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CHAPTER
ONE

INTRODUCTION

PyMVPA is a Python module intended to ease pattern classification analysis of large datasets. It provides high-
level abstraction of typical processing steps and a number of implementations of some popular algorithms. While
it is not limited to neuroimaging data it is eminently suited for such datasets. PyMVPA is truly free software (in
every respect) and additionally requires nothing but free software to run. Theoretically PYMVPA should run on
anything that can run a Python interpreter, although the proof is yet to come.

PyMVPA stands for Multivariate Pattern Analysis in Python.

1.1 What this Manual is NOT

This manual does not make an attempt to be a comprehensive introduction into machine learning theory. There
is a wealth of high-quality text books about this field available. A very good example is: Pattern Recognition and
Machine Learning by Christopher M. Bishop.

A good starting point to learn about the application of machine learning algorithms to (f)MRI data are two recent
reviews by Norman et al. (2006) and Haynes and Rees (2006 ).

This manual also does not describe every technical bit and piece of the PyYMVPA package, but is instead focused on
the user perspective. Developers shoud have a look at the API documentation, which is a detailed, comprehensive
and up-to-date description of the whole package. Users looking for an overview of the public programming
interface of the framework are referred to the Module Reference. The Module Reference is similar to the API
reference, but hides overly technical information, which are only relevant for people intending to extend the
framework by adding more functionality.

More examples and usage patterns extending the ones described here can be taken from the examples shipped with
the PyMVPA source distribution (doc/examples/; some of them are also available in the Full Examples chapter of
this manual) or even the unit test battery, also part of the source distribution (in the fests/ directory).

1.2 A bit of History

The roots of PyYMVPA date back to early 2005. At that time it was a C++ library (no Python yet) developed
by Michael Hanke and Sebastian Kriiger, intended to make it easy to apply artificial neural networks to pattern
recognition problems.

During a visit to Princeton University in spring 2005, Michael Hanke was introduced to the MVPA toolbox for
Matlab, which had several advantages over a C++ library. Most importantly it was easier to use. While a user of
a C++ library is forced to write a significant amount of front-end code, users of the MVPA toolbox could simply
load their data and start analyzing it, providing a common interface to functions drawn from a variety of libraries.

However, there are some disadvantages when writing a toolbox in Matlab. While users in general benefit from the
powers of Matlab, they are at the same time bound to the goodwill of a commercial company. That this is indeed
a problem becomes obvious when one considers the time when the vendor of Matlab was not willing to support
the Mac platform. Therefore even if the MVPA toolbox is GPL-licensed it cannot fully benefit from the enormous
advantages of the free software development model environment (free as in free speech, not only free beer).



http://www.python.org
http://www.python.org
http://www.python.org
http://research.microsoft.com/~{}cmbishop/PRML
http://research.microsoft.com/~{}cmbishop/PRML
http://research.microsoft.com/~{}cmbishop/
http://www.python.org
http://www.princeton.edu
http://www.csbmb.princeton.edu/mvpa/
http://buchholz.hs-bremen.de/aes/aes_matlab.gif
http://www.gnu.org/copyleft/gpl.html
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For these reasons, Michael thought that a successor to the C++ library should remain truly free software, remain
fully object-oriented (in contrast to the MVPA toolbox), but should be at least as easy to use and extensible as the
MVPA toolbox.

After evaluating some possibilities Michael decided that Python is the most promising candidate that was fully
capable of fulfilling the intended development goal. Python is a very powerful language that magically combines
the possibility to write really fast code and a simplicity that allows one to learn the basic concepts within a few
days. One of the major advantages of Python is the availability of a huge amount of so called modules. Modules
can include extensions written in a hardcore language like C (or even FORTRAN) and therefore allow one to
incorporate high-performance code without having to leave the Python environment. Additionally some Python
modules even provide links to other toolkits. For example RPy allows to use the full functionality of R from inside
Python. Even Matlab can be used via some Python modules (see PyMatlab for an example).

After the decision for Python was made, Michael started development with a simple k-Nearest-Neighbour classi-
fier and a cross-validation class. Using the mighty NumPy package made it easy to support data of any dimension-
ality. Therefore PYMVPA can easily be used with 4d fMRI dataset, but equally well with EEG/MEG data (3d) or
even non-neuroimaging datasets. By September 2007 PyMVPA included support for reading and writing datasets
from and to the NIfTT format, kNN and Support Vector Machine classifiers, as well as several analysis algorithms
(e.g. searchlight and incremental feature search).

During another visit in Princeton in October 2007 Michael met with Yaroslav Halchenko and Per B. Sederberg.
That incident and the following discussions and hacking sessions of Michael and Yaroslav lead to a major refac-
toring of the PyMVPA codebase, making it much more flexible/extensible, faster and easier than it has ever been
before.

1.3 Authors & Contributors

The PyMVPA developers team currently consists of:

* Michael Hanke, University of Magdeburg, Germany
* Yaroslav O. Halchenko, Rutgers University Newark, USA
 Per B. Sederberg, Princeton University, USA

¢ Emanuele Olivetti, University of Trento, Italy

We are very grateful to the following people, who have contributed valueable advice, code or documentation to
PyMVPA:
¢ Greg Detre, Princeton University, USA

e James M. Hughes, Dartmouth College, USA

¢ Ingo Friind, University of Magdeburg, Germany

1.4 How to cite PyMVPA

Below is a list of all publications about PyMVPA that have been published so far (in chronological order). If you
use PyYMVPA in your research please cite the one that matches best.

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V. & Pollmann, S. (2008). PyMVPA: A
Python toolbox for classifier-based data analysis.
First presentation of PYMVPA at the conference Psychologie und Gehirn [Psychology and Brain], Magde-
burg, 2008. This poster received the poster prize of the German Society for Psychophysiology and its
Application.
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http://www.python.org
http://rpy.sourceforge.net/
http://www.r-project.org
http://code.google.com/p/pymatlab/
http://numpy.scipy.org/
http://nifti.nimh.nih.gov/
http://www.onerussian.com/
http://www.princeton.edu/~{}persed/
http://apsy.gse.uni-magdeburg.de/hanke
http://www.onerussian.com
http://www.princeton.edu/~{}persed/
http://sra.itc.it/people/olivetti/
http://www.princeton.edu/~{}gdetre/
http://www.cs.dartmouth.edu/~{}hughes/index.html
http://www-e.uni-magdeburg.de/fruend/
http://www.pymvpa.org/files/PyMVPA_PuG2008.pdf
http://www.pymvpa.org/files/PyMVPA_PuG2008.pdf
http://www.magdeburg.de/
http://www.magdeburg.de/
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Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V. & Pollmann, S. (in press). PyMVPA:
A Python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics.
First paper introducing fMRI data analysis with PyYMVPA.

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V. & Pollmann, S. (2008). PyMVPA: A
Python toolbox for machine-learning based data analysis.
Poster emphasizing PyMVPA’s capabilities concerning multi-modal data analysis at the annual meeting of
the Society for Neuroscience, Washington, 2008.

1.5 Acknowledgements
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facilities for mailing lists and source code repositories. But most of all for developing the universal operating
system.

1.5. Acknowledgements 5


http://www.pymvpa.org/files/PyMVPA_SfN2008.pdf
http://www.pymvpa.org/files/PyMVPA_SfN2008.pdf
http://numpy.scipy.org/
http://www.scipy.org/
http://ipython.scipy.org
http://www.csie.ntu.edu.tw/~{}cjlin/libsvm/
http://www.shogun-toolbox.org
http://www.debian.org

PyMVPA Manual, Release 0.4.0

6 Chapter 1. Introduction



CHAPTER
TWO

INSTALLATION

This section covers the necessary steps to install and run PyMVPA. It contains a comprehensive list of software
dependencies, as well as recommendation for additional software packages that further enhance the functionality
provided by PYMVPA.

2.1 Dependencies

PyMVPA is designed to be able to easily interface with various libraries and computing environments. However,
most of these external software packages only enhance functionality built into PyMVPA or add a different flavor
of some algorithm (e.g. yet another classifier). In fact, the framework itself has only two mandatory dependencies
(see below), which are known to be very portable. It is therefore possible to run PyMVPA on a wide variety of
platforms and operating systems, ranging from computing mainframes, to regular desktop machines. It even runs
on a cell phone.

This picture shows PyYMVPA on an OpenMoko cell phone — running the pylab_2d.py example in an [Python
session.



http://www.openmoko.com
http://ipython.scipy.org
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Note: In general a phone might not be the optimal environment for data analysis with PyYMVPA, but PyMVPA
itself does not restrict the user’s choice of the platform to the usual suspects. (A highres image is available, if you
want to double check. ;-)

2.1.1 Must Have

The following software packages are required or PyMVPA will not work at all.

Python 2.4 with ctypes 1.0.1 or a later Python 2.X release
With some modifications PYMVPA could probably work with Python 2.3, but as it is quite old
already and Python 2.4 is widely available there should be no need to do this.

NumPy
PyMVPA makes extensive use of NumPy to store and handle data. There is no way around it.

2.1.2 Strong Recommendations

While most parts of PyYMVPA will work without any additional software, some functionality makes use (or can
optionally make use) of external software packages. It is strongly recommended to install these packages as well,
if they are available on a particular target platform.

SciPy: linear algebra, standard distributions, signal processing, data 10
SciPy is mainly used by the statistical testing and the logistic regression classifier code. How-
ever, the SciPy package provides a lot of functionality that might be relevant in the context of
PyMVPA, e.g. 10 support for Matlab .mat files.

PyNIfTI (>=0.20081017.1): access to NIfTI files
PyMVPA provides a convenient wrapper for datasets stored in the NIfTI format, that internally
uses PyNIfTL. If you don’t need that, PyNIfTT is not necessary, but otherwise it makes it really
easy to read from and write to NIfTI images. All dataset types dealing with NIfTI data will not
be available without a functional PyNIfTI installation. Since PYMVPA 0.4.0 at least PyNIfTI
version 0.20081017.1 (or later) is required.

2.1.3 Suggestions

The following list of software is again not required by PyYMVPA, but these packages add additional functionality
(e.g. classifiers implemented in external libraries) and might make life a lot easier by leading to more efficiency
when using PyMVPA.

IPython: frontend
If you want to use PYMVPA interactively it is strongly recommend to use [Python. If you think:
“Oh no, not another one, I already have to learn about PyMVPA.” please invest a tiny bit of
time to watch the Five Minutes with [Python screencasts at showmedo.com, so at least you
know what you are missing. In the context of cluster computing [Python is also the way to go.

FSL: preprocessing and analysis of (f)MRI data
PyMVPA provides some simple bindings to FSL output and filetypes (e.g. EV files, estimated
motion correct parameters and MELODIC output directories). This makes it fairly easy to e.g.
use FSL’s implementation of ICA for data reduction and proceed with analyzing the estimated
ICs in PyMVPA.

AFNI: preprocessing and analysis of (f)MRI data
Similar to FSL, AFNI is a free package for processing (f)MRI data. Though its primary data file
format is BRIK files, it has the ability to read and write NIFTI files, which easily integrate with
PyMVPA.

8 Chapter 2. Installation


http://www.onerussian.com/php/album.php?page=Photos/Geek/20081015FR/\&image=img_1107.jpg
http://www.python.org
http://python.net/crew/theller/ctypes/
http://numpy.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://niftilib.sourceforge.net/pynifti/
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http://showmedo.com
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Shogun: various classifiers
PyMVPA currently can make use of several SVM implementations of the Shogun toolbox. It
requires the modular python interface of Shogun to be installed. Any version from 0.6 on should
work.

LIBSVM: fast SVM classifier

Only the C library is required and none of the Python bindings that are available on the upstream
website. PyMVPA provides its own Python wrapper for LIBSVM which is a fork based on the
one included in the LIBSVM package. Additionally the upstream LIBSVM distribution causes
flooding of the console with a huge amount of debugging messages. Please see the Building
from Source section for information on how to build an alternative version that does not have
this problem. Since version 0.2.2, PYMVPA contains a minimal copy of LIBSVM in its source
distribution.

R and RPy: more classifiers
Currently PYMVPA provides a wrapper around the LARS library.

matplotlib: Matlab-style plotting library for Python
This is a very powerful plotting library that allows you to export into a large variety of raster
and vector formats (e.g. SVG), and thus, is ideal to produce publication quality figures. The
examples shipped with PYMVPA show a number of possibilities how to use matplotlib for data
visualization.

hcluster: generating, visualizing, and analyzing hierarchical clusters
This module is a nice addition to SciPy and can be used to perform cluster analyses and plot
dendrograms of their results.

2.2 Installing Binary Packages

The easiest way to obtain PyMVPA is to use pre-built binary packages. Currently we provide such packages
or installers for the Debian/Ubuntu family, several RPM-based GNU/Linux distributions, MacOS X and 32-bit
Windows (see below). If there are no binary packages for your operating system or platform yet, you can build
PyMVPA from source. Please refer to Building from Source for more information.

2.2.1 Debian

PyMVPA is available as an official Debian package (python-mvpa; since lenny). The documentation is provided
by the optional python-mvpa-doc package. To install PyMVPA simply do:

sudo aptitude install python-mvpa

2.2.2 Debian backports and inofficial Ubuntu packages

Backports for the current Debian stable release and binary packages for recent Ubuntu releases are available from
a repository at the University of Magdeburg. Please read the package repository instructions to learn about how to
obtain them. Otherwise install as you would do with any other Debian package.

2.2.3 Windows

There are a few Python distributions for Windows. In theory all of them should work equally well. However, we
only tested the standard Python distribution from www.python.org (with version 2.5.2).

First you need to download and install Python. Use the Python installer for this job. Yo do not need to install the
Python test suite and utility scripts. From now on we will assume that Python was installed in C:\Python25 and
that this directory has been added to the PATH environment variable.

2.2. Installing Binary Packages 9


http://www.shogun-toolbox.org
http://www.shogun-toolbox.org
http://www.csie.ntu.edu.tw/~{}cjlin/libsvm/
http://www.r-project.org
http://rpy.sourceforge.net/
http://matplotlib.sourceforge.net/
http://code.google.com/p/scipy-cluster/
http://www.scipy.org/
http://packages.debian.org/python-mvpa
http://apsy.gse.uni-magdeburg.de
http://apsy.gse.uni-magdeburg.de/main/index.psp?sec=1\&page=hanke/debian\&lang=en
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For a minimal installation of PYMVPA the only thing you need in addition is NumPy. Download a matching
NumPy windows installer for your Python version (in this case 2.5) from the SciPy download page and install it.

Now, you can use the PYMVPA windows installer to install PYMVPA on your system. If done, verify that every-
thing went fine by opening a command promt and start Python by typing python and hit enter. Now you should
see the Python prompt. Import the mvpa module, which should cause no error messages.

>>> import mvpa
>>>

Although you have a working installation already, most likely you want to install some additional software. First
and foremost install SciPy — download from the same page where you also got the NumPy installer.

If you want to use PyMVPA to analyze fMRI datasets, you probably also want to install PyNIfTI. Download
the corresponding installer from the website of the NIfTT libraries and install it. PyNIfTI does not come with
the required z/ib library, so you also need to download and install it. A binary installer is available from the
GnuWin32 project. Install it in some arbitrary folder (just the binaries nothing else), find the zlib1.dll file in the
bin subdirectory and move it in the Windows system32 directory. Verify that it works by importing the nifti module
in Python.

>>> import nifti
>>>

Another piece of software you might want to install is matplotlib. The project website offers a binary installer for
Windows. If you are using the standard Python distribution and matplotlib complains about a missing msvep71.dll,
be sure to obey the installation instructions for Windows on the matplotlib website.

With this set of packages you should be able to run most of the PyMVPA examples which are shipped with the
source code in the doc/examples directory.

2.2.4 MacOS X

Similar to the situation on Windows, there are multiple Python distributions available for the Mac. A convenient
way to get PYMVPA running is to use the Enthought Python distribution, which is available free of charge for
academic use. The main advange of this distribution is, that it already includes NumPy, SciPy, matplotlib, and
IPython, hence only few additional software packages have to be installed manually. The procedure outlined here
has been tested with MacOS X 10.5 (Leopard). It may, however, also work on 10.4 (Tiger).

First download Enthought Python and install it as usual. Now you can download the PyYMVPA installer from the
project’s download area. It should be automatically decompressed after it has been downloaded (gzipped tar file).
Simply click the dowloaded file to start the installer and follow the instructions.

Upon success, open a terminal window and start Python by typing python and hit return. Now try to import the
PyMVPA module by doing:

>>> import mvpa
>>>

If no error messages appear, you have succesfully installed PyYMVPA.

2.2.5 RPM-based GNU/Linux Distributions

To install one of the RPM packages provided through the OpenSUSE Build Service, first download it from the
OpenSUSE software website.

Note: This site does not only offer OpenSUSE packages, but also binaries for other distributions, including:
CentOS 5, Fedora 9, Mandriva 2007-2008, RedHat Enterprise Linux 5, SUSE Linux Enterprise 10, OpenSUSE
10.2 up to 11.0.

Once downloaded, open a console and invoke (the example command refers to PyYMVPA 0.3.1):

10 Chapter 2. Installation


http://numpy.scipy.org/
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rpm -i python-mvpa-0.3.1-19.1.1386.rpm

The OpenSUSE website also offers 1-click-installations for distributions supporting it.

A more convenient way to install PYMVPA and automatically receive software updates is to included one of the
RPM-package repositories in the system’s package management configuration. For e.g. OpenSUSE 11.0, simply
use Yast to add another repository, using the following URL:

http://download.opensuse.org/repositories/home:/hankem/openSUSE_11.0/

For other distributions use the respective package managers (e.g. Yum) to setup the repository URL. The reposito-
ries include all core dependencies of PYMVPA (usually Numpy and PyNIfTI), if they are not available from other
repositories of the respective distribution.

2.3 Building from Source

If a binary package for your platform and operating system is provided, you do not have to build the packages on
your own — use the corresponding pre-build packages instead. However, if there are no binary packages for your
system, or you want to try a new (unreleased) version of PYMVPA, you can easily build PyYMVPA on your own.
Any recent linux distribution should be capable of doing it (e.g. RedHat). Additionally, building PyMVPA also
works on Mac OSX and Windows systems.

2.3.1 Three Ways to Obtain the Sources

The first step is obtaining the sources. The source code tarballs of all PyYMVPA releases are available from the
PyMVPA project website. Alternatively, one can also download a tarball of the latest development snapshot (i.e.
the current state of the master branch of the PYMVPA source code repository). If you want to have access to
both, the full PyMVPA history and the latest development code, you can use the PyMVPA Git repository, which
is publicly available. To view the repository, please point your web browser to gitweb:

http://git.debian.org/?p=pkg-exppsy/pymvpa.git

The gitweb browser also allows to download arbitrary development snapshots of PYMVPA. For a full clone (aka
checkout) of the PyMVPA repository simply do:

git clone git://git.debian.org/git/pkg-exppsy/pymvpa.git

After a short while you will have a pymvpa directory below your current working directory, that contains the
PyMVPA repository.

2.3.2 Build it (General instructions)

In general you can build PyYMVPA like any other Python module (using the Python distutils). This general method
will be outline first. However, in some situations or on some platforms alternative ways of building PyYMVPA
might be more convenient — alternative approaches are listed at the end of this section.

To build PyYMVPA from source simply enter the root of the source tree (obtained by either extracting the source
package or cloning the repository) and run:

python setup.py build_ext
If you are using a Python version older than 2.5, you need to have python-ctypes (>= 1.0.1) installed to be able to
do this.

Now, you are ready to install the package. Do this by invoking:

2.3. Building from Source 11
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python setup.py install

Most likely you need superuser privileges for this step. If you want to install in a non-standard location, please
take a look at the —prefix option. You also might want to consider —optimize.

Now you should be ready to use PyYMVPA on your system.

2.3.3 Build with enabled LIBSVM bindings

From the 0.2 release of PyYMVPA on, the LIBSVM classifier extension is not build by default anymore. However,
it is still shipped with PYMVPA and can be enabled at build time. To be able to do this you need to have SWIG
installed on your system.

PyMVPA needs a patched LIBSVM version, as the original distribution generates a huge amount of debugging
messages and therefore makes the console and PyMVPA output almost unusable. Debian (since lenny: 2.84.0-1)
and Ubuntu (since gutsy) already include the patched version. For all other systems a minimal copy of the patched
sources is included in the PyMVPA source package (3rd/libsvm).

If you do not have a proper LIBSVM package, you can build the library from the copy of the code that is shipped
with PyMVPA. To do this, simply invoke:

make 3rd

Now build PyMVPA as described above. The build script will automatically detect that LIBSVM is available and
builds the LIBSVM wrapper module for you.

If your system provides an appropriate LIBSVM version, you need to have the development files (headers and
library) installed. Depending on where you installed them, it might be necessary to specify the full path to that
location with the —include-dirs, —library-dirs and —swig options. Now add the ‘—with-libsvm’ flag when building
PyMVPA:

python setup.py build_ext —--with-libsvm \
[ —I<KLIBSVM_INCLUDEDIR> -L<LIBSVM_LIBDIR> ]

The installation procedure is equivalent to the build setup without LIBSVM, except that the ‘—with—libsvm’ flag
also has to be set when installing:

python setup.py install —--with-libsvm

2.3.4 Alternative build procedure

Alternatively, if you are doing development in PYMVPA or if you simply do not want (or do not have sufficient
permissions to do so) to install PyMVPA system wide, you can simply call make (same make build) in the top-level
directory of the source tree to build PYMVPA. Then extend or define your environment variable PYTHONPATH
to point to the root of PYMVPA sources (i.e. where you invoked all previous commands from):

export PYTHONPATH=$PWD

Note: This procedure also always builds the LIBSVM extension and therefore also requires the patched LIBSVM
version and SWIG to be available.

2.3.5 Windows

On Windows the whole situation is a little more tricky, as the system doesn’t come with a compiler by default.
Nevertheless, it is easily possible to build PyMVPA from source. One could use the Microsoft compiler that comes
with Visual Studio to do it, but as this is commercial software and not everybody has access to it, we will outline
a way that exclusively involves free and open source software.
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First one needs to install the packages required to run PyMVPA as explained above.

Next we need to obtain and install the MinGW compiler collection. Download the Automated MinGW Installer
from the MinGW project website. Now, run it and choose to install the current package. You will need the MinGW
base tools, g++ compiler and MinGW Make. For the remaining parts of the section, we will assume that MinGW
got installed in C:\MinGW and the directory C:\MinGW\bin has been added to the PATH environment variable, to
be able to easily access all MinGW tools.

Note: It is not necessary to install MSYS to build PyYMVPA, but it might handy to have it.

If you want to build the LIBSVM wrapper for PyMVPA, you also need to download SWIG (actually swigwin, the
distribution for Windows). SWIG does not have to be installed, just unzip the file you downloaded and add the
root directory of the extracted sources to the PATH environment variable (make sure that this directory contains
swig.exe, if not, you haven’t downloaded swigwin).

PyMVPA comes with a specific build setup configuration for Windows — sefup.cfg.win in the root of the source
tarball. Please rename this file to sefup.cfg. This is only necessary, if you have not configured your Python distutils
installation to always use MinGW instead of the Mircrosoft compilers.

Now, we are ready to build PyMVPA. The easiest way to do this, is to make use of the Makefile.win that is shipped
with PYMVPA to build a binary installer package (.exe). Make sure, that the settings at the top of Makefile.win
(the file is located in the root directory of the source distribution) correspond to your Python installation — if not,
first adjust them accordingly before your proceed. When everything is set, do:

mingw32-make —-f Makefile.win installer

Upon success you can find the installer in the dist subdirectory. Install it as described above.

2.3.6 OpenSUSE

Building PyYMVPA on OpenSUSE involves the following steps (tested with 10.3): First add the OpenSUSE science
repository, that contains most of the required packages (e.g. NumPy, SciPy, matplotlib), to the Yast configuration.
The URL for OpenSUSE 10.3 is:

http://download.opensuse.org/repositories/science/openSUSE_10.3/
Now, install the following required packages:

 arecent C and C++ compiler (e.g. GCC 4.1)
* python-devel (Python development package)
* python-numpy (NumPy)

* swig (SWIG is only necessary, if you want to make use of LIBSVM)

Now you can simply compile and install PYMVPA, as outlined above, in the general build instructions (or alterna-
tively using the method with LIBSVM).

If you have problems compiling the NIfTT libraries and PyNIfTI on OpenSUSE, try the following: Download the
nifticlib source tarball, extract it and run make in the top-level source directory. Be sure to install the zlib-devel
package before. Now, download the pynifti source tarball extract it, and edit setup.py. Change the line:

libraries = [ ’'niftiio’ 7,
to:
libraries = [ 'niftiio’, ’'znz’, "z’ 1],

as mentioned in the PyNIfTI installation instructions. This is necessary, as the above approach does only generate
static NIfTI libraries which are not properly linked with all dependencies. Now, compile PyNIfTI with:
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python setup.py build_ext -I <path_to_nifti>/include \
-L <path_to_nifti>/lib —--swig-opts="-I<path_to_nifti>/include"

where <path_to_nifti> is the directory that contains the extracted nifticlibs sources. Finally, install PyNIfTI with:

sudo python setup.py install

If you want to run the PyMVPA examples including the ones that make use of the plotting capabilities of matplotlib
you need to install of few more packages (mostly due to broken dependencies in the corresponding OpenSUSE
packages):

* python-scipy
* python-gobject2

* python-gtk

2.3.7 Fedora

On Fedora (tested with Fedora 9) you first have to install a few required packages, that are not installed by default.
Simply do:

yum install numpy gcc gcc-c++ python-devel swig

You might also want to consider installing some more packages, that will make your life significantly easier:

yum install scipy ipython python-matplotlib

Now, you are ready to compile and install PyMVPA as describe in the general build instructions.

2.3.8 MacOS X

To be able to compile PYMVPA on a Mac you first have to install the XCode developer tools, as the operating
system does not come with a compiler by default. If you want to use or even work on the latest development code,
you should also install Git. There is a MacOS installer for Git, that make this step very easy.

Otherwise follow the general build instructions.
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CHAPTER
THREE

GETTING STARTED

3.1 For the Impatient

If you only have five minutes to decide whether you want to use PyMVPA, take the first minute to look at the
following example of a cross-validation procedure on an fMRI dataset (the full source code!). It is not heavily
commented, but should simply give you an idea how PyMVPA feels like.

First import the whole PyYMVPA module:

>>> from mvpa.suite import =«

Now, load the dataset from a NIfTI file. An additional 2-column textfile has the label and associated experimental
run of each volume in the dataset (one volume per line). Finally, a mask is loaded to exclude non-brain voxels.

>>> attr = SampleAttributes (’data/attributes.txt’)

>>> dataset = NiftiDataset (samples='data/bold.nii.gz’,
labels=attr.labels,
chunks=attr.chunks,
mask="data/mask.nii.gz’)

Perform linear detrending and afterwards zscore the timeseries of each voxel using the mean and standard deviation
determined from rest volumes (all done for each experimental run individually).

>>> detrend(dataset, perchunk=True, model=’linear’)

>>> zscore (dataset, perchunk=True, baselinelabels=[0],
targetdtype=’'float32")

Select a subset of two stimulation conditions from the whole dataset.
>>> dataset = dataset.selectSamples (

N.array ([l in [1, 2] for 1 in dataset.labels],
dtype='bool’))

Finally, setup the cross-validation procedure using an odd-even split of the dataset and a SMLR classifier — and
run it.

>>> cv = CrossValidatedTransferError (

TransferError (SMLR()),
C.. OddEvenSplitter())
>>> error = cv(dataset)

Done. The mean error of classifier predictions on the test dataset across dataset splits is stored in error.

If you think that is a good start, take the remaining four minutes to take a look at the examples shipped in the source
distribution of PYMVPA (doc/examples/; some of them are also listed in Full Examples section of this manual).

15



PyMVPA Manual, Release 0.4.0

The examples provide a coarse overview of a substantial portion of the functionality provided by PYMVPA, rang-
ing from basic classifier usage, over more sophisticated analysis strategies to simple visualization demos.

All examples are executable scripts that are meant to be run from to toplevel directory of the extracted source

tarball, e.g.:

$ doc/examples/start_easy.py

which would run the example shown in the first part of this section.

However, once you found something interesting in the examples you should consider skipping through this manual,
as it contains a lot of information that is complementary to the API reference and the examples.

And now for the details ...

3.2 Module Overview

The PyMVPA package consists of three major parts: Data handling, Classifiers and various algorithms and mea-
sures that operate on datasets and classifiers. In the following sections the basic concept of all three parts will be
described and examples using certain parts of the PYMVPA package will be given.
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The manual does not cover all bits and pieces of PyMVPA. Detailed information about the module layout and
additional documentation about all included functionality is available from the Module Reference — or the API
Reference if you are interested in a more technical document. The main purpose of the manual is to give an idea
how the individual parts of PyMVPA can be combined to perform complex analyses — easily.
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CHAPTER
FOUR

DATASETS

The first step of any analysis in PyMVPA involves reading the data and putting it into the necessary shape for the
intended analysis. But even after the initial setup, many algorithms have to modify datasets, e.g. by selecting a
subset of it, or simple transformations of the data (e.g. z-scoring), or more complex things like projections into
alternative representations/spaces.

This section introduces the basic concepts of a dataset in PyYMVPA and shows useful operations typically per-
formed on datasets.

4.1 The Basic Concepts

A minimal dataset in PyMVPA consists of a number of samples, where each individual sample is nothing more
than a vector of values. Each sample is associated with a label, which defines the category the respective sample
belongs to, or in more general terms, defines the model that should be learned by a classifier. Moreover, samples
can be grouped into so-called chunks, where each chunk is assumed to be statistically independent from all other
data chunks.

The foundation of PyMVPA’s data handling is the Dataset class. Basically, this class stores data samples,
sample attributes and dataset attributes. By definition, sample attributes assign a value to each data sample (e.g.
labels, or chunks) and dataset attributes are additional information or functionality that apply to the whole dataset.

Most likely the Dataset class will not be used directly, but through one of the derived classes. However, it is
perfectly possible to use it directly. In the simplest case a dataset can be constructed by specifying some data
samples and the corresponding class labels.

>>> import numpy as N

>>> from mvpa.datasets import Dataset

>>> data = Dataset (samples=N.random.normal (size=(10,5)), labels=1)
>>> data

<Dataset / float64 10 x 5 uniqg: 1 labels 10 chunks>

The above example creates a dataset with 10 samples and 5 features each. The values of all features stem from
normally distributed random noise. The class label ‘1’ is assigned to all samples. Instead of a single scalar value
labels can also be a sequence with individual labels for each data sample. In this case the length of this sequence
has to match the number of samples.

Interestingly, the dataset object tells us about 10 chunks. In PyYMVPA chunks are used to group subsets of data
samples. However, if no grouping information is provided all data samples are assumed to be in their own group,
hence no sample grouping is performed.

Both labels and chunks are so called sample attributes. All sample attributes are stored in sequence-type containers
consisting of one value per sample. These containers can be accessed by properties with the same as the attribute:

>>> data.labels
array([(1, 1, 1, 1, 1, 1, 1, 1, 1, 11)
>>> data.chunks
array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91)
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The data samples themselves are stored as a two-dimensional matrix where each row vector is a sample and each
column vector contains the values of a feature across all samples. The Dataset class provides access to the
samples matrix via the samples property.

>>> data.samples.shape
(10, 5)

The Dataset class itself can only deal with 2d sample matrices. However, PYMVPA provides a very easy way
to deal with data where each data sample is more than a 1d vector: Data Mapping

4.2 Data Mapping

It was already mentioned that the Dataset class cannot deal with data samples that are more than simple vectors.
This could be a problem in cases where the data has a higher dimensionality, e.g. functional brain-imaging data
where each data sample is typically a three-dimensional volume.

One approach to deal with this situation would be to concatenate the whole volume into a 1d vector. While this
would work in certain cases there is definitely information lost. Especially for brain-imaging data one would most
likely want keep information about neighbourhood and distances between data sample elements.

In PyMVPA this is done by mappers that transform data samples from their original dataspace into the so-called
features space. In the above neuro-imaging example the dataspace is three-dimensional and the feature space
always refers to the 2d samples x features representation that is required by the Dataset class. In the context
of mappers the dataspace is sometimes also referred to as in-space (i.e. the initial data that goes into the mapper)
while the feature space is labeled as out-space (i.e. the mapper output when doing forward mapping).

The task of a mapper, besides transforming samples into 1d vectors, is to retain as much information of the
dataspace as possible. Some mappers provide information about dataspace metrics and feature neighbourhood,
but all mappers are able to do reverse mapping from feature space into the original dataspace.

Usually one does not have to deal with mappers directly. PyMVPA provides some convenience subclasses of
Dataset that automatically perform the necessary mapping operations internally. For an introduction into to
concept of a dataset with mapping capabilities we can take a look at the MaskedDataset class. This dataset
class works almost exactly like the basic Dataset class, except that it provides some additional methods and is
more flexible with respect to the format of the sample data. A masked dataset can be created just like a normal
dataset.

>>> from mvpa.datasets.masked import MaskedDataset

>>> mdata = MaskedDataset (samples=N.random.normal (size=(5,3,4)),
C labels=[1,2,3,4,5])

>>> mdata
<Dataset / float64 5 x 12 uniqg: 5 chunks 5 labels>

However, unlike Dataset the MaskedDataset class can deal with sample data arrays with more than two
dimensions. More precisely it handles arrays of any dimensionality. The only assumption that is made is that
the first axis of a sample array separates the sample data points. In the above example we therefore have 5
samples, where each sample is a 3x4 plane. If we look at the self-description of the created dataset we can
see that it doesn’t tell us about 3x4 plane, but simply 12 features. That is because internally the sample array is
automatically reshaped into the aforementioned 2d matrix representation of the Dataset class. However, the
information about the original dataspace is not lost, but kept inside the mapper used by MaskedDataset. Two
useful methods of MaskedDat aset make use of the mapper: mapForward() and mapReverse(). The former can
be used to transform additional data from dataspace into the feature space and the latter performs the same in the
opposite direction.

>>> mdata.mapForward (N.arange (12) .reshape (3,4)) .shape
(12,)

>>> mdata.mapReverse (N.array([l]*mdata.nfeatures)) .shape
(3, 4)
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Especially reverse mapping can be very useful when visualizing classification results and information maps on the
original dataspace.

Another feature of mapped datasets is that valid mapping information is maintained even when the feature space
changes. When running some feature selection algorithm (see Feature Selection) some features of the original
features set will be removed, but after feature selection one will most likely want to know where the selected (or
removed) features are in the original dataspace. To make use of the neuro-imaging example again: The most
convenient way to access this kind of information would be a map of the selected features that can be overlayed
over some anatomical image. This is trivial with PyYMVPA, because the mapping is automatically updated upon
feature selection.

>>> mdata.mapReverse (N.arange (1, mdata.nfeatures+1))
array ([[ 1, 2, 3, 41,

[ 5, 6, 7, 8],
[ 9, 10, 11, 1211)
>>> sdata = mdata.selectFeatures([2,7,9,10])
>>> sdata
<Dataset / float64 5 x 4 unig: 5 chunks 5 labels>
>>> sdata.mapReverse (N.arange (1, sdata.nfeatures+1))
array ([[O, O, 1, O],

o, o, o, 21,

[0, 3, 4, 011)

The above example selects four features from the set of the 12 original ones, by passing their ids to the select-
Features() method. The method returns a new dataset only containing the four selected features. Both datasets
share the sample data (using a NumPy array view). Using selectFeatures() is therefore both memory efficient and
relatively fast. All other information like class labels and chunks are maintained. By calling mapReverse() on the
new dataset one can see that the remaining four features are precisely mapped back onto their original locations
in the data space.

4.3 Data Access Sugaring

Complementary to self-descriptive attribute names (e.g. labels, samples) datasets have a few concise shortcuts to
get quick access to some attributes or perform some common action

Attribute Abbreviation | Definition class
samples S Dataset

labels L Dataset
uniquelabels UL Dataset

chunks o Dataset
uniquechunks ucC Dataset

origids I Dataset
samples_original | O MappedDataset

4.4 Data Formats

The concept of mappers in conjuction with the functionality provided by the Dataset class, makes it very easy
to create new dataset types with support for specialized data types and formats. The following is a non-exhaustive
list of data formats currently supported by PyMVPA (for additional formats take a look at the subclasses of
Dataset):

* NumPy arrays

PyMVPA builds its dataset facilities on NumPy arrays. Basically, anything that can be converted into a
NumPy array can also be converted into a dataset. Together with the corresponding labels, NumPy arrays
can simply be passed to the Dataset constructor to create a dataset. With arrays it is possible to use the
classes Dataset, MappedDataset (to combine the samples with any custom mapping algorithm) or
MaskedDataset (readily provides a DenseArrayMapper).
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¢ Plain text

Using the NumPy function fromfile() a variety of text file formats (e.g. CSV) can be read and converted into
NumPy arrays.

e NIfTI/Analyze images

PyMVPA provides a specialized dataset for MRI data in the NIfTI format. Ni ftiDataset uses PyNIfTI
to read the data and automatically configures an appropriate DenseArrayMapper with metric informa-
tion read from the NIfTI file header.

* EEP binary files
Another special dataset type is EEPDataset. It reads data from binary EEP file (written by eeprobe)

4.5 Data Splitting

In many cases some algorithm should not run on a complete dataset, but just some parts of it. One well-known
example is leave-one-out cross-validation, where a dataset is typically split into a number of training and validation
datasets. A classifier is trained on the training set and its generalization performance is tested using the validation
set.

It is important to strictly separate training and validation datasets as otherwise no valid statement can be made
whether a classifier really generated an appropriate model of the training data. Violating this requirement spuri-
ously elevates the classification performance, often termed ‘peeking’ in the literature. However, they provide no
relevant information because they are based on cheating or peeking and do not describe signal similarities between
training and validation datasets.

With the splitter classes derived from the base Splitter, PYMVPA makes dataset splitting easy. All dataset
splitters in PyMVPA are implemented as Python generators, meaning that when called with a dataset once, they
return one dataset split per iteration and an appropriate Exception when they are done. This is exactly the same
behavior as of e.g. the Python xrange() function. To perform data splitting for the already mentioned cross-
validation, PYMVPA provides the NFoldSplitter class. It implements a method to generate arbitrary N-M
splits, where N is the number of different chunks in a dataset and M is any non-negative integer smaller than N.
Doing a leave-one-out split of our example dataset looks like this:

>>> from mvpa.datasets.splitter import NFoldSplitter

>>> splitter = NFoldSplitter (cvtype=1) # Do N-1
>>> for wdata, vdata in splitter(data):
pass

where wdata is the working dataset and vdata is the validation dataset. If we have a look a those datasets we can
see that the splitter did what we intended:

>>> split = [ 1 for i1 in splitter(data)][0]

>>> for s in split:

c. print s

Dataset / float64 9 x 5 unig: 1 labels 9 chunks
Dataset / float64 1 x 5 unig: 1 labels 1 chunks
>>> split [0].uniquechunks

array ([, 2, 3, 4, 5, 6, 7, 8, 91)

>>> split[1l].uniquechunks

array ([0])

In the first split, the working dataset contains nine chunks of the original dataset and the validation set contains
the remaining chunk. The usage of the splitter, creating a splitter object and calling it with a dataset, is a very
common design pattern in the PyMVPA package. Like splitters, there are many more so called processing objects.
These classes or objects are instantiated by passing all relevant parameters to the constructor. Processing objects
can then be called multiple times with different datasets to perform their algorithm on the respective dataset. This
design applies to the majority of the algorithms implemented in PyMVPA.
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CHAPTER
FIVE

CLASSIFIERS

PyMVPA includes a number of ready-to-use classifiers, which are described in the following sections. All classi-
fiers implement the same, very simple interface. Each classifier object takes all relevant parameters as arguments
to its constructor. Once instantiated, the classifier object’s train () method can be called with some dataset.
This trains the classifier using all samples in the respective dataset.

