-line options
Memory—1imits for the design limitations.

gc for information on the garbage collector and total memory usage, object.size (a) for the
(approximate) size of R object a. memory .profile for profiling the usage of cons cells.

Examples

Start R with 10MB of heap memory and 500k cons cells, limit to

100Mb and 1M cells

Not run:

Unix

R ——min-vsize=10M --max-vsize=100M --min-nsize=500k --max-nsize=1M

End (Not run)

Memory-limits Memory Limits in R

Description

R holds objects it is using in virtual memory. This help file documents the current design limitations
on large objects: these differ between 32-bit and 64-bit builds of R.

Details

Currently R runs on 32- and 64-bit operating systems, and most 64-bit OSes (including Linux,
Solaris, Windows and Mac OS X) can run either 32- or 64-bit builds of R. The memory limits
depends mainly on the build, but for a 32-bit build of R on Windows they also depend on the
underlying OS version.

R holds all objects in memory, and there are limits based on the amount of memory that can be used
by all objects:
* There may be limits on the size of the heap and the number of cons cells allowed — see
Memory — but these are usually not imposed.

* There is a limit on the (user) address space of a single process such as the R executable. This
is system-specific, and can depend on the executable.

* The environment may impose limitations on the resources available to a single process: Win-
dows’ versions of R do so directly.

Memory-limits 317

Error messages beginning cannot allocate vector of size indicate a failure to obtain
memory, either because the size exceeded the address-space limit for a process or, more likely,
because the system was unable to provide the memory. Note that on a 32-bit build there may well
be enough free memory available, but not a large enough contiguous block of address space into
which to map it.

There are also limits on individual objects. On all builds of R, the maximum length (number of
elements) of a vector is 231 — 1 &~ 210, as lengths are stored as signed integers. In addition, the
storage space cannot exceed the address limit, and if you try to exceed that limit, the error message
begins cannot allocate vector of length. The number of characters in a character
string is in theory only limited by the address space.

Unix

The address-space limit is system-specific: 32-bit OSes imposes a limit of no more than 4Gb: it is
often 3Gb. Running 32-bit executables on a 64-bit OS will have similar limits: 64-bit executables
will have an essentially infinite system-specific limit (e.g. 128Tb for Linux on x86_64 cpus).

See the OS/shell’s help on commands such as 1imit or ulimit for how to impose limitations on
the resources available to a single process. For example a bash user could use

ulimit -t 600 -m 2000000
whereas a csh user might use

limit cputime 10m
limit memoryuse 2048m

to limit a process to 10 minutes of CPU time and (around) 2Gb of memory.

Windows

The address-space limit is 2Gb under 32-bit Windows unless the OS’s default has been changed to
allow more (up to 3Gb). See http://www.microsoft.com/whdc/system/platform/
server/PAE/PAEmem.mspx and http://msdn.microsoft.com/en-us/library/
bb613473 (VS.85) .aspx. Under most 64-bit versions of Windows the limit for a 32-bit build
of R is 4Gb: for the oldest ones it is 2Gb. The limit for a 64-bit build of R (imposed by the OS) is
8Tb.

It is not normally possible to allocate as much as 2Gb to a single vector in a 32-bit build of R even
on 64-bit Windows because of preallocations by Windows in the middle of the address space.

Under Windows, R imposes limits on the total memory allocation available to a single session as
the OS provides no way to do so: see memory.size and memory.limit.

See Also

object.size (a) for the (approximate) size of R object a.

http://www.microsoft.com/whdc/system/platform/server/PAE/PAEmem.mspx
http://www.microsoft.com/whdc/system/platform/server/PAE/PAEmem.mspx
http://msdn.microsoft.com/en-us/library/bb613473(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb613473(VS.85).aspx

318 merge

memory.profile Profile the Usage of Cons Cells

Description

Lists the usage of the cons cells by SEXPREC type.

Usage

memory.profile ()

Details

The current types and their uses are listed in the include file ‘Rinternals.h’.

Value

A vector of counts, named by the types. See t ypeof for an explanation of types.

See Also

gc for the overall usage of cons cells. Rprofmem and tracemem allow memory profiling of
specific code or objects, but need to be enabled at compile time.

Examples

memory.profile ()

merge Merge Two Data Frames

Description

Merge two data frames by common columns or row names, or do other versions of database join
operations.

Usage
merge (X, y, ...)

Default S3 method:
merge (X, y, ...)

S3 method for class 'data.frame'
merge (x, y, by = intersect (names(x), names(y)),

merge 319

by.x = by, by.y = by, all = FALSE, all.x = all, all.y = all,

sort = TRUE, suffixes = c(".x",".y"),
incomparables = NULL, ...)
Arguments
X, Yy data frames, or objects to be coerced to one.

by, by.x, by.y
specifications of the common columns. See ‘Details’.

all logical; al1l = Lisshorthandforall.x = Landall.y = L.

all.x logical; if TRUE, then extra rows will be added to the output, one for each row
in x that has no matching row in y. These rows will have NAs in those columns
that are usually filled with values from y. The default is FALSE, so that only
rows with data from both x and y are included in the output.

all.y logical; analogous to all.x above.

sort logical. Should the results be sorted on the by columns?

suffixes character(2) specifying the suffixes to be used for making non-by names ()
unique.

incomparables

values which cannot be matched. See match.

arguments to be passed to or from methods.

Details

By default the data frames are merged on the columns with names they both have, but separate
specifications of the columns can be given by by . x and by . y. Columns can be specified by name,
number or by a logical vector: the name "row.names" or the number 0 specifies the row names.
The rows in the two data frames that match on the specified columns are extracted, and joined
together. If there is more than one match, all possible matches contribute one row each. For the
precise meaning of ‘match’, see match.

If by or both by.x and by .y are of length O (a length zero vector or NULL), the result, r,
is the Cartesian product of x and y, i.e., dim(r) = c(nrow(x)*nrow(y), ncol (x) +
ncol (y)).

If all.x is true, all the non matching cases of x are appended to the result as well, with NA filled
in the corresponding columns of y; analogously for all.y.

If the remaining columns in the data frames have any common names, these have suffixes
(".x" and ".y" by default) appended to make the names of the result unique.

The complexity of the algorithm used is proportional to the length of the answer.

In SQL database terminology, the default value of a1l = FALSE gives a natural join, a special
case of an inner join. Specifying all.x = TRUE gives a left (outer) join, all.y = TRUE a
right (outer) join, and both (a11=TRUE a (full) outer join. DBMSes do not match NULL records,
equivalent to incomparables = NAinR.

320 merge

Value

A data frame. The rows are by default lexicographically sorted on the common columns, but for
sort = FALSE are in an unspecified order. The columns are the common columns followed by
the remaining columns in x and then those in y. If the matching involved row names, an extra
character column called Row . names is added at the left, and in all cases the result has ‘automatic’
rOW names.

See Also

data. frame, by, cbind

Examples

use character columns of names to get sensible sort order
authors <- data.frame (

surname = I (c("Tukey", "Venables", "Tierney", "Ripley", "McNeil")),
nationality = c("US", "Australia", "US", "UK", "Australia"),
deceased = c("yes", rep("no", 4)))

books <- data.frame (
name = I(c("Tukey", "Venables", "Tierney",

"Ripley", "Ripley", "McNeil", "R Core")),
title = c("Exploratory Data Analysis",
"Modern Applied Statistics ...",
"L,ISP-STAT",
"Spatial Statistics", "Stochastic Simulation",
"Interactive Data Analysis",
"An Introduction to R"),
other.author = c(NA, "Ripley", NA, NA, NA, NA,
"Venables & Smith"))

(ml <- merge (authors, books, by.x = "surname", by.y = "name"))

(m2 <- merge (books, authors, by.x = "name", by.y = "surname"))

stopifnot (as.character(ml[,1]) == as.character(m2f[,1]),
all.equal(ml[, -1], m2[, -1][names(ml) [-1] 1),
dim(merge (ml, m2, by = integer(0))) == c(36, 10))

"R core" is missing from authors and appears only here
merge (authors, books, by.x = "surname", by.y = "name", all = TRUE)

example of using 'incomparables'

x <- data.frame (kl=c(NA,NA,3,4,5), k2=c(l1,NA,NA,4,5), data=1l:5)
y <- data.frame(kl=c(NA,2,NA,4,5), k2=c(NA,NA,3,4,5), data=1l:5)
merge (x, y, by=c("k1","k2")) # NA's match

merge (x, y, by=c("kl","k2"), incomparables=NA)

merge (x, y, by="kl") # NA's match, so 6 rows

merge (x, y, by="k2", incomparables=NA) # 2 rows

message 321

message Diagnostic Messages

Description

Generate a diagnostic message from its arguments.

Usage

message (..., domain = NULL, appendLF = TRUE)
suppressMessages (expr)

packageStartupMessage (..., domain = NULL, appendLF = TRUE)
suppressPackageStartupMessages (expr)

.makeMessage (..., domain = NULL, appendLF = FALSE)

Arguments

zero or more objects which can be coerced to character (and which are pasted
together with no separator) or (for message only) a single condition object.

domain see gettext. If NA, messages will not be translated.
appendLF logical: should messages given as a character string have a newline appended?
expr expression to evaluate.

Details

message is used for generating ‘simple’ diagnostic messages which are neither warnings nor
errors, but nevertheless represented as conditions. Unlike warnings and errors, a final newline is
regarded as part of the message, and is optional. The default handler sends the message to the
stderr () connection.

If a condition object is supplied to me s sage it should be the only argument, and further arguments
will be ignored, with a warning.

While the message is being processed, a muf f1eMessage restart is available.

suppressMessages evaluates its expression in a context that ignores all ‘simple’ diagnostic
messages.

packageStartupMessage is a variant whose messages can be suppressed separately by
suppressPackageStartupMessages. (They are still messages, so can be suppressed by
suppressMessages.)

.makeMessage is a utility used by message, warning and stop to generate a text message
from the . . . arguments by possible translation (see get text) and concatenation (with no sepa-
rator).

322 missing

See Also

warning and stop for generating warnings and errors; conditions for condition handling
and recovery.

gettext for the mechanisms for the automated translation of text.

Examples

message ("ABC", "DEF")
suppressMessages (message ("ABC"))

testit <- function() {
message ("testing package startup messages")
packageStartupMessage ("initializing ...", appendLF = FALSE)

Sys.sleep (1)
packageStartupMessage (" done")

testit ()
suppressPackageStartupMessages (testit ())
suppressMessages (testit ())

missing Does a Formal Argument have a Value?

Description

missing can be used to test whether a value was specified as an argument to a function.

Usage

missing (x)

Arguments

X a formal argument.

Details
missing (x) is only reliable if x has not been altered since entering the function: in particular it
will always be false after x <- match.arg (x).

The example shows how a plotting function can be written to work with either a pair of vectors
giving x and y coordinates of points to be plotted or a single vector giving y values to be plotted
against their indices.

Currently missing can only be used in the immediate body of the function that defines the argu-
ment, not in the body of a nested function or a 1ocal call. This may change in the future.

This is a ‘special’ primitive function: it must not evaluate its argument.

mode 323

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

substitute for argument expression; NA for missing values in data.

Examples

myplot <- function(x,y) {
if (missing(y)) |
y <= X
x <— l:length (y)
}
plot (x,v)

mode The (Storage) Mode of an Object

Description

Get or set the type or storage mode of an object.

Usage

mode (x)

mode (x) <- value
storage.mode (x)
storage.mode (x) <- value

Arguments

x any R object.

value a character string giving the desired mode or ‘storage mode’ (type) of the object.
Details

Both mode and storage.mode return a character string giving the (storage) mode of the object
— often the same — both relying on the output of t ypeof (x), see the example below.

mode (x) <—- "newmode" changes the mode of object x to newmode. This is only sup-
ported if there is an appropriate as . newmode function, for example "logical™", "integer",
"double", "complex", "raw", "character", "list", "expression", "name",
"symbol" and "function". Attributes are preserved (but see below).

324 mode

storage.mode (x) <- "newmode" is a more efficient primitive version of mode<-, which
works for "newmode" which is one of the internal types (see typeof), but not for "single™".
Attributes are preserved.

As storage mode "single" is only a pseudo-mode in R, it will not be reported by mode or
storage.mode: use attr (object, "Csingle") to examine this. However, mode<-
can be used to set the mode to "single", which sets the real mode to "double" and the
"Csingle" attribute to TRUE. Setting any other mode will remove this attribute.

Note (in the examples below) that some calls have mode " (" which is S compatible.

Mode names

Modes have the same set of names as types (see t ypeof) except that

* types "integer" and "double" are returned as "numeric".
* types "special” and "builtin" are returned as "function".
* type "symbol" is called mode "name".

* type "language" isreturned as " (" or "call™.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

typeof for the R-internal ‘mode’, attributes.

Examples

require (stats)
sapply (options (), mode)

cex3 <- c("NULL","1","1:1","14i","1list(1l)","data.frame(x=1)",

"pairlist(pi)", "c", "1lm", "formals(lm)[[1l]]", "formals (Im) [[2]]",
"y~x","expression((1)) [[1]1]", "(y~x)[[1]1",
"expression(x <- pi) [[1]][[1]1")

lex3 <- sapply(cex3, function(x) eval (parse(text=x)))
mex3 <- t(sapply(lex3,

function (x) c(typeof(x), storage.mode (x), mode(x))))
dimnames (mex3) <- list(cex3, c("typeof(.)","storage.mode(.)","mode(.)"))
mex3

This also makes a local copy of 'pi':
storage.mode (pi) <- "complex"
storage.mode (pi)

rm(pi)

NA 325

NA ‘Not Available’ / Missing Values

Description

NA is a logical constant of length 1 which contains a missing value indicator. NA can be co-
erced to any other vector type except raw. There are also constants NA_integer_, NA_real_,
NA_complex_ and NA_character_ of the other atomic vector types which support missing
values: all of these are reserved words in the R language.

The generic function is.na indicates which elements are missing.

The generic function is.na<- sets elements to NA.

Usage

NA

is.na (x)

S3 method for class 'data.frame'
is.na (x)

is.na(x) <- value

Arguments
x an R object to be tested: the default method handles atomic vectors, lists and
pairlists.
value a suitable index vector for use with x.
Details

The NA of character type is distinct from the string "NA". Programmers who need to specify an
explicit string NA should use NA_character_ rather than "NA", or set elements to NA using
is.na<-.

is.na (x) works elementwise when x is a 1ist. It is generic: you can write methods to handle
specific classes of objects, see InternalMethods. A complex value is regarded as NA if either its real
or imaginary part is NA or NaN.

Function is.na<- may provide a safer way to set missingness. It behaves differently for factors,
for example.

Computations using NA will normally result in NA: a possible exception is where NaN is also in-
volved, in which case either might result.

Value

The default method for is.na applied to an atomic vector returns a logical vector of the same
length as its argument x, containing TRUE for those elements marked NA or, for numeric or complex
vectors, NaN (!) and FALSE otherwise. dim, dimnames and names attributes are preserved.

326 name

The default method also works for lists and pairlists: the result for an element is false unless that
element is a length-one atomic vector and the single element of that vector is regarded as NA or
NaN.

The method is.na.data.frame returns a logical matrix with the same dimensions as the data
frame, and with dimnames taken from the row and column names of the data frame.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

NaN, is.nan, etc., and the utility function complete.cases.

na.action,na.omit, na.fail on how methods can be tuned to deal with missing values.

Examples
is.na(c (1, NA)) #> FALSE TRUE
is.na(paste(c (1, NA))) #> FALSE FALSE

(xx <= c(0:4))
is.na(xx) <- c (2, 4)

XX #> 0 NA 2 NA 4
name Names and Symbols
Description

A ‘name’ (also known as a ‘symbol’) is a way to refer to R objects by name (rather than the value
of the object, if any, bound to that name).

as.name and as.symbol are identical: they attempt to coerce the argument to a name.

is.symbol and the identical is.name return TRUE or FALSE depending on whether the argu-
ment is a name or not.
Usage

as.symbol (x)
is.symbol (x)

as.name (x)
is.name (x)

name 327

Arguments

X object to be coerced or tested.

Details

Names are limited to 10,000 bytes (and were to 256 bytes in versions of R before 2.13.0).

as.name first coerces its argument internally to a character vector (so methods for
as.character are not used). It then takes the first element and provided it is not " ", returns a
symbol of that name (and if the element is NA_ character_, the name is ‘NA ‘).

as.name is implemented as as.vector (x, "symbol"), and hence will dispatch methods
for the generic function as .vector.

is.name and is.symbol are primitive functions.

Value

For as.name and as.symbol, an R object of type "symbol™" (see typeof).

For is.name and is.symbol, a length-one logical vector with value TRUE or FALSE.

Note

The term ‘symbol’ is from the LISP background of R, whereas ‘name’ has been the standard S term
for this.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call, is.language. For the internal object mode, t ypeof.

plotmath for another use of ‘symbol’.

Examples

an <- as.name ("arrg")
is.name (an) # TRUE
mode (an) # name
typeof (an) # symbol

328 names

names The Names of an Object

Description

Functions to get or set the names of an object.

Usage

names (x)
names (x) <- value

Arguments

x an R object.

value a character vector of up to the same length as x, or NULL.
Details

names is a generic accessor function, and name s<- is a generic replacement function. The default
methods get and set the "names" attribute of a vector (including a list) or pairlist.

If value is shorter than x, it is extended by character NAs to the length of x.

It is possible to update just part of the names attribute via the general rules: see the exam-
ples. This works because the expression there is evaluated as z <- "names<-"(z, "[<-
" (names (z), 3, "c2™M)).

The name " " is special: it is used to indicate that there is no name associated with an element of a
(atomic or generic) vector. Subscripting by " " will match nothing (not even elements which have
no name).

A name can be character NA, but such a name will never be matched and is likely to lead to confu-
sion.

Both are primitive functions.

Value

For names, NULL or a character vector of the same length as x. (NULL is given if the object has
no names, including for objects of types which cannot have names.)

For name s<—, the updated object. (Note that the value of names (x) <- value is that of the
assignment, value, not the return value from the left-hand side.)

Note

For vectors, the names are one of the attributes with restrictions on the possible values. For pairlists,
the names are the tags and converted to and from a character vector.

For a one-dimensional array the names attribute really is dimnames [[1]].

nargs 329

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

print the names attribute of the islands data set
names (i1slands)

remove the names attribute

names (islands) <- NULL

islands

rm(islands) # remove the copy made

z <-= list(a=1, b="c", c=1:3)

names (z)

change just the name of the third element.
names (z) [3] <= "c2"

z

z <— 1:3

names (z)

assign just one name
names (z) [2] <= "b"

z

nargs The Number of Arguments to a Function

Description

When used inside a function body, nargs returns the number of arguments supplied to that func-
tion, including positional arguments left blank.

Usage

nargs ()

Details

The count includes empty (missing) arguments, so that foo (x,, z) will be considered to have
three arguments (see ‘Examples’). This can occur in rather indirect ways, so for example x []
might dispatch acall to * [. some_method " (x,) which is considered to have two arguments.

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

330 nchar

See Also

args, formals and sys.call.

Examples
tst <- function(a, b = 3, ...) {nargs{()}
tst() # O

tst(clicketyclack) # 1 (even non-existing)
tst(cl, a2, rr3) # 3

foo <- function(x, vy, z, w) {

cat ("call was", deparse(match.call()), "\n")
nargs ()

, even though this is the same call

nargs () # not really meaningful

nchar Count the Number of Characters (or Bytes or Width)

Description

nchar takes a character vector as an argument and returns a vector whose elements contain the
sizes of the corresponding elements of x.

nzchar is a fast way to find out if elements of a character vector are non-empty strings.

Usage

nchar (x, type = "chars", allowNA = FALSE)

nzchar (x)

Arguments
X character vector, or a vector to be coerced to a character vector.
type character string: partial matching to one of c ("bytes", "chars",
"width"). See ‘Details’.
allowNA logical: should NA be returned for invalid multibyte strings or "bytes"-

encoded strings (rather than throwing an error)?

nchar 331

Details

The ‘size’ of a character string can be measured in one of three ways

bytes The number of bytes needed to store the string (plus in C a final terminator which is not
counted).

chars The number of human-readable characters.

width The number of columns cat will use to print the string in a monospaced font. The same
as chars if this cannot be calculated.

These will often be the same, and almost always will be in single-byte locales. There will be

differences between the first two with multibyte character sequences, e.g. in UTF-8 locales.

The internal equivalent of the default method of as.character is performed on x (so there is
no method dispatch). If you want to operate on non-vector objects passing them through deparse
first will be required.

Value

For nchar, an integer vector giving the sizes of each element, currently always 2 for missing
values (for N2).

If allowNA = TRUE and an element is invalid in a multi-byte character set such as UTF-8, its
number of characters and the width will be NA. Otherwise the number of characters will be non-
negative, so ! is.na (nchar (x, "chars", TRUE)) is a test of validity.

A character string marked with "bytes" encoding has a number of bytes, but neither a known
number of characters nor a width, so the latter two types are NA if allowNA = TRUE, otherwise
an error.

Names, dims and dimnames are copied from the input.

For nzchar, alogical vector of the same length as x, true if and only if the element has non-zero
length.

Note

This does not by default give the number of characters that will be used to print () the string. Use
encodeString to find the characters used to print the string. Where character strings have been
marked as UTF-8, the number of characters and widths will be computed in UTF-§, even though
printing may use escapes such as ‘<U+2642>’ in a non-UTF-8 locale.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

strwidth giving width of strings for plotting; paste, substr, strsplit

332

Examples

x <= c("asfef", "gwerty", "yuiop[", "b", "stuff.blah.yech")

nchar (x)
#5 6 6 1 15

nchar (deparse (mean))
18 17

nlevels

nlevels The Number of Levels of a Factor

Description

Return the number of levels which its argument has.

Usage

nlevels (x)

Arguments

X an object, usually a factor.

Details

This is usually applied to a factor, but other objects can have levels.

The actual factor levels (if they exist) can be obtained with the 1evels function.

Value

The length of levels (x), which is zero if x has no levels.

See Also

levels, factor.

Examples

nlevels(gl(3,7)) # = 3

noquote 333

noquote Class for ‘no quote’ Printing of Character Strings

Description

Print character strings without quotes.

Usage
noquote (ob7j)

S3 method for class 'noquote
print(x, ...)

S3 method for class 'noquote'

c(..., recursive = FALSE)

Arguments
obj any R object, typically a vector of character strings.
X an object of class "noquote™".

further options passed to next methods, such as print.

recursive for compatibility with the generic c function.

Details

nogquote returns its argument as an object of class "noquote™". There is a method for ¢ () and
subscript method (" [. noquote™) which ensures that the class is not lost by subsetting. The print
method (print .noquote) prints character strings without quotes (" .. .").

These functions exist both as utilities and as an example of using (S3) c1ass and object orientation.

Author(s)

Martin Maechler <maechler@stat .math.ethz.ch>

See Also

methods, class, print.

Examples

letters

ngl <- noquote (letters)
ngl

ngl[l:4] <- "oh"
nglfl:12]

334 norm

cmp.logical <- function(log.v)
{
Purpose: compact printing of logicals
log.v <- as.logical (log.v)
noquote (if (length (log.v)==0)"()" else c(".","|")[1l+log.V])
}
cmp.logical (stats::runif (20) > 0.8)

norm Compute the Norm of a Matrix

Description

Computes a matrix norm of x using Lapack. The norm can be the one norm, the infinity norm, the
Frobenius norm, or the maximum modulus among elements of a matrix, as determined by the value
of type.

Usage

nOrm(X, type = C("O", "I", "F", "M"))

Arguments

x numeric matrix; note that packages such as Matrix define more norm () meth-
ods.

type character string, specifying the type of matrix norm to be computed. A character
indicating the type of norm desired.

"O","o" or "1" specifies the one norm, (maximum absolute column sum);
"I"or "i" specifies the infinity norm (maximum absolute row sum);

"F" or "f" specifies the Frobenius norm (the Euclidean norm of x treated as
if it were a vector); and

"M" or "m" specifies the maximum modulus of all the elements in x.
The default is "O". Only the first character of type [1] is used.
Details
The base method of norm () calls the Lapack function dlange.

Note that the 1-, Inf- and "M" norm is faster to calculate than the Frobenius one.

Value

The matrix norm, a non-negative number.

References

Anderson, E., et al. (1994). LAPACK User’s Guide, 2nd edition, SIAM, Philadelphia.

normalizePath 335

See Also

rcond for the (reciprocal) condition number.

Examples

(x1 <—= cbind(1,1:10))

norm (x1)

norm(x1l, "I")

norm(x1l, "M")

stopifnot (all.equal (norm(x1, "F"),
sgrt (sum(x172))))

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
h9 <- hilbert (9)

all 4 types of norm:

(nTyp <- eval (formals (base::norm) $type))

sapply (nTyp, norm, x=h9)

normalizePath Express File Paths in Canonical Form

Description

Convert file paths to canonical form for the platform, to display them in a user-understandable form
and so that relative and absolute paths can be compared.

Usage
normalizePath (path, winslash = "\\", mustWork = NA)
Arguments
path character vector of file paths.
winslash the separator to be used on Windows — ignored elsewhere. Must be one of
C("/", "\\").
mustWork logical: if TRUE then an error is given if the result cannot be determined; if NA
then a warning.
Details

Tilde-expansion (see path.expand) is first done on paths (as from R 2.13.0).

Where the Unix-alike platform supports it attempts to turn paths into absolute paths in their canon-
ical form (no “. /’, . ./’ nor symbolic links). It relies on the POSIX system function realpath:
if the platform does not have that (we know of no current example) then the result will be an abso-
lute path but might not be canonical. Even where realpath is used the canonical path need not
be unique, for example via hard links or multiple mounts.

336 NotYet

On Windows it converts relative paths to absolute paths, converts short names for path elements to
long names and ensures the separator is that specified by winslash. It will match paths case-
insensitively and return the canonical case. UTF-8-encoded paths not valid in the current locale can
be used.

mustWork = FALSE is useful for expressing paths for use in messages.

Value

A character vector.

If an input is not a real path the result is system-dependent (unless mustWork = TRUE, when
this should be an error). It will be either the corresponding input element or a transformation of it
into an absolute path.

Converting to an absolute file path can fail for a large number of reasons. The most common are

* One of more components of the file path does not exist.

* A component before the last is not a directory, or there is insufficient permission to read the
directory.

* For a relative path, the current directory cannot be determined.
* A symbolic link points to a non-existent place or links form a loop.

* The canonicalized path would be exceed the maximum supported length of a file path.

Examples
random tempdir
cat (normalizePath(c(R.home (), tempdir())), sep = "\n")
NotYet Not Yet Implemented Functions and Unused Arguments
Description

In order to pinpoint missing functionality, the R core team uses these functions for missing R func-
tions and not yet used arguments of existing R functions (which are typically there for compatibility

purposes).
You are very welcome to contribute your code ...

Usage

.NotYetImplemented ()
.NotYetUsed (arg, error = TRUE)

Arguments

arg an argument of a function that is not yet used.

error a logical. If TRUE, an error is signalled; if FALSE; only a warning is given.

nrow 337

See Also

the contrary, Deprecated and Defunct for outdated code.

Examples

require (graphics)

require (stats)

plot.mlm # to see how the "NotYetImplemented"
reference is made automagically

try (plot.mlm())

barplot (1:5, inside = TRUE) # 'inside' is not yet used

nrow The Number of Rows/Columns of an Array

Description

nrow and ncol return the number of rows or columns present in x. NCOL and NROW do the same
treating a vector as 1-column matrix.

Usage

nrow
ncol
NCOL

(x)
(x)
(x)
NROW (x)

X
X
X
X
Arguments

X a vector, array or data frame

Value

an integer of length 1 or NULL.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole (ncol and nrow.)

See Also

dim which returns all dimensions; array, matrix.

338 ns-dblcolon

Examples

ma <- matrix(l:12, 3, 4)

nrow (ma) # 3
ncol (ma) # 4
ncol (array(l1:24, dim = 2:4)) # 3, the second dimension

NCOL (1:12) # 1
NROW (1:12) # 12

ns—dblcolon Double Colon and Triple Colon Operators

Description

Accessing exported and internal variables in a name space, or variables in an attached package.

Usage

pkg: :name
pkg: : :name

Arguments

pkg package name: symbol or literal character string.

name variable name: symbol or literal character string.

Details

For a package with a name space, pkg: : name returns the value of the exported variable name
in name space pkg, whereas pkg: : : name returns the value of the internal variable name. The
name space will be loaded if it was not loaded before the call, but the package will not be attached
to the search path.

If the package pkg does not have a name space but is on the search path then pkg: : name returns
the value of name in the package environment. Thus pkg: : name has the same effect for attached
packages whether or not they have a name space.

Specifying a variable that does not exist is an error, as is specifying a package that does not exist or
does not have a name space and is not on the search path.

Note that it is typically a design mistake to use : : : in your code since the corresponding object
has probably been kept internal for a good reason. Consider contacting the package maintainer if
you feel the need to access the object for anything but mere inspection.

See Also

get to access an object masked by another of the same name.

ns-hooks 339

Examples
base::log
base::"+"
Beware —— use ':::' at your own risk! (see "Details")

stats:::coef.default

ns—hooks Hooks for Name Space events

Description

Packages with name spaces can supply functions to be called when loaded, attached or unloaded.

Usage

.onLoad (libname, pkgname)
.onAttach (libname, pkgname)

.onUnload (libpath)
Arguments
libname a character string giving the library directory where the package defining the
namespace was found.
pkgname a character string giving the name of the package.
libpath a character string giving the complete path to the package.
Details

These functions apply only to packages with name spaces.

After loading, 1oadNamespace looks for a hook function named .onLoad and runs it before
sealing the namespace and processing exports.

If a name space is unloaded (via unloadNamespace), a hook function . onUnload is run before
final unloading.

Note that the code in .onLoad and . onUnload is run without the package being on the search
path, but (unless circumvented) lexical scope will make objects in the namespace and its imports
visible. (Do not use the double colon operator in . onLoad as exports have not been processed at
the point it is run.)

When the package is attached (via 1ibrary), the hook function .onAttach is looked for and
if found is called after the exported functions are attached and before the package environment is
sealed. This is less likely to be useful than .onLoad, which should be seen as the analogue of
.First.1lib (which is only used for packages without a name space).

.onLoad, .onUnload and .onAttach are looked for as internal variables in the name space
and should not be exported.

340 ns-load

If a function . Last . 1ib is visible in the package, it will be called when the package is detached:
this does need to be exported.

Anything needed for the functioning of the name space should be handled at load/unload times
by the .onLoad and .onUnload hooks. For example, DLLs can be loaded (unless done by
a useDynLib directive in the ‘NAMESPACE’ file) and initialized in . onLoad and unloaded in
.onUnload. Use .onAttach only for actions that are needed only when the package becomes
visible to the user, for example a start-up message.

See Also

setHook shows how users can set hooks on the same events.

ns—load Loading and Unloading Name Spaces

Description

Functions to load and unload namespaces.

Usage

attachNamespace (ns, pos = 2, dataPath = NULL, depends = NULL)
loadNamespace (package, lib.loc = NULL,

keep.source = getOption ("keep.source.pkgs"),
partial = FALSE, declarativeOnly = FALSE)
loadedNamespaces ()

unloadNamespace (ns)

Arguments

ns string or namespace object.

pos integer specifying position to attach.

dataPath path to directory containing a database of datasets to be lazy-loaded into the
attached environment.

depends NULL or a character vector of dependencies to be recorded in object . Depends
in the package.

package string naming the package/name space to load.

lib.loc character vector specifying library search path.

keep.source logical specifying whether to retain source. This applies only to the specified
name space, and not to other name spaces which might be loaded to satisfy

imports.

For more details see this argument to library.
partial logical; if true, stop just after loading code.
declarativeOnly

logical; disables . Import, etc, if true.

ns-topenv 341

Details

The functions 1oadNamespace and attachNamespace are usually called implicitly when
library is used to load a name space and any imports needed. However it may be useful to call
these functions directly at times.

loadNamespace loads the specified name space and registers it in an internal data base. A request
to load a name space when one of that name is already loaded has no effect. The arguments have the
same meaning as the corresponding arguments to 1ibrary, whose help page explains the details
of how a particular installed package comes to be chosen. After loading, loadNamespace looks
for a hook function named .onLoad as an internal variable in the name space (it should not be
exported). This function is called with the same arguments as .First.lib. Partial loading is
used to support installation with the ‘—-save’ and ‘~-1azy’ options.

loadNamespace does not attach the name space it loads to the search path.
attachNamespace can be used to attach a frame containing the exported values of a
name space to the search path (but this is almost always done via 1ibrary). The hook function
.onAttach is run after the name space exports are attached.

loadedNamespaces returns a character vector of the names of the loaded name spaces.

unloadNamespace can be used to attempt to force a name space to be unloaded. If the names-
pace is attached, it is first detached, thereby running a .Last .1ib function in the namespace
if one is exported. Then an error is signaled if the name space is imported by other loaded name
spaces, and the namespace is not unloaded. If defined, a hook function . onUnload is run before
removing the name space from the internal registry.

