Home | Trees | Indices | Help |
|
---|
|
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
Imports: N, externals, debug, warning, weave, converters
|
Returns dinstance max(|a-b|) XXX There must be better name! Useful to select a whole cube of a given "radius" |
Caclulcate Mahalanobis distance of the pairs of points. Inverse covariance matrix can be calculated with the following w = N.linalg.solve(N.cov(x.T), N.identity(x.shape[1])) or w = N.linalg.inv(N.cov(x.T))
|
|
Weighted p-norm between two datasets (pure Python implementation) ||x - x'||_w = (sum_{i=1...N} (w_i*|x_i - x'_i|)**p)**(1/p)
|
Weighted p-norm between two datasets (pure Python implementation) ||x - x'||_w = (sum_{i=1...N} (w_i*|x_i - x'_i|)**p)**(1/p)
|
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Thu Apr 2 18:37:00 2009 | http://epydoc.sourceforge.net |