
PySparse - A sparse linear algebra extension for
Python

Roman Geus

January 4, 2007

This document is a portion of a draft of my PhD thesis. Unfortunately the document
contains unresolved references to other parts of my thesis, which are printed as double
question marks. Nevertheless the document could be useful as a reference for the
PySparse package.

0.1 The PySparse package
The PySparse package extends the Python interpreter by a set of sparse matrix types.
PySparse also includes modules that implement

• iterative methods for solving linear systems of equations,

• a set of standard preconditioners,

• an interface to a direct solver for sparse linear systems of equations,

• and the JDSYM eigensolver.

All these modules are implemented as C extension modules for maximum performance.
In the following sections all modules of PySparse are described in detail.

0.1.1 The spmatrix module

The spmatrix module is the foundation of the PySparse package. It extends the Python
interpreter by three new types named ll mat, csr mat and sss mat. These types repre-
sent sparse matrices in the LL-, the CSR- and SSS-formats respectively (cf. Appendix
??). For all three formats, double precision values (C type double) are used to repre-
sent the non-zero entries.

The common way to use the spmatrix module is to first build a matrix in the LL-
format. The LL-matrix is manipulated until it has its final shape and content. After-
wards it may be converted to either the CSR- or SSS-format, which needs less memory
and allows for fast matrix-vector multiplications.

A ll mat object can be created from scratch, by reading data from a file (in Matrix-
Market format) or as a result of matrix operation (as e.g. a matrix-matrix multiplica-
tion). The ll mat object supports manipulating (reading, writing, add-updating) single
entries or sub-matrices.

csr mat and sss mat are not constructed directly, instead they are created by con-
verting ll mat objects. Once created, csr mat and sss mat objects cannot be manipu-
lated. Their purpose is to support efficient matrix-vector multiplications.

1

spmatrix module functions

ll mat(n, m, sizeHint=1000) Creates a ll mat object, that represents a general, all
zero m× n matrix. The optional sizeHint parameter specifies the number of non-zero
entries for which space is allocated initially.

If the total number of non-zero elements of the final matrix is known (approxi-
mately), this number can be passed as sizeHint. This will avoid costly memory reallo-
cations.

ll mat sym(n, sizeHint=1000) Creates a ll mat object, that represents a symmet-
ric, all zero n× n matrix. The optional sizeHint parameter specifies, how much space
is initially allocated for the matrix.

ll mat from mtx(fileName) Creates a ll mat object from a file named fileName,
which must be in MatrixMarket Coordinate format as described at http://math.
nist.gov/MatrixMarket/formats.html. Depending on the file content, ei-
ther a symmetric or a general sparse matrix is generated.

matrixmultiply(A, B) computes the matrix-matrix multiplication

C := AB

and returns the result C as a new ll mat object representing a general sparse matrix.
The parameters A and B are expected to be objects of type ll mat.

dot(A, B) computes the “dot-product”

C := AT B

and returns the result C as a new ll mat object representing a general sparse matrix.
The parameters A and B are expected to be objects of type ll mat.

ll mat objects ll mat objects represent matrices stored in the LL format, which are
described in Appendix ??. ll mat objects come in two flavours: general matrices and
symmetric matrices. For symmetric matrices only the non-zero entries in the lower
triangle are stored. Write operations to the strictly upper triangle are prohibited for the
symmetric format. The issym attribute of an ll mat object can be queried to find out
whether or not the symmetric storage format is used.

The entries of a matrix can be accessed conveniently using two-dimensional array
indices1. Following Python conventions, indices start with 0 and wrap around (so -1 is
equivalent to the last index).

The following code creates an empty 5×5 matrix A, sets all diagonal elements to
their respective row/column index and then copies the value of A[0,0] to A[2,1].

1The standard Python language does not know multidimensional indices. However, thanks to Python’s
clever design, its easy to provide multidimensional indices for extension types, without any dirty hacks.

