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Abstract

We had Ethernet headers, IP packets, TCP segments, a gaggle of
HTTP requests and responses, also UDP, NTP, and DHCP. Not that
we needed all that just to communicate but once you get locked into a
serious packet collection the tendency is to push it as far as you can.
- Deepest apologies to Hunter S. Thompson
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1 Introduction

PCS is a set of Python modules and objects that make building network
protocol testing tools easier for the protocol developer. The core of the
system is the pcs module itself which provides the necessary functionality
to create classes that implement packets.

Installing PCS is covered in the text file, INSTALLATION, which came
with this package. The code is under a BSD License and can be found in
the file COPYRIGHT in the root of this package.

In the following document we set classes functions and methods apart
by setting them in different type. Methods and functions are also followed
by parentheses, “()”, which classes are not.

2 A Quick Tour

For the impatient programmer this section is a 5 minute intro to using PCS.
Even faster than this tour would be to read some of the test code in the
tests sub-directory or the scripts in the scripts sub directory.

PCS is a set of functions to encode and decode network packets from
various formats as well as a set of classes for the most commonly use network
protocols. Each object derived from a packet has fields automatically built
into it that represent the relevant sections of the packet.

Let’s grab a familiar packet to work with, the IPv4 packet. IPv4 packets
show a few interesting features of PCS. Figure 2 shows the definition of an
IPv4 packet header from [?] which specifies the IPv4 protocol.

In PCS every packet class contains fields which represent the fields of
the packet exactly, including their bit widths. Figure2 shows a command
line interaction with an IPv4 packet.

Each packet has a built in field called bytes which always contains the
wire representation of the packet.

In Figure3 the bytes field has been changed in its first position by setting
the hlen or header length field to 20, 5 � 2. Such programmatic access is
available to all fields of the packet.

The IPv4 header has fields that can be problematic to work with in any
language including ones that are

fig:ipheadfeatures less than one byte (octect) in length (Version, IHL, Flags)

fig:ipheadfeatures not an even number of bits (Flags)

fig:ipheadfeatures not aligned on a byte boundary (Fragment Offset)
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0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Version| IHL |Type of Service| Total Length |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Identification |Flags| Fragment Offset |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time to Live | Protocol | Header Checksum |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Destination Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Options | Padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 1: IPv4 Header Format

Using just these features it is possible to write complex programs in
Python that directly manipulate packets. For now you should know enough
to safely ignore this documentation until you to explore further.

3 Working with Packets

In PCS every packet is a class and the layout of the packet is defined by a
Layout class which contains a set of Fields. Fields can be from 1 to many
bits, so it is possible to build packets with arbitrary width bit fields. Fields
know about the widths and will throw exceptions when they are overloaded.

Every Packet object, that is an object instantiated from a specific PCS
packet class, has a field named bytes which shows the representation of the
data in the packet at that point in time. It is the bytes field that is used
when transmitting the packet on the wire.

The whole point of writing PCS was to make it easier to experiment with
various packet types. In PCS there are packet classes and packet objects.
Packet classes define the named fields of the packet and these named fields
are properties of the object. A practical example may help. Given an IPv6
packet class it is possible to create the object, set various fields, as well as
transmit and receive the object.

3



1 >>> from pcs . packets . ipv4 import ∗
2 >>> ip = ipv4 ( )
3 >>> print ip
4 ve r s i on 4
5 hlen 0
6 tos 0
7 l ength 0
8 id 0
9 f l a g s 0

10 o f f s e t 0
11 t t l 64
12 p ro to co l 0
13 checksum 0
14 s r c 0 . 0 . 0 . 0
15 dst 0 . 0 . 0 . 0
16
17 >>> ip . h len=5<<2
18 >>> print ip
19 ve r s i on 4
20 hlen 20
21 tos 0
22 l ength 0
23 id 0
24 f l a g s 0
25 o f f s e t 0
26 t t l 64
27 p ro to co l 0
28 checksum 0
29 s r c 0 . 0 . 0 . 0
30 dst 0 . 0 . 0 . 0