See the comments in the help for detach about some issues with unloading and reloading names-
paces.

Value

attachNamespace returns invisibly the environment it adds to the search path.

loadNamespace returns the namespace environment, either one already loaded or the one the
function causes to be loaded.

loadedNamespaces returns a character vector.

unloadNamespace returns NULL, invisibly.

Author(s)

Luke Tierney

ns-topenv Top Level Environment

Description

Finding the top level environment.

342 NULL

Usage
topenv (envir = parent.frame (),
matchThisEnv = getOption ("topLevelEnvironment"))
Arguments
envir environment.

matchThisEnv return this environment, if it matches before any other criterion is satisfied.
The default, the option ‘topLevelEnvironment’, is set by sys.source,
which treats a specific environment as the top level environment. Supplying the
argument as NULL means it will never match.

Details

topenv returns the first top level environment found when searching envir and its enclosing
environments. An environment is considered top level if it is the internal environment of a name
space, a package environment in the search path, or . GlobalEnv.

Examples

topenv (.GlobalEnv)
topenv (new.env())

NULL The Null Object

Description
NULL represents the null object in R: it is a reserved word. NULL is often returned by expressions
and functions whose value is undefined: it is also used as the empty pairlist.
as.null ignores its argument and returns the value NULL.

is.null returns TRUE if its argument is NULL and FALSE otherwise.

Usage

NULL
as.null(x, ...)
is.null (x)

Arguments
X an object to be tested or coerced.
ignored.
Note

is.null is a primitive function.

numeric 343

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples
is.null (list()) # FALSE (on purpose!)
is.null (integer(0)) # F
is.null (logical(0))# F
as.null (list (a=1,b="'c"))
numeric Numeric Vectors

Description

Creates or coerces objects of type "numeric". is.numeric is a more general test of an object
being interpretable as numbers.

Usage

numeric (length = 0)
as.numeric (x,)
is.numeric (x)

Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one will give a
warning.
X object to be coerced or tested.
further arguments passed to or from other methods.
Details

numeric is identical to double (and real). It creates a double-precision vector of the specified
length with each element equal to O.

as.numeric is a generic function, but S3 methods must be written for as . double. It is identi-
calto as.double (and as.real).

is.numeric is an internal generic primitive function: you can write methods to handle spe-
cific classes of objects, see InternalMethods. It is not the same as i s . double. Factors are handled
by the default method, and there are methods for classes "Date", "POSIXt" and "difftime"
(all of which return false). Methods for is.numeric should only return true if the base type of the
class is double or integer and values can reasonably be regarded as numeric (e.g. arithmetic
on them makes sense, and comparison should be done via the base type).

344 numeric

Value

for numeric and as.numeric see double.

The default method for is.numeric returns TRUE if its argument is of mode
"numeric" (type "double" or type "integer") and not a factor, and FALSE other-
wise. Thatis, is.integer (x) || is.double (x),or (mode (x) == "numeric") &&
lis.factor (x).

S4 methods

as.numeric and is.numeric are internally S4 generic and so methods can be set for them via
setMethod.

To ensure that as . numeric, as.double and as. real remain identical, S4 methods can only
be set for as.numeric.

Note on names

It is a historical anomaly that R has three names for its floating-point vectors, double, numeric
and real.

double is the name of the type. numeric is the name of the mode and also of the implicit class.
As an S4 formal class, use "numeric".

real is deprecated and should not be used in new code.

The potential confusion is that R has used mode "numeric" to mean ‘double or integer’, which
conflicts with the S4 usage. Thus is.numeric tests the mode, not the class, but as.numeric
(which is identical to as . double) coerces to the class.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

double, integer, storage.mode.

Examples

as.numeric(c("-.1"," 2.7 ","B")) # (-0.1, 2.7, NA) + warning
as.numeric (factor (5:10))

NumericConstants 345

NumericConstants Numeric Constants

Description

How R parses numeric constants.

Details

R parses numeric constants in its input in a very similar way to C99 floating-point constants.

Inf and NaN are numeric constants (with typeof (.) "double"). These are recognized
ignoring case, as is infinity as an alternative to Inf. NA_real_ and NA_integer_ are
constants of types "double" and "integer" representing missing values. All other numeric
constants start with a digit or period and are either a decimal or hexadecimal constant optionally
followed by L.

Hexadecimal constants start with 0x or 0X followed by a nonempty sequence from 0-9 a-f A-F
. which is interpreted as a hexadecimal number, optionally followed by a binary exponent. A binary
exponent consists of a P or p followed by an optional plus or minus sign followed by a non-empty
sequence of (decimal) digits, and indicates multiplication by a power of two. Thus 0x123p456 is
291 x 2456,

Decimal constants consist of a nonempty sequence of digits possibly containing a period (the dec-
imal point), optionally followed by a decimal exponent. A decimal exponent consists of an E or
e followed by an optional plus or minus sign followed by a non-empty sequence of digits, and
indicates multiplication by a power of ten.

Values which are too large or too small to be representable will overflow to Inf or underflow to
0.0.

A numeric constant immediately followed by 1 is regarded as an imaginary complex number.

An numeric constant immediately followed by L is regarded as an i nt eger number when possible
(and with a warning if it containsa " . ").

Only the ASCII digits 0-9 are recognized as digits, even in languages which have other representa-
tions of digits. The ‘decimal separator’ is always a period and never a comma.

Note that a leading plus or minus is not regarded by the parser as part of a numeric constant but as
a unary operator applied to the constant.

Note

When a string is parsed to input a numeric constant, the number may or may not be representable
exactly in the C double type used. If not one of the nearest representable numbers will be returned.

R’s own C code is used to convert constants to binary numbers, so the effect can be expected to
be the same on all platforms implementing full IEC 600559 arithmetic (the most likely area of
difference being the handling of numbers less than .Machine$double.xmin). The same code
is used by scan.

346 numeric_version

See Also

Syntax.

Quotes for the parsing of character constants,

Examples

2.1

typeof (2)

sgrt (1i) # remember elementary math?
utils::str (0xAQ)

identical (1L, as.integer(l))

You can combine the "Ox" prefix with the "L" suffix
identical (0xFL, as.integer(15))

numeric_version Numeric Versions

Description

A simple S3 class for representing numeric versions including package versions, and associated

methods.
Usage
numeric_version (x, strict = TRUE)
package_version(x, strict = TRUE)
R_system_version(x, strict = TRUE)
getRversion ()
Arguments
X a character vector with suitable numeric version strings (see ‘Details’);
for package_version, alternatively an R version object as obtained by
R.version.
strict a logical indicating whether invalid numeric versions should results in an error
(default) or not.
Details

Numeric versions are sequences of one or more non-negative integers, usually (e.g., in package
‘DESCRIPTION’ files) represented as character strings with the elements of the sequence concate-
nated and separated by single ‘.’ or ‘-’ characters. R package versions consist of at least two such
integers, an R system version of exactly three (major, minor and patchlevel).

Functions numeric_version, package_version and R_system_version create a rep-
resentation from such strings (if suitable) which allows for coercion and testing, combination, com-
parison, summaries (min/max), inclusion in data frames, subscripting, and printing. The classes can
hold a vector of such representations.

octmode 347

getRversion returns the version of the running R as an R system version object.

The [[operator extracts or replaces a single version. To access the integers of a version use two
indices: see the examples.
See Also

compareVersion

Examples

x <- package_version(c("1l.2-4", "1.2-3", "2.1"))
x < "1.4-2.3"
c(min(x), max(x))

x[2, 2]

x$major

x$minor

if (getRversion() <= "2.5.0") { ## work around missing feature

cat ("Your version of R, ", as.character (getRversion()),

", 1is outdated.\n",
"Now trying to work around that ...\n", sep = "")

}

x[[c(1,3)]] # '4' as a numeric vector, same as x[1, 3]

x[1, 3] # 4 as an integer

x[[2, 3]1] <=0 # zero the patchlevel

x[[c(2,3)]] <= 0 # same

X

x[[3]] <= "2.2.3"; x

octmode Display Numbers in Octal

Description
Convert or print integers in octal format, with as many digits as are needed to display the largest,
using leading zeroes as necessary.

Usage

as.octmode (x)

S3 method for class 'octmode'
as.character(x, ...)

S3 method for class 'octmode'
format (x, width = NULL, ...)

S3 method for class 'octmode'
print(x, ...)

348 on.exit

Arguments
X An object, for the methods inheriting from class "octmode".
width NULL or a positive integer specifying the minimum field width to be used, with
padding by leading zeroes.
further arguments passed to or from other methods.
Details

Class "octmode™" consists of integer vectors with that class attribute, used merely to ensure that
they are printed in octal notation, specifically for Unix-like file permissions such as 755. Subsetting
([) works too.

If width = NULL (the default), the output is padded with leading zeroes to the smallest width
needed for all the non-missing elements.

as.octmode can convert integers (of type "integer" or "double") and character vectors
whose elements contain only digits 0—7 (or are NA) to class "octmode™".

There is a ! method and |, & and xor methods: these recycle their arguments to the length of the
longer and then apply the operators bitwise to each element.

See Also

These are auxiliary functions for file.info.

hexmode, sprintf for other options in converting integers to octal, strtoi to convert octal
strings to integers.

Examples
(on <—- as.octmode(c(16,32, 127:129))) # "020™ "040" "177"™ "200" "201"
unclass (on[3:4]) # subsetting

manipulate file modes
fmode <- as.octmode("170")
(fmode | "644") & "755"

umask <- Sys.umask (NA) # depends on platform
c (fmode, "666", "755") & !umask

on.exit Function Exit Code

Description

on.exit records the expression given as its argument as needing to be executed when the current
function exits (either naturally or as the result of an error). This is useful for resetting graphical
parameters or performing other cleanup actions.

If no expression is provided, i.e., the call is on.exit (), then the current on.exit code is re-
moved.

on.exit 349

Usage

on.exit (expr = NULL, add = FALSE)

Arguments
expr an expression to be executed.
add if TRUE, add expr to be executed after any previously set expressions; other-
wise (the default) expr will overwrite any previously set expressions.
Details

Where expr was evaluated changed in R 2.8.0, and the following applies only to that and later
versions.

The expr argument passed to on.exit is recorded without evaluation. If it is not subsequently
removed/replaced by another on.exit call in the same function, it is evaluated in the evaluation
frame of the function when it exits (including during standard error handling). Thus any functions
or variables in the expression will be looked for in the function and its environment at the time of
exit: to capture the current value in expr use substitute or similar.

This is a ‘special’ primitive function: it only evaluates the argument add.

Value

Invisible NULL.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

sys.on.exit which returns the expression stored for use by on.exit () in the function in
which sys.on.exit () is evaluated.

Examples
require (graphics)

opar <- par(mai = c(1,1,1,1))
on.exit (par (opar))

350 options

Ops.Date Operators on the Date Class

Description

Operators for the "Date" class.

There is an Ops method and specific methods for + and - for the Date class.

Usage

date + x
x + date
date - x
datel lop date2

Arguments
date date objects
datel, date?2 date objects or character vectors. (Character vectors are converted by
as.Date.)
X a numeric vector (in days) or an object of class "difftime", rounded to the
nearest whole day.
lop One of ==, ! =, <, <=, > or >=.
Details

x does not need to be integer if specified as a numeric vector, but see the comments about fractional
days in the help for Dates.

Examples

(z <-= Sys.Date())
z + 10
z < c("2009-06-01", "2010-01-01", "2015-01-01")

options Options Settings

Description

Allow the user to set and examine a variety of global options which affect the way in which R
computes and displays its results.

options 351

Usage

options(...)

getOption(x, default = NULL)

.Options
Arguments
any options can be defined, using name = wvalue or by passing a list of such
tagged values. However, only the ones below are used in base R. Further,
options (’name’) == options () ['name’], see the example.
x a character string holding an option name.
default if the specified option is not set in the options list, this value is returned. This
facilitates retrieving an option and checking whether it is set and setting it sepa-
rately if not.
Details

Invoking options () with no arguments returns a list with the current values of the options. Note
that not all options listed below are set initially. To access the value of a single option, one should
use getOption ("width"), e.g., rather than options ("width") which is a list of length
one.

.Options also always contains the options () list (as a pairlist, unsorted), for S compatibility.
Assigning to it will make a local copy and not change the original.

Value

For getOption, the current value set for option x, or NULL if the option is unset.

For options (), alist of all set options sorted by name. For options (name), a list of length
one containing the set value, or NULL if it is unset. For uses setting one or more options, a list with
the previous values of the options changed (returned invisibly).

Options used in base R

add.smooth: typically logical, defaulting to TRUE. Could also be set to an integer for specifying
how many (simulated) smooths should be added. This is currently only used by plot . lm.

browserNLdisabled: logical: whether newline is disabled as a synonym for "n" is the
browser.

checkPackageLicense: logical, not set by default. If true, 1ibrary asks a user to accept
any non-standard license at first use.

check.bounds: logical, defaulting to FALSE. If true, a warning is produced whenever a vector
(atomic or 1ist) is extended, by something like x <- 1:3; x[5] <- 6.

continue: anon-empty string setting the prompt used for lines which continue over one line.

352 options

defaultPackages: the packages that are attached by default when R starts up. Ini-
tially set from value of the environment variable R_DEFAULT_PACKAGES, or if that is
unset to c ("datasets", "utils", "grDevices", "graphics", "stats",
"methods"). (Set R_DEFAULT_PACKAGES to NULL or a comma-separated list of pack-
age names.) A call to options should be in your ‘.Rprofile’ file to ensure that the
change takes effect before the base package is initialized (see Startup).

deparse.max.lines: controls the number of lines used when deparsing in traceback,
browser, and upon entry to a function whose debugging flag is set. Initially unset, and
only used if set to a positive integer.

digits: controls the number of digits to print when printing numeric values. It is a suggestion
only. Valid values are 1...22 with default 7. See the note in print .default about values
greater than 15.

digits.secs: controls the maximum number of digits to print when formatting time values in
seconds. Valid values are 0. .. 6 with default 0. See strftime.

download.file.method: Method to be used for download.file. Currently download
methods "internal", "wget" and "lynx" are available. There is no default for this
option, when method = "auto" is chosen: see download.file.

echo: logical. Only used in non-interactive mode, when it controls whether input is echoed.
Command-line option ‘—~-slave’ sets this to FALSE, but otherwise it starts the session as
TRUE.

encoding: The name of an encoding, default "native.enc"). See connections.

error: either a function or an expression governing the handling of non-catastrophic errors such
as those generated by stop as well as by signals and internally detected errors. If the op-
tion is a function, a call to that function, with no arguments, is generated as the expres-
sion. The default value is NULL: see stop for the behaviour in that case. The functions
dump . frames and recover provide alternatives that allow post-mortem debugging. Note
that these need to specified as e.g. options (error=utils::recover) in startup files
such as ‘.Rprofile’.

expressions: sets a limit on the number of nested expressions that will be evaluated. Valid
values are 25...500000 with default 5000. If you increase it, you may also want to start R
with a larger protection stack; see ‘——max-ppsize’ in Memory. Note too that you may
cause a segfault from overflow of the C stack, and on OSes where it is possible you may want
to increase that.

keep.source: When TRUE, the source code for functions (newly defined or loaded) is stored
internally allowing comments to be kept in the right places. Retrieve the source by printing or
using deparse (fn, control = "useSource").

The default is interactive (), i.e., TRUE for interactive use.

keep.source.pkgs: As for keep. source, for functions in packages loaded by 1ibrary
or require. Defaults to FALSE unless the environment variable R_KEEP_PKG_SOURCE
is set to yes.
Note this does not apply to packages using lazy-loading. Whether they have kept source is
determined when they are installed (and is almost certainly false).

max.contour.segments: positive integer, defaulting to 250000 and usually not set. A limit
on the number of segments in a single contour line in contour or contourLines.

options 353

max.print: integer, defaultingto 99999. print or show methods can make use of this option,
to limit the amount of information that is printed, to something in the order of (and typically
slightly less than) max . print entries.

OutDec: character string containing a single-byte character. The character to be used as the dec-
imal point in output conversions, that is in printing, plotting and as.character but not
deparsing.

pager: the command used for displaying text files by file.show. Defaults to
‘R_HOME/bin/pager’, which selects a pager via the \1ink { PAGER} environment vari-
able (and that usually defaults to 1ess). Can be a character string or an R function, in which
case it needs to accept the same first four arguments as £ile. show.

papersize: the default paper format used by postscript; set by environment variable
R_PAPERSIZE when R is started: if that is unset or invalid it defaults to a value derived
from the locale category LC_PAPER, or if that is unavailable to a default set when R was
built.

pdfviewer: default PDF viewer. The default is set from the environment variable
R_PDFVIEWER, the default value of which is set when R is configured.

printcmd: the command used by postscript for printing; set by environment variable
R_PRINTCMD when R is started. This should be a command that expects either input to
be piped to ‘stdin’ or to be given a single filename argument. Usually set to "1pr" on a
Unix-alike.

prompt: anon-empty string to be used for R’s prompt; should usually end in a blank (" ™).

rl_word_breaks: Used for the readline-based terminal interface. Default value "
ANEARN"\\’ Y><=%;, | &\{ () \ } ". This is the set of characters use to break the input line
up into tokens for object- and file-name completion. Those who do not use spaces around
operators may prefer
" AEAD\"\\ Y><=+-x%;, | &\ { () \} " which was the default in R 2.5.0. (The default
in pre-2.5.0 versions of R was
" ANEAR\"AN Y@s><=; &\ { ("))

save.defaults, save.image.defaults: see save.

scipen: integer. A penalty to be applied when deciding to print numeric values in fixed or expo-
nential notation. Positive values bias towards fixed and negative towards scientific notation:
fixed notation will be preferred unless it is more than scipen digits wider.

showWarnCalls, showErrorCalls: alogical. Should warning and error messages show a
summary of the call stack? By default error calls are shown in non-interactive sessions.

showNCalls: ainteger. Controls how long the sequence of calls must be (in bytes) before ellipses
are used. Defaults to 40 and should be at least 30 and no more than 500.

show.error.messages: alogical. Should error messages be printed? Intended for use with
try or a user-installed error handler.

stringsAsFactors: The default setting for arguments of data.frame and read.table.

texi2dvi: used by function texi2dvi in package tools. Set at startup from the environment
variable R_TEXI2DVICMD.

timeout: integer. The timeout for some Internet operations, in seconds. Default 60 seconds. See
download.file and connections.

topLevelEnvironment: see topenv and sys.source.

354 options

useFancyQuotes: controls the use of directional quotes in sQuote, dQuote and in rendering
text help (see Rd2txt in package tools). Can be TRUE, FALSE, "TeX" or "UTF-8".

verbose: logical. Should R report extra information on progress? Set to TRUE by the command-
line option ‘——-verbose’.

warn: sets the handling of warning messages. If warn is negative all warnings are ignored. If
warn is zero (the default) warnings are stored until the top—level function returns. If fewer
than 10 warnings were signalled they will be printed otherwise a message saying how many
(max 50) were signalled. An object called last.warning is created and can be printed
through the function warnings. If warn is one, warnings are printed as they occur. If
warn is two or larger all warnings are turned into errors.

warnPartialMatchArgs: logical. If true, warns if partial matching is used in argument
matching.

warnPartialMatchAttr: logical. If true, warns if partial matching is used in extracting at-
tributes via attr.

warnPartialMatchDollar: logical. If true, warns if partial matching is used for extraction
by $.

warning.expression: an R code expression to be called if a warning is generated, replacing
the standard message. If non-null it is called irrespective of the value of option warn.

warning.length: sets the truncation limit for error and warning messages. A non-negative
integer, with allowed values 100. .. 8170, default 1000.

width: controls the maximum number of columns on a line used in printing vectors, matrices and
arrays, and when filling by cat.
Columns are normally the same as characters except in CJK languages.
You may want to change this if you re-size the window that R is running in. Valid values are
10...10000 with default normally 80. (The limits on valid values are in file ‘Print .h’ and
can be changed by re-compiling R.) Some R consoles automatically change the value when
they are resized.
See the examples on Startup for one way to set this automatically from the terminal width
when R is started.

The ‘factory-fresh’ default settings of some of these options are

add.smooth TRUE
check.bounds FALSE
continue "y on

digits 7

echo TRUE
encoding "native.enc"
error NULL
expressions 5000
keep.source interactive ()
keep.source.pkgs FALSE
max.print 99999

OutDec "

prompt "> "

scipen 0

options 355

show.error.messages TRUE

timeout 60
verbose FALSE
warn 0
warning.length 1000
width 80

Others are set from environment variables or are platform-dependent.

Options set in package grDevices
These will be set when package grDevices (or its name space) is loaded if not already set.

device: a character string giving the name of a function, or the function object itself, which
when called creates a new graphics device of the default type for that session. The value of
this option defaults to the normal screen device (e.g., X11, windows or quartz) for an
interactive session, and pdf in batch use or if a screen is not available. If set to the name
of a device, the device is looked for first from the global environment (that is down the usual
search path) and then in the grDevices namespace.
The default values in interactive and non-interactive sessions are configurable via environment
variables R_INTERACTIVE_DEVICE and R_DEFAULT_DEVICE respectively.

device.ask.default: logical. The default for devAskNewPage ("ask") when a device
is opened.

locatorBell: logical. Should selection in locator and identify be confirmed by a bell?
Default TRUE. Honoured at least on X11 and windows devices.

bitmapType: (Unix-only) character. The default type for the bitmap devices such as png. De-
faults to "cairo" on systems where that is available, or to "quartz" on Mac OS X where
that is available.

Options set in package stats
These will be set when package stats (or its name space) is loaded if not already set.

contrasts: the default contrasts used in model fitting such as with aov or 1m. A charac-
ter vector of length two, the first giving the function to be used with unordered factors and
the second the function to be used with ordered factors. By default the elements are named
c ("unordered", "ordered"), butthe names are unused.

na.action: the name of a function for treating missing values (NA’s) for certain situations.

show.coef.Pvalues: logical, affecting whether P values are printed in summary tables of
coefficients. See printCoefmat.

show.nls.convergence: logical, should nls convergence messages be printed for success-
ful fits?

show.signif.stars: logical, should stars be printed on summary tables of coefficients? See
printCoefmat.

ts.eps: the relative tolerance for certain time series (t s) computations. Default 1e-05.

ts.S.compat: logical. Used to select S compatibility for plotting time-series spectra. See the
description of argument 1og in plot . spec.

356 options

Options set in package utils

These will be set when package utils (or its name space) is loaded if not already set.

BioC_mirror: The URL of a Bioconductor mirror for use by setRepositories,
e.g. the default ‘"http://www.bioconductor.org"’ or the European mir-
ror ‘"http://bioconductor.statistik.tu-dortmund.de"’. Can be set by
chooseBioCmirror.

browser: default HTML browser used by help.start () and browseURL on UNIX, or a
non-default browser on Windows. Alternatively, an R function that is called with a URL as its
argument.

ccaddress: default Cc: address used by create.post (and hencebug.report and
help.request). Canbe FALSE or "".

de.cellwidth: integer: the cell widths (number of characters) to be used in the data editor
dataentry. If this is unset (the default), 0, negative or NA, variable cell widths are used.

demo.ask: default for the ask argument of demo.

editor: a non-empty string, or a function that is called with a file path as argument. Sets the
default text editor, e.g., for edit. Set from the environment variable EDITOR on UNIX, or if
unset VISUAL or vi.

example.ask: default for the ask argument of example.

help.ports: optional integer vector for setting ports of the internal HTTP server, see
startDynamicHelp.

help.try.all.packages: default for an argument of help.
help_type: default for an argument of he 1p, used also as the help type by 2.

HTTPUserAgent: string used as the user agent in HTTP requests. If NULL, HTTP requests
will be made without a user agent header. The defaultis R (<version> <platform>
<arch> <os>)

install.lock: logical: should per-directory package locking be used by
install.packages? Most useful for binary installs on Mac OS X and Windows,
but can be used in a startup file for source installs via R CMD INSTALL. For binary installs,
can also be the character string "pkgloack".

internet.info: The minimum level of information to be printed on URL downloads etc. De-
fault is 2, for failure causes. Set to 1 or 0 to get more information.

mailer: default emailing method used by create.post and hence bug.report and
help.request.

menu.graphics: Logical: should graphical menus be used if available?. Defaults to TRUE.
Currently applies to select.list, chooseCRANmirror, setRepositories and to
select from multiple (text) help files in help.

pkgType: The default type of packages to be downloaded and installed - see
install.packages. Possible values are "source" (the default except under the
CRAN Mac OS X build) and "mac.binary". The latter can have a suffix if supported
by a special build, such as "mac.binary.leopard" to access the "leopard" tree of
repositories instead of the default "universal™.

options 357

repos: URLs of the repositories for use by update.packages. Defaults to
Cc (CRAN="QCRANQ@"), a value that causes some utilities to prompt for a CRAN
mirror. To avoid this do set the CRAN mirror, by something like local ({r
<- getOption("repos"); r["CRAN"] <- "http://my.local.cran";
options (repos=r) }).

Note that you can add more repositories (Bioconductor and Omegahat, notably) using
setRepositories ().

SweaveHooks, SweaveSyntax: see Sweave.

unzip: a character string, the path of the command used for unzipping help files, or
"internal". Defaults to the value of R_UNZIPCMD, which is setin ‘etc/Renviron’ if
an unzip command was found during configuration.
Options used on Unix only
dvipscmd: character string giving a command to be used in off-line printing of help pages via
PostScript. Defaults to "dvips".
Options used on Windows only
warn.FPU: logical, by default undefined. If true, a warning is produced whenever dyn.load re-
pairs the control word damaged by a buggy DLL.
References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.
Examples

op <- options(); utils::str(op) # op() may contain functions.

getOption ("width") == options()$width # the latter needs more memory
options (digits = 15)
pi

set the editor, and save previous value

old.o <- options(editor = "nedit")

old.o

options (check.bounds = TRUE, warn = 1)

x <— NULL; x[4] <- "yes" # gives a warning

options (digits=5)
print (leb)
options (scipen=3); print (leb)

options (op) # reset (all) initial options
options ("digits")

Not run: ## set contrast handling to be like S

358 order

options (contrasts = c("contr.helmert", "contr.poly"))
End (Not run)

Not run: ## on error, terminate the R session with error status 66
options (error = quote(g("no", status=66, runLast=FALSE)))
stop ("test it")

End (Not run)

Not run: ## Set error actions for debugging:

enter browser on error, see ?recover:

options (error = recover)

allows to call debugger () afterwards, see ?debugger:
options (error = dump.frames)

A possible setting for non-interactive sessions
options (error = quote ({dump.frames (to.file=TRUE); qg()}))

End (Not run)

Compare the two ways to get an option and use it

acconting for the possibility it might not be set.
if(as.logical (getOption ("performCleanp", TRUE)))

cat ("do cleanup\n")

Not run:
a clumsier way of expressing the above w/o the default.
tmp <- getOption ("performCleanup")
if (is.null (tmp))
tmp <- TRUE
if (tmp)
cat ("do cleanup\n")

End (Not run)

order Ordering Permutation

Description
order returns a permutation which rearranges its first argument into ascending or descending
order, breaking ties by further arguments. sort . 1ist is the same, using only one argument.
See the examples for how to use these functions to sort data frames, etc.
Usage
order (..., na.last = TRUE, decreasing = FALSE)

sort.list (x, partial = NULL, na.last = TRUE, decreasing = FALSE,
method = c("shell", "quick", "radix"))

order 359

Arguments
a sequence of numeric, complex, character or logical vectors, all of the same
length, or a classed R object.
X an atomic vector.
partial vector of indices for partial sorting. (Non-NULL values are not implemented.)

decreasing logical. Should the sort order be increasing or decreasing?

na.last for controlling the treatment of NAs. If TRUE, missing values in the data are put
last; if FALSE, they are put first; if NA, they are removed.

method the method to be used: partial matches are allowed.

Details

In the case of ties in the first vector, values in the second are used to break the ties. If the values are
still tied, values in the later arguments are used to break the tie (see the first example). The sort used
is stable (except for method = "quick"), so any unresolved ties will be left in their original
ordering.

Complex values are sorted first by the real part, then the imaginary part.

The sort order for character vectors will depend on the collating sequence of the locale in use: see
Comparison.

The default method for sort.1list is a good compromise. Method "quick™" is only supported
for numeric x with na.last=NA, and is not stable, but will be faster for long vectors. Method
"radix" is only implemented for integer x with a range of less than 100,000. For such x it is very
fast (and stable), and hence is ideal for sorting factors.

partial = NULL is supported for compatibility with other implementations of S, but no other
values are accepted and ordering is always complete.

For a classed R object, the sort order is taken from xt frm: as its help page notes, this can be slow
unless a suitable method has been defined or is.numeric (x) is true. For factors, this sorts on
the internal codes, which is particularly appropriate for ordered factors.

Note
sort.list can get called by mistake as a method for sort with a list argument, and gives a

suitable error message for list x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

sort, rank, xt frm.

360 order

Examples

require (stats)

(ii <- order(x <- c¢(1,1,3:1,1:4,3), yv <= ¢c(9,9:1), z <-c(2,1:9)))
6 5 2 1 7 410 8 3 9
rbind(x,vy,z) [,1i] # shows the reordering (ties via 2nd & 3rd argqg)

Suppose we wanted descending order on y.
A simple solution for numeric 'y' is
rbind(x,y,z) [, order(x, -y, z)]

More generally we can make use of xtfrm
cy <—- as.character (y)

rbind(x,y,z) [, order(x, —-xtfrm(cy), z)]

Sorting data frames:
dd <- transform(data.frame(x,y,z),
z = factor(z, labels=LETTERS[9:1]))

Either as above {for factor 'z' : using internal coding}:
dd[order(x, -y, z) ,]
or along lst column, ties along 2nd, ... xarbitrary* no.{columns}:

dd[do.call (order, dd) ,]

set.seed (1) # reproducible example:
d4 <- data.frame (x = round rnorm(100)), yv = round(1l0*xrunif (100)),
u

z = round(8*rnorm(100)), = round (50xrunif (100)))
(dds <- d4[do.call (order, d4) ,1])
(i <= which(diff (d4s[,3]) == 0))
in 2 places, needed 3 cols to break ties:

d4s[rbind(i,i+1), 1

rearrange matched vectors so that the first is in ascending order
x <—= c(5:1, 6:8, 12:9)

y <= (x = 5)72

o <—- order (x)

rbind(x[o], vI[o])

tests of na.last
a <- c(4, 3, 2, NA, 1)
b <- c(4, NA, 2, 7, 1)
z <— cbind(a, b)
(o <— order(a, b)); zlo, 1
o <- order(a, b, na.last = FALSE)); zl[o,]
o <- order(a, b, na.last = NA)); z[o,]

Not run:

speed examples for long vectors:

x <- factor (sample (letters, 1le6, replace=TRUE))

system.time (o <- sort.list(x)) ## 0.4 secs

stopifnot (!is.unsorted (x[0]))

system.time (o0 <- sort.list (x, method="quick", na.last=NA)) # 0.1 sec
stopifnot (!is.unsorted (x[0]))

system.time (o <- sort.list (x, method="radix")) # 0.01 sec

outer 361

stopifnot (!is.unsorted (x[0]))
xx <— sample(l:26, le7, replace=TRUE)

system.time (o <- sort.list (xx, method="radix")) # 0.1 sec

xx <- sample(1:100000, 1le7, replace=TRUE)

system.time (o <- sort.list (xx, method="radix")) # 0.5 sec
system.time (0 <- sort.list (xx, method="quick", na.last=NA)) # 1.3 sec

End(Not run)

outer Outer Product of Arrays

Description

The outer product of the arrays X and Y is the array A with dimension ¢ (dim(X), dim(Y))

where element A[c (arrayindex.x, arrayindex.y)] = FUN(X[arrayindex.x],
Y[arrayindex.vy], ...).
Usage
outer (X, Y, FUN="«", ...)
X %0% Y
Arguments
X, Y First and second arguments for function FUN. Typically a vector or array.
FUN a function to use on the outer products, found via match. fun (except for the

special case "*").

optional arguments to be passed to FUN.