In the Python language, subscripts can be of any type (as it is customary for dictionaries). A two-
dimensional index can be regarded as a 2-tuple (the brackets do not have to be written, so A[1,2] is
the same as A[(1,2)]). If both tuple elements are integers, then a single matrix element is referenced. If
at least one of the tuple elements is a slice (which is also a Python object), then a submatrix is referenced.

Subscripts have to be decoded at runtime. This task includes type checks, extraction of indices from the
2-tuple, parsing of slice objects and index bound checks.

2

>>> from pysparse import spmatrix
>>> A = spmatrix.ll_mat(5, 5)
>>> for i in range(5):
... A[i,i] = i+1
>>> A[2,1] = A[0,0]
>>> print A
ll_mat(general, [5,5], [(0,0): 1, (1,1): 2, (2,1): 1,
(2,2): 3, (3,3): 4, (4,4): 5])

The Python slice notation can be used to conveniently access sub-matrices.

>>> print A[:2,:] # the first two rows
ll_mat(general, [2,5], [(0,0): 1, (1,1): 2])
>>> print A[:,2:5] # columns 2 to 4
ll_mat(general, [5,3], [(2,0): 3, (3,1): 4, (4,2): 5])
>>> print A[1:3,2:5] # submatrix

starting at row 1 col 2,
ending at row 2 col 4

ll_mat(general, [2,3], [(1,0): 3])

The slice operator always returns a new ll mat object, containing a copy of the selected
submatrix.

Write operations to slices are also possible:
>>> B = ll_mat(2, 2) # create 2-by-2
>>> B[0,0] = -1; B[1,1] = -1 # diagonal matrix
>>> A[:2,:2] = B # assign it to upper
>>> # diagonal block of A
>>> print A
ll_mat(general, [5,5], [(0,0): -1, (1,1): -1, (2,1): 1,
(2,2): 3, (3,3): 4, (4,4): 5])

ll mat object attributes

A.shape Returns a 2-tuple containing the shape of the matrix A, i.e. the number
of rows and columns.

A.nnz Returns the number of non-zero entries stored in matrix A. If A is stored
in the symmetric format, only the number of non-zero entries in the lower triangle
(including the diagonal) are returned.

A.issym Returns true (a non-zero integer) if matrix A is stored in the symmetric
LL format, i.e. only the non-zero entries in the lower triangle are stored. Returns false
(zero) if matrix A is stored in the general LL format.

ll mat object methods

A.to csr() Returns a newly allocated csr mat object, which results from convert-
ing matrix A.

A.to sss() Returns a newly allocated sss mat object, which results from convert-
ing matrix A. This function works for ll mat objects in both the symmetric and the
general format. If A is stored in the general format, only the entries in the lower trian-
gle are used for the conversion. No check, whether A is symmetric, is performed.

3

A.export mtx(fileName, precision=6) Exports the matrix A to file named file-
Name. The matrix is stored in MatrixMarket Coordinate format as described at http:
//math.nist.gov/MatrixMarket/formats.html. Depending on the prop-
erties of ll mat object A the generated file either uses the symmetric or a general Ma-
trixMarket Coordinate format. The optional parameter precision specifies the number
of decimal digits that are used to express the non-zero entries in the output file.

A.shift(sigma, M) Performs a daxpy-like operation on matrix A,

A← A + σM .

The parameter σ is expected to be a Python Float object. The parameter M is expected
to an object of type ll mat.

A.copy() Returns a new ll mat object, that represents a copy of the ll mat object
A. So,

>>> B = A.copy()

is equivalent to

>>> B = A[:,:]

On the other hand

>>> B = A.copy()

is not the same as

>>> B = A

The latter version only returns a reference to the same object and assigns it to B. Sub-
sequent changes to A will therefore also be visible in B.