Figure 2: Quick and Dirty IPv4 Example

4



>>> from pcs.packets.ipv4 import *

>>> ip = ipv4()

>>> ip.bytes

’@\x00\x00\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00’

>>> ip.hlen = 5 << 2

>>> ip.bytes

’D\x00\x00\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00’

Figure 3: The bytes Field of the Packet

1 ip = ipv6 ( )
2 a s s e r t ( ip != None )
3 ip . t r a f f i c c l a s s = 1
4 ip . f low = 0
5 ip . l ength = 64
6 ip . next header = 6
7 ip . hop = 64
8 ip . s r c = ine t p ton (AF INET6 , ” : : 1 ” )
9 ip . dst = ine t p ton (AF INET6 , ” : : 1 ” )

Figure 4: IPv6 Class

A good example is the IPv6 class: The code in Figure 4 gets a new IPv6
object from the ipv6() class, which was imported earlier, and sets various
fields in the packet. Showing the bytes field, Figure 5 gives us an idea of
how well this is working.

Note that various bits are set throughout the bytes. The data in the
packet can be pretty printed using the print function as seen in Figure 6
or it can be dumped as a string directly as seen in Figure7.

>>> ip.bytes

’‘\x10\x00\x00\x00@\x06@\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01’

Figure 5: Bytes of the IPv6 Packet
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1 >>> print ip
2 ve r s i on 6
3 t r a f f i c c l a s s 1
4 f low 0
5 length 64
6 next header 6
7 hop 64
8 s r c : : 1
9 dst : : 1

Figure 6: Printing a Packet

>>> ip

<IPv6: src: 0, dst: 0, traffic_class: 0, flow: 0, length: 0, \

version:6, hop: 0, next_header: 0>

Figure 7: Using the repr method

4 Creating Packet Classes

For a packet to be a part of PCS it must sub-classed from the Packet class
as seen in Figure 8. Thoughout this section we will use the example of a
network layer packet, IPv6, and a packet about the transport layer, DNS.
Using both low and high level packets should give the reader a good feel for
how to add most of the packets they would be expected to work with.

The code in Figure ?? defines a new class, one that will describe an IPv6
packet, sub-classed from the Packet base class. There are a small number
of reserved field names that you must not use when defining your packets.
For reference all of the reserved field names are given in Table 9 and most of
them will also be discussed in this section. Resereved names that are part
of a class, as opposed to an object, are preceeded by an underscore, , to
further set them apart. Do not use underscores to start your fieldnames.
You have been warned!

Each packet class in PCS is defined in a similar way. After sub-classing
from the Packet class, there should be a Python style text string describing
the class. The fields are defined next,as shown on lines 10 through 17, in
the order in which they are stored in the packet. Various types of fields
are supported by PCS and they are all covered in Section ??. After all of
the fields have been listed, the Packet class’s init method is called with
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1 class ipv6 ( pcs . Packet ) :
2 ”””A c l a s s that conta in s the IPv6 header . Al l other data i s
3 chained on the end . ”””
4
5 l ayout = pcs . Layout ( )
6 map = None
7
8 def i n i t ( s e l f , bytes = None ) :
9 ””” IPv6 Packet from RFC 2460 ”””

10 ve r s i on = pcs . F i e ld ( ” ve r s i on ” , 4 , d e f a u l t = 6)
11 t r a f f i c = pcs . F i e ld ( ” t r a f f i c c l a s s ” , 8)
12 f low = pcs . F i e ld ( ” f low ” , 20)
13 l ength = pcs . F i e ld ( ” l ength ” , 16)
14 next header = pcs . F i e ld ( ” next header ” , 8 , d i s c r i m i n a t o r=True )
15 hop = pcs . F i e ld ( ”hop” , 8)
16 s r c = pcs . S t r i n g F i e l d ( ” s r c ” , 16 ∗ 8)
17 dst = pcs . S t r i n g F i e l d ( ” dst ” , 16 ∗ 8)
18 pcs . Packet . i n i t ( s e l f ,
19 [ ver s ion , t r a f f i c , f low , length , next header , hop ,
20 src , dst ] , bytes )
21 s e l f . d e s c r i p t i o n = ”IPv6”
22
23 s e l f . map = ipv6 map .map
24
25 i f ( bytes != None ) :
26 ## 40 by t e s i s the s tandard s i z e o f an IPv6 header
27 o f f s e t = 40
28 s e l f . data = s e l f . next ( bytes [ o f f s e t : len ( bytes ) ] )
29 else :
30 s e l f . data = None