The major task for a classifier is to make predictions. Predictions are made by calling the classifier’s predict ()
method with one or multiple data samples. predict () operates on pure sample data and not datasets, as in
some cases the true label for a sample might be totally unknown.

This examples demonstrates the typical daily life of a classifier.

>>> import numpy as N
>>> from mvpa.clfs.knn import kNN
>>> from mvpa.datasets import Dataset
>>> training = Dataset (samples=N.array (
N.arange (100) ,ndmin=2, dtype=’"float’).T,
B labels=[0] % 50 + [1] % 50)
>>> randl00 = N.random.rand(10)*100
>>> validation = Dataset (samples=N.array (randl00, ndmin=2, dtype=’float’).T,

C.. labels=[ int (i>50) for i in randlO00 ])
>>> clf = kNN (k=10)

>>> clf.train(training)

>>> N.mean (clf.predict (training.samples) == training.labels)

1.0

>>> N.mean (clf.predict (validation.samples) == validation.labels)
1.0

Two datasets with 100 and 10 samples each are generated. Both datasets only have one feature and the associated
label is O if the feature value is below 50 or 1 otherwise. The larger dataset contains all integers in the interval
(0,100) and is used to train the classifier. The smaller is used as a validation dataset, to check whether the classifier
learned something that generalizes well across samples not included in the training dataset. In this case the
validation dataset consists of 10 random floating point values in the interval (0,100).

The classifier in this example is a kNN (k-Nearest-Neighbour) classifier that makes use of the 10 nearest neighbours
of a data sample to make its predictions (k=10). One can see that after the training the classifier performs optimally
on the training dataset as well as on the validation data samples.

The choice of the classifier in the above example is more or less arbitrary. Any classifier in PYMVPA could be
used in place of kKNN. This demonstrates another useful feature of PyYMVPA’s classifiers. Due to the high-level
abstraction and the simple interface, almost all classifiers can be combined with most algorithms in PyMVPA.
This makes it very easy to test different classifiers on some dataset (see Fig. 1).
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k-Nearest-Neighbour

1.0 10 1.0
0.9 0.9
0.8 0.8
0.7 2 0.7
0.6 0.6
05 0 0.5
0.4 0.4
0.3 0.3
02 > 0.2
0.1 0.1
0.0 -10 0.0

=10 -5 0 5 10 ' =10 -5 0 5 10
Linear SVM Ridge Regression
1.0 10 1.0
0.9 0.9
0.8 0.8
5
0.7 0.7
0.6 0.6
0.5 0 A 0.5
0.4 0.4
0.3 0.3
=5
0.2 0.2
0.1 0.1
=10 =5 0 5 10 0.0 _1910 0 5 10 0.0
Logistic Regression M
10 d 1 g 1.0 10 T REF .5.IlIIIr T 1.0
0.9 0.9
0.8 0.8
5 5L
0.7 0.7
0.6 0.6
0 0.5 ] 0.5
0.4 0.4
0.3 0.3
-5 -5
0.2 0.2
0.1 0.1
=10 0.0 =10 : : 1 0.0
=10 =5 0 5 10 =10 =5 0 5 10

A comparison of the behavior of different classifiers (k-Nearest-Neighbour, linear SVM, logistic regression, ridge
regression and SVM with radial basis function kernel) on a simple classification problem. The code to generate
these figure can be found in the pylab_2d.py example in the Simple Plotting of Classifier Behavior section.

5.1 Stateful objects

Before looking at the different classifiers in more detail, it is important to mention another feature common to all
of them. While their interface is simple, classifiers are in no way limited to report only predictions. All classifiers
implement an additional interface: Objects of any class that are derived from ClassWithCollections have
attributes (we refer to such attributes as state variables), which are conditionally computed and stored by PyYMVPA.
Such conditional storage and access is handy if a variable of interest might consume a lot of memory or needs
intensive computation, and not needed in most (or in some) of the use cases.

For instance, the Classifier class defines the trained_labels state variable, which just stores the unique la-
bels for which the classifier was trained. Since trained_labels stores meaningful information only for a trained
classifier, attempt to access ‘clf.trained_labels’ before training would result in an error,
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>>> from mvpa.misc.exceptions import UnknownStateError
>>> try:
untrained_clf = kNN ()
labels = untrained_clf.trained_labels
except UnknownStateError:
.. "Does not work"
"Does not work’

since the classifier has not seen the data yet and, thus, does not know the labels. In other words, it is not yet in the
state to know anything about the labels. Any state variable can be enabled or disabled on per instance basis at any
time of the execution (see ClassWithCollections).

To continue the last example, each classifier, or more precisely every stateful object, can be asked to report existing
state-related attributes:

>>> list_with_verbose_explanations = clf.states.listing

‘clf.states’ is an instance of StateCollection class which is a container for all state variables of the given
class. Although values can be queried or set (if state is enabled) operating directly on the stateful object

>>> clf.trained_labels
array ([0, 1])

any other operation on the state (e.g. enabling, disabling) has to be carried out through the states attribute.

>>> print clf.states

states{trained_dataset predicting_timex+ training confusion predictionsx+...}
>>> clf.states.enable(’values’)

>>> print clf.states

states{trained_dataset predicting_timex+ training confusion predictionsx+...}
>>> clf.states.disable(’values’)

A string representation of the state collection mentioned above lists all state variables present accompanied with
2 markers: ‘+’ for an enabled state variable, and ‘*’ for a variable that stores some value (but might have been
disabled already and, therefore, would have no ‘+” and attempts to reassign it would result in no action).

By default all classifiers provide state variables values, predictions. The latter is simply the set of predictions that
was returned by the last call to the objects predict () method. The former is heavily classifier-specific. By
convention the values key provides access to the raw values that a classifier prediction is based on. Depending
on the classifier, this information might required significant resources when stored. Therefore all states can be
disabled or enabled (states.disable(), states.enable()) and their current status can be queried like this:

>>> clf.states.isActive ('predictions’)
True

>>> clf.states.isActive ('values’)
False

States can be enabled or disabled during stateful object construction, if enable_states or disable_states (or both)
arguments, which store the list of desired state variables names, passed to the object constructor. Keyword ‘all’
can be used to select all known states for that stateful object.

5.2 Error Calculation

The TransferError class provides a convenient way to determine the transfer error of a trained classifier
on some validation dataset, i.e. the accuracy of the classifier’s predictions on a novel, independent dataset. A
TransferError object is instanciated by passing a classifier object to the constructor. Optionally a custom
error function can be specified (see errorfx argument).
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To compute the transfer error simply call the object with a validation dataset. The computed error value is re-
turned. TransferError also supports a state variable confusion that contains the full confusion matrix of the
predictions made on the validation dataset. The confusion matrix is disabled by default.

If the TransferError object is called with an optional training dataset, the contained classifier is first training
using this dataset before predictions on the validation dataset are made.

>>> from mvpa.clfs.transerror import TransferError
>>> clf = kNN (k=10)

>>> terr = TransferError(clf)
>>> terr(validation, training )
0.0

5.2.1 Cross-validated Transfer Error

Often one is not only interested in a single transfer error on one validation or test dataset, but on a cross-validated
estimate of the transfer error. A popular method is the so-called leave-one-out cross-validation.

The CrossvValidatedTransferError class provides a simple way to compute such measure. It utilizes a
TransferError object and a Splitter. When called with a Dataset the splitter generates splits of the
Dataset and the transfer error for all splits is computed by training on one of the splitted datasets and making
predictions on the other. By default the mean of transfer errors is returned (but the actual combiner function is
customizable).

The following example shows the minimal code for a leave-one-out cross-validation reusing the transfer error
object from the previous example and some Dataset data.

>>> # create some dataset
>>> from mvpa.misc.data_generators import normalFeatureDataset
>>> data = normalFeatureDataset (perlabel=50, nlabels=2,
nfeatures=20, nonbogus_features=[3, 7],
snr=3.0)
>>> # now cross-validation
>>> from mvpa.algorithms.cvtranserror import CrossValidatedTransferError
>>> from mvpa.datasets.splitter import NFoldSplitter
>>> cvterr = CrossValidatedTransferError (terr,
NFoldSplitter (cvtype=1),
enable_states=[’confusion’])
>>> error = cvterr(data)

5.3 Error Reporting

PyMVPA is equipped with easy ways to have a glance overview over the generalization performance of a cross-
validated classifier. Such summary is provided by instances of a ConfusionMatrix class, and is accompanied
by various performance metrics. For example, the 8-fold cross-validation of the dataset with 8 labels with the
SMLR classifier produced the following confusion matrix:

>>> # Simple ’print cvterr.confusion’ provides the same output
>>> # without the description of abbreviations
>>> print cvterr.confusion.asstring(description=True) \
# doctest: +SKIP
———————— . 3kHz 7kHz 12kHz 20kHz 30kHz songl song2 song3 song4 songb
predict.\targets 38 39 40 41 42 43 44 45 46 47

N e e e PI NI
3kHz / 38 84 42 27 4 4 2 1 0 15 19 198 1351
7kHz / 39 43 94 16 0 1 1 1 2 1 24 183 1331

12kHz / 40 21 16 103 5 2 2 0 0 13 168 1312
20kHz / 41 1 2 13 158 1 0 0 1 3 1 180 1202

24 Chapter 5. Classifiers

FP
114
89
65
22

FN
90
80
70
15

O O O O



PyMVPA Manual, Release 0.4.0

30kHz / 42 3 0 2 3 162 0 0 0 0 0 170 1194
songl / 43 3 1 1 0 1 160 0 0 2 5 173 1199
song2 / 44 1 1 0 0 0 0 171 0 0 0 173 1176
song3 / 45 1 1 1 0 0 0 0 170 2 0 175 1179
song4 / 46 7 3 3 2 2 2 0 0 139 7 165 1240
song5 / 47 10 14 7 1 0 7 0 1 5 104 149 1310
Per target:  -—  -——7"""> ———— ————— ————— ————— ————— ————— ————— —————
P 174 174 173 173 173 174 173 174 173 173
N 1560 1560 1561 1561 1561 1560 1561 1560 1561 1561
P 84 94 103 158 162 160 171 170 139 104
TN 1261 1251 1242 1187 1183 1185 1174 1175 1206 1241
Summary\Means: ———— ————— ————— ————— ————— ————— o 173 1249
ACC 0.78
ACC% 77.57
# of sets 8
<BLANKLINE>

Statistics computed in l-vs-rest fashion per each target.
Abbreviations (for details see http://en.wikipedia.org/wiki/ROC_curve) :
TP : true positive (AKA hit)
TN : true negative (AKA correct rejection)
FP : false positive (AKA false alarm, Type I error)
FN : false negative (AKA miss, Type II error)
TPR: true positive rate (AKA hit rate, recall, sensitivity)
TPR = TP / P = TP / (TP + FN)
FPR: false positive rate (AKA false alarm rate, fall-out)
FPR = FP / N = FP / (FP + TN)
ACC: accuracy

ACC = (TP + TN) / (P + N)
SPC: specificity
SPC = TN / (FP + TN) = 1 - FPR

PPV: positive predictive value (AKA precision)
PPV = TP / (TP + FP)
NPV: negative predictive value
NPV = TN / (TN + FN)
FDR: false discovery rate
FDR = FP / (FP + TIP)
MCC: Matthews Correlation Coefficient
MCC = (TPxTN - FP%FN)/sqrt (P N P’ N’)
# of sets: number of target/prediction sets which were provided

In addition to the abusively informative textual representation, there is an alternative graphical representation of
the confusion matrix via the plot () method of a ConfusionMatrix

>>> import pylab as P

>>> cvterr.confusion.plot () \
# doctest: +SKIP

>>> P.show () \
# doctest: +SKIP

5.3. Error Reporting 25

13
2
5

26

45

38

11
14

34
69

39

O O O O o
Nej
e

0.78



PyMVPA Manual, Release 0.4.0

targets
I Pl Pl — 4 aa! L § M
¥ E % % 2 2 2 ¥ ¥
S _-.: r o = o o =] (=} o
[1a) - =i F‘\I ag! i T T ] W
162
144
4126
-1 108
i
=
o
= -1 90
o
D
= 472
54

5.4 Basic Supervised Learning Methods

PyMVPA provides a number of learning methods (i.e. classifiers or regression algorithms) that can be plug into
the various algorithms that are also part of the framework. Most importantly they all can be combined or enhanced
with Meta-Classifiers.

5.4.1 Gaussian Process Regression

GPR (Wikipedia entry about gaussian process regression).

5.4.2 k-Nearest-Neighbour

The kNN classifier makes predictions based on the labels of nearby samples. It currently uses Euclidian distance
to determine the nearest neighbours, but future enhancements may include support for other kernels.

5.4.3 Least Angle Regression

LARS Efron et al. (2004)
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5.4.4 Penalized Logistic Regression

The penalized logistic regression (PLR) is similar to the ridge in that it has a penalty term, however, it is trained
to predict a binary outcome by means of the logistic function (Wikipedia entry about logistic regression).

5.4.5 Ridge Regression

Ridge regression (aka Tikhonov regularization) is a variant of a linear regression (Wikipedia entry about ridge
regression).

The ridge regression classifier (RidgeReq) performs a simple linear regression with a penalty parameter to help
avoid over-fitting. The regression inserts an intercept term so that you do not have to center your data.

5.4.6 Sparse Multinomial Logistic Regression

Sparse Multinomial Logistic Regression (SMLR; Krishnapuram et al., 2005) is a fast multi-class classifier that can
easily deal with high-dimensional problems (research paper about SMLR). PyMVPA includes two implementa-
tions: one in pure Python and a faster one that makes use of a C extension for the performance critical pieces of
the code.

5.4.7 Support Vector Machines

Support vector machine (Vapnik, 1995) classifiers (and regressions) are popular since they can deal with very high
dimensional problems (Wikipedia entry about SVM), while maintaining reasonable generalization performance.

The support vector machine classes provide a family of classifiers by wrapping libsvm and Shogun libraries, with
corresponding base classes SVM and SVM accordingly. By default SVM class is bound to libsvm’s implementation
if such is available (shogun otherwise).

While any SVM class provides a complete interface, the others child classes make it easy to run some subset of
standard classifiers, such as linear SVM, with a default set of parameters (see LinearCSVMC, LinearNuSVMC,
RbfNuSVMC and Rb£CSVMC).

5.5 Meta-Classifiers

This section has been contributed by James M. Hughes.

A meta-classifier is essentially a blanket term used to describe all classes that appear functionally equivalent to
a regular Classifier, but which in reality provide some extra amount of functionality on top of a normal
classifier. Furthermore, they generally do not implement a Classifier per se, but rather take a Classifier
as input. The methods then typically called on a classifier (e.g., train or predict) can be called on the meta-
classifier, but will call the input classifier’s routines, before or after some other function that the meta-classifier
provides.

5.5.1 Examples of Meta-Classifiers

At present, there are two primary meta-classifiers implemented in the PyYMVPA package, beneath which there are
several specific options:

BoostedClassifier
typically uses multiple classifiers internally

ProxyClassifier
typically performs some action on the data/labels before classification is performed
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Within these more general categories, specific classifiers are implemented. For example, there are several
BoostedClassifier subclasses:

CombinedClassifier
combines predictions using a PredictionsCombiner functor

MulticlassClassifier
performs multi-class classification by means of a list of BinaryClassifier instances. Typical use-case
is to wrap a binary classifier to give it ability to operate on multiple classes via voting over classifiers for all
possible pairs of the categories

SplitClassifier
combines a Classifier and an arbitrary Splitter

Furthermore, there are also several ProxyClassifier subclasses:

BinaryClassifier
maps a set of labels into two categories (+1 and -1)

MappedClassifier
uses a mapper on input data prior to training/testing

FeatureSelectionClassifier
performs some kind of FeatureSelection prior to training/testing

5.5.2 Implementation Examples

Classifiers such as the FeatureSelectionClassifier are particularly useful because they simplify the
process of selecting features and then using only that subset of features to classify novel exemplars (the predict
stage). They become even more powerful when combined with SplitClassifier, so that even the task of
withholding certain data points to create statistically valid training and testing datasets is abstracted and wrapped
up within a single object (and, ultimately, very few method calls). Consider the following code, which can be
found in mvpa/clfs/warehouse.py:

>>> from mvpa.clfs.base import SplitClassifier, FeatureSelectionClassifier
>>> from mvpa.clfs.svm import LinearCSVMC
>>> from mvpa.clfs.transerror import ConfusionBasedError
>>> from mvpa.featsel.rfe import RFE
>>> from mvpa.featsel.helpers import FractionTailSelector
>>>
>>> rfesvm_split = SplitClassifier (LinearCSVMC ())
>>> clf = \
FeatureSelectionClassifier (
clf = LinearCSVMC(),
# on features selected via RFE
feature_selection = RFE(
# based on sensitivity of a clf which does
# splitting internally
sensitivity_analyzer=rfesvm_split.getSensitivityAnalyzer(),
transfer_error=ConfusionBasedError (
rfesvm_split,
confusion_state="confusion"),
# and whose internal error we use
feature_selector=FractionTailSelector (
0.2, mode="discard’, tail=’lower’),
# remove 20% of features at each step
update_sensitivity=True),
# update sensitivity at each step
descr='LinSVM+RFE (splits_avg)’ )
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This analysis combines the FeatureSelectionClassifier and the SplitClassifier to perform in-
ternal splitting of the data and then perform FeatureSelection based on those splits. Such analyses can be easily
created due to the straightforward way that classifier and meta-classifiers can be combined. Please refer to the
relevant documentation sections for more information about the specifics of each meta-classifier.

5.6 Retrainable Classifiers

Some classifiers have ability to provide quick (i.e in terms of performance) re-training if they were previously
trained, and only part of their specification got changed. For instance, for kernel-based classifier (e.g. GPR) it
makes no sense to recompute kernel matrix, if only a classifier (not kernel) parameter (e.g. sigma_noise)
was changed. Another similar usecase: for null-hypothesis statistical testing it might be needed to train classifier
multiple times on a randomized set of labels.

Only classifiers which have retrainable in their _clf_internals are capable of efficient retraining. To
enable retraining, just provide retrainable=True to the constructor of the classifier. Internally retrainable
classifiers will try to deduce what was changed in the specification of the classifier (e.g. training/testing datasets,
parameters) and act accordingly. To reduce training/prediction time even more, classifier might directly be in-
structed with what aspects were changed. It must be previously trained / predicted, so later on retrain () and
repredict () methods could be called. repredict () can be called only with the same data, for which it
was earlier predicted. See API doc for more information.

Implementation of efficient retraining is not straightforward, thus it is strongly advised to
* enable CHECK_RETRAIN debug target while developing the code for analysis. That might guard you

against obvious misuses of retraining feature, as well as to spot bugs in the code

* validate on a simple dataset that analysis code provides the same results if classifier was created retrainable
or not

5.7 Classifiers “Warehouse”

To facilitate easy trial of different classifiers for any specific task, Warehouse of classifiers clfs.warehouse.clfs
was defined to create a sample collection of some commonly used parameterizations of the classifiers present in
PyMVPA. Such collection can be queried by any set of known keywords/tags with tags prefixed with ! being
excluded:

>>> from mvpa.clfs.warehouse import clfs
>>> tryme = clfs[’multiclass’, ’!svm’]

to simply sweep through classifiers which are capable of multiclass classification and are not SVM based.
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CHAPTER
SIX

MEASURES

PyMVPA provides a number of useful measures. The vast majority of them are dedicated to feature selection. To
increase analysis flexibility, PyYMVPA distinguishes two parts of a feature selection procedure.

First, the impact of each individual feature on a classification has to be determined. The resulting map reflects the
sensitivities of all features with respect to a certain decision and, therefore, algorithms generating these maps are
summarized as Sensitivity in PyMVPA. Second, once the feature sensitivities are known, they can be used as
criteria for feature selection. However, possible selection strategies range from very simple Go with the 10% best
features to more complicated algorithms like Recursive Feature Elimination. Because Sensitivity Measures and
selections strategies can be arbitrarily combined, PyMVPA offers a quite flexible framework for feature selection.
Similar to dataset splitters, all PyMVPA algorithms are implemented and behave like processing objects. To recap,
this means that they are instantiated by passing all relevant arguments to the constructor. Once created, they can
be used multiple times by calling them with different datasets.

6.1 Sensitivity Measures

It was already mentioned that a Sensitivity computes a featurewise score that indicates how much interesting
signal each feature contains — hoping that this score somehow correlates with the impact of the features on a
classifier’s decision for a certain problem.

Every sensitivity analyzer object computes a one-dimensional array with the respective score for every feature,
when called with a Dataset. Due to this common behaviour all Sensitivity types are interchangeable and
can be combined with any other algorithm requiring a sensitivity analyzer.

By convention higher sensitivity values indicate more interesting features.

There are two types of sensitivity analyzers in PYMVPA. Basic sensitivity analyzers directly compute a score
from a Dataset. Meta sensitivity analyzers on the other hand utilize another sensitivity analyzer to compute their
sensitivity maps.

6.1.1 Basic Sensitivity (and related Measures)

ANOVA

The OneWayAnova class provides a simple (and fast) univariate measure, that can be used for feature selection,
although it is not a proper sensitivity measure. For each feature an individual F-score is computed as the fraction
of between and within group variances. Groups are defined by samples with unique labels.

Higher F-scores indicate higher sensitivities, as with all other sensitivity analyzers.

Linear SVM Weights

The featurewise weights of a trained support vector machine are another possible sensitivity measure. The lib-
svm.LinearSVMWeights and sg.LinearSVMWeights class can internally train all types of linear support vector
machines and report those weights.

31



PyMVPA Manual, Release 0.4.0

In contrast to the F-scores computed by an ANOVA, the weights can be positive or negative, with both extremes
indicating higher sensitivities. To deal with this property all subclasses of DatasetMeasure support a trans-
former arguments in the contructor. A transformer is a functor that is finally called with the computed sensi-
tivity map. PyMVPA already comes with some convenience functors which can be used for this purpose (see
transformers).

>>> from mvpa.misc.data_generators import normalFeatureDataset
>>> from mvpa.clfs.svm import LinearCSVMC

>>> from mvpa.misc.transformers import Absolute

>>>

>>> ds = normalFeatureDataset ()

>>> ds

<Dataset / float64 100 x 4 unig: 2 labels 5 chunks labels_mapped>
>>>

>>> clf = LinearCSVMC ()

>>> sensana = clf.getSensitivityAnalyzer ()

>>> sens = sensana (ds)

>>> sens.shape

(4,)

>>> (sens < 0).any/()

True

>>> sensana_abs = clf.getSensitivityAnalyzer (transformer=Absolute)
>>> (sensana_abs(ds) < 0).any/()

False

Above example shows how to use an existing classifier instance to report sensivity values (a linear SVM in this
case). The computed sensitivity vector contains one element for each feature in the dataset. t ransformers can
be used to post-process the sensitvity scores, e.g. reporting absolute values for feature selection purposes, instead
of raw sensitivities.

Note: The SVMWeights classes cannot extract reasonable weights from non-linear SVMs (e.g. with RBF ker-
nels).

Other linear Classifier Weights

Any linear classifier in PYMVPA can report its weights. The procedure is identical for all of them. As outlined
in the example using linear SVM weights, simply call get SensitivityAnalyzer () on a classifier instance
and you’ll get an appropriate Sensitivity object. Additionally, it is possible to force (re)training of the
underlying classifier or simply report the weights computed during a previous training run.

Examples of other classifier-based linear sensitivity analyzers are: SMLRWeights and GPRLinearWeights.

Noise Perturbation

Noise perturbation is a generic approach to determine feature sensitivity. — The sensitivity analyzer
NoisePerturbationSensitivity) computes a scalar DatasetMeasure using the original dataset. Af-
terwards, for each single feature a noise pattern is added to the respective feature and the dataset measure is
recomputed. The sensitivity of each feature is the difference between the dataset measure of the orginal dataset
and the one with added noise. The reasoning behind this algorithm is that adding noise to important features
will impair a dataset measure like cross-validated classifier transfer error. However, adding noise to a feature that
already only contains noise, will not change such a measure.

Depending on the used scalar DatasetMeasure using the sensitivity analyzer might be really CPU-intensive!
Also depending on the measure, it might be necessary to use appropriate t ransformers (see transformers
constructor arguments) to ensure that higher values represent higher sensitivities.
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6.1.2 Meta Sensitivity Measures

Meta Sensitivity Measures are FeaturewiseDatasetMeasures that internally use one of the Basic Sensitivity (and
related Measures) to compute their sensitivity scores.

Splitting Measures

The SplittingFeaturewiseMeasure uses a Splitter to generate dataset splits. A FeaturewiseDatasetMeasure is
then used to compute sensitivity maps for all these dataset splits. At the end a combiner function is called with
all sensitivity maps to produce the final sensitivity map. By default the mean sensitivity maps across all splits is
computed.
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CHAPTER
SEVEN

FEATURE SELECTION

This section has been contributed by James M. Hughes.

It is often the case in machine learning problems that we wish to reduce a feature space of high dimension-
ality into something more manageable by selecting only those features that contribute most to classification
performance. Feature selection methods attempt to achieve this goal in an algorithmic fashion. PyMVPA’s
flexible framework allows various feature selection methods to take place within a small block of code.
FeatureSelectionClassifier extends the basic classifier framework to allow for the use of arbitrary
methods of feature selection according to whatever ranking metric, feature selection criteria, and stopping crite-
rion the user chooses for a given application. Examples of the code/classification algorithms presented here can
be found in mvpa/clfs/warehouse.py.

More formally, a FeatureSelectionClassifier is a meta-classifier. That is, it is not a classifier itself — it
can take any slave Classifier, perform some feature selection in advance, select those features, and then train
the provided slave Classifier on those features. Externally, however, it looks like a Classifier, in that it
fulfills the specialization of the Classifier base class. The following are the relevant arguments to the constructor
ofsuchaClassifier:

clf: Classifier
classifier based on which mask classifiers is created

feature_selection: FeatureSelection
whatever feature selection is considered best

testdataset: Dataset (optional)
dataset which would be given on call to feature_selection

Let us turn out attention to the second argument, FeatureSelection. As noted above, this feature selection can
be arbitrary and should be chosen appropriately for the task at hand. For example, we could perform a one-way
ANOVA statistic to select features, then keep only the most important 5% of them. It is crucial to note that,
in PYMVPA, the way in which features are selected (in this example by keeping only 5% of them) is wholly
independent of the way features are ranked (in this example, by using a one-way ANOVA). Feature selection
using this method could be accomplished using the following code (from mvpa/clfs/warehouse.py):

>>> from mvpa.suite import =«

>>> FeatureSelection = SensitivityBasedFeatureSelection (
OneWayAnova (),
FractionTailSelector (0.05, mode=’'select’, tail="upper’))

A more interesting analysis is one in which we use the weights (hyperplane coefficients) to rank features. This
allows us to use the same classifier to train the selected features as we used to select them:

It bears mentioning at this point that caution must be exercised when selecting features. The process of feature
selection must be performed on an independent training dataset: it is not possible to select features using the entire
dataset, re-train a classifier on a subset of the original data (but using only the selected features) and then test on
a held-out testing dataset. This results in an obvious positive bias in classification performance. PyYMVPA allows
for easy dataset splitting, however, so creating independent training and testing datasets is easily accomplished,
for instance using an NFoldSplitter, OddEvenSplitter, etc.
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7.1 Recursive Feature Elimination

Recursive feature elimination (RFE, applied to fMRI data in (Hanson et al., 2008)) is a technique that falls under
the larger umbrella of feature selection. Recursive feature elimination specifically attempts to reduce the number
of selected features used for classification in the following way:

* A classifier is trained on a subset of the data and features are ranked according to an arbitrary metric.
» Some amount of those features is either selected or discarded according to a pre-selected rule.

» The classifier is retrained and features are once again ranked; this process continues until some criterion
determined textit{a priori} (such as classification error) is reached.

* One or more classifiers trained only on the final set of selected features are used on a generalization dataset
and performance is calculated.

PyMVPA’s flexible framework allows each of these steps to take place within a small block of code. To actually
perform recursive feature elimination, we consider two separate analysis scenarios that deal with a pre-selected
training dataset:

* We split the training dataset into an arbitrary number of independent datasets and perform RFE on each of
these; the sensitivity analysis of features is performed independently for each split and features are selected
based on those independent measures.

* We split the training dataset into an arbitrary number of independent datasets (as before), but we average
the feature sensitivities and select which features to prune/select based on that one average measure.

We will concentrate on the second approach. The following code can be used to perform such an analysis:

>>> rfesvm_split = SplitClassifier (LinearCSVMC ())
>>> clf = \
FeatureSelectionClassifier (
clf = LinearCSVMC (),
# on features selected via RFE
feature_selection = RFE (
# based on sensitivity of a clf which does splitting internally
sensitivity_analyzer=rfesvm_split.getSensitivityAnalyzer (),
transfer_error=ConfusionBasedError (
rfesvm_split,
confusion_state="confusion"),
# and whose internal error we use
feature_selector=FractionTailSelector (
0.2, mode="discard’, tail=’lower’),
# remove 20% of features at each step
update_sensitivity=True),
# update sensitivity at each step
descr='LinSVM+RFE (splits_avg)’ )

The code above introduces the SplitClassifier, which in this case is yet another meta-classifier that takes
ina Classifier (in this case a LinearCSVMC) and an arbitrary Splitter object, so that the dataset can
be split in whatever way the user desires. Prior to training, the SplitClassifier splits the training dataset,
dedicates a separate classifier to each split, trains each on the training part of the split, and then computes transfer
error on the testing part of the split. If a SplitClassifier instance is later on asked to predict some new
data, it uses (by default) the MaximalVote strategy to derive an answer. A summary about the performance of a
SplitClassifier internally on each split of the training dataset is available by accessing the confusion state
variable.

To summarize somewhat, RFE 1is just one method of feature selection, so we wuse a
FeatureSelectionClassifier to facilitate this. To parameterize the RFE process, we refer above
to the following:
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sensitivity_analyzer
in this case just the default from a linear C-SVM (the SVM weights), taken as an average over all splits (in
accordance with scenario 2 as above)

transfer_error
confusion-based error that relies on the confusion matrices computed during splitting of the dataset by the
SplitClassifier; this is used to provide a value that can be compared against a stopping criterion to
stop eliminating features

feature_selector
in this example we simply discard the 20% of features deemed least important

update_sensitivity
true to retrain the classifiers each time we eliminate features; should be false if a non-classifier-based sensi-
tivity measure (such as one-way ANOVA) is used

As has been shown, recursive feature elimination is an easy-to-implement, flexible, and powerful tool within the
PyMVPA framework. Various ranking methods for selecting features have been discussed. Additionally, several
analysis scenarios have been presented, along with enough requisite knowledge that the user can plug in whatever
classifiers, error metrics, or sensitivity measures are most appropriate for the task at hand.

7.2 Incremental Feature Search

IFS

(to be written)
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CHAPTER
EIGHT

MISCELLANEOUS

8.1 Managing (Custom) Configurations

PyMVPA provides a facility to handle arbitrary configuration settings. This facility can be used to control some
aspects of the behavior of PYMVPA itself, as well as to store and query custom configuration items, e.g. to control
one’s own analysis scripts.

An instance of this configuration manager is loaded whenever the mvpa module is imported. It can be used from

any script like this:

>>> from mvpa import cfg

By default the config manager reads settings from two config files (if any of them exists). The first is a file named
.pymvpa.cfg and located in the user’s home directory. The second is pymvpa.cfg in the current directory. Please
note, that settings found in the second file override the ones in the first.

The syntax of both files is the one also known from the Windows INI files. Basically, Python’s ConfigParser is
used to read those file and the config supports whatever this parser can read. A minimal example config file might
look like this:

[general]
verbose = 1

It consists of a section general containing a single setting verbose, which is set to /. PYMVPA recognizes a number
of such sections and configuration variables. A full list is shown at the end of this section and is also available in
the source package (doc/examples/pymvpa.cfg).

In addition to configuration files, the config manager also looks for special environment variables to read settings
from. Names of such variables have to start with MVPA_ following by the an optional section name and the
variable name itself (with _ as delimiter). If no section name is provided, the variables will be associated with
section general. Some examples:

MVPA_VERBOSE=1

will become:

[general]
verbose = 1

However, MVPA_VERBOSE_OUTPUT = stdout becomes:

[verbose]
output = stdout

Any lenght of variable name is allowed, e.g. MVPA_SEC1_LONG_VARIABLE_NAME=1 becomes:
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[secl]
long variable name = 1

Settings read from environment variables have the highest priority and override settings found in the config files.
Therefore environment variables can be used to quickly adjust some setting without having to edit the config files.

The config manager can easily be queried from inside scripts. In addition to the interface of Python’s ConfigParser
it has a few convenience functions mostly to allow for a default value in case no setting was found. For example:

>>> cfg.getboolean (’warnings’, ’suppress’, default=False)
False

queries the config manager whether warnings should be suppressed (i.e. if there is a variable suppress in section
warnings). In case, there is now such setting, i.e. neither config files nor environment variables defined it, the
default values is returned. Please see the documentation of ConfigManager for its full functionality. The source
tarballs includes an example configuration file (doc/examples/pymvpa.cfg) with the comprehensive list of settings
recognized by PYMVPA itself:

#i# #EF AAF AEF AEF AEE AEE AEE REE AFE FEE RFE AFE REE FEE REE FEE FEE HEE #

Example configuration file to be used with PyMVPA

See COPYING file distributed along with the PyMVPA package for the
copyright and license terms.

#
#
#
#
#
#
#
#

## ### #AF HAF AEF AEE AEF AEE FEE REE AR REE AFE REE HEE REE HEE HEE HEE

# This is a comprehensive list of all settings currently recognized by PyMVPA.
# Users can add arbitrary additional settings, both in new and already existing
# sections.

[general]
#debug =
#verbose =
#seed = 12345

[verbose]
# comma-separated list of handlers, e.g. stdout
#output =

[error]
#output =

[warnings]

# integer

#bt =

# integer

#count =

# comma-separated list of handlers, e.g. stdout
#output =

# Boolean (former: MVPA_NO_WARNINGS)

suppress = no

[debug]

# comma-separated 1list of handlers, e.g. stdout
#output =

#metrics =

[examples]
interactive = yes
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[svm]
# which SVM implementation to use by default: libsvm or shogun
backend = libsvm

[externals]

# whether to really raise an exception when an externals test fails _and_
# raising an exception was requested

raise exception = True

# whether to retest the availability of an external dependency, depite an
# already present (but possibly outdated) test result
retest = no

# options starting with ’“have ’ indicate the presence or absence of external
# dependencies
#have scipy = no

[tests]
# whether to perform tests where the outcome is not deterministic
labile = yes

# 1f enabled, the unit tests will not run multiple classifiers on the same
# test, which reduces the time to run a full test significantly.
quick = no

# 1f enabled, unit tests consuming lots of memory will not automatically run
# as part of the main unittest battery
lowmem = no

8.2 Progress Tracking

There are 3 types of messages PYMVPA can produce:

verbose
regular informative messages about generic actions being performed

debug
messages about the progress of computation, manipulation on data structures

warning
messages which are reported by mvpa if something goes a little unexpected but not critical

8.2.1 Redirecting Output

By default, all types of messages are printed by PyMVPA to the standard output. It is possible to redirect them
to standard error, or a file, or a list of multiple such targets, by using environment variable MVPA_?_OUTPUT,
where X is either VERBOSE, DEBUG, or WARNING correspondingly. E.g.:

export MVPA_VERBOSE_OUTPUT=stdout, /tmp/1l MVPA_WARNING_OUTPUT=/tmp/3 MVPA_DEBUG_OUTPUT=stderr, /tmp

would direct verbose messages to standard output as well as to /tmp/1 file, warnings will be stored only in
/tmp/ 3, and debug output would appear on standard error output, as well as in the file /tmp/2.

PyMVPA output redirection though has no effect on external libraries debug output if corresponding debug target
is enabled

shogun
debug output (if any of internal SG__ debug targets is enabled) appears on standard output
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SMLR

debug output (if SMLR__ debug target is enabled) appears on standard output
libsvm

debug output (if LIBSVM debug target is enabled) appears on standard error

One of the possible redirections is Python’s StringIO class. Instance of such class can be added to the
handlers and queried later on for the information to be dumped to a file later on. It is useful if output path
is specified at run time, thus it is impossible to redirect verbose or debug from the start of the program:

>>> import sys
>>> from mvpa.base import verbose
>>> from StringIO import StringIO

>>> stringout = StringIO()

>>> verbose.handlers = [sys.stdout, stringout]
>>> verbose.level = 3

>>>

>>> verbose(l, ’'msgl’)

msgl

>>> out_prefix='/tmp/’

>>>

>>> verbose (2, 'msg2’)
msg2

o) o3

>>> # open (’%sverbose.log’ % out_prefix, ’‘w’).write(stringout.getvalue())
>>> print stringout.getvalue (),
msgl
msg2
>>>

8.2.2 Verbose Messages

Primarily for a user of PyMVPA to provide information about the progress of their scripts. Such messages are
printed out if their level specified as the first parameter to verbose function call is less than specified. There are
two easy ways to specify verbosity level:

e command line: you can use opt.verbose for precrafted command line option for to give facility to change it
from your script (see examples)
¢ environment variable MVPA_VERBOSE

* code: verbose.level property
The following verbosity levels are supported:

nothing besides errors

high level stuff — top level operation or file operations
cmdline handling

n.a.

A WD = O

computation/algorithm relevant thing

8.2.3 Warning Messages

Reported by PyYMVPA if something goes a little unexpected but not critical. By default they are printed just once
per occasion, i.e. once per piece of code where it is called. Following environment variables control the behavior
of warnings:

* MVPA_WARNINGS_COUNT =<int> controls for how many invocations of specific warning it gets
printed (default behavior is 1 for once). Specification of negative count results in all invocations being
printed, and value of 0 obviously suppresses the warnings
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* MVPA_WARNINGS_SUPPRESS analogous to MVPA_WARNINGS_COUNT =0 it resultant behavior

* MVPA_WARNINGS_BT =<int> controls up to how many lines of traceback is printed for the warnings

In python code, invocation of warning with argument bt = True enforces printout of traceback whenever warn-
ing tracebacks are disabled by default.

8.2.4 Debug Messages

Debug messages are used to track progress of any computation inside PyMVPA while the code run by python with-
out optimization (i.e. without —O switch to python). They are specified not by the level but by some id usually spe-
cific for a particular PyYMVPA routine. For example RFEC id causes debugging information about Recursive Fea-
ture Elimination call to be printed (See misc module sources for the list of all ids, or print debug. registered

property).

Analogous to verbosity level there are two easy ways to specify set of ids to be enabled (reported):

e command line: you can use optDebug for precrafted command line option to provide it from your script
(see examples). If in command line if optDebug is used, -d 1ist is given, PYMVPA will print out list of
known ids.

* environment: variable MVPA_DEBUG can contain comma-separated list of ids or python regular expres-
sions to match multiple ids. Thus specifying MVPA_DEBUG =CLF. * would enable all ids which start with
CLF, and MVPA_DEBUG =.* would enable all known ids.

* code: debug.active property (e.g. debug.active = [ 'RFEC’, ’CLF’ 1)

Besides printing debug messages, it is also possible to print some metric. You can define new metrics or select
predefined ones:

vmem
(Linux specific): amount of virtual memory consumed by the task

pid
(Linux specific): PID of the process
reltime
How many seconds passed since previous debug printout
asctime
Time stamp
tb  Traceback (modulel:line_numberl [, line_number2...]>module2:line_number..)
where this debug statement was requested
tbc

Concise traceback printout — prefix common with the previous invocation is replaced with . . .