A.update add mask(B, ind0, ind1, mask0, mask1) This method is provided for
efficiently assembling global finite element matrices. The method adds the matrix B
to entries of matrix A. The indices of the entries to be updated are specified by ind0
and ind1. The individual updates are enabled or disabled using the mask0 and mask1
arrays.

The operation is equivalent to the following Python code:

for i in range(len(ind0)):
for j in range(len(ind1)):

if mask0[i] and mask1[j]:
A[ind0[i],ind1[j]] += B[i,j]

All five parameters are NumPy arrays. B is an array of rank two. The four remaining
parameters are rank-1 arrays. Their length corresponds to either the number of rows or
the number of columns of B.

This method is not supported for ll mat objects of symmetric type, since it would
generally result in an non-symmetric matrix. update add mask sym must be used in
that case. Attempting to call this method using a ll mat object of symmetric type will
raise an exception.

4

A.update add mask sym(B, ind, mask) This method is provided for efficiently
assembling symmetric global finite element matrices. The method adds the matrix B
to entries of matrix A. The indices of the entries to be updated are specified by ind.
The individual updates are enabled or disabled using the mask array.

The operation is equivalent to the following Python code:

for i in range(len(ind)):
for j in range(len(ind)):

if mask[i]:
A[ind[i],ind[j]] += B[i,j]

The three parameters are all NumPy arrays. B is an array of rank two representing a
square matrix. The four remaining parameters are rank-1 arrays. Their length corre-
sponds to the order of matrix B.

csr mat and sss mat objects csr mat objects represent matrices stored in the CSR
format, which are described in Appendix ??. sss mat objects represent matrices stored
in the SSS format (c.f. Appendix ??). The only way to create a csr mat or a sss mat
object is by conversion of a ll mat object using the to csr() or the to sss() method
respectively. The purpose of the csr mat and the to sss() objects is to provide fast
matrix-vector multiplications for sparse matrices. In addition, a matrix stored in the
CSR or SSS format uses less memory than the same matrix stored in the LL format,
since the link array is not needed.

csr mat and sss mat objects do not support two-dimensional indices to access ma-
trix entries or sub-matrices. Again, their purpose is to provide fast matrix-vector mul-
tiplication.

csr mat and sss mat object attributes

A.shape Returns a 2-tuple containing the shape of the matrix A, i.e. the number
of rows and columns.

A.nnz Returns the number of non-zero entries stored in matrix A. If A is an
sss mat object, the non-zero entries in the strictly upper triangle are not counted.

csr mat and sss mat object methods

A.matvec(x, y) Computes the sparse matrix-vector product

y← Ax.

x and y are two double precision, rank-1 NumPy arrays of appropriate size.

A.matvec transp(x, y) Computes the transposed sparse matrix-vector product

y← AT x.

x and y are two double precision, rank-1 NumPy arrays of appropriate size. For sss mat
objects matvec transp is equivalent to matvec.

5

Example: 2D-Poisson matrix This section illustrates the use of the spmatrix module
to build the well known 2D-Poisson matrix resulting from a n× n square grid.

def poisson2d(n):
L = spmatrix.ll_mat(n*n, n*n)
for i in range(n):

for j in range(n):
k = i + n*j
L[k,k] = 4
if i > 0:

L[k,k-1] = -1
if i < n-1:

L[k,k+1] = -1
if j > 0:

L[k,k-n] = -1
if j < n-1:

L[k,k+n] = -1
return L

Using the symmetric variant of the ll mat object, this gets even shorter.

def poisson2d_sym(n):
L = spmatrix.ll_mat_sym(n*n)
for i in range(n):

for j in range(n):
k = i + n*j
L[k,k] = 4
if i > 0:

L[k,k-1] = -1
if j > 0:

L[k,k-n] = -1
return L

To illustrate the use of the slice notation to address sub-matrices, let’s build the 2D
Poisson matrix using the diagonal and off-diagonal blocks.