Figure 8: IPv6 Packet Class
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Field Name Use

layout Used to store the layout of the packet

map Used to demultiplex higher layer packets

next A method used to unencapsulate higher layer packets

bytes Storage for the raw bytes of the packet

data Pointer to the next higher layer packet

description Textual description of the packet

Figure 9: Reserved Fields and Methods in PCS

Name Use Initialiazation Arguments

Field Abitrary Bit Field Name, Width in Bits, Default Value

StringField String of Bytes Name, Width In Bits, Default Value

LengthValueField A set of Values with Associated Lengths Name, Width in Bytes, Default Value

Figure 10: Fields Supported by PCS

three arguments. The self object, an array of the fields, in the order in
which they will appear in a packet, and the bytes variable that was passed
to the packet object’s init method. Once the packet is initalized we set its
description, on line 20.

Any packet that may contain data at a higher layer, such as a network
packet will then use its next method to unencapsulate any higher layer pack-
ets. On lines 25 through 30 the init method attempts to unencapsulate any
data after the header itself. Every packet object either has a valid data

or it is set to None. Higher level programs using PCS will check for data

being set to None in order to know when they have reached the end of a
packet so it must be set correctly by each packet class. The next method
used here is from the Packet base class but it can also be overridden by
a programmer, and this is done in the TCP class which can be found in
pcs/packets/tcp.py.

4.1 Working with Different Types of Fields

Part of packet initialization is to set up the fields that the packet will contain.
Fields in PCS are objects in themselves and they are initialized in different
ways, depending on their type. A brief list of the currently supported fields
is given in Table 10.

Each field has several possible arguments, but the two that are required
are a name, which is the string field specified as the first argument and
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a width, which is the second argument. Note that some field widths are
specified in bits and some in bytes or

The fields are set by passing them as an array to the PCS base class
initialization method.

It would have been convenient if all network protocol packets were simply
lists of fixed length fields, but that is not the case. PCS defines two extra
field classes, the StringField and the LengthValueField.

The StringField is simply a name and a width in bits of the string.
The data is interpreted as a list of bytes, but without an encoded field size.
Like a Field the StringField has a constant size.

Numerous upper layer protocols, i.e. those above UDP and TCP, use
length-value fields to encode their data, usually strings. In a length-value
field the number of bytes being communicated is given as the first byte,
word, or longword and then the data comes directly after the size. For
example, DNS [?] encodes the domain names to be looked up as a series
of length-value fields such that the domain name pcs.sourceforge.net gets
encoded as 3pcs11sourceforge3net when it is transmitted in the packet.

The LengthValueField class is used to encode length-value fields. A
LenghtValueField has three attributes, its name, the width in bits of the
length part, and a possible default value. Currently only 8, 16, and 32 bit
fields are supported for the length. The length part need never been set by
the programmer, it is automatically set when a string is assigned to the field
as shown in 11.

Figure 11 shows both the definition and use of a LengthValueField.
The definition follows the same system as all the other fields, with the name
and the size given in the initialization. The dnslabel class has only one
field, that is the name, and it’s length is given by an 8 bit field, meaning
the string sent can have a maximum length of 255 bytes.

When using the class, as mentioned, the size is not explicitly set. One last
thing to note is that in order to have a 0 byte terminator the programmer
assigns the empty string to a label. Using the empty string means that
the length-value field in the packet has a 0 for the length which acts as a
terminator for the list. For a complete example please review dns query.py

in the scripts directory.