To enable list of metrics you can use MVPA_DEBUG_METRICS environment variable to list desired metric
names comma-separated. If ALL is provided, it enables all the metrics.

As it was mentioned earlier, debug messages are printed only in non-optimized python invocation. That was done
to eliminate any slowdown introduced by such ‘debugging’ output, which might appear at some computational
bottleneck places in the code.

Some of the debug ids are defined to facilitate additional checking of the validity of the analysis. Their debug ids a
prefixed by CHECK_. E.g. CHECK_RETRAIN id would cause additional checking of the data in retraining phase.
Such additional testing might spot out some bugs in the internal logic, thus enabled when full test suite is ran.
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8.3 Additional Little Helpers

8.3.1 Random Number Generation

To facilitate reproducible troubleshooting, a seed value of random generator of NumPy can be provided in debug
mode (python is called without —O) via environment variable MVPA_SEED =<ins>. Otherwise it gets seeded
with random integer which can be displayed with debug id RANDOM e.g.:

> MVPA_SEED=123 MVPA_DEBUG=RANDOM python test_clf.py
[RANDOM] DBG: Seeding RNG with 123

> MVPA_DEBUG=RANDOM python test_clf.py
[RANDOM] DBG: Seeding RNG with 1447286079

8.3.2 Unittests at a Grasp

If it is needed to just quickly grasp through all unittests without making them to test multiple classifiers (imple-
mented with sweeparg), define environmental variable MVPA_TESTS_QUICK e.g.:

> MVPA_WARNINGS_SUPPRESS=no MVPA_TESTS_QUICK=yes python test_clf.py

Ran 15 tests in 0.845s

Some tests are not 100% deterministic as they operate on random data (e.g. the performance of a randomly
initialized classifier). Therefore, in some cases, specific unit tests might fail when running the full test bat-
tery. To exclude these test cases (and only those where non-deterministic behavior immanent) one can use the
MVPA_TESTS_LABILE configuration and set it to ‘off’.

8.3.3 Others

(to be written)

8.4 FSL Bindings

PyMVPA contains a few little helpers to make interfacing with FSL easier. The purpose of these helpers is to
increase the efficiency when doing an analysis by (re)using useful information that is already available from some
FSL output. FSL usually stores most interesting information in the NIfTI format. Therefore it can be easily
imported into PyYMVPA using PyNIfTI. However, some information is stored in textfiles, e.g. estimated motion
correction parameters and FEAT’s three-column custom EV files. PyYMVPA provides import and export helpers
for both of them (among other stuff like a MELODIC results import helper). Here is an example how the McFlirt
parameter output can be used to perform motion-aware data detrending:

>>> from os import path

>>> import numpy as N

>>>

>>> # some dummy dataset

>>> from mvpa.datasets import Dataset

>>> ds = Dataset (samples=N.random.normal (size=(19, 3)), labels=1)
>>>

>>> # load motion correction output

>>> from mvpa.misc.fsl.base import McFlirtParams

>>> mc = McFlirtParams (path.join(’data’, ’"bold_mc.par’))
>>>
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>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

# simple plot using pylab (use pylab.show() or pylab.savefig()
# afterwards)
mc.plot ()

# detrend some dataset with mc params as additonal regressors
from mvpa.datasets.miscfx import detrend

res = detrend(ds, model=’'regress’, opt_reg=mc.toarray())

# ’res’ contains all regressors and their associated weights

All FSL bindings are located in the mvpa.misc.fsl module.

8.4.

FSL Bindings
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CHAPTER
NINE

FULL EXAMPLES

Each of the examples in this section is a stand-alone script containing all necessary code to run some analysis. All
examples are shipped with PYMVPA and can be found in the doc/examples/ directory in the source package. This
directory might include some more special-interest examples which are not listed here.

Some examples need to access a sample dataset available in the data/ directory within the root of the PyMVPA
hierarchy, and thus have to be invoked directly from PyMVPA root (e.g. doc/examples/searchlight_2d.py). Alter-
natively, one can download a full example dataset, which is explained in the next section.

9.1 Example fMRI Dataset

For an easy start with PyYMVPA an example fMRI dataset is provided. This is a single subject from a study
published by Haxby et al. (2001). This dataset has already been repeatedly reanalyzed since its first publication
(e.g. Hanson et al (2004) and O’Toole et al. (2005) ).

Note: The orginal authors of Haxby et al. (2001) hold the copyright of this dataset and made it available under
the terms of the Creative Commons Attribution-Share Alike 3.0 license.

The subset of the dataset that is available here has been converted into the NIfTT dataformat and is preprocessed
to a degree that should allow people without prior fMRI experience to perform meaningful analyses. Moreover, it
should not require further preprocessing with external tools.

All preprocessing has been performed using tools from FSL. Specifically, the 4D fMRI timeseries has been skull-
stripped and thresholded to zero-out non-brain voxels (using a brain outline estimate significantly larger than the
brain, to prevent removal of edge voxels actually covering brain tissue). The corresponding commandline call to
BET was:

bet bold bold_brain -F -f 0.5 -g 0

Afterwards the timeseries has been motion-corrected using MCFLIRT:

mcflirt -in bold_brain -out bold_mc -plots
The following files are available in the example fMRI dataset download (approx. 100 MB):

bold.nii.gz
The motion-corrected and skull-stripped 4D timeseries (1452 volumes with 40 x 64 x 64 voxels, correspond-
ing to a voxelsize of 3.5 x 3.75 x 3.75 mm and a volume repetition time of 2.5 seconds). The timeseries
contains all 12 runs of the original experiment, concatenated in a single file. Please note, that the timeseries
signal is not detrended.

bold_mc.par
The motion correction parameter output. This is a 6-column textfile with three rotation and three transla-
tion parameters respectively. This information can be used e.g. as additional regressors for motion-aware
timeseries detrending.
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mask.nii.gz
A binary mask with a conservative brain outline estimate, i.e. including some non-brain voxels to prevent
the exclusion of brain tissue.

attributes_literal.txt
A two-column textfile with the stimulation condition and the corresponding experimental run for each vol-
ume in the timeseries image. The labels a given in literal form (e.g. ‘face’).

attributes.txt
Similiar as attributes_literal.txt, but with the condition labels encoded as integers. This file is only provided
for earlier PyMVPA version, that could not handle /iteral labels.

Once downloaded and extracted (e.g. into a folder data/), the dataset can be easily loaded like this:

>>> attrs = SampleAttributes (’data/attributes_literal.txt’,

. literallabels=True)

>>> ds = NiftiDataset (samples='data/bold.nii.gz’,
labels=attrs.labels,
chunks=attrs.chunks,
labels_map=True,
mask=’data/mask.nii.gz’)

Note: The dataset used in the examples shipped with PyMVPA is actually a minimal version (posterior half of
a single brain slice) of this full dataset. After appropriately adjusting the path, it is possible to run several of the
examples on this full dataset.

9.2 Preprocessing

9.2.1 Simple preprocessing of event-related data using FSL EV3 design files

Events are defined using FSL’s EV3 format (onset, duration, intensity). For each event a number of volumes is
selected and the mean volume is computed. The selection method is a boxcar with defined length and offset from
the event onset (—boxlength, —boxoffset). The computed event data samples are written back to a NIfTI file using
the header information of the source timeseries.

Additonally a file listing the sample attributes (label, chunk) is created. All samples are assumed to be from the
same chunk, where the chunk id can be set using the —chunk option. If the source NIfTI data file contains more
than one chunk, one can be selected using the —chunklimits option. This will have the effect that linear detrending
(—detrend) will perform a separate fit for this chunk and will not simply remove a global trend.

>>> from mvpa.misc.fsl.base import FslEV3
>>> from mvpa.suite import =«
>>> from nifti.utils import time2vol

>>>

>>> def main():

>>> "o wrapped into a function call for easy profiling later on
>>> o

>>>

>>> parser.usage = """\

>>> [options] <NIfTI data> <output prefix> <EV file 1> [ <EV file 2> ... ]
>>> mwno\

>>> % sys.argv[0]

>>>

>>> parser.option_groups += [ opts.common, opts.box, opts.chunk]
>>> parser.option_list += [opt.tr, opt.detrend]

>>>

>>> (options, args) = parser.parse_args()

>>>

>>> if not len(args) >= 3:
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>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

parser.error ("Insufficient arguments.™)
sys.exit (1)

verbose (1, "Loading data")

# data filename
dfile = args|[0]

# output prefix
oprefix = args[1]
# list of EV files
evfiles = args([2:]

verbose (2, "Reading conditions from files")
evs = [ FslEV3(evfile) for evfile in evfiles ]

verbose (2, "Loading volume file 2s" % dfile)
nimg = NiftiImage (dfile)

verbose (1, "Preprocess data")
# force float32 to prevent unecessary upcasting of int to floaté64
data = nimg.data.astype(’ float32’)

if options.detrend:
if options.chunklimits == None:
verbose (2, "Linear detrending (whole dataset)")
data = detrend(data, axis=0)

else:
verbose (2, "Linear detrending (data chunk only)")
limits = [int (i) for i1 in options.chunklimits.split(’,’)]
if data[limits[0]:1limits[1],:].shape[0] == O:

raise ValueError, ’'Invalid chunklimit value [%s].” \

% options.chunklimits
# use limits to do a piecewise linear detrending (separate
# linear fit of the interesting chunk

data = detrend(data, axis=0, bp=limits)

verbose (2, "Convert onsets into volume ids")

# transform onset time into a volume id

onset_vols = [ time2vol (ev.onsets, options.tr, 0.0,
decimals = 0 ).astype(’int’) for ev in evs ]

verbose (2, "Compute EV samples")

labels []
chunks []
samples = []

print data.shape
# for each condition -> label
for label, onsets in enumerate (onset_vols):
# mean of all volumes in a window after each onset vol
samples.append (transformWithBoxcar (data,
onsets,
options.boxlength,
offset=options.boxoffset,
fx=N.mean) )
labels += [label] * len(onsets)
chunks += [options.chunk] * len (onsets)

# concatenate into a single array (assumes that each entry in

9.2. Preprocessing
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>>> # samples already is 4d which is true, because

>>> # transformWithBoxcar does it like that

>>> samples = N.concatenate (samples, axis=0)

>>>

>>> attrs = SampleAttributes ({’labels’: labels, ’chunks’: chunks})
>>>

>>> verbose (1, "Store results")

>>> NiftiImage (samples, nimg.header) .save (oprefix + /.nii.gz’)
>>> attrs.tofile(oprefix + ’.attrs.txt’)

>>>

>>>

>>> # if ran stand-alone

>>> if _ name_ == "_ _main_ ":

>>> main ()

See Also:

The full source code of this example is included in the PyMVPA source
(doc/examples/preproc_fsl_ev.py).

9.2.2 Visualization of Data Projection Methods

>>> from mvpa.misc.data_generators import noisy_2d_fx
>>> from mvpa.mappers.pca import PCAMapper

>>> from mvpa.mappers.svd import SVDMapper

>>> from mvpa.mappers.ica import ICAMapper

>>> from mvpa import cfg

>>>

>>> import pylab as P

>>> import numpy as N

>>> center = [10, 20]

>>> axis_range = 7

>>>

>>> def plotProjDir (mproj):

>>> p = mproj + N.array (center).T

>>>

>>> P.plot ([center[0], p[0,0]1], I[center[l], pl0,1]1], hold=True)
>>> P.plot ([center([0], p[l,0]1], I[center[l], pl[l,1]1], hold=True)
>>>

>>>

>>>

>>> mappers = {

>>> "PCA’ : PCAMapper (),

>>> "SVD’ : SVDMapper (),

>>> "ICA’ : ICAMapper (),

>>> }

>>> datasets = [

>>> noisy_2d_£fx (100, lambda x: x, [lambda x: x],

>>> center, noise_std=.5),

>>> noisy_2d_£fx (50, lambda x: x, [lambda x: x, lambda x: -x],
>>> center, noise_std=.5),

>>> noisy_2d_£fx (50, lambda x: x, [lambda x: x, lambda x: 0],
>>> center, noise_std=.5),

>>> ]

>>>

>>> ndatasets = len(datasets)

>>> nmappers = len (mappers.keys())

>>>

>>> P.figure (figsize=(8,8))
>>> fig =1
>>>

distribution

50 Chapter 9. Full Examples



PyMVPA Manual, Release 0.4.0

>>> for ds in datasets:

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

for mname, mapper in mappers.iteritems{():

mapper.train (ds)

dproj = mapper.forward(ds.samples)
mproj = mapper.proj
print mproj

P.subplot (ndatasets, nmappers, fig)
if fig <= 3:

P.title (mname)
P.axis ("equal’)

P.scatter (ds.samples[:, 0],
ds.samples[:, 1],
s=30, c=(ds.labels) = 200)
plotProjDir (mproj)
fig += 1

if cfg.getboolean (’examples’, ’'interactive’, True):
P.show ()

Output of the example:

9.2. Preprocessing
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See Also:

The full source code of this example is included in the PyMVPA source distribution (doc/examples/projections.py).

9.2.3 Simple Data-Exploration

Example showing some possibilities of data exploration (i.e. to ‘smell’ data).

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

import numpy as N

import pyl

from mvpa.
from mvpa
from mvpa
from mvpa.
from mvpa.

# load exa

ab as P

misc.plot import plotFeatureHist, plotSamplesDistance
import cfg

.datasets.nifti import NiftiDataset

misc.io import SampleAttributes
datasets.miscfx import zscore, detrend

mple fmri dataset

attr = SampleAttributes (’data/attributes.txt’)

ds = Nifti

Dataset (samples=’'data/bold.nii.gz’,
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>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

labels=attr.labels,
chunks=attr.chunks,
mask=’data/mask.nii.gz’)

# only use the first 5 chunks to save some cpu-cycles
ds = ds.selectSamples (ds.chunks < 5)

# take a look at the distribution of the feature values in all
# sample categories and chunks
plotFeatureHist (ds, perchunk=True, bins=20, normed=True,
x1im=(0, ds.samples.max()))
if cfg.getboolean (’examples’, ’'interactive’, True):
P.show ()

# next only works with floating point data
ds.setSamplesDType (' float’)

# look at sample similiarity

# Note, the decreasing similarity with increasing temporal distance
# of the samples

P.subplot (121)

plotSamplesDistance (ds, sortbyattr=’chunks’)

P.title(’Sample distances (sorted by chunks)’)

# similar distance plot, but now samples sorted by their
# respective labels, i.e. samples with same labels are plotted
# in adjacent columns/rows.
# Note, that the first and largest group corresponds to the
# ’rest’ condition in the dataset
P.subplot (122)
plotSamplesDistance (ds, sortbyattr=’labels’)
P.title(’ Sample distances (sorted by labels)’)
if cfg.getboolean(’examples’, ’'interactive’, True):
P.show ()

# z-score features individually per chunk

print ’Detrending data’

detrend(ds, perchunk=True, model=’regress’, polyord=2)
print ’'Z-Scoring data’

zscore (ds)

P.subplot (121)

plotSamplesDistance (ds, sortbyattr=’chunks’)
P.title('Distances: z-scored, detrended (sorted by chunks)’)
P.subplot (122)

plotSamplesDistance (ds, sortbyattr=’labels’)

P.title('Distances: z-scored, detrended (sorted by labels)’)
if cfg.getboolean(’examples’, ’'interactive’, True):
P.show ()

# XXX add some more, maybe show effect of preprocessing

Outputs of the example script. Data prior to preprocessing

9.2,

Preprocessing
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Sample distances |

sorted by chunks)

Sample distances (sorted by labels)
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Data after minimal preprocessing

Diﬂtrnms: z-scored, detrended (sorted by chunks)

5 K B & & 4

See Also:

F B B & & H

The full source code of this example is included in the PYMVPA source distribution (doc/examples/smellit.py).

9.3 Analysis

9.3.1 Tiny Example of a Full Cross-Validation

Very, very simple example showing a complete cross-validation procedure with no fancy additions whatsoever.

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

# get PyMVPA running
from mvpa.suite import =«

# load PyMVPA example dataset

attr = SampleAttributes (’data/attributes.txt’)

dataset = NiftiDataset (samples='data/bold.nii.gz’,
labels=attr.labels,
chunks=attr.chunks,
mask='data/mask.nii.gz’)

# do chunkswise linear detrending on dataset
detrend (dataset, perchunk=True, model=’linear’)

# zscore dataset relative to baseline (’‘rest’) mean
zscore (dataset, perchunk=True, baselinelabels=[0],
targetdtype='float32")

# select class 1 and 2 for this demo analysis
# would work with full datasets (just a little slower)
dataset = dataset.selectSamples (

>>> N.array ([l in [1, 2] for 1 in dataset.labels],
>>> dtype='"bool’))
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>>>

>>> # setup cross validation procedure, using SMLR classifier

>>> cv = CrossValidatedTransferError (

>>> TransferError (SMLR()),

>>> OddEvenSplitter())

>>> # and run it

>>> error = cv(dataset)

>>>

>>> print "Error for $%i-fold cross-validation on $%i-class problem: $£" \
>>> % (len(dataset.uniquechunks), len(dataset.uniquelabels), error)
See Also:

The full source code of this example is included in the PyMVPA source distribution (doc/examples/start_easy.py).

9.3.2 Compare SMLR to Linear SVM Classifier

Runs both classifiers on the the same dataset and compare their performance. This example also shows an example
usage of confusion matrices and how two classifers can be combined.

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

from mvpa.suite import =«

if _ _debug__:
debug.active.append(’ SMLR ")

# features of sample data
print "Generating samples..."
nfeat = 10000

nsamp = 100

ntrain = 90

goodfeat = 10

offset = .5

# create the sample datasets
sampl = N.random.randn (nsamp,nfeat)
sampl[:, :goodfeat] += offset

samp2 = N.random.randn (nsamp,nfeat)
samp2 [ :, :goodfeat] -= offset

# create the pymvpa training dataset from the labeled features
patternsPos = Dataset (samples=sampl[:ntrain,:], labels=1)
patternsNeg = Dataset (samples=samp2|[:ntrain,:], labels=0)
trainpat = patternsPos + patternsNeg

# create patters for the testing dataset

patternsPos = Dataset (samples=sampl [ntrain:,:], labels=1)
patternsNeg = Dataset (samples=samp2[ntrain:,:], labels=0)
testpat = patternsPos + patternsNeg

# set up the SMLR classifier
print "Evaluating SMLR classifier..."

>>> smlr = SMLR(fit_all_weights=True)

>>>

>>> # enable saving of the values used for the prediction

>>> smlr.states.enable (’'values’)

>>>

>>> # train with the known points

>>> smlr.train(trainpat)

>>>

>>> # run the predictions on the test values
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>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

pre = smlr.predict (testpat.samples)

# calculate the confusion matrix

smlr_confusion = ConfusionMatrix(
labels=trainpat.uniquelabels, targets=testpat.labels,
predictions=pre)

# now do the same for a linear SVM
print "Evaluating Linear SVM classifier...
lsvm = LinearNuSVMC (probability=1)

# enable saving of the values used for the prediction
lsvm.states.enable (' values’)

# train with the known points
lsvm.train (trainpat)

# run the predictions on the test values
pre = lsvm.predict (testpat.samples)

# calculate the confusion matrix

lsvm_confusion = ConfusionMatrix (
labels=trainpat.uniquelabels, targets=testpat.labels,
predictions=pre)

# now train SVM with selected features

print "Evaluating Linear SVM classifier with SMLR’s features..."

keepInd = (N.abs(smlr.weights) .mean (axis=1) !=0)

newtrainpat = trainpat.selectFeatures (keepInd, sort=False)

newtestpat = testpat.selectFeatures (keepInd, sort=False)

# train with the known points

lsvm.train (newtrainpat)

# run the predictions on the test values

pre = lsvm.predict (newtestpat.samples)

# calculate the confusion matrix

lsvm_confusion_sparse = ConfusionMatrix(
labels=newtrainpat.uniquelabels, targets=newtestpat.labels,
predictions=pre)

print "SMLR Percent Correct:\t%g%% (Retained %d/%d features)" % \
(smlr_confusion.percentCorrect,

(smlr.weights!=0) .sum(), N.prod(smlr.weights.shape))
print "linear-SVM Percent Correct:\t%gss" % \

(lsvm_confusion.percentCorrect)
print "linear-SVM Percent Correct (with ¢d features from SMLR) :\t%g%&" % \
(keepInd.sum (), lsvm_confusion_sparse.percentCorrect)

See Also:

The full source code of this example is included in the PyMVPA source distribution (doc/examples/smlir.py).

9.3.3 Classifier Sweep

This examples shows a test of various classifiers on different datasets.
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>>> from mvpa.suite import =«

>>>

>>> # no MVPA warnings during whole testsuite
>>> warning.handlers = []

>>>

>>> def main () :

>>>

>>> # fix seed or set to None for new each time

>>> N.random.seed (44)

>>>

>>>

>>> # Load Haxby dataset example

>>> haxbylpath = ’"data’

>>> attrs = SampleAttributes (os.path.join (haxbylpath,

>>> "attributes_literal.txt’))
>>> haxby8 = NiftiDataset (samples=os.path. join (haxbylpath,

>>> "bold.nii.qgz’),

>>> labels=attrs.labels,

>>> labels_map=True,

>>> chunks=attrs.chunks,

>>> mask=os.path. join (haxbylpath, ’'mask.nii.gz’),
>>> dtype=N.float32)

>>>

>>> # preprocess slightly

>>> rest_label = haxby8.labels_map[’rest’]

>>> detrend (haxby8, perchunk=True, model=’'linear’)

>>> zscore (haxby8, perchunk=True, baselinelabels=[rest_label],

>>> targetdtype='float32’)

>>> haxby8_no0 = haxby8.selectSamples (haxby8.labels != rest_label)
>>>

>>> dummy?2 = normalFeatureDataset (perlabel=30, nlabels=2,

>>> nfeatures=100,

>>> nchunks=6, nonbogus_features=[11, 10],
>>> snr=3.0)

>>>

>>> for (dataset, datasetdescr), clfs_ in \

>>> [

>>> ( (dummy?2,

>>> "Dummy 2-class univariate with 2 useful features out of 100"),
>>> clfs[:]),

>>> ((pureMultivariateSignal (8, 3),

>>> "Dummy XOR-pattern"),

>>> clfs[’non-linear’]),

>>> ( (haxby8_no0,

>>> "Haxby 8-cat subject 1"),

>>> clfs[’'multiclass’]),

>>> ]1:

>>> print "%s\n 2s" % (datasetdescr, dataset.summary (idhash=False))
>>> print " Classifier "\

>>> "$corr f#features\t train predict full"

>>> for clf in clfs_:

>>> print " %-40s: " % clf.descr,

>>> # Lets do splits/train/predict explicitely so we could track
>>> # timing otherwise could be just

>>> #cv = CrossValidatedTransferError (

>>> # TransferError (clf),

>>> # NFoldSplitter(),

>>> # enable_states=[’confusion’])

>>> #error = cv(dataset)

>>> #print cv.confusion

>>>

>>> # to report transfer error
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>>> confusion = ConfusionMatrix(labels_map=dataset.labels_map)
>>> times = []

>>> nf = []

>>> t0 = time.time ()

>>> clf.states.enable (' feature_ids’)

>>> for nfold, (training_ds, validation_ds) in \

>>> enumerate (NFoldSplitter () (dataset)):

>>> clf.train(training_ds)

>>> nf.append(len(clf.feature_ids))

>>> if nf[-1] ==

>>> break

>>> predictions = clf.predict(validation_ds.samples)

>>> confusion.add(validation_ds.labels, predictions)

>>> times.append([clf.training_time, clf.predicting_time])
>>> if nf[-1] == O0:

>>> print "no features were selected. skipped"

>>> continue

>>> tfull = time.time () — tO

>>> times = N.mean (times, axis=0)

>>> nf = N.mean (nf)

>>> # print "\n", confusion

>>> print "$5.11%% s—4d\t %.2fs $.2fs $.21fs"™ %\

>>> (confusion.percentCorrect, nf, times[0], times[1l], tfull)
>>>

>>>

>>> if _ name_ == "_ _main__ ":

>>> main ()

See Also:

The full source code of this example is included in the PyMVPA source distribution
(doc/examples/clfs_examples.py).

9.3.4 Minimal Searchlight Example

The term Searchlight refers to an algorithm that runs a scalar DatasetMeasure on all possible spheres
of a certain size within a dataset (that provides information about distances between feature locations). The
measure typically computed is a cross-validated transfer error (see CrossValidatedTransferError). The idea to use
a searchlight as a sensitivity analyzer on fMRI datasets stems from Kriegeskorte et al. (2006).

A searchlight analysis is can be easily performed. This examples shows a minimal draft of a complete analysis.

First import a necessary pieces of PYMVPA — this time each bit individually.

>>> from mvpa.datasets.masked import MaskedDataset

>>> from mvpa.datasets.splitter import OddEvenSplitter

>>> from mvpa.clfs.svm import LinearCSVMC

>>> from mvpa.clfs.transerror import TransferError

>>> from mvpa.algorithms.cvtranserror import CrossValidatedTransferError
>>> from mvpa.measures.searchlight import Searchlight

>>> from mvpa.misc.data_generators import normalFeatureDataset

>>>

For the sake of simplicity, let’s use a small artificial dataset.

>>> # overcomplicated way to generate an example dataset

>>> ds = normalFeatureDataset (perlabel=10, nlabels=2, nchunks=2,
>>> nfeatures=10, nonbogus_features=[3, 7],
>>> snr=5.0)

>>> dataset = MaskedDataset (samples=ds.samples, labels=ds.labels,
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>>> chunks=ds.chunks)
>>>

Now it only takes three lines for a searchlight analysis.

>>> # setup measure to be computed in each sphere (cross-validated
>>> # generalization error on odd/even splits)
>>> cv = CrossValidatedTransferError (

>>> TransferError (LinearCSVMC () ),

>>> OddEvenSplitter())

>>>

>>> # setup searchlight with 5 mm radius and measure configured above
>>> sl = Searchlight (cv, radius=5)

>>>

>>> # run searchlight on dataset

>>> sl _map = sl (dataset)

>>>

>>> print ’'Best performing sphere error:’, max(sl_map)
>>>

If this analysis is done on a fMRI dataset using NiftiDataset the resulting searchlight map (s/_map) can be mapped
back into the original dataspace and viewed as a brain overlay. Another example shows a typical application of
this algorithm.

See Also:

The full source code of this example is included in the PyMVPA source distribution
(doc/examples/searchlight_minimal.py).

9.3.5 Searchlight on fMRI data

The example shows how to run a searchlight analysis on the example fMRI dataset that is shipped with PyYMVPA.
As always, we first have to import PYMVPA.

>>> from mvpa.suite import =«
>>>

As searchlight analyses are usually quite expensive in term of computational ressources, we are going to enable
some progress output, to entertain us while we are waiting.

>>> # enable debug output for searchlight call
>>> if _ debug__:

>>> debug.active += ["SLC"]

>>>

The next section simply loads the example dataset and performs some standard preprocessing steps on it.

>>> #

>>> # load PyMVPA example dataset

>>> #

>>> attr = SampleAttributes(’data/attributes.txt’)
>>> dataset = NiftiDataset (samples='data/bold.nii.gz’,
>>> labels=attr.labels,

>>> chunks=attr.chunks,

>>> mask="data/mask.nii.gz’)
>>>

>>> #

>>> # preprocessing

>>> #

>>>
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>>> # do chunkswise linear detrending on dataset
>>> detrend(dataset, perchunk=True, model=’linear’)

>>>

>>> # only use ’rest’, ’“house’ and ’scrambled’ samples from dataset
>>> dataset = dataset.selectSamples (

>>> N.array([ 1 in [0,2,6] for 1 in dataset.labels],
>>> dtype='bool’))

>>>

>>> # zscore dataset relative to baseline (’rest’) mean

>>> zscore (dataset, perchunk=True, baselinelabels=[0], targetdtype=’float32’)
>>>

>>> # remove baseline samples from dataset for final analysis

>>> dataset = dataset.selectSamples(N.array ([l '= 0 for 1 in dataset.labels],
>>> dtype='"bool”))
>>>

But now for the interesting part: Next we define the measure that shall be computed for each sphere. Theoretically,
this can be anything, but here we choose to compute a full leave-one-out cross-validation using a linear Nu-SVM
classifier.

>>> #

>>> # Run Searchlight

>>> #

>>>

>>> # choose classifier

>>> clf = LinearNuSVMC ()

>>>

>>> # setup measure to be computed by Searchlight

>>> # cross-validated mean transfer using an odd-even dataset splitter
>>> cv = CrossValidatedTransferError (TransferError (clf),
>>> NFoldSplitter())
>>>

Finally, we run the searchlight analysis for three different radii, each time computing an error for each sphere.
To achieve this, we simply use the Searchlight class, which takes any processing object and a radius as
arguments. The processing object has to compute the intended measure, when called with a dataset. The
Searchlight object will do nothing more than generating small datasets for each sphere, feeding it to the
processing object and storing its result.

After the errors are computed for all spheres, the resulting vector is then mapped back into the original fMRI
dataspace and plotted.

>>> # setup plotting
>>> fig = 0
>>> P.figure(figsize=(12,4))

>>>

>>>

>>> for radius in [1,5,107:

>>> # tell which one we are doing

>>> print "Running searchlight with radius: %i ..." % (radius)
>>>

>>> # setup Searchlight with a custom radius

>>> # radius has to be in the same unit as the nifti file’s pixdim
>>> # property.

>>> sl = Searchlight (cv, radius=radius)

>>>

>>> # run searchlight on example dataset and retrieve error map
>>> sl_map = sl (dataset)

>>>

>>> # map sensitivity map into original dataspace

>>> orig_sl_map = dataset.mapReverse (N.array(sl_map))

>>> masked_orig_sl_map = N.ma.masked_array(orig_sl_map,
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>>> mask=orig_sl_map == 0)
>>>

>>> # make a new subplot for each classifier

>>> fig += 1

>>> P.subplot (1,3,£fiqg)

>>>

>>> P.title('Radius %1’ % radius)

>>>

>>> P.imshow (masked_orig_sl_mapl[O0],

>>> interpolation=’'nearest’,

>>> aspect=1.25,

>>> cmap=P.cm.autumn)

>>> P.clim(0.5, 0.65)

>>> P.colorbar (shrink=0.6)

>>>

>>>

>>> if cfg.getboolean (’examples’, ’interactive’, True):
>>> # show all the cool figures

>>> P.show ()

See Also:

The full source code of this example is included in the PyMVPA source distribution
(doc/examples/searchlight _2d.py).

9.3.6 Sensitivity Measure

Run some basic and meta sensitivity measures on the example fMRI dataset that comes with PyYMVPA and plot the
computed featurewise measures for each. The generated figure shows sensitivity maps computed by six sensitivity
analyzers.

We start by loading PYMVPA and the example fMRI dataset.

>>> from mvpa.suite import =«

>>>

>>> # load PyMVPA example dataset

>>> attr = SampleAttributes (’data/attributes.txt’)

>>> dataset = NiftiDataset (samples='data/bold.nii.gz’,

>>> labels=attr.labels,

>>> chunks=attr.chunks,

>>> mask="data/mask.nii.gz’)
>>>

As with classifiers it is easy to define a bunch of sensitivity analyzers. It is usually possible to simply call getSen-
sitivityAnalyzer() on any classifier to get an instance of an appropriate sensitivity analyzer that uses this particular
classifier to compute and extract sensitivity scores.

>>> # define sensitivity analyzer

>>> sensanas = {

>>> "a) ANOVA’: OneWayAnova (transformer=N.abs),

>>> "b) Linear SVM weights’: LinearNuSVMC () .getSensitivityAnalyzer (
>>> transformer=N.abs),
>>> "c¢) I-RELIEF’: IterativeRelief (transformer=N.abs),

>>> "d) Splitting ANOVA (odd-even)’ :

>>> SplitFeaturewiseMeasure (OneWayAnova (transformer=N.abs),

>>> OddEvenSplitter()),

>>> "e) Splitting SVM (odd-even)’:

>>> SplitFeaturewiseMeasure (

>>> LinearNuSVMC () .getSensitivityAnalyzer (transformer=N.abs),
>>> OddEvenSplitter()),

>>> "f) I-RELIEF Online’:
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>>> IterativeReliefOnline (transformer=N.abs),

>>> "g) Splitting ANOVA (nfold)’:

>>> SplitFeaturewiseMeasure (OneWayAnova (transformer=N.abs),

>>> NFoldSplitter()),

>>> "h) Splitting SVM (nfold)’:

>>> SplitFeaturewiseMeasure (

>>> LinearNuSVMC () .getSensitivityAnalyzer (transformer=N.abs),
>>> NFoldSplitter()),

>>> }

>>>

Now, we are performing some a more or less standard preprocessing steps: detrending, selecting a subset of the
experimental conditions, normalization of each feature to a standard mean and variance.

>>> # do chunkswise linear detrending on dataset
>>> detrend(dataset, perchunk=True, model=’linear’)

>>>

>>> # only use ’rest’, ’shoe’ and ’bottle’ samples from dataset

>>> dataset = dataset.selectSamples (

>>> N.array([ 1 in [0,3,7] for 1 in dataset.labels],
>>> dtype='"bool’))

>>>

>>> # zscore dataset relative to baseline (’rest’) mean

>>> zscore (dataset, perchunk=True, baselinelabels=[0], targetdtype=’float32’)
>>>

>>> # remove baseline samples from dataset for final analysis

>>> dataset = dataset.selectSamples(N.array ([l !'= 0 for 1 in dataset.labels],
>>> dtype="bool’))
>>>

Finally, we will loop over all defined analyzers and let them compute the sensitivity scores. The resulting vectors
are then mapped back into the dataspace of the original fMRI samples, which are then plotted.

>>> fig = 0
>>> P.figure(figsize=(14,38))

>>>

>>> keys = sensanas.keys|()

>>> keys.sort ()

>>>

>>> for s in keys:

>>> # tell which one we are doing

>>> print "Running %s ..." $ (s)

>>>

>>> # compute sensitivies

>>> # I-RELIEF assigns zeros, which corrupts voxel masking for pylab’s
>>> # imshow, so adding some epsilon :)

>>> smap = sensanas|[s] (dataset)+0.00001

>>>

>>> # map sensitivity map into original dataspace
>>> orig_smap = dataset.mapReverse (smap)

>>> masked_orig_smap = N.ma.masked_array (orig_smap, mask=orig_smap == 0)
>>>

>>> # make a new subplot for each classifier

>>> fig += 1

>>> P.subplot (3,3, fiqg)

>>>

>>> P.title(s)

>>>

>>> P.imshow (masked_orig_smap[0],

>>> interpolation='nearest’,

>>> aspect=1.25,

>>> cmap=P.cm.autumn)
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>>>

>>> # uniform scaling per base sensitivity analyzer
>>> if s.count (" ANOVA’) :

>>> P.clim(0, 0.4)

>>> elif s.count (/SVM’):

>>> P.clim (0, 0.055)

>>> else:

>>> pass

>>>

>>> P.colorbar (shrink=0.6)

>>>

>>> if cfg.getboolean (’examples’, ’interactive’, True):
>>> # show all the cool figures

>>> P.show ()

>>>

Output of the example analysis:

a) ANOVA b) Linear SVM weights c) I-RELIEF
T T T T ™ ofF T T T ™ oOfF T T T T

0 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35
e) Splitting SVM (odd-even) f) I-RELIEF Online
o —— [ e ————

0 5 10 15 20 25 30 35

d) Splitting ANOVA (odd-even)
0 u T T T T T

0 5 10 15 20 25 30 35
g) Splitting ANOVA (nfold) h) Splitting SVM (nfold)
Ot T T T T T 3 0‘ T T T T T =

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

See Also:

The full source code of this example is included in the PyYMVPA source distribution (doc/examples/sensanas.py).

9.3.7 Classification of SVD-mapped Datasets

Demonstrate the usage of a dataset mapper performing data projection onto singular value components within a
cross-validation — for any clasifier.

>>> from mvpa.suite import =«

>>>

>>> if _ debug__ :

>>> debug.active += ["CROSSC"]

>>>

>>> #

>>> # load PyMVPA example dataset

>>> #

>>> attr = SampleAttributes (’/data/attributes.txt’)

>>> dataset = NiftiDataset (samples='data/bold.nii.gz’,
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>>> labels=attr.labels,

>>> chunks=attr.chunks,

>>> mask="data/mask.nii.gz’)

>>>

>>> #

>>> # preprocessing

>>> #

>>>

>>> # do chunkswise linear detrending on dataset

>>> detrend(dataset, perchunk=True, model=’linear’)

>>>

>>> # only use ’‘rest’, ’‘cats’ and ’'scissors’ samples from dataset
>>> dataset = dataset.selectSamples (

>>> N.array([ 1 in [0,4,5] for 1 in dataset.labels],
>>> dtype="bool’”))

>>>

>>> # zscore dataset relative to baseline (’rest’) mean

>>> zscore (dataset, perchunk=True, baselinelabels=[0], targetdtype=’float32’)
>>>

>>> # remove baseline samples from dataset for final analysis

>>> dataset = dataset.selectSamples(N.array ([l '= 0 for 1 in dataset.labels],
>>> dtype="bool’))

>>> print dataset

>>>

>>> # Specify the base classifier to be used

>>> # To parametrize the classifier to be used

>>> # Clf = lambda »args:LinearCSVMC (C=-10, *args)

>>> # Just to assign a particular classifier class

>>> Clf = LinearCSVMC

>>>

>>> # define some classifiers: a simple one and several classifiers with
>>> # built-in SVDs

>>> clfs = [("All orig.\nfeatures (%7/)’ % dataset.nfeatures, Clf()),
>>> ("A11 Comps\n(%i)’ % (dataset.nsamples \

>>> - (dataset.nsamples / len(dataset.uniquechunks)),),
>>> MappedClassifier (Clf (), SVDMapper())),
>>> ("First 5\nComp.’, MappedClassifier (C1lf (),

>>> SVDMapper (selector=range(5)))),

>>> ("First 30\nComp.’, MappedClassifier (Clf(),

>>> SVDMapper (selector=range (30)))),

>>> ("Comp.\n6-30", MappedClassifier (Clf (),

>>> SVDMapper (selector=range (5,30)))) ]

>>>

>>>

>>> # run and visualize in barplot

>>> results = []

>>> labels = []

>>>

>>> for desc, clf in clfs:

>>> print desc

>>> cv = CrossValidatedTransferError (

>>> TransferError (clf),

>>> NFoldSplitter (),

>>> enable_states=['results’])

>>> cv (dataset)

>>>

>>> results.append(cv.results)

>>> labels.append (desc)

>>>

>>> plotBars (results, labels=labels,

>>> title=’'Linear C-SVM classification (cats vs. scissors)’,
>>> yvlabel='"Mean classification error (N-1 cross-validation, 12-fold)’,
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>>> distance=0.5)

>>>

>>> if cfg.getboolean (’examples’, ’'interactive’, True):
>>> P.show ()

>>>

Output of the example analysis:

Linear C-SVM classification (cats vs. scissors)

T T T T T

0.3f 4
0.2 4
0.0

All orig. All Comps First 5 First 30 Comp.
features (530)  (198) Comp. Comp. 6-30

o
o

o
w1
T

validation, 12-fold)

o
N
T

Mean classification error (N-1 cross

See Also:
The full source code of this example is included in the PyMVPA source distribution (doc/examples/svdclf.py).