def poisson2d_sym_blk(n):
L = spmatrix.ll_mat_sym(n*n)
I = spmatrix.ll_mat_sym(n)
P = spmatrix.ll_mat_sym(n)
for i in range(n):

I[i,i] = -1
for i in range(n):

P[i,i] = 4
if i > 0: P[i,i-1] = -1

for i in range(0, n*n, n):
L[i:i+n,i:i+n] = P
if i > 0: L[i:i+n,i-n:i] = I

return L

Performance comparison with Matlab Let’s compare the performance of three
python codes above with the following Matlab functions:

The Matlab function poisson2d is equivalent to the Python function with the
same name

6

Function n = 100 n = 300 n = 500 n = 1000

Python poisson2d 0.44 4.11 11.34 45.50
Python poisson2d sym 0.26 2.34 6.55 26.33
Python poisson2d sym blk 0.03 0.21 0.62 2.22
Matlab poisson2d 28.19 3464.9 38859 ∞
Matlab poisson2d blk 6.85 309.20 1912.1 ∞
Matlab poisson2d kron 0.21 2.05 6.23 29.96

Table 1: Performance comparison of Python and Matlab functions to generate the 2D
Poisson matrix
The execution times are given in seconds. Matlab version 6.0 Release 12 was used for these
timings.

function L = poisson2d(n)
L = sparse(n*n);
for i = 1:n
for j = 1:n
k = i + n*(j-1);
L(k,k) = 4;
if i > 1, L(k,k-1) = -1; end
if i < n, L(k,k+1) = -1; end
if j > 1, L(k,k-n) = -1; end
if j < n, L(k,k+n) = -1; end

end
end

The function poisson2d blk is an adaption of the Python function
poisson2d sym blk (except for exploiting the symmetry, which is not directly sup-
ported in Matlab).

function L = poisson2d_blk(n)
e = ones(n,1);
P = spdiags([-e 4*e -e], [-1 0 1], n, n);
I = -speye(n);
L = sparse(n*n);
for i = 1:n:n*n
L(i:i+n-1,i:i+n-1) = P;
if i > 1, L(i:i+n-1,i-n:i-1) = I; end
if i < n*n - n, L(i:i+n-1,i+n:i+2*n-1) = I; end

end

The function poisson2d kron demonstrates one of the most efficient ways to gen-
erate the 2D Poisson matrix in Matlab.

function L = poisson2d_kron(n)
e = ones(n,1);
P = spdiags([-e 2*e -e], [-1 0 1], n, n);
L = kron(P, speye(n)) + kron(speye(n), P);

The execution times reported in Tab. 1 clearly show, that the Python implementation
is superior to the Matlab implementation. If the fastest versions are compared for both
languages, Python is approximately 10 times faster. Comparing the straight forward
poisson2d versions, one is struck by the result that, the Matlab function is incredibly
slow. The Python version is more then three orders of magnitude faster! This result
really raises the doubt, whether Matlab’s sparse matrix format is appropriately chosen.

7

The performance difference between Python’s poisson2d sym and
poisson2d sym blk indicates, that a lot of time is spent parsing indices.

0.1.2 The precon module

The precon module provides preconditioners, which can be used e.g. for the iterative
methods implemented in the in the itsolvers module or the JDSYM eigensolver (in the
jdsym module).

In the PySparse framework, any Python object that has the following properties can
be used as a preconditioner:

• a shape attribute, which returns a 2-tuple describing the dimension of the pre-
conditioner,

• and a precon method, that accepts two vectors x and y, and applies the precondi-
tioner to x and stores the result in y. Both x and y are double precision, rank-1
NumPy arrays of appropriate size.