4.2 Built in Bounds Checking

One of the nicer features of PCS is built in bounds checking. Once the
programmer has specified the size of the field, the system checks on any
attempt to set that field to make sure that the value is within the proper
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1 class dns l abe l ( pcs . Packet ) :
2 ”””A DNS Label . ”””
3
4 layout = pcs . Layout ( )
5
6 def i n i t ( s e l f , bytes = None ) :
7 name = pcs . LengthValueField ( ”name” , 8)
8 pcs . Packet . i n i t ( s e l f ,
9 [ name ] ,

10 bytes = bytes )
11
12 s e l f . d e s c r i p t i o n = ”DNS Label ”
13
14 . . .
15
16 lab1 = dns l abe l ( )
17 lab1 . name = ” pcs ”
18
19 lab2 = dns l abe l ( )
20 lab2 . name = ” s o u r c e f o r g e ”
21
22 lab3 = dns l abe l ( )
23 lab3 . name = ” net ”
24
25 lab4 = dns l abe l ( )
26 lab4 . name = ””

Figure 11: Using a LengthValueField
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1 >>> from pcs . packets . ipv4 import ∗
2 >>> ip = ipv4 ( )
3 >>> ip . h len = 16
4 Traceback ( most r e c ent c a l l l a s t ) :
5 [ . . . ]
6 pcs . FieldBoundsError : ’ Value must be between 0 and 15 ’
7 >>> ip . h len = −1
8 Traceback ( most r e c ent c a l l l a s t ) :
9 [ . . . ]

10 pcs . FieldBoundsError : ’ Value must be between 0 and 15 ’
11 >>>

Figure 12: Bounds Checking

bounds. For example, in Figure 12 an attempt to set the value of the IP
packet’s header length field to 16 fails because the header length field is only
4 bits wide and so must contain a value between zero and fifteen.

PCS does all the work for the programmer once they have set the layout
of their packet.

4.3 Decapsulating Packets

One of the key concepts in networking is that of encapsulation, for example
an IP packet can be encapsulated in an Ethernet frame. In order to provide
a simple way for programmers to specifying the mapping between different
layers of protocols PCS provides a next method as part of the Packet base
class. There are a few pre-requisites that the programmer must fulfill in
order for the next method to do its job. The first is that at least one Field
must be marked as a discriminator. The descriminator field is the one
that the next method will use to decapsulate the next higher layer packet.
The other pre-requisite is that the programmer define a mapping of the
discriminator values to other packets. An example seems the best way to
make sense of all this.

Figure 13 shows an abbreviated and combined listing of the Ether-
net class and its associated mapping class. The full implementation can
be found in the source tree in the files pcs/packets/ethernet.py and
pcs/packets/ethernet map.py respectively. On line 7 a class variable, one
that will be shared across all instances of this object, is created and set to
the map that is defined in the ethernet map module.
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1 import pcs
2 import ethernet map
3
4 class e the rne t ( pcs . Packet ) :
5
6 l ayout = pcs . Layout ( )
7 map = None
8
9 def i n i t ( s e l f , bytes = None ) :

10 ””” i n i t i a l i z e an e the rne t packet ”””
11 s r c = pcs . S t r i n g F i e l d ( ” s r c ” , 48)
12 dst = pcs . S t r i n g F i e l d ( ” dst ” , 48)
13 type = pcs . F i e ld ( ” type ” , 16 , d i s c r i m i n a t o r=True )
14 e t h e r l e n = 14
15
16 pcs . Packet . i n i t ( s e l f , [ dst , s rc , type ] , bytes = bytes )
17 s e l f . d e s c r i p t i o n = ” Ethernet ”
18
19 s e l f . map = ethernet map .map
20
21 i f ( bytes != None ) :
22 s e l f . data = s e l f . next ( bytes [ e t h e r l e n : len ( bytes ) ] )
23 else :
24 s e l f . data = None
25 . . .
26
27 import ipv4 , ipv6 , arp
28
29 ETHERTYPE IP = 0x0800 # IP pro t o co l
30 ETHERTYPE ARP = 0x0806 # Addr . r e s o l u t i o n p ro t o co l
31 ETHERTYPE IPV6 = 0x86dd # IPv6
32
33 map = {ETHERTYPE IP: ipv4 . ipv4 ,
34 ETHERTYPE ARP: arp . arp ,
35 ETHERTYPE IPV6: ipv6 . ipv6 }