9.3.8 Monte-Carlo testing of Classifier-based Analyses

It is often desirable to be able to make statements like “Performance is significantly above chance-level”.
PyMVPA supports NULL (aka HO) hypothesis testing for transfer errors and all dataset measures. In both cases
the object computing the measure or transfer error takes an optional constructor argument null_dist. The value
of this argument is an instance of some NullDist_ estimator. If NULL distribution is luckily a-priori known, it is
possible to reuse any distribution specified in scipy.stats module. If the parameters of the distribution are known,
such distribution instance can be used to initialize FixedNullDist instance to be specified in null_dist parameter.

However, as with other applications of statistics in classifier-based analyses there is the problem that we do not
know the distribution of a variable like error or performance under the NULL hypothesis to assign the adored
p-values, i.e. the probability of a result given that there is no signal. Even worse, the chance-level or guess
probability of a classifier depends on the content of a validation dataset, e.g. balanced or unbalanced number of
samples per label and total number of labels).

One approach to deal with this situation is to estimate the NULL distribution. A generic way to do this are
permutation tests (aka Monte Carlo, Nichols et al. (2006)). Then NULL distribution is estimated by computing
some measure multiple times using datasets with no relevant signal in them. These datasets are generated by
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permuting the labels of all samples in the training dataset each time the measure is computed, and therefore
randomizing/removing any possible relevant information.

Given the measures computed using the permuted datasets one can now determine the probability of the empirical
measure (i.e. the one computed from the original training dataset) under the no signal condition. This is simply the
fraction of measures from the permutation runs that is larger or smaller than the emprical (depending on whether
on is looking at performances or errors).

If the family of the distribution is known (e.g. Gaussian/Normal) and provided in dist_class parameter of MC-
NullDist, then permutation tests done by MCNullDist allow to determine the distribution parameters. Under strong
assumption of Gaussian distribution, 20-30 permutations should be sufficient to get sensible estimates of the dis-
tribution parameters. If no distribution family can be assumed, with a larger number of permutations, derivation of
CDF out of population is possible with Nonparametric probability function (which is the default value of dist_class
for MCNullDist). If null_dist is provided, the respective TransferError or DatasetMeasure instance will
automatically use it to estimate the NULL distribution and store the associated p-values in a state variable named
null_prob.

>>> # lazy import

>>> from mvpa.suite import =«

>>>

>>> # some example data with signal

>>> train = normalFeatureDataset (perlabel=50, nlabels=2, nfeatures=3,

>>> nonbogus_features=[0,1], snr=3, nchunks=1)
>>>
>>> define class to estimate NULL distribution of errors

#
>>> # use left tail of the distribution since we use MeanMatchFx as error
>>> # function and lower 1is better
>>> # in a real analysis the number of permutations should be MUCH larger

>>> terr = TransferError (clf=SMLR(),

>>> null_dist=MCNullDist (permutations=10,
>>> tail=’"left’))
>>>

>>> # compute classifier error on training dataset (should be low :)

>>> err = terr(train, train)

>>> print 'Error on training set:’, err

>>>

>>> # check that the result is highly significant since we know that the
>>> # data has signal

>>> print ’'Corresponding p-value: ’terr.null_prob

See Also:

The full source code of this example is included in the PyMVPA source distribution
(doc/examples/permutation_test.py).

9.3.9 Determine the Distribution of some Variable

This is an example demonstrating discovery of the distribution facility.

>>> from mvpa.suite import =«

>>>

>>> verbose.level = 2

>>> if _ debug___:

>>> # report useful debug information for the example
>>> debug.active += [/ STAT’, ’STAT_ ']

>>>

>>> #

>>> # Figure for just normal distribution

>>> #

>>>

>>> # generate random signal from normal distribution
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>>> verbose(l, "Random signal with normal distribution™)

>>> data = N.random.normal (size=(1000,1))

>>>

>>> # find matching distributions

>>> # NOTE: since kstest 1is broken in older versions of scipy

>>> # p-roc testing is done here, which aims to minimize
>>> # false positives/negatives while doing HO-testing
>>> test = "p-roc’

>>> figsize = (15,10)

>>> verbose(l, "Find matching datasets")

>>> matches = matchDistribution(data, test=test, p=0.05)

>>>

>>> P.figure(figsize=figsize)

>>> P.subplot (2,1,1)

>>> plotDistributionMatches (data, matches, legend=1, nbest=5)
>>> P.title(’Normal: 5 best distributions’)

>>>

>>> P.subplot (2,1,2)

>>> plotDistributionMatches (data, matches, nbest=5, p=0.05,

>>> tail="any’, legend=4)
>>> P.title(’'Accept regions for two-tailed test’)
>>>

>>> #

>>> # Figure for fMRI data sample we have

>>> #

>>> verbose(l, "Load sample fMRI dataset")

>>> attr = SampleAttributes (’data/attributes.txt’)

>>> dataset = NiftiDataset (samples='data/bold.nii.gz’,

>>> labels=attr.labels,

>>> chunks=attr.chunks,

>>> mask='data/mask.nii.gz’)

>>> # select random voxel

>>> dataset = dataset.selectFeatures

>>> [int (N.random.uniform() rdataset .nfeatures)])
>>>

>>> verbose (2, "Minimal preprocessing to remove the bias per each voxel")
>>> detrend(dataset, perchunk=True, model=’linear’)

>>> zscore (dataset, perchunk=True, baselinelabels=[0],

>>> targetdtype='float32")

>>>

>>> # on all voxels at once, just for the sake of visualization
>>> data = dataset.samples.ravel ()

>>> verbose (2, "Find matching distribution™)

>>> matches = matchDistribution(data, test=test, p=0.05)

>>>

>>> P.figure(figsize=figsize)

>>> P.subplot (2,1,1)

>>> plotDistributionMatches (data, matches, legend=1, nbest=5)
>>> P.title (' Random voxel: 5 best distributions’)

>>>

>>> P.subplot (2,1,2)

>>> plotDistributionMatches (data, matches, nbest=5, p=0.05,

>>> tail="any’, legend=4)

>>> P.title(’'Accept regions for two-tailed test’)

>>>

>>> if cfg.getboolean (’examples’, ’interactive’, True):
>>> # show the cool figure

>>> P.show ()

>>>

Example output for a random voxel is
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Random voxel: 5 best distributions
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See Also:

The full source code of this example is included in the PyMVPA source distribution
(doc/examples/match_distribution.py).

9.4 Visualization

9.4.1 ERP/ERF-Plots

Example demonstrating an ERP-style plots. Actually, this code can be used to plot various time-locked data types.
This example uses MEG data and therefore generates an ERF-plot.

>>> from mvpa.suite import =«

>>>

>>> # load data

>>> meg = TuebingenMEG (os.path.join(’data’, ’'tueb_meg.dat.gz’))

>>>

>>>

>>> # Define plots for easy feeding into plotERP
>>> plots = []

>>> colors = ['r’, 'b’, "g’]

>>>

>>> # figure out pre-stimulus onset interval

>>> t0 = -meg.timepoints[0]

>>>

>>> plots = [ {’label’ : meg.channelids[i],

>>> "color’” : colors([il],

>>> "data’ : meg.datal:, i, :1}

>>> for i in xrange(len(meg.channelids)) |
>>>

>>> # Common arguments for all plots

>>> cargs = {
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>>> "SR’ : meg.samplingrate,

>>> "pre_onset’ : tO0,

>>> # Plot only 50ms before and 100ms after the onset since we have
>>> # just few trials

>>> "pre’ : 0.05, ’'post’ : 0.1,

>>> # Plot all ’errors’ in different degrees of shadings
>>> "errtype’ : [’ste’, ’'ci95", ’std’],

>>> # Set to None if legend manages to obscure the plot
>>> "legend’ : ’best’,

>>> "alinewidth’ : 1 # assume that we like thin lines
>>> }

>>>

>>> # Create a new figure

>>> fig = P.figure(figsize=(12, 8))

>>>

>>> # Following plots are plotted inverted (negative up) for the

>>> # demonstration of this capability and elderly convention for ERP
>>> # plots. That is controlled with ymult (negative gives negative up)
>>>

>>>

>>> # Plot MEG sensors

>>>

>>> # frame_on=False guarantees abent outside rectangular axis with
>>> # labels. plotERP recreates its own axes centered at (0,0)

>>> ax = fig.add_subplot (2, 1, 1, frame_on=False)

>>> plotERPs (plots[:2], ylabel='S$pT$’, ymult=-1lel2, ax=ax, =*+*cargs)
>>>

>>> # Plot EEG sensor

>>> ax = fig.add_subplot (2, 1, 2, frame_on=False)
>>> plotERPs (plots[2:3], ax=ax, ymult=-le6, =*=*cargs)
>>>

>>> # Additional example: plotting a single ERP on an existing plot
>>> # without drawing axis:

>>> #

>>> # plotERP (data=meg.datal:, 0, :], SR=meg.samplingrate, pre=pre,
>>> # pre_mean=pre, errtype=errtype, ymult=-1.0)

>>>

>>> if cfg.getboolean (’examples’, ’interactive’, True):

>>> # show all the cool figures

>>> P.show ()

>>>

The ouput of the provided example is presented below. It is not a very fascinating one due to the limited number
of samples provided in the dataset shipped within the toolbox.

9.4. Visualization 69



PyMVPA Manual, Release 0.4.0

See Also:

time (s)
|| 0.1

time (s)
0.1

The full source code of this example is included in the PyMVPA source distribution (doc/examples/erp_plot.py).

9.4.2 Simple Plotting of Classifier Behavior

This example runs a number of classifiers on a simple 2D dataset and plots the decision surface of each classifier.

First compose some sample data — no PyMVPA involved.

>>> import numpy as N

>>>

>>> # set up the labeled data

>>> # two skewed 2-D distributions

>>> num_dat = 200

>>> dist = 4

>>> feat_pos=N.random.randn (2, num_dat)
>>> feat_pos[0, :] x= 2.

>>> feat_pos[l, :] = .5

>>> feat_pos[0, :] += dist

>>> feat_neg=N.random.randn (2, num_dat)
>>> feat_neg[0, :] = .5

>>> feat_neg[l, :] *= 2.

>>> feat_neg[0, :] —-= dist

>>>

>>> # set up the testing features
>>> x1 = N.linspace(-10, 10, 100)
>>> x2 = N.linspace(-10, 10, 100)
>>> x,y = N.meshgrid(xl, x2);

>>> feat_test = N.array((N.ravel(x), N.ravel(y)))

>>>

Now load PyMVPA and convert the data into a proper Dataset.
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>>> from mvpa.suite import =«

>>>

>>> # create the pymvpa dataset from the labeled features
>>> patternsPos = Dataset (samples=feat_pos.T, labels=1)
>>> patternsNeg = Dataset (samples=feat_neg.T, labels=0)
>>> patterns = patternsPos + patternsNeg

>>>

This demo utilizes a number of classifiers. The instantiation of a classifier involves almost no runtime costs, so it
is easily possible compile a long list, if necessary.

>>> # set up classifiers to try out
>>> clfs = {/Ridge Regression’: RidgeReg(),

>>> "Linear SVM’: LinearNuSVMC (probability=1,

>>> enable_states=['probabilities’]),
>>> "RBE SVM’: RbfNuSVMC (probability=1,

>>> enable_states=['probabilities’]),
>>> "SMLR’ : SMLR(Im=0.01),

>>> "Logistic Regression’: PLR(criterion=0.00001),

>>> "k—Nearest—-Neighbour’: kNN (k=10) }

>>>

Now we are ready to run the classifiers. The folowing loop trains and queries each classifier to finally generate a
nice plot showing the decision surface of each individual classifier.

>>> # loop over classifiers and show how they do
>>> fig = 0

>>>

>>> # make a new figure

>>> P.figure(figsize=(8,12))

>>> for c in clfs:

>>> # tell which one we are doing

>>> print "Running %s classifier..." % (c)

>>>

>>> # make a new subplot for each classifier

>>> fig += 1

>>> P.subplot (3,2, fiqg)

>>>

>>> # plot the training points

>>> P.plot (feat_pos([0, :], feat_pos[l, :1, "r.")

>>> P.plot (feat_negl0, :]1, feat_negll, :1, "b.")

>>>

>>> # select the clasifier

>>> clf = clfs|c]

>>>

>>> # enable saving of the values used for the prediction
>>> clf.states.enable (' values’)

>>>

>>> # train with the known points

>>> clf.train(patterns)

>>>

>>> # run the predictions on the test values

>>> pre = clf.predict (feat_test.T)

>>>

>>> # if ridge, use the prediction, otherwise use the values
>>> if == 'Ridge Regression’ or c¢ == ’'k-Nearest-Neighbour’:
>>> # use the prediction

>>> res = N.asarray (pre)

>>> elif ¢ == ’'Logistic Regression’:

>>> # get out the values used for the prediction

>>> res = N.asarray(clf.values)
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>>> elif ¢ == ’SMLR’:

>>> res = N.asarray(clf.values[:, 11)
>>> else:

>>> # get the probabilities from the svm
>>> res = N.asarray ([(g[1][1] - g[1][0] +
>>> for g in clf.probabilities])
>>>

>>> # reshape the results

>>> z = N.asarray (res) .reshape ((100, 100))
>>>

>>> # plot the predictions

>>> P.pcolor(x, y, z, shading=’interp’)

>>> P.clim(0, 1)

>>> P.colorbar ()

>>> P.contour(x, y, 2z, linewidths=1,

>>>

>>> # add the title

>>> P.title(c)

>>>

>>> if cfg.getboolean (’examples’, ’'interactive’,
>>> # show all the cool figures

>>> P.show ()

See Also:

colors="black’,

1)y /2

hold=True)

True) :

The full source code of this example is included in the PyMVPA source distribution (doc/examples/pylab_2d.py).

9.4.3 Generating Topography plots

Example demonstrating a topography plot.

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

from mvpa.suite import =«

# Sanity check if we have griddata available
externals.exists ("griddata", raiseException=T
# EEG example splot

P.subplot (1, 2, 1)

# load the sensor information from their defi
# This file has sensor names, as well as thei
sensors=XAVRSensorLocations (os.path.join ('’ dat
# make up some artifical topography

# ’enable’ to channels, all others set to off
topo = N.zeros(len(sensors.names))
topo[sensors.names.index ("01")] =

1
1

rue)

nition file.
r 3D coordinates

a’, ’"xavrl010.dat’))

;=)

>>> topo[sensors.names.index ('F4’)] =

>>>

>>> # plot with sensor locations shown

>>> plotHeadTopography (topo, sensors.locations(), plotsensors=True)
>>>

>>>

>>> # MEG example plot

>>> P.subplot (1, 2, 2)

>>>

>>> # load MEG sensor locations

>>> sensors=TuebingenMEGSensorLocations (

>>> os.path.join(’data’, ’'tueb_meg_coord.xyz’))

>>>

>>> # random values this time
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>>> topo = N.random.randn (len (sensors.names))

>>>

>>> # plot without additional interpolation

>>> plotHeadTopography (topo, sensors.locations(),
>>> interpolation='nearest’)
>>>

>>>

>>> if cfg.getboolean (’examples’, ’interactive’, True):

>>> # show all the cool figures
>>> P.show ()
>>>

The ouput of the provided example should look like

See Also:

The full source code of this example is included in the PyMVPA source distribution (doc/examples/topo_plot.py).

9.5 Miscellaneous

9.5.1 Kernel-Demo

This is an example demonstrating various kernel implementation in PyMVPA.

>>> from mvpa.suite import =

>>> from mvpa.clfs.kernel import =
>>> import pylab as P

>>>

>>>

>>> # N.random.seed (1)

>>> data = N.random.rand (4, 2)

>>>

>>> for kernel_class, kernel_args in (

>>> (KernelConstant, {’sigma_0’:1.0}),

>>> (KernelConstant, {’sigma_0’:1.0}),

>>> (KernellLinear, {’Sigma_p’:N.eye(data.shapel[l])}),
>>> (Kernellinear, {’Sigma_p’ :N.ones (data.shapel[l])}),
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>>> (Kernellinear, {’Sigma_p’:2.0}),

>>> (KernellLinear, {}),

>>> (KernelExponential, {}),

>>> (KernelSquaredExponential, {}),

>>> (KernelMatern_3_2, {}),

>>> (KernelMatern_5_2, {}),

>>> (KernelRationalQuadratic, {}),

>>> )t

>>> kernel = kernel_class (x*xkernel_args)

>>> print kernel

>>> result = kernel.compute (data)

>>>

>>> # In the following we draw some 2D functions at random from the
>>> # distribution N(0O,kernel) defined by each available kernel and
>>> # plot them. These plots shows the flexibility of a given kernel
>>> # (with default parameters) when doing interpolation. The choice
>>> # of a kernel defines a prior probability over the function space
>>> # used for regression/classfication with GPR/GPC.

>>> count = 1

>>> for k in kernel_dictionary.keys():

>>> P.subplot (3,4, count)

>>> # X = N.random.rand(size)«12.0-6.0

>>> # X.sort ()

>>> X = N.arange(-1,1,.02)

>>> X = X[:,N.newaxis]

>>> ker = kernel_dictionaryl[k] ()

>>> K = ker.compute (X, X)

>>> for i in range (10):

>>> f = N.random.multivariate_normal (N.zeros (X.shape[0]),K)
>>> P.plot (X[:,0],£f,"b-")

>>>

>>> P.title (k)

>>> P.axis ("tight”)

>>> count += 1

>>>

>>> if cfg.getboolean (’examples’, ’interactive’, True):

>>> # show all the cool figures

>>> P.show ()

See Also:

The full source code of this example is included in the PyMVPA source
(doc/examples/kerneldemo.py).

9.5.2 Curve-Fitting

An example showing how to fit an HRF model to noisy peristimulus time-series data.

>>> import numpy as N

>>> import pylab as P

>>>

>>> from mvpa.misc.plot import errLinePlot

>>> from mvpa.misc.fx import singleGammaHRF, leastSqgFit
>>> from mvpa import cfg

>>>
>>> # make dataset

>>> # 40 identical ’‘trial time courses’ generated from a simple
>>> # gamma function

>>> # time-to-peak: 6s

>>> # FWHM: 7s

>>> # Scaling: 1

distribution

74 Chapter 9. Full Examples



PyMVPA Manual, Release 0.4.0

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

a = N.asarray ([singleGammaHRF (N.arange (20), A=6, W=7, K=1)] * 40)
# get closer to reality
a += N.random.normal (size=a.shape)

# now fit a gamma function, parameter start values:
# time-to-peak: 5s

# FWHM: 5s

# Scaling: 1

fpar, succ = leastSqgFit (singleGammaHRF, [5,5,1]1, a)

# generate high-resultion curves for the ’true’ time course

# and the fitted one

curves = [singleGammaHRF (N.linspace(0,20), 6, 7, 1),
singleGammaHRF (N.linspace (0,20), xfpar)]

# plot data (with error bars) and both curves
errLinePlot (a, curves=curves, linestyle='-')

# add legend to plot
P.legend(('original’, ’fit’))

if cfg.getboolean (’examples’, ’'interactive’, True):
# show the cool figure
P.show ()

The ouput of the provided example should look like

1.5 T T

— original
— fit

-0.5

See Also:

20
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The full source code of this example is included in the PyMVPA source distribution (doc/examples/curvefitting.py).
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CHAPTER
TEN

PYMVPA FOR MATLAB USERS

If you are coming from Matlab, you will soon notice a lot of similarities between Matlab and Python (besides
the huge advantages of Python over Matlab). For an easy transition you might want to have a look at a basic
comparison of Matlab and NumPy. It would be nice to have some guidelines on how to use PyMVPA for users
who are already familiar with the Matlab MVPA toolbox. If you are using both packages and could compile a few
tips, your contribution would be most welcome.
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CHAPTER
ELEVEN

FREQUENTLY ASKED QUESTIONS

11.1 General

11.1.1 It is sloooooow. What can | do?

Have you tried running the Python interpreter with -O? PyMVPA provides lots of debug messages
with information that is computed in addition to the work that really has to be done. However, if
Python is running in optimized mode, PyYMVPA will not waste time on this and really tries to be fast.

If you are already running it optimized, then maybe you are doing something really demanding...

11.1.2 | am tired of writing these endless import blocks. Any alternative?

Sure. Instead of individually importing all pieces that are required by a script, you can import them
all at once. A simple:

>>> import mvpa.suite as mvpa

makes everything directly accessible through the mvpa namespace, e.g. mvpa.datasets.base.Dataset
becomes mvpa.Dataset. Really lazy people can even do:

>>> from mvpa.suite import =«

However, as always there is a price to pay for this convenience. In contrast to the individual imports
there is some intial performance and memory cost. In the worst case you’ll get all external dependen-
cies loaded (e.g. a full R session), just because you have them installed. Therefore, it might be better
to limit this use to case where individual key presses matter and use individual imports for production
scripts.

11.1.3 | feel like | want to contribute something, do you mind?

Not at all! If you think there is something that is not well explained in the documentation, send us
an improvement. If you implemented a new algorithm using PyMVPA that you want to share, please
share. If you have an idea for some other improvement (e.g. speed, functionality), but you have no
time/cannot/do not want to implement it yourself, please post your idea to the PyMVPA mailing list.

11.1.4 | want to develop a new feature for PyMVPA. How can | do it efficiently?

The best way is to use Git for both, getting the latest code from the repository and preparing the patch.
Here is a quick sketch of the workflow.

First get the latest code:
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git clone git://git.debian.org/git/pkg-exppsy/pymvpa.git

This will create a new pymvpa subdirectory, that contains the complete repository. Enter this directory
and run gitk —all to browse the full history and a/l branches that have ever been published.

You can run:

git fetch origin

in this directory at any time to get the latest changes from the main repository.

Next, you have to decide what you want to base your new feature on. In the simplest case this is the
master branch (the one that contains the code that will become the next release). Creating a local
branch based on the (remote) master branch is:

git checkout -b my_hack origin/master

Now you are ready to start hacking. You are free to use all powers of Git (and yours, of course). You
can do multiple commits, fetch new stuff from the repository, and merge it into your local branch, ...
To get a feeling what can be done, take a look very short description of Git or a more comprehensive
Git tutorial.

When you are done with the new feature, you can prepare the patch for inclusion into PyMVPA. If
you have done multiple commits you might want to squash them into a single patch containing the
new feature. You can do this with git-rebase. In recent version git-rebase has an option —interactive,
which allows you to easily pick, squash or even further edit any of the previous commits you have
made. Rebase your local branch against the remote branch you started hacking on (origin/master in
this example):

git rebase —--interactive origin/master

When you are done, you can generate the final patch file:

git-format-patch origin/master

Above command will generate a file for each commit in you local branch that is not yet part of
origin/master. The patch files can then be easily emailed.

11.1.5 The manual is quite insufficient. When will you improve it?

Writing a manual can be a tricky task if you already know the details and have to imagine what might
be the most interesting information for someone who is just starting. If you feel that something is
missing which has cost you some time to figure out, please drop us a note and we will add it as soon
as possible. If you have developed some code snippets to demonstrate some feature or non-trivial
behaviour (maybe even trivial ones, which are not as obvious as they should be), please consider
sharing this snippet with us and we will put it into the example collection or the manual. Thanks!

11.2 Data import, export and storage

11.2.1 What file formats are understood by PyMVPA?

Please see the Data Formats section.
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11.2.2 What if there is no special file format for some particular datatype?

With the Hamster class, PYMVPA supports storing any kind of serializable data into a (compressed) file (see
the class documentation for a trivial usage example). The facility is particularly useful for storing any number of
intermediate analysis results, e.g. for post-processing.

11.3 Data preprocessing

11.3.1 Is there an easy way to remove invariant features from a dataset?

You might have to deal with invariant features in case like an fMRI dataset, where the brain mask is
slightly larger than the thresholded fMRI timeseries image. Such invariant features (i.e. features with
zero variance) are sometime a problem, e.g. they will lead to numerical difficulties when z-scoring
the features of a dataset (i.e. division by zero).

The mvpa.datasets.miscfx module provides a convenience function removelnvariantFeatures() that
strips such features from a dataset.

11.3.2 How can | do block-averaging of my block-design fMRI dataset?

The easiest way is to use a mapper to transform/average the respective samples. Suppose you have a
dataset:

>>> dataset = normalFeatureDataset ()
>>> dataset
<Dataset / float64 100 x 4 uniqg: 2 labels 5 chunks labels_mapped>

Averaging all samples with the same label in each chunk individually is done by applying a samples
mapper to the dataset.

>>> from mvpa.mappers.samplegroup import SampleGroupMapper

>>> from mvpa.misc.transformers import FirstAxisMean

>>>

>>> m = SampleGroupMapper (fx=FirstAxisMean)

>>> mapped_dataset = dataset.applyMapper (samplesmapper=m)

>>> mapped_dataset

<Dataset / float64 10 x 4 uniqg: 2 labels 5 chunks labels_mapped>

SampleGroupMapper applies a function to every group of samples in each chunk individually. Using
FirstAxisMean as function, therefore yields one sample of each label per chunk.

11.4 Data analysis

11.4.1 How do | know which features were finally selected by a classifier doing
feature selection?

All classifier possess a state variable feature_ids. When enable, the classifier stores the ids of all features that were
finally used to train the classifier.

>>> clf = FeatureSelectionClassifier (
kNN (k=5),
SensitivityBasedFeatureSelection (
SMLRWeights (SMLR(1lm=1.0), transformer=Absolute),
FixedNElementTailSelector (1, tail="upper’, mode='select’)),
enable_states = [/ feature_ 1ds’])
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>>> clf.train(dataset)

>>> final dataset = dataset.selectFeatures (clf.feature_ids)

>>> final_dataset

<Dataset / float64 100 x 1 unig: 2 labels 5 chunks labels_mapped>

In the above code snippet a KNN classifier is defined, that performs a feature selection step prior training. Features
are selected according to the absolute magnitude of the weights of a SMLR classifier trained on the data (same
training data that will also go into kNN). Absolute SMLR weights are used for feature selection as large negative
values also indicate important information. Finally, the classifier is configured to select the single most impor-
tant feature (given the SMLR weights). After enabling the feature_ids state, the classifier provides the desired
information, that can e.g. be applied to generate a stripped dataset for an analysis of the similarity structure.

11.4.2 How do | extract sensitivities from a classifier used within a cross-
validation?

CrossValidatedTransferError provides an interface to access any classifier-related information: har-
vest_attribs. Harvesting the sensitivities computed by all classifiers (without recomputing them again) looks like
this:

>>> cv = CrossValidatedTransferError (

TransferError (SMLR()),

OddEvenSplitter (),

harvest_attribs=\

["transerror.clf.getSensitivityAnalyzer (force_training=False) ()’])

>>> merror = cv(dataset)
>>> sensitivities = cv.harvested.values () [0]
>>> N.array(sensitivities) .shape == (2, dataset.nfeatures)
True

First, we define an instance of CrossValidatedTransferError that uses an SMLR classifier to perform
the cross-validation on odd-even splits of a dataset. The important piece is the definition of the harvest_attribs.
It takes a list of code snippets that will be executed in the local context of the cross-validation function. The
TransferError instance used to train and test the classifier on each split is available via transerror. The rest
is easy: TransferError provides access to its classifier and any classifier can in turn generate an appropriate
Sensitivity instance via getSensitivityAnalyzer(). This generator method takes additional arguments to the
constructor of the mvpa.measures.base.Sensitivity class. In this case we want to prevent retraining
the classifiers, as they will be trained anyway by the TransferError instance they belong to.

The return values of all code snippets defined in harvest_attribs are available in the harvested state variable.
harvested is a dictionary where the keys are the code snippets used to compute the value. As the key in this case is
pretty long, we simply take the first (and only) value from the dictionary. The value is actually a list of sensitivity
vectors, one per split.

11.4.3 Can PyMVPA deal with literal class labels?

Yes and no. In general the classifiers wrapped or implemented in PyMVPA are not capable of handling literal
labels, some even might require binary labels. However, PyYMVPA datasets provide functionality to map any set
of literal labels to a corresponding set of numerical labels. Let’s take a look:

>>> # invent some samples (arbitrary in this example)
>>> samples = N.random.randn(3) .reshape(3,1)

First we will construct a Dataset the usual way (3 samples with unique numerical labels, all in one chunk:

>>> Dataset (samples=samples, labels=range(3), chunks=1)
<Dataset / float64 3 x 1 unig: 3 labels 1 chunks>
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Now, we are trying to create the same dataset using literal labels:

>>> # now create the same dataset using literal labels
>>> ds = Dataset (samples=samples,

labels=["one’, ’'two’, ’"three’],

Ce chunks=1)

>>> ds.labels[0]
"one’

This approach simply stored the literal labels in the dataset and will most likely lead to unpredictable behavior of
classifiers that cannot handle them. A more flexible approach is to let the dataset map the literal labels to numerical
ones:

>>> ds = Dataset (samples=samples,
labels=["one’, ’'two’, "three’],
chunks=1,
C labels_map=True)
>>> ds
<Dataset / float64 3 x 1 unig: 3 labels 1 chunks labels_mapped>
>>> ds.labels[0]
0
>>> for k in sorted(ds.labels_map.keys()):
print k, ds.labels_map[k]
one 0
three 1
two 2

With this approach the labels stored in the dataset are now numerical. However, the mapping between literal and
numerical labels is somewhat arbitrary. If a fixed mapping is possible or intended (e.g. same mapping for multiple
dataset), the mapping can be set explicitely:

>>> ds = Dataset (samples=samples,
labels=['one’, ’"two’, ’"three’],
chunks=1,
. labels_map={’one’: 1, ’"two’: 2, "three’: 3})
>>> for k in sorted(ds.labels_map.keys()):
print k, ds.labels_maplk]
one 1
three 3
two 2

PyMVPA will use the labels mapping to display literal instead of numerical labels e.g. in confusion matrices.
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CHAPTER
TWELVE

GLOSSARY

The literature concerning the application of multivariate pattern analysis procedures to neuroscientific datasets
contains a lot of specific terms to refer to procedures or types of data, that are of particular importants. Unfortu-
nately, sometimes various terms refer to the same contruct and even worse these terms do not necessarily match
the terminology used in the machine learning literature. The foloowing glossary is an attempt to map the various
terms found in the literature to the terminology used in this manual.

Block-averaging
Averaging all samples recorded during a block of continous stimulation in a block-design fMRI experiment.
The rationale behind this technique is, that a averaging might lead to an improved signal-to-noise ratio.
However, averaging further decreases the number of samples in a dataset, which is already very low in
typical fMRI datasets, especially in comparsion to the number of features/voxels. Block-averaging might
nevertheless improve the classifier performance, if it indeed improves signal-to-noise and the respective
classifier benefits more from few high-quaility samples than from a larger set of lower-quality samples.

Chunk

A chunk is a group of samples. In PyMVPA chunks define independent groups of samples (note: the groups
are independent from each other, not the samples in each particular group). This information is important
in the context of a cross-validation procedure, as it is required to measured the classifier performance on
independent test datasets to be able to compute unbiased generalization estimates. This is of particular
importance in the case of fMRI data, where two successively recorded volumes cannot be considered as
independent measurements. This is due to the significant temporal forward contamination of the hemody-
namic response whos correlate is measures by the MR scanner.

Dataset
In PyMVPA a dataset is the combination of samples, their ...

Decoding
This term is usually used to refer to the application of machine learning or pattern recognition techniques to
brainimaging datasets, and therefore is another term for MVPA. Sometimes also ‘brain-reading’ is used as
another alternative.

Epoch
Sometimes used to refer to a group of successively aqcuired samples, and, thus, related to a chunk.

Example
Another term for sample.

Feature
This is a name for a variable in the dataset.

Label
A label associates each sample sample in the dataset with a certain category, experimental condition or,
in case of a regression problem, with some metric variable. The label therefore defines the model that a
classifier has to learn. The labels also provide the “true” model value when computing classifier errors.

MVPA
This term originally stems from the authors of the Matlab MVPA toolbox, and in that context stands for
multi-voxel pattern analysis (see Norman et al., 2006). PyMVPA obviously adopted this acronym. However,
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as PYMVPA is explicitely designed to operate on non-fMRI data as well, the ‘voxel” term is not appropriate
and therefore MVPA in this context stands for the more general term multivariate pattern analysis.

Processing object
Most objects dealing with data are implemented as processing objects. Such objects are instantiated once,
with all appropriate parameters configured as desired. When created, they can be used multiple time by
simply calling them with new data.

Sample
A sample a vector with observations for all feature variables.

Sensitivity
The sensitivity is a score assigned to a particular feature with respect to its impact on a classifier’s decision.
The sensitivity is often available from a classifier’s weight vector. There are some more scores which are
similar to a sensitivity in terms of indicating the “importance” of a particular feature — examples are a
univariate ANOVA score or a Noise Perturbation measure.

Sensitivity Map
A vector of several sensitivity scores — one for each feature in a dataset.

Spatial Discriminanckonq e Map (SDM)
This is another term for a sensitivity map, used in e.g. Wang et al. (2007).

Statistical Discrimination Map (SDM)
This is another term for a sensitivity map, used in e.g. Sato et al. (2008).

Time-compression
This usually refers to the block-averaging of samples from a block-design fMRI dataset.

Weight Vector
See sensitivity.
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LICENSE

The PyMVPA package, including all examples, code snippets and attached documentation is covered by the MIT
license.

The MIT License

Copyright (c) 2006-2008 Michael Hanke
2007-2008 Yaroslav Halchenko

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
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FIFTEEN

PYMVPA DEVELOPMENT
CHANGELOG

This changelog only lists rather macroscopic changes to PyYMVPA. The full VCS changelog is available here:

http://git.debian.org/?p=pkg-exppsy/pymvpa.git;a=summary

‘Closes’ statement IDs refer to the Debian bug tracking system and can be queried by visiting the URL:

http://bugs.debian.org/<bug id>

Unreleased changes
Changes described here are not yet released, but available from VCS repository.

None yet.

15.1 Releases

* 0.4.0 (Sat, 15 Nov 2008)

Add Hamster, as a simple facility to easily store any serializable objects in a compressed file and
later on resurrect all of them with a single line of code.

SVM backend is now configurable via MVPA_SVM_BACKEND (libsvm or shogun).
Non-deterministic tests in the unittest battery are now configurable via MVPA_TESTS_LABILE.

New helper to determine and plot the best matching distribution(s) for the data (matchDistribution,
plotDistributionMatches). It is WiP thus API can change in the upcoming release.

Simplifies API of mappers.
Splitters can now limit the number of splits automatically.

New CombinedMapper to map between multiple, independent dataspace and a common feature
space.

New ChainMapper to create chains of mappers of abitrary lenght (e.g. to build preprocessing
pipelines).

New EventDataset to rapidly extract boxcar-shaped samples from data array using a simple list of
Event definitions.

Removed obsolete MetricMapper class. Mapper itself provides the facilities for dealing with metrics.

BoxcarMapper can now handle data with more than four dimensions/axis and also performs reverse
mapping of single boxcar samples.

Fs1EV3 can now convert EV3 files into a list of Event instances.

Results of tests for external dependencies are now stored in PyMVPA’s config manager (mvpa.cfg) and

can be stored to a file (not done automatically at the moment). This will significantly decrease the time
needed to import the mvpa module, as it prevents the repeated and lengthy tests for working externals.
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Initial support for ROC computing and AUC as an accuracy measure.
Weights of LARS are now available via LARSWeights.

Added an initial list of MVPA-related references to the manual, tagged with keywords and comments
as well is DOI or similar URL reference to the original document.

Added initial glossary to the manual.

New ‘Module reference’, as a middle-ground between manual and API reference.
New manual section about meta-classifiers (contributed by James M. Hughes).
New minimal example for a ‘getting started’ section in the manual.

Former MVPA_QUICKTEST was renamed to MVPA_TESTS_QUICK.

Update installation instructions for RPM-based distributions to make use of the OpenSUSE Build
Service.

Updated install instructions for several RPM-based GNU/Linux distributions.
Switch from distutils to numpy.distutils (no change in dependencies).

Depend on PyNIfTI >=0.20081017.1 and gain a smaller memory footprint when accessing NIfTI files
via all datasets with NIfTT support.

Added workaround to make PyMVPA work with older Shogun releases and those from 0.6.4 on, which
introduced backward-incompatible API changes.

* 0.3.1 (Sun, 14 Sep 2008)

New manual section about feature selection with a focus on RFE. Contributed by James M. Hughes.

New dataset type ChannelDataset for data structured in channels. Might be useful for data modal-
ities like EEG and MEG. This dataset includes support for common preprocessing steps like resam-
pling and baseline signal substraction.

Plotting of topographies on heads. Thanks to Ingo Friind for contributing this code. Additionally, a
new example shows how to do such plots.

New general purpose function for generating barplots and candlestick plots with error bars
(plotBars ()).

Dataset supports mapping of string labels onto numerical labels, removing the need to perform this
mapping manually in user code. ‘clfs_examples.py’ is adjusted accordingly to demonstrate the new
feature.

New mvpa.clfs.base.Classifier.summary () method to dump classifier settings.
Improved and more flexible plLotERPs ().
New IterativeRelief sensitivity analyzer.

Added visualization of confusion matrices viamvpa .clfs.transerror.ConfusionMatrix.plot ()
inspired by Ingo Friind.

The PyMVPA version is now globally available in mvpa . pymvpa_version.
BugFix: TuebingenMEG reader failed in some cases.
Several improvements (docs and implementation) for building PyMVPA on MacOS X.

New convenience accessor methods (select (), where() and _ getitem__ ()) for
:class‘~mvpa.datasets.base.Dataset’.

New mvpa.seed () function to configure the random number generators from user code.
Added reader for a MEG sensor locations format (TuebingenMEGSensorLocations).
Initial model selection support for GRP (using openopt).

And tons of minor bugfixes, additional tests and improved documentation.

* 0.3.0 (Mon, 18 Aug 2008)

Import of binary EEP files (used by EEProbe) and EEPDataset class.

Initial version of a meta dataset class (MetaDataset). This is a container for multiple datasets, which
behaves like a dataset itself.
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Regression performance is summarized now within RegressionStatistics.
Error functions: CorrErrorPFx, RelativeRMSErrorFx.

Measures: CorrCoef.

Data generators: chirp, wr1996

Few more examples: curvefitting, kerneldemo, smellit, projections

Updated kNN classifier. kNN is now able to use custom distance function to determine that nearest
neighbors. It also (re)gained the ability to do simple majority or weighted voting.

Some initial convenience functions for plotting typical results and data exploration.

Unified configuration handling with support for user-specific and analysis-specific config files, as well
as the ability to override all config settings via environment variables. The configuration handling is
used for PYMVPA internal settings, but can also be easily used for custom (user-)settings.

Improved modularity, e.g. SciPy is not required anymore, but still very useful.

Initial implementations of ICA and PCA mapper using functionality provided by MDP. These mappers
are more or less untested and should be used with great care.

Further improved docstrings of some classes, but still a long way to go.

New ‘boxcar’ mapper, which is the similar to the already present transformWithBoxCar() function,
but implemented as a mapper.

New SampleGroupMapper that can be used for e.g. block averaging of samples. See new FAQ item.
Stripped redundant suffixes from module names, e.g. mvpa.datasets.niftidataset -> mvpa.datasets.nifti

mvpa.misc.cmdline variables opt* and opts* were groupped within opt and optss class instances. Also
names of the options were changed to match ‘dest’ of the options. Use tools/refactor.py to quickly fix
your custom code.

Change all references to PYMVPA website to www.pymvpa.org.
Make website stylesheet compatible with sphinx 0.4.

Several minor improvements of the compatibilty with MacOS.
Extended FAQ section of the manual.

Bugfix: doubleGammaHRF() ignoring K2 argument.

* 0.2.2 (Tue, 17 Jun 2008)

Extended build instructions: Added section on OpenSUSE.