The precon module implements two new object types jacobi and ssor, representing
Jacobi and the SSOR preconditioners as described in Sections ?? and ??.

precon module functions

jacobi(A, omega=1.0, steps=1) Creates a jacobi object, representing the Jacobi
preconditioner. The parameter A is the system matrix used for the Jacobi iteration. The
matrix needs to be subscriptable using two-dimensional indices, so e.g. an ll mat object
would work. The optional parameter ω, which defaults to 1.0, is the weight parameter
as described in Section ??. The optional steps parameter (defaults to 1) specifies the
number of iteration steps.

ssor(A, omega=1.0, steps=1) Creates a ssor object, representing the SSOR pre-
conditioner. The parameter A is the system matrix used for the SSOR iteration. The
matrix A has to be an object of type sss mat. The optional parameter ω, which de-
faults to 1.0, is the relaxation parameter as described in Section ??. The optional steps
parameter (defaults to 1) specifies the number of iteration steps.

jacobi and ssor objects Both jacobi and ssor objects provide the shape attribute and
the precon method, that every preconditioner object in the PySparse framework must
implement. Apart from that, there is nothing noteworthy to say about these objects.

Example: diagonal preconditioner The diagonal preconditioner is just a special
case of the Jacobi preconditioner, with ω = 1.0 and steps = 1, which happen to be the
default values of these parameters.

It is however easy to implement the diagonal preconditioner using a Python class:

8

class diag_prec:
def __init__(self, A):

self.shape = A.shape
n = self.shape[0]
self.dinv = numpy.zeros(n, ’d’)
for i in xrange(n):

self.dinv[i] = 1.0 / A[i,i]
def precon(self, x, y):

numpy.multiply(x, self.dinv, y)

So,

>>> D1 = precon.jacobi(A, 1.0, 1)

and

>>> D2 = diag_prec(A)

yield functionally equivalent preconditioners. D1 is probably faster than D2, because
it is fully implemented in C.

0.1.3 The itsolvers module

The itsolvers module provides a set of iterative methods for solving linear systems of
equations.

The iterative methods are callable like ordinary Python functions. All these func-
tions expect the same parameter list, and all function return values also follow a com-
mon standard.

Any user-defined iterative solvers should also follow these conventions, since other
PySparse modules rely on them (e.g. the jdsym module)

Parameter list Let’s illustrate the calling conventions, using the PCG method defined
as info, iter, relres = pcg(A, b, x, tol, maxit, K).

A The parameter A represents the coefficient matrix of the linear system of
equations. A must provide the shape attribute and the matvec and matvec transp
methods for multiplying with a vector.

b The parameter b, representing the right-hand-side of the linear system, is a
rank-1 NumPy array.

x The parameter x is also a rank-1 NumPy array. On input, x holds the initial
guess. On output, x holds the approximate solution of the linear system.

tol The tol parameter is a float value representing the requested error tolerance.
The exact meaning of this parameter depends on the actual iterative solver.

maxit The maxit parameter is an integer that specifies the maximum number of
iterations to be executed.

K The optional K parameter represents a preconditioner object that supplies
the shape attribute and the precon method.

The iterative solvers may accept additional parameters, which are passed as keyword
arguments.

9

Return value All iterative solvers return a tuple with three elements (info, iter, rel-
res):

info is an integer that contains the exit status of the iterative solver. info has one
of the following values

2 iteration converged, residual is as small as seems reasonable on this
machine.

1 iteration converged, b = 0, so the exact solution is x = 0.

0 iteration converged, relative error appears to be less than tol.

-1 iteration not converged, maximum number of iterations was reached.

-2 iteration not converged, the system involving the preconditioner was
ill-conditioned.

-3 iteration not converged, an inner product of the form xT K−1x was not
positive, so the preconditioning matrix K does not appear to be positive
definite.

-4 iteration not converged, the matrix A appears to be very ill-conditioned

-5 iteration not converged, the method stagnated

-6 iteration not converged, a scalar quantity became too small or too large
to continue computing

So, info >= 0 indicates, that x holds an acceptable solution, and info < 0
indicates an error condition.