Figure 13: The Ethernet Packet and Mapping Classes
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The actual mapping of discriminators to higher layer packets is done in
the mapping module. Line 27 shows the mapping module importing the
higher layer objects, in this case the ipv4, ipv6, and arp packets which
can be encapsulated in an Ethernet frame. The map is really a Python

dictionary where the key is the value that the next method expects to find
in the field marked as a discriminator in the ethernet packet class. The
values in the dictionary are packet class constructors which will be called
from PCS’s Packet base class.

If the preceeding discussion seems complicated it can be summed up in
the following way. A packet class creator marks a single Field as a dis-
criminator and then creates a mapping module which contains a dictionary
that maps a value that can appear as a discriminator to a consctructor for
a higher layer packet class. In the case of Ethernet the discriminator is
the type field which contains the protocol type. An Ethernet frame which
contains an IPv4 packet will have a type field containing the value 2048 in
decimal, 0x800 hexadecimal. The Packet base class in this case will handle
decapsulation of the higher layer packet.

Mapping classes exist now for most packets, although some packets, such
as TCP and UDP, require special handling. Refer to the next method im-
plementations in pcs/packets/tcp.py and pcs/packets/udp.py for more
information.

5 Retrieving Packets

One of the uses of PCS is to analyze packets that have previously stored,
for example by a program such as tcpdump(1). PCS supports reading and
writing tcpdump(1) files though the pcap library written by Doug Song. The
python API exactly mirrors the C API in that packets are processed via a
callback to a dispatch routine, usually in a loop. Complete documentation
on the pcap library can be found with its source code or on its web page.
This document only explains pcap as it relates to how we use it in PCS.

When presented with a possibly unknown data file how can you start? If
you don’t know the bottom layer protocol stored in the file, such as Ethernet,
FDDI, or raw IP packets such as might be capture on a loopback interface,
it’s going to be very hard to get your program to read the packets correctly.
The pcap library handles this neatly for us. When opening a saved file it is
possible to ask the file what kind of data it contains, through the datalink
method.

In Figure14 we see two different save files being opened. The first,
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1 >>> import pcap
2 >>> e f i l e = pcap . pcap ( ” e therp ing . out ” )
3 >>> e f i l e . da ta l i nk ( )
4 1
5 >>> e f i l e . da ta l i nk ( ) == pcap .DLT EN10MB
6 True
7 >>> l f i l e = pcap . pcap ( ” loopping . out ” )
8 >>> l f i l e . da ta l i nk ( )
9 0

10 >>> l f i l e . da ta l i nk ( ) == pcap .DLT NULL
11 True
12 >>> l f i l e . da ta l i nk ( ) == pcap .DLT EN10MB
13 Fal se
14 >>>

Figure 14: Determining the Bottom Layer

1 >>> e f i l e . d l o f f
2 14
3 >>> l f i l e . d l o f f
4 4
5 >>>

Figure 15: Finding the Datalink Offset

etherping.out is a tcpdump file that contains data collected on an Ether-
net interface, type DLT EN10 and the second, loopping.out was collected
from the loopback interface and so contains no Layer 2 packet information.

Not only do we need to know the type of the lowest layer packets but we
also need to know the next layer’s offset so that we can find the end of the
datalink packet and the beginning of the network packet. The dloff field
of the pcap class gives the data link offset. Figure15 continues the example
shown in Figure14 and shows that the Ethernet file has a datalink offset of
14 bytes, and the loopback file 4.