Details

X and Y must be suitable arguments for FUN. Each will be extended by rep to length the products
of the lengths of X and Y before FUN is called.

FUN is called with these two extended vectors as arguments. Therefore, it must be a vectorized
function (or the name of one), expecting at least two arguments.

Where they exist, the [dim]names of X and Y will be copied to the answer, and a dimension assigned
which is the concatenation of the dimensions of X and Y (or lengths if dimensions do not exist).

FUN = "«" is handled internally as a special case, via as.vector(X) %$x%
t (as.vector (Y)), and is intended only for numeric vectors and arrays.

%$0% is binary operator providing a wrapper for outer (x, y, "*").

Author(s)

Jonathan Rougier

362 Paren

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.
See Also

$+% for usual (inner) matrix vector multiplication; kronecker which is based on outer;
Vectorize for vectorizing a non-vectorized function.

Examples
x <= 1:9; names (x) <- x
Multiplication & Power Tables
X %$0% X
y <= 2:8; names(y) <- paste(y,":",sep="")

outer(y, x, "™")
outer (month.abb, 1999:2003, FUN = "paste")

three way multiplication table:
X %0% x %0% y[1l:3]

Paren Parentheses and Braces

Description

Open parenthesis, (, and open brace, {, are .Primitive functions in R.

Effectively, (is semantically equivalent to the identity function (x) x, whereas { is slightly
more interesting, see examples.

Usage
(oo)

Value

For (, the result of evaluating the argument. This has visibility set, so will auto-print if used at
top-level.

For {, the result of the last expression evaluated. This has the visibility of the last evaluation.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

parse

See Also

if, return, etc for other objects used in the R language itself.

Syntax for operator precedence.

Examples

f <= get (" (")
e <- expression(3 + 2 x 4)
identical (f(e), e)

do <- get ("{")
do(x <= 3, y <= 2%x-3, 6-xX-Vy); X; ¥V

note the differences

363

(2+3)

{2+3; 4+5}

(invisible (2+3))
{invisible (2+3) }

parse

Parse Expressions

Description

parse returns the parsed but unevaluated expressions in a list.

Usage
parse(file = "", n = NULL, text = NULL, prompt = "?", srcfile,
encoding = "unknown")
Arguments
file a connection, or a character string giving the name of a file or a URL to read the
expressions from. If file is "" and text is missing or NULL then input is
taken from the console.
n integer (or coerced to integer). The maximum number of expressions to parse.
If n is NULL or negative or NA the input is parsed in its entirety.
text character vector. The text to parse. Elements are treated as if they were lines of
a file. Other R objects will be coerced to character if possible.
prompt the prompt to print when parsing from the keyboard. NULL means to use R’s
prompt, getOption ("prompt").
srcfile NULL, or a srcfile object. See the ‘Details’ section.
encoding encoding to be assumed for input strings. If the value is "1latinl" or "UTF -

8" it is used to mark character strings as known to be in Latin-1 or UTF-8: it is
not used to re-encode the input. To do the latter, specify the encoding as part of
the connection con or via options (encoding=): see the example under
file.

364 parse

Details

If text has length greater than zero (after coercion) it is used in preference to file.

All versions of R accept input from a connection with end of line marked by LF (as used on Unix),
CRLF (as used on DOS/Windows) or CR (as used on classic Mac OS). The final line can be incom-
plete, that is missing the final EOL marker.

See source for the limits on the size of functions that can be parsed (by default).

When input is taken from the console, n = NULL is equivalentton = 1,andn < 0 will read
until an EOF character is read. (The EOF character is Ctrl-Z for the Windows front-ends.) The
line-length limit is 4095 bytes when reading from the console (which may impose a lower limit: see
‘An Introduction to R’).

The default for srcfile is set as follows. If options ("keep.source") is FALSE,
srcfile defaults to NULL. Otherwise, if text isused, srcfile willbesettoa srcfilecopy
containing the text. If a character string is used for file, a srcfile object referring to that file
will be used.

Value

An object of type "expression", with up to n elements if specified as a non-negative integer.

When srcfile is non-NULL, a "srcref" attribute will be attached to the result containing a
list of srcref records corresponding to each element, a "srcfile" attribute will be attached
containing a copy of srcfile, and a "wholeSrcref" attribute will be attached containing a
srcref record corresponding to all of the parsed text.

A syntax error (including an incomplete expression) will throw an error.

Character strings in the result will have a declared encoding if encodingis "latinl" or "UTF -
8", orif text is supplied with every element of known encoding in a Latin-1 or UTF-8 locale.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

scan, source, eval, deparse.

Examples

cat ("x <- c(1,4)\n x ~ 3 -10 ; outer(1:7,5:9)\n", file="xyz.Rdmped")
parse 3 statements from the file "xyz.Rdmped"

parse(file = "xyz.Rdmped", n = 3)

unlink ("xyz.Rdmped")

paste 365

paste Concatenate Strings

Description

Concatenate vectors after converting to character.

Usage
paste(..., sep = " ", collapse = NULL)
Arguments
one or more R objects, to be converted to character vectors.
sep a character string to separate the terms. Not NA_ character_ .
collapse an optional character string to separate the results. Not NA_character_.
Details

paste converts its arguments (via as .character) to character strings, and concatenates them
(separating them by the string given by sep). If the arguments are vectors, they are concatenated
term-by-term to give a character vector result. Vector arguments are recycled as needed, with zero-
length arguments being recycled to " ".

Note that paste () coerces NA_character_, the character missing value, to "NA" which may
seem undesirable, e.g., when pasting two character vectors, or very desirable, e.g. in paste ("the
value of p is ", p).

If a value is specified for collapse, the values in the result are then concatenated into a single
string, with the elements being separated by the value of collapse.

Value

A character vector of the concatenated values. This will be of length zero if all the objects are,
unless collapse is non-NULL in which case it is a single empty string.

If any input into an element of the result is in UTF-8 (and none are declared with encoding
"bytes"), that element will be in UTF-8, otherwise in the current encoding in which case the
encoding of the element is declared if the current locale is either Latin-1 or UTF-8, at least one of
the corresponding inputs (including separators) had a declared encoding and all inputs were either
ASCII or declared.

If an input into an element is declared with encoding "bytes", no translation will be done of any
of the elements and the resulting element will have encoding "bytes". If collapse is non-
NULL, this applies also to the second, collapsing, phase, but some translation may have been done
in pasting object together in the first phase.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

366 path.expand

See Also

String manipulation with as.character, substr, nchar, strsplit; further, cat which
concatenates and writes to a file, and sprint f for C like string construction.

‘plotmath’ for the use of paste in plot annotation.

Examples

paste(1l:12) # same as as.character(l1:12)
paste ("A", 1:6, sep = "")
paste ("Today is", date())

path.expand Expand File Paths

Description
Expand a path name, for example by replacing a leading tilde by the user’s home directory (if
defined on that platform).

Usage

path.expand (path)

Arguments

path character vector containing one or more path names.

Details

On some Unix builds of R, a leading ~user will expand to the home directory of user, but not
on Unix versions without readline installed, nor if R is invoked with ‘~——no-readline’.

In an interactive session capabilities ("cledit") will report if readline is available.

See Also

basename, normalizePath.

Examples

path.expand ("~/foo")

pmatch 367

pmatch Fartial String Matching

Description

pmatch seeks matches for the elements of its first argument among those of its second.

Usage

pmatch (x, table, nomatch = NA_integer_, duplicates.ok = FALSE)

Arguments
X the values to be matched: converted to a character vector by as.character.
table the values to be matched against: converted to a character vector.
nomatch the value to be returned at non-matching or multiply partially matching posi-

tions. Note that it is coerced to integer.
duplicates.ok
should elements be in table be used more than once?

Details

The behaviour differs by the value of duplicates. ok. Consider first the case if this is true. First
exact matches are considered, and the positions of the first exact matches are recorded. Then unique
partial matches are considered, and if found recorded. (A partial match occurs if the whole of the
element of x matches the beginning of the element of table.) Finally, all remaining elements of x
are regarded as unmatched. In addition, an empty string can match nothing, not even an exact match
to an empty string. This is the appropriate behaviour for partial matching of character indices, for
example.

If duplicates.ok is FALSE, values of table once matched are excluded from the search
for subsequent matches. This behaviour is equivalent to the R algorithm for argument matching,
except for the consideration of empty strings (which in argument matching are matched after exact
and partial matching to any remaining arguments).

charmatch is similar to pmatch with duplicates. ok true, the differences being that it dif-
ferentiates between no match and an ambiguous partial match, it does match empty strings, and it
does not allow multiple exact matches.

NA values are treated as if they were the string constant "NA".

Character strings with marked encoding "bytes" cannot be compared, so give an error.

Value

An integer vector (possibly including NA if nomatch = NA) of the same length as x, giving the
indices of the elements in t able which matched, or nomatch.

368 polyroot

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

match, charmatch and match.arg, match. fun, match.call, for function argument
matching etc., grep etc for more general (regexp) matching of strings.

Examples

pmatch ("", "") # returns NA
pmatch ("m", c("mean", "median", "mode")) # returns NA
pmatch ("med", c("mean", "median", "mode")) # returns 2
pmatch(c("", "ab", "ab"), c("abc", "ab"), dup=FALSE)
pmatch(c("", "ab", "ab"), c("abc", "ab"), dup=TRUE)

compare

charmatch(c("", "ab", llabll)’ c("abc", llabll))
polyroot Find Zeros of a Real or Complex Polynomial
Description

Find zeros of a real or complex polynomial.

Usage

polyroot (z)

Arguments

z the vector of polynomial coefficients in increasing order.

Details
A polynomial of degree n — 1,

p(z) =21 + 2z + -+ zpz" !

is given by its coefficient vector z [1:n]. polyroot returns the n — 1 complex zeros of p(x)
using the Jenkins-Traub algorithm.
If the coefficient vector z has zeroes for the highest powers, these are discarded.

There is no maximum degree, but numerical stability may be an issue for all but low-degree poly-
nomials.

pos.to.env 369

Value

A complex vector of length n — 1, where n is the position of the largest non-zero element of z.

References

Jenkins and Traub (1972) TOMS Algorithm 419. Comm. ACM, 15, 97-99.

See Also

uniroot for numerical root finding of arbitrary functions; complex and the zero example in
the demos directory.

Examples

polyroot (c (1, 2, 1))

round (polyroot (choose (8, 0:8)), 11) # guess what!
for (nl in 1:4) print (polyroot(l:nl), digits = 4)
polyroot(c(1l, 2, 1, 0, 0)) # same as the first

pos.to.env Convert Positions in the Search Path to Environments

Description

Returns the environment at a specified position in the search path.

Usage

pos.to.env (x)

Arguments

X an integer between 1 and length (search ()), the length of the search path.

Details

Several R functions for manipulating objects in environments (such as get and 1s) allow specify-
ing environments via corresponding positions in the search path. pos.to.env is a convenience
function for programmers which converts these positions to corresponding environments; users will
typically have no need for it. It is primitive.

Examples

pos.to.env(l) # R_GlobalEnv
the next returns the base environment
pos.to.env (length(search()))

370

pretty

pretty

Pretty Breakpoints

Description

Compute a sequence of about n+1 equally spaced ‘round’ values which cover the range of the
values in x. The values are chosen so that they are 1, 2 or 5 times a power of 10.

Usage

pretty (x,

Default S3 method:

pretty(x, n =5, min.n = n %/% 3, shrink.sml = 0.75,
high.u.bias = 1.5, u5.bias = .5 + 1.5xhigh.u.bias,
eps.correct = O,)
Arguments
X an object coercible to numeric by as.numeric.
integer giving the desired number of intervals. Non-integer values are rounded
down.
min.n nonnegative integer giving the minimal number of intervals. If min.n == 0,

shrink.sml

high.u.bias

ub.bias

eps.correct

Details

pretty (.) may return a single value.
positive numeric by a which a default scale is shrunk in the case when
range (x) is very small (usually 0).

non-negative numeric, typically > 1. The interval unit is determined as
{1,2,5,10} times b, a power of 10. Larger high.u.bias values favor larger
units.

non-negative numeric multiplier favoring factor 5 over 2. Default and ‘optimal’:
ub.bias = .5 + 1.5xhigh.u.bias.

integer code, one of {0,1,2}. If non-0, an epsilon correction is made at the
boundaries such that the result boundaries will be outside range (x); in the
small case, the correction is only done if eps.correct >=2.

further arguments for methods.

pretty ignores non-finite values in x.

Letd <- max(x) - min(x) > 0. If dis not (very close) to 0, we let c <- d/n, otherwise
more or less ¢ <— max (abs (range (x))) *shrink.sml / min.n. Then, the /0 base b
is 10U1°210(2)] guch that b < ¢ < 10b.

Now determine the basic unit u as one of {1,2,5,10}b, depending on ¢/b € [1,10) and the two
‘bias’ coefficients, h =high.u.bias and f =u5.bias.

Primitive 371

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

axTicks for the computation of pretty axis tick locations in plots, particularly on the log scale.

Examples
pretty (1:15) #0 2 4 6 810 12 14 16
pretty(1:15, h=2)# 0 5 10 15
pretty(1l:15, n=4)# 0 5 10 15
pretty(1:15 » 2) # 0 5 10 15 20 25 30
pretty (1:20) # 0 5 10 15 20
pretty(1:20, n=2) # 0 10 20
pretty(1:20, n=10)# 0 2 4 ... 20
for(k in 5:11) {

cat ("k=",k,": "); print (diff (range (pretty (100 + c(0, pix107-k)))))}

##—— more bizarre, when min(x) == max(x):

pretty (pi)

add.names <- function(v) { names(v) <- paste(v); v}
utils::str(lapply(add.names (-10:20), pretty))
utils::str(lapply (add.names (0:20), pretty, min.n = 0))
sapply (add.names (0:20), pretty, min.n = 4)

pretty(1.234e100)
pretty (1001.1001)
pretty(1001.1001, shrink = .2)
for(k in -7:3)
cat ("shrink=", formatC(2"k, width=9),":",
formatC (pretty (1001.1001, shrink.sml = 27k), width=6),"\n")

Primitive Look Up a Primitive Function

Description

.Primitive looks up by name a ‘primitive’ (internally implemented) function.

Usage

.Primitive (name)

Arguments

name name of the R function.

372 print

Details

The advantage of .Primitive over . Internal functions is the potential efficiency of argument
passing, and that positional matching can be used where desirable, e.g. in switch. For more
details, see the ‘R Internals Manual’.

All primitive functions are in the base name space.

This function is almost never used: ‘name‘ or, more -carefully, get (name,
envir=baseenv ()) work equally well and do not depend on knowing which functions
are primitive (which does change as R evolves).

See Also

.Internal.

Examples

mysqgrt <- .Primitive ("sqgrt")

c

.Internal # this one *mustx* be primitive!
"if’ # need backticks

print Print Values

Description

print prints its argument and returns it invisibly (via invisible (x)). It is a generic function
which means that new printing methods can be easily added for new classes.

Usage

print(x, ...)

S3 method for class 'factor'
print (x, quote = FALSE, max.levels = NULL,
width = getOption ("width"), ...)

S3 method for class 'table'
print (x, digits = getOption("digits"), quote = FALSE,
na.print = "", zero.print = "0", Jjustify = "none", ...)

S3 method for class 'function'
print (x, useSource = TRUE, ...)

print

Arguments

X

quote
max.levels
width
digits
na.print
zero.print
Jjustify

useSource

Details

373

an object used to select a method.
further arguments passed to or from other methods.

logical, indicating whether or not strings should be printed with surrounding
quotes.

integer, indicating how many levels should be printed for a factor; if 0, no
extra "Levels" line will be printed. The default, NULL, entails choosing
max.levels such that the levels print on one line of width width.

only used when max.levels is NULL, see above.
minimal number of significant digits, see print .default.

character string (or NULL) indicating NA values in printed output, see
print.default.

character specifying how zeros (0) should be printed; for sparse tables, using
" . " can produce stronger results.

character indicating if strings should left- or right-justified or left alone, passed
to format.

logical indicating if internally stored source should be used for printing when
present, e.g., if options (keep.source=TRUE) has been in use.

The default method, print .default has its own help page. Use methods ("print") to get
all the methods for the print generic.

print.factor allows some customization and is used for printing ordered factors as well.

print.table for printing tables allows other customization.

See noquote as an example of a class whose main purpose is a specific print method.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

The default method print.default, and help for the methods above; further options,

noquote.

For more customizable (but cumbersome) printing, see cat, format or also write.

Examples

require (stats)

ts(1:20)#-—- print is the "Default function" --> print.ts(.) is called

for(i in 1:3)

print (1:1i)

Printing of factors

374 print.data.frame

attenuS$Sstation ## 117 levels -> 'max.levels' depending on width

ordered factors: levels "11 < 12 < .."
esophS$Sagegp[1:12]
esoph$alcgp([l:12]

Printing of sparse (contingency) tables

set.seed (521)

tl <- round(abs(rt (200, df=1.8)))

t2 <- round(abs (rt (200, df=1.4)))

table(tl,t2) # simple

print (table(tl,t2), zero.print = ".")# nicer to read

print.data.frame Printing Data Frames

Description

Print a data frame.

Usage

S3 method for class 'data.frame'
print(x, ..., digits = NULL,
quote = FALSE, right = TRUE, row.names = TRUE)

Arguments
X object of class data. frame.
optional arguments to print or plot methods.
digits the minimum number of significant digits to be used: see print .default.
quote logical, indicating whether or not entries should be printed with surrounding
quotes.
right logical, indicating whether or not strings should be right-aligned. The default is
right-alignment.
row.names logical (or character vector), indicating whether (or what) row names should be
printed.
Details

This calls format which formats the data frame column-by-column, then converts to a character
matrix and dispatches to the print method for matrices.

When quote = TRUE only the entries are quoted not the row names nor the column names.

See Also

data. frame.

print.default

Examples

375

(dd <- data.frame(x=1:8, f=gl(2,4), ch=I(letters([1:8])))
print () with defaults

print (dd, quote = TRUE, row.names = FALSE)
suppresses row.names and quotes all entries

print.default

Default Printing

Description

print.default is the default method of the generic print function which prints its argument.

Usage

Default S3 method:

print (x,

digits = NULL, quote = TRUE,

na.print = NULL, print.gap = NULL, right = FALSE,

max

Arguments

X

digits

quote

na.print

print.gap

right

max

usesSource

NULL, useSource = TRUE, ...)

the object to be printed.

anon-null value for digits specifies the minimum number of significant digits
to be printed in values. The default, NULL, uses getOption (digits). (For
the interpretation for complex numbers see signif.) Non-integer values will
be rounded down, and only values greater than or equal to 1 and no greater than
22 are accepted.

logical, indicating whether or not strings (characters) should be printed with
surrounding quotes.

a character string which is used to indicate NA values in printed output, or NULL
(see ‘Details’).

a non-negative integer < 1024, or NULL (meaning 1), giving the spacing be-
tween adjacent columns in printed vectors, matrices and arrays.

logical, indicating whether or not strings should be right aligned. The default is
left alignment.

a non-null value for max specifies the approximate maximum number of entries
to be printed. The default, NULL, uses getOption (max.print) ; see that
help page for more details.

logical, indicating whether to use source references or copies rather than depars-
ing language objects. The default is to use the original source if it is available.

further arguments to be passed to or from other methods. They are ignored in
this function.

376 print.default

Details

The default for printing NAs is to print NA (without quotes) unless this is a character NA and quote
= FALSE, when ‘<NA>’ is printed.

The same number of decimal places is used throughout a vector. This means that digits specifies
the minimum number of significant digits to be used, and that at least one entry will be encoded
with that minimum number. However, if all the encoded elements then have trailing zeroes, the
number of decimal places is reduced until at least one element has a non-zero final digit. Decimal
points are only included if at least one decimal place is selected.

Attributes are printed respecting their class(es), using the values of digits toprint.default,
but using the default values (for the methods called) of the other arguments.

When the methods package is attached, print will call show for R objects with formal classes if
called with no optional arguments.

Large number of digits

Note that for large values of digits, currently for digits >= 16, the calculation of the
number of significant digits will depend on the platform’s internal (C library) implementation of
‘sprintf ()’ functionality.

Single-byte locales

If a non-printable character is encountered during output, it is represented as one of the ANSI
escape sequences (‘\a’, ‘\b’, ‘\£’, ‘\n’, ‘\r’, ‘\t’, ‘\v’, ‘\\” and ‘\0’: see Quotes), or failing
that as a 3-digit octal code: for example the UK currency pound sign in the C locale (if implemented
correctly) is printed as ‘\ 24 3’. Which characters are non-printable depends on the locale. (Because
some versions of Windows get this wrong, all bytes with the upper bit set are regarded as printable
on Windows in a single-byte locale.)

Unicode and other multi-byte locales

In all locales, the characters in the ASCII range (‘0x00’ to ‘Ox7£’) are printed in the same way,
as-is if printable, otherwise via ANSI escape sequences or 3-digit octal escapes as described for
single-byte locales.

Multi-byte non-printing characters are printed as an escape sequence of the form ‘\uxxxx’ or
‘“A\Uxxxxxxxx’ (in hexadecimal). This is the internal code for the wide-character representation
of the character. If this is not known to be the Unicode point, a warning is issued. The only known
exceptions are certain Japanese ISO2022 locales on commercial Unixes, which use a concatenation
of the bytes: it is unlikely that R compiles on such a system.

It is possible to have a character string in a character vector that is not valid in the current locale. If
a byte is encountered that is not part of a valid character it is printed in hex in the form ‘\xab’ and
this is repeated until the start of a valid character. (This will rapidly recover from minor errors in
UTF-8.)

See Also

The generic print, options. The "noquote" class and print method.

encodeString, which encodes a character vector the way it would be printed.

prmatrix 377

Examples

pi

print (pi, digits = 16)
LETTERS[1:16]

print (LETTERS, quote = FALSE)

M <- cbind(I = 1, matrix(1:10000, ncol = 10,
dimnames = list (NULL, LETTERS[1:101)))
utils::head (M) # makes more sense than

print (M, max = 1000)# prints 90 rows and a message about omitting 910
prmatrix Print Matrices, Old-style
Description

An earlier method for printing matrices, provided for S compatibility.

Usage
prmatrix (x, rowlab =, collab =,
quote = TRUE, right = FALSE, na.print = NULL, ...)
Arguments
X numeric or character matrix.

rowlab, collab

(optional) character vectors giving row or column names respectively. By de-
fault, these are taken from dimnames (x).

quote logical; if TRUE and x is of mode "character", quotes (‘"’) are used.

right if TRUE and x is of mode "character", the output columns are right-
justified.

na.print how NAs are printed. If this is non-null, its value is used to represent NA.

arguments for print methods.

Details
prmatrix isan earlier form of print .matrix, andis very similar to the S function of the same
name.

Value

Invisibly returns its argument, x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

378 proc.time

See Also

print.default, and other print methods.

Examples

prmatrix (m6 <- diag(6), rowlab = rep("",6), collab =rep("",6))

chm <- matrix(scan(system.file ("help", "AnIndex", package = "splines"),
what = ""), , 2, byrow = TRUE)

chm # uses print.matrix()

prmatrix (chm, collab = paste("Column",1:3), right=TRUE, quote=FALSE)

proc.time Running Time of R

Description

proc.time determines how much real and CPU time (in seconds) the currently running R process
has already taken.

Usage

proc.time ()

Details

proc.time returns five elements for backwards compatibility, but its print method prints a
named vector of length 3. The first two entries are the total user and system CPU times of the
current R process and any child processes on which it has waited, and the third entry is the ‘real’
elapsed time since the process was started.

Value

An object of class "proc_time" which is a numeric vector of length 5, containing the user,
system, and total elapsed times for the currently running R process, and the cumulative sum of user
and system times of any child processes spawned by it on which it has waited. (The print method
combines the child times with those of the main process.)

The definition of ‘user’ and ‘system’ times is from your OS. Typically it is something like

The ‘user time’ is the CPU time charged for the execution of user instructions of the calling process.
The ‘system time’ is the CPU time charged for execution by the system on behalf of the calling
process.

The resolution of the times will be system-specific and on Unix-alikes times are rounded to the
nearest Ims. On modern systems they will be that accurate, but on older systems they might be
accurate to 1/100 or 1/60 sec, and are typically available to 10ms on Windows.

This is a primitive function.

prod 379

Note

It is possible to compile R without support for proc. t ime, when the function will throw an error.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

system. time for timing a valid R expression, gc . t ime for how much of the time was spent in
garbage collection.

Examples

Not run:

a way to time an R expression: system.time is preferred
ptm <- proc.time ()

for (i in 1:50) mad(stats::runif (500))

proc.time () - ptm

End(Not run)

prod Product of Vector Elements

Description

prod returns the product of all the values present in its arguments.

Usage

prod(..., na.rm = FALSE)

Arguments
numeric or complex or logical vectors.
na.rm logical. Should missing values be removed?
Details

If na.rmis FALSE an NA value in any of the arguments will cause a value of NA to be returned,
otherwise NA values are ignored.

This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments ... should be unnamed, and dispatch is on the first
argument.

Logical true values are regarded as one, false values as zero. For historical reasons, NULL is ac-
cepted and treated as if it were numeric (0).

380 prop.table

Value
The product, a numeric (of type "double") or complex vector of length one. NB: the product of
an empty set is one, by definition.

S4 methods

This is part of the S4 Summary group generic. Methods for it must use the signature x, ...,
na.rm

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

sum, cumprod, cumsum.

‘plotmath’ for the use of prod in plot annotation.

Examples
print (prod(l:7)) == print (gamma (8))
prop.table Express Table Entries as Fraction of Marginal Table
Description

This is really sweep (x, margin, margin.table(x, margin), "/") fornewbies, ex-
cept that if margin has length zero, then one gets x/sum (x) .

Usage

prop.table (x, margin=NULL)

Arguments

x table

margin index, or vector of indices to generate margin for
Value

Table like x expressed relative to margin

Author(s)

Peter Dalgaard

pushBack 381

See Also

margin.table

Examples

m <— matrix(1:4,2)
m
prop.table (m, 1)

pushBack Push Text Back on to a Connection

Description

Functions to push back text lines onto a connection, and to enquire how many lines are currently
pushed back.

Usage

pushBack (data, connection, newLine = TRUE)
pushBackLength (connection)

Arguments

data a character vector.
connection A connection.

newLine logical. If true, a newline is appended to each string pushed back.

Details

Several character strings can be pushed back on one or more occasions. The occasions form a stack,
so the first line to be retrieved will be the first string from the last call to pushBack. Lines which
are pushed back are read prior to the normal input from the connection, by the normal text-reading
functions such as readLines and scan.

Pushback is only allowed for readable connections in text mode.

Not all uses of connections respect pushbacks, in particular the input connection is still wired di-
rectly, so for example parsing commands from the console and scan ("") ignore pushbacks on
stdin.

When character strings with a marked encoding (see Encoding) are pushed back they are con-
verted to the current encoding. This may involve representing characters as ‘<U+xxxx>’ if they
cannot be converted.

Value

pushBack returns nothing.

pushBackLength returns number of lines currently pushed back.

382

See Also

connections, readLines.

Examples

zz <— textConnection (LETTERS)
readLines (zz, 2)
pushBack (c ("aa", "bb"), zz)
pushBackLength (zz)

readLines (zz, 1)
pushBackLength (zz)

readLines (zz, 1)

readLines (zz, 1)

close(zz)

qr

qr The QR Decomposition of a Matrix

Description

gr computes the QR decomposition of a matrix. It provides an interface to the techniques used
in the LINPACK routine DQRDC or the LAPACK routines DGEQP3 and (for complex matrices)

ZGEQP3.

Usage

qr(x, ...)
Default S3 method:
gr (x, tol = le-07 , LAPACK = FALSE, ...)

gr.coef (gqr, vy)

qr.qy (qr, y)

qr.qty(qr, y)

gr.resid(qgr, y)

gr.fitted(qr, y, k = gr$rank)
gr.solve(a, b, tol = le-7)

S3 method for class 'qgr'
solve(a, b, ...)

is.qgr (x)
as.qgr (x)
Arguments
x a matrix whose QR decomposition is to be computed.
tol the tolerance for detecting linear dependencies in the columns of x. Only used

if LAPACK is false and x is real.

qr 383

qr a QR decomposition of the type computed by gr.

v, b a vector or matrix of right-hand sides of equations.

a a QR decomposition or (gr . solve only) a rectangular matrix.
k effective rank.

LAPACK logical. For real x, if true use LAPACK otherwise use LINPACK.

further arguments passed to or from other methods

Details

The QR decomposition plays an important role in many statistical techniques. In particular it can
be used to solve the equation Ax = b for given matrix A, and vector b. It is useful for computing
regression coefficients and in applying the Newton-Raphson algorithm.

The functions gr . coef, qr.resid, and gr . fitted return the coefficients, residuals and fitted
values obtained when fitting v to the matrix with QR decomposition gr. (If pivoting is used, some
of the coefficients will be NA.) gr.qy and gqr.qgty return Q $+% y and t (Q) %*% vy, where
Q is the (complete) (matrix.

All the above functions keep dimnames (and names) of x and vy if there are.

solve.qgr is the method for solve for gr objects. gr.solve solves systems of equations
via the QR decomposition: if a is a QR decomposition it is the same as solve.qr, but if a is
a rectangular matrix the QR decomposition is computed first. Either will handle over- and under-
determined systems, providing a least-squares fit if appropriate.

is.qgr returns TRUE if x is a 11ist with components named gr, rank and graux and FALSE
otherwise.

It is not possible to coerce objects to mode "qgr". Objects either are QR decompositions or they
are not.

Value

The QR decomposition of the matrix as computed by LINPACK or LAPACK. The components in
the returned value correspond directly to the values returned by DQRDC/DGEQP3/ZGEQP3.

qr a matrix with the same dimensions as x. The upper triangle contains the R of
the decomposition and the lower triangle contains information on the @ of the
decomposition (stored in compact form). Note that the storage used by DQRDC
and DGEQP3 differs.

gqraux a vector of length ncol (x) which contains additional information on Q.

rank the rank of x as computed by the decomposition: always full rank in the LA-
PACK case.

pivot information on the pivoting strategy used during the decomposition.

Non-complex QR objects computed by LAPACK have the attribute "useLAPACK" with value
TRUE.

384 qr

Note

To compute the determinant of a matrix (do you really need it?), the QR decomposition is much
more efficient than using Eigen values (eigen). See det.

Using LAPACK (including in the complex case) uses column pivoting and does not attempt to
detect rank-deficient matrices.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. STAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.
See Also

gqr.Q, gr.R, gr.X for reconstruction of the matrices. 1m.fit, 1sfit, eigen, svd.

det (using gr) to compute the determinant of a matrix.

Examples
hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
h9 <- hilbert(9); h9
r (h9) $Srank #-—> only 7
qgqrh9 <- gr(h9, tol = 1le-10)
grh9$rank #-—> 9
##-— Solve linear equation system H %$*% x =y

vy <- 1:9/10
x <- gr.solve(h9, y, tol = le-10) # or equivalently

x <- gr.coef(gqrh9, y) #-- is == but much better than
#—— solve (h9) $x% y
h9 %*% x =y

overdetermined system

A <- matrix(runif (12), 4)

b <- 1:4

gr.solve (A, b) # or solve(gr(A), b)

solve (gr (A, LAPACK=TRUE), Db)

this is a least-squares solution, cf. 1lm(b ~ 0 + A)

underdetermined system

A <- matrix(runif (12), 3)

b <- 1:3

gr.solve (A, D)

solve (gr (A, LAPACK=TRUE), Db)

solutions will have one zero, not necessarily the same one

http://www.netlib.org/lapack/lug/lapack_lug.html

QR.Auxiliaries

385

QR.Auxiliaries

Reconstruct the Q, R, or X Matrices from a QR Object

Description

Returns the original matrix from which the object was constructed or the components of the decom-

position.