Note that not all iterative solvers check for all above error conditions.

iter holds the of iterations performed.

relres holds relative error of the solution computed by the iterative method. What
this actually is, depends on the actual iterative method used.

precon module functions The module functions defined in the precon module im-
plement various iterative methods (PCG, MINRES, QMRS and CGS, cf. Section ??).
The parameters and return values conform to the conventions described above.

pcg(A, b, x, tol, maxit, K) The pcg function implements the Preconditioned Con-
jugate Gradients method.

minres(A, b, x, tol, maxit, K) The minres function implements the MINRES
method.

qmrs(A, b, x, tol, maxit, K) The qmrs function implements the QMRS method.

cgs(A, b, x, tol, maxit, K) The min function implements the CGS method.

10

Example: Solving the poisson system Let’s solve the Poisson system

Lx = 1, (1)

using the PCG method. L is the 2D Poisson matrix, introduced in Section 0.1.1 and 1
is a vector with all entries equal to one.
The Python solution for this task looks as follows:

from pysparse import spmatrix, precon, itsolvers
import numpy
n = 300
L = poisson2d_sym_blk(n)
b = numpy.ones(n*n, ’d’)
x = numpy.zeros(n*n, ’d’)
info, iter, relres = itsolvers.pcg(L.to_sss(), b, x, 1e-12, 2000)

The code makes use of the Python function poisson2d sym blk, which was de-
fined in Section 0.1.1.
Incorporating e.g. a SSOR preconditioner is straight-forward:

from pysparse import spmatrix, precon, itsolvers
import numpy
n = 300
L = poisson2d_sym_blk(n)
b = numpy.ones(n*n, ’d’)
x = numpy.zeros(n*n, ’d’)
S = L.to_sss()
Kssor = precon.ssor(S)
info, iter, relres = itsolvers.pcg(S, b, x, 1e-12, 2000, Kssor)

The Matlab solution (without preconditioner) may look as follows:
n = 300;
L = poisson2d_kron(n);
[x,flag,relres,iter] = pcg(L, ones(n*n,1), 1e-12, 2000, ...

[], [], zeros(n*n,1));

Performance comparison with Matlab and native C To evaluate the perfor-
mance of the Python implementation we solve the 2D Poisson system (1) using the
PCG method. The Python timings are compared with results of a Matlab and a native
C implementation.

The native C and the Python implementation use the same core algorithms for PCG
method and the matrix-vector multiplication. On the other hand, C reads the matrix
from an external file instead of building it on the fly. In contrast to the Python im-
plementation, the native C version does not suffer from the overhead generated by the
runtime argument parsing and calling overhead.

Tab. 2 shows the execution times for the Python, the Matlab and the native C imple-
mentation for solving the linear system (1). Matlab is not only slower when building
the matrix, also the matrix-vector multiplication seems to be implemented inefficiently.
Considering tsolv, the performance of Python and native C is comparable. The Python
overhead is under 4% for this case.

0.1.4 The jdsym module

The jdsym module provides an implementation of the JDSYM algorithm (cf. Algo-
rithm ??), that is conveniently callable from Python. The module exports a single
function called jdsym.

11

Function Size tconstr tsolv ttot

Python n = 100 0.03 1.12 1.15
n = 300 0.21 49.65 49.86
n = 500 0.62 299.39 300.01

native C n = 100 0.30 0.96 1.26
n = 300 3.14 48.38 51.52
n = 500 10.86 288.67 299.53

Matlab n = 100 0.21 8.85 9.06
n = 300 2.05 387.26 389.31
n = 500 6.23 1905.67 1911.8

Table 2: Performance comparison of Python, Matlab and native C implementations to
solve the linear system (1) without preconditioning
The execution times are given in seconds. tconstr is the time for constructing the matrix (or reading
it from a file in the case of native C). tsolv is the time spent in the PCG solver. ttot is the sum of
tconstr and tsolv. Matlab version 6.0 Release 12 was used for these timings.

jdsym(A, M, K, kmax, tau, jdtol, itmax, linsolver, **keywords) Invokes the JDSYM
eigenvalue solver (cf. Section ??). JDSYM computes eigenpairs of a generalised ma-
trix eigenvalue problem of the form

Ax = λMx (2)

or a standard eigenvalue problem of the form

Ax = λx, (3)

where A is symmetric and M is symmetric positive-definite.