It is in the loopback case that the number is most important. Most net-
work programmers remember that Ethernet headers are 14 bytes in length,
but the 4 byte offset for loopback may seem confusing, and if forgotten
any programs run on data collected on a loopback interface will appear as
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1 >>> ip = ipv4 ( packet [ e f i l e . d l o f f : len ( packet ) ] )
2 >>> print ip
3 ve r s i on 4
4 hlen 5
5 tos 0
6 l ength 84
7 id 34963
8 f l a g s 0
9 o f f s e t 0

10 t t l 64
11 p ro to co l 1
12 checksum 58688
13 s r c 192 . 168 . 101 . 166
14 dst 169 . 229 . 60 . 161

Figure 16: Reading in a Packet

garbage.
With all this background we can now read a packet and examine it.

Figure 16 shows what happens when we create a packet from a data file.
In this example we pre-suppose that the packet is an IPv4 packet but

that is not actually necessary. We can start from the lowest layer, which
in this case is Ethernet, because the capture file knows the link layer of the
data. Packets are fully decoded as much as possible when they are read.

PCS is able to do this via a special method, called next and a field called
data. Every PCS class has a next method which attempts to figure out
the next higher layer protocol if there is any data in a packet beyond the
header. If the packet’s data can be understand and a higher layer packet
class is found the next creates a packet object of the appropriate type and
sets the data field to point to the packet. This process is recursive, going
up the protocol layers until all remaining packet data or higher layers are
exhausted. In Figure17 we see an example of an Ethernet packet which
contains an IPv4 packet which contains an ICMPv4 packet all connected
via their respective data fields.

6 Storing Packets

This section intentionally left blank.
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1 >>> from pcs . packets . e the rne t import e the rne t
2 >>> e the rne t = ethe rne t ( packet [ 0 : len ( packet ) ] )
3 >>> e the rne t . data
4 <Packet : h len : 5 , p ro to co l : 1 , s r c : 3232261542L , to s : 0 , dst : 2850372769L , t t l : 64 , l ength : 84 , v e r s i on : 4 , f l a g s : 0 , o f f s e t : 0 , checksum : 58688 , id : 34963>
5 >>> ip = ethe rne t . data
6 >>> print e the rne t
7 s r c : 0 : 1 0 : db : 3 a : 3 a :77
8 dst : 0 : d : 9 3 : 4 4 : f a : 62
9 type : 0x800

10 >>> print ip
11 ve r s i on 4
12 hlen 5
13 tos 0
14 l ength 84
15 id 34963
16 f l a g s 0
17 o f f s e t 0
18 t t l 64
19 p ro to co l 1
20 checksum 58688
21 s r c 192 . 168 . 101 . 166
22 dst 169 . 229 . 60 . 161

Figure 17: Packet Decapsulation on Read
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1 import pcs
2
3 from socke t import ∗
4
5 def main ( ) :
6
7 conn = pcs . TCP4Connector ( ” 1 2 7 . 0 . 0 . 1 ” , 80)
8 conn . wr i t e ( ”GET / \n” )
9 r e s u l t = conn . read (1024)

10
11 print r e s u l t
12
13 main ( )

Figure 18: HTTP Get Script

Need to update pcap module to include support for true dump files.

7 Sending Packets

In PCS packets are received and transmitted (see 7 using Connectors.
A Connector is an abstraction that can contain a traditional network
socket, or a file descriptor which points to a protocol filter such as BPF. For
completely arbitrary reasons we will discuss packet transmission first.

In order to send a packet we must first have a connector of some type
on which to send it. A trivial example is the http get.py script which
uses a TCP4Connector to contact a web server, execute a simple GET
command, and print the results.

Although everything that is done in the http get script could be done
far better with Python’s native HTTP classes the script does show how easy
it is to set up a connector.