Replaced ugly PYMVPA_LIBSVM environment variable to trigger compiling the LIBSVM wrap-
per with a proper ‘—with-libsvm’ switch in setup.py. Additionally, setup.py now detects if included
LIBSVM has been built and enables LIBSVM wrapper automatically in this case.

Added proper Makefiles for LIBSVM copy, with configurable compiler flags.

Added ‘setup.cfg’ to remove the need to manually specify swig-opts (Windows specific configuration
is in ‘setup.cfg.win’).

* 0.2.1 (Sun, 15 Jun 2008)

Several improvements to make building PYMVPA on Windows systems easy (e.g. added dedicated
Makefile.win to build a binary installer).

Improved and extended documentation for building and installing PyMVPA.

Include a minimal copy of the required (patched) LIBSVM library (currently version 2.85.0) for con-
venience. This copy is automatically compiled and used for the LIBSVM wrapper when PyMVPA
built using the Make approach.

* 0.2.0 (Wed, 29 May 2008)

New Splitter class (HalfSplitter) to split into first and second half.

New Splitter class (CustomSplitter) to allow for splits with an arbitrary number of datasets per split
and the ability to specify the association of samples with any of those datasets (not just the validation
set).
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New sparse multinomial logistic regression (SMLR) classifier and associated sensitivity analyzer.
New least angle regression classifier (LARS).

New gaussian process regression classifier (GPR).

Initial documentation on extending PyYMVPA.

Switch to Sphinx for documentation handling.

New example comparing the performance of all classifiers on some artificial datasets.

New data mapper performing singular value decomposition (SVDMapper) and an example showing
its usage.

More sophisticated data preprocessing: removal of non-linear trends and other arbitrary confounding
regressors.

New Harvester class to feed data from arbitrary generators into multiple objects and store results of
returned values and arbitrary properties.

Added documentation about how to build patched libsvm version with sane debug output.

libsvm bindings are not build by default anymore. Instructions on how to reenable them are available
in the manual.

New wrapper from SVM implementation of the Shogun toolbox.
Important bugfix in RFE, which reported incorrect feature ids in some cases.

Added ability to compute stats/probabilities for all measures and transfer errors.

* 0.1.0 (Wed, 20 Feb 2008)

First public release.
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CHAPTER
SIXTEEN

MODULE REFERENCE

This module reference extends the manual with a comprehensive overview of the currently available functionality,
that is built into PyMVPA. However, instead of a full list including every single line of the PyYMVPA code base, this
reference limits itself to the relevant pieces of the application programming interface (API) that are of particular
interest to users of this framework.

Each module in the package is documented by a general summary of its purpose and the list of classes and
functions it provides.

For developers, more detailed (technical) information is available in the API reference.

16.1 Global Facilities

16.1.1 mvpa

MultiVariate Pattern Analysis

Package Organization

The mvpa package contains the following subpackages and modules:

group Basic Data Structures
datasets

group Classifiers
clf

group Algorithms
algorithms

group Miscellaneous
misc
author
Michael Hanke, Yaroslav Halchenko, Per B. Sederberg

requires
Python 2.4+

version
0.4.0

see
The PyMVPA webpage

see
GIT Repository Browser

license
The MIT License
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copyright
© 2006-2008 Michael Hanke <michael.hanke @ gmail.com>

newfield contributor
Contributor, Contributors (Alphabetical Order)

contributor
Per B. Sederberg

contributor
Yaroslav O. Halchenko

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa (for developers).

seed (random_seed)
Uniform and combined seeding of all relevant random number generators.

See Also:

Full API documentation of seed() in module mvpa.

16.2 Datasets: Input, Output, Storage and Preprocessing

16.2.1 mvpa.datasets

PyMVPA datasets and helper classes such as mappers, splitters

Module Description

Dataset and derived classes are dedicated to contain the data and associated information (such as labels,
chunk(session) identifiers.

Module Organization

The mvpa.datasets module contains the following modules:

group Generic Datasets

base, mapped, masked, meta
group Specialized Datasets

nifti, eep
group Mappers

mapper, maskmapper

group Metrics
metric
group Splitters
splitter, nfoldsplitter

group Miscellaneous
miscfx

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-

generated API reference for mvpa.datasets (for developers).

16.2.2 mvpa.datasets.base

Dataset container

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.datasets.base (for developers).

98 Chapter 16. Module Reference


mailto:michael.hanke@gmail.com
mailto:persed@princeton.edu
mailto:debian@onerussian.com

PyMVPA Manual, Release 0.4.0

Dataset

class Dataset (data=None, dsattr=None, dtype=None, samples=None, labels=None, labels_map=None,
chunks=None, origids=None, check_data=True, copy_samples=False, copy_data=True,
copy_dsattr=True)
Bases: object
The Dataset.

This class provides a container to store all necessary data to perform MVPA analyses. These are the data
samples, as well as the labels associated with the samples. Additionally, samples can be grouped into
chunks.

*Creators: __init__, selectFeatures, selectSamples, applyMapper
*Mutators: permuteLabels

Important: labels assumed to be immutable, i.e. noone should modify them externally by accessing indexed
items, ie something like dataset.labels[1] += "_bad" should not be used. If a label has to be
modified, full copy of labels should be obtained, operated on, and assigned back to the dataset, otherwise
dataset.uniquelabels would not work. The same applies to any other attribute which has corresponding
unique* access property.

Initialize dataset instance

There are basically two different way to create a dataset:

1.Create a new dataset from samples and sample attributes. In this mode a two-dimensional ndarray has
to be passed to the samples keyword argument and the corresponding samples attributes are provided
via the labels and chunks arguments.

Copy contructor mode
The second way is used internally to perform quick coyping of datasets, e.g. when performing
feature selection. In this mode and the two dictionaries (data and dsattr) are required. For perfor-
mance reasons this mode bypasses most of the sanity check performed by the previous mode, as
for internal operations data integrity is assumed.

2. edata (dict) — Dictionary with an arbitrary number of entries. The value for each key in
the dict has to be an ndarray with the same length as the number of rows in the samples
array. A special entry in this dictionary is ‘samples’, a 2d array (samples x features). A
shallow copy is stored in the object.

edsattr (dict) — Dictionary of dataset attributes. An arbitrary number of arbitrarily named
and typed objects can be stored here. A shallow copy of the dictionary is stored in the
object.
edtype (type | None) — If None — do not change data type if samples is an ndarray. Oth-
erwise convert samples to dtype.
samples
[ndarray] 2d array (samples x features)
labels
An array or scalar value defining labels for each samples
labels_map
[None or bool or dict] Map from labels into literal names. If is None or True, the
mapping is computed, from labels which must be literal. If is False, no mapping is
computed. If dict — mapping is verified and taken, labels get remapped. Dict must map
literal -> number
chunks
An array or scalar value defining chunks for each sample

Each of the Keywords arguments overwrites what is/might be already in the data container.

C
chunks
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I

origids
L

labels
S

samples
uc

attrib
UL

attrib

applyMapper (featuresmapper=None, samplesmapper=None, train=True)
Obtain new dataset by applying mappers over features and/or samples.

While featuresmappers leave the sample attributes information unchanged, as the number of samples
in the dataset is invariant, samplesmappers are also applied to the samples attributes themselves!

Applying a featuresmapper will destroy any feature grouping information.
*featuresmapper (Mapper) — Mapper to somehow transform each sample’s features
esamplesmapper (Mapper) — Mapper to transform each feature across samples
etrain (bool) — Flag whether to train the mapper with this dataset before applying it.

TODO: selectFeatures is pretty much
applyMapper(featuresmapper=MaskMapper(...))

chunks
chunks

convertFeaturelds2FeatureMask (ids)
Returns a boolean mask with all features in ids selected.
*ids (list or 1d array) — To be selected features ids.

Return type
ndarray
Returns
All selected features are set to True; False otherwise.

convertFeatureMask2Featurelds (mask)
Returns feature ids corresponding to non-zero elements in the mask.
*mask (1d ndarray) — Feature mask.
Return type
ndarray
Returns
Ids of non-zero (non-False) mask elements.

copy ()
Create a copy (clone) of the dataset, by fully copying current one

defineFeatureGroups (definition)

getLabelsMap ()
Stored labels map (if any)

getNFeatures ()
Number of features per pattern.

getNSamples ()
Currently available number of patterns.

getRandomSamples (nperlabel)
Select a random set of samples.
If ‘nperlabel’ is an integer value, the specified number of samples is randomly choosen from the
group of samples sharing a unique label value ( total number of selected samples: nperlabel x
len(uniquelabels).
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If ‘nperlabel’ is a list which’s length has to match the number of unique label values. In this case ‘nper-
label” specifies the number of samples that shall be selected from the samples with the corresponding
label.

The method returns a Dataset object containing the selected samples.
idhash

To verify if dataset is in the same state as when smth else was done

Like if classifier was trained on the same dataset as in question
idsbychunks (x)

attrib
idsbylabels (x)

attrib

idsonboundaries (prior=0, post=0, attributes_to_track=, [’labels’, 'chunks’], affected_labels=None, re-

vert=False)
Find samples which are on the boundaries of the blocks

Such samples might need to be removed. By default (with prior=0, post=0) ids of the first samples in
a ‘block’ are reported
eprior (int) — how many samples prior to transition sample to include
epost (int) — how many samples post the transition sample to include
eattributes_to_track (list of basestring) — which attributes to track to decide on the
boundary condition
eaffected_labels (list of basestring) — for which labels to perform selection. If None -
for all
erevert (bool) — either to revert the meaning and provide ids of samples which are found
to not to be boundary samples
index (*args, **kwargs)
Universal indexer to obtain indexes of interesting samples/features. See .select() for more information
Return
tuple of (samples indexes, features indexes). Each item could be also None, if no selec-
tion on samples or features was requested (to discriminate between no selected items,
and no selections)

labels
labels

labels_map
Stored labels map (if any)

nfeatures
Number of features per pattern.

nsamples
Currently available number of patterns.
origids
origids
permuteLabels (status, perchunk=True, assure_permute=False)
Permute the labels.
TODO: rename status into something closer in semantics.

estatus (bool) — Calling this method with set to True, the labels are permuted among all
samples. If ‘status’ is False the original labels are restored.

eperchunk (bool) — If True permutation is limited to samples sharing the same chunk
value. Therefore only the association of a certain sample with a label is permuted
while keeping the absolute number of occurences of each label value within a certain
chunk constant.

eassure_permute (bool) — If True, assures that labels are permutted, ie any one is dif-
ferent from the original one

samples
samples
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samplesperchunk
attrib

samplesperlabel
attrib

select (*args, **kwargs)
Universal selector

WARNING: if you need to select duplicate samples (e.g. samples=[5,5]) or order of selected samples
of features is important and has to be not ordered (e.g. samples=[3,2,1]), please use selectFeatures or
selectSamples functions directly

Examples:
Mimique plain selectSamples:

dataset.select ([1,2,3])
dataset[[1,2,3]]

Mimique plain selectFeatures:

dataset.select (slice (None), [1,2,31)
dataset.select ('all’, [1,2,3])
dataset[:, [1,2,3]1]

Mixed (select features and samples):

dataset.select ([1,2,3], [1, 2])
dataset[[1,2,3]1, [1, 21]

Select samples matching some attributes:

dataset.select (labels=[1,2], chunks=[2,4])
dataset.select (' labels’, [1,2], ’chunks’, [2,4])
dataset [’ labels’, [1,2], ’'chunks’, [2,4]]

Mixed — out of first 100 samples, select only those with labels 1 or 2 and belonging to chunks 2
or 4, and select features 2 and 3:

dataset.select (slice(0,100), [2,3], labels=[1,2], chunks=[2,4])
dataset[:100, [2,3], ’'labels’, [1,2], ’chunks’, [2,4]1]

selectFeatures (ids=None, sort=True, groups=None)
Select a number of features from the current set.
*ids — iterable container to select ids
esort (bool) — if to sort Ids. Order matters and selectFeatures assumes incremental
order. If not such, in non-optimized code selectFeatures would verify the order and
sort
Returns a new Dataset object with a view of the original samples array (no copying is performed).

WARNING: The order of ids determines the order of features in the returned dataset. This might
be useful sometimes, but can also cause major headaches! Order would is verified when running in
non-optimized code (if __debug_ )

selectSamples (ids)
Choose a subset of samples defined by samples IDs.
Returns a new dataset object containing the selected sample subset.
TODO: yoh, we might need to sort the mask if the mask is a list of ids and is not ordered. Clarify with
Michael what is our intent here!

setLabelsMap (/m)
Set labels map.
Checks for the validity of the mapping — values should cover all existing labels in the dataset

setSamplesDType (dtype)
Set the data type of the samples array.

summary (uniqg=True, stats=True, idhash=False, Istats=True, maxc=30, maxl=20)
String summary over the object
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euniq (bool) — Include summary over data attributes which have unique

eidhash (bool) — Include idhash value for dataset and samples

sstats (bool) — Include some basic statistics (mean, std, var) over dataset samples
e[stats (bool) — Include statistics on chunks/labels

emaxc (int) — Maximal number of chunks when provide details on labels/chunks
emaxl (int) — Maximal number of labels when provide details on labels/chunks

summary_labels (maxc=30, maxl=20)
Provide summary statistics over the labels and chunks

emaxc (int) — Maximal number of chunks when provide details
emaxl! (int) — Maximal number of labels when provide details

uniquechunks
attrib

uniquelabels
attrib

where (*args, **kwargs)
Obtain indexes of interesting samples/features. See select() for more information
XXX somewhat obsoletes idsby...

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Dat aset documentation.

Full API documentation of Dataset in module mvpa.datasets.base.

datasetmethod (func)
Decorator to easily bind functions to a Dataset class

See Also:

Full API documentation of datasetmethod() in module mvpa.datasets.base.

16.2.3 mvpa.datasets.channel

Dataset handling data structured in channels.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.datasets.channel (for developers).

ChannelDataset

class ChannelDataset (samples=None, dsattr=None, t0=None, dt=None, channelids=None, **kwargs)
Bases: mvpa.datasets.mapped.MappedDataset

Dataset handling data structured into channels.

Channels are assumes to contain several timepoints, thus this Dataset stores some additional properties
(reference time 70, temporal distance of two timepoints dt and channelids (names)).

Initialize ChannelDataset.

esamples (ndarray) — Three-dimensional array: (samples x channels x timepoints).

10 (float) — Reference time of the first timepoint. Can be used to preserve information
about the onset of some stimulation. Preferably in seconds.

dt (float) — Temporal distance between two timepoints. Has to be given in seconds.
Otherwise samplingrate property will not return Hz.

echannelids (list) — List of channel names.

channelids
List of channel IDs
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dt
Time difference between two samples (in seconds).

samplingrate
Yeah, sampling rate.

substractBaseline (t=None)
Substract mean baseline signal from the each timepoint.

The baseline is determined by computing the mean over all timepoints specified by z.
The samples of the dataset are modified in-place and nothing is returned.

o¢ (int | float | None) — If an integer, ¢t denotes the number of timepoints in the from the
start of each sample to be used to compute the baseline signal. If a floating point value,
t is the duration of the baseline window from the start of each sample in whatever unit
corresponding to the datasets samplingrate. Finally, if None the 10 property of the
dataset is used to determine 7 as it would have been specified as duration.

to0
Temporal position of first sample in the timeseries (in seconds) — possibly relative to stimulus onset.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the ChannelDataset documentation.

Full API documentation of ChannelDataset in module mvpa.datasets.channel.

16.2.4 mvpa.datasets.eep

Dataset that gets its samples from an EEP binary file

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.datasets.eep (for developers).

EEPDataset

class EEPDataset (samples=None, **kwargs)
Bases: mvpa.datasets.channel.ChannelDataset

Dataset using a EEP binary file as source.

EEP files are used by eeprobe a software for analysing even-related potentials (ERP), which was developed
at the Max-Planck Institute for Cognitive Neuroscience in Leipzig, Germany.

http://www.ant-neuro.com/products/eeprobe
Initialize EEPDataset.
esamples (Filename (string) of a EEP binary file or an EEPBiIn) — object
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the EEPDataset documentation.

Full API documentation of EEPDataset in module mvpa.datasets.eep.

16.2.5 mvpa.datasets.event

Event-based dataset type

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.datasets.event (for developers).
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EventDataset

class EventDataset (samples=None, events=None, mask=None, bcshape=None, dametric=None, **kwargs)
Bases: mvpa.datasets.mapped.MappedDataset

Event-based dataset

This dataset type can be used to segment ‘raw’ data input into meaningful boxcar-shaped samples, by simply
defining a list of events (see Event).

Additionally, it can be used to add arbitrary information (as features) to each event-sample (extracted from
the event list itself). An appropriate mapper is automatically constructed, that merges original samples and
additional features into a common feature space and also separates them again during reverse-mapping.
Otherwise, this dataset type is a regular dataset (in contrast to MetaDataset).

The properties of an Event supported/required by this class are:

onset An integer indicating the startpoint of an event as the sample index in the input data.

duration
How many input data samples following the onset sample should be considered for an event. The
embedded BoxcarMapper will use the maximum boxlength (i.e., duration) of all defined events to
create a regular-shaped data array.

label The corresponding label of that event (numeric or literal).

chunk
An optional chunk id.

features
A list with an arbitrary number of features values (floats), that will be added to the feature vector of
the corresponding sample.

esamples (ndarray) — ‘Raw’ input data from which boxcar-shaped samples will be ex-
tracted.

eevents (sequence of Event instances) — Both an events onset and duration are assumed to
be provided as #samples. The boxlength will be determined by the maximum duration
of all events.

emask (boolean array) — Only features corresponding to non-zero mask elements will be
considered for the final dataset. The mask shape either has to match the shape of the
generated boxcar-samples, or the shape of the ‘raw’ input samples. In the latter case,
the mask is automatically expanded to cover the whole boxcar. If no mask is provided,
a full mask will be constructed automatically.

*bceshape (tuple) — Shape of the boxcar samples generated by the embedded boxcar map-
per. If not provided this is determined automatically. However, this required an extra
mapping step.

*dametric (Metric) — Custom metric to be used by the embedded DenseArrayMapper.

***kwargs — All additional arguments are passed to the base class.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the EventDataset documentation.

Full API documentation of EventDataset in module mvpa.datasets.event.

16.2.6 mvpa.datasets.mapped

Mapped dataset

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.datasets.mapped (for developers).
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MappedDataset

class MappedDataset (samples=None, mapper=None, dsattr=None, **kwargs)
Bases: mvpa.datasets.base.Dataset

A Dataset which is created by applying a Mapper to the data.

Upon contruction MappedDataset uses a Mapper to transform the samples from their original into the two-
dimensional matrix representation that is required by the Dataset class.

This class enhanced the Dataset interface with two additional methods: mapForward() and mapReverse().
Both take arbitrary data arrays (with matching shape) and transform them using the embedded mapper from
the original dataspace into a one- or two-dimensional representation (for arrays corresponding to the shape
of a single or multiple samples respectively) or vice versa.

Most likely, this class will not be used directly, but rather indirectly through one of its subclasses (e.g.
MaskedDataset).

If samples and mapper arguments are not None the mapper is used to forward-map the samples array and
the result is passed to the Dataset constructor.

emapper (Instance of Mapper) — This mapper will be embedded in the dataset and is
used and updated, by all subsequent mapping or feature selection procedures.

***kwargs — All other arguments are simply passed to and handled by the constructor of
Dataset.

o
Return samples in the original shape

mapForward (data)
Map data from the original dataspace into featurespace.

mapReverse (data)
Reverse map data from featurespace into the original dataspace.

mapSelfReverse ()
Reverse samples from featurespace into the original dataspace.

mapper
mapper
samples_original
Return samples in the original shape
selectFeatures (ids, plain=False, sort=False)
Select features given their ids.
The methods behaves similar to Dataset.selectFeatures(), but additionally takes care of adjusting the
embedded mapper appropriately.
*ids (sequence) — Iterable container to select ids
eplain (boolean) — Flag whether to return MappedDataset (or just Dataset)

esort (boolean) — Flag whether to sort Ids. Order matters and selectFeatures assumes
incremental order. If not such, in non-optimized code selectFeatures would verify the
order and sort

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the MappedDataset documentation.

Full API documentation of MappedDataset in module mvpa.datasets.mapped.

16.2.7 mvpa.datasets.masked

Dataset with applied mask

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.datasets.masked (for developers).
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MaskedDataset

class MaskedDataset (samples=None, mask=None, **kwargs)
Bases: mvpa.datasets.mapped.MappedDataset

Helper class which is MappedDataset with using MaskMapper.
TODO: since what it does is simply some checkes/data_mangling in the constructor, it might be absorbed
inside generic MappedDataset
emask (ndarray) — the chosen features equal the non-zero mask elements.
selectFeaturesByMask (mask, plain=False)
Use a mask array to select features from the current set.

*mask (ndarray) — input mask

eplain (bool) — True directs to return a simple Dataset, False — a new MaskedDataset
object

Returns a new MaskedDataset object with a view of the original pattern array (no copying is per-
formed). The final selection mask only contains features that are present in the current feature mask
AND the selection mask passed to this method.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the MaskedDataset documentation.

Full API documentation of MaskedDataset in module mvpa.datasets.masked.

16.2.8 mvpa.datasets.meta

Dataset container

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.datasets.meta (for developers).

MetaDataset

class MetaDataset (datasets)
Bases: object

Dataset container

The class is useful to combine several Datasets with different origin and type and bind them together. Such
a combined dataset can then by used to e.g. pass it to a classifier.

MetaDataset does not permanently duplicate data stored in the dataset it contains. The combined samples
matrix is build on demand and samples attribute access is redirected to the first dataset in the container.

Currently operations other than samples or feature selection are not fully supported, e.g. passing a Meta-
Dataset to detrend() will initially result in a detrended MetaDataset, but the combined and detrended samples
matrix will be lost after the next call to selectSamples() or selectFeatures(), which freshly pulls samples from
all datasets in the container.

Initialize dataset instance
edatasets (list) —
applyMapper ( *args, **kwargs)
Apply a mapper on all underlying datasets.
datasets

getNFeatures ()
Number of features per sample.

getNSamples ()
Currently available number of samples.

16.2. Datasets: Input, Output, Storage and Preprocessing 107



PyMVPA Manual, Release 0.4.0

getRandomSamples (nperlabel)
Return a MetaDataset with a random subset of samples.

mapReverse (val)

nfeatures
Number of features per sample.

nsamples
Currently available number of samples.

permuteLabels (*args, **kwargs)
Toggle label permutation.

rebuildSamples ()
Update the combined samples matrix from all underlying datasets.

selectFeatures (ids, sort=True)
Do feature selection on all underlying datasets at once.

selectSamples ( *args, **kwargs)
Select samples from all underlying datasets at once.

setSamplesDType (dtype)
Set the data type of the samples array.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Met aDat aset documentation.

Full API documentation of MetaDataset in module mvpa.datasets.meta.

16.2.9 mvpa.datasets.miscfx

Misc function performing operations on datasets.

All the functions defined in this module must accept dataset as the first argument since they are bound to Dataset
class in the trailer.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.datasets.miscfx (for developers).

Functions

aggregateFeatures (dataset, fx=<function mean at 0x879909c>)
Apply a function to each row of the samples matrix of a dataset.

The functor given as fx has to honour an axis keyword argument in the way that NumPy used it (e.g.
NumPy.mean, var).

Return type
a new Dataset object with the aggregated feature(s).

See Also:
Full API documentation of aggregateFeatures() in module mvpa.datasets.miscfXx.

coarsenChunks (source, nchunks=4)
Change chunking of the dataset

Group chunks into groups to match desired number of chunks. Makes sense if originally there were no
strong groupping into chunks or each sample was independent, thus belonged to its own chunk

esource (Dataset or list of chunk ids) — dataset or list of chunk ids to operate on. If
Dataset, then its chunks get modified

enchunks (int) — desired number of chunks
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See Also:
Full API documentation of coarsenChunks() in module mvpa.datasets.miscfx.

getSamplesPerChunkLabel (dataset)
Returns an array with the number of samples per label in each chunk.

Array shape is (chunks x labels).
edataset (Dataset) — Source dataset.

See Also:
Full API documentation of getSamplesPerChunkLabel() in module mvpa.datasets.miscfx.

removeInvariantFeatures (dataset)
Returns a new dataset with all invariant features removed.

See Also:
Full API documentation of removelnvariantFeatures() in module mvpa.datasets.miscfx.

zscore (dataset, mean=None, std=None, perchunk=True, baselinelabels=None, pervoxel=True, targetd-

type="float64’)
Z-Score the samples of a Dataset (in-place).

mean and std can be used to pass custom values to the z-scoring. Both may be scalars or arrays.
All computations are done in place. Data upcasting is done automatically if necessary into targetdtype

If baselinelabels provided, and mean or std aren’t provided, it would compute the corresponding measure
based only on labels in baselinelabels

If perchunk is True samples within the same chunk are z-scored independent of samples from other chunks,
e.i. mean and standard deviation are calculated individually.

See Also:

Full API documentation of zscore() in module mvpa.datasets.miscfx.

16.2.10 mvpa.datasets.miscfx_sp

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.datasets.miscfx_sp (for developers).

See Also:

Full API documentation of detrend() in module mvpa.datasets.miscfx_sp.

16.2.11 mvpa.datasets.nifti

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.datasets.nifti (for developers).

Classes

ERNiftiDataset

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the ERNiftiDataset documentation.

Full API documentation of ERNiftiDataset in module mvpa.datasets.nifti.
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NiftiDataset

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Ni ft iDataset documentation.

Full API documentation of NiftiDataset in module mvpa.datasets.nifti.

Functions

See Also:
Full API documentation of getNiftiData() in module mvpa.datasets.nifti.
See Also:

Full API documentation of getNiftiFromAnySource() in module mvpa.datasets.nifti.

16.2.12 mvpa.datasets.splitter

Collection of dataset splitters.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.datasets.splitter (for developers).

Classes

CustomSplitter

class CustomSplitter (splitrule, **kwargs)
Bases: mvpa.datasets.splitter.Splitter

Split a dataset using an arbitrary custom rule.

The splitter is configured by passing a custom spitting rule (splitrule) to its constructor. Such a rule is
basically a sequence of split definitions. Every single element in this sequence results in excatly one split
generated by the Splitter. Each element is another sequence for sequences of sample ids for each dataset
that shall be generated in the split.

Example:

*Generate two splits. In the first split the second dataset contains all samples with sample attributes
corresponding to either 0, 1 or 2. The first dataset of the first split contains all samples which are not
split into the second dataset.

The second split yields three datasets. The first with all samples corresponding to sample attributes
1 and 2, the second dataset contains only samples with attrbiute 3 and the last dataset contains the
samples with attribute 5 and 6.

CustomSplitter([(None, [0, 1, 2]), ([1,2], [3], [5, 6D])
Cheap init.
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Cust omSplitter documentation.

Full API documentation of CustomSplitter in module mvpa.datasets.splitter.
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HalfSplitter

class HalfSplitter (**kwargs)
Bases: mvpa.datasets.splitter.Splitter

Split a dataset into two halves of the sample attribute.
The splitter yields to splits: first (1st half, 2nd half) and second (2nd half, 1st half).
Cheap init.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Hal fSplitter documentation.

Full API documentation of HalfSplitter in module mvpa.datasets.splitter.

NFoldSplitter

class NFoldSplitter (cvtype=1, **kwargs)
Bases: mvpa.datasets.splitter.Splitter

Generic N-fold data splitter.
XXX: This docstring is a shame for such an important class!
Initialize the N-fold splitter.
ecvtype (Int) — Type of cross-validation: N-(cvtype)
*kwargs — Additional parameters are passed to the Splitter base class.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the NFoldSplitter documentation.

Full API documentation of NFoldSplitter in module mvpa.datasets.splitter.

NoneSplitter

class NoneSplitter (mode="second’, **kwargs)
Bases: mvpa.datasets.splitter.Splitter

This is a dataset splitter that does not split. It simply returns the full dataset that it is called with.

The passed dataset is returned as the second element of the 2-tuple. The first element of that tuple will
always be ‘None’.

Cheap init — nothing special

*mode — Either ‘first’ or ‘second’ (default) — which output dataset would actually contain
the samples

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the NoneSplitter documentation.

Full API documentation of NoneSplitter in module mvpa.datasets.splitter.

OddEvenSplitter

class OddEvenSplitter (usevalues=False, **kwargs)
Bases: mvpa.datasets.splitter.Splitter
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Split a dataset into odd and even values of the sample attribute.

The splitter yields to splits: first (odd, even) and second (even, odd).

Cheap init.
eusevalues (Boolean) — If True the values of the attribute used for splitting will be used
to determine odd and even samples. If False odd and even chunks are defined by the
order of attribute values, i.e. first unique attribute is odd, second is even, despite the
corresponding values might indicate the opposite (e.g. in case of [2,3].
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the OddEvenSplitter documentation.

Full API documentation of OddEvenSplitter in module mvpa.datasets.splitter.

Splitter

class Splitter (nperlabel="all’, nrunspersplit=1, permute=False, count=None, strategy="equidistant’,
attr="chunks’)
Bases: object
Base class of dataset splitters.

Each splitter should be initialized with all its necessary parameters. The final splitting is done running the
splitter object on a certain Dataset via __call__(). This method has to be implemented like a generator, i.e.
it has to return every possible split with a yield() call.

Each split has to be returned as a sequence of Datasets. The properties of the splitted dataset may vary
between implementations. It is possible to declare a sequence element as ‘None’.

Please note, that even if there is only one Dataset returned it has to be an element in a sequence and not just
the Dataset object!

Initialize splitter base.

enperlabel (int or str (or list of them)) — Number of dataset samples per label to be in-
cluded in each split. Two special strings are recognized: ‘all’ uses all available samples
(default) and ‘equal’ uses the maximum number of samples the can be provided by all
of the classes. This value might be provided as a sequence whos length matches the
number of datasets per split and indicates the configuration for the respective dataset in
each split.

enrunspersplit (int) — Number of times samples for each split are chosen. This is mostly
useful if a subset of the available samples is used in each split and the subset is randomly
selected for each run (see the nperlabel argument).

epermute (bool) — If set to True, the labels of each generated dataset will be permuted on
a per-chunk basis.

ecount (None or int) — Desired number of splits to be output. It is limited by the number
of splits possible for a given splitter (e.g. OddEvenSplitter can have only up to 2 splits).
If None, all splits are output (default).

estrategy (str) — If count is not None, possible strategies are possible: first First count
splits are chosen random Random (without replacement) count splits are chosen equidis-
tant Splits which are equidistant from each other

eattr (str) — Sample attribute used to determine splits.

setNPerLabel (value)
Set the number of samples per label in the split datasets.
‘equal’ sets sample size to highest possible number of samples that can be provided by each class. ‘all’
uses all available samples (default).

splitDataset (dataset, specs)
Split a dataset by separating the samples where the configured sample attribute matches an element of
specs.
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edataset (Dataset) — This is this source dataset.

sspecs (sequence of sequences) — Contains ids of a sample attribute that shall be split
into the another dataset.
Returns
Tuple of splitted datasets.

splitcfg (dataset)
Return splitcfg for a given dataset

strategy
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Splitter documentation.

Full API documentation of Splitter in module mvpa.datasets.splitter.

16.3 Mappers: Data Transformations

16.3.1 mvpa.mappers

PyMVPA mappers.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.mappers (for developers).

16.3.2 mvpa.mappers.array

Data mapper

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.mappers.array (for developers).

DenseArrayMapper

class DenseArrayMapper (mask=None, metric=None, distance_function=<function cartesianDistance at
Ox8fa7e9c>, elementsize=None, shape=None, **kwargs)
Bases: mvpa.mappers.mask.MaskMapper
Mapper for equally spaced dense arrays.

Initialize Dense ArrayMapper

emask (array) — an array in the original dataspace and its nonzero elements are used to
define the features included in the dataset. alternatively, the shape argument can be used
to define the array dimensions.

emetric (Metric) — Corresponding metric for the space. No attempt is made to determine
whether a certain metric is reasonable for this mapper. If metric is None — Descrete-
Metric is constructed that assumes an equal (1) spacing of all mask elements with a
distance_function given as a parameter listed below.

edistance_function (functor) — Distance function to use as the parameter to DescreteMet-
ric if metric is not specified,

eelementsize (list or scalar) — Determines spacing within DescreteMetric. If it is given
as a scalar, corresponding value is assigned to all dimensions, which are found within
mask

eshape (tuple) — The shape of the array to be mapped. If shape is provided instead of
mask, a full mask (all True) of the desired shape is constructed. If shape is specified in
addition to mask, the provided mask is extended to have the same number of dimensions.
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Note
parameters elementsize and distance_function are relevant only if metric is None

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the DenseArrayMapper documentation.

Full API documentation of DenseArrayMapper in module mvpa.mappers.array.

16.3.3 mvpa.mappers.base

Data mapper

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.mappers.base (for developers).

Classes

ChainMapper

class ChainMapper (mappers, **kwargs)
Bases: mvpa.mappers.base.Mapper

Meta mapper that embedded a chain of other mappers.
Each mapper in the chain is called successively to perform forward or reverse mapping.

Note: Inits current implementation the ChainMapper treats all but the last mapper as simple pre-processing
(in forward()) or post-processing (in reverse()) steps. All other capabilities, e.g. training and neighbor
metrics are provided by or affect only the last mapper in the chain.

With respect to neighbor metrics this means that they are determined based on the input space of the last
mapper in the chain and not on the input dataspace of the ChainMapper as a whole

*mappers (list of Mapper instances) —
***kwargs — All additional arguments are passed to the base-class constructor.

forward (data)
Calls all mappers in the chain successively.

*data — data to be chain-mapped.
getInSize ()
Returns the size of the entity in input space
getNeighbor (outld, *args, **kwargs)
Get the ids of the neighbors of a single feature in output dataspace.
Note: The neighbors are determined based on the input space of the last mapper in the chain and not
on the input dataspace of the ChainMapper as a whole!
coutld (int) — Single id of a feature in output space, whos neighbors should be deter-
mined.
**args, **kwargs — Additional arguments are passed to the metric of the embedded
mapper, that is responsible for the corresponding feature.
Returns a list of outlds

getOutSize ()
Returns the size of the entity in output space

reverse (data)
Calls all mappers in the chain successively, in reversed order.

data (array) — data array to be reverse mapped into the orginal dataspace.

selectOut (outlds)
Remove some elements from the last mapper in the chain.
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coutlds (sequence) — All output feature ids to be selected/kept.

train (dataset)
Trains the last mapper in the chain.

*dataset (Dataset or subclass) — A dataset with the number of features matching the
outSize of the last mapper in the chain (which is identical to the one of the ChainMap-
per itself).

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the ChainMapper documentation.

Full API documentation of ChainMapper in module mvpa.mappers.base.

CombinedMapper

class CombinedMapper (mappers, **kwargs)
Bases: mvpa .mappers.base.Mapper

Meta mapper that combines several embedded mappers.

This mapper can be used the map from several input dataspaces into a common output dataspace. When
forward () is called with a sequence of data, each element in that sequence is passed to the corresponding
mapper, which in turned forward-maps the data. The output of all mappers is finally stacked (horizontally
or column or feature-wise) into a single large 2D matrix (nsamples x nfeatures).

Note: This mapper can only embbed mappers that transform data into a 2D (nsamples x nfeatures) rep-
resentation. For mappers not supporting this transformation, consider wrapping them in a ChainMapper
with an appropriate post-processing mapper.

CombinedMapper fully supports forward and backward mapping, training, runtime selection of a feature
subset (in output dataspace) and retrieval of neighborhood information.

emappers (list of Mapper instances) — The order of the mappers in the list is important,
as it will define the order in which data snippets have to be passed to forward ().

***kwargs — All additional arguments are passed to the base-class constructor.

forward (data)
Map data from the IN spaces into to common OUT space.

*data (sequence) — Each element in the data sequence is passed to the corresponding
embedded mapper and is mapped individually by it. The number of elements in data
has to match the number of embedded mappers. Each element is data has to provide
the same number of samples (first dimension).

Return type
array
Returns
Horizontally stacked array of all embedded mapper outputs.

getInSize ()
Returns the size of the entity in input space

getNeighbor (outld, *args, **kwargs)
Get the ids of the neighbors of a single feature in output dataspace.

coutld (int) — Single id of a feature in output space, whos neighbors should be deter-
mined.
**args, **kwargs — Additional arguments are passed to the metric of the embedded
mapper, that is responsible for the corresponding feature.

Returns a list of outlds

getOutSize ()
Returns the size of the entity in output space

16.3. Mappers: Data Transformations 115



PyMVPA Manual, Release 0.4.0

reverse (data)
Reverse map data from OUT space into the IN spaces.

*data (array) — Single data array to be reverse mapped into a sequence of data snippets
in their individual IN spaces.
Return type
list
selectOut (outlds)
Remove some elements and leave only ids in ‘out’/feature space.
Note: The subset selection is done inplace
coutlds (sequence) — All output feature ids to be selected/kept.
train (dataset)
Trains all embedded mappers.
The provided training dataset is splitted appropriately and the corresponding pieces are passed to the
train () method of each embedded mapper.
edataset (Dataset or subclass) — A dataset with the number of features matching the
outSize of the CombinedMapper.
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the CombinedMapper documentation.

Full API documentation of CombinedMapper in module mvpa.mappers.base.

Mapper

class Mapper (metric=None)
Bases: object

Interface to provide mapping between two spaces: IN and OUT. Methods are prefixed correspondingly.
forward/reverse operate on the entire dataset. get(InlOut)Id[s] operate per element:

forward
IN ouT

reverse

emetric (Metric) — Optional metric

forward (data)
Map data from the IN dataspace into OUT space.
getInId (outld)
Translate a feature id into a coordinate/index in input space.
Such a translation might not be meaningful or even possible for a particular mapping algorithm and
therefore cannot be relied upon.
getInSize ()
Returns the size of the entity in input space
getMetric()
To make pylint happy
getNeighbor (outld, *args, **kwargs)
Get feature neighbors in input space, given an id in output space.
This method has to be reimplemented whenever a derived class does not provide an implementation
forgetInId ().
getNeighborlIn (inld, *args, **kwargs)
Return the list of coordinates for the neighbors.

116 Chapter 16. Module Reference



PyMVPA Manual, Release 0.4.0

einld — id (index) of an element in input dataspace.

**qrgs, **kwargs — Any additional arguments are passed to the embedded metric of the
mapper.

XXX See TODO below: what to return — list of arrays or list of tuples?

getNeighbors (outld, *args, **kwargs)
Return the list of coordinates for the neighbors.

By default it simply constructs the list based on the generator returned by getNeighbor()

getOutsSize ()
Returns the size of the entity in output space

isValidInId (inld)
Validate id in IN space.

Override if IN space is not simly a 1D vector

isValidOutId (outld)
Validate feature id in OUT space.

Override if OUT space is not simly a 1D vector

metric
To make pylint happy

nfeatures
str(object) -> string
Return a nice string representation of the object. If the argument is a string, the return value is the
same object.

reverse (data)
Reverse map data from OUT space into the IN space.

selectOut (outlds)
Limit the OUT space to a certain set of features.

*outlds (sequence) — Subset of ids of the current feature in OUT space to keep.

setMetric (metric)
To make pylint happy

train (dataset)
Perform training of the mapper.

This method is called to put the mapper in a state that allows it to perform to intended mapping.
edataset (Dataset or subclass) —
Note: The default behavior of this method is to do nothing.
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Mapper documentation.

Full API documentation of Mapper in module mvpa.mappers.base.

ProjectionMapper

class ProjectionMapper (selector=None, demean=True)
Bases: mvpa.mappers.base.Mapper

Mapper using a projection matrix to transform the data.