Usage

gr.X(gr, complete
gr.Q(gr, complete

FALSE, ncol =)
FALSE, Dvec =)

gr.R(gr, complete = FALSE)

Arguments

qr

complete

ncol

Dvec

Value

object representing a QR decomposition. This will typically have come from a
previous call to gr or 1sfit.

logical expression of length 1. Indicates whether an arbitrary orthogonal com-
pletion of the @ or X matrices is to be made, or whether the R matrix is to be
completed by binding zero-value rows beneath the square upper triangle.

integer in the range 1:nrow (qr$qr). The number of columns to be in
the reconstructed X. The default when complete is FALSE is the first
min (ncol (X), nrow (X)) columns of the original X from which the qr
object was constructed. The default when complete is TRUE is a square ma-
trix with the original X in the first ncol (X) columns and an arbitrary or-
thogonal completion (unitary completion in the complex case) in the remaining
columns.

vector (not matrix) of diagonal values. Each column of the returned @ will be
multiplied by the corresponding diagonal value. Defaults to all 1s.

gr . X returns X, the original matrix from which the qr object was constructed, provided ncol (X)
<= nrow (X).If complete is TRUE or the argument ncol is greater than ncol (X), additional
columns from an arbitrary orthogonal (unitary) completion of X are returned.

gr . Q returns part or all of Q, the order-nrow(X) orthogonal (unitary) transformation represented by

qgr. If complete

is TRUE, Q has nrow (X) columns. If complete is FALSE, Q has ncol (X)

columns. When Dvec is specified, each column of Q is multiplied by the corresponding value in

Dvec.

gr . R returns R. The number of rows of R is either nrow (X) or ncol (X) (and may depend on
whether complete is TRUE or FALSE.

See Also

qr, qr.qy

386 quit

Examples

p <- ncol(x <- LifeCycleSavings[,-1]) # not the 'sr'
grstr <- gr(x) dim(x) == c(n,p)

#
grstr $ rank # = 4 = p
Q <= gr.Q(grstr) # dim(Q) == dim(x)
R <= gr.R(grstr) # dim(R) == ncol (x)
X <- gr.X(grstr) # X == x
(x))

range (X - as.matrix # ~ < 6e-12
X == Q %x% R if there has been no pivoting, as here.
Q %$*% R
quit Terminate an R Session
Description

The function quit or its alias g terminate the current R session.

Usage
quit (save = "default", status = 0, runLast = TRUE)
g(save = "default", status = 0, runlast = TRUE)
Arguments
save a character string indicating whether the environment (workspace) should be
saved, one of "no", "yes", "ask" or "default".
status the (numerical) error status to be returned to the operating system, where rele-
vant. Conventionally 0 indicates successful completion.
runlLast should .Last () be executed?
Details

save must be one of "no", "yes", "ask" or "default". In the first case the workspace is
not saved, in the second it is saved and in the third the user is prompted and can also decide not
to quit. The default is to ask in interactive use but may be overridden by command-line arguments
(which must be supplied in non-interactive use).

Immediately before terminating, . Last () is executed if the function . Last exists and runLast
is true. If in interactive use there are errors in the . Last function, control will be returned to the
command prompt, so do test the function thoroughly. There is a system analogue, . Last.sys (),
which is run after . Last () if runLast is true.

Exactly what happens at termination of an R session depends on the platform and GUI interface in
use. A typical sequenceistorun .Last () and .Last.sys () (unless runLast is false), to save
the workspace if requested (and in most cases also to save the session history: see savehistory),
then run any finalizers (see reg. finalizer) that have been set to be run on exit, close all open
graphics devices, remove the session temporary directory and print any remaining warnings (e.g.
from . Last () and device closure).

Quotes 387

Some error statuses are used by R itself. The default error handler for non-interactive use effectively
callsg("no", 1, FALSE) and returns error code 1. Error status 2 is used for R ‘suicide’, that is
a catastrophic failure, and other small numbers are used by specific ports for initialization failures.
It is recommended that users choose statuses of 10 or more.

Valid values of status are system-dependent, but 0:255 are normally valid. (Many OSes will
report the last byte of the value, that is report the number modulo 256. But not all.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

.First for setting things on startup.

Examples

Not run: ## Unix-flavour example

.Last <- function() {
cat ("Now sending PostScript graphics to the printer:\n")
system("lpr Rplots.ps")
cat ("bye bye...\n")

}

quit ("yes")

End (Not run)

Quotes Quotes

Description

Descriptions of the various uses of quoting in R.

Details

Three types of quotes are part of the syntax of R: single and double quotation marks and the backtick
(or back quote, ‘" ’). In addition, backslash is used to escape the following character inside character
constants.

Character constants

Single and double quotes delimit character constants. They can be used interchangeably but double
quotes are preferred (and character constants are printed using double quotes), so single quotes are
normally only used to delimit character constants containing double quotes.

Backslash is used to start an escape sequence inside character constants. Escaping a character not
in the following table is an error (since R 2.11.0; earlier versions accepted such escapes with a
warning).

388 Quotes

Single quotes need to be escaped by backslash in single-quoted strings, and double quotes in double-
quoted strings.

‘An’ newline

‘\r’ carriage return

“\t’ tab

‘\b’ backspace

“\a’ alert (bell)

NE’ form feed

v’ vertical tab

AN backslash ‘\’

7 ASCII apostrophe ¢’ ’

A" ASCII quotation mark ‘"’

‘\nnn’ character with given octal code (1, 2 or 3 digits)
‘\xnn’ character with given hex code (1 or 2 hex digits)
‘“\unnnn’ Unicode character with given code (1-4 hex digits)

‘\Unnnnnnnn’ Unicode character with given code (1-8 hex digits)

Alternative forms for the last two are ‘\u{nnnn}’ and ‘\U{nnnnnnnn}’. All except the Unicode
escape sequences are also supported when reading character strings by scan and read.table
ifallowEscapes = TRUE. Unicode escapes can be used to enter Unicode characters not in the
current locale’s charset (when the string will be stored internally in UTF-8).

The parser does not allow the use of both octal/hex and Unicode escapes in a single string.

These forms will also be used by print.default when outputting non-printable characters
(including backslash).

Embedded nuls are not allowed in character strings, so using escapes (such as ‘\0”) for a nul will
result in the string being truncated at that point (usually with a warning).

Names and Identifiers

Identifiers consist of a sequence of letters, digits, the period (.) and the underscore. They must
not start with a digit nor underscore, nor with a period followed by a digit. Reserved words are not
valid identifiers.

The definition of a letter depends on the current locale, but only ASCII digits are considered to be
digits.

Such identifiers are also known as syntactic names and may be used directly in R code. Almost
always, other names can be used provided they are quoted. The preferred quote is the backtick
(°*’), and deparse will normally use it, but under many circumstances single or double quotes
can be used (as a character constant will often be converted to a name). One place where backticks
may be essential is to delimit variable names in formulae: see formula.

See Also

Syntax for other aspects of the syntax.
sQuote for quoting English text.

shQuote for quoting OS commands.

R.Version

389

The R Language Definition manual.

R.Version

Version Information

Description

R.Version () provides detailed information about the version of R running.

R.version is a variable (a 1ist) holding this information (and version is a copy of it for S

compatibility).

Usage

R.Version ()
R.version

R.version.string

version

Value

R.Version returns a list with character-string components

platform

arch
os
system
status
major
minor
year
month
day

svn rev

language

the platform for which R was built. A triplet of the form CPU-VENDOR-OS,
as determined by the configure script. E.g, "i586-unknown-linux" or
"i386-pc-mingw32".

the architecture (CPU) R was built on/for.

the underlying operating system

CPU and OS, separated by a comma.

the status of the version (e.g., "Alpha™")

the major version number

the minor version number, including the patchlevel
the year the version was released

the month the version was released

the day the version was released

the Subversion revision number, which should be either "unknown™" or a single
number. (A range of numbers or a number with ‘M’ or ‘S’ appended indicates
inconsistencies in the sources used to build this version of R.)

always "R".

version.string

a character string concatenating some of the info above, useful for plotting,
etc.

R.version and version are lists of class "simple.1list" which has a print method.

390 Random

Note

Do not use R.version$os to test the platform the code is running on: use
.Platform$0S.type instead. Slightly different versions of the OS may report different val-
ues of R.versionSos, as may different versions of R.

R.version.stringis a copy of R.versionS$version.string for simplicity and back-
wards compatibility.

See Also
sessionInfo which provides additional information; getRversion typically used inside R
code, .Platform.
Examples
require (graphics)
R.version$os # to check how lucky you are

plot (0) # any plot
mtext (R.version.string, side=1,line=4,adj=1)# a useful bottom-right note

Random Random Number Generation

Description
.Random. seed is an integer vector, containing the random number generator (RNG) state for
random number generation in R. It can be saved and restored, but should not be altered by the user.
RNGkind is a more friendly interface to query or set the kind of RNG in use.

RNGversion can be used to set the random generators as they were in an earlier R version (for
reproducibility).

set . seed is the recommended way to specify seeds.

Usage

.Random.seed <- c(rng.kind, nl, n2, ...)

RNGkind (kind = NULL, normal.kind = NULL)
RNGversion (vstr)
set.seed(seed, kind = NULL, normal.kind = NULL)

Arguments

kind character or NULL. If kind is a character string, set R’s RNG to the kind de-
sired. Use "default™" to return to the R default. See ‘Details’ for the inter-
pretation of NULL.

Random 391

normal.kind character string or NULL. If it is a character string, set the method of Normal
generation. Use "default" to return to the R default. NULIL makes no

change.

seed a single value, interpreted as an integer.

vstr a character string containing a version number, e.g., "1.6.2"

rng.kind integer code in O : k for the above kind.

nl, n2, ... integers. See the details for how many are required (which depends on
rng.kind).

Details

The currently available RNG kinds are given below. kind is partially matched to this list. The
defaultis "Mersenne-Twister".

"Wichmann-Hi11" The seed, .Random.seed[-1] == r[1:3] is an integer vector of
length 3, where each r [1] isin 1: (p[1] - 1), where p is the length 3 vector of primes,
p = (30269, 30307, 30323). The Wichmann—Hill generator has a cycle length of
6.9536 x 10'2 (= prod (p-1) /4, see Applied Statistics (1984) 33, 123 which corrects the
original article).

"Marsaglia-Multicarry": A multiply-with-carry RNG is used, as recommended by George
Marsaglia in his post to the mailing list ‘sci . stat .math’. It has a period of more than 2°°
and has passed all tests (according to Marsaglia). The seed is two integers (all values allowed).

"Super-Duper": Marsaglia’s famous Super-Duper from the 70’s. This is the original version
which does not pass the MTUPLE test of the Diehard battery. It has a period of ~ 4.6 x 10'®
for most initial seeds. The seed is two integers (all values allowed for the first seed: the second
must be odd).

We use the implementation by Reeds et al.\ (1982-84).

The two seeds are the Tausworthe and congruence long integers, respectively. A one-to-one
mapping to S’s . Random. seed[1:12] is possible but we will not publish one, not least as
this generator is not exactly the same as that in recent versions of S-PLUS.

"Mersenne-Twister": From Matsumoto and Nishimura (1998). A twisted GFSR with period
219937 _ 1 and equidistribution in 623 consecutive dimensions (over the whole period). The
‘seed’ is a 624-dimensional set of 32-bit integers plus a current position in that set.

"Knuth-TAOCP-2002": A 32-bit integer GFSR using lagged Fibonacci sequences with sub-
traction. That is, the recurrence used is

Xj = (Xj—lOO — Xj_37) mod 230

and the ‘seed’ is the set of the 100 last numbers (actually recorded as 101 numbers, the last
being a cyclic shift of the buffer). The period is around 2129,

"Knuth—-TAOCP" : An earlier version from Knuth (1997).
The 2002 version was not backwards compatible with the earlier version: the initialization of
the GFSR from the seed was altered. R did not allow you to choose consecutive seeds, the
reported ‘weakness’, and already scrambled the seeds.
Initialization of this generator is done in interpreted R code and so takes a short but noticeable
time.

392 Random

"user—supplied": Use a user-supplied generator. See Random. user for details.

normal .kind can be "Kinderman—Ramage", "Buggy Kinderman—-Ramage" (not for
set.seed), "Ahrens-Dieter", "Box-Muller", "Inversion" (the default), or "user—
supplied". (Forinversion, see the reference in gnorm.) The Kinderman-Ramage generator used
in versions prior to 1.7.1 (now called "Buggy" had several approximation errors and should only
be used for reproduction of older results. The "Box-Muller" generator is stateful as pairs of
normals are generated and returned sequentially. The state is reset whenever it is selected (even if
it is the current normal generator) and when kind is changed.

set . seed uses its single integer argument to set as many seeds as are required. It is intended as
a simple way to get quite different seeds by specifying small integer arguments, and also as a way
to get valid seed sets for the more complicated methods (especially "Mersenne-Twister" and
"Knuth-TAOCP").

The use of kind=NULL or normal.kind=NULL in RNGkind or set.seed selects the
currently-used generator (including that used in the previous session if the workspace has been
restored): if no generator has been used it selects "default".

Value

.Random. seed is an integer vector whose first element codes the kind of RNG and normal
generator. The lowest two decimal digits are in 0: (k—1) where k is the number of available
RNGs. The hundreds represent the type of normal generator (starting at 0).

In the underlying C, .Random.seed[-1] is unsigned; therefore in R .Random.seed[-1]
can be negative, due to the representation of an unsigned integer by a signed integer.

RNGkind returns a two-element character vector of the RNG and normal kinds selected before the
call, invisibly if either argument is not NULL. A type starts a session as the default, and is selected
either by a call to RNGkind or by setting . Random. seed in the workspace.

RNGversion returns the same information as RNGk i nd about the defaults in a specific R version.

set . seed returns NULL, invisibly.

Note

Initially, there is no seed; a new one is created from the current time when one is required. Hence,
different sessions started at (sufficiently) different times will give different simulation results, by de-
fault. However, the seed might be restored from a previous session if a previously saved workspace
is restored.

.Random. seed saves the seed set for the uniform random-number generator, at least for the
system generators. It does not necessarily save the state of other generators, and in particular
does not save the state of the Box—Muller normal generator. If you want to reproduce work later,
call set.seed (preferably with explicit values for kind and normal.kind) rather than set
.Random. seed.

The object . Random. seed is only looked for in the user’s workspace.

Do not rely on randomness of low-order bits from RNGs. Most of the supplied uniform generators
return 32-bit integer values that are converted to doubles, so they take at most 232 distinct values
and long runs will return duplicated values (Wichmann-Hill is the exception, and all give at least 30
varying bits.)

Random 393

Author(s)

of RNGkind: Martin Maechler. Current implementation, B. D. Ripley

References
Ahrens, J. H. and Dieter, U. (1973) Extensions of Forsythe’s method for random sampling from the
normal distribution. Mathematics of Computation 27, 927-937.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (set . seed, storing in .Random. seed.)

Box, G. E. P. and Muller, M. E. (1958) A note on the generation of normal random deviates. Annals
of Mathematical Statistics 29, 610-611.

De Matteis, A. and Pagnutti, S. (1993) Long-range Correlation Analysis of the Wichmann-Hill
Random Number Generator, Statist. Comput., 3, 67-70.

Kinderman, A. J. and Ramage, J. G. (1976) Computer generation of normal random variables.
Journal of the American Statistical Association 71, 893-896.

Knuth, D. E. (1997) The Art of Computer Programming. Volume 2, third edition.
Source code at http://www—cs—faculty.stanford.edu/~knuth/taocp.html.

Knuth, D. E. (2002) The Art of Computer Programming. Volume 2, third edition, ninth printing.
See http://Sunburn.Stanford.EDU/~knuth/news02.html.

Marsaglia, G. (1997) A random number generator for C. Discussion paper, posting on Usenet news-
group sci.stat.math on September 29, 1997.

Marsaglia, G. and Zaman, A. (1994) Some portable very-long-period random number generators.
Computers in Physics, 8, 117-121.

Matsumoto, M. and Nishimura, T. (1998) Mersenne Twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator, ACM Transactions on Modeling and Computer Simula-
tion, 8, 3-30.

Source code at http://www.math.keio.ac.jp/~matumoto/emt .html.

Reeds, J., Hubert, S. and Abrahams, M. (1982-4) C implementation of SuperDuper, University of
California at Berkeley. (Personal communication from Jim Reeds to Ross Thaka.)

Wichmann, B. A. and Hill, I. D. (1982) Algorithm AS 183: An Efficient and Portable Pseudo-
random Number Generator, Applied Statistics, 31, 188—-190; Remarks: 34, 198 and 35, 89.

See Also

sample for random sampling with and without replacement.

Distributions for functions for random-variate generation from standard distributions.

Examples

require (stats)

the default random seed is 626 integers, so only print a few
runif (1); .Random.seed[1l:6]; runif(l); .Random.seed[1l:6]
If there is no seed, a "random" new one is created:

http://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://Sunburn.Stanford.EDU/~knuth/news02.html
http://www.math.keio.ac.jp/~matumoto/emt.html

394 Random.user

rm(.Random.seed); runif(l); .Random.seed[1l:6]

ok <—- RNGkind ()
RNGkind ("Wich") # (partial string matching on 'kind')

This shows how 'runif(.)' works for Wichmann-Hill,
using only R functions:

p.WH <- c(30269, 30307, 30323)
a.WH <- c(171, 172, 170)

next.WHseed <- function(i.seed = .Random.seed[-1])
{ (a.WH *~ i.seed) %% p.WH }
my.runifl <- function(i.seed = .Random.seed)
(

{ ns <- next.WHseed(i.seed[-1]); sum(ns / p.WH) %% 1 }
rs <- .Random.seed
(WHs <- next.WHseed(rs[-11))
u <—- runif (1)
stopifnot (
next .WHseed (rs[-1]) == .Random.seed[-1],
all.equal(u, my.runifl(rs))

)

————

.Random. seed

RNGkind ("Super") #matches "Super-Duper"

RNGkind ()

.Random.seed # new, corresponding to Super-Duper

Reset:
RNGkind (ok[1])

——-

sum (duplicated (runif (le6))) # around 110 for default generator
and we would expect about almost sure duplicates beyond about
gbirthday (l-1le-6, classes=2e9) # 235,000

Random.user User-supplied Random Number Generation

Description
Function RNGkind allows user-coded uniform and normal random number generators to be sup-
plied. The details are given here.

Details

A user-specified uniform RNG is called from entry points in dynamically-loaded compiled code.
The user must supply the entry point user_unif rand, which takes no arguments and returns a
pointer to a double. The example below will show the general pattern.

Random.user 395

Optionally, the user can supply the entry point user_unif_init, which is called with an
unsigned int argument when RNGkind (or set.seed) is called, and is intended to be used
to initialize the user’s RNG code. The argument is intended to be used to set the ‘seeds’; it is the
seed argument to set . seed or an essentially random seed if RNGk ind is called.

If only these functions are supplied, no information about the generator’s state is recorded in
.Random. seed. Optionally, functions user_unif_nseed and user_unif_seedloc can
be supplied which are called with no arguments and should return pointers to the number of
seeds and to an integer (specifically, ‘Int32’) array of seeds. Calls to GetRNGstate and
PutRNGstate will then copy this array to and from .Random. seed.

A user-specified normal RNG is specified by a single entry point user_norm_rand, which takes
no arguments and returns a pointer to a double.

Warning

As with all compiled code, mis-specifying these functions can crash R. Do include the
‘R_ext/Random.h’ header file for type checking.

Examples

Not run:
Marsaglia's congruential PRNG
#include <R_ext/Random.h>

static Int32 seed;
static double res;
static int nseed = 1;

double * user_unif_rand()

{
seed = 69069 * seed + 1;
res = seed » 2.32830643653869%9e-10;
return é&res;

volid wuser_unif_init (Int32 seed_in) { seed = seed_in; }
int * user_unif_nseed() { return &nseed; }
int * user_unif_seedloc () { return (int =) &seed; }

/* ratio-of-uniforms for normal «/
#include <math.h>
static double x;

double * user_norm_rand ()
{

double u, v, z;

do {
u = unif_rand();
v = 0.857764 x (2. * unif_rand() - 1);
x = v/u; z = 0.25 * x * x;
if (z < 1. - u) break;

if (z > 0.259/u + 0.35) continue;

396

} while (z > -log(u));
return &x;

Use under Unix:

R CMD SHLIB urand.c

R

> dyn.load("urand.so")
> RNGkind ("user")

> runif (10)

> .Random.seed

> RNGkind(, "user")

> rnorm(10)

> RNGkind ()

[1] "user-supplied" "user-supplied"

End(Not run)

range

range Range of Values

Description

range returns a vector containing the minimum and maximum of all the given arguments.

Usage

range(..., na.rm = FALSE)

Default S3 method:
range (..., na.rm = FALSE, finite = FALSE)

Arguments
any numeric or character objects.
na.rm logical, indicating if NA’s should be omitted.
finite logical, indicating if all non-finite elements should be omitted.
Details

range is a generic function: methods can be defined for it directly or via the Summary group
generic. For this to work properly, the arguments . . . should be unnamed, and dispatch is on the

first argument.

If na.rmis FALSE, NA and NaN values in any of the arguments will cause NA values to be returned,

otherwise NA values are ignored.

If finite is TRUE, the minimum and maximum of all finite values is computed, i.e.,

finite=TRUE includes na.rm=TRUE.

A special situation occurs when there is no (after omission of NAs) nonempty argument left, see

min.

rank 397

S4 methods

This is part of the S4 Summary group generic. Methods for it must use the signature x, ...,
na.rm

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

min, max.

The extendrange () utility in package grDevices.

Examples

(r.x <- range(stats::rnorm(100)))
diff(r.x) # the SAMPLE range

x <-= c(NA, 1:3, -1:1/0); x
range (x)

range (x, na.rm = TRUE)
range (x, finite = TRUE)

rank Sample Ranks

Description

Returns the sample ranks of the values in a vector. Ties (i.e., equal values) and missing values can
be handled in several ways.

Usage
rank (x, na.last = TRUE,
ties.method = c("average", "first", "random", "max", "min"))
Arguments
x a numeric, complex, character or logical vector.
na.last for controlling the treatment of NAs. If TRUE, missing values in the data are put

last; if FALSE, they are put first; if NA, they are removed; if "keep" they are
kept with rank NA.

ties.method a character string specifying how ties are treated, see ‘Details’; can be abbrevi-
ated.

398 rank

Details

If all components are different (and no NAs), the ranks are well defined, with values in
seq_len (x). With some values equal (called ‘ties’), the argument t ies.method determines
the result at the corresponding indices. The " £irst " method results in a permutation with increas-
ing values at each index set of ties. The "random" method puts these in random order whereas
the default, "average", replaces them by their mean, and "max" and "min" replaces them by
their maximum and minimum respectively, the latter being the typical sports ranking.

NA values are never considered to be equal: for na.last = TRUE and na.last = FALSE
they are given distinct ranks in the order in which they occur in x.

NB: rank is not itself generic but xt frm is, and rank (xtfrm(x),) will have the
desired result if there is a xt £frm method. Otherwise, rank will make use of ==, > and is.na
methods for classed objects, possibly rather slowly.

Value

A numeric vector of the same length as x with names copied from x (unless na.last = NA,
when missing values are removed). The vector is of integer type unless ties.method =
"average" when it is of double type (whether or not there are any ties).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

order and sort.

Examples

(rl <- rank(xl <- c(3, 1, 4, 15, 92)))
x2 <- ¢(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5)
names (x2) <- letters[l:11]

(r2 <- rank(x2)) # ties are averaged

rank () is "idempotent": rank (rank(x)) == rank (x)
stopifnot (rank(rl) == rl, rank(r2) == r2)

ranks without averaging

rank (x2, ties.method= "first") # first occurrence wins
rank (x2, ties.method= "random") # ties broken at random
rank (x2, ties.method= "random") # and again

keep ties ties, no average

(rma <- rank(x2, ties.method= "max")) # as used classically
(rmi <- rank(x2, ties.method= "min")) # as in Sports
stopifnot (rma + rmi == round(r2 + r2))

rapply 399

rapply Recursively Apply a Function to a List

Description

rapply is arecursive version of lapply.

Usage
rapply (object, £, classes = "ANY", deflt = NULL,
how = c("unlist", "replace", "list"), ...)
Arguments
object A list.
f A function of a single argument.
classes A character vector of class names, or "ANY" to match any class.
deflt The default result (not used if how = "replace").
how A character string matching the three possibilities given: see ‘Details’.
additional arguments passed to the call to £.
Details
This function has two basic modes. If how = "replace™", each element of the list which is not
itself a list and has a class included in classes is replaced by the result of applying £ to the
element.
If the mode is how = "list" or how = "unlist", the list is copied, all non-list elements
which have a class included in classes are replaced by the result of applying f to the element
and all others are replaced by def1t. Finally, if how = "unlist",unlist (recursive =

TRUE) is called on the result.

The semantics differ in detail from lapply: in particular the arguments are evaluated before call-
ing the C code.

Value

If how = "unlist", a vector, otherwise a list of similar structure to object.

References

Chambers, J. A. (1998) Programming with Data. Springer.
(rapply is only described briefly there.)

See Also

lapply, dendrapply.

400

raw

Examples

X <= list(list (a=pi, b=list (c=1:1)), d="a test")
rapply (X, function(x) x, how="replace")
rapply (X, sqgrt, classes="numeric", how="replace")
rapply (X, nchar, classes="character",
deflt = as.integer (NA), how="list")
rapply (X, nchar, classes="character",
deflt = as.integer (NA), how="unlist")
rapply (X, nchar, classes="character", how="unlist")
rapply (X, log, classes="numeric", how="replace", base=2)

raw Raw Vectors

Description

Creates or tests for objects of type "raw".

Usage

raw (length = 0)
as.raw (x)
is.raw(x)

Arguments

length desired length.

X object to be coerced.
Details

The raw type is intended to hold raw bytes. It is possible to extract subsequences of bytes, and to
replace elements (but only by elements of a raw vector). The relational operators (see Comparison)
work, as do the logical operators (see Logic) with a bitwise interpretation.

A raw vector is printed with each byte separately represented as a pair of hex digits. If you want to
see a character representation (with escape sequences for non-printing characters) use rawToChar.

Coercion to raw treats the input values as representing small (decimal) integers, so the input is first
coerced to integer, and then values which are outside the range [0 ... 255] or are NA are set
to 0 (the nul byte).

as.rawand is.raw are primitive functions.

Value

raw creates a raw vector of the specified length. Each element of the vector is equal to 0. Raw
vectors are used to store fixed-length sequences of bytes.

as.raw attempts to coerce its argument to be of raw type. The (elementwise) answer will be 0
unless the coercion succeeds (or if the original value successfully coerces to 0).

is.raw returns true if and only if typeof (x) == "raw".

rawConnection 401

See Also

charToRaw, rawShift, etc.

Examples

xx <— raw(2)

xx[1] <- as.raw(40) # NB, not just 40.
xx[2] <- charToRaw ("A")
XX

x <-= "A test string"
(y <— charToRaw (x))
is.vector(y) # TRUE
rawToChar (y)
is.raw(x)

is.raw(y)

1sASCII <- function(txt) all (charToRaw (txt) <= as.raw(1l27))
isASCII(x) # true
1sASCITI ("\x9c25.63") # false (in Latin-1, this is an amount in UK pounds)

rawConnection Raw Connections

Description

Input and output raw connections.

Usage

rawConnection (object, open = "r")

rawConnectionValue (con)

Arguments
object character or raw vector. A description of the connection. For an input this is an
R raw vector object, and for an output connection the name for the connection.
open character. Any of the standard connection open modes.
con An output raw connection.
Details

An input raw connection is opened and the raw vector is copied at the time the connection object is
created, and close destroys the copy.

An output raw connection is opened and creates an R raw vector internally. The raw vector can be
retrieved via rawConnectionValue.

If a connection is open for both input and output the initial raw vector supplied is copied when the
connections is open

402 rawConversion

Value

For rawConnection, a connection object of class "rawConnection" which inherits from
class "connection™".

For rawConnectionValue, a raw vector.

Note

As output raw connections keep the internal raw vector up to date call-by-call, they are relatively
expensive to use (although over-allocation is used), and it may be better to use an anonymous
file () connection to collect output.

On (rare) platforms where vsnprint £ does not return the needed length of output there is a
100,000 character limit on the length of line for output connections: longer lines will be truncated
with a warning.

See Also

connections, showConnections.

Examples

zz <- rawConnection(raw(0), "r+") # start with empty raw vector
writeBin (LETTERS, zz)

seek (zz, 0)

readLines (zz) # raw vector has embedded nuls

seek (zz, 0)

writeBin (letters[1:3], zz)

rawConnectionValue (zz)

close(zz)

rawConversion Convert to or from Raw Vectors

Description

Conversion and manipulation of objects of type "raw".

Usage
charToRaw (x)
rawToChar (x, multiple = FALSE)

rawShift (x, n)

rawToBits (x)
intToBits (x)
packBits (x, type = c("raw", "integer"))

rawConversion 403

Arguments
X object to be converted or shifted.
multiple logical: should the conversion be to a single character string or multiple individ-
ual characters?
n the number of bits to shift. Positive numbers shift right and negative numbers
shift left: allowed values are -8 ... 8.
type the result type.
Details

packBits accepts raw, integer or logical inputs, the last two without any NAs.

Note that ‘bytes’ are not necessarily the same as characters, e.g. in UTF-8 locales.

Value

charToRaw converts a length-one character string to raw bytes. It does so without taking into
account any declared encoding (see Encoding).

rawToChar converts raw bytes either to a single character string or a character vector of single
bytes (with " " for 0). (Note that a single character string could contain embedded nuls; only trailing
nulls are allowed and will be removed.) In either case it is possible to create a result which is invalid
in a multibyte locale, e.g. one using UTF-8.

rawShift (x, n) shift the bits in x by n positions to the right, see the argument n, above.

rawToBits returns a raw vector of 8 times the length of a raw vector with entries 0 or 1.
intToBits returns a raw vector of 32 times the length of an integer vector with entries O or
1. (Non-integral numeric values are truncated to integers.) In both cases the unpacking is least-
significant bit first.

packBits packs its input (using only the lowest bit for raw or integer vectors) least-significant bit
first to a raw or integer vector.

Examples

x <— "A test string"
(y <= charToRaw (x))
is.vector(y) # TRUE

rawToChar (y)
rawToChar (y, multiple = TRUE)
(xx <= c(y, charToRaw ("&"), charToRaw ("more")))

rawToChar (xx)

rawShift (y, 1)
rawShift (y, -2)

rawToBits (y)

showBits <- function(r) stats::symnum(as.logical (rawToBits(r)))

404 RdUtils

z <— as.raw(b)

z ; showBits (z)

showBits (rawShift (z, 1)) # shift to right
showBits (rawShift (z, 2))

showBits (z)

showBits (rawShift (z, —-1)) # shift to left
showBits (rawShift (z, -2)) #

showBits (rawShift (z, -3)) # shifted off entirely

RdUtils Utilities for Processing Rd Files

Description

Utilities for converting files in R documentation (Rd) format to other formats or create indices from
them, and for converting documentation in other formats to Rd format.

Usage

R CMD Rdconv [options] file
R CMD Rd2dvi [options] files
R CMD Rd2pdf [options] files

Arguments
file the path to a file to be processed.
files a list of file names specifying the R documentation sources to use, by either
giving the paths to the files, or the path to a directory with the sources of a
package.
options further options to control the processing, or for obtaining information about us-
age and version of the utility.
Details

R CMD Rdconv converts Rd format to plain text, HTML or LaTeX formats: it can also extract
the examples.

R CMD Rd2dvi is the user-level program for producing DVI/PDF output from Rd sources. It will
make use of the environment variables R_PAPERSIZE (set by R CMD, with a default set when R
was installed: values for R_PAPERSIZE are a4, letter, legal and executive), xdvi (the
DVI previewer, default xdvi) and R_PDFVIEWER (the PDF previewer).

Rd2pdf is shorthand for Rd2dvi —--pdf.

Use R CMD foo --help to obtain usage information on utility foo.

See Also

The chapter “Processing Rd format” in the “Writing R Extensions” manual.

readBin

405

readBin

Transfer Binary Data To and From Connections

Description

Read binary data from a connection, or write binary data to a connection.

Usage

readBin (con,

what, n = 1L, size = NA_integer_, signed = TRUE,

endian = .PlatformS$Sendian)

writeBin (object, con, size = NA_integer_,
endian = .Platform$endian, useBytes = FALSE)

Arguments

con

what

size

signed

endian

object

useBytes

Details

A connection object or a character string naming a file or a raw vector.