For the purposes of protocol development and testing it is more interest-
ing to look at the PcapConnector class, which is used to read and write
raw packets to the network. Figure 19 shows a section of the icmpv4test

test script which transmits an ICMPv4 echo, aka ping, packet.
1

1Note that on most operating system you need root privileges in use the PcapCon-
nector class.
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1 def t e s t i cmpv4 p ing ( s e l f ) :
2 ip = ipv4 ( )
3 ip . v e r s i o n = 4
4 ip . h len = 5
5 ip . to s = 0
6 ip . l ength = 84
7 ip . id = 1
8 ip . f l a g s = 0
9 ip . o f f s e t = 0

10 ip . t t l = 33
11 ip . p ro to co l = IPPROTO ICMP
12 ip . s r c = 2130706433
13 ip . dst = 2130706433
14
15 icmp = icmpv4 ( )
16 icmp . type = 8
17 icmp . code = 0
18 icmp . cksum = 0
19
20 echo = icmpv4echo ( )
21 echo . id = 32767
22 echo . seq = 1
23
24 l o = l o c a l h o s t ( )
25 l o . type = 2
26 packet = Chain ( [ lo , ip , icmp , echo ] )
27
28 icmp packet = Chain ( [ icmp , echo ] )
29 icmp . checksum = icmp packet . ca lc checksum ( )
30
31 packet . encode ( )
32
33 input = PcapConnector ( ” l o0 ” )
34 input . s e t f i l t e r ( ”icmp” )
35
36 output = PcapConnector ( ” l o0 ” )
37 out = output . wr i t e ( packet . bytes , 88)

Figure 19: Transmitting a Raw Ping Packet
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1 import pcs
2 from pcs . packets . e the rne t import e the rne t
3
4 def main ( ) :
5
6 from optparse import OptionParser
7
8 par s e r = OptionParser ( )
9 par s e r . add opt ion ( ”− i ” , ”−− i n t e r f a c e ” ,

10 des t=” i n t e r f a c e ” , d e f a u l t=None ,
11 help=”Which i n t e r f a c e to s n a r f from . ” )
12
13 ( opt ions , args ) = par se r . p a r s e a r g s ( )
14
15 s n a r f = pcs . PcapConnector ( opt ions . i n t e r f a c e )
16
17 while 1 :
18 packet = ethe rne t ( s n a r f . read ( ) )
19 print packet
20 print packet . data
21
22 main ( )

Figure 20: Packet Snarfing Program

The test icmpv4 ping function contains a good deal of code but we are
only concerned with the last two lines at the moment. The next to the last
line opens a raw pcap socket on the localhost, lo0, interface which allows us
to write packets directly to that interface. The last line writes a packet to
the interface. We will come back to this example again in section 9.

8 Receiving Packets

In order to receive packets we again use the Connector classes. Figure 20
shows the simplest possible packet sniffer program that you may ever see.

The snarf.py reads from a selected network interface, which in this case
must be an Ethernet interface, and prints out all the Ethernet packets and
any upper level packets that PCS knows about. It is this second point that
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should be emphasized. Any packet implemented in PCS which has an upper
layer protocol can, and should, implement a next method which correctly
fills in the packet’s data field with the upper level protocol. In this case the
upper layer protocols are likely to be either ARP, IPv4 or IPv6, but there
are others that are possible.

9 Chains

We first saw a the Chain class in Figure 19 and we’ll continue to refer
to that figure here. Chains are used to connect several packets together,
which allows use to put any packet on top of any other. Want to transmit
an Ethernet packet on top of ICMPv4? No problem, just put the Ethernet
packet after the ICMPv4 packet in the chain. Apart from creating arbitrary
layering, Chains allow you to put together better known set of packets. In
order to create a valid ICMPv4 echo packet we need to have a IPv4 packet
as well as the proper framing for the localhost interface. When using pcap

directly even the localhost interface has some necessary framing to indicate
what type of packet is being transmitted over it.

The packet we’re to transmit is set up as a Chain that contains four other
packets: localhost, IPv4, ICMPv4, and Echo. Once the chain is created it
need not be static, as in this example, as changes to any of the packets it
contains will be reflected in the chain. In order to update the actual bytes
the caller has to remember to invoke the encode method after any changes
to the packets the chain contains. 2

Chains can also calculate RFC 792 style checksums, such as those used
for ICMPv4 messages. The checksum feature was used in Figure 19. Because
it is common to have to calculate checksums over packets it made sense to
put this functionality into the Chain class.

10 Displaying Packets

To be done, to be done...

2This may be fixed in a future version to make Chains more automatic.
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