This class cannot be used directly. Sub-classes have to implement the _train() method, which has to compute
the projection matrix given a dataset (see _train() docstring for more information).

Once the projection matrix is available, this class provides functionality to perform forward and backwards
mapping of data, the latter using the hermitian (conjugate) transpose of the projection matrix. Additionally,
ProjectionMapper supports optional (but done by default) demeaning of the data and selection of arbitrary
component (i.e. columns of the projection matrix) of the projection.
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Forward and back-projection matrices (a.k.a. projection and reconstruction) are available via the proj and
recon properties. the latter only after it has been computed (after first call to reverse).

Initialize the ProjectionMapper
eselector (None | list) — Which components (i.e. columns of the projection matrix) should
be used for mapping. If selector is None all components are used. If a list is provided,

all list elements are treated as component ids and the respective components are selected
(all others are discarded).

edemean (bool) — Either data should be demeaned while computing projections and ap-
plied back while doing reverse()

forward (data, demean=None)
Perform forward projection.

*data (ndarray) — Data array to map
edemean (boolean | None) — Override demean setting for this method call.

Return type
NumPy array

getInSize ()
Returns the number of original features.

getOutSize ()
Returns the number of components to project on.

proj
Projection matrix

recon
Backprojection matrix

reverse (data)
Reproject (reconstruct) data into the original feature space.

Return type
NumPy array

selectOut (outlds)
Choose a subset of components (and remove all others).

train (dataset)
Determine the projection matrix.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the ProjectionMapper documentation.

Full API documentation of ProjectionMapper in module mvpa.mappers.base.

16.3.4 mvpa.mappers.boxcar

Data mapper

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.mappers.boxcar (for developers).

BoxcarMapper

class BoxcarMapper (startpoints, boxlength, offset=0, collision_resolution="mean’)
Bases: mvpa .mappers.base.Mapper

Mapper to combine multiple samples into a single sample.

Note: This mapper is somewhat unconventional since it doesn’t preserve number of samples (ie the size of
0-th dimension).
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estartpoints (sequence) — Index values along the first axis of ‘data’.

*boxlength (int) — The number of elements after ‘startpoint’ along the first axis of ‘data’
to be considered for the boxcar.

*offset (int) — The offset between the provided starting point and the actual start of the
boxcar.

ecollision_resolution (‘mean’) — if a sample belonged to multiple output samples, then
on reverse, how to resolve the value

forward (data)
Project an ND matrix into N+1D matrix

This method also handles the special of forward mapping a single ‘raw’ sample. Such a sample is
extended (by concatenating clones of itself) to cover a full boxcar. This functionality is only availably
after a full data array has been forward mapped once.

Return type
array

getInSize ()
Returns the number of original samples which were combined.

getOutSize ()
Returns the number of output samples.

isValidInId (inld)
Validate if Inld is valid

isValidOutId (outld)
Validate if Outld is valid

reverse (data)
Uncombine features back into original space.

Samples which were not touched by forward will get value 0 assigned

selectOut (outlds)
Just complain for now

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the BoxcarMapper documentation.

Full API documentation of BoxcarMapper in module mvpa.mappers.boxcar.

16.3.5 mvpa.mappers.ica

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.mappers.ica (for developers).

ICAMapper

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the ICAMapper documentation.

Full API documentation of ICAMapper in module mvpa.mappers.ica.

16.3.6 mvpa.mappers.mask

Data mapper which applies mask to the data

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.mappers.mask (for developers).
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MaskMapper

class MaskMapper (mask, **kwargs)
Bases: mvpa.mappers.base.Mapper

Mapper which uses a binary mask to select “Features”

Initialize MaskMapper

*mask (array) — an array in the original dataspace and its nonzero elements are used to
define the features included in the dataset

convertOutIds2InMask (outlds)
Returns a boolean mask with all features in oulds selected.

This method works exactly like Mapper.convertOutlds20utMask(), but the feature mask is finally
(reverse) mapped into in-space.
eoutlds (list or 1d array) — To be selected features ids in out-space.

Return type
ndarray
Returns
All selected features are set to True; False otherwise.

convertOutIds20utMask (outlds)
Returns a boolean mask with all features in outlds selected.
coutlds (list or 1d array) — To be selected features ids in out-space.

Return type
ndarray
Returns
All selected features are set to True; False otherwise.

discardOut (outlds)
Listed outlds would be discarded

forward (data)
Map data from the original dataspace into featurespace.

getInId (outld)
Returns a features coordinate in the original data space for a given feature id.

If this method is called with a list of feature ids it returns a 2d-array where the first axis corresponds
the dimensions in ‘In’ dataspace and along the second axis are the coordinates of the features on this
dimension (like the output of NumPy.array.nonzero()).

XXX it might become __get_item__ access method

getInIds ()
Returns a 2d array where each row contains the coordinate of the feature with the corresponding id.

getInSize ()
InShape is a shape of original mask

getMask (copy=True)
By default returns a copy of the current mask.
If ‘copy’ is set to False a reference to the mask is returned instead. This shared mask must not be
modified!

getOutId (coord)
Translate a feature mask coordinate into a feature ID.

getOutsSize ()
OutSize is a number of non-0 elements in the mask

isValidInId (inld)
mask

reverse (data)
Reverse map data from featurespace into the original dataspace.
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selectOut (outlds)
Only listed outlds would remain.

Function assumes that outlds are sorted. In __debug__ mode selectOut would check if obtained IDs
are sorted and would warn the user if they are not.

Note: If you feel strongly that you need to remap features internally (ie to allow Ids with mixed order)
please contact developers of mvpa to discuss your use case.

The function used to accept a matrix-mask as the input but now it really has to be a list of IDs

*Negative outlds would not raise exception - just would be treated ‘from the tail’
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the MaskMapper documentation.

Full API documentation of MaskMapper in module mvpa.mappers.mask.

16.3.7 mvpa.mappers.metric

Classes and functions to provide sense of distances between sample points

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.mappers.metric (for developers).

Classes

DescreteMetric

class DescreteMetric (elementsize=1, distance_function=<function cartesianDistance at 0x8fa7e9c>)
Bases: mvpa .mappers.metric.Metric

Find neighboring points in descretized space

If input space is descretized and all points fill in N-dimensional cube, this finder returns list of neighboring
points for a given distance.

As input points it operates on discretized values, not absolute coordinates (which are e.g. in mm)
Initialize the class provided @elementsize and @distance_function
elementsize

filter_coord
Lets allow to specify some custom filter to use

getNeighbors (origin, radius=0)
Returns coordinates of the neighbors which are within distance from coord

XXX radius might need to be not a scalar but a vector of scalars to specify search distance in different
dimensions differently... but then may be it has to be a tensor to specify orientation etc? :-) so it might
not be necessary for now

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the DescreteMet ric documentation.

Full API documentation of DescreteMetric in module mvpa.mappers.metric.

Metric

class Metric ()
Bases: object

Abstract class for any finder.
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Classes subclasses from this class show know about structure of the data and thus be able to provide infor-
mation about the neighbors. At least one of the methods (getNeighbors, getNeighbor) has to be overriden
in the derived class. NOTE: derived #2 from derived class #1 has to override all methods which were
overrident in class #1

getNeighbor (*args, **kwargs)
Generator to return coordinate of the neighbor.

Base class contains the simplest implementation, assuming that getNeighbors returns iterative structure
to spit out neighbors 1-by-1

getNeighbors (*args, **kwargs)
Return the list of coordinates for the neighbors.

By default it simply constracts the list based on the generator getNeighbor
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Met ric documentation.

Full API documentation of Metric in module mvpa.mappers.metric.

16.3.8 mvpa.mappers.pca

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.mappers.pca (for developers).

PCAMapper

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the PCAMapper documentation.

Full API documentation of PCAMapper in module mvpa.mappers.pca.

16.3.9 mvpa.mappers.samplegroup

Data mapper

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.mappers.samplegroup (for developers).

SampleGroupMapper

class SampleGroupMapper (fx=<function FirstAxisMean at 0x8d1be2c>)
Bases: mvpa .mappers.base.Mapper

Mapper to apply a mapping function to samples of the same type.

A customimzable function is applied individually to all samples with the same unique label from the same
chunk. This mapper is somewhat unconventional since it doesn’t preserve number of samples (ie the size of
0-th dimension...)

Initialize the PCAMapper

startpoints: A sequence of index value along the first axis of
‘data’.

boxlength: The number of elements after ‘startpoint’ along the
first axis of ‘data’ to be considered for averaging.

offset: The offset between the starting point and the
averaging window (boxcar).
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collision_resolution
[string] if a sample belonged to multiple output samples, then on reverse, how to resolve the value
(choices: ‘mean’)
forward (data)

getInSize ()
Returns the number of original samples which were combined.

getOutSize ()
Returns the number of output samples.

reverse (data)
This is not implemented.

selectOut (outlds)
Just complain for now

train (dataset)
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the SampleGroupMapper documentation.

Full API documentation of SampleGroupMapper in module mvpa.mappers.samplegroup.

16.3.10 mvpa.mappers.svd

Data mapper

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.mappers.svd (for developers).

SVDMapper

class SVDMapper ( **kwargs)
Bases: mvpa.mappers.base.ProjectionMapper

Mapper to project data onto SVD components estimated from some dataset.
Initialize the SVDMapper
**kwargs — All keyword arguments are passed to the ProjectionMapper constructor.
Note, that for the ‘selector’ argument this class also supports passing a ElementSelector

instance, which will be used to determine the to be selected features, based on the
singular values of each component.

selectOut (outlds)
Choose a subset of SVD components (and remove all others).

sv
Singular values

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the SVDMapper documentation.

Full API documentation of SVDMapper in module mvpa.mappers.svd.

16.3.11 mvpa.mappers.wavelet

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.mappers.wavelet (for developers).
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Classes

WaveletPacketMapper

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the WaveletPacketMapper documentation.

Full API documentation of WaveletPacketMapper in module mvpa.mappers.wavelet.

WaveletTransformationMapper

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Wavelet TransformationMapper documentation.

Full API documentation of WaveletTransformationMapper in module mvpa.mappers.wavelet.

16.4 Classifiers and Errors

16.4.1 mvpa.clfs

Import helper for PyYMVPA classifiers

Module Organization

mvpa.clfs module contains various classifiers

group Basic
classifier

group Specific Implementations
knn svm plr ridge smlr

group Internal Implementations
libsvm

group Utilities
transerror

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs (for developers).

16.4.2 mvpa.clfs.base

Base classes for all classifiers.

Base Classifiers can be grouped according to their function as

group Basic Classifiers
Classifier BoostedClassifier ProxyClassifier

group BoostedClassifiers
CombinedClassifier MulticlassClassifier SplitClassifier

group ProxyClassifiers
BinaryClassifier MappedClassifier FeatureSelectionClassifier
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group PredictionsCombiners for CombinedClassifier
PredictionsCombiner Maximal Vote MeanPrediction

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.base (for developers).

Classes
BinaryClassifier

class BinaryClassifier (clf, poslabels, neglabels, **kwargs)
Bases: mvpa.clfs.base.ProxyClassifier

ProxyClassifier which maps set of two labels into +1 and -1

oclf (Classifier) — classifier to use
eposlabels (list) — list of labels which are treated as +1 category
eneglabels (list) — list of labels which are treated as -1 category

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the BinaryClassifier documentation.

Full API documentation of BinaryClassifier in module mvpa.clfs.base.

BoostedClassifier

class BoostedClassifier (clfs=None, propagate_states=True, harvest_attribs=None, copy_attribs="copy’,

*rkwargs)
Bases: mvpa.clfs.base.Classifier,mvpa.misc.state.Harvestable

Classifier containing the farm of other classifiers.
Should rarely be used directly. Use one of its childs instead

Initialize the instance.

eclfs (list) — list of classifier instances to use (slave classifiers)

epropagate_states (bool) — either to propagate enabled states into slave classifiers. It is
in effect only when slaves get assigned - so if state is enabled not during construction,
it would not necessarily propagate into slaves

sharvest_attribs (list of basestr) — What attributes of call to store and return within har-
vested state variable

ecopy_attribs (None or basestr) — Force copying values of attributes on harvesting
ekwargs (dict) — dict of keyworded arguments which might get used by State or Classifier

clfs
Used classifiers

getSensitivityAnalyzer (**kwargs)
Return an appropriate SensitivityAnalyzer

untrain ()
Untrain BoostedClassifier

Has to untrain any known classifier
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the BoostedClassifier documentation.

Full API documentation of BoostedClassifier in module mvpa.clfs.base.
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Classifier

class Classifier (**kwargs)
Bases: mvpa.misc.state.ClassWithCollections

Abstract classifier class to be inherited by all classifiers
Cheap initialization.
getSensitivityAnalyzer (**kwargs)
Factory method to return an appropriate sensitivity analyzer for the respective classifier.
isTrained (dataset=None)
Either classifier was already trained.
MUST BE USED WITH CARE IF EVER
predict (data)
Predict classifier on data

Shouldn’t be overriden in subclasses unless explicitely needed to do so. Also subclasses trying to call
super class’s predict should call _predict if within _predict instead of predict() since otherwise it would
loop

repredict (data, **kwargs)
Helper to avoid check if data was changed actually changed
Useful if classifier was (re)trained but with the same data (so just parameters were changed), so that
it could be repredicted easily (on the same data as before) without recomputing for instance train/test
kernel matrix. Should be used with caution and always compared to the results on not ‘retrainable’
classifier. Some additional checks are enabled if debug id ‘CHECK_RETRAIN’ is enabled, to guard
against obvious mistakes.
*data — data which is conventionally given to predict
skwargs — that is what _changedData gets updated with. So, smth like
(params=['C’], labels=True) if parameter C and labels got changed
retrain (dataset, **kwargs)
Helper to avoid check if data was changed actually changed

Useful if just some aspects of classifier were changed since its previous training. For instance if dataset
wasn’t changed but only classifier parameters, then kernel matrix does not have to be computed.

Words of caution: classifier must be previousely trained, results always should first be compared to
the results on not ‘retrainable’ classifier (without calling retrain). Some additional checks are enabled
if debug id ‘CHECK_RETRAIN’ is enabled, to guard against obvious mistakes.

ekwargs — that is what _changedData gets updated with. So, smth like
(params=['C’], labels=True) if parameter C and labels got changed

summary ()
Providing summary over the classifier

train (dataset)
Train classifier on a dataset

Shouldn’t be overriden in subclasses unless explicitely needed to do so

trained
Either classifier was already trained

untrain ()
Reset trained state

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Classifier documentation.

Full API documentation of Classifier in module mvpa.clfs.base.
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ClassifierCombiner

class ClassifierCombiner (clf, variables=None)
Bases: mvpa.clfs.base.PredictionsCombiner

Provides a decision using training a classifier on predictions/values
TODO

Initialize ClassifierCombiner

eclf (Classifier) — Classifier to train on the predictions

evariables (list of basestring) — List of state variables stored in ‘combined’ classifiers,
which to use as features for training this classifier

untrain ()
It might be needed to untrain used classifier

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the ClassifierCombiner documentation.

Full API documentation of ClassifierCombiner in module mvpa.clfs.base.

CombinedClassifier

class CombinedClassifier (clfs=None, combiner=None, **kwargs)
Bases: mvpa.clfs.base.BoostedClassifier

BoostedClassifier which combines predictions using some PredictionsCombiner functor.

Initialize the instance.

eclfs (list of Classifier) — list of classifier instances to use

ecombiner (PredictionsCombiner) — callable which takes care about combining multi-
ple results into a single one (e.g. maximal vote for classification, MeanPrediction for
regression))

ekwargs (dict) — dict of keyworded arguments which might get used by State or Classifier

NB: combiner might need to operate not on ‘predictions’ descrete
labels but rather on raw ‘class’ values classifiers estimate (which is pretty much what is stored under
values

combiner
Used combiner to derive a single result

summary ()

untrain ()
Untrain CombinedClassifier

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the CombinedClassifier documentation.

Full API documentation of CombinedClassifier in module mvpa.clfs.base.

FeatureSelectionClassifier

class FeatureSelectionClassifier (clf, feature_selection, testdataset=None, **kwargs)
Bases: mvpa.clfs.base.ProxyClassifier

ProxyClassifier which uses some FeatureSelection prior training.
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FeatureSelection is used first to select features for the classifier to use for prediction. Internally it would
rely on MappedClassifier which would use created MaskMapper.

TODO: think about removing overhead of retraining the same classifier if feature selection was carried out
with the same classifier already. It has been addressed by adding .trained property to classifier, but now we
should expclitely use isTrained here if we want... need to think more

Initialize the instance

eclf (Classifier) — classifier based on which mask classifiers is created
feature_selection (FeatureSelection) — whatever FeatureSelection comes handy

etestdataset (Dataset) — optional dataset which would be given on call to fea-
ture_selection

feature_selection
Used FeatureSelection
getSensitivityAnalyzer (*args_, **kwargs_)

maskclf
Used MappedClassifier

setTestDataset (festdataset)
Set testing dataset to be used for feature selection

testdataset

untrain ()
Untrain FeatureSelectionClassifier

Has to untrain any known classifier
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the FeatureSelectionClassifier documentation.

Full API documentation of FeatureSelectionClassifier in module mvpa.clfs.base.

MappedClassifier

class MappedClassifier (clf, mapper, **kwargs)
Bases: mvpa.clfs.base.ProxyClassifier

ProxyClassifier which uses some mapper prior training/testing.

MaskMapper can be used just a subset of features to train/classify. Having such classifier we can easily
create a set of classifiers for BoostedClassifier, where each classifier operates on some set of features, e.g.
set of best spheres from SearchLight, set of ROIs selected elsewhere. It would be different from simply
applying whole mask over the dataset, since here initial decision is made by each classifier and then later on
they vote for the final decision across the set of classifiers.

Initialize the instance
eclf (Classifier) — classifier based on which mask classifiers is created
*mapper — whatever Mapper comes handy
getSensitivityAnalyzer (*args_, **kwargs_)

mapper
Used mapper

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the MappedClassifier documentation.

Full API documentation of MappedClassifier in module mvpa.clfs.base.
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MaximalVote

class MaximalVote ()
Bases: mvpa.clfs.base.PredictionsCombiner

Provides a decision using maximal vote rule

XXX Might get a parameter to use raw decision values if voting is not unambigous (ie two classes have
equal number of votes

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the MaximalVote documentation.

Full API documentation of Maximal Vote in module mvpa.clfs.base.

MeanPrediction

class MeanPrediction (descr=None, **kwargs)
Bases: mvpa.clfs.base.PredictionsCombiner

Provides a decision by taking mean of the results
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the MeanPredict ion documentation.

Full API documentation of MeanPrediction in module mvpa.clfs.base.

MulticlassClassifier

class MulticlassClassifier (clf, bclf type="1-vs-1’, **kwargs)
Bases: mvpa.clfs.base.CombinedClassifier

CombinedClassifier to perform multiclass using a list of BinaryClassifier.
such as 1-vs-1 (ie in pairs like libsvm doesn) or 1-vs-all (which is yet to think about)

Initialize the instance

eclf (Classifier) — classifier based on which multiple classifiers are created for multiclass
ebclf type — “1-vs-1" or “1-vs-all”, determines the way to generate binary classifiers

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the MulticlassClassifier documentation.

Full API documentation of MulticlassClassifier in module mvpa.clfs.base.

PredictionsCombiner

class PredictionsCombiner (descr=None, **kwargs)
Bases: mvpa.misc.state.ClassWithCollections

Base class for combining decisions of multiple classifiers

train (clfs, dataset)
PredictionsCombiner might need to be trained

«clfs (list of Classifier) — List of classifiers to combine. Has to be classifiers (not pure
predictions), since combiner might use some other state variables (value’s) instead of
pure prediction’s
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*dataset (Dataset) — training data in this case
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the PredictionsCombiner documentation.

Full API documentation of PredictionsCombiner in module mvpa.clfs.base.

ProxyClassifier

class ProxyClassifier (clf, **kwargs)
Bases: mvpa.clfs.base.Classifier

Classifier which decorates another classifier

Possible uses:

*modify data somehow prior training/testing: * normalization * feature selection * modification

eoptimized classifier?
Initialize the instance

eclf (Classifier) — classifier based on which mask classifiers is created
clf
Used Classifier

getSensitivityAnalyzer (*args_, **kwargs_)
summary ()

untrain ()
Untrain ProxyClassifier

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the ProxyClassifier documentation.

Full API documentation of ProxyClassifier in module mvpa.clfs.base.

SplitClassifier

class SplitClassifier (clf, splitter=<mvpa.datasets.splitter.NFoldSplitter = object at 0x8cc072c>,

**kwargs)
Bases: mvpa.clfs.base.CombinedClassifier

BoostedClassifier to work on splits of the data
Initialize the instance

eclf (Classifier) — classifier based on which multiple classifiers are created for multiclass
esplitter (Splitter) — Splitter to use to split the dataset prior training

getSensitivityAnalyzer (*args_, **kwargs_)

splitter
Splitter user by SplitClassifier

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the SplitClassifier documentation.

Full API documentation of SplitClassifier in module mvpa.clfs.base.
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16.4.3 mvpa.clfs.blr

Bayesian Linear Regression (BLR).

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.blr (for developers).

BLR

class BLR (sigma_p=None, sigma_noise=1.0, **kwargs)
Bases: mvpa.clfs.base.Classifier

Bayesian Linear Regression (BLR).

Initialize a BLR regression analysis.
esigma_noise (float) — the standard deviation of the gaussian noise. (Defaults to 0.1)

compute_log_marginal_likelihood ()
Compute log marginal likelihood using self.train_fv and self.labels.

set_hyperparameters ( *args)
Set hyperparameters’ values.

Note that this is a list so the order of the values is important.
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the BLR documentation.

Full API documentation of BLR in module mvpa.clfs.blr.

16.4.4 mvpa.clfs.distance

Distance functions to be used in kernels and elsewhere

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.distance (for developers).

Functions

absminDistance (a, b)
Returns dinstance max(la-bl) XXX There must be better name!

Useful to select a whole cube of a given “radius”
See Also:
Full API documentation of absminDistance() in module mvpa.clfs.distance.

cartesianDistance (q, b)
Return Cartesian distance between a and b

See Also:
Full API documentation of cartesianDistance() in module mvpa.clfs.distance.

mahalanobisDistance (x, y=None, w=None)
Caclulcate Mahalanobis distance of the pairs of points.

ox — first list of points. Rows are samples, columns are features.
*y — second list of points (optional)

*w (N.ndarray) — optional inverse covariance matrix between the points. It is computed
if not given

Inverse covariance matrix can be calculated with the following
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w = N.linalg.solve(N.cov(x.T), N.identity(x.shape[1]))
or
w = N.linalg.inv(N.cov(x.T))
See Also:
Full API documentation of mahalanobisDistance() in module mvpa.clfs.distance.

manhattenDistance (q, b)
Return Manhatten distance between a and b

See Also:
Full API documentation of manhattenDistance() in module mvpa.clfs.distance.

pnorm_w_python (datal, data2=None, weight=None, p=2, heuristic="auto’, use_sq_euclidean=True)
Weighted p-norm between two datasets (pure Python implementation)

lix - x’I_w = (sum_{i=1..N} (w_i*Ix_i - x’_il)**p)**(1/p)

*datal (N.ndarray) — First dataset

edata? (N.ndarray or None) — Optional second dataset

*weight (N.ndarray or None) — Optional weights per 2nd dimension (features)

*p — Power

*heuristic (basestring) — Which heuristic to use: * ‘samples’ — python sweep over Oth
dim * ‘features’ — python sweep over 1st dim * ‘auto’ decides automatically. If # of
features (shape[1]) is much larger than # of samples (shape[0]) — use ‘samples’, and use
‘features’ otherwise

euse_sq_euclidean (bool) — Either to use squared_euclidean_distance_matrix for com-
putation if p==

See Also:
Full API documentation of pnorm_w_python() in module mvpa.clfs.distance.

squared_euclidean_distance (datal, data2=None, weight=None)
Compute weighted euclidean distance matrix between two datasets.

*datal (N.ndarray) — first dataset
edata? (N.ndarray) — second dataset. If None, compute the euclidean distance between
the first dataset versus itself. (Defaults to None)

*weight (N.ndarray) — vector of weights, each one associated to each dimension of the
dataset (Defaults to None)

See Also:

Full API documentation of squared_euclidean_distance() in module mvpa.clfs.distance.

16.4.5 mvpa.clfs.gpr

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.gpr (for developers).

Classes

GPR

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the GPR documentation.

Full API documentation of GPR in module mvpa.clfs.gpr.
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GPRLinearWeights

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the GPRLinearWeights documentation.

Full API documentation of GPRLinearWeights in module mvpa.clfs.gpr.

16.4.6 mvpa.clfs.kernel

Kernels for Gaussian Process Regression and Classification.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.kernel (for developers).

Classes

Kernel

class Kernel ()
Bases: object

Kernel function base class.

compute (datal, data2=None)

compute_gradient (alphaalphaTK)
compute_lml_gradient (alphaalphaT_Kinv, data)
compute_1lml_gradient_logscale (alphaalphaT_Kinv, data)

reset ()
Resets the kernel dropping internal variables to the original values

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Kernel documentation.

Full API documentation of Kernel in module mvpa.clfs.kernel.

KernelConstant

class KernelConstant (sigma_0=1.0, **kwargs)
Bases: mvpa.clfs.kernel.Kernel

The constant kernel class.
Initialize the constant kernel instance.

esigma_0 (float) — standard deviation of the Gaussian prior probability N(0,sigma_0**2)
of the intercept of the constant regression. (Defaults to 1.0)

compute (datal, data2=None)
Compute kernel matrix.

*datal (numpy.ndarray) — data
*data? (numpy.ndarray) — data (Defaults to None)

compute_1lml_gradient (alphaalphaT_Kinv, data)
compute_1lml_gradient_logscale (alphaalphaT_Kinv, data)

set_hyperparameters (hyperparameter)
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See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the KernelConstant documentation.

Full API documentation of KernelConstant in module mvpa.clfs.kernel.

KernelExponential

class KernelExponential (length_scale=1.0, sigma_f=1.0, **kwargs)
Bases: mvpa.clfs.kernel.Kernel

The Exponential kernel class.
Note that it can handle a length scale for each dimension for Automtic Relevance Determination.
Initialize an Exponential kernel instance.

elength_scale (float OR numpy.ndarray) — the characteristic length-scale (or length-
scales) of the phenomenon under investigation. (Defaults to 1.0)

esigma_f (float) — Signal standard deviation. (Defaults to 1.0)

compute (datal, data2=None)
Compute kernel matrix.
*datal (numpy.ndarray) — data
*data2 (numpy.ndarray) — data (Defaults to None)
compute_1lml_gradient (alphaalphaT Kinv, data)
Compute grandient of the kernel and return the portion of log marginal likelihood gradient due to the

kernel. Shorter formula. Allows vector of lengthscales (ARD) BUT THIS LAST OPTION SEEMS
NOT TO WORK FOR (CURRENTLY) UNKNOWN REASONS.

compute_1lml_gradient_logscale (alphaalphaT_Kinv, data)
Compute grandient of the kernel and return the portion of log marginal likelihood gradient due to the
kernel. Shorter formula. Allows vector of lengthscales (ARD). BUT THIS LAST OPTION SEEMS
NOT TO WORK FOR (CURRENTLY) UNKNOWN REASONS.

gradient (datal, data2)
Compute gradient of the kernel matrix. A must for fast model selection with high-dimensional data.

set_hyperparameters (hyperparameter)
Set hyperaparmeters from a vector.

Used by model selection.
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the KernelExponential documentation.

Full API documentation of KernelExponential in module mvpa.clfs.kernel.

Kernellinear

class KernelLinear (Sigma_p=None, sigma_0=1.0, **kwargs)
Bases: mvpa.clfs.kernel.Kernel

The linear kernel class.
Initialize the linear kernel instance.

*Sigma_p (numpy.ndarray) — Covariance matrix of the Gaussian prior probability
N(0,Sigma_p) on the weights of the linear regression. (Defaults to None)

esigma_0 (float) — the standard deviation of the Gaussian prior N(0,sigma_0**2) of the
intercept of the linear regression. (Deafults to 1.0)
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compute (datal, data2=None)
Compute kernel matrix. Set Sigma_p to correct dimensions and default value if necessary.

*datal (numpy.ndarray) — data
*data? (numpy.ndarray) — data (Defaults to None)

compute_1lml_gradient (alphaalphaT_Kinv, data)
compute_lml_gradient_logscale (alphaalphaT_Kinv, data)
reset ()

set_hyperparameters (hyperparameter)

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Kerne1Linear documentation.

Full API documentation of KernelLinear in module mvpa.clfs.kernel.

KernelMatern 3 2

class KernelMatern_3_2 (length_scale=1.0, sigma_f=1.0, numerator=3.0, **kwargs)
Bases: mvpa.clfs.kernel.Kernel

The Matern kernel class for the case ni=3/2 or ni=5/2.
Note that it can handle a length scale for each dimension for Automtic Relevance Determination.
Initialize a Squared Exponential kernel instance.

elength_scale (float OR numpy.ndarray) — the characteristic length-scale (or length-
scales) of the phenomenon under investigation. (Defaults to 1.0)

esigma_f (float) — Signal standard deviation. (Defaults to 1.0)

enumerator (float) — the numerator of parameter ni of Matern covariance functions. Cur-
rently only numerator=3.0 and numerator=5.0 are implemented. (Defaults to 3.0)

compute (datal, data2=None)
Compute kernel matrix.

*datal (numpy.ndarray) — data
*data? (numpy.ndarray) — data (Defaults to None)

gradient (datal, data2)
Compute gradient of the kernel matrix. A must for fast model selection with high-dimensional data.

set_hyperparameters (hyperparameter)
Set hyperaparmeters from a vector.

Used by model selection. Note: ‘numerator’ is not considered as an hyperparameter.
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the KernelMatern_3_2 documentation.

Full API documentation of KernelMatern_3_2 in module mvpa.clfs.kernel.

KernelMatern 5 2

class KernelMatern_5_2 (**kwargs)
Bases: mvpa.clfs.kernel.KernelMatern_3_2

The Matern kernel class for the case ni=5/2.
This kernel is just KernelMatern_3_2(numerator=5.0).

Initialize a Squared Exponential kernel instance.
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elength_scale (float OR numpy.ndarray) — the characteristic length-scale (or length-
scales) of the phenomenon under investigation. (Defaults to 1.0)

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the KernelMatern_5_2 documentation.

Full API documentation of KernelMatern_5_2 in module mvpa.clfs.kernel.

KernelRationalQuadratic

class KernelRationalQuadratic (length_scale=1.0, sigma_f=1.0, alpha=0.5, **kwargs)
Bases: mvpa.clfs.kernel.Kernel

The Rational Quadratic (RQ) kernel class.
Note that it can handle a length scale for each dimension for Automtic Relevance Determination.
Initialize a Squared Exponential kernel instance.

elength_scale (float OR numpy.ndarray) — the characteristic length-scale (or length-
scales) of the phenomenon under investigation. (Defaults to 1.0)

esigma_f (float) — Signal standard deviation. (Defaults to 1.0)
ealpha (float) — The parameter of the RQ functions family. (Defaults to 2.0)

compute (datal, data2=None)
Compute kernel matrix.

*datal (numpy.ndarray) — data
*data? (numpy.ndarray) — data (Defaults to None)

gradient (datal, data2)
Compute gradient of the kernel matrix. A must for fast model selection with high-dimensional data.

set_hyperparameters (hyperparameter)
Set hyperaparmeters from a vector.

Used by model selection. Note: ‘alpha’ is not considered as an hyperparameter.
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the KernelRationalQuadratic documentation.

Full API documentation of KernelRationalQuadratic in module mvpa.clfs.kernel.

KernelSquaredExponential

class KernelSquaredExponential (length_scale=1.0, sigma_f=1.0, **kwargs)
Bases: mvpa.clfs.kernel.Kernel

The Squared Exponential kernel class.
Note that it can handle a length scale for each dimension for Automtic Relevance Determination.
Initialize a Squared Exponential kernel instance.

elength_scale (float OR numpy.ndarray) — the characteristic length-scale (or length-
scales) of the phenomenon under investigation. (Defaults to 1.0)

esigma_f (float) — Signal standard deviation. (Defaults to 1.0)
compute (datal, data2=None)
Compute kernel matrix.

*datal (numpy.ndarray) — data
*data? (numpy.ndarray) — data (Defaults to None)
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compute_1lml_gradient (alphaalphaT_Kinv, data)
Compute grandient of the kernel and return the portion of log marginal likelihood gradient due to the
kernel. Shorter formula. Allows vector of lengthscales (ARD).

compute_1lml_gradient_logscale (alphaalphaT_Kinv, data)
Compute grandient of the kernel and return the portion of log marginal likelihood gradient due to the
kernel. Hyperparameters are in log scale which is sometimes more stable. Shorter formula. Allows
vector of lengthscales (ARD).

reset ()

set_hyperparameters (hyperparameter)
Set hyperaparmeters from a vector.

Used by model selection.
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Kernel SquaredExponential documentation.

Full API documentation of KernelSquaredExponential in module mvpa.clfs.kernel.

16.4.7 mvpa.clfs.knn

k-Nearest-Neighbour classifier.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.knn (for developers).

kNN

class kNN (k=2, dfx=<function squared_euclidean_distance at 0x8fa7f7c>, voting="weighted’, **kwargs)
Bases: mvpa.clfs.base.Classifier

k-nearest-neighbour classifier.

If enabled, it stores the votes per class in the ‘values’ state after calling predict().

*k (unsigned integer) — Number of nearest neighbours to be used for voting.

edfx (functor) — Function to compute the distances between training and test samples.
Default: squared euclidean distance

*voting (str) — Voting method used to derive predictions from the nearest neighbors. Pos-
sible values are ‘majority’ (simple majority of classes determines vote) and ‘weighted’
(votes are weighted according to the relative frequencies of each class in the training
data).

***kwargs — Additonal arguments are passed to the base class.
getMajorityVote (knn_ids)
Simple voting by choosing the majority of class neighbours.

getWeightedVote (knn_ids)
Vote with classes weighted by the number of samples per class.

untrain ()
Reset trained state

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the kNN documentation.

Full API documentation of kNN in module mvpa.clfs.knn.
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16.4.8 mvpa.clfs.lars

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.lars (for developers).

Classes

LARS

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the LARS documentation.

Full API documentation of LARS in module mvpa.clfs.lars.

LARSWeights

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the LARSWeight s documentation.

Full API documentation of LARSWeights in module mvpa.clfs.lars.

16.4.9 mvpa.clfs.libsmlrc

Wraper for the stepwise_regression function for SMLR.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.libsmlrc (for developers).

stepwise_regression (*args)
See Also:

Full API documentation of stepwise_regression() in module mvpa.clfs.libsmlrc.

16.4.10 mvpa.clfs.libsmlrc.ctypes_helper

Helpers for wrapping C libraries with ctypes.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.libsmlrc.ctypes_helper (for developers).

Functions
extend_args (*args)
Turn ndarray arguments into dims and arrays.
See Also:
Full API documentation of extend_args() in module mvpa.clfs.libsmlrc.ctypes_helper.
get_argtypes (*args)
See Also:
Full API documentation of get_argtypes() in module mvpa.clfs.libsmlrc.ctypes_helper.

process_args (*args)
Turn ndarray arguments into dims and array pointers for calling a ctypes-wrapped function.
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See Also:

Full API documentation of process_args() in module mvpa.clfs.libsmlrc.ctypes_helper.

16.4.11 mvpa.clfs.libsvmc

Classifiers provied by LibSVM library

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.libsvmc (for developers).

16.4.12 mvpa.clfs.libsvmc. sens

Provide sensitivity measures for libsvm’s SVM.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.libsvmc.sens (for developers).

LinearSVMWeights

class LinearSVMWeights (clf, **kwargs)
Bases: mvpa.measures.base.Sensitivity

SensitivityAnalyzer for the LIBSVM implementation of a linear SVM.

Initialize the analyzer with the classifier it shall use.

eclf (LinearSVM) — classifier to use. Only classifiers sub-classed from LinearSVM may
be used.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the LinearSVMiWeight s documentation.

Full API documentation of LinearSVMWeights in module mvpa.clfs.libsvmc.sens.

16.4.13 mvpa.clfs.libsvmc.svm

Wrap the libsvm package into a very simple class interface.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.libsvmc.svm (for developers).

Classes

LinearSVMWeights

class LinearSVMWeights (clf, **kwargs)
Bases: mvpa.measures.base.Sensitivity

SensitivityAnalyzer for the LIBSVM implementation of a linear SVM.

Initialize the analyzer with the classifier it shall use.

eclf (LinearSVM) — classifier to use. Only classifiers sub-classed from LinearSVM may
be used.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the LinearSVMiWeight s documentation.
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Full API documentation of LinearSVMWeights in module mvpa.clfs.libsvmc.svm.

SVM

class SVM (kernel_type="linear’, **kwargs)
Bases: mvpa.clfs._svmbase._SVM

Support Vector Machine Classifier.
This is a simple interface to the libSVM package.

This is the base class of all classifier that utilize the libSVM package underneath. It is not really meant to
be used directly. Unless you know what you are doing it is most likely better to use one of the subclasses.

Here is the explaination for some of the parameters from the libSVM documentation:
svm_type can be one of C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR.

*C_SVC: C-SVM classification
eNU_SVC: nu-SVM classification
*ONE_CLASS: one-class-SVM
*EPSILON_SVR: epsilon-SVM regression
*NU_SVR: nu-SVM regression

kernel_type can be one of LINEAR, POLY, RBF, SIGMOID.

*LINEAR: u’ xv

*POLY: (gammaxu’ *v + coef0) “degree

*RBF: exp (—gammax* | u-v|"2)

*SIGMOID: tanh (gammaxu’ v + coef0)

*PRECOMPUTED: kernel values in training_set_file
cache_size is the size of the kernel cache, specified in megabytes. C is the cost of constraints violation. (we
usually use 1 to 1000) eps is the stopping criterion. (we usually use 0.00001 in nu-SVC, 0.001 in others).
nu is the parameter in nu-SVM, nu-SVR, and one-class-SVM. p is the epsilon in epsilon-insensitive loss

function of epsilon-SVM regression. shrinking = 1 means shrinking is conducted; = 0 otherwise. probability
= 1 means model with probability information is obtained; = O otherwise.

nr_weight, weight_label, and weight are used to change the penalty for some classes (If the weight for a
class is not changed, it is set to 1). This is useful for training classifier using unbalanced input data or with
asymmetric misclassification cost.

Each weight[i] corresponds to weight_label[i], meaning that the penalty of class weight_label[i] is scaled
by a factor of weight[i].

If you do not want to change penalty for any of the classes, just set nr_weight to 0.
model

summary ()
Provide quick summary over the SVM classifier

untrain ()
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the SVM documentation.

Full API documentation of SVM in module mvpa.clfs.libsvme.svm.

16.4.14 mvpa.clfs.model_selector

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.model_selector (for developers).
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ModelSelector

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the ModelSelect or documentation.

Full API documentation of ModelSelector in module mvpa.clfs.model_selector.

16.4.15 mvpa.clfs.plr

Penalized logistic regression classifier.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.plr (for developers).

PLR

class PLR (Im=1, criterion=1, reduced="False, maxiter=20, **kwargs)
Bases: mvpa.clfs.base.Classifier

Penalized logistic regression Classifier.
Initialize a penalized logistic regression analysis
*/m (int) — the penalty term lambda.

ecriterion (int) — the criterion applied to judge convergence.

ereduced (Bool) — if not False, the rank of the data is reduced before performing the

calculations. In that case, reduce is taken as the fraction of the first singular value,
at which a dimension is not considered significant anymore. A reasonable criterion is
reduced=0.01

emaxiter (int) — maximum number of iterations. If no convergence occurs after this
number of iterations, an exception is raised.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the PLR documentation.