Arguments The jdsym function has seven mandatory arguments

A This parameter represents the matrix A in (2) or (3). A must provide the
shape attribute and the matvec and matvec transp methods.

M This parameter represents the matrix M in (2). M must provide the shape
attribute and the matvec and matvec transp methods. If the standard eigen-
value problem (3) is to be solved, the None value can be passed for this
parameter.

K The K parameter represents a preconditioner object that supplies the shape
attribute and the precon method. If no preconditioner is to used, then the
None value can be passed for this parameter.

kmax is an integer that specifies the number of eigenpairs to be computed.

tau is a float value that specifies the target value τ . Eigenvalues in the vicinity of
τ will be computed.

jdtol is a float value that specifies the convergence tolerance for eigenpairs (λ,x).
The converged eigenpairs satisfy ‖Ax− λMx‖2 < jdtol.

itmax is an integer that specifies the maximum number of Jacobi-Davidson itera-
tions to undertake.

12

linsolver is a function that implements an iterative method for solving linear systems
of equations. The function linsolver is required to conform to the standards
mentioned in Section 0.1.3.

The remaining (optional) arguments are specified using keyword arguments:

jmax is an integer that specifies the maximum dimension of the search subspace.
(default: 25)

jmin is an integer that specifies dimension of the search subspace after a restart.
(default: 10)

blksize is an integer that specifies the block size used in the JDSYM algorithm. (de-
fault: 1)

blkwise is an integer that affects the convergence criterion if blksize > 1 (cf. Sec-
tion ??). (default: 0)

V0 is NumPy array of rank one or two. It specifies the initial search subspace.
(default: a randomly generated initial search subspace)

optype is an integer specifying the operator type used in the correction equation. If
optype = 1, the non-symmetric version is used. If optype = 2, the symmetric
version is used. See Section ?? for more information. (default: 2)

linitmax is an integer specifying the maximum number steps taken in the inner itera-
tion (iterative linear solver). (default: 200)

eps tr is a float value setting the tracking parameter εtr described in Section ??.
(default: 10−3)

toldecay is a float value, that influences the dynamic adaption of the stopping crite-
rion of the inner iteration. toldecay corresponds to the value γ in Section ??.
(default: 1.5)

clvl is an integer specifying the “verbosity” of the jdsym function. The higher
the clvl parameter, the more output is sent to the standard output. clvl = 0
produces no output. (default: 0)

strategy is an integer specifying shifting and sorting strategy of JDSYM. strategy = 0
enables the default JDSYM algorithm. strategy = 1 enables JDSYM to avoid
convergence to eigenvalues smaller than τ . (default: 0)

projector is used to keep the search subspace and the eigenvectors in a certain sub-
space. The parameter projector can actually be any Python object, that pro-
vides a shape attribute and a project method. The project method takes a
vector (a rank-1 NumPy array) as its sole argument and projects that vector
in-place. This parameter can be used to implement the DIRPROJ and SAUG
methods described in Sections ?? and ??. (Default: no projection)

Return value The jdsym module function returns a tuple with four elements
(kconv, lambda, Q, it):

kconv is an integer that indicates the number of converged eigenpairs.
lambda is a rank-1 NumPy array containing the converged eigenvalues.

Q is a rank-2 NumPy array containing the converged eigenvectors. The i-th
eigenvector is accessed by Q[:,i].

it is an integer indicating the number of Jacobi-Davidson steps (outer iteration
steps) performed.