Either an object whose mode will give the mode of the vector to
be read, or a character vector of length one describing the mode:
one of "numeric", "double", "integer", "int", "logical",
"complex", "character", "raw".

integer. The (maximal) number of records to be read. You can use an over-
estimate here, but not too large as storage is reserved for n items.

integer. The number of bytes per element in the byte stream. The default,
NA_integer_, uses the natural size. Size changing is not supported for raw
and complex vectors.

logical. Only used for integers of sizes 1 and 2, when it determines if the quantity
on file should be regarded as a signed or unsigned integer.

The endian-ness ("big" or "1ittle" of the target system for the file. Using
"swap" will force swapping endian-ness.

An R object to be written to the connection.

See writelLines.

These functions are intended to be used with binary-mode connections. If con is a character string,
the functions call £i1e to obtain a binary-mode file connection which is opened for the duration of

the function call.

If the connection is open it is read/written from its current position. If it is not open, it is opened
for the duration of the call in an appropriate mode (binary read or write) and then closed again. An
open connection must be in binary mode.

If readBin is called with con a raw vector, the data in the vector is used as input. If writeBin
is called with con a raw vector, it is just an indication that a raw vector should be returned.

406 readBin

If size is specified and not the natural size of the object, each element of the vector is coerced
to an appropriate type before being written or as it is read. Possible sizes are 1, 2, 4 and possibly
8 for integer or logical vectors, and 4, 8 and possibly 12/16 for numeric vectors. (Note that co-
ercion occurs as signed types except if signed = FALSE when reading integers of sizes 1 and
2.) Changing sizes is unlikely to preserve NAs, and the extended precision sizes are unlikely to be
portable across platforms.

readBin and writeBin read and write C-style zero-terminated character strings. Input strings
are limited to 10000 characters. readChar and writeChar can be used to read and write fixed-
length strings. No check is made that the string is valid in the current locale.

Handling R’s missing and special (Inf, —Inf and NaN) values is discussed in the R Data Im-
port/Export manual.

Only 23! — 1 bytes can be read in a single readBin call (and this is the maximum capacity of a
raw vector).

Value
For readBin, a vector of appropriate mode and length the number of items read (which might be
less than n).

For writeBin, araw vector (if con is a raw vector) or invisibly NULL.

Note
Integer read/writes of size 8 will be available if either C type long is of size 8 bytes or C type
long long exists and is of size 8 bytes.

Real read/writes of size sizeof (long double) (usually 12 or 16 bytes) will be available only
if that type is available and different from double.

If readBin (what = character ()) is used incorrectly on a file which does not contain C-
style character strings, warnings (usually many) are given. From a file or connection, the input will
be broken into pieces of length 10000 with any final part being discarded.

Using these functions on a text-mode connection may work but should not be mixed with text-mode
access to the connection, especially if the connection was opened with an encoding argument.

See Also

The R Data Import/Export manual.
readChar to read/write fixed-length strings.
connections, readlLines,writelLines.

.Machine for the sizes of 1ong, long longand long double.

Examples

zz <— file("testbin", "wb")
writeBin(1:10, zz)

writeBin(pi, zz, endian="swap")
writeBin(pi, zz, size=4)

writeBin(pi”2, zz, size=4, endian="swap")
writeBin (pi+3i, zz)

readChar 407

writeBin ("A test of a connection", zz)
z <- paste("A very long string", 1:100, collapse=" + ")
writeBin(z, zz)

if (.Machine$sizeof.long == 8 || .Machine$sizeof.longlong == 8)
writeBin(as.integer (5°(1:10)), zz, size = 8)

if((s <-.Machine$sizeof.longdouble) > 8)
writeBin ((pi/3)"(1:10), zz, size = s)

close(zz)

zz <- file("testbin", "rb")

14

readBin(zz, integer (), 4)

readBin(zz, integer(), 6)

readBin(zz, numeric(), 1, endian="swap")
(), size=4)
0)

readBin(zz, numeric(), size=4, endian="swap")
readBin(zz, complex (), 1)

readBin (zz, character(), 1)

z2 <- readBin(zz, character(), 1)

(
(
readBin (zz, numeric
(
(

if (.Machine$sizeof.long == 8 || .Machine$sizeof.longlong == 8)
readBin(zz, integer (), 10, size = 8)

if((s <-.Machine$sizeof.longdouble) > 8)
readBin (zz, numeric(), 10, size = s)

close(zz)
unlink ("testbin")
stopifnot (z2 == z)

signed vs unsigned ints

zz <- file("testbin", "wb")

X <- as.integer(seq(0, 255, 32))
writeBin(x, zz, size=1)

writeBin(x, zz, size=1)

x <- as.integer(seq(0, 60000, 10000))
writeBin(x, zz, size=2)

writeBin(x, zz, size=2)

close(zz)

zz <— file("testbin"
readBin(zz, integer
readBin(zz, integer
readBin(zz, integer
readBin(zz, integer
close(zz)

unlink ("testbin")

y n rb")
(), 8, size=1)
(), 8, size=1, signed=FALSE)
(), 7, size=2)
() 7, size=2, signed=FALSE)

’

use of raw

z <— writeBin(pi”{1:5}, raw(), size = 4)

readBin (z, numeric(), 5, size = 4)

z <— writeBin(c("a", "test", "of", "character"), raw())
readBin (z, character (), 4)

readChar Transfer Character Strings To and From Connections

408 readChar

Description

Transfer character strings to and from connections, without assuming they are null-terminated on
the connection.

Usage
readChar (con, nchars, useBytes = FALSE)
writeChar (object, con, nchars = nchar (object, type="chars"),
eos = "", useBytes = FALSE)
Arguments
con A connection object, or a character string naming a file, or a raw vector.
nchars integer, giving the lengths in characters of (unterminated) character strings to be
read or written. Must be >= 0 and not missing.
useBytes logical: For readChar, should nchars be regarded as a number of bytes not
characters in a multi-byte locale? For writeChar, see writeLines.
object A character vector to be written to the connection, at least as long as nchars.
eos ‘end of string’: character string . The terminator to be written after each string,
followed by an ASCII nul; use NULL for no terminator at all.
Details

These functions complement readBin and writeBin which read and write C-style zero-
terminated character strings. They are for strings of known length, and can optionally write an
end-of-string mark. They are intended only for character strings valid in the current locale.

These functions are intended to be used with binary-mode connections. If con is a character string,
the functions call £ile to obtain a binary-mode file connection which is opened for the duration of
the function call.

If the connection is open it is read/written from its current position. If it is not open, it is opened
for the duration of the call in an appropriate mode (binary read or write) and then closed again. An
open connection must be in binary mode.

If readChar is called with con araw vector, the data in the vector is used as input. If writeChar
is called with con a raw vector, it is just an indication that a raw vector should be returned.

Character strings containing ASCII nul(s) will be read correctly by readChar but truncated at
the first nul with a warning.

If the character length requested for readChar is longer than the data available on the connection,
what is available is returned. For writeChar if too many characters are requested the output is
zero-padded, with a warning.

Missing strings are written as NA.

readline 409

Value

For readChar, a character vector of length the number of items read (which might be less than
length (nchars)).

For writeChar, araw vector (if con is a raw vector) or invisibly NULL.

Note

Earlier versions of R allowed embedded nul bytes within character strings, but not R >= 2.8.0.
readChar was commonly used to read fixed-size zero-padded byte fields for which readBin was
unsuitable. readChar can still be used for such fields if there are no embedded nuls: otherwise
readBin (what="raw") provides an alternative.

nchars will be interpreted in bytes not characters in a non-UTF-8 multi-byte locale, with a warn-
ing.

There is little validity checking of UTF-8 reads.

Using these functions on a text-mode connection may work but should not be mixed with text-mode
access to the connection, especially if the connection was opened with an encoding argument.

See Also

The R Data Import/Export manual.

connections, readlLines,writelLines, readBin

Examples

test fixed-length strings

zz <— file("testchar", "wb")

x <—= c("a", "this will be truncated", "abc")
nc <- c (3, 10, 3)

writeChar (x, zz, nc, eos=NULL)

writeChar (x, zz, eos="\r\n")

close(zz)

zz <- file("testchar", "rb")

readChar(zz, nc)

readChar (zz, nchar(x)+3) # need to read the terminator explicitly
close(zz)

unlink ("testchar")

readline Read a Line from the Terminal

Description

readline reads a line from the terminal (in interactive use).

410 readLines

Usage
readline (prompt = "")
Arguments
prompt the string printed when prompting the user for input. Should usually end with a
space " ".
Details

The prompt string will be truncated to a maximum allowed length, normally 256 chars (but can be
changed in the source code).

This can only be used in an interactive session.

Value

A character vector of length one. Both leading and trailing spaces and tabs are stripped from the
result.

In non-interactive use the result is as if the response was RETURN and the value is " ".

See Also

readLines for reading text lines from connections, including files.

Examples

fun <- function() {
ANSWER <- readline ("Are you a satisfied R user? ")
a better version would check the answer less cursorily, and
perhaps re-prompt
if (substr (ANSWER, 1, 1) == "n")
cat ("This is impossible. YOU LIED!\n")
else
cat ("I knew it.\n")

}

if (interactive ()) fun()
readLines Read Text Lines from a Connection
Description

Read some or all text lines from a connection.

Usage

readLines (con = stdin(), n = -1L, ok = TRUE, warn = TRUE,
encoding = "unknown")

readLines 411

Arguments
con a connection object or a character string.
n integer. The (maximal) number of lines to read. Negative values indicate that
one should read up to the end of input on the connection.
ok logical. Is it OK to reach the end of the connection before n > 0 lines are read?
If not, an error will be generated.
warn logical. Warn if a text file is missing a final EOL.
encoding encoding to be assumed for input strings. It is used to mark character strings
as known to be in Latin-1 or UTF-8: it is not used to re-encode the input.
To do the latter, specify the encoding as part of the connection con or via
options (encoding=): see the example under file.
Details

If the con is a character string, the function calls £i1e to obtain a file connection which is opened
for the duration of the function call. As from R 2.10.0 this can be a compressed file.

If the connection is open it is read from its current position. If it is not open, it is opened in "rt"
mode for the duration of the call and then closed again.

If the final line is incomplete (no final EOL marker) the behaviour depends on whether the con-
nection is blocking or not. For a non-blocking text-mode connection the incomplete line is pushed
back, silently. For all other connections the line will be accepted, with a warning.

Whatever mode the connection is opened in, any of LF, CRLF or CR will be accepted as the EOL
marker for a line.

If con is a not-already-open connection with a non-default encoding argument, the text is con-
verted to UTF-8 and declared as such (and the encoding argument to readLines is ignored).
See the examples.

Value

A character vector of length the number of lines read.

The elements of the result have a declared encoding if encodingis "latinl" or "UTF-8",

Note

The default connection, stdin, may be different from con = "stdin":see file.

See Also

connections,writelLines, readBin, scan

Examples

cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file="ex.data",
sep="\n")

readLines ("ex.data", n=-1)

unlink ("ex.data") # tidy up

412 readRDS

difference in blocking
cat ("123\nabc", file = "testl")
readLines ("testl") # line with a warning

con <- file("testl", "r", blocking = FALSE)
readLines (con) # empty

cat (" def\n", file = "testl", append = TRUE)
readLines (con) # gets both

close (con)

unlink ("testl") # tidy up

Not run:

read a 'Windows Unicode' file

A <- readlLines(file("Unicode.txt", encoding="UCS-2LE"))

unique (Encoding (A)) # will most likely be UTF-38

End (Not run)

readRDS Serialization Interface for Single Objects

Description

Functions to write a single R object to a file, and to restore it.

Usage

saveRDS (object, file = "", ascii FALSE, version = NULL,
compress = TRUE, refhook = NULL)

readRDS (file, refhook = NULL)

Arguments

object R object to serialize.

file a connection or the name of the file where the R object is saved to or read from.

ascii alogical. If TRUE, an ASCII representation is written; otherwise (default except
for text-mode connections), a binary one is used. See the comments in the help
for save.

version the workspace format version to use. NULL specifies the current default version
(2). Versions prior to 2 are not supported, so this will only be relevant when
there are later versions.

compress a logical specifying whether saving to a named file is to use "gzip" compres-

sion, orone of "gzip", "bzip2" or "xz" to indicate the type of compression
to be used. Ignored if £ile is a connection.

refhook a hook function for handling reference objects.

readRDS 413

Details

These functions provide the means to save a single R object to a connection (typically a file) and
to restore the object, quite possibly under a different name. This differs from save and load,
which save and restore one or more named objects into an environment. They are widely used by R
itself, for example to store metadata for a package and to store the help. search databases: the
".rds" file extension is most often used.

Functions serialize and unserialize provide a slightly lower-level interface to serializa-
tion: objects serialized to a connection by serialize can be read back by readRDS and con-
versely.

All of these interfaces use the same serialization format, which has been used since R 1.4.0 (but
extended from time to time as new object types have been added to R). However, save writes a
single line header (typically "RDXs\n") before the serialization of a single object (a pairlist of all
the objects to be saved).

Compression is handled by the connection opened when £ile is a file name, so is only possible
when file is a connection if handled by the connection. So e.g. ur1 connections will needed to
be wrapped in a call to gzcon.

If a connection is supplied it will be opened (in binary mode) for the duration of the function if not
already open: if it is already open it must be in binary mode for saveRDS (ascii = FALSE)
(the default).

Value

For readRDS, an R object.
For saveRDS, NULL invisibly.

Note

Prior to R 2.13.0 these functions were known as . readRDS () and .saveRDS () and marked as
‘internal’. Otherwise their interface has been stable since R 1.7.0, except that support for support
for types of compression was added in R 2.10.0 (previously only "gzip" was available), and
readRDS called gzcon internally prior to R 2.13.0.

The internal-only .readRDS if given an un-opened connection would wrap it in gzcon and
close it after use: this was undocumented.

See Also

serialize, save and load.

The ‘R Internals’ manual for details of the format used.

Examples

save a single object to file

saveRDS (women, "women.rds")

restore it under a different name

women2 <- readRDS ("women.rds")

identical (women, women2)

or examine the object via a connection, which will be opened as needed.

414 readRenviron

con <- gzfile("women.rds")
str (readRDS (con))
close (con)

Less convenient ways to restore the object

which demonstrate compatibility with unserialize ()
con <- gzfile("women.rds", "rb")

identical (unserialize (con), women)

close (con)

con <- gzfile("women.rds", "rb")

wm <- readBin(con, "raw", n = led) # size is a guess
close (con)

identical (unserialize (wm), women)

Format compatibility with serialize():

con <- file("women2", "w")

serialize (women, con) # ASCII, uncompressed
close (con)

identical (women, readRDS ("women2"))

con <- bzfile ("women3", "w")

serialize (women, con) # binary, bzip2-compressed
close (con)

identical (women, readRDS ("women2"))

readRenviron Set Environment Variables from a File

Description
Read as file such as ‘*.Renviron’ or ‘Renviron.site’ in the format described in the help for
Startup, and set environment variables as defined in the file.

Usage

readRenviron (path)

Arguments
path A length-one character vector giving the path to the file. Tilde-expansion is
performed where supported.
Value

Scalar logical indicating if the file was read successfully. Returned invisibly. If the file cannot be
opened for reading, a warning is given.

real 415

See Also

Startup for the file format.

Examples
Not run:
re-read a startup file (or read it in a vanilla session)
readRenviron ("~/.Renviron")

End (Not run)

real Real Vectors

Description

These functions are the same as their double equivalents and are provided for backwards compat-
ibility only.

Usage

real (length = 0)
as.real (%,)
is.real (x)

Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one will give a
warning.
x object to be coerced or tested.
further arguments passed to or from other methods.
Details

as.real is a generic function, but S3 methods must be written for as.double.

416 reg.finalizer

Recall Recursive Calling

Description
Recall is used as a placeholder for the name of the function in which it is called. It allows the
definition of recursive functions which still work after being renamed, see example below.

Usage

Recall(...)

Arguments
all the arguments to be passed.
Note
Recall will not work correctly when passed as a function argument, e.g. to the apply family of
functions.
See Also

do.calland call.

local for another way to write anonymous recursive functions.

Examples

A trivial (but inefficient!) example:
fib <- function (n)
if (n<=2) { 1if(n>=0) 1 else 0 } else Recall(n-1) + Recall (n-2)
fibonacci <- fib; rm(fib)
renaming wouldn't work without Recall
fibonacci (10) # 55

reg.finalizer Finalization of Objects

Description
Registers an R function to be called upon garbage collection of object or (optionally) at the end of
an R session.

Usage

reg.finalizer (e, f, onexit = FALSE)

regex 417

Arguments
Object to finalize. Must be an environment or an external pointer.
f Function to call on finalization. Must accept a single argument, which will be
the object to finalize.
onexit logical: should the finalizer be run if the object is still uncollected at the end of
the R session?
Value
NULL.
Note

The purpose of this function is mainly to allow objects that refer to external items (a temporary
file, say) to perform cleanup actions when they are no longer referenced from within R. This only
makes sense for objects that are never copied on assignment, hence the restriction to environments
and external pointers.

See Also

gc and Memory for garbage collection and memory management.

Examples

f <- function(e) print ("cleaning....")
g <- function(x){ e <- environment (); reg.finalizer (e, f) }

g()
invisible(gc()) # trigger cleanup

regex Regular Expressions as used in R

Description

This help page documents the regular expression patterns supported by grep and related functions
grepl, regexpr, gregexpr, sub and gsub, as well as by strsplit.

Details

A ‘regular expression’ is a pattern that describes a set of strings. Two types of regular expressions
are used in R, extended regular expressions (the default) and Perl-like regular expressions used by
perl = TRUE. Thereisaalso fixed = TRUE which can be considered to use a literal regular
expression.

Other functions which use regular expressions (often via the use of grep) include apropos,
browseEnv, help.search, list.files and 1s. These will all use extended regular expres-
sions.

Patterns are described here as they would be printed by cat: (do remember that backslashes need
to be doubled when entering R character strings, e.g. from the keyboard).

418 regex

Extended Regular Expressions

This section covers the regular expressions allowed in the default mode of grep, regexpr,
gregexpr, sub, gsub and strsplit. They use an implementation of the POSIX 1003.2 stan-
dard: that allows some scope for interpretation and the interpretations here are those used as from
R 2.10.0.

Regular expressions are constructed analogously to arithmetic expressions, by using various opera-
tors to combine smaller expressions. The whole expression matches zero or more characters (read
‘character’ as ‘byte’ if useBytes = TRUE).

The fundamental building blocks are the regular expressions that match a single character. Most
characters, including all letters and digits, are regular expressions that match themselves. Any
metacharacter with special meaning may be quoted by preceding it with a backslash. The metachar-
acters in EREs are “. \ | () [{ ~ $ = + 2, butnote that whether these have a spe-
cial meaning depends on the context.

Escaping non-metacharacters with a backslash is implementation-dependent. The current imple-
mentation interprets ‘\a’ as ‘BEL’, ‘\e’ as ‘ESC’, ‘\f’ as ‘FF’, ‘\n’ as ‘LF’, ‘\r’ as ‘CR’ and
‘\t’ as ‘TAB’. (Note that these will be interpreted by R’s parser in literal character strings.)

A character class is a list of characters enclosed between ‘[’ and ‘]’ which matches any single
character in that list; unless the first character of the list is the caret ‘~’, when it matches any
character not in the list. For example, the regular expression ‘[0123456789] matches any single
digit, and ‘[~abc]’ matches anything except the characters ‘a’, ‘b’ or ‘c’. A range of characters
may be specified by giving the first and last characters, separated by a hyphen. (Because their
interpretation is locale- and implementation-dependent, they are best avoided.) The only portable
way to specify all ASCII letters is to list them all as the character class
‘[ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz]’.

(The current implementation uses numerical order of the encoding: prior to R 2.10.0 locale-specific
collation was used, and might be again.)

Certain named classes of characters are predefined. Their interpretation depends on the locale (see
locales); the interpretation below is that of the POSIX locale.

3 9

ralnum: Alphanumeric characters: ‘[:alpha:]’ and ‘[:digit:]’ .

3

3

:blank:

:cntrl:]’ Control characters. In ASCII, these characters have octal codes 000 through 037,
and 177 (DEL). In another character set, these are the equivalent characters, if any.

Digits: ‘0 1 2 3 4 5 6 7 8 9.

1
:alpha:]’ Alphabetic characters: ‘[:lower:]’ and ‘[:upper:]’.
1’ Blank characters: space and tab. (This is an extension to the POSIX standard.)

3

[
[
[
[

:digit:

-~

9

:graph:]’ Graphical characters: ‘[:alnum:]’ and ‘[:punct:]’.

b

:lower: Lower-case letters in the current locale.

-~

LN

:print:]’ Printable characters: ‘[:alnum:]’, ‘[:punct:]’ and space.

e $%5& ' () x+, -/ ;< =>2@ [\N]" R

9

‘[:space:

1’
]
]
]
:punct :]’ Punctuation characters:
#
] Space characters: tab, newline, vertical tab, form feed, carriage return, and space.
1’

‘[:upper:]’ Upper-case letters in the current locale.
‘[:xdigit:]’ Hexadecimal digits:

‘0123456789 ABCDETFabcdef.

regex 419

For example, ‘[[:alnum:]]’ means ‘[0-9A-Za-z]’, except the latter depends upon the locale
and the character encoding, whereas the former is independent of locale and character set. (Note
that the brackets in these class names are part of the symbolic names, and must be included in
addition to the brackets delimiting the bracket list.) Most metacharacters lose their special meaning
inside a character class. To include a literal ‘] ’, place it first in the list. Similarly, to include a literal
‘~’, place it anywhere but first. Finally, to include a literal ‘-’, place it first or last (or, for perl =
TRUE only, precede it by a backslash.). (Only ‘~ — \]’ are special inside character classes.)
The period ‘.’ matches any single character. The symbol ‘\w’ matches a ‘word’ character (a
synonym for ‘[[:alnum:]_]") and ‘\W’ is its negation. Symbols ‘\d’, ‘\'s’, ‘\D’ and ‘\S’
denote the digit and space classes and their negations.

The caret ‘“~’ and the dollar sign ‘$’ are metacharacters that respectively match the empty string at
the beginning and end of a line. The symbols ‘\ <’ and ‘\ >’ match the empty string at the beginning
and end of a word. The symbol ‘\b’ matches the empty string at either edge of a word, and ‘\B’
matches the empty string provided it is not at an edge of a word. (The interpretation of ‘word’
depends on the locale and implementation.)

A regular expression may be followed by one of several repetition quantifiers:

¢?’ The preceding item is optional and will be matched at most once.

‘x’ The preceding item will be matched zero or more times.

‘+> The preceding item will be matched one or more times.

‘{n}’ The preceding item is matched exactly n times.

‘{n, }’> The preceding item is matched n or more times.

‘{n,m}’ The preceding item is matched at least n times, but not more than m times.

By default repetition is greedy, so the maximal possible number of repeats is used. This can be

changed to ‘minimal’ by appending ? to the quantifier. (There are further quantifiers that allow
approximate matching: see the TRE documentation.)

Regular expressions may be concatenated; the resulting regular expression matches any string
formed by concatenating the substrings that match the concatenated subexpressions.

Two regular expressions may be joined by the infix operator ‘|’; the resulting regular expression
matches any string matching either subexpression. For example, ‘abba | cde’ matches either the
string abba or the string cde. Note that alternation does not work inside character classes, where
‘|’ has its literal meaning.

Repetition takes precedence over concatenation, which in turn takes precedence over alternation. A
whole subexpression may be enclosed in parentheses to override these precedence rules.

The backreference ‘\N’, where ‘N = 1 ... 9, matches the substring previously matched by
the Nth parenthesized subexpression of the regular expression. (This is an extension for extended
regular expressions: POSIX defines them only for basic ones.)

Perl-like Regular Expressions

The perl = TRUE argument to grep, regexpr, gregexpr, sub, gsub and strsplit
switches to the PCRE library that implements regular expression pattern matching using the same
syntax and semantics as Perl 5.10, with just a few differences.

420 regex

For complete details please consult the man pages for PCRE, especially man pcrepattern and
man pcreapi), on your system or from the sources at http://www.pcre.org. If PCRE
support was compiled from the sources within R, the PCRE version is 8.12 as described here.

Perl regular expressions can be computed byte-by-byte or (UTF-8) character-by-character: the latter
is used in all multibyte locales and if any of the inputs are marked as UTF-8 (see Encoding).

All the regular expressions described for extended regular expressions are accepted except ‘\ <’ and
‘\>’: in Perl all backslashed metacharacters are alphanumeric and backslashed symbols always are
interpreted as a literal character. ‘{’ is not special if it would be the start of an invalid interval
specification. There can be more than 9 backreferences (but the replacement in sub can only refer
to the first 9).

Character ranges are interpreted in the numerical order of the characters, either as bytes in a single-
byte locale or as Unicode points in UTF-8 mode. So in either case ‘ [A-Za—-z]’ specifies the set of
ASCII letters.

In UTF-8 mode the named character classes only match ASCII characters: see ‘\p’ below for an
alternative.

The construct “ (?...) is used for Perl extensions in a variety of ways depending on what imme-
diately follows the “2’.

Perl-like matching can work in several modes, set by the options ‘ (?1)’ (caseless, equivalent to
Perl’s /1), “ (?m)’ (multiline, equivalent to Perl’s ‘/m’), ‘ (?s)’ (single line, so a dot matches
all characters, even new lines: equivalent to Perl’s */s’) and ‘ (?x)’ (extended, whitespace data
characters are ignored unless escaped and comments are allowed: equivalent to Perl’s /x”). These
can be concatenated, so for example, ‘ (?im) ’ sets caseless multiline matching. It is also possible to
unset these options by preceding the letter with a hyphen, and to combine setting and unsetting such
as ‘ (?im-sx)’. These settings can be applied within patterns, and then apply to the remainder of
the pattern. Additional options not in Perl include ¢ (?U) ’ to set ‘ungreedy’ mode (so matching is
minimal unless ‘?’ is used as part of the repetition quantifier, when it is greedy). Initially none of
these options are set.

If you want to remove the special meaning from a sequence of characters, you can do so by putting
them between ‘\Q’ and ‘\E’. This is different from Perl in that ‘$’ and ‘@’ are handled as literals
in ‘\Q. . .\E’ sequences in PCRE, whereas in Perl, ‘$’ and ‘@’ cause variable interpolation.

The escape sequences ‘\d’, ‘\s’ and ‘\w’ represent any decimal digit, space character and ‘word’
character (letter, digit or underscore in the current locale: in UTF-8 mode only ASCII letters and
digits are considered) respectively, and their upper-case versions represent their negation. Unlike
POSIX, vertical tab is not regarded as a space character. Sequences ‘\h’, ‘\v’, ‘\H’ and ‘\V’
match horizontal and vertical space or the negation. (In UTF-8 mode, these do match non-ASCII
Unicode points.)

There are additional escape sequences: ‘\cx’is ‘cntrl-x’ for any ‘x’, ‘\ddd’ is the octal char-
acter (for up to three digits unless interpretable as a backreference, as ‘\1’ to ‘\7’ always are),
and ‘\xhh’ specifies a character by two hex digits. In a UTF-8 locale, ‘\x{h. ..}’ specifies a
Unicode point by one or more hex digits. (Note that some of these will be interpreted by R’s parser
in literal character strings.)

Outside a character class, ‘\A’ matches at the start of a subject (even in multiline mode, unlike ‘"),
‘\Z’ matches at the end of a subject or before a newline at the end, ‘\ z’ matches only at end of
a subject. and ‘\G’ matches at first matching position in a subject (which is subtly different from
Perl’s end of the previous match). ‘\C’ matches a single byte, including a newline, but its use is

http://www.pcre.org

remove 421

warned against. In UTF-8 mode, ‘\R’ matches any Unicode newline character (not just CR), and
‘\X’ matches any number of Unicode characters that form an extended Unicode sequence.

In UTF-8 mode, some Unicode properties are supported via ‘\p{xx}’ and ‘\P {xx }’ which match
characters with and without property ‘xx’ respectively. For a list of supported properties see the
PCRE documentation, but for example ‘Lu’ is ‘upper case letter’ and ‘Sc’ is ‘currency symbol’.
The sequence ‘ (?#° marks the start of a comment which continues up to the next closing parenthe-
sis. Nested parentheses are not permitted. The characters that make up a comment play no part at
all in the pattern matching.

If the extended option is set, an unescaped ‘#’ character outside a character class introduces a
comment that continues up to the next newline character in the pattern.

The pattern “ (?: . . .)’ groups characters just as parentheses do but does not make a backreference.

Patterns “ (?=...) and ‘(?!...)’ are zero-width positive and negative lookahead assertions:
they match if an attempt to match the . . . forward from the current position would succeed (or not),
but use up no characters in the string being processed. Patterns ‘ (?<=...) and * (?<!...) are
the lookbehind equivalents: they do not allow repetition quantifiers nor ‘\C’in

Named subpatterns, atomic grouping, possessive qualifiers and conditional and recursive patterns
are not covered here.

Author(s)

This help page is based on the documentation of GNU grep 2.4.2, the TRE documentation and the
POSIX standard, and the pcrepattern man page from PCRE 8.0.

See Also

grep, apropos, browseEnv, glob2rx, help.search, list.files, 1ls and
strsplit.

The TRE documentation at http://laurikari.net/tre/documentation/
regex—syntax/).

The POSIX 1003.2 standard at http://pubs.opengroup.org/onlinepubs/
9699919799 /basedefs/V1_chap09.html#tag 09

The pcrepattern can be found as part of http://www.pcre.org/pcre. txt, and details
of Perl’s own implementation at http: //perldoc.perl.org/perlre.html.

remove Remove Objects from a Specified Environment

Description

remove and rm can be used to remove objects. These can be specified successively as character
strings, or in the character vector 11ist, or through a combination of both. All objects thus specified
will be removed.

If envir is NULL then the currently active environment is searched first.

If inherits is TRUE then parents of the supplied directory are searched until a variable with the
given name is encountered. A warning is printed for each variable that is not found.

http://laurikari.net/tre/documentation/regex-syntax/
http://laurikari.net/tre/documentation/regex-syntax/
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09
http://www.pcre.org/pcre.txt
http://perldoc.perl.org/perlre.html

422 remove

Usage
remove (..., list = character(), pos = -1,
envir = as.environment (pos), inherits = FALSE)
rm (..., list = character(), pos = -1,
envir = as.environment (pos), inherits = FALSE)
Arguments
the objects to be removed, as names (unquoted) or character strings (quoted).
list a character vector naming objects to be removed.
pos where to do the removal. By default, uses the current environment. See ‘details’
for other possibilities.
envir the environment to use. See ‘details’.
inherits should the enclosing frames of the environment be inspected?
Details

The pos argument can specify the environment from which to remove the objects in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys. frame to access the currently
active function calls). The envir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

It is not allowed to remove variables from the base environment and base name space, nor from any
environment which is locked (see 1ockEnvironment).

Earlier versions of R incorrectly claimed that supplying a character vector in ... removed the
objects named in the character vector, but it removed the character vector. Use the 1ist argument
to specify objects via a character vector.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
1s,objects
Examples
tmp <- 1:4
work with tmp and cleanup
rm (tmp)

Not run:

remove (almost) everything in the working environment.

You will get no warning, so don't do this unless you are really sure.
rm(list = 1s())

rep 423

End (Not run)

rep Replicate Elements of Vectors and Lists

Description

rep replicates the values in x. It is a generic function, and the (internal) default method is described
here.

rep.int is a faster simplified version for the most common case.

Usage

rep(x, ...)

rep.int (x, times)

Arguments

X a vector (of any mode including a list) or a pairlist or a factor or (except for
rep.int) a POSIXct or POSIX1t or date object; or also, an S4 object
containing a vector of the above kind.

further arguments to be passed to or from other methods. For the internal default
method these can include:

times A integer vector giving the (non-negative) number of times to repeat
each element if of length length (x), or to repeat the whole vector if of
length 1. Negative or NA values are an error.

length.out non-negative integer. The desired length of the output vector.
Other inputs will be coerced to an integer vector and the first element taken.
Ignored if NA or invalid.

each non-negative integer. Each element of x is repeated each times. Other

inputs will be coerced to an integer vector and the first element taken.
Treated as 1 if NA or invalid.

times see

Details

The default behaviour is as if the call was rep (x, times=1, length.out=NA, each=1).
Normally just one of the additional arguments is specified, but if each is specified with either of
the other two, its replication is performed first, and then that implied by t imes or length. out.

If times consists of a single integer, the result consists of the whole input repeated this many
times. If t imes is a vector of the same length as x (after replication by each), the result consists
of x [1] repeated t imes [1] times, x [2] repeated t imes [2] times and so on.

rep

length.out may be given in place of times, in which case x is repeated as many times as
is necessary to create a vector of this length. If both are given, length. out takes priority and
times is ignored.