Full API documentation of PLR in module mvpa.clfs.plr.

16.4.16 mvpa.clfs.ridge

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.ridge (for developers).

RidgeReg

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Ri dgeReg documentation.

Full API documentation of RidgeReg in module mvpa.clfs.ridge.

16.4.17 mvpa.clfs.sg

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.sg (for developers).
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16.4.18 mvpa.clfs.sg.sens

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.sg.sens (for developers).

LinearSVMWeights

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the LinearSVMWeight s documentation.

Full API documentation of LinearSVMWeights in module mvpa.clfs.sg.sens.

16.4.19 mvpa.clfs.sg.svm

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.sg.svm (for developers).

SVM

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the SVM documentation.

Full API documentation of SVM in module mvpa.clfs.sg.svm.

16.4.20 mvpa.clfs.smlr

Sparse Multinomial Logistic Regression classifier.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.smlr (for developers).

Classes

SMLR

class SMLR ( **kwargs)
Bases: mvpa.clfs.base.Classifier

Sparse Multinomial Logistic Regression Classifier.

This is an implementation of the SMLR algorithm published in Krishnapuram et al. (2005, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence). Be sure to cite that article if you use this for your
work.

Initialize an SMLR classifier.
biases

getSensitivityAnalyzer (**kwargs)
Returns a sensitivity analyzer for SMLR.

weights
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the SMLR documentation.

Full API documentation of SMLR in module mvpa.clfs.smlr.
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SMLRWeights

class SMLRWeights (clf, force_training=True, **kwargs)
Bases: mvpa.measures.base.Sensitivity

SensitivityAnalyzer that reports the weights SMLR trained on a given Dataset.

By default SMLR provides multiple weights per feature (one per label in training dataset). By default, all
weights are combined into a single sensitivity value. Please, see the FeaturewiseDatasetMeasure constructor
arguments how to custmize this behavior.

Initialize the analyzer with the classifier it shall use.

eclf (Classifier) — classifier to use.
*force_training (Bool) — if classifier was already trained — do not retrain

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the SMLRWe ight s documentation.

Full API documentation of SMLRWeights in module mvpa.clfs.smlr.

16.4.21 mvpa.clfs.stats

Estimator for classifier error distributions.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.stats (for developers).

Classes

AdaptiveNormal

class AdaptiveNormal (dist, **kwargs)
Bases: mvpa.clfs.stats.AdaptiveNullDist

Adaptive rdist: params are (0, sqrt(1/nfeatures))

edist (distribution object) — This can be any object the has a cdf{) method to report the
cumulative distribition function values.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the AdaptiveNormal documentation.

Full API documentation of AdaptiveNormal in module mvpa.clfs.stats.

AdaptiveNullDist

class AdaptiveNullDist (dist, **kwargs)
Bases: mvpa.clfs.stats.FixedNullDist

Adaptive distribution which adjusts parameters according to the data
WiP: internal implementation might change

odist (distribution object) — This can be any object the has a cdf{) method to report the
cumulative distribition function values.

fit (measure, wdata, vdata=None)
Cares about dimensionality of the feature space in measure
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See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the AdaptiveNullDist documentation.

Full API documentation of AdaptiveNullDist in module mvpa.clfs.stats.

AdaptiveRDist

class AdaptiveRDist (dist, **kwargs)
Bases: mvpa.clfs.stats.AdaptiveNullDist

Adaptive rdist: params are (nfeatures-1, 0, 1)

odist (distribution object) — This can be any object the has a cdf{) method to report the
cumulative distribition function values.

cdf (x)
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Adapt iveRD1ist documentation.

Full API documentation of AdaptiveRDist in module mvpa.clfs.stats.

FixedNullDist

class FixedNullDist (dist, **kwargs)
Bases: mvpa.clfs.stats.NullDist

Proxy/Adaptor class for SciPy distributions.
All distributions from SciPy’s ‘stats’ module can be used with this class.
>>> import numpy as N

>>> from scipy import stats
>>> from mvpa.clfs.stats import FixedNullDist

>>>

>>> dist = FixedNullDist (stats.norm(loc=2, scale=4))

>>> dist.p(2)

0.5

>>>

>>> dist.cdf (N.arange (5))

array ([ 0.30853754, 0.40129367, 0.5 , 0.59870633, 0.691462467])

>>>

>>> dist = FixedNullDist (stats.norm(loc=2, scale=4), tail=’'right’)

>>> dist.p(N.arange (5))

array ([ 0.69146246, 0.59870633, 0.5 , 0.40129367, 0.308537547)
edist (distribution object) — This can be any object the has a cdf{) method to report the
cumulative distribition function values.

cdf (x)

Return value of the cumulative distribution function at x.

£it (measure, wdata, vdata=None)
Does nothing since the distribution is already fixed.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the FixedNul1Dist documentation.

Full API documentation of FixedNullDist in module mvpa.clfs.stats.
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MCNullDist

class MCNullDist (dist_class=<class ‘'mvpa.clfs.stats. Nonparametric’>, permutations=100, **kwargs)
Bases: mvpa.clfs.stats.NullDist

Null-hypothesis distribution is estimated from randomly permuted data labels.

The distribution is estimated by calling fit() with an appropriate DatasetMeasure or TransferError instance
and a training and a validation dataset (in case of a TransferError). For a customizable amount of cycles the
training data labels are permuted and the corresponding measure computed. In case of a TransferError this
is the error when predicting the correct labels of the validation dataset.

The distribution can be queried using the cdf{) method, which can be configured to report probabili-
ties/frequencies from left or right tail, i.e. fraction of the distribution that is lower or larger than some
critical value.

This class also supports FeaturewiseDatasetMeasure. In that case cdf{) returns an array of featurewise
probabilities/frequencies.

Initialize Monte-Carlo Permutation Null-hypothesis testing

edist_class (class) — This can be any class which provides parameters estimate using fit()
method to initialize the instance, and provides cdf{x) method for estimating value of x
in CDF. All distributions from SciPy’s ‘stats’ module can be used.

epermutations (int) — This many permutations of label will be performed to determine
the distribution under the null hypothesis.

cdf (x)

Return value of the cumulative distribution function at x.
clean ()

Clean stored distributions

Storing all of the distributions might be too expensive (e.g. in case of Nonparametric), and the scope
of the object might be too broad to wait for it to be destroyed. Clean would bind dist_samples to empty
list to let gc revoke the memory.

£it (measure, wdata, vdata=None)
Fit the distribution by performing multiple cycles which repeatedly permuted labels in the training
dataset.

emeasure ((Featurewise)‘DatasetMeasure‘ | TransferError) — TransferError instance
used to compute all errors.

*wdata (Dataset which gets permuted and used to compute the) — measure/transfer
error multiple times.

*vdata (Dataset used for validation.) — If provided measure is assumed to be a Trans-
ferError and working and validation dataset are passed onto it.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the MCNul1D1i st documentation.

Full API documentation of MCNullDist in module mvpa.clfs.stats.

Nonparametric

class Nonparametric (dist_samples)
Bases: object

Non-parametric 1d distribution — derives cdf based on stored values.
Introduced to complement parametric distributions present in scipy.stats.

cdf (x)
Returns the cdf value at x.

fit
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See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Nonparamet ric documentation.

Full API documentation of Nonparametric in module mvpa.clfs.stats.

NullDist

class NullDist (fail="both’, **kwargs)
Bases: mvpa.misc.state.ClassWithCollections

Base class for null-hypothesis testing.
Cheap initialization.
etail (str (‘left’, ‘right’, ‘any’, ‘both’)) — Which tail of the distribution to report. For ‘any’

and ‘both’ it chooses the tail it belongs to based on the comparison to p=0.5. In the case
of ‘any’ significance is taken like in a one-tailed test.

cdf (x)
Implementations return the value of the cumulative distribution function (left or right tail dpending on
the setting).

£it (measure, wdata, vdata=None)
Implement to fit the distribution to the data.

P (x, **kwargs)
Returns the p-value for values of x. Returned values are determined left, right, or from any tail de-
pending on the constructor setting.

In case a FeaturewiseDatasetMeasure was used to estimate the distribution the method returns an
array. In that case x can be a scalar value or an array of a matching shape.

tail
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Nul1D1i st documentation.

Full API documentation of NullDist in module mvpa.clfs.stats.

Functions

autoNullDist (dist)
Cheater for human beings — wraps dist if needed with some NullDist

tail and other arguments are assumed to be default as in NullDist/MCNullDist
See Also:
Full API documentation of autoNullDist() in module mvpa.clfs.stats.

nanmean (X, axis=0)
Compute the mean over the given axis ignoring nans.

*x (ndarray) — input array
eaxis (int) — axis along which the mean is computed.
m [float] the mean.

See Also:

Full API documentation of nanmean() in module mvpa.clfs.stats.
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16.4.22 mvpa.clfs.svm

Wrap the libsvm package into a very simple class interface.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.svm (for developers).

16.4.23 mvpa.clfs.transerror

Utility class to compute the transfer error of classifiers.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.transerror (for developers).

Classes

ClassifierError

class ClassifierError (clf, labels=None, train=True, **kwargs)
Bases: mvpa.misc.state.ClassWithCollections

Compute (or return) some error of a (trained) classifier on a dataset.
Initialization.

eclf (Classifier) — Either trained or untrained classifier
elabels (list) — if provided, should be a set of labels to add on top of the ones present in

testdata
etrain (bool) — unless train=False, classifier gets trained if trainingdata provided to
_call__
clf
labels
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the ClassifierError documentation.

Full API documentation of ClassifierError in module mvpa.clfs.transerror.

ConfusionBasedError

class ConfusionBasedError (clf, labels=None, confusion_state="training_confusion’, **kwargs)
Bases: mvpa.clfs.transerror.ClassifierError

For a given classifier report an error based on internally computed error measure (given by some Confusion-
Matrix stored in some state variable of Classifier).

This way we can perform feature selection taking as the error criterion either learning error, or transfer to
splits error in the case of SplitClassifier

Initialization.
eclf (Classifier) — Either trained or untrained classifier

econfusion_state — 1d of the state variable which stores ConfusionMatrix

elabels (list) — if provided, should be a set of labels to add on top of the ones present in
testdata

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the ConfusionBasedError documentation.
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Full API documentation of ConfusionBasedError in module mvpa.clfs.transerror.

ConfusionMatrix

class ConfusionMatrix (labels=None, labels_map=None, **kwargs)
Bases: mvpa.clfs.transerror.SummaryStatistics

Class to contain information and display confusion matrix.

Implementation of the SummaryStatistics in the case of classification problem. Actual computation of
confusion matrix is delayed until all data is acquired (to figure out complete set of labels). If testing data
doesn’t have a complete set of labels, but you like to include all labels, provide them as a parameter to the
constructor.

Confusion matrix provides a set of performance statistics (use asstring(description=True) for the description
of abbreviations), as well ROC curve (http://en.wikipedia.org/wiki/ROC_curve) plotting and analysis (AUC)
in the limited set of problems: binary, multiclass 1-vs-all.

Initialize ConfusionMatrix with optional list of labels

elabels (list) — Optional set of labels to include in the matrix

elabels_map (None or dict) — Dictionary from original dataset to show mapping into
numerical labels

etargets — Optional set of targets
epredictions — Optional set of predictions

asstring (short=False, header=True, summary=True, description=False)
‘Pretty print’ the matrix

eshort (bool) — if True, ignores the rest of the parameters and provides consise 1 line
summary

*header (bool) — print header of the table

esummary (bool) — print summary (accuracy)

edescription (bool) — print verbose description of presented statistics

error
getLabels_map ()
labels
labels_map

matrices
Return a list of separate confusion matrix per each stored set

matrix
percentCorrect

plot (labels=None, numbers=~False, origin="upper’, numbers_alpha=None, xlabels_vertical=True, num-
bers_kwargs={}, **kwargs)
Provide presentation of confusion matrix in image

elabels (list of int or basestring) — Optionally provided labels guarantee the order of pre-
sentation. Also value of None places empty column/row, thus provides visual group-
ping of labels (Thanks Ingo)

enumbers (bool) — Place values inside of confusion matrix elements

enumbers_alpha (None or float) — Controls textual output of numbers. If None — all
numbers are plotted in the same intensity. If some float — it controls alpha level —
higher value would give higher contrast. (good value is 2)

eorigin (basestring) — Which left corner diagonal should start

exlabels_vertical (bool) — Either to plot xlabels vertical (benefitial if number of labels
is large)

enumbers_kwargs (dict) — Additional keyword parameters to be added to numbers (if
numbers is True)
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***kwargs — Additional arguments given to imshow (eg me cmap)

Return type
(fig, im, cb) — figure, imshow, colorbar

setLabels_map (val)

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the ConfusionMat rix documentation.

Full API documentation of ConfusionMatrix in module mvpa.clfs.transerror.

ROCCurve

class ROCCurve (labels, sets=None)
Bases: object

Generic class for ROC curve computation and plotting

elabels (list) — labels which were used (in order of values if multiclass, or 1 per class for
binary problems (e.g. in SMLR))

esets (list of tuples) — list of sets for the analysis

ROCs

aucs
Compute and return set of AUC values 1 per label

plot (label_index=0)

TODO: make it friendly to labels given by values?
should we also treat labels_map?

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the ROCCurve documentation.

Full API documentation of ROCCurve in module mvpa.clfs.transerror.

RegressionStatistics

class RegressionStatistics (**kwargs)
Bases: mvpa.clfs.transerror.SummaryStatistics

Class to contain information and display on regression results.
Initialize RegressionStatistics

etargets — Optional set of targets
epredictions — Optional set of predictions

asstring (short=False, header=True, summary=True, description=False)
‘Pretty print’ the statistics

error
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the RegressionStatistics documentation.

Full API documentation of RegressionStatistics in module mvpa.clfs.transerror.

16.4. Classifiers and Errors 149



PyMVPA Manual, Release 0.4.0

SummaryStatistics

class SummaryStatistics (fargets=None, predictions=None, values=None, sets=None)

Bases: object

Basic class to collect targets/predictions and report summary statistics

It takes care about collecting the sets, which are just tuples (targets, predictions, values). While ‘computing’
the matrix, all sets are considered together. Children of the class are responsible for computation and display.
Initialize SummaryStatistics

targets or predictions cannot be provided alone (ie targets without predictions)

etargets — Optional set of targets

epredictions — Optional set of predictions

*values — Optional set of values (which served for prediction)
esets — Optional list of sets

add (targets, predictions, values=None)
Add new results to the set of known results

asstring (short=False, header=True, summary=True, description=False)
‘Pretty print’ the matrix

eshort (bool) — if True, ignores the rest of the parameters and provides consise 1 line
summary

*header (bool) — print header of the table
esummary (bool) — print summary (accuracy)
edescription (bool) — print verbose description of presented statistics

compute ()
Actually compute the confusion matrix based on all the sets

error

reset ()
Cleans summary — all data/sets are wiped out

sets
stats

summaries
Return a list of separate summaries per each stored set

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the SummaryStatistics documentation.

Full API documentation of SummaryStatistics in module mvpa.clfs.transerror.

TransferError

class TransferError (clf, errorfx=MeanMismatchErrorFx(), labels=None, null_dist=None, **kwargs)
Bases: mvpa.clfs.transerror.ClassifierError

Compute the transfer error of a (trained) classifier on a dataset.

The actual error value is computed using a customizable error function. Optionally the classifier can be
trained by passing an additional training dataset to the __call__() method.

Initialization.

eclf (Classifier) — Either trained or untrained classifier

eerrorfx — Functor that computes a scalar error value from the vectors of desired and
predicted values (e.g. subclass of ErrorFunction)
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elabels (list) — if provided, should be a set of labels to add on top of the ones present in
testdata

enull_dist (instance of distribution estimator) —
errorfx
null_dist
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the TransferError documentation.

Full API documentation of TransferError in module mvpa.clfs.transerror.

16.4.24 mvpa.clfs.warehouse

Collection of classifiers to ease the exploration.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.clfs.warehouse (for developers).

Warehouse

class Warehouse (known_tags=None, matches={})
Bases: object

Class to keep known instantiated classifiers

Should provide easy ways to select classifiers of needed kind: clfs[’linear’, ‘svim’] should return all linear
SVMs clfs[’linear’, ‘multiclass’] should return all linear classifiers capable of doing multiclass classification

Initialize warehouse

eknown_tags (list of basestring) — List of known tags

ematches (dict) — Optional dictionary of additional matches. E.g. since any regression
can be used as a binary classifier, matches={ ‘binary’:[’regression’]}, would allow to
provide regressions also if ‘binary’ was requested

internals

items

listing ()
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Warehouse documentation.

Full API documentation of Warehouse in module mvpa.clfs.warehouse.

16.5 Measures: Searchlights and Sensitivties

16.5.1 mvpa.measures

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.measures (for developers).

16.5.2 mvpa.measures.anova

FeaturewiseDatasetMeasure performing a univariate ANOVA.
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The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.measures.anova (for developers).

OneWayAnova

class OneWayAnova ( **kwargs)
Bases: mvpa.measures.base.FeaturewiseDatasetMeasure

FeaturewiseDatasetMeasure that performs a univariate ANOVA.

F-scores are computed for each feature as the standard fraction of between and within group variances.
Groups are defined by samples with unique labels.

No statistical testing is performed, but raw F-scores are returned as a sensitivity map. As usual F-scores
have a range of [0,inf] with greater values indicating higher sensitivity.

Nothing special to do here.
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the OneWayAnova documentation.

Full API documentation of OneWayAnova in module mvpa.measures.anova.

16.5.3 mvpa.measures.base

Base class for data measures: algorithms that quantify properties of datasets.

Besides the DatasetMeasure base class this module also provides the (abstract) FeaturewiseDatasetMeasure class.
The difference between a general measure and the output of the FeaturewiseDatasetMeasure is that the latter
returns a 1d map (one value per feature in the dataset). In contrast there are no restrictions on the returned value
of DatasetMeasure except for that it has to be in some iterable container.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.measures.base (for developers).

Classes

BoostedClassifierSensitivityAnalyzer

class BoostedClassifierSensitivityAnalyzer (*args_, **kwargs_)
Bases: mvpa.measures.base.Sensitivity

Set sensitivity analyzers to be merged into a single output
combined_analyzer

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the BoostedClassifierSensitivityAnalyzer documentation.

Full API documentation of BoostedClassifierSensitivityAnalyzer in module mvpa.measures.base.

CombinedFeaturewiseDatasetMeasure

class CombinedFeaturewiseDatasetMeasure (analyzers=None, combiner=None, **kwargs)
Bases: mvpa.measures.base.FeaturewiseDatasetMeasure

Set sensitivity analyzers to be merged into a single output

Initialize CombinedFeaturewiseDatasetMeasure
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eanalyzers (list or None) — List of analyzers to be used. There is no logic to populate
such a list in __call__, so it must be either provided to the constructor or assigned to
.analyzers prior calling

analyzers
Used analyzers

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the CombinedFeaturewiseDatasetMeasure documentation.

Full API documentation of CombinedFeaturewiseDatasetMeasure in module mvpa.measures.base.

DatasetMeasure

class DatasetMeasure (transformer=None, null_dist=None, **kwargs)
Bases: mvpa.misc.state.ClassWithCollections

A measure computed from a Dataset

All dataset measures support arbitrary transformation of the measure after it has been computed. Trans-
formation are done by processing the measure with a functor that is specified via the transformer keyword
argument of the constructor. Upon request, the raw measure (before transformations are applied) is stored
in the raw_result state variable.

Additionally all dataset measures support the estimation of the probabilit(y,ies) of a measure under some
distribution. Typically this will be the NULL distribution (no signal), that can be estimated with permutation
tests. If a distribution estimator instance is passed to the null_dist keyword argument of the constructor the
respective probabilities are automatically computed and stored in the null_prob state variable.

Developer note
All subclasses shall get all necessary parameters via their constructor, so it is possible to get
the same type of measure for multiple datasets by passing them to the __call__() method
successively.

Does nothing special.

transformer (Functor) — This functor is called in __call__() to perform a final processing
step on the to be returned dataset measure. If None, nothing is called

enull_dist (instance of distribution estimator) —
null_dist
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the DatasetMeasure documentation.

Full API documentation of DatasetMeasure in module mvpa.measures.base.

FeaturewiseDatasetMeasure

class FeaturewiseDatasetMeasure (combiner=<function = SecondAxisSumOfAbs at  0x8d1be9c>,
**kwargs)
Bases: mvpa.measures.base.DatasetMeasure

A per-feature-measure computed from a Dataset (base class).
Should behave like a DatasetMeasure.
Initialize

ecombiner (Functor) — The combiner is only applied if the computed featurewise dataset
measure is more than one-dimensional. This is different from a transformer, which
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is always applied. By default, the sum of absolute values along the second axis is
computed.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the FeaturewiseDatasetMeasure documentation.

Full API documentation of FeaturewiseDatasetMeasure in module mvpa.measures.base.

MappedClassifierSensitivityAnalyzer

class MappedClassifierSensitivityAnalyzer (*args_, **kwargs_)
Bases: mvpa.measures.base.ProxyClassifierSensitivityAnalyzer

Set sensitivity analyzer output be reverse mapped using mapper of the slave classifier
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the MappedClassifierSensitivityAnalyzer documentation.

Full API documentation of MappedClassifierSensitivity Analyzer in module mvpa.measures.base.

ProxyClassifierSensitivityAnalyzer

class ProxyClassifierSensitivityAnalyzer (*args_, **kwargs_)
Bases: mvpa.measures.base.Sensitivity

Set sensitivity analyzer output just to pass through
analyzer

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the ProxyClassifierSensitivityAnalyzer documentation.

Full API documentation of ProxyClassifierSensitivityAnalyzer in module mvpa.measures.base.

Sensitivity

class Sensitivity (clf, force_training=True, **kwargs)
Bases: mvpa.measures.base.FeaturewiseDatasetMeasure

Initialize the analyzer with the classifier it shall use.

eclf (Classifier) — classifier to use.
*force_training (Bool) — if classifier was already trained — do not retrain

clf

feature_ids
Return feature_ids used by the underlying classifier

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Sensitivity documentation.

Full API documentation of Sensitivity in module mvpa.measures.base.
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StaticDatasetMeasure

class StaticDatasetMeasure (measure=None, bias=None, *args, **kwargs)
Bases: mvpa.measures.base.DatasetMeasure

A static (assigned) sensitivity measure.

Since implementation is generic it might be per feature or per whole dataset

Initialize.
*measure — actual sensitivity to be returned
bias — optionally available bias
bias
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the StaticDatasetMeasure documentation.

Full API documentation of StaticDatasetMeasure in module mvpa.measures.base.

16.5.4 mvpa.measures.corrcoef

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.measures.corrcoef (for developers).

CorrCoef

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the CorrCoef documentation.

Full API documentation of CorrCoef in module mvpa.measures.corrcoef.

16.5.5 mvpa.measures.irelief

FeaturewiseDatasetMeasure performing multivariate Iterative RELIEF (I-RELIEF) algorithm. See : Y. Sun, Iter-
ative RELIEF for Feature Weighting: Algorithms, Theories, and Applications, IEEE Trans. on Pattern Analysis
and Machine Intelligence (TPAMI), vol. 29, no. 6, pp. 1035-1051, June 2007.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.measures.irelief (for developers).

Classes
IterativeRelief

class IterativeRelief (threshold=0.01, kernel_width=1.0, w_guess=None, **kwargs)
Bases: mvpa.measures.base.FeaturewiseDatasetMeasure

FeaturewiseDatasetMeasure that performs multivariate I-RELIEF algorithm. Batch version.

Batch I-RELIEF-2 feature weighting algorithm. Works for binary or multiclass class-labels. Batch version
with complexity O(T*N"2*I), where T is the number of iterations, N the number of instances, I the number
of features.

See: Y. Sun, Iterative RELIEF for Feature Weighting: Algorithms, Theories, and Applications, IEEE
Trans. on Pattern Analysis and Machine Intelligence (TPAMI), vol. 29, no. 6, pp. 1035-1051, June
2007. http://plaza.ufl.edu/sunyijun/Paper/PAMI_1.pdf
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Note that current implementation allows to use only exponential-like kernels. Support for linear kernel will
be added later.

Constructor of the IRELIEF class.

compute_M_H (label)
Compute hit/miss dictionaries.
For each instance compute the set of indices having the same class label and different class label.
Note that this computation is independent of the number of features.
XXX should it be some generic function since it doesn’t use self

k (distances)
Exponential kernel.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the TterativeRelief documentation.

Full API documentation of IterativeRelief in module mvpa.measures.irelief.

IterativeReliefOnline

class IterativeReliefOnline (a=10.0, permute=True, max_iter=3, **kwargs)
Bases: mvpa.measures.irelief.IterativeRelief

FeaturewiseDatasetMeasure that performs multivariate I-RELIEF algorithm. Online version.

This algorithm is exactly the one in the referenced paper (I-RELIEF-2 online), using weighted 1-norm and
Exponential Kernel.

Constructor of the IRELIEF class.
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the IterativeReliefOnline documentation.

Full API documentation of IterativeReliefOnline in module mvpa.measures.irelief.

IterativeReliefOnline Devel

class IterativeReliefOnline_Devel (a=5.0, permute=True, max_iter=3, **kwargs)
Bases: mvpa.measures.irelief.IterativeRelief_ Devel

FeaturewiseDatasetMeasure that performs multivariate I-RELIEF algorithm. Online version.
UNDER DEVELOPMENT
Online version with complexity O(T*N*I), where N is the number of instances and I the number of features.

See: Y. Sun, Iterative RELIEF for Feature Weighting: Algorithms, Theories, and Applications, IEEE
Trans. on Pattern Analysis and Machine Intelligence (TPAMI), vol. 29, no. 6, pp. 1035-1051, June
2007. http://plaza.ufl.edu/sunyijun/Paper/PAMI_1.pdf

Note that this implementation is not fully online, since hit and miss dictionaries (H,M) are computed once
at the beginning using full access to all labels. This can be easily corrected to a full online implementation.
But this is not mandatory now since the major goal of this current online implementation is reduction of
computational complexity.

Constructor of the IRELIEF class.
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the TterativeReliefOnline_Devel documentation.

Full API documentation of IterativeReliefOnline_Devel in module mvpa.measures.irelief.
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IterativeRelief Devel

class IterativeRelief_Devel (threshold=0.01, kernel=None, kernel_width=1.0, w_guess=None,

**kwargs)
Bases: mvpa.measures.base.FeaturewiseDatasetMeasure

FeaturewiseDatasetMeasure that performs multivariate I-RELIEF algorithm. Batch version allowing vari-
ous kernels.

UNDER DEVELOPEMNT.

Batch I-RELIEF-2 feature weighting algorithm. Works for binary or multiclass class-labels. Batch version
with complexity O(T*N~2*I), where T is the number of iterations, N the number of instances, I the number
of features.

See: Y. Sun, Iterative RELIEF for Feature Weighting: Algorithms, Theories, and Applications, IEEE
Trans. on Pattern Analysis and Machine Intelligence (TPAMI), vol. 29, no. 6, pp. 1035-1051, June
2007. http://plaza.ufl.edu/sunyijun/Paper/PAMI_1.pdf

Note that current implementation allows to use only exponential-like kernels. Support for linear kernel will
be added later.
Constructor of the IRELIEF class.
compute_M_H (label)
Compute hit/miss dictionaries.
For each instance compute the set of indices having the same class label and different class label.
Note that this computation is independent of the number of features.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the TterativeRelief_Devel documentation.

Full API documentation of IterativeRelief_Devel in module mvpa.measures.irelief.

16.5.6 mvpa.measures.noiseperturbation

This is a FeaturewiseDatasetMeasure that uses a scalar DatasetMeasure and selective noise perturbation to com-
pute a sensitivity map.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.measures.noiseperturbation (for developers).

NoisePerturbationSensitivity

class NoisePerturbationSensitivity (datameasure, noise=<built-in method  normal of
mtrand.RandomState object at 0x401ec350>)
Bases: mvpa.measures.base.FeaturewiseDatasetMeasure
This is a FeaturewiseDatasetMeasure that uses a scalar DatasetMeasure and selective noise perturbation to
compute a sensitivity map.

First the scalar DatasetMeasure computed using the original dataset. Next the data measure is computed
multiple times each with a single feature in the dataset perturbed by noise. The resulting difference in the
scalar DatasetMeasure is used as the sensitivity for the respective perturbed feature. Large differences are
treated as an indicator of a feature having great impact on the scalar DatasetMeasure.

The computed sensitivity map might have positive and negative values!
Cheap initialization.
datameasure: Datameasure that is used to quantify the effect of

noise perturbation.

noise: Functor to generate noise. The noise generator has to return
an 1d array of n values when called the size=n keyword argument. This is the default interface of
the random number generators in NumPy’s random module.
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See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the NoisePerturbationSensitivity documentation.

Full API documentation of NoisePerturbationSensitivity in module mvpa.measures.noiseperturbation.

16.5.7 mvpa.measures.pls

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.measures.pls (for developers).

Classes

PLS

class PLS (num_permutations=200, num_bootstraps=100, **kwargs)
Bases: mvpa.measures.base.FeaturewiseDatasetMeasure

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the PL.S documentation.

Full API documentation of PLS in module mvpa.measures.pls.

TaskPLS

class TaskPLS (num_permutations=200, num_bootstraps=100, **kwargs)
Bases: mvpa.measures.pls.PLS

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the TaskP LS documentation.

Full API documentation of TaskPLS in module mvpa.measures.pls.

16.5.8 mvpa.measures.searchlight

Implementation of the Searchlight algorithm

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.measures.searchlight (for developers).

Searchlight

class Searchlight (datameasure, radius=1.0, center_ids=None, **kwargs)
Bases: mvpa.measures.base.DatasetMeasure

Runs a scalar DatasetMeasure on all possible spheres of a certain size within a dataset.

The idea for a searchlight algorithm stems from a paper by Kriegeskorte et al. (2006).

edatameasure (callable) — Any object that takes a Dataset and returns some measure
when called.

eradius (float) — All features within the radius around the center will be part of a sphere.

ecenter_ids (list(int)) — List of feature ids (not coordinates) the shall serve as sphere
centers. By default all features will be used.
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***kwargs — In additions this class supports all keyword arguments of its base-class
DatasetMeasure.

Note: If Searchlight is used as SensitivityAnalyzer one has to make sure that the specified scalar Dataset-
Measure returns large (absolute) values for high sensitivities and small (absolute) values for low sensitivi-
ties. Especially when using error functions usually low values imply high performance and therefore high
sensitivity. This would in turn result in sensitivity maps that have low (absolute) values indicating high
sensitivites and this conflicts with the intended behavior of a SensitivityAnalyzer.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Searchlight documentation.

Full API documentation of Searchlight in module mvpa.measures.searchlight.

16.5.9 mvpa.measures.splitmeasure

This is a FeaturewiseDatasetMeasure that uses another FeaturewiseDatasetMeasure and runs it multiple times on
differents splits of a Dataset.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.measures.splitmeasure (for developers).

SplitFeaturewiseMeasure

class SplitFeaturewiseMeasure (sensana, splitter=<class 'mvpa.datasets.splitter. NoneSplitter’>, com-

biner=<function FirstAxisMean at 0x8d1be2c>, **kwargs)
Bases: mvpa.measures.base.FeaturewiseDatasetMeasure

This is a FeaturewiseDatasetMeasure that uses another FeaturewiseDatasetMeasure and runs it multiple
times on differents splits of a Dataset.

When called with a Dataset it returns the mean sensitivity maps of all data splits.

Additonally this class supports the State interface. Several postprocessing functions can be specififed to
the constructor. The results of the functions specified in the postproc dictionary will be available via their
respective keywords.

Cheap initialization.

esensana (FeaturewiseDatasetMeasure) — that shall be run on the Dataset splits.

esplitter (Splitter) — used to split the Dataset. By convention the first dataset in the tuple
returned by the splitter on each iteration is used to compute the sensitivity map.

ecombiner — This functor will be called on an array of sensitivity maps and the result will
be returned by __call__(). The result of a combiner must be an 1d ndarray.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the SplitFeaturewiseMeasure documentation.

Full API documentation of SplitFeaturewiseMeasure in module mvpa.measures.splitmeasure.

16.6 Feature Selection

16.6.1 mvpa.featsel

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.featsel (for developers).
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16.6.2 mvpa. featsel.base

Feature selection base class and related stuff base classes and helpers.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.featsel.base (for developers).

Classes

FeatureSelection

class FeatureSelection (**kwargs)
Bases: mvpa.misc.state.ClassWithCollections

Base class for any feature selection

Base class for Functors which implement feature selection on the datasets.
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the FeatureSelection documentation.

Full API documentation of FeatureSelection in module mvpa.featsel.base.

FeatureSelectionPipeline

class FeatureSelectionPipeline (feature_selections, **kwargs)
Bases: mvpa.featsel.base.FeatureSelection

Feature elimination through the list of FeatureSelection’s.
Given as list of FeatureSelections it applies them in turn.

Initialize feature selection pipeline
*feature_selections (lisf of FeatureSelection) — selections which to use. Order matters

feature_ selections
List of FeatureSelections

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the FeatureSelectionPipeline documentation.

Full API documentation of FeatureSelectionPipeline in module mvpa.featsel.base.

SensitivityBasedFeatureSelection

class SensitivityBasedFeatureSelection (sensitivity_analyzer, fea-
ture_selector=FractionTailSelector() fraction=0.050000,
**kwargs)

Bases: mvpa.featsel.base.FeatureSelection
Feature elimination.

A FeaturewiseDatasetMeasure is used to compute sensitivity maps given a certain dataset. These sensitivity
maps are in turn used to discard unimportant features.

Initialize feature selection

esensitivity_analyzer (FeaturewiseDatasetMeasure) — sensitivity analyzer to come up
with sensitivity

160 Chapter 16. Module Reference



PyMVPA Manual, Release 0.4.0

feature_selector (Functor) — Given a sensitivity map it has to return the ids of those
features that should be kept.

sensitivity_analyzer
Measure which was used to do selection

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the SensitivityBasedFeatureSelection documentation.

Full API documentation of SensitivityBasedFeatureSelection in module mvpa.featsel.base.

16.6.3 mvpa.featsel.helpers

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.featsel.helpers (for developers).

Classes

BestDetector

class BestDetector (func=<built-in function min>, lastminimum=False)
Bases: object

Determine whether the last value in a sequence is the best one given some criterion.

Initialize with number of steps

*fun (functor) — Functor to select the best results. Defaults to min

elastminimum (bool) — Toggle whether the latest or the earliest minimum is used as opti-
mal value to determine the stopping criterion.

bestindex
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the BestDetector documentation.

Full API documentation of BestDetector in module mvpa.featsel.helpers.

ElementSelector

class ElementSelector (mode="discard’, **kwargs)
Bases: mvpa.misc.state.ClassWithCollections

Base class to implement functors to select some elements based on a sequence of values.

Cheap initialization.
emode ([’discard’, ‘select’]) — Decides whether to select or to discard features.
mode

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Element Selector documentation.

Full API documentation of ElementSelector in module mvpa.featsel.helpers.
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FixedErrorThresholdStopCrit

class FixedErrorThresholdStopCrit (threshold)
Bases: mvpa.featsel.helpers.StoppingCriterion

Stop computation if the latest error drops below a certain threshold.
Initialize with threshold.
sthreshold (float [0,1]) — Error threshold.
threshold
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the FixedErrorThresholdStopCrit documentation.

Full API documentation of FixedErrorThresholdStopCrit in module mvpa.featsel.helpers.

FixedNElementTailSelector

class FixedNElementTailSelector (nelements, **kwargs)
Bases: mvpa.featsel.helpers.TailSelector

Given a sequence, provide set of IDs for a fixed number of to be selected elements.
Cheap initialization.
enselect (int) — Number of elements to select/discard.
nelements
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the FixedNElementTailSelector documentation.

Full API documentation of FixedNElementTailSelector in module mvpa.featsel.helpers.

FractionTailSelector

class FractionTailSelector (felements, **kwargs)
Bases: mvpa.featsel.helpers.TailSelector

Given a sequence, provide Ids for a fraction of elements

Cheap initialization.

*felements (float (0,1.0]) — Fraction of elements to select/discard. Note: Even when 0.0
is specified at least one element will be selected.

felements
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the FractionTailSelector documentation.

Full API documentation of FractionTailSelector in module mvpa.featsel.helpers.

MultiStopCrit

class MultiStopCrit (crits, mode="or’)
Bases: mvpa.featsel.helpers.StoppingCriterion

Stop computation if the latest error drops below a certain threshold.

162 Chapter 16. Module Reference



PyMVPA Manual, Release 0.4.0

ecrits (list of StoppingCriterion instances) — For each call to MultiStopCrit all of these
criterions will be evaluated.

*mode (any of (‘and’, ‘or’)) — Logical function to determine the multi criterion from the
set of base criteria.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the MultiStopCrit documentation.

Full API documentation of MultiStopCrit in module mvpa.featsel.helpers.

NBackHistoryStopCrit

class NBackHistoryStopCrit (bestdetector=<mvpa.featsel.helpers.BestDetector object at Ox8fad50c>,
steps=10)
Bases: mvpa.featsel.helpers.StoppingCriterion

Stop computation if for a number of steps error was increasing

Initialize with number of steps

shestdetector (BestDetector instance) — used to determine where the best error is located.
esteps (int) — How many steps to check after optimal value.
steps
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the NBackHistoryStopCrit documentation.

Full API documentation of NBackHistoryStopCrit in module mvpa.featsel.helpers.

NStepsStopCrit

class NStepsStopCrit (steps)
Bases: mvpa.featsel.helpers.StoppingCriterion

Stop computation after a certain number of steps.

Initialize with number of steps.
esteps (int) — Number of steps after which to stop.

steps
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the NStepsStopCrit documentation.

Full API documentation of NStepsStopCrit in module mvpa.featsel.helpers.

RangeElementSelector

class RangeElementSelector (lower=None, upper=None, inclusive=False, mode="select’, **kwargs)
Bases: mvpa.featsel.helpers.ElementSelector

Select elements based on specified range of values

Initialization RangeElementSelector

eJower — If not None — select elements which are above of specified value
eupper — If not None — select elements which are lower of specified value
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einclusive — Either to include end points

*mode — overrides parent’s default to be ‘select’ since it is more native for RangeEle-
mentSelector XXX TODO — unify??

upper could be lower than lower — then selection is done on values <= lower or >=upper (ie tails). This
would produce the same result if called with flipped values for mode and inclusive.

If no upper no lower is set, assuming upper,lower=0, thus outputing non-0 elements
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the RangeElement Selector documentation.

Full API documentation of RangeElementSelector in module mvpa.featsel.helpers.

StoppingCriterion

class StoppingCriterion ()
Bases: object

Base class for all functors to decide when to stop RFE (or may be general optimization... so it probably will
be moved out into some other module

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the St oppingCriterion documentation.

Full API documentation of StoppingCriterion in module mvpa.featsel.helpers.

TailSelector

class TailSelector (tail="lower’, sort=True, **kwargs)
Bases: mvpa.featsel.helpers.ElementSelector

Select elements from a tail of a distribution.
The default behaviour is to discard the lower tail of a given distribution.

Initialize TailSelector

etail ([’lower’, ‘upper’]) — Choose the tail to be processed.

esort (bool) — Flag whether selected IDs will be sorted. Disable if not necessary to save
some CPU cycles.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the TailSelector documentation.

Full API documentation of TailSelector in module mvpa.featsel.helpers.

16.6.4 mvpa.featsel.ifs

Incremental feature search (IFS).