13

Example: Maxwell problem The following code illustrates the use of the jdsym
module. Two matrices A and M are read from files. A Jacobi preconditioner from
A − τM is built. Then the JDSYM eigensolver is called, calculating 5 eigenvalues
near 25.0 and the associated eigenvalues to an accuracy of 10−10. We set strategy = 1
to avoid convergence to the high-dimensional null space of (A, M).

from pysparse import spmatrix, itsolvers, jdsym, precon

A = spmatrix.ll_mat_from_mtx(’edge6x3x5_A.mtx’)
M = spmatrix.ll_mat_from_mtx(’edge6x3x5_B.mtx’)
tau = 25.0

Atau = A.copy()
Atau.shift(-tau, M)
K = precon.jacobi(Atau)

A = A.to_sss(); M = M.to_sss()
k_conv, lmbd, Q, it = \

jdsym.jdsym(A, M, K, 5, tau, 1e-10, 150, itsolvers.qmrs,
jmin=5, jmax=10, clvl=1, strategy=1)

This code takes 33.71 seconds to compute the five wanted eigenpairs. A native C
version, using the same computational kernels, takes 35.64 for the same task. We
expected the Python version to be slower due to the overhead generated when calling
the matrix-vector multiplication and the preconditioner, but surprisingly the Python
code was even a bit faster.

0.1.5 The superlu module

The superlu module interfaces the SuperLU library to make it usable by Python code.
SuperLU is a software package written in C, that is able to compute a LU -factorisation
of a general non-symmetric, sparse matrix with partial pivoting.

The superlu module exports a single function, called factorize.

factorize(A, diag pivot thresh, drop tol, relax, panel size, permc spec) The fac-
torise module function computes a LU -factorisation of the matrix A. All but the first
parameter are optional and can be specified using keyword arguments.

A is a csr mat object that represents the matrix to be factorised.

diag pivot thresh is a float value in the interval [0, 1] representing the threshold for
partial pivoting. diag pivot thresh = 0 corresponds to no pivoting. diag pivot thresh =
1 corresponds to partial pivoting. (default: 1.0)

drop tol is a float value in the interval [0, 1] representing the drop tolerance parameter.
drop tol = 0 corresponds to the exact factorisation.
CAUTION: the drop tol has no effect in the current and all older SuperLU
releases (versions 2.0 and below). (default: 0.0)

relax is an integer that controls the degree of relaxing supernodes. (default: 1)

panel size is an integer specifying the maximum number of columns that form a
panel. (default: 10)

permc spec is an integer specifying the matrix ordering used for the factorisation:

14

0 natural ordering

1 MMD applied to the structure of AT A

2 MMD applied to the structure of AT + A

3 COLAMD, approximate minimum degree column ordering

(default: 2)

The factorize function returns an object of type superlu context. This object encap-
sulates the LU -factors computed during the factorisation.

superlu context object attributes

shape The shape attribute, returns a 2-tuple describing the dimension of the fac-
torised matrix A.

nnz The nnz attribute returns an integer holding the total number of non-zero
entries stored in both the L and the U factors.

superlu context object methods

solve(b, x, trans) The solve method accepts two rank-1 NumPy arrays b and x
of appropriate size and assigns the solution of the linear system

Ax = b

to x. If the optional parameter trans is set to ’T’, then the transposed system

AT x = b

is solved instead.

Example: 2D Poisson matrix Let’s now solve the 2D Poisson system

Lx = 1,

using a factorisation. L is the 2D Poisson matrix, introduced in Section 0.1.1 and 1 is
a vector with all one entries.
The Python solution for this task looks as follows:

from pysparse import spmatrix, superlu
import numpy
n = 100
L = poisson2d_sym_blk(n)
b = numpy.ones(n*n, ’d’)
x = numpy.zeros(n*n, ’d’)
LU = superlu.factorize(L.to_csr(), diag_pivot_thresh=0.0)
LU.solve(b, x)

The code makes use of the Python function poisson2d sym blk, which was de-
fined in Section 0.1.1.

15