Non-integer values of t ime s will be truncated towards zero. If t imes is a computed quantity it is
prudent to add a small fuzz.

If x has length zero and 1ength. out is supplied and is positive, the values are filled in using the
extraction rules, that is by an NA of the appropriate class for an atomic vector (0 for raw vectors)
and NULL for a list.

Value

An object of the same type as x (except that rep will coerce pairlists to vector lists).
rep.int returns no attributes.

The default method of rep gives the result names (which will almost always contain duplicates) if
x had names, but retains no other attributes except for factors.

Note

Function rep. int is a simple case handled by internal code, and provided as a separate function
purely for S compatibility.

Function rep is a primitive, but (partial) matching of argument names is performed as for normal
functions. You can no longer pass a missing argument to e.g. length. out.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

seq, sequence, replicate.

Examples

rep(l:4, 2)

rep(l:4, each = 2) # not the same.

rep(l:4, c(2,2,2,2)) # same as second.

rep(l:4, c(2,1,2,1))

rep(l:4, each = 2, len = 4) # first 4 only.

rep(l:4, each = 2, len = 10) # 8 integers plus two recycled 1's.
rep(l:4, each = 2, times = 3) # length 24, 3 complete replications

rep(l, 40x(1-.8)) # length 7 on most platforms
rep(l, 40« (1-.8)+1e-7) # better

replicate a list
fred <- list (happy = 1:10, name = "squash")
rep (fred, 5)

replace

date-time objects
.leap.seconds[1:3]
rep(x, 2)

rep (as.POSIX1lt (%),

X <-

rep (2, 3))
named factor

x <—- factor (LETTERS[1:4]);
x

2)
each=2)
2)

rep (x,
rep (x,

rep.int (x, # no names

names (x)

425

<—- letters[1l:4]

replace Replace Values in a

Vector

Description

replace replaces the values in x with indices given in 1ist by those given in values. If

necessary, the values in values are recycled.

Usage

replace (x, list, wvalues)
Arguments

X vector

list an index vector

values replacement values
Value

A vector with the values replaced.

Note

x is unchanged: remember to assign the result.

References

Becker, R. A., Chambers, J. M. and Wilks,
Brooks/Cole.

A. R. (1988) The New S Language. Wadsworth &

426 rev

Reserved Reserved Words in R

Description

The reserved words in R’s parser are
if else repeat while function for in next break

TRUE FALSE NULL Inf NaN NA NA_integer_ NA_real_ NA_complex_
NA_character_

. and . .1, ..2 etc, which are used to refer to arguments passed down from an enclosing
function.

Details

Reserved words outside quotes are always parsed to be references to the objects linked to in the
‘Description’, and hence they are not allowed as syntactic names (see make .names). They are
allowed as non-syntactic names, e.g. inside backtick quotes.

rev Reverse Elements

Description

rev provides a reversed version of its argument. It is generic function with a default method for
vectors and one for dendrograms.

Note that this is no longer needed (nor efficient) for obtaining vectors sorted into descending order,
since that is now rather more directly achievable by sort (x, decreasing = TRUE).
Usage

rev (x)

Arguments

X a vector or another object for which reversal is defined.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

seq, sort.

Rhome 427

Examples

x <—= c(1:5,5:3)
sort into descending order; first more efficiently:

stopifnot (sort (x, decreasing = TRUE) == rev(sort (x)))
stopifnot (rev(1l:7) == 7:1)#- don't need 'rev' here
Rhome Return the R Home Directory
Description

Return the R home directory.

Usage

R.home (component="home")

Arguments
component As well as "home" which gives the R home directory, other known values are
"bin", "doc", "etc", "modules" and "share" giving the paths to the
corresponding parts of an R installation.
Details

The R home directory is the top-level directory of the R installation being run.

The R home directory is often referred to as R_HOME, and is the value of an environment variable
of that name in an R session. It can be found outside an R session by R RHOME.

Value

A character string giving the R home directory or path to a particular component. Normally the
components are all subdirectories of the R home directory, but this may not be the case in a Unix-
like installation.

The return value for "modules" and on Windows "bin" is to a sub-architecture-specific loca-
tion.

The function R. home () bases the constructed paths on the current value of the environment vari-
able R_HOME which is normally set on startup.

On Windows the values of R. home () and R_HOME are guaranteed not to contain spaces, switching
to the 8.3 short form of path elements if required. From R 2.13.0 the value of R_HOME is set
on startup to use forward slashes (since many package maintainers pass it unquoted to shells, for
example in Makefiles).

428 rle

rle Run Length Encoding

Description

Compute the lengths and values of runs of equal values in a vector — or the reverse operation.

Usage

rle (x)
inverse.rle(x, ...)

S3 method for class 'rle'

print (x, digits = getOption("digits"), prefix = "", ...)
Arguments
x an atomic vector for rle () ; an object of class "rle" for inverse.rle ().

further arguments; ignored here.

digits number of significant digits for printing, see print .default.
prefix character string, prepended to each printed line.
Details

Missing values are regarded as unequal to the previous value, even if that is also missing.

inverse.rle () isthe inverse function of rle (), reconstructing x from the runs.

Value

rle () returns an object of class "r1le" which is a list with components:

lengths an integer vector containing the length of each run.

values a vector of the same length as 1lengths with the corresponding values.

inverse.rle () returns an atomic vector.

Examples

X <— rev(rep(6:10, 1:5))

rle(x)

lengths [1:5] 5
0

4 321
values [1:5] 10 9 8 7 6
z <— c (TRUE, TRUE,FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE)
rle(z)
rle (as.character(z))

print(rle(z), prefix = "..| ")

Round 429

N <- integer (0)

stopifnot (x == inverse.rle(rle(x)),
identical (N, inverse.rle(rle(N))),
z == 1inverse.rle(rle(z)))
Round Rounding of Numbers
Description

ceiling takes a single numeric argument x and returns a numeric vector containing the smallest
integers not less than the corresponding elements of x.

floor takes a single numeric argument x and returns a numeric vector containing the largest
integers not greater than the corresponding elements of x.

trunc takes a single numeric argument x and returns a numeric vector containing the integers
formed by truncating the values in x toward 0.

round rounds the values in its first argument to the specified number of decimal places (default 0).

signif rounds the values in its first argument to the specified number of significant digits.

Usage
ceiling (x)
floor (x)
trunc(x, ...)
round (x, digits = 0

)
signif (x, digits = 6)

Arguments
X a numeric vector. Or, for round and signif, a complex vector.
digits integer indicating the number of decimal places (round) or significant digits
(signif) to be used.
arguments to be passed to methods.
Details

These are generic functions: methods can be defined for them individually or via the Math group
generic.

Note that for rounding off a 5, the IEC 60559 standard is expected to be used, ‘go fo the even
digit’. Therefore round (0.5) is 0 and round (-1.5) is —2. However, this is dependent on OS
services and on representation error (since e.g. 0.15 is not represented exactly, the rounding rule
applies to the represented number and not to the printed number, and so round (0.15, 1) could
be either 0.1 or 0. 2).

430 round.POSIXt

For signif the recognized values of digits are 1...22. Complex numbers are rounded to
retain the specified number of digits in the larger of the components. Each element of the vector is
rounded individually, unlike printing.

These are all primitive functions.

S4 methods

These are all (internally) S4 generic.

ceiling, floor and trunc are members of the Math group generic. As an S4 generic, t runc
has only one argument.

round and signif are members of the Math2 group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

as.integer.

Examples

round (.5 + -2:4) # IEEE rounding: -2 0 0 2 2 4 4

(x1 <- seq (-2, 4, by = .5))

round (x1) #—— IEEE rounding !
x1[trunc(x1l) != floor(x1l)]
x1l[round(x1l) != floor(xl + .5)]
(non.int <- ceiling(xl) != floor(xl))

X2 <= pi % 100" (-1:3)
round (x2, 3)
signif (x2, 3)

round.POSIXt Round / Truncate Data-Time Objects

Description

Round or truncate date-time objects.

row 431

Usage
S3 method for class 'POSIXt'
round(x, units = c("secs", "mins", "hours", "days"))
S3 method for class 'POSIXt'
trunc(x, units = c("secs", "mins", "hours", "days"), ...)

S3 method for class 'Date'

round(x, ...)
S3 method for class 'Date'
trunc(x, ...)
Arguments
X an object inheriting from "POSIXt" or "Date".
units one of the units listed. Can be abbreviated.

arguments to be passed to or from other methods, notably digits for round.

Details

The time is rounded or truncated to the second, minute, hour or day. Timezones are only relevant to
days, when midnight in the current timezone is used.

The methods for class "Date" are of little use except to remove fractional days.

Value

An object of class "POSIX1t" or "Date".

See Also

round for the generic function and default methods.

DateTimeClasses, Date

Examples

round(.leap.seconds + 1000, "hour")
trunc (Sys.time (), "day")

row Row Indexes

Description

Returns a matrix of integers indicating their row number in a matrix-like object, or a factor indicat-
ing the row labels.

432 row.names

Usage

row(x, as.factor = FALSE)

Arguments
X a matrix-like object, that is one with a two-dimensional dim.
as.factor alogical value indicating whether the value should be returned as a factor of row
labels (created if necessary) rather than as numbers.
Value

An integer (or factor) matrix with the same dimensions as x and whose i j-th element is equal to i
(or the i-th row label).

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

col to get columns.

Examples

x <- matrix(1:12, 3, 4)

extract the diagonal of a matrix
dx <- x[row(x) == col (x)]

dx

create an identity 5-by-5 matrix

x <- matrix (0, nrow = 5, ncol = 5)
x[row(x) == col(x)] <=1
X
row.names Get and Set Row Names for Data Frames
Description

All data frames have a row names attribute, a character vector of length the number of rows with no
duplicates nor missing values.

For convenience, these are generic functions for which users can write other methods, and there are
default methods for arrays. The description here is for the data . f rame method.

row.names 433

Usage

row.names (x)
row.names (x) <- value

Arguments
X object of class "data.frame", or any other class for which a method has
been defined.
value an object to be coerced to character unless an integer vector. It should have
(after coercion) the same length as the number of rows of x with no duplicated
nor missing values. NULL is also allowed: see ‘Details’.
Details

A data frame has (by definition) a vector of row names which has length the number of rows in the
data frame, and contains neither missing nor duplicated values. Where a row names sequence has
been added by the software to meet this requirement, they are regarded as ‘automatic’.

Row names are currently allowed to be integer or character, but for backwards compatibility (with
R <=2.4.0) row.names will always return a character vector. (Use attr (x, "row.names")
if you need to retrieve an integer-valued set of row names.)

Using NULL for the value resets the row names to seq_len (nrow (x)), regarded as ‘automatic’.

Value

row.names returns a character vector.

row.names<- returns a data frame with the row names changed.

Note

row.names is similar to rownames for arrays, and it has a method that calls rownames for an
array argument.

Row names of the form 1:n for n > 2 are stored internally in a compact form, which might be
seen from C code or by deparsing but never via row.names or attr (x, "row.names").
Additionally, some names of this sort are marked as ‘automatic’ and handled differently by
as.matrix and data.matrix (and potentially other functions). (All zero-row data frames
are regarded as having automatic row.names.)

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, rownames, names.

.row_names_info for the internal representations.

434 row/colnames

row/colnames Row and Column Names

Description

Retrieve or set the row or column names of a matrix-like object.

Usage

rownames (x, do.NULL = TRUE, prefix = "row")
rownames (x) <- value

colnames (x, do.NULL = TRUE, prefix = "col")
colnames (x) <- value

Arguments
x a matrix-like R object, with at least two dimensions for colnames.
do.NULL logical. Should this create names if they are NULL?
prefix for created names.
value a valid value for that component of dimnames (x) . For a matrix or array this
is either NULL or a character vector of non-zero length equal to the appropriate
dimension.
Details

The extractor functions try to do something sensible for any matrix-like object x. If the object has
dimnames the first component is used as the row names, and the second component (if any) is used
for the column names. For a data frame, rownames and colnames eventually call row.names
and name s respectively, but the latter are preferred.

If do.NULL is FALSE, a character vector (of length NROW (x) or NCOL (x)) is returned in any
case, prepending pre fix to simple numbers, if there are no dimnames or the corresponding com-
ponent of the dimnames is NULL.

The replacement methods for arrays/matrices coerce vector and factor values of value to character,
but do not dispatch methods for as.character.

For a data frame, value for rownames should be a character vector of non-duplicated and non-
missing names (this is enforced), and for colnames a character vector of (preferably) unique
syntactically-valid names. In both cases, value will be coerced by as.character, and setting
colnames will convert the row names to character.

See Also

dimnames, case.names, variable.names.

rowsum 435

Examples

m0 <- matrix (NA, 4, 0)
rownames (m0)

m2 <- cbind(1,1:4)
colnames (m2, do.NULL = FALSE)
colnames (m2) <- c("x","Yy")

rownames (m2) <- rownames (m2, do.NULL = FALSE, prefix = "Obs.")
m2
rowsum Give Column Sums of a Matrix or Data Frame, Based on a Grouping
Variable
Description

Compute column sums across rows of a numeric matrix-like object for each level of a grouping
variable. rowsum is generic, with a method for data frames and a default method for vectors and
matrices.

Usage

rowsum(x, group, reorder = TRUE, ...)

S3 method for class 'data.frame'
rowsum(x, group, reorder = TRUE, na.rm = FALSE, ...)

Default S3 method:

rowsum(x, group, reorder = TRUE, na.rm = FALSE, ...)
Arguments
X a matrix, data frame or vector of numeric data. Missing values are allowed. A

numeric vector will be treated as a column vector.

group a vector or factor giving the grouping, with one element per row of x. Missing
values will be treated as another group and a warning will be given.

reorder if TRUE, then the result will be in order of sort (unique (group)), if
FALSE, it will be in the order that groups were encountered.

na.rm logical (TRUE or FALSE). Should NA (including NaN) values be discarded?

other arguments to be passed to or from methods

436 sample

Details

The default is to reorder the rows to agree with tapply as in the example below. Reordering
should not add noticeably to the time except when there are very many distinct values of group
and x has few columns.

The original function was written by Terry Therneau, but this is a new implementation using hashing
that is much faster for large matrices.

To sum over all the rows of a matrix (ie, a single group) use colSums, which should be even
faster.

For integer arguments, over/underflow in forming the sum results in NA.

Value

A matrix or data frame containing the sums. There will be one row per unique value of group.

See Also

tapply, aggregate, rowSums

Examples

require (stats)

x <- matrix (runif (100), ncol=5)

group <- sample(1:8, 20, TRUE)

(xsum <- rowsum(x, group))

Slower versions

tapply (x, list (groupl[row(x)], col(x)), sum)

t (sapply (split (as.data.frame(x), group), colSums))
aggregate (x, list (group), sum) [-1]

sample Random Samples and Permutations

Description

sample takes a sample of the specified size from the elements of x using either with or without
replacement.

Usage

sample (x, size, replace = FALSE, prob = NULL)

sample.int (n, size = n, replace = FALSE, prob = NULL)

sample 437

Arguments
x Either a vector of one or more elements from which to choose, or a positive
integer. See ‘Details.’
n a positive number, the number of items to choose from. See ‘Details.’
size a non-negative integer giving the number of items to choose.
replace Should sampling be with replacement?
prob A vector of probability weights for obtaining the elements of the vector being
sampled.
Details

If % has length 1, is numeric (in the sense of is.numeric)and x >= 1, sampling via sample
takes place from 1 : x. Note that this convenience feature may lead to undesired behaviour when x
is of varying length in calls such as sample (x) . See the examples.

Otherwise x can be any R object for which 1ength and subsetting by integers make sense: S3 or
S4 methods for these operations will be dispatched as appropriate.

For sample the default for size is the number of items inferred from the first argument, so that
sample (x) generates a random permutation of the elements of x (or 1 : x).

As from R 2.11.0 it is allowed to ask for size = 0 samples with n = 0 or a length-zero x, but
otherwise n > 0 or positive Length (x) is required.

Non-integer positive numerical values of n or x will be truncated to the next smallest integer, which
has to be no larger than .MachineS$integer.max.

The optional prob argument can be used to give a vector of weights for obtaining the elements
of the vector being sampled. They need not sum to one, but they should be non-negative and not
all zero. If replace is true, Walker’s alias method (Ripley, 1987) is used when there are more
than 250 reasonably probable values: this gives results incompatible with those from R <2.2.0, and
there will be a warning the first time this happens in a session.

If replace is false, these probabilities are applied sequentially, that is the probability of choosing
the next item is proportional to the weights amongst the remaining items. The number of nonzero
weights must be at least size in this case.

sample.int is a bare interface in which both n and size must be supplied as integers.

Value

For sample a vector of length size with elements drawn from either x or from the integers 1 : x.

For sample. int, an integer vector of length size with elements from 1 :n,

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Ripley, B. D. (1987) Stochastic Simulation. Wiley.

save

See Also

RNG about random number generation.

CRAN package sampling for other methods of weighted sampling without replacement.

Examples

x <= 1:12

a random permutation

sample (x)

bootstrap resampling —-- only if length(x) > 1 !

sample (x, replace=TRUE)

100 Bernoulli trials
sample (c(0,1), 100, replace = TRUE)

More careful bootstrapping -- Consider this when using sample ()
programmatically (i.e., in your function or simulation)!

sample()'s surprise -— example
x <- 1:10
sample (x[x > 8]) # length 2
sample (x[x > 9]) # oops —-- length 10!

sample (x[x > 10]) # length O

For R >= 2.11.0 only

resample <- function(x, ...) x[sample.int (length(x), ...)]
resample (x[x > 8]) # length 2

resample (x[x > 9]) # length 1

resample (x[x > 10]) # length O

save Save R Objects

Description

save writes an external representation of R objects to the specified file. The objects can be read
back from the file at a later date by using the function 1oad (or data in some cases).

save.image () is just a short-cut for ‘save my current workspace’, i.e., save (list =

Usage

1s(all=TRUE), file = ".RData"). Itis also what happens with g ("yes").
save(..., list = character (),
file = stop("'file' must be specified"),
ascii = FALSE, version = NULL, envir = parent.frame(),
compress = l!ascii, compression_level,

eval.promises = TRUE, precheck = TRUE)

save 439

save.image (file = ".RData", version = NULL, ascii = FALSE,
compress = l!ascii, safe = TRUE)

Arguments

the names of the objects to be saved (as symbols or character strings).

list A character vector containing the names of objects to be saved.

file a (writable binary-mode) connection or the name of the file where the data will
be saved (when tilde expansion is done). Must be a file name for version =
1.

ascii if TRUE, an ASCII representation of the data is written. The default value of

ascii is FALSE which leads to a binary file being written.
version the workspace format version to use. NULL specifies the current default format.

The version used from R 0.99.0 to R 1.3.1 was version 1. The default format as
from R 1.4.0 is version 2.

envir environment to search for objects to be saved.

compress logical or character string specifying whether saving to a named file is to use
compression. TRUE corresponds to gzip compression, and (from R 2.10.0)
character strings "gzip", "bzip2" or "xz" specify the type of compression.
Ignored when file is a connection and for workspace format version 1.

compression_level
integer: the level of compression to be used. Defaults to 6 for gzip compres-
sion and to 9 for bzip2 or xz compression.

eval.promises
logical: should objects which are promises be forced before saving?

precheck logical: should the existence of the objects be checked before starting to save
(and in particular before opening the file/connection)? Does not apply to version
1 saves.

safe logical. If TRUE, a temporary file is used for creating the saved workspace.

The temporary file is renamed to £1i1le if the save succeeds. This preserves an
existing workspace f£ile if the save fails, but at the cost of using extra disk
space during the save.

Details

The names of the objects specified either as symbols (or character strings) in . . . or as a character
vector in 1ist are used to look up the objects from environment envir. By default promises are
evaluated, but if eval .promises = FALSE promises are saved (together with their evaluation
environments). (Promises embedded in objects are always saved unevaluated.)

All R platforms use the XDR (bigendian) representation of C ints and doubles in binary save-d
files, and these are portable across all R platforms. (ASCII saves used to be useful for moving data
between platforms but are now mainly of historical interest. They can be more compact than binary
saves where compression is not used, but are almost always slower to both read and write: binary
saves compress much better than ASCII ones.)

Default values for the ascii, compress, safe and version arguments can be modified
with the "save.defaults" option (used both by save and save.image), see also the

440 save

‘Examples’ section. If a "save.image.defaults" option is set it is used in preference to
"save.defaults" for function save. image (which allows this to have different defaults).

A connection that is not already open will be opened in mode "wb".

Compression

Large files can be reduced considerably in size by compression. A particular 46MB dataset was
saved as 35MB without compression in 2 seconds, 22MB with gz ip compression in 8 secs, 1I9MB
with bzip2 compression in 13 secs and 9.4MB with xz compression in 40 secs. The load times
were 1.3, 2.8, 5.5 and 5.7 seconds respectively. These results are indicative, but the relative perfor-
mances do depend on the actual file and xz did unusually well here.

Itis possible to compress later (with gzip,bzip2 or xz) afile saved with compress = FALSE:
the effect is the same as saving with compression. Also, a saved file can be uncompressed and re-
compressed under a different compression scheme (and see resaveRdaFiles for a way to do so
from within R).

Warnings

The ... arguments only give the names of the objects to be saved: they are searched for in the
environment given by the envir argument, and the actual objects given as arguments need not be
those found.

Saved R objects are binary files, even those saved with ascii = TRUE, so ensure that they are
transferred without conversion of end of line markers and of 8-bit characters. The lines are delimited
by LF on all platforms.

Although the default version has not changed since R 1.4.0, this does not mean that saved files are
necessarily backwards compatible. You will be able to load a saved image into an earlier version of
R unless use is made of later additions (for example, raw vectors or external pointers).

Note

The most common reason for failure is lack of write permission in the current directory. For
save.image and for saving at the end of a session this will shown by messages like

Error in gzfile(file, "wb") : unable to open connection
In addition: Warning message:
In gzfile(file, "wb")

cannot open compressed file '.RDataTmp',

probable reason 'Permission denied'

The defaults were changed to use compressed saves for save in 2.3.0 and for save.image in
2.4.0. Any recent version of R can read compressed save files, and a compressed file can be uncom-
pressed (by gzip —d) for use with very old versions of R.

See Also

dput, dump, load, data.

For other interfaces to the underlying serialization format, see serialize and saveRDS.

scale 441

Examples

x <— stats::runif (20)

y <= list(a = 1, b = TRUE, c = "oops")
save (x, y, file = "xy.RData")
save.image ()

unlink ("xy.RData")

unlink (".RData")

set save defaults using option:

options (save.defaults=1ist (ascii=TRUE, safe=FALSE))
save.image ()

unlink (".RData")

scale Scaling and Centering of Matrix-like Objects

Description
scale is generic function whose default method centers and/or scales the columns of a numeric
matrix.

Usage

scale (x, center = TRUE, scale = TRUE)

Arguments
be a numeric matrix(like object).
center either a logical value or a numeric vector of length equal to the number of
columns of x.
scale either a logical value or a numeric vector of length equal to the number of
columns of x.
Details

The value of center determines how column centering is performed. If center is a numeric vec-
tor with length equal to the number of columns of %, then each column of x has the corresponding
value from center subtracted from it. If center is TRUE then centering is done by subtract-
ing the column means (omitting NAs) of x from their corresponding columns, and if center is
FALSE, no centering is done.

The value of scale determines how column scaling is performed (after centering). If scaleisa
numeric vector with length equal to the number of columns of x, then each column of x is divided
by the corresponding value from scale. If scale is TRUE then scaling is done by dividing the
(centered) columns of x by their standard deviations if center is TRUE, and the root mean square
otherwise. If scale is FALSE, no scaling is done.

The root-mean-square for a (possibly centered) column is defined as /> (z2)/(n—1),
where = is a vector of the non-missing values and n is the number of non-missing

442 scan

values. In the case center=TRUE, this is the same as the standard deviation, but
in general it is not. (To scale by the standard deviations without centering, use
scale (x, center=FALSE, scale=apply (x,2,sd,na.rm=TRUE)).)

Value

For scale.default, the centered, scaled matrix. The numeric centering and scalings used (if
any) are returned as attributes "scaled:center" and "scaled:scale"

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

sweep which allows centering (and scaling) with arbitrary statistics.

For working with the scale of a plot, see par.

Examples

require (stats)

x <— matrix(1:10, ncol=2)

(centered.x <- scale(x, scale=FALSE))

cov (centered.scaled.x <- scale(x))# all 1

scan Read Data Values

Description

Read data into a vector or list from the console or file.

Usage
scan (file = "", what = double(), nmax = -1, n = -1, sep = "",
quote = if (identical (sep, "\n")) "" else "'\"", dec = ".",
skip = 0, nlines = 0, na.strings = "NA",

flush = FALSE, fill = FALSE, strip.white FALSE,

quiet = FALSE, blank.lines.skip = TRUE, multi.line = TRUE,
comment .char = "", allowEscapes = FALSE,

fileEncoding

"", encoding = "unknown")

scan

Arguments

file

what

nmax

sep

quote

dec

skip

nlines

443

the name of a file to read data values from. If the specified file is " ", then input
is taken from the keyboard (or whatever stdin () reads if input is redirected
or R is embedded). (In this case input can be terminated by a blank line or an
EOF signal, ‘Ctr1-D’ on Unix and ‘Ctr1-Z2’ on Windows.)

Otherwise, the file name is interpreted relative to the current working directory
(given by getwd ()), unless it specifies an absolute path. Tilde-expansion is
performed where supported. When running R from a script, file="stdin"
can be used to refer to the process’s st din file stream.

As from R 2.10.0 this can be a compressed file (see file).

Alternatively, £ile can be a connection, which will be opened if necessary,
and if so closed at the end of the function call. Whatever mode the connection
is opened in, any of LF, CRLF or CR will be accepted as the EOL marker for a
line and so will match sep = "\n".

file can also be a complete URL. (For the supported URL schemes, see the
‘URLs’ section of the help for url.)

To read a data file not in the current encoding (for example a Latin-1 file in
a UTF-8 locale or conversely) use a £ile connection setting its encoding
argument (or scan’s £ileEncoding argument).

the type of what gives the type of data to be read. The supported types are
logical, integer, numeric, complex, character, raw and list.
If what is a list, it is assumed that the lines of the data file are records each con-
taining length (what) items (‘fields’) and the list components should have
elements which are one of the first six types listed or NULL, see section ‘Details’
below.

integer: the maximum number of data values to be read, or if what is a list, the
maximum number of records to be read. If omitted or not positive or an invalid
value for an integer (and nlines is not set to a positive value), scan will read
totheend of file.

integer: the maximum number of data values to be read, defaulting to no limit.
Invalid values will be ignored.

by default, scan expects to read ‘white-space’ delimited input fields. Alterna-
tively, sep can be used to specify a character which delimits fields. A field is
always delimited by an end-of-line marker unless it is quoted.

If specified this should be the empty character string (the default) or NULL or a
character string containing just one single-byte character.

the set of quoting characters as a single character string or NULL. In a multibyte
locale the quoting characters must be ASCII (single-byte).

decimal point character. This should be a character string containing just one
single-byte character. (NULL and a zero-length character vector are also ac-
cepted, and taken as the default.)

the number of lines of the input file to skip before beginning to read data values.

if positive, the maximum number of lines of data to be read.

444

na.strings

flush

fill

strip.white

quiet

scan

character vector. Elements of this vector are to be interpreted as missing (NA)
values. Blank fields are also considered to be missing values in logical, integer,
numeric and complex fields.

logical: if TRUE, scan will flush to the end of the line after reading the last
of the fields requested. This allows putting comments after the last field, but
precludes putting more that one record on a line.

logical: if TRUE, scan will implicitly add empty fields to any lines with fewer
fields than implied by what.

vector of logical value(s) corresponding to items in the what argument. It is
used only when sep has been specified, and allows the stripping of leading
and trailing ‘white space’ from character fields (numeric fields are always
stripped). Note: white space inside quoted strings is not stripped.

If strip.white is of length 1, it applies to all fields; otherwise, if
strip.white[1i] is TRUE and the i-th field is of mode character (because
what [1] is) then the leading and trailing unquoted white space from field i is
stripped.

logical: if FALSE (default), scan() will print a line, saying how many items have
been read.

blank.lines.skip

multi.line

comment .char

allowEscapes

fileEncoding

encoding

Details

logical: if TRUE blank lines in the input are ignored, except when counting
skipand nlines.

logical. Only used if what is a list. If FALSE, all of a record must appear on
one line (but more than one record can appear on a single line). Note that using
fill = TRUE implies that a record will be terminated at the end of a line.

character: a character vector of length one containing a single character or an
empty string. Use " " to turn off the interpretation of comments altogether (the
default).

logical. Should C-style escapes such as ‘\n’ be processed (the default) or read
verbatim? Note that if not within quotes these could be interpreted as a delimiter
(but not as a comment character).

The escapes which are interpreted are the control characters
“\a, \b, \f, \n, \r, \t, \v’ and octal and hexadecimal repre-
sentations like ‘\ 040’ and ‘\0x22’. Any other escaped character is treated as
itself, including backslash. Note that Unicode escapes (starting ‘\u’ or ‘\U’:
see Quotes) are never processed.

character string: if non-empty declares the encoding used on a file (not a con-
nection nor the keyboard) so the character data can be re-encoded. See the ‘En-
coding’ section of the help for £ile, and the ‘R Data Import/Export Manual’.

encoding to be assumed for input strings. If the value is "latinl" or "UTF—
8" it is used to mark character strings as known to be in Latin-1 or UTF-8: it is
not used to re-encode the input (see £ileEncoding. See also ‘Details’.

The value of what can be a list of types, in which case scan returns a list of vectors with the
types given by the types of the elements in what. This provides a way of reading columnar data. If

scan 445

any of the types is NULL, the corresponding field is skipped (but a NULL component appears in the
result).

The type of what or its components can be one of the six atomic vector types or NULL (see
is.atomic).

‘White space’ is defined for the purposes of this function as one or more contiguous characters from
the set space, horizontal tab, carriage return and line feed. It does not include form feed or vertical
tab, but in Latin-1 and Windows 8-bit locales ’space’ includes non-breaking space.

Empty numeric fields are always regarded as missing values. Empty character fields are scanned
as empty character vectors, unless na.strings contains "" when they are regarded as missing
values.

The allowed input for a numeric field is optional whitespace followed either NA or an optional
sign followed by a decimal or hexadecimal constant (see NumericConstants), or NaN, Inf or
infinity (ignoring case). Out-of-range values are recorded as Inf, —~Inf or 0.

For an integer field the allowed input is optional whitespace, followed by either NA or an optional
sign and one or more digits (‘0-9’): all out-of-range values are converted to NA_integer_.

If sep is the default (" "), the character ‘\’ in a quoted string escapes the following character, so
quotes may be included in the string by escaping them.

If sep is non-default, the fields may be quoted in the style of ‘. csv’ files where separators inside
quotes (” or "") are ignored and quotes may be put inside strings by doubling them. However, if
sep = "\n" itis assumed by default that one wants to read entire lines verbatim.

Quoting is only interpreted in character fields and in NULL fields (which might be skipping character
fields).

Note that since sep is a separator and not a terminator, reading a file by scan ("foo",
sep="\n", blank.lines.skip=FALSE) will give an empty final line if the file ends in
a linefeed and not if it does not. This might not be what you expected; see also readLines.

If comment . char occurs (except inside a quoted character field), it signals that the rest of the
line should be regarded as a comment and be discarded. Lines beginning with a comment character
(possibly after white space with the default separator) are treated as blank lines.

There is a line-length limit of 4095 bytes when reading from the console (which may impose a
lower limit: see ‘An Introduction to R’).

There is a check for a user interrupt every 1000 lines if what is a list, otherwise every 10000 items.

If file is a character string and fileEncoding is non-default, or it it is a not-already-open
connection with a non-default encoding argument, the text is converted to UTF-8 and declared
as such (and the encoding argument to scan is ignored). See the examples of readLines.

Value

if what is a list, a list of the same length and same names (as any) as what.
Otherwise, a vector of the type of what.

Character strings in the result will have a declared encoding if encodingis "latinl" or "UTF -
8",

446 search

Note

The default for multi.line differs from S. To read one record per line, use flush = TRUE
andmulti.line = FALSE. (Note that quoted character strings can still include embedded new-
lines.)