Very similar to Recursive feature elimination (RFE), but instead of begining with all features and stripping some
sequentially, start with an empty feature set and include important features successively.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.featsel.ifs (for developers).
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IFS

class IFS ()
Bases: mvpa.featsel .base.FeatureSelection

Incremental feature search.

A scalar DatasetMeasure is computed multiple times on variations of a certain dataset. These measures
are in turn used to incrementally select important features. Starting with an empty feature set the dataset
measure is first computed for each single feature. A number of features is selected based on the resulting
data measure map (using an ElementSelector).

Next the dataset measure is computed again using each feature in addition to the already selected feature
set. Again the ElementSelector is used to select more features.

For each feature selection the transfer error on some testdatset is computed. This procedure is repeated until
a given StoppingCriterion is reached.

Initialize incremental feature search

*data_measure (DatasetMeasure) — Computed for each candidate feature selection.

etransfer_error (TransferError) — Compute against a test dataset for each incremental
feature set.

ebestdetector (Functor) — Given a list of error values it has to return a boolean that signals
whether the latest error value is the total minimum.

estopping_criterion (Functor) — Given a list of error values it has to return whether the
criterion is fulfilled.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the IF'S documentation.

Full API documentation of IFS in module mvpa.featsel.ifs.

16.6.5 mvpa.featsel.rfe

Recursive feature elimination.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.featsel.rfe (for developers).

RFE

class RFE (sensitivity_analyzer, transfer_error, feature_selector=FractionTailSelector() frac-
tion=0.050000, bestdetector=<mvpa.featsel.helpers.BestDetector object at 0x8e8faOc>, stop-
ping_criterion=<mvpa.featsel helpers. NBackHistoryStopCrit object at 0x8e8f9ec>, train_clf=None,
update_sensitivity=True, **kargs)
Bases: mvpa.featsel.base.FeatureSelection
Recursive feature elimination.

A FeaturewiseDatasetMeasure is used to compute sensitivity maps given a certain dataset. These sensitivity
maps are in turn used to discard unimportant features. For each feature selection the transfer error on some
testdatset is computed. This procedure is repeated until a given StoppingCriterion is reached.

Such strategy after
Guyon, L., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using
support vector machines. Mach. Learn., 46(1-3), 389-422.

was applied to SVM-based analysis of fMRI data in
Hanson, S. J. & Halchenko, Y. O. (2008). Brain reading using full brain support vector machines for
object recognition: there is no “face identification area”. Neural Computation, 20, 486-503.

Initialize recursive feature elimination
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esensitivity_analyzer (FeaturewiseDatasetMeasure object) —

transfer_error (TransferError object) — used to compute the transfer error of a classifier
based on a certain feature set on the test dataset. NOTE: If sensitivity analyzer is based
on the same classifier as transfer_error is using, make sure you initialize transfer_error
with train=False, otherwise it would train classifier twice without any necessity.

*feature_selector (Functor) — Given a sensitivity map it has to return the ids of those
features that should be kept.

ebestdetector (Functor) — Given a list of error values it has to return a boolean that signals
whether the latest error value is the total minimum.

estopping_criterion (Functor) — Given a list of error values it has to return whether the
criterion is fulfilled.

*train_clf (bool) — Flag whether the classifier in transfer_error should be trained before
computing the error. In general this is required, but if the sensitivity_analyzer and trans-
fer_error share and make use of the same classifier it can be switched off to save CPU
cycles. Default None checks if sensitivity_analyzer is based on a classifier and doesn’t
train if so.

eupdate_sensitivity (bool) — If False the sensitivity map is only computed once and reused
for each iteration. Otherwise the senstitivities are recomputed at each selection step.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the RFE documentation.

Full API documentation of RFE in module mvpa.featsel.rfe.

16.7 Additional Algorithms

16.7.1 mvpa.algorithms

Import helper for PyYMVPA algorithms.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.algorithms (for developers).

16.7.2 mvpa.algorithms.cvtranserror

Cross-validate a classifier on a dataset

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.algorithms.cvtranserror (for developers).

CrossValidatedTransferError

class CrossValidatedTransferError (transerror,  splitter=<mvpa.datasets.splitter. NoneSplitter  ob-
ject at O0x8b564cc>, combiner=<function GrandMean at
Ox8d1bfOc>, expose_testdataset=False, harvest_attribs=None,
copy_attribs="copy’, **kwargs)
Bases: mvpa.measures.base.DatasetMeasure,mvpa.misc.state.Harvestable
Cross validate a classifier on datasets generated by a splitter from a source dataset.

Arbitrary performance/error values can be computed by specifying an error function (used to compute an
error value for each cross-validation fold) and a combiner function that aggregates all computed error values
across cross-validation folds.

Cheap initialization.

stranserror (TransferError instance) — Provides the classifier used for cross-validation.
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esplitter (Splitter instance) — Used to split the dataset for cross-validation folds. By con-
vention the first dataset in the tuple returned by the splitter is used to train the provided
classifier. If the first element is ‘None’ no training is performed. The second dataset is
used to generate predictions with the (trained) classifier.

ecombiner (Functor) — Used to aggregate the error values of all cross-validation folds.

eexpose_testdataset (bool) — In the proper pipeline, classifier must not know anything
about testing data, but in some cases it might lead only to marginal harm, thus migth
wanted to be enabled (provide testdataset for RFE to determine stopping point).

sharvest_attribs (list of basestr) — What attributes of call to store and return within har-
vested state variable

ecopy_attribs (None or basestr) — Force copying values of attributes on harvesting
combiner
splitter
transerror
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the CrossvValidatedTransferError documentation.

Full API documentation of CrossValidatedTransferError in module mvpa.algorithms.cvtranserror.

16.8 Common Facilities

16.8.1 mvpa.base

Base functionality of PyMVPA

Module Organization

mvpa.base module contains various modules which are used through out PYMVPA code, and are generic building
blocks

group Basic
externals, config, verbosity, dochelpers

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.base (for developers).

WarningLog

class WarningLog (btlevels=10, btdefault=False, maxcount=1, *args, **kwargs)
Bases: mvpa.base.verbosity.OnceLogger

Logging class of messsages to be printed just once per each message

Define Warning logger.

btlevels
[int] how many levels of backtrack to print to give a hint on WTF

btdefault
[bool] if to print backtrace for all warnings at all

maxcount
[int] how many times to print each warning

maxcount
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See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the WarningLog documentation.

Full API documentation of Warningl.og in module mvpa.base.

16.8.2 mvpa.base.config

Registry-like monster

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.base.config (for developers).

ConfigManager

class ConfigManager (filenames=None)

Bases: ConfigParser.SafeConfigParser
Central configuration registry for PyMVPA.

The purpose of this class is to collect all configurable settings used by various parts of PyYMVPA. It is fairly
simple and does only little more than the standard Python ConfigParser. Like ConfigParser it is blind to the
data that it stores, i.e. not type checking is performed.

Configuration files (INI syntax) in multiple location are passed when the class is instanciated or whenever
Config.reload() is called later on. By default it looks for a config file named pymvpa.cfg in the current
directory and .pymvpa.cfg in the user’s home directory. Morever, the constructor takes an optional argument
with a list of additional file names to parse.

In addition to configuration files, this class also looks for special environment variables to read settings
from. Names of such variables have to start with MVPA_ following by the an optional section name and the
variable name itself (‘°_’ as delimiter). If no section name is provided, the variables will be associated with
section general. Some examples:

MVPA_VERBOSE=1

will become:

[general]
verbose = 1

However, MVPA_VERBOSE _OUTPUT=stdout becomes:

[verbose]
output = stdout

Any lenght of variable name as allowed, e.g. MVPA_SEC1_LONG_VARIABLE_NAME-=1 becomes:

[secl]
long variable name = 1

Settings from custom configuration files (specified by the constructor argument) have the highest priority
and override settings found in the current directory. They in turn override user-specific settings and finally
the content of any MVPA_* environment variables overrides all settings read from any file.

Initialization reads settings from config files and env. variables.
filenames (list of filenames) —

get (section, option, default=None, **kwargs)
Wrapper around SafeConfigParser.get() with a custom default value.
This method simply wraps the base class method, but adds a default keyword argument. The value of
default is returned whenever the config parser does not have the requested option and/or section.
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getAsDType (section, option, dtype, default=None)
Convenience method to query options with a custom default and type

This method simply wraps the base class method, but adds a default keyword argument. The value of

default is returned whenever the config parser does not have the requested option and/or section.

In addition, the returned value is converted into the specified dtype.

getboolean (section, option, default=None)
Wrapper around SafeConfigParser.getboolean() with a custom default.

This method simply wraps the base class method, but adds a default keyword argument. The value of

default is returned whenever the config parser does not have the requested option and/or section.

reload()
Re-read settings from all configured locations.

save (filename)
Write current configuration to a file.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if

it exists) at the begining of the Conf igManager documentation.

Full API documentation of ConfigManager in module mvpa.base.config.

16.8.3 mvpa.base.dochelpers

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-

generated API reference for mvpa.base.dochelpers (for developers).

Functions

enhancedClassDocString (cls, *args)
Generate enhanced doc strings but given a class, not just a name.

It is to be used from a collector, ie whenever class is already created
See Also:
Full API documentation of enhancedClassDocString() in module mvpa.base.dochelpers.

enhancedDocString (name, Icl, *args)
Generate enhanced doc strings.

See Also:
Full API documentation of enhancedDocString() in module mvpa.base.dochelpers.

handleDocString (fext)
Take care of empty and non existing doc strings.

See Also:
Full API documentation of handleDocString() in module mvpa.base.dochelpers.

rstUnderline (text, markup)
Add and underline RsT string matching the length of the given string.

See Also:
Full API documentation of rstUnderline() in module mvpa.base.dochelpers.

table2string (table, out=None)
Given list of lists figure out their common widths and print to out

etable (list of lists of strings) — What is aimed to be printed
*out (None or stream) — Where to print. If None — will print and return string
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Return type
string if out was None

See Also:

Full API documentation of table2string() in module mvpa.base.dochelpers.

16.8.4 mvpa.base.externals

Helper to verify presence of external libraries and modules

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.base.externals (for developers).

Functions

exists (dep, force=False, raiseException=False)
Test whether a known dependency is installed on the system.

This method allows us to test for individual dependencies without testing all known dependencies. It also
ensures that we only test for a dependency once.

edep (string or list of string) — The dependency key(s) to test.
*force (boolean) — Whether to force the test even if it has already been performed.
eraiseException (boolean) — Whether to raise RuntimeError if dependency is missing.

See Also:

Full API documentation of exists() in module mvpa.base.externals.

testAllDependencies (force=False)
Test for all known dependencies.

force (boolean) — Whether to force the test even if it has already been performed.

See Also:

Full API documentation of testAllDependencies() in module mvpa.base.externals.

16.8.5 mvpa.base.verbosity

Verbose output and debugging facility
Examples: from verbosity import verbose, debug; debug.active = [1,2,3]; debug(1, “blah™)

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.base.verbosity (for developers).

Classes

Levellogger

class LevelLogger (level=0, indent="", *args, **kwargs)
Bases: mvpa.base.verbosity.Logger

Logger which prints based on level — ie everything which is smaller than specified level

Define level logger.

It is defined by
level, int: to which messages are reported indent, string: symbol used to indent

indent
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level
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the LevelLogger documentation.

Full API documentation of LevelLogger in module mvpa.base.verbosity.

Logger

class Logger (handlers=None)
Bases: object

Base class to provide logging
Initialize the logger with a set of handlers to use for output
Each hanlder must have write() method implemented

handlers
Return active handlers

lfprev
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Logger documentation.

Full API documentation of Logger in module mvpa.base.verbosity.

Oncelogger

class OnceLogger (*args, **kwargs)
Bases: mvpa.base.verbosity.Logger

Logger which prints a message for a given ID just once.
It could be used for one-time warning to don’t overfill the output with useless repeatative messages
Define once logger.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the OnceLogger documentation.

Full API documentation of OnceLogger in module mvpa.base.verbosity.

SetLogger

class SetLogger (register=None, active=None, printsetid=True, *args, **kwargs)
Bases: mvpa.base.verbosity.Logger

Logger which prints based on defined sets identified by Id.
active
printsetid

register (setid, description)
“Register” a new setid with a given description for easy finding

registered

setActiveFromString (value)
Given a string listing registered(?) setids, make then active
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See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Set Logger documentation.

Full API documentation of SetLogger in module mvpa.base.verbosity.

16.9 Miscellaneous

16.9.1 mvpa.misc

Import helper for PyYMVPA misc modules

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc (for developers).

16.9.2 mvpa.misc.args

Helpers for arguments handling.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.args (for developers).

Functions

group_kwargs (prefixes, assign=False, passthrough=False)
Decorator function to join parts of kwargs together

eprefixes (list of basestrings) — Prefixes to split based on. See split_kwargs
eassign (bool) — Flag to assign the obtained arguments to self._<prefix>_kwargs

epassthrough (bool) — Flag to pass joined arguments as <prefix>_kwargs argument. Usu-
ally it is sufficient to have either assign or passthrough. If none of those is True, deco-
rator simply filters out mentioned groups from being passed to the method

Example: if needed to join all args which start with ‘slave_* together under slave_kwargs parameter
See Also:
Full API documentation of group_kwargs() in module mvpa.misc.args.

split_kwargs (kwargs, prefixes=, [])
Helper to separate kwargs into multiple groups

eprefixes (list of basestrings) — Each entry sets a prefix which puts entry with key starting
with it into a separate group. Group ¢’ corresponds to ‘leftovers’

Output
dictionary with keys == prefixes

See Also:

Full API documentation of split_kwargs() in module mvpa.misc.args.

16.9.3 mvpa.misc.bv

Import helper for Brain Voyager

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.bv (for developers).
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16.9.4 mvpa.misc.bv.base

Tiny snippets to interface with FSL easily.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.bv.base (for developers).

BrainVoyagerRTC

class BrainVoyagerRTC (source)
Bases: mvpa.misc.io.base.ColumnData

IO helper to read BrainVoyager RTC files.

This is a textfile format that is used to specify stimulation protocols for data analysis in BrainVoyager. It
looks like

FileVersion: 2 Type: DesignMatrix NrOfPredictors: 4 NrOfDataPoints: 147

“fm_1_60dB” “fm_r_60dB” “fm_I_80dB” “fm_r_80dB” 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Data is always read as float and header is actually ignored

Read and write BrainVoyager RTC files.
esource (filename of an RTC file) —

toarray ()
Returns the data as an array

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the BrainVoyagerRTC documentation.

Full API documentation of BrainVoyagerRTC in module mvpa.misc.bv.base.

16.9.5 mvpa.misc.cmdline

Common functions and options definitions for command line
__docformat__ = ‘restructuredtext’

Conventions: Every option (instance of optparse.Option) has prefix “opt”. Lists of options has prefix opts (e.g.
opts.common).

Option name should be camelbacked version of .dest for the option.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.cmdline (for developers).

Classes
OptionGroups

class OptionGroups (parser)
Bases: object

Group creation is delayed until instance is requested.
This allows to overcome the problem of poluting handled cmdline options

add (name, I, doc)
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See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Opt i onGroups documentation.

Full API documentation of OptionGroups in module mvpa.misc.cmdline.

Options

class Options ()
Bases: object

Just a convinience placeholder for all available options

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Opt ions documentation.

Full API documentation of Options in module mvpa.misc.cmdline.

16.9.6 mvpa.misc.data_generators

Miscelaneous data generators for unittests and demos

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.data_generators (for developers).

Functions

chirpLinear (n_instances, n_features=4, n_nonbogus_features=2, data_noise=0.40000000000000002,

noise=0.10000000000000001 )
Generates simple dataset for linear regressions

Generates chirp signal, populates n_nonbogus_features out of n_features with it with different noise level
and then provides signal itself with additional noise as labels

See Also:
Full API documentation of chirpLinear() in module mvpa.misc.data_generators.

dumbFeatureBinaryDataset ()
Very simple binary (2 labels) dataset

See Also:
Full API documentation of dumbFeatureBinaryDataset() in module mvpa.misc.data_generators.

dumbFeatureDataset ()
Create a very simple dataset with 2 features and 3 labels

See Also:
Full API documentation of dumbFeatureDataset() in module mvpa.misc.data_generators.

getMVPattern (s2n)
Simple multivariate dataset

See Also:
Full API documentation of getMVPattern() in module mvpa.misc.data_generators.

linear_awgn (size=10, intercept=0.0, slope=0.40000000000000002, noise_std=0.01, flat=False)
Generate a dataset from a linear function with Added White Gaussian Noise (AWGN). It can be multidi-
mensional if ‘slope’ is a vector. If flat is True (in 1 dimesion) generate equally spaces samples instead of
random ones. This is useful for the test phase.

174 Chapter 16. Module Reference



PyMVPA Manual, Release 0.4.0

See Also:
Full API documentation of linear_awgn() in module mvpa.misc.data_generators.

multipleChunks (func, n_chunks, *args, **kwargs)
Replicate datasets multiple times raising different chunks

Given some randomized (noisy) generator of a dataset with a single chunk call generator multiple times and
place results into a distinct chunks

See Also:

Full API documentation of multipleChunks() in module mvpa.misc.data_generators.
noisy_2d_£x (size_per_fx, dfx, sfx, center, noise_std=1)

See Also:

Full API documentation of noisy_2d_fx() in module mvpa.misc.data_generators.

normalFeatureDataset (perlabel=50, nlabels=2, nfeatures=4, nchunks=5, means=None, nonbo-

gus_features=None, snr=1.0)
Generate a dataset where each label is some normally distributed beastie around specified mean (0 if None).

snr is assuming that signal has std 1.0 so we just divide noise by snr
Probably it is a generalization of pureMultivariateSignal where means=[ [0,1], [1,0] ]
Specify either means or nonbogus_features so means get assigned accordingly

See Also:

Full API documentation of normalFeatureDataset() in module mvpa.misc.data_generators.

normalFeatureDataset_ _ (dataset=None, labels=None, = nchunks=None, perlabel=50, activa-

tion_probability_steps=1, randomseed=None, randomvoxels=False)
NOT FINISHED

See Also:
Full API documentation of normalFeatureDataset__() in module mvpa.misc.data_generators.

pureMultivariateSignal (patterns, signal2noise=1.5, chunks=None)
Create a 2d dataset with a clear multivariate signal, but no univariate information.

See Also:
Full API documentation of pureMultivariateSignal() in module mvpa.misc.data_generators.

sinModulated (n_instances, n_features, flat=False, noise=0.40000000000000002)
Generate a (quite) complex multidimensional non-linear dataset

Used for regression testing. In the data label is a sin of a x*2 + uniform noise
See Also:
Full API documentation of sinModulated() in module mvpa.misc.data_generators.

wrl996 (size=200)
Generate ‘6d robot arm’ dataset (Williams and Rasmussen 1996)

Was originally created in order to test the correctness of the implementation of kernel ARD. For full details
see: http://www.gaussianprocess.org/gpml/code/matlab/doc/regression.html#ard

x_1 picked randomly in [-1.932, -0.453] x_2 picked randomly in [0.534, 3.142] r_ 1 =20 r. 2 = 1.3
f(x_1,x_2)=r_1cos (x_1) +r_2 cos(x_1 + x_2) + N(0,0.0025) etc.

Expected relevances: ell_1 1.804377 ell_2 1.963956 ell_3 8.884361 ell_4 34.417657 ell_5 1081.610451
ell_6 375.445823 sigma_f 2.379139 sigma_n 0.050835
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See Also:

Full API documentation of wr1996() in module mvpa.misc.data_generators.

16.9.7 mvpa.misc.errorfx

Error functions helpers.

PyMVPA can use arbitrary function which takes 2 arguments: predictions and targets and spits out a scalar value.
Functions below are for the convinience, and they confirm the agreement that ‘smaller’ is ‘better’

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.errorfx (for developers).

Classes

AUCErrorFx

class AUCErrorFx ()
Bases: mvpa.misc.errorfx._ErrorFx

Computes the area under the ROC for the given the target and predicted to make the prediction.
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the AUCEr rorFx documentation.

Full API documentation of AUCErrorFx in module mvpa.misc.errorfx.

MeanMismatchErrorFx

class MeanMismatchErrorFx ()
Bases: mvpa.misc.errorfx._ErrorFx

Computes the percentage of mismatches between some target and some predicted values.
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the MeanMi smat chErrorFx documentation.

Full API documentation of MeanMismatchErrorFx in module mvpa.misc.errorfx.

RMSErrorFx

class RMSErrorFx ()
Bases: mvpa.misc.errorfx._ErrorFx

Computes the root mean squared error of some target and some predicted values.
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the RMSErrorFx documentation.

Full API documentation of RMSErrorFx in module mvpa.misc.errorfx.

RelativeRMSErrorFx

class RelativeRMSErrorFx ()
Bases: mvpa.misc.errorfx._ErrorFx
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Ratio between RMSE and root mean power of target output.

So it can be considered as a scaled RMSE — perfect reconstruction has values near 0, while no reconstruction
has values around 1.0. Word of caution — it is not commutative, ie exchange of predicted and target might
lead to completely different answers

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Relat iveRMSErrorFx documentation.

Full API documentation of RelativeRMSErrorFx in module mvpa.misc.errorfx.

VariancelSVFx

class VariancelSVFx ()
Bases: mvpa.misc.errorfx._ErrorFx

Ratio of variance described by the first singular value component.

Of limited use — left for the sake of not wasting it
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the VariancelSVEFx documentation.

Full API documentation of Variancel SVFx in module mvpa.misc.errorfx.

Functions

meanPowerFx (data)
Returns mean power

Similar to var but without demeaning
See Also:
Full API documentation of meanPowerFx() in module mvpa.misc.errorfx.

rootMeanPowerFx (data)
Returns root mean power

to be comparable against RMSE
See Also:

Full API documentation of rootMeanPowerFx() in module mvpa.misc.errorfx.

16.9.8 mvpa.misc.exceptions

Exception classes which might get thrown

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.exceptions (for developers).

Classes

ConvergenceError

class ConvergenceError ()
Bases: exceptions.Exception

Thrown if some algorithm does not converge to a solution.
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See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the ConvergenceError documentation.

Full API documentation of ConvergenceError in module mvpa.misc.exceptions.

DatasetError

class DatasetError (msg=")
Bases: exceptions.Exception

Thrown if there is an internal problem with a Dataset.

ValueError exception is too generic to be used for any needed case, thus this one is created
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the DatasetError documentation.

Full API documentation of DatasetError in module mvpa.misc.exceptions.

InvalidHyperparameterError

class InvalidHyperparameterError ()
Bases: exceptions.Exception

Generic exception to be raised when setting improper values as hyperparameters.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the TnvalidHyperparameterError documentation.

Full API documentation of InvalidHyperparameterError in module mvpa.misc.exceptions.

UnknownStateError

class UnknownStateError (msg=")
Bases: exceptions.Exception

Thrown if the internal state of the class is not yet defined.

Classifiers and Algorithms classes might have properties, which are not defined prior to training or invoca-
tion has happened.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the UnknownStateError documentation.

Full API documentation of UnknownStateError in module mvpa.misc.exceptions.

16.9.9 mvpa.misc.fsl

Import helper for FSL

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.fsl (for developers).

16.9.10 mvpa.misc.fsl.base
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Tiny snippets to interface with FSL easily.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.fsl.base (for developers).

Classes

FslEV3

class Fs1EV3 (source)
Bases: mvpa.misc.io.base.ColumnData

IO helper to read FSL’s EV3 files.

This is a three-column textfile format that is used to specify stimulation protocols for fMRI data analysis in
FSL’s FEAT module.

Data is always read as float.
Read and write FSL EV3 files.

esource (filename of an EV3 file) —
durations

durations

getEV (evid)
Returns a tuple of (onset time, simulus duration, intensity) for a certain EV.

getNEVs ()
Returns the number of EVs in the file.

intensities
intensities

nevs
Returns the number of EVs in the file.

onsets
onsets

toEvents ()
Convert into a list of Event instances.

tofile (filename)
Write data to a FSL EV3 file.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Fs 1EV3 documentation.

Full API documentation of FsIEV3 in module mvpa.misc.fsl.base.

McFlirtParams

class McFlirtParams (source)
Bases: mvpa.misc.io.base.ColumnData

Read and write McFlirt’s motion estimation parameters from and to text files.
esource (str) — Filename of a parameter file.

plot ()
Produce a simple plot of the estimated translation and rotation parameters using.

You still need to can pylab.show() or pylab.savefig() if you want to see/get anything.
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toarray ()
Returns the data as an array with six columns (same order as in file).

tofile (filename)
Write motion parameters to file.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the McF 11 rtParams documentation.

Full API documentation of McFlirtParams in module mvpa.misc.fsl.base.

16.9.11 mvpa.misc.fsl. flobs

Wrapper around FSLs halfcosbasis to generate HRF kernels

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.fsl.flobs (for developers).

makeFlobs (pre=0, rise=35, fall=5, undershoot=>5, undershootamp=0.29999999999999999, nsamples=1, reso-
lution=0.050000000000000003, nsecs=-1, nbasisfns=2)
Wrapper around the FSL tool halfcosbasis.
This function uses halfcosbasis to generate samples of HRF kernels. Kernel parameters can be modified
analogous to the Make_flobs GUI which is part of FSL.

» /=\

\ / \

1 / \

\ / \

\ / \

\ / \
***** / \ /===

\——/ | undershootamp

| | | \ |

| | | \ |

pre rise fall undershoot

Parameters ‘pre’, ‘rise’, ‘fall’, ‘undershoot’ and ‘undershootamp’ can be specified as 2-tuples (min-max
range for sampling) and single value (setting exact values — no sampling).

If ‘nsec’ is negative, the length of the samples is determined automatically to include the whole kernel
function (until it returns to baseline). ‘nsec’ has to be an integer value and is set to the next greater integer
value if it is not.

All parameters except for ‘nsamples’ and ‘nbasisfns’ are in seconds.
See Also:

Full API documentation of makeFlobs() in module mvpa.misc.fsl.flobs.

16.9.12 mvpa.misc.fsl.melodic

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.fsl.melodic (for developers).

MelodicResults

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the MelodicResults documentation.
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Full API documentation of MelodicResults in module mvpa.misc.fsl.melodic.

16.9.13 mvpa.misc.fx

Misc. functions (in the mathematical sense)

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.fx (for developers).

Functions

doubleGammaHREF (7, A1=5.4000000000000004, W1=5.2000000000000002, Ki=1.0,

A2=10.800000000000001, W2=7.3499999999999996, K2=0.34999999999999998)
Hemodynamic response function model.

The version is using two gamma functions (also see singleGammaHRF()).

ot (float) — Time.

*A (float) — Time to peak.

*W (float) — Full-width at half-maximum.
*K (float) — Scaling factor.

Parameters A, W and K exists individually for each of both gamma functions.
See Also:
Full API documentation of doubleGammaHRF() in module mvpa.misc.fx.

leastSqgFit (fx, params, y, x=None, **kwargs)
Simple convenience wrapper around SciPy’s optimize.leastsq.

The advantage of using this wrapper instead of optimize.leastsq directly is, that it automatically constructs
an appropriate error function and easily deals with 2d data arrays, i.e. each column with multiple values for
the same function argument (x-value).

fx (functor) — Function to be fitted to the data. It has to take a vector with function
arguments (x-values) as the first argument, followed by an arbitrary number of (to be
fitted) parameters.

eparams (sequence) — Sequence of start values for all to be fitted parameters. During
fitting all parameters in this sequences are passed to the function in the order in which
they appear in this sequence.

*y (1d or 2d array) — The data the function is fitted to. In the case of a 2d array, each col-
umn in the array is considered to be multiple observations or measurements of function
values for the same x-value.

*x (Corresponding function arguments (x-values) for each datapoint, i.e.) — element in
y or columns in y’, in the case of ‘y being a 2d array. If x is not provided it will be
generated by N.arange(m), where m is either the length of y or the number of columns
iny, if y is a 2d array.

***kwargs — All additonal keyword arguments are passed to fx.

Return type
tuple

Returns
i.e. 2-tuple with list of final (fitted) parameters of fx and an integer value indicating success
or failure of the fitting procedure (see leastsq docs for more information).

See Also:
Full API documentation of leastSqFit() in module mvpa.misc.fx.

singleGammaHRF (f, A=5.4000000000000004, W=5.2000000000000002, K=1.0)
Hemodynamic response function model.

The version consists of a single gamma function (also see doubleGammaHRF()).
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ot (float) — Time.

*A (float) — Time to peak.

*W (float) — Full-width at half-maximum.
*K (float) — Scaling factor.

See Also:

Full API documentation of singleGammaHRF() in module mvpa.misc.fx.

16.9.14 mvpa.misc.io

Import helper for 10 helpers

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.io (for developers).

16.9.15 mvpa.misc.io.base

Some little helper for reading (and writing) common formats from and to disk.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.io.base (for developers).

Classes

ColumnData

class ColumnData (source, header=True, sep=None, headersep=None, dtype=<type 'float’>, skiplines=0)
Bases: dict

Read data that is stored in columns of text files.

All read data is available via a dictionary-like interface. If column headers are available, the column names
serve as dictionary keys. If no header exists an articfical key is generated: str(number_of_column).

Splitting of text file lines is performed by the standard split() function (which gets passed the sep argument
as separator string) and each element is converted into the desired datatype.

Because data is read into a dictionary no two columns can have the same name in the header! Each column
is stored as a list in the dictionary.

Read data from file into a dictionary.

esource (basestring or dict) — If values is given as a string all data is read from the file
and additonal keyword arguments can be sued to customize the read procedure. If a
dictionary is passed a deepcopy is performed.

*header (bool or list of basestring) — Indicates whether the column names should be
read from the first line (header=True). If header=False unique column names will be
generated (see class docs). If header is a python list, it’s content is used as column
header names and its length has to match the number of columns in the file.

esep (basestring or None) — Separator string. The actual meaning depends on the output
format (see class docs).

*headersep (basestring or None) — Separator string used in the header. The actual mean-
ing depends on the output format (see class docs).

edtype (type or list(types)) — Desired datatype(s). Datatype per column get be specified
by passing a list of types.

eskiplines (int) — Number of lines to skip at the beginning of the file.

getNColumns ()
Returns the number of columns.
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getNRows ()
Returns the number of rows.

ncolumns
Returns the number of columns.

nrows
Returns the number of rows.

selectSamples (selection)
Return new ColumnData with selected samples

tofile (filename, header=True, header_order=None, sep="")
Write column data to a text file.

*filename (Think about it!) —

sheader (If True a column header is written, using the column) — keys. If False no
header is written.

sheader_order (If it is a list of strings, they will be used instead) — of simply asking for
the dictionary keys. However these strings must match the dictionary keys in number
and identity. This argument type can be used to determine the order of the columns
in the output file. The default value is None. In this case the columns will be in an
arbitrary order.

sep (String that is written as a separator between to data columns.) —
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the ColumnDat a documentation.

Full API documentation of ColumnData in module mvpa.misc.io.base.

DataReader

class DataReader ()
Bases: object

Base class for data readers.
Every subclass has to put all information into to variable:
self._data: ndarray

The data array has to have the samples separating dimension along the first axis.
self._props: dict

All other meaningful information has to be stored in a dictionary.
This class provides two methods (and associated properties) to retrieve this information.
Cheap init.

data
Data array

getData ()
Return the data array.

getPropsAsDict ()
Return the dictionary with the data properties.

props
Property dict

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Dat aReader documentation.

Full API documentation of DataReader in module mvpa.misc.io.base.
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SampleAttributes

class SampleAttributes (source, literallabels=False)
Bases: mvpa.misc.io.base.ColumnData

Read and write PYMVPA sample attribute definitions from and to text files.
Read PyMVPA sample attributes from disk.

ssource (filename of an atrribute file) —
getNSamples ()
Returns the number of samples in the file.

nsamples
Returns the number of samples in the file.

tofile (filename)
Write sample attributes to a text file.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the SampleAttributes documentation.

Full API documentation of SampleAttributes in module mvpa.misc.io.base.

SensorLocations

class SensorLocations (*args, **kwargs)
Bases: mvpa.misc.io.base.ColumnData

Base class for sensor location readers.
Each subclass should provide X, y, z coordinates via the pos_x, pos_y, and pos_z attrbibutes.

Axes should follow the following convention:
x-axis: left -> right y-axis: anterior -> posterior z-axis: superior -> inferior

Pass arguments to ColumnData.

locations ()
Get the sensor locations as an array.

Return type
(nchannels x 3) array with coordinates in (X, y, z)

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the SensorLocat ions documentation.

Full API documentation of SensorLocations in module mvpa.misc.io.base.

TuebingenMEGSensorLocations

class TuebingenMEGSensorLocations (source)
Bases: mvpa.misc.io.base.SensorLocations

Read sensor location definitions from a specific text file format.
File layout is assumed to be 7 columns:

1: sensor name 2: position on y-axis 3: position on x-axis 4: position on z-axis 5-7: same as 2-4,
but for some outer surface thingie.
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Note that x and y seem to be swapped, ie. y as defined by SensorLocations conventions seems to be first
axis and followed by x.

Only inner surface coordinates are reported by locations().

Read sensor locations from file.
esource (filename of an attribute file) —

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the TuebingenMEGSensorLocations documentation.

Full API documentation of TuebingenMEGSensorLocations in module mvpa.misc.io.base.

XAVRSensorLocations

class XAVRSensorLocations (source)
Bases: mvpa.misc.io.base.SensorLocations

Read sensor location definitions from a specific text file format.

File layout is assumed to be 5 columns:

1.sensor name
2.some useless integer
3.position on x-axis
4.position on y-axis
5.position on z-axis

Read sensor locations from file.

ssource (filename of an attribute file) —

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the XAVRSensorLocat ions documentation.

Full API documentation of XAVRSensorLocations in module mvpa.misc.io.base.

Functions

design2labels (columndata, baseline_label=0, func=<function <lambda> at O0x904f8b4>)
Helper to convert design matrix into a list of labels

Given a design, assign a single label to any given sample
TODO: fix description/naming
ecolumndata (ColumnData) — Attributes where each known will be considered as a sep-
arate explanatory variable (EV) in the design.
ebaseline_label — What label to assign for samples where none of EVs was given a value
*func (functor) — Function which decides either a value should be considered

Output
list of labels which are taken from column names in ColumnData and baseline_label

See Also:

Full API documentation of design2labels() in module mvpa.misc.io.base.
labels2chunks (labels, method="alllabels’, ignore_labels=None)
See Also:

Full API documentation of labels2chunks() in module mvpa.misc.io.base.
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16.9.16 mvpa.misc.io.eepbin

Reader for binary EEP files.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.io.eepbin (for developers).

EEPBin

class EEPBin (source)

Bases: mvpa.misc.io.base.DataReader

Read-access to binary EEP files.

EEP files are used by eeprobe a software for analysing even-related potentials (ERP), which was developed

at the Max-Planck Institute for Cognitive Neuroscience in Leipzig, Germany.
http://www.ant-neuro.com/products/eeprobe

EEP files consist of a plain text header and a binary data block in a single file. The header starts with a line

of the form

“%d %d %d %g %g’ % (Nchannels, Nsamples, Ntrials, t0, dt)

where Nchannels, Nsamples, Ntrials are the numbers of channels, samples per trial and trials respectively.
t0 is the time of the first sample of a trial relative to the stimulus onset and dt is the sampling interval.

The binary data block consists of single precision floats arranged in the following way:

<triall,channell,samplel>,<triall,channell, sample2>, ..
<triall,channel2, samplel>,<triall,channel?2, sample2>, ...

<trial2,channell,samplel>,<trial2,channell,sample2>, ...
<trial2,channel2, samplel>,<trial2,channel2, sample2>, ...

Read EEP file and store header and data.
esource (str) — Filename.
channels

List of channel names

dt

Time difference between two adjacent samples
nchannels

Number of channels

nsamples

Number of trials/samples
ntimepoints

Number of data timepoints

to0
Relative start time of sampling interval

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the EEPBin documentation.

Full API documentation of EEPBin in module mvpa.misc.io.eepbin.

16.9.17 mvpa.misc.io.hamster

Helper for simple storage facility via cPickle and zlib

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.io.hamster (for developers).
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Hamster

class Hamster ( *args, **kwargs)
Bases: dict

Simple container class which is derived from the dictionary

It is capable of storing itself in a file, or loading from a file (using cPickle + zlib tandem). Any serializable
object can be bound to a hamster to be stored.

To undig burried hamster use Hamster(filename). Here is an example:
>>> h = Hamster (bla='blai’)

>>> h.boo = N.arange (5)
>>> h.dump (filename)

>>> h = Hamster (filename)

Initialize Hamster.

Providing a single parameter string would treat it as a filename from which to undig the data. Otherwise all
the parameters are equivalent to the ones of dict

dump (filename)
Bury the hamster into the file

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Hamst er documentation.

Full API documentation of Hamster in module mvpa.misc.io.hamster.

16.9.18 mvpa.misc.io.meg

IO helper for MEG datasets.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.io.meg (for developers).

TuebingenMEG

class TuebingenMEG (source)
Bases: object

Reader for MEG data from line-based textfile format.

This class reads segmented MEG data from a textfile, which is created by converting the proprietary binary
output files of a MEG device in Tuebingen (Germany) with an unkown tool.

The file format is line-based, i.e. all timepoints for all samples/trials are written in a single line. Each line
is prefixed with an identifier (using a colon as the delimiter between identifier and data). Two lines have a
special purpose. The first ‘Sample Number’ is a list of timepoint ids, similar to range(ntimepoints) for each
sample/trial (all concatenated into one line. The second ‘Time’ contains the timing information for each
timepoint (relative to stimulus onset), again for all trials concatenated into a single line.

All other lines contain various information (channels) recorded during the experiment. The meaning of
some channels is unknown. Known ones are:

M*: MEG channels EEG*: EEG channels ADC*: Analog to digital converter output
Dataset properties are available from various class attributes. The data member provides all data from all
channels (except for ‘Sample Number’ and ‘Time’) in a NumPy array (nsamples x nchannels x ntimepoints).
The reader supports uncompressed as well as gzipped input files (or other file-like objects).
Reader MEG data from texfiles or file-like objects.
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esource (str | file-like) — Strings are assumed to be filenames (with . gz suffix compressed),
while all other object types are treated as file-like objects.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the TuebingenMEG documentation.

Full API documentation of TuebingenMEG in module mvpa.misc.io.meg.

16.9.19 mvpa.misc.param

Parameter representation

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.param (for developers).

Classes

KernelParameter

class KernelParameter (default, name=None, doc=None, **kwargs)
Bases: mvpa.misc.param.Parameter

Just that it is different beast
Specify a parameter by its default value and optionally an arbitrary number of additional parameters.

TODO: :Parameters: for Parameter
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the KernelParameter documentation.

Full API documentation of KernelParameter in module mvpa.misc.param.

Parameter

class Parameter (default, name=None, doc=None, **kwargs)
Bases: mvpa.misc.state.CollectableAttribute

This class shall serve as a representation of a parameter.
It might be useful if a little more information than the pure parameter value is required (or even only useful).

Each parameter must have a value. However additional property can be passed to the constructor and will
be stored in the object.

BIG ASSUMPTION: stored values are not mutable, ie nobody should do
cls.parameter1[:] = ...
or we wouldn’t know that it was changed

Here is a list of possible property names:
min - minimum value max - maximum value step - increment/decrement stepsize

Specify a parameter by its default value and optionally an arbitrary number of additional parameters.
TODO: :Parameters: for Parameter
default

equalDefault
Returns True if current value is equal to default one
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isDefault
Returns True if current value is bound to default one

resetvalue ()
Reset value to the default

setDefault (value)

value
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Parameter documentation.

Full API documentation of Parameter in module mvpa.misc.param.

16.9.20 mvpa.misc.plot