If number of items is not specified, the internal mechanism re-allocates memory in powers of two
and so could use up to three times as much memory as needed. (It needs both old and new copies.)
If you can, specify either n or nmax whenever inputting a large vector, and nmax or nlines when
inputting a large list.

Using scan on an open connection to read partial lines can lose chars: use an explicit separator to
avoid this.

Having nul bytes in fields (including ‘\ 0’ if allowEscapes = TRUE) may lead to interpreta-
tion of the field being terminated at the nul. They not normally present in text files — see readBin.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
read.table for more user-friendly reading of data matrices; readLines to read a file a line at
atime. write.
Quotes for the details of C-style escape sequences.

readChar and readBin to read fixed or variable length character strings or binary representa-
tions of numbers a few at a time from a connection.

Examples

cat ("TITLE extra line", "2 3 5 7", "11 13 17", file="ex.data", sep="\n")
pp <- scan("ex.data", skip = 1, quiet= TRUE)

scan ("ex.data", skip = 1)
scan ("ex.data", skip = 1, nlines=1) # only 1 line after the skipped one
scan ("ex.data", what = list("","","")) # flush is F -> read "7"

scan ("ex.data", what = list("","",""), flush = TRUE)
unlink ("ex.data") # tidy up

search Give Search Path for R Objects

Description

Gives a list of attached packages (see 1ibrary), and R objects, usually data. frames.

Usage

search ()
searchpaths ()

seek 447

Value

A character vector, starting with " . GlobalEnv", and ending with "package :base" which is
R’s base package required always.

searchpaths gives a similar character vector, with the entries for packages being the path to the
package used to load the code.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (search.)

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.
(searchPaths.)

See Also

.packages to list just the packages on search path.
loadedNamespaces to list loaded name spaces.

attach and detach to change the search path, objects to find R objects in there.

Examples

search ()
searchpaths ()

seek Functions to Reposition Connections

Description

Functions to re-position connections.

Usage
seek (con, ...)
S3 method for class 'connection'
seek (con, where = NA, origin = "start", rw = "", ...)

isSeekable (con)

truncate (con, ...)

448 seek

Arguments
con a connection.
where numeric. A file position (relative to the origin specified by origin), or NA.
rw character. Empty or "read" or "write", partial matches allowed.
origin character. One of "start", "current", "end": see ‘Details’.
further arguments passed to or from other methods.
Details

seek with where = NA returns the current byte offset of a connection (from the beginning), and
with a non-missing where argument the connection is re-positioned (if possible) to the specified
position. isSeekable returns whether the connection in principle supports seek: currently only
(possibly gz-compressed) file connections do.

where is stored as a real but should represent an integer: non-integer values are likely to be trun-
cated. Note that the possible values can exceed the largest representable number in an R integer
on 64-bit builds, and on some 32-bit builds.

File connections can be open for both writing/appending, in which case R keeps separate positions
for reading and writing. Which seek refers to can be set by its rw argument: the default is the last
mode (reading or writing) which was used. Most files are only opened for reading or writing and so
default to that state. If a file is open for both reading and writing but has not been used, the default
is to give the reading position (0).

The initial file position for reading is always at the beginning. The initial position for writing is
at the beginning of the file for modes "r+" and "r+b", otherwise at the end of the file. Some
platforms only allow writing at the end of the file in the append modes. (The reported write position
for a file opened in an append mode will typically be unreliable until the file has been written to.)

gzfile connections support seek with a number of limitations, using the file position of the un-

compressed file. They do not support origin = "end". When writing, seeking is only possible
forwards: when reading seeking backwards is supported by rewinding the file and re-reading from
its start.

If seek is called with a non-NA value of where, any pushback on a text-mode connection is
discarded.

truncate truncates a file opened for writing at its current position. It works only for file
connections, and is not implemented on all platforms: on others (including Windows) it will not
work for large (> 2Gb) files.

None of these should be expected to work on text-mode connections with re-encoding selected.

Value

seek returns the current position (before any move), as a (numeric) byte offset from the origin, if
relevant, or 0 if not. Note that the position can exceed the largest representable number in an R
integer on 64-bit builds, and on some 32-bit builds.

truncate returns NULL: it stops with an error if it fails (or is not implemented).

isSeekable returns a logical value, whether the connection supports seek.

seq 449

Warning

Use of seek on Windows is discouraged. We have found so many errors in the Windows imple-
mentation of file positioning that users are advised to use it only at their own risk, and asked not to
waste the R developers’ time with bug reports on Windows’ deficiencies.

See Also

connections

seq Sequence Generation

Description

Generate regular sequences. seq is a standard generic with a default method. seq.int is a
primitive which can be much faster but has a few restrictions. seq_along and seq_len are very
fast primitives for two common cases.

Usage
seq(...)
Default S3 method:
seq(from = 1, to = 1, by = ((to - from)/(length.out - 1)),
length.out = NULL, along.with = NULL, ...)

seq.int (from, to, by, length.out, along.with, ...)

seq_along(along.with)
seq_len(length.out)

Arguments
arguments passed to or from methods.
from, to the starting and (maximal) end value of the sequence.
by number: increment of the sequence.

length.out desired length of the sequence. A non-negative number, which for seq and
seq. int will be rounded up if fractional.

along.with take the length from the length of this argument.

450 seq

Details

The interpretation of the unnamed arguments of seq and seq. int is not standard, and it is rec-
ommended always to name the arguments when programming.

seq is generic, and only the default method is described here. Note that it dispatches on the class
of the first argument irrespective of argument names. This can have unintended consequences if it
is called with just one argument intending this to be taken as along.with: it is much better to
use seg_along in that case.

sed. int is an internal generic which dispatches on methods for "seq" based on the class of the
first supplied argument (before argument matching).

Typical usages are

seq(from, to)

seq(from, to, by=)
seq(from, to, length.out=)
seqg(along.with=)

seq (from)

seqg(length.out=)

The first form generates the sequence from, from+/-1, ..., to (identical to from:to).

The second form generates from, from+by, ..., up tothe sequence value less than or equal to
to. Specifying to - from and by of opposite signs is an error. Note that the computed final
value can go just beyond to to allow for rounding error, but (as from R 2.9.0) is truncated to to.
(‘Just beyond’ is by up to 1071 times abs (from - to) as from R 2.11.0: previously it was
10~7 times.)

The third generates a sequence of length.out equally spaced values from from to to.
(length.out is usually abbreviated to length or 1en, and seq_len is much faster.)

The fourth form generates the integer sequence 1, 2, ..., length(along.with).
(along.with is usually abbreviated to along, and seq_along is much faster.)

The fifth form generates the sequence 1, 2, ..., length(from) (as if argument
along.with had been specified), unless the argument is numeric of length 1 when it is interpreted
as 1: from (even for seq (0) for compatibility with S). Using either seq_along or seqg_len
is much preferred (unless strict S compatibility is essential).

The final form generates the integer sequence 1, 2, ..., length.outunlesslength.out
= 0, when it generates integer (0).

Very small sequences (with from — to of the order of 10! times the larger of the ends) will
return from.

For seq (only), up to two of from, to and by can be supplied as complex values provided
length.out or along.with is specified. More generally, the default method of seq will
handle classed objects with methods for the Math, Ops and Summary group generics.

seq.int, seq_along and seq_len are primitive.

Value

seq.int and the default method of seqg for numeric arguments return a vector of type
"integer" or "double": programmers should not rely on which.

seq_along and seqg_len always return an integer vector.

seq.Date

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.
Brooks/Cole.

See Also

The methods seqg.Date and seq.POSIXt.

!, rep, sequence, row, col.

Examples

seq(0, 1, length.out=11)
stats::rnorm(20)) # effectively 'along'

1, 9, by = 2) # matches 'end'

1, 9, by = pi) # stays below 'end'

1, 6, by = 3)

1.575, 5.125, by=0.05)

17) # same as 1:17, or even better seqg_len(17)

451

Wadsworth &

seqg.Date Generate Regular Sequences of Dates

Description

The method for seq for objects of class class "Date" representing calendar dates.

Usage

S3 method for class 'Date'
seq(from, to, by, length.out = NULL, along.with = NULL,

Arguments
from starting date. Required
to end date. Optional.
by increment of the sequence. Optional. See ‘Details’.

length.out integer, optional. Desired length of the sequence.
along.with take the length from the length of this argument.

arguments passed to or from other methods.

452

Details

by can be specified in several ways.

Value

* A number, taken to be in days.

* Aobjectof class difftime

seq.POSIXt

* A character string, containing one of "day", "week", "month" or "year". This can

optionally be preceded by a (positive or negative) integer and a space, or followed by "s™".

See seq.POSIXt for the details of "month™".

A vector of class "Date".

See Also

Date

Examples

##

first days of years

seq(as.Date("1910/1/1"), as.Date("1999/1/1"), "years")
by month

seq(as.Date ("2000/1/1"), by="month", length.out=

##

quarters

12)

seq(as.Date ("2000/1/1"), as.Date("2003/1/1"), by="3 months")

##
st
en
11

find all 7th of the month between two dates,
<—- as.Date("1998-12-17")

<- as.Date("2000-1-7")

<- seg(en, st, by="-1 month")

rev(1l1[1l1l > st & 11 < en])

the last being a 7th.

seq.

POSIXt Generate Regular Sequences of Times

Description

The method for seq for date-time classes.

Usage

S3 method for class 'POSIXt'
seq(from, to, by, length.out = NULL, along.with = NULL, ...)

seq.POSIXt 453

Arguments
from starting date. Required.
to end date. Optional.
by increment of the sequence. Optional. See ‘Details’.

length.out integer, optional. Desired length of the sequence.
along.with take the length from the length of this argument.
arguments passed to or from other methods.

Details
by can be specified in several ways.

¢ A number, taken to be in seconds.
* Aobjectof class difftime

* A character string, containing one of "sec", "min", "hour", "day", "DSTday",
"week", "month" or "year". This can optionally be preceded by a (positive or nega-
tive) integer and a space, or followed by "s".

The difference between "day" and "DSTday" is that the former ignores changes to/from daylight
savings time and the latter takes the same clock time each day. ("week" ignores DST (it is a period
of 144 hours), but "7 DSTdays") can be used as an alternative. "month" and "year" allow
for DST.)

The timezone of the result is taken from from: remember that GMT means UTC (and not the
timezone of Greenwich, England) and so does not have daylight savings time.

Using "month™" first advances the month without changing the day: if this results in an invalid day
of the month, it is counted forward into the next month: see the examples.

Value

A vector of class "POSIXct".

See Also

DateTimeClasses

Examples

first days of years

seq(IsOdate (1910,1,1), ISOdate(1999,1,1), "years")

by month

seq(ISOdate (2000,1,1), by = "month", length.out = 12)
seq(IsOdate (2000,1,31), by = "month", length.out = 4)

quarters

seq(ISOdate (1990,1,1), ISOdate(2000,1,1), by = "3 months")
days vs DSTdays: use c() to lose the timezone.
seq(c(ISOdate (2000,3,20)), by = "day", length.out = 10)
seq(c(ISOdate (2000,3,20)), by = "DSTday", length.out = 10)
seq(c(ISOdate (2000,3,20)), by = "7 DSTdays", length.out = 4)

454 serialize

sequence Create A Vector of Sequences

Description
For each element of nvec the sequence seq_len (nvec[1i]) is created. These are concatenated
and the result returned.

Usage

sequence (nvec)

Arguments
nvec a non-negative integer vector each element of which specifies the end point of a
sequence.
Details
Earlier versions of sequence used to work for 0 or negative inputs as seq (x) == 1:x.

Note that sequence <- function (nvec) unlist (lapply(nvec, seq len)) and
it mainly exists in reverence to the very early history of R.
See Also

gl, seq, rep.

Examples

)

sequence (c (3,
#> [1]1 1 2 3

2))# the concatenated sequences 1:3 and 1:2.
12

serialize Simple Serialization Interface

Description

A simple low-level interface for serializing to connections.

Usage

serialize (object, connection, ascii, version = NULL, refhook = NULL)

unserialize (connection, refhook = NULL)

serialize 455

Arguments

object R object to serialize.

connection an open connection or (for serialize) NULL or (for unserialize)araw
vector (see ‘Details’).

ascii a logical. If TRUE, an ASCII representation is written; otherwise binary one.
The default is TRUE for a text-mode connection and FALSE otherwise. See also
the comments in the help for save.

version the workspace format version to use. NULL specifies the current default version
(2). Versions prior to 2 are not supported, so this will only be relevant when
there are later versions.

refhook a hook function for handling reference objects.

Details

The function serialize serializes object to the specified connection. If connection is
NULL then ob ject is serialized to a raw vector, which is returned as the result of serialize.

Sharing of reference objects is preserved within the object but not across separate calls to
serialize.

unserialize reads an object (as written by serialize) from connection or a raw vector.

The re fhook functions can be used to customize handling of non-system reference objects (all ex-
ternal pointers and weak references, and all environments other than name space and package envi-
ronments and . GlobalEnv). The hook function for serialize should return a character vector
for references it wants to handle; otherwise it should return NULL. The hook for unserialize
will be called with character vectors supplied to serialize and should return an appropriate
object.

For a text-mode connection, the default value of ascii is set to TRUE: only ASCII representations
can be written to text-mode connections and attempting to use ascii = FALSE will throw an
error.

The format consists of a single line followed by the data: the first line contains a single character:
X for binary serialization and A for ASCII serialization, followed by a new line. (The format used
is identical to that used by readRDS.)

Value

For serialize, NULL unless connection = NULL, when the result is returned in a raw
vector.

For unserialize an R object.

Warning

These functions have provided a stable interface since R 2.4.0 (when the storage of serialized objects
was changed from character to raw vectors). However, the serialization format may change in future
versions of R, so this interface should not be used for long-term storage of R objects.

A raw vector is limited to 23! — 1 bytes, but R objects can exceed this and their serializations will
normally be larger than the objects.

456

sets

See Also

saveRDS for a more convenient interface to serialize an object to a file or connection.
save and load to serialize and restore one or more named objects.

The ‘R Internals’ manual for details of the format used.

Examples

x <- serialize(list(1,2,3), NULL)
unserialize (x)

see also the examples for saveRDS

sets Set Operations

Description

Performs set union, intersection, (asymmetric!) difference, equality and membership on two vec-
tors.

Usage

union(x, V)
intersect (x, V)
setdiff(x, v)
setequal (x, V)

is.element (el, set)

Arguments

x, y, el, set

vectors (of the same mode) containing a sequence of items (conceptually) with
no duplicated values.

Details

Each of union, intersect, setdiff and setequal will discard any duplicated values in
the arguments, and they apply as . vector to their arguments (and so in particular coerce factors
to character vectors).

is.element (x, vy) isidenticaltox %$in% y.

Value

A vector of the same mode as x or y for setdiff and intersect, respectively, and of a
common mode for union.

A logical scalar for setequal and a logical of the same length as x for is.element.

setTimeLimit 457

See Also
%$in%

‘plotmath’ for the use of union and intersect in plot annotation.

Examples

(x <= c(sort (sample(1:20, 9)),NA))
(y <= c(sort (sample(3:23, 7)),NA))
union (x, vy)

intersect (x, V)

setdiff (x, vy)

setdiff (y, x)

setequal (x, V)

True for all possible x & y
setequal (union(x,vy),
c(setdiff(x,y), intersect(x,y), setdiff(y,x)))

is.element (x, y)# length 10
is.element (y, x)# length 8

setTimeLimit Set CPU and/or Elapsed Time Limits

Description

Functions to set CPU and/or elapsed time limits for top-level computations or the current session.

Usage

setTimeLimit (cpu = Inf, elapsed = Inf, transient = FALSE)

setSessionTimelLimit (cpu = Inf, elapsed = Inf)
Arguments

cpu double. Limit on total cpu time.

elapsed double. Limit on elapsed time.

transient logical. If TRUE, the limits apply only to the rest of the current computation.
Details

setTimeLimit sets limits which apply to each top-level computation, that is a command line
(including any continuation lines) entered at the console or from a file. If it is called from within a
computation the limits apply to the rest of the computation and (unless transient = TRUE) to
subsequent top-level computations.

458 showConnections

setSessionTimeLimit sets limits for the rest of the session. Once a session limit is reached it
isresetto Inf.

Setting any limit has a small overhead — well under 1% on the systems measured.

Time limits are checked whenever a user interrupt could occur. This will happen frequently in R
code and during Sys . sleep, but only at points in compiled C and Fortran code identified by the
code author.

‘Total cpu time’ includes that used by child processes where the latter is reported.

It is possible (but very unusual) to build R without support for proc.time, in which case these
functions have no effect.

showConnections Display Connections

Description

Display aspects of connections.

Usage

showConnections (all = FALSE)
getConnection (what)
closeAllConnections ()

stdin ()
stdout ()
stderr ()

isatty (con)

Arguments
all logical: if true all connections, including closed ones and the standard ones are
displayed. If false only open user-created connections are included.
what integer: a row number of the table given by showConnections.
con a connection.
Details

stdin (), stdout () and stderr () are standard connections corresponding to input, output
and error on the console respectively (and not necessarily to file streams). They are text-mode
connections of class "terminal" which cannot be opened or closed, and are read-only, write-
only and write-only respectively. The stdout () and stderr () connections can be re-directed
by sink (and in some circumstances the output from stdout () can be split: see the help page).

The encoding for stdin () when redirected can be set by the command-line flag ‘~—encoding’.

showConnections 459

showConnections returns a matrix of information. If a connection object has been lost or
forgotten, get Connect ion will take a row number from the table and return a connection object
for that connection, which can be used to close the connection, for example. However, if there is
no R level object referring to the connection it will be closed automatically at the next garbage
collection.

closeAllConnections closes (and destroys) all user connections, restoring all sink diver-
sions as it does so.

isatty returns true if the connection is one of the class "terminal" connections and it is appar-
ently connected to a terminal, otherwise false. This may not be reliable in embedded applications,
including GUI consoles.

Value

stdin (), stdout () and stderr () return connection objects.

showConnections returns a character matrix of information with a row for each connection, by
default only for open non-standard connections.

getConnection returns a connection object, or NULL.

Note

stdin () refers to the ‘console’ and not to the C-level ‘stdin’ of the process. The distinction
matters in GUI consoles (which may not have an active ‘stdin’, and if they do it may not be
connected to console input), and also in embedded applications. If you want access to the C-level
file stream ‘stdin’,use file ("stdin").

When R is reading a script from a file, the file is the ‘console’: this is traditional usage to allow
in-line data (see ‘An Introduction to R’ for an example).

See Also

connections

Examples

showConnections (all = TRUE)

textConnection (letters)
oops, I forgot to record that one

showConnections ()
class description mode text isopen can read can write
#3 "letters" "textConnection" "r" "text" "opened" "yes" "no"

Not run: close(getConnection (3))
showConnections ()

c(isatty(stdin()), isatty(stdout()), isatty(stderr()))

460 shQuote

shQuote Quote Strings for Use in OS Shells

Description

Quote a string to be passed to an operating system shell.

Usage

shQuote (string, type = c("sh", "csh", "cmd"))

Arguments
string a character vector, usually of length one.
type character: the type of shell. Partial matching is supported. "cmd" refers to the
Windows NT shell, and is the default under Windows.
Details

The default type of quoting supported under Unix-alikes is that for the Bourne shell sh. If the string
does not contain single quotes, we can just surround it with single quotes. Otherwise, the string is
surrounded in double quotes, which suppresses all special meanings of metacharacters except dollar,
backquote and backslash, so these (and of course double quote) are preceded by backslash. This
type of quoting is also appropriate for bash, ksh and zsh.

The other type of quoting is for the C-shell (csh and tcsh). Once again, if the string does not
contain single quotes, we can just surround it with single quotes. If it does contain single quotes,
we can use double quotes provided it does not contain dollar or backquote (and we need to escape
backslash, exclamation mark and double quote). As a last resort, we need to split the string into
pieces not containing single quotes and surround each with single quotes, and the single quotes with
double quotes.

References

Loukides, M. et al (2002) Unix Power Tools Third Edition. O’Reilly. Section 27.12.

http://www.mhuffman.com/notes/dos/bash_cmd.htm

See Also

Quotes for quoting R code.

sQuote for quoting English text.

http://www.mhuffman.com/notes/dos/bash_cmd.htm

sign

Examples

test <- "abcSdef gh i\\j"

cat (shQuote (test), "\n")

Not run: system(paste("echo", shQuote (test)))
test <- "don't do it!"

cat (shQuote (test), "\n")

tryit <- paste("use the", sQuote("-c"), "switch\nlike this")
cat (shQuote (tryit), "\n")

Not run: system(paste("echo", shQuote (tryit)))

cat (shQuote (tryit, type="csh"), "\n")

Windows-only example.
perlcmd <- 'print "Hello World\n";'
Not run: shell (paste("perl -e", shQuote (perlcmd, type="cmd")))

461

sign Sign Function

Description

sign returns a vector with the signs of the corresponding elements of x (the sign of a real number

is 1, 0, or —1 if the number is positive, zero, or negative, respectively).

Note that sign does not operate on complex vectors.

Usage

sign (x)

Arguments

x a numeric vector

Details

This is an internal generic primitive function: methods can be defined for it directly or via the Math

group generic.

See Also

abs

Examples

sign(pi) # == 1
sign(-2:3)# -1 -1 0 1 1 1

462 sink

Signals Interrupting Execution of R

Description

On receiving STGUSR1 R will save the workspace and quit. STGUSR2 has the same result except
that the . Last function and on.exit expressions will not be called.

Usage
kill -USR1 pid
kill -USR2 pid
Arguments

pid The process ID of the R process

Warning

It is possible that one or more R objects will be undergoing modification at the time the signal is
sent. These objects could be saved in a corrupted form.

sink Send R Output to a File

Description

sink diverts R output to a connection.
sink.number () reports how many diversions are in use.

sink.number (type = "message") reports the number of the connection currently being
used for error messages.
Usage

sink (file = NULL, append = FALSE, type = c("output", "message"),
split = FALSE)

sink.number (type = c("output", "message"))

sink 463

Arguments
file a writable connection or a character string naming the file to write to, or NULL
to stop sink-ing.
append logical. If TRUE, output will be appended to £ile; otherwise, it will overwrite
the contents of file.
type character. Either the output stream or the messages stream.
split logical: if TRUE, output will be sent to the new sink and to the current output
stream, like the Unix program tee.
Details

sink diverts R output to a connection. If £ile is a character string, a file connection with that
name will be established for the duration of the diversion.

Normal R output (to connection stdout) is diverted by the default type = "output". Only
prompts and (most) messages continue to appear on the console. Messages sent to stderr ()
(including those from message, warning and stop) can be diverted by sink (type =
"message") (see below).

sink () or sink (£11e=NULL) ends the last diversion (of the specified type). There is a stack
of diversions for normal output, so output reverts to the previous diversion (if there was one). The
stack is of up to 21 connections (20 diversions).

If £ile is aconnection it will be opened if necessary (in "wt " mode) and closed once it is removed
from the stack of diversions.

split = TRUE only splits R output (via Rvprintf) and the default output from
writeLines: it does not split all output that might be sent to stdout ().

Sink-ing the messages stream should be done only with great care. For that stream £ile must be
an already open connection, and there is no stack of connections.

If file is a character string, the file will be opened using the current encoding. If you want
a different encoding (e.g. to represent strings which have been stored in UTF-8), use a file
connection — but some ways to produce R output will already have converted such strings to the
current encoding.

Value

sink returns NULL.
For sink.number () the number (0, 1, 2, ...) of diversions of output in place.

For sink.number ("message") the connection number used for messages, 2 if no diversion
has been used.

Warning

Do not use a connection that is open for sink for any other purpose. The software will stop you
closing one such inadvertently.

Do not sink the messages stream unless you understand the source code implementing it and hence
the pitfalls.

464 slice.index

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

capture.output

Examples

sink ("sink-examp.txt")

i <= 1:10
outer (i, i, "x")
sink ()

unlink ("sink-examp.txt")

Not run:

capture all the output to a file.
zz <— file("all.Rout", open="wt")
sink (zz)

sink (zz, type="message")
try(log("a"))

back to the console

sink (type="message")

sink ()

try (log("a"))

End (Not run)

slice.index Slice Indexes in an Array

Description

Returns a matrix of integers indicating the number of their slice in a given array.

Usage

slice.index (x, MARGIN)

Arguments

X an array. If x has no dimension attribute, it is considered a one-dimensional
array.

MARGIN an integer giving the dimension number to slice by.

slotOp 465

Value

An integer array y with dimensions corresponding to those of x such that all elements of slice
number i with respect to dimension MARGIN have value 1.

See Also
row and col for determining row and column indexes; in fact, these are special cases of

slice.index corresponding to MARGIN equal to 1 and 2, respectively when x is a matrix.

Examples

x <- array(l : 24, c(2, 3, 4))
slice.index (x, 2)

slotOp Extract Slots

Description

Extract the contents of a slot in a object with a formal (S4) class structure.

Usage

object@name

Arguments

object An object from a formally defined (S4) class.

name The character-string name of the slot.

Details

This operator supports the formal classes of package methods, and is enabled only when methods
is loaded (as per default). See s1ot for further details.

It is checked that object is an S4 object (see 1sS4), and it is an error to attempt to use @ on any
other object. (There is an exception for name .Data for internal use only.)

If name is not a slot name, an error is thrown.

Value

The current contents of the slot.

See Also

Extract, slot

466 socketSelect

socketSelect Wait on Socket Connections

Description

Waits for the first of several socket connections to become available.

Usage

socketSelect (socklist, write = FALSE, timeout = NULL)

Arguments
socklist list of open socket connections
write logical. If TRUE wait for corresponding socket to become available for writing;
otherwise wait for it to become available for reading.
timeout numeric or NULL. Time in seconds to wait for a socket to become available;
NULL means wait indefinitely.
Details

The values in write are recycled if necessary to make up a logical vector the same length as
socklist. Socket connections can appear more than once in socklist; this can be useful if
you want to determine whether a socket is available for reading or writing.

Value

Logical the same length as sock1list indicating whether the corresponding socket connection is
available for output or input, depending on the corresponding value of write.

Examples
Not run:
test whether socket connection s is available for writing or reading

socketSelect (list (s, s), c(TRUE, FALSE), timeout=0)

End (Not run)

solve

467

solve

Solve a System of Equations

Description

This generic function solves the equation a $+% x = b for x, where b can be either a vector or

a matrix.

Usage

solve (a,

b,

Default S3 method:

solve (a,

Arguments

a

tol

LINPACK

Details

b,

tol, LINPACK = FALSE, ...)

a square numeric or complex matrix containing the coefficients of the linear
system.

a numeric or complex vector or matrix giving the right-hand side(s) of the linear
system. If missing, b is taken to be an identity matrix and solve will return
the inverse of a.

the tolerance for detecting linear dependencies in the columns of a. If LINPACK
is TRUE the defaultis 1e—7, otherwise itis .Machine$double.eps. Future
versions of R may use a tighter tolerance. Not currently used with complex
matrices a.

logical. Should LINPACK be used (for compatibility with R < 1.7.0)? Other-
wise LAPACK is used.

further arguments passed to or from other methods

a or b can be complex, but this uses double complex arithmetic which might not be available on all
platforms and LAPACK will always be used.

The row and column names of the result are taken from the column names of a and of b respectively.
If b is missing the column names of the result are the row names of a. No check is made that the
column names of a and the row names of b are equal.

For back-compatibility a can be a (real) QR decomposition, although gr . solve should be called
in that case. gr . solve can handle non-square systems.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

468 sort

See Also

solve.qr for the gr method, chol2inv for inverting from the Choleski factor backsolve,
gr.solve.

Examples

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
h8 <- hilbert (8); h8

sh8 <- solve (h8)

round (sh8 %x% h8, 3)

A <- hilbert (4)

A[] <- as.complex(A)

might not be supported on all platforms
try(solve (7))

sort Sorting or Ordering Vectors

Description
Sort (or order) a vector or factor (partially) into ascending or descending order. For ordering along
more than one variable, e.g., for sorting data frames, see order.

Usage

sort (x, decreasing = FALSE, ...)

Default S3 method:
sort (x, decreasing = FALSE, na.last = NA, ...)

sort.int (x, partial = NULL, na.last = NA, decreasing = FALSE,
method = c("shell", "quick"), index.return = FALSE)

Arguments
X for sort an R object with a class or a numeric, complex, character or logical
vector. For sort.int, a numeric, complex, character or logical vector, or a
factor.

decreasing logical. Should the sort be increasing or decreasing? Not available for partial
sorting.

arguments to be passed to or from methods or (for the default methods and
objects without a class) to sort . int.

na.last for controlling the treatment of NAs. If TRUE, missing values in the data are put
last; if FALSE, they are put first; if NA, they are removed.

partial NULL or an integer vector of indices for partial sorting.

sort 469

method character string specifying the algorithm used. Not available for partial sorting.

index.return logical indicating if the ordering index vector should be returned as well; this is
only available for a few cases, the default na.last = NA and full sorting of
non-factors.

Details

sort is a generic function for which methods can be written, and sort . int is the internal method
which is compatible with S if only the first three arguments are used.

The default sort method makes use of order for classed objects, which in turn makes use of
the generic function xt frm (and can be slow unless a xt frm method has been defined unless
is.numeric (x) is true).

If partial is not NULL, it is taken to contain indices of elements of the result which are to be
placed in their correct positions in the sorted array by partial sorting. For each of the result values
in a specified position, any values smaller than that one are guaranteed to have a smaller index in
the sorted array and any values which are greater are guaranteed to have a bigger index in the sorted
array. (This is included for efficiency, and many of the options are not available for partial sorting.
It is only substantially more efficient if partial has a handful of elements, and a full sort is done
(a quick sort if possible) if there are more than 10.) Names are discarded for partial sorting.

Complex values are sorted first by the real part, then the imaginary part.

The sort order for character vectors will depend on the collating sequence of the locale in use:
see Comparison. The sort order for factors is the order of their levels (which is particularly
appropriate for ordered factors).

Method "shell" uses Shellsort (an O(n4/ 3) variant from Sedgewick (1996)). If x has names a
stable sort is used, so ties are not reordered. (This only matters if names are present.)

Method "quick" uses Singleton’s Quicksort implementation and is only available when x is nu-
meric (double or integer) and partial is NULL. (For other types of x Shellsort is used, silently.) It
is normally somewhat faster than Shellsort (perhaps twice as fast on vectors of length a million) but
has poor performance in the rare worst case. (Peto’s modification using a pseudo-random midpoint
is used to make the worst case rarer.) This is not a stable sort, and ties may be reordered.

Value

For sort, the result depends on the S3 method which is dispatched. If x does not have a class
the rest of this section applies. For classed objects which do not have a specific method the default

method will be used and is equivalent to x [order (x, ...)]: this depends on the class having
a suitable method for [(and also that order will work, which is not the case for a class based on
a list).

For sort.int the value is the sorted vector unless index.return is true, when the result is
a list with components named x and ix containing the sorted numbers and the ordering index
vector. In the latter case, if method == "quick" ties may be reversed in the ordering, unlike
sort.list, as quicksort is not stable. NB: the index vector refers to element numbers after after
removal of NAs.

All attributes are removed from the return value (see Becker et al, 1988, p.146) except names, which
are sorted. (If partial is specified even the names are removed.) Note that this means that the
returned value has no class, except for factors and ordered factors (which are treated specially and
whose result is transformed back to the original class).

470

References

sort

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

Sedgewick, R. (1986) A new upper bound for Shell sort. J. Algorithms 7, 159-173.
Singleton, R. C. (1969) An efficient algorithm for sorting with minimal storage: Algorithm 347.

Communications of the ACM 12, 185-187.

See Also

‘Comparison’ for how character strings are collated.
order for sorting on or reordering multiple variables.

is.unsorted. rank

Examples

require (stats)

x <— swiss$Education[1:25]

x; sort(x); sort(x, partial = c (10, 15))
median.default # shows you another example for 'partial'
illustrate 'stable' sorting (of ties):
sort (c(10:3,2:12), method = "sh", index.return=TRUE) # is stable
Sx 2 3 3 4 4 5 5 6 6 7 7 8 8 9 910 10 11 12
$ix: 9 8 10 7 11 6 12 5 13 4 14 3 15 2 16 1 17 18 19
sort (c(10:3,2:12), method = "qu", index.return=TRUE) # is not
Sx 2 3 3 4 4 5 5 6 6 7 7 8 8 9 910 10 11 12
$ix: 9 10 8 7 11 6 12 5 13 4 14 3 15 16 2 17 1 18 19
nnnnn
x <- c(1:3, 3:5, 10)
is.unsorted (x) # FALSE: is sorted
is.unsorted (x, strictly=TRUE) # TRUE is not (and cannot be)
sorted strictly
Not run:
Small speed comparison simulation:
N <- 2000
Sim <- 20
rep <— 1000 # << adjust to your CPU
cl <= c2 <- numeric(Sim)
for(is in 1:Sim) {
x <— rnorm(N)
cl[is] <- system.time(for (i in l:rep) sort(x, method = "shell")) [1]
c2[is] <- system.time(for(i in l:rep) sort(x, method = "quick")) [1]
stopifnot (sort (x, method = "s") == sort(x, method = "q"))

}

rbind (ShellSort = cl, QuickSort c2)

cat ("Speedup factor of quick sort () :\n")
summary ({qq <- cl / c2; qgqglis.finite(qgq)]})

source 471

A larger test

x <— rnorm(le7)

system.time (x1 <- sort (x, method = "shell"))
system.time (x2 <- sort (x, method = "quick"))
stopifnot (identical (x1, x2))

End (Not run)

source Read R Code from a File or a Connection

Description

source causes R to accept its input from the named file or URL or connection. Input is read and
parsed from that file until the end of the file is reached, then the parsed expressions are evaluated
sequentially in the chosen environment.

Usage
source (file, local = FALSE, echo = verbose, print.eval = echo,
verbose = getOption ("verbose"),
prompt.echo = getOption ("prompt"),
max.deparse.length = 150, chdir = FALSE,
encoding = getOption ("encoding"),
continue.echo = getOption ("continue"),
skip.echo = 0, keep.source = getOption("keep.source"))
Arguments
file a connection or a character string giving the pathname of the file or URL to read
from. " " indicates the connection stdin ().
local if local is FALSE, the parsed expressions are evaluated in the user’s
workspace (the global environment), otherwise in the environment calling
source.
echo logical; if TRUE, each expression is printed after parsing, before evaluation.

print.eval logical; if TRUE, the result of eval (1) is printed for each expression i; de-
faults to the value of echo.

verbose if TRUE, more diagnostics (than justecho = TRUE) are printed during parsing
and evaluation of input, including extra info for each expression.
prompt.echo character; gives the prompt to be used if echo = TRUE.
max.deparse.length
integer; is used only if echo is TRUE and gives the maximal number of charac-
ters output for the deparse of a single expression.

chdir logical; if TRUE and f£1le is a pathname, the R working directory is temporar-
ily changed to the directory containing £1i 1e for evaluating.

472 source

encoding character vector. The encoding(s) to be assumed when file is a character
string: see file. A possible value is "unknown" when the encoding is
guessed: see the ‘Encodings’ section.

continue.echo
character; gives the prompt to use on continuation lines if echo = TRUE.

skip.echo integer; how many comment lines at the start of the file to skip if echo =
TRUE.

keep.source logical: should the source formatting be retained when echoing expressions, if
possible?

Details

Note that running code via source differs in a few respects from entering it at the R command
line. Since expressions are not executed at the top level, auto-printing is not done. So you will need
to include explicit print calls for things you want to be printed (and remember that this includes
plotting by lattice, FAQ Q7.22). Since the complete file is parsed before any of it is run, syntax
errors result in none of the code being run. If an error occurs in running a syntactically correct
script, anything assigned into the workspace by code that has been run will be kept (just as from the
command line), but diagnostic information such as t raceback () will contain additional calls to
eval.with.vis, an undocumented internal function.

All versions of R accept input from a connection with end of line marked by LF (as used on Unix),
CRLF (as used on DOS/Windows) or CR (as used on classic Mac OS) and map this to newline. The
final line can be incomplete, that is missing the final end-of-line marker.

If options ("keep.source") is true (the default in interactive use), the source of functions is
kept so they can be listed exactly as input. This imposes a limit of 128K bytes on the function size
and a nesting limit of 265. Use options (keep.source = FALSE) when these limits might
take effect: if exceeded they generate an error.

Using echo = TRUE and keep.source = TRUE may interact badly with source code that
includes ‘#line nn "filename™’ directives (e.g. code produced by older versions of
Stangle ()): source () will attempt to obtain the source from the named file which may have
changed since the code was produced. Use keep.source = FALSE to avoid this.

Unlike input from a console, lines in the file or on a connection can contain an unlimited number of
characters.

When skip.echo > 0, that many comment lines at the start of the file will not be echoed.
This does not affect the execution of the code at all. If there are executable lines within the first
skip.echo lines, echoing will start with the first of them.

If echo is true and a deparsed expression exceeds max . deparse . length, that many characters
are output followed by [TRUNCATED]

Encodings

By default the input is read and parsed in the current encoding of the R session. This is usually
what it required, but occasionally re-encoding is needed, e.g. if a file from a UTF-8-using system is
to be read on Windows (or vice versa).

The rest of this paragraph applies if £ile is an actual filename or URL (and not "" nor a con-
nection). If encoding = "unknown", an attempt is made to guess the encoding: the result of

Special 473

localeToCharset () isused as a guide. If encoding has two or more elements, they are tried
in turn until the file/URL can be read without error in the trial encoding. If an actual encoding
is specified (rather than the default or "unknown") in a Latin-1 or UTF-8 locale then character
strings in the result will be translated to the current encoding and marked as such (see Encoding).

If file is a connection (including one specified by "", it is not possible to re-encode the input
inside source, and so the encoding argument is just used to mark character strings in the parsed
input in Latin-1 and UTF-8 locales: see parse.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

demo which uses source; eval, parse and scan; options ("keep.source").
sys.source which is a streamlined version to source a file into an environment.

‘The R Language Definition’ for a discussion of source directives.

Examples
If you want to source() a bunch of files, something like
the following may be useful:
sourceDir <- function (path, trace = TRUE, ...) {
for (nm in list.files(path, pattern = "\\.[RrSsQqls$")) {
if (trace) cat(nm,":")
source (file.path(path, nm), ...)
if (trace) cat ("\n")
}
}
Special Special Functions of Mathematics
Description

Special mathematical functions related to the beta and gamma functions.

Usage

beta(a, b)
lbeta(a, b)

gamma (x)

lgamma (x)

psigamma (x, deriv = 0)
digamma (x)

474 Special

trigamma (x)

choose (n, k)
lchoose (n, k)
factorial (x)
lfactorial (x)

Arguments
a, b non-negative numeric vectors.
X, n numeric vectors.
k, deriv integer vectors.
Details
The functions beta and lbeta return the beta function and the natural logarithm of the beta
function,
B(a,b) = HTO)
I'(a+b)

The formal definition is)
Bla,b) :/ 1=1(1 = f)ldy
0

(Abramowitz and Stegun section 6.2.1, page 258). Note that it is only defined in R for non-negative
a and b, and is infinite if either is zero.

The functions gamma and 1gamma return the gamma function I'(z) and the natural logarithm of
the absolute value of the gamma function. The gamma function is defined by (Abramowitz and
Stegun section 6.1.1, page 255)

F(a:)z/ t*le~tdt
0

for all real x except zero and negative integers (when NaN is returned). There will be a warning on
possible loss of precision for values which are too close (within about 10~®)) to a negative integer
less than ‘~10°.

factorial (x) (x! for non-negative integer x) is defined to be gamma (x+1) and 1factorial
to be lgamma (x+1).

The functions digamma and t rigamma return the first and second derivatives of the logarithm of
the gamma function. psigamma (x, deriv) (deriv >= 0) computes the deriv-th deriva-
tive of ¢(z).
d I’
digamma (x) = ¢(z) = T InT(x) = F((j))

This is often called the ‘polygamma’ function, e.g. in Abramowitz and Stegun (section 6.4.1, page
260); and higher derivatives (deriv = 2:4) have occasionally been called ‘tetragamma’, ‘pen-
tagamma’, and ‘hexagamma’.

The functions choose and 1choose return binomial coefficients and the logarithms of their ab-
solute values. Note that choose (n, k) is defined for all real numbers n and integer k. For k > 1
it is defined as n(n — 1)---(n — k + 1)/k!, as 1 for K = 0 and as 0 for negative k. Non-integer
values of k are rounded to an integer, with a warning.

Special 475

choose (*, k) uses direct arithmetic (instead of [1]gamma calls) for small k, for speed and
accuracy reasons. Note the function combn (package utils) for enumeration of all possible combi-
nations.

The gamma, 1lgamma, digamma and trigamma functions are internal generic primitive func-
tions: methods can be defined for them individually or via the Math group generic.

Source

gamma, lgamma, beta and 1lbeta are based on C translations of Fortran subroutines by W.
Fullerton of Los Alamos Scientific Laboratory (now available as part of SLATEC).

digamma, trigamma and psigamma are based on

Amos, D. E. (1983). A portable Fortran subroutine for derivatives of the psi function, Algorithm
610, ACM Transactions on Mathematical Software 9(4), 494-502.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (For gamma and 1gamma.)

Abramowitz, M. and Stegun, 1. A. (1972) Handbook of Mathematical Functions. New York: Dover.
Chapter 6: Gamma and Related Functions.

See Also

Arithmetic for simple, sgrt for miscellaneous mathematical functions and Bessel for the
real Bessel functions.

For the incomplete gamma function see pgamma.

Examples

require (graphics)

choose (5, 2)
for (n in 0:10) print (choose(n, k = 0:n))

factorial (100)
lfactorial (10000)

gamma has 1lst order poles at 0, -1, -2,

this will generate loss of precision warnings, so turn off

op <- options ("warn")

options (warn = -1)

x <- sort(c(seq(-3,4, length.out=201), outer(0:-3, (-1:1)xle-6, "+")))

plot (x, gamma(x), ylim=c(-20,20), col="red", type="1", lwd=2,
main=expression (Gamma (x)))

abline (h=0, v=-3:0, 1lty=3, col="midnightblue")

options (op)

x <- seq(.l, 4, length.out = 201); dx <- diff(x)[1]
par (mfrow = c(2, 3))

476 split

for (ch in c("", "1","di","tri","tetra", "penta")) {
is.deriv <- nchar(ch) >= 2
nm <- paste(ch, "gamma", sep = "")
if (is.deriv) {
dy <- diff(y) / dx # finite difference

der <- which(ch == c("di","tri","tetra", "penta")) - 1
nm2 <- paste("psigamma (x, deriv = ", der,")",sep='")
nm <- if(der >= 2) nm2 else paste(nm, nm2, sep = " ==\n")

y <- psigamma (x, deriv=der)
} else {

y <= get(nm) (x)
}

plot(x, y, type = "1", main = nm, col = "red")
abline(h = 0, col = "lightgray")
if (is.deriv) lines(x[-1], dy, col = "blue", lty = 2)

}

par (mfrow = c(1, 1))

"Extended" Pascal triangle:
fN <- function(n) formatC(n, width=2)

for (n in —-4:10) cat (fN(n),":", fN(choose(n, k= -2:max(3,n+2))), "\n")
R code version of choose () [simplistic; warning for k < 0]:
mychoose <- function(r,k)
ifelse(k <= 0, (k==0),
sapply (k, function (k) prod(r: (r-k+1))) / factorial (k))
k <= -1:6

cbind (k=k, choose(1/2, k), mychoose(1/2, k))

Binomial theorem for n=1/2 ;

sqgrt (1+x) = (14+x)"(1/2) = sum_{k=0}"Inf choose(1l/2, k) x x"k
k <= 0:10 # 10 is sufficient for ~ 9 digit precision:
sqgrt (1.25)

sum(choose (1/2, k)x .25"k)

split Divide into Groups and Reassemble

Description

split divides the data in the vector x into the groups defined by f. The replacement forms replace
values corresponding to such a division. unsplit reverses the effect of split.

Usage

split(x, f, drop FALSE, ...)
split(x, £, drop = FALSE, ...) <- value
unsplit (value, f, drop = FALSE)

split 477
Arguments
vector or data frame containing values to be divided into groups.
f a ‘factor’ in the sense that as.factor (f) defines the grouping, or a list of
such factors in which case their interaction is used for the grouping.
drop logical indicating if levels that do not occur should be dropped (if fisa factor
or a list).
value a list of vectors or data frames compatible with a splitting of x. Recycling
applies if the lengths do not match.
further potential arguments passed to methods.
Details

split and split<- are generic functions with default and data. frame methods. The data
frame method can also be used to split a matrix into a list of matrices, and the replacement form
likewise, provided they are invoked explicitly.

unsplit works with lists of vectors or data frames (assumed to have compatible structure, as if
created by split). It puts elements or rows back in the positions given by f£. In the data frame
case, row names are obtained by unsplitting the row name vectors from the elements of value.

f is recycled as necessary and if the length of x is not a multiple of the length of £ a warning is
printed.

Any missing values in £ are dropped together with the corresponding values of x.

Value

The value returned from split is a list of vectors containing the values for the groups. The
components of the list are named by the levels of £ (after converting to a factor, or if already a
factor and drop=TRUE, dropping unused levels).

The replacement forms return their right hand side. unsplit returns a vector or data frame for
which split (x, f) equalsvalue

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

cut to categorize numeric values.

strsplit to split strings.

Examples

require (stats); require (graphics)

n <— 10; nn <= 100

g <- factor(round(n » runif(n * nn)))

X <— rnorm(n % nn) + sgrt(as.numeric(g))
xg <- split(x, 9)

478 sprintf

boxplot (xg, col = "lavender", notch = TRUE, varwidth = TRUE)
sapply (xg, length)
sapply (xg, mean)

Calculate 'z-scores' by group (standardize to mean zero, variance one)
z <— unsplit (lapply(split(x, g), scale), 9g)

or

z7Z <— X
split(zz, g) <- lapply(split(x, g), scale)

and check that the within-group std dev is indeed one
tapply(z, g, sd)
tapply(zz, g, sd)

data frame variation
Notice that assignment form is not used since a variable is being added

g <- airquality$Month

1 <= split(airquality, g)

1 <= lapply(l, transform, 0Oz.Z = scale(Ozone))
ag2 <- unsplit(l, g)

head (ag2)

with(ag2, tapply(0z.Z, Month, sd, na.rm=TRUE))

Split a matrix into a list by columns
ma <- cbind(x = 1:10, y = (-4:5)"2)
split (ma, col (ma))

split(1:10, 1:2)

sprintf Use C-style String Formatting Commands

Description

A wrapper for the C function sprintf, that returns a character vector containing a formatted
combination of text and variable values.

Usage

sprintf (fmt, ...)
gettextf (fmt, ..., domain = NULL)

sprintf 479

Arguments
fmt a character vector of format strings, each of up to 8192 bytes.
values to be passed into fmt. Only logical, integer, real and character vectors
are supported, but some coercion will be done: see the ‘Details’ section.
domain see gettext.
Details

sprintf is a wrapper for the system sprintf C-library function. Attempts are made to check
that the mode of the values passed match the format supplied, and R’s special values (NA, Inf,
—Inf and NaN) are handled correctly.

gettextf is a convenience function which provides C-style string formatting with possible trans-
lation of the format string.

The arguments (including fmt) are recycled if possible a whole number of times to the length of
the longest, and then the formatting is done in parallel. As from R 2.9.0 zero-length arguments are
allowed and will give a zero-length result. All arguments are evaluated even if unused, and hence
some types (e.g., "symbol" or "language", see typeof) are not allowed.

The following is abstracted from Kernighan and Ritchie (see References). The string fmt contains
normal characters, which are passed through to the output string, and also conversion specifications
which operate on the arguments provided through The allowed conversion specifications start
with a $ and end with one of the letters in the set aAdifeEgGosxX%. These letters denote the
following types:

d, i, o, x, X Integer value, o being octal, x and X being hexadecimal (using the same case
for a—f as the code). Numeric variables with exactly integer values will be coerced to integer.
Formats d and i can also be used for logical variables, which will be converted to 0, 1 or NA.

£ Double precision value, in “fixed point” decimal notation of the form "[-lmmm.ddd". The num-
ber of decimal places ("d") is specified by the precision: the default is 6; a precision of 0
suppresses the decimal point. Non-finite values are converted to NA, NaN or (perhaps a sign
followed by) Inf.

e, E Double precision value, in “exponential” decimal notation of the form [-]m.ddde [+~
]xxor [-]m.dddE [+-] xx.

g, G Double precision value, in %$e or $E format if the exponent is less than -4 or greater than
or equal to the precision, and % £ format otherwise. (The precision (default 6) specifies the
number of significant digits here, whereas in $f£, %e, it is the number of digits after the
decimal point.)

a, A Double precision value, in binary notation of the form [—] O0xh.hhhp[+-]d. This is a
binary fraction expressed in hex multiplied by a (decimal) power of 2. The number of hex
digits after the decimal point is specified by the precision: the default is enough digits to
represent exactly the internal binary representation. Non-finite values are converted to NA,
NaN or (perhaps a sign followed by) Inf. Format $a uses lower-case for x, p and the hex
values: format %A uses upper-case.

This should be supported on all platforms as it is a feature of C99. The format is not uniquely
defined: although it would be possible to make the leading h always zero or one, this is
not always done. Most systems will suppress trailing zeros, but a few do not. On a well-
written platform, for normal numbers there will be a leading one before the decimal point

480 sprintf

plus (by default) 13 hexadecimal digits, hence 53 bits. The treatment of denormalized (aka
‘subnormal’) numbers is very platform-dependent.

s Character string. Character NAs are converted to "NA".

% Literal % (none of the extra formatting characters given below are permitted in this case).

Conversion by as.character is used for non-character arguments with s and by as.double
for non-double arguments with £, e, E, g, G.NB:thelength isdetermined before conversion,
so do not rely on the internal coercion if this would change the length. The coercion is done only
once, so if length (fmt) > 1 then all elements must expect the same types of arguments.

In addition, between the initial $ and the terminating conversion character there may be, in any
order:

m.n Two numbers separated by a period, denoting the field width (m) and the precision (n).
— Left adjustment of converted argument in its field.

+ Always print number with sign: by default only negative numbers are printed with a sign.
a space Prefix a space if the first character is not a sign.

0 For numbers, pad to the field width with leading zeros.

specifies “alternate output” for numbers, its action depending on the type: For x or X, 0x or
0X will be prefixed to a non-zero result. For e, e, £, g and G, the output will always have a
decimal point; for g and G, trailing zeros will not be removed.

Further, immediately after $ may come 1$ to 99$ to refer to numbered argument: this allows
arguments to be referenced out of order and is mainly intended for translators of error messages. If
this is done it is best if all formats are numbered: if not the unnumbered ones process the arguments
in order. See the examples. This notation allows arguments to be used more than once, in which
case they must be used as the same type (integer, double or character).

A field width or precision (but not both) may be indicated by an asterisk *: in this case an argument
specifies the desired number. A negative field width is taken as a ’-’ flag followed by a positive
field width. A negative precision is treated as if the precision were omitted. The argument should
be integer, but a double argument will be coerced to integer.

There is a limit of 8192 bytes on elements of fmt, and on strings included from a single %letter
conversion specification.

Field widths and precisions of $s conversions are interpreted as bytes, not characters, as described
in the C standard.

Value

A character vector of length that of the longest input. If any element of fmt or any character
argument is declared as UTF-8, the element of the result will be in UTF-8 and have the encoding
declared as UTF-8. Otherwise it will be in the current locale’s encoding.

Warning

The format string is passed down the OS’s sprint f function, and incorrect formats can cause the
latter to crash the R process . R does perform sanity checks on the format, and since R 2.10.0, we
have not seen crashes anymore. But not all possible user errors on all platforms have been tested,
and some might be terminal.

sprintf 481

Author(s)

Original code by Jonathan Rougier.

References

Kernighan, B. W. and Ritchie, D. M. (1988) The C Programming Language. Second edition, Pren-
tice Hall. describes the format options in table B-1 in the Appendix.

See Also

formatC for a way of formatting vectors of numbers in a similar fashion.
paste for another way of creating a vector combining text and values.

gettext for the mechanisms for the automated translation of text.

Examples

be careful with the format: most things in R are floats
only integer-valued reals get coerced to integer.

sprintf ("$s is %f feet tall\n", "Sven", 7.1) # OK
try (sprintf ("%$s is %i feet tall\n", "Sven", 7.1)) # not OK
sprintf ("%s is %i feet tall\n", "Sven", 7) # OK

o

use a literal %
sprintf ("$.0£%% said yes (out of a sample of size %.0f)", 66.666, 3)

various formats of pi

sprintf ("$£", pi)

sprintf ("%.3f", pi)

sprintf ("%1.0£f", pi)

sprintf ("$5.1f", pi)

sprintf ("$05.1f", pi)

sprintf ("$+£", pi)

sprintf ("% £", pi)

sprintf("%—lOf" pi) # left justified
sprintf ("%e", pi)

sprintf ("SE", i)

sprintf ("%g", pi)

sprintf ("%g", le6 * pi) # —> exponential
sprintf ("%.9g", le6 * pi) # —-> "fixed"
sprintf ("$G", le-6 x pi)

no truncation:
sprintf ("$1.£",101)

re—-use one argument three times, show difference between %x and %X
xx <— sprintf ("%1d %1x %1S$X", 0:15)

xx <— matrix(xx, dimnames=list (rep("", 16), "%d%$x%X"))

noquote (format (xx, Jjustify="right"))

482 sQuote

More sophisticated:

sprintf ("min 10-char string '%10s'",
c("a", "ABC", "and an even longer one"))

n <- 1:18
sprintf (paste("e with %2d digits = %.",n,"g",sep=""), n, exp(l))

Using arguments out of order
sprintf ("second %2$1.0f, first %$1$5.2f, third %3$1.0f", pi, 2, 3)

Using asterisk for width or precision
sprintf ("precision %$.xf, width '$x.3f'", 3, pi, 8, pi)

Asterisk and argument re-use, 'e' example reiterated:
sprintf ("e with %1$2d digits = %2$.x1$g", n, exp(l))

re-cycle arguments
sprintf ("%$s %d", "test", 1:3)

binary output showing rounding/representation errors
x <- seq(0, 1.0, 0.1); yv <= c(0,.1,.2,.3,.4,.5,.6,.7,.8,.9,1)
cbind(x, sprintf ("%a", x), sprintf("%a", v))

sQuote Quote Text

Description
Single or double quote text by combining with appropriate single or double left and right quotation
marks.
Usage
sQuote (x)
dQuote (x)
Arguments

X an R object, to be coerced to a character vector.

Details

The purpose of the functions is to provide a simple means of markup for quoting text to be used in
the R output, e.g., in warnings or error messages.

The choice of the appropriate quotation marks depends on both the locale and the available character
sets. Older Unix/X11 fonts displayed the grave accent (ASCII code 0x60) and the apostrophe (0x27)
in a way that they could also be used as matching open and close single quotation marks. Using

sQuote 483

modern fonts, or non-Unix systems, these characters no longer produce matching glyphs. Unicode
provides left and right single quotation mark characters (U+2018 and U+2019); if Unicode markup
cannot be assumed to be available, it seems good practice to use the apostrophe as a non-directional
single quotation mark.

Similarly, Unicode has left and right double quotation mark characters (U+201C and U+201D); if
only ASCII’s typewriter characteristics can be employed, than the ASCII quotation mark (0x22)
should be used as both the left and right double quotation mark.

Some other locales also have the directional quotation marks, notably on Windows. TeX uses
grave and apostrophe for the directional single quotation marks, and doubled grave and doubled
apostrophe for the directional double quotation marks.

What rendering is used depend on the opt ions setting for useFancyQuotes. If this is FALSE
then the undirectional ASCII quotation style is used. If this is TRUE (the default), Unicode di-
rectional quotes are used are used where available (currently, UTF-8 locales on Unix-alikes and
all Windows locales except C): if set to "UTF-8" UTF-8 markup is used (whatever the current
locale). If set to "TeX", TeX-style markup is used. Finally, if this is set to a character vector of
length four, the first two entries are used for beginning and ending single quotes and the second
two for beginning and ending double quotes: this can be used to implement non-English quoting
conventions such as the use of guillemets.

Where fancy quotes are used, you should be aware that they may not be rendered correctly as
not all fonts include the requisite glyphs: for example some have directional single quotes but not
directional double quotes.

Value

A character vector in the current locale’s encoding.

References

Markus Kuhn, “ASCII and Unicode quotation marks”. http://www.cl.cam.ac.uk/
~mgk25/ucs/quotes.html

See Also

Quotes for quoting R code.

shQuote for quoting OS commands.

Examples

op <- options ("useFancyQuotes")

paste ("argument", sQuote("x"), "must be non-zero")

options (useFancyQuotes = FALSE)

cat ("\ndistinguish plain", sQuote("single"), "and",
dQuote ("double"), "quotes\n")

options (useFancyQuotes = TRUE)

cat ("\ndistinguish fancy", sQuote("single"), "and",
dQuote ("double"), "quotes\n")

options (useFancyQuotes = "TeX")

cat ("\ndistinguish TeX", sQuote("single"), "and",
dQuote ("double"), "quotes\n")

http://www.cl.cam.ac.uk/~mgk25/ucs/quotes.html
http://www.cl.cam.ac.uk/~mgk25/ucs/quotes.html

484 srcfile

if(110n_info () $ Latin-1") {
options (useFancyQuotes = c("\xab", "\xbb", "\xbf", "2"))
cat ("\n", sQuote("guillemet"), "and",
dQuote ("Spanish question"), "styles\n")
} else if(110n_info()$ UTF-8") {
options (useFancyQuotes = c("\xc2\xab", "\xc2\xbb", "\xc2\xbf", "?"))
cat ("\n", sQuote("guillemet"), "and",
dQuote ("Spanish question"), "styles\n")
}

options (op)

srcfile References to source files

Description

These functions are for working with source files.

Usage

srcfile(filename, encoding = getOption ("encoding"), Enc = "unknown")
srcfilecopy (filename, lines)
getSrcLines (srcfile, first, last)
srcref (srcfile, 1lloc)

S3 method for class 'srcfile'
print(x, ...)

S3 method for class 'srcfile'
summary (object, ...)

S3 method for class 'srcfile'

open (con, line, ...)

S3 method for class 'srcfile'
close(con, ...)

S3 method for class 'srcref'

print (x, useSource = TRUE, ...)

S3 method for class 'srcref'

summary (object, useSource = FALSE, ...)
S3 method for class 'srcref'
as.character (x, useSource = TRUE, ...)
.1sOpen(srcfile)

Arguments
filename The name of a file
encoding The character encoding to assume for the file
Enc The encoding with which to make strings: see the encoding argument of

parse.

lines A character vector of source lines. Other R objects will be coerced to character.

srcfile 485

srcfile A srcfile object.
first, last, line
Line numbers.

lloc A vector of four, six or eight values giving a source location; see ‘Details’.
x, object, con

An object of the appropriate class.
useSource Whether to read the srcfile to obtain the text of a srcref.

Additional arguments to the methods; these will be ignored.

Details

These functions and classes handle source code references.

The srcfile function produces an object of class srcfile, which contains the name and di-
rectory of a source code file, along with its timestamp, for use in source level debugging (not yet
implemented) and source echoing. The encoding of the file is saved; see £ile for a discussion of
encodings, and iconvlist for a list of allowable encodings on your platform.

The srcfilecopy function produces an object of the descendant class srcfilecopy, which
saves the source lines in a character vector.

The get SrcLines function reads the specified lines from srcfile.

The srcref function produces an object of class srcref, which describes a range of characters in
a srcfile. The 11loc value gives the following values: ¢ (first_line, first_byte,
last_line, last_byte, first_column, last_column, first_parsed,
last_parsed). Bytes (elements 2, 4) and columns (elements 5, 6) may be different due to
multibyte characters. If only four values are given, the columns and bytes are assumed to match.
Lines (elements 1, 3) and parsed lines (elements 7, 8) may differ if a # Line directive is used in
code: the former will respect the directive, the latter will just count lines. If only 4 or 6 elements
are given, the parsed lines will be assumed to match the lines.

Methods are defined for print, summary, open, and close for classes srcfile and
srcfilecopy. The open method opens its internal £ile connection at a particular line; if
it was already open, it will be repositioned to that line.

Methods are defined for print, summary and as.character for class srcref. The
as.character method will read the associated source file to obtain the text corresponding to
the reference. The exact behaviour depends on the class of the source file. If the source file inher-
its from class "srcfilecopy", the lines are taken from the saved copy using the "parsed" line
counts. If not, an attempt is made to read the file, and the original line numbers of the srcref
record (i.e. elements 1 and 3) are used. If an error occurs (e.g. the file no longer exists), text
like <srcref: "file" chars 1:1 to 2:10> will be returned instead, indicating the
line:column ranges of the first and last character. The summary method defaults to this type
of display.

Lists of srcref objects may be attached to expressions as the "srcref" attribute. (The list
of srcref objects should be the same length as the expression.) By default, expressions are
printed by print.default using the associated srcref. To see deparsed code instead, call
print with argument useSource = FALSE.Ifa srcref objectis printed with useSource
= FALSE, the <srcref: . . .> record will be printed.

.1sOpen is intended for internal use: it checks whether the connection associated with a
srcfile objectis open.

486 Startup

Value

srcfilereturns a srcfile object.
srcfilecopy returns a srcfilecopy object.
getSrcLines returns a character vector of source code lines.

srcref returns a srcref object.

Author(s)

Duncan Murdoch

Examples

has timestamp
src <- srcfile(system.file ("DESCRIPTION", package = "base"))
summary (src)
getSrcLines (src, 1, 4)
ref <- srcref(src, c(1, 1, 2, 1000))
ref
print (ref, useSource = FALSE)

Startup Initialization at Start of an R Session

Description

In R, the startup mechanism is as follows.

Unless ‘——no—environ’ was given on the command line, R searches for site and user files to
process for setting environment variables. The name of the site file is the one pointed to by the
environment variable R_ENVIRON; if this is unset, ‘/R_HOME/etc/Renviron.site’ is used
(if it exists, which it does not in a ‘factory-fresh’ installation). The name of the user file can be
specified by the R_ENVIRON_USER environment variable; if this is unset, the files searched for
are ‘.Renviron’ in the current or in the user’s home directory (in that order). See ‘Details’ for
how the files are read.

Then R searches for the site-wide startup profile file of R code unless the command line op-
tion ‘~—-no-site-file’ was given. The path of this file is taken from the value of the
R_PROFILE environment variable (after tilde expansion). If this variable is unset, the default
is ‘R_HOME/etc/Rprofile.site’, which is used if it exists (which it does not in a ‘“factory-
fresh’ installation). This code is sourced into the base package. Users need to be careful not to
unintentionally overwrite objects in base, and it is normally advisable to use 1ocal if code needs
to be executed: see the examples.

Then, unless ‘——no-init—-file’ was given, R searches for a user profile, a file of R code.
The path of this file can be specified by the R_PROFILE_USER environment variable (and tilde
expansion will be performed). If this is unset, a file called ‘. Rprofile’ is searched for in the
current directory or in the user’s home directory (in that order). The user profile file is sourced into
the workspace.

Startup 487

Note that when the site and user profile files are sourced only the base package is loaded, so objects
in other packages need to be referred toby e.g. utils: : dump. frames or after explicitly loading
the package concerned.

R then loads a saved image of the user workspace from ‘. RData’ in the current directory if there is
one (unless ‘——no-restore—data’ or ‘——no-restore’ was specified on the command line).

Next, if a function .First is found on the search path, it is executed as .First (). Finally,
function .First.sys () in the base package is run. This calls require to attach the default
packages specified by options ("defaultPackages"). If the methods package is included,
this will have been attached earlier (by function .OptRequireMethods ()) so that name space
initializations such as those from the user workspace will proceed correctly.

A function .First (and .Last) can be defined in appropriate ‘.Rprofile’ or
‘Rprofile.site’ files or have been saved in ‘.RData’. If you want a different
set of packages than the default ones when you start, insert a call to options in the
‘.Rprofile’ or ‘Rprofile.site’ file. For example, options (defaultPackages
= character ()) will attach no extra packages on startup (only the base package) (or
set R_DEFAULT_PACKAGES=NULL as an environment variable before running R). Using
options (defaultPackages = "") or R_DEFAULT_PACKAGES="" enforces the R sys-
tem default.

On front-ends which support it, the commands history is read from the file specified by the
environment variable R_HISTFILE (default ‘.Rhistory’ in the current directory) unless
‘~—no-restore-history’ or ‘~——no-restore’ was specified.

3

The command-line option ‘--vanilla’ implies ‘——-no-site-file’, ‘~—no-init-file’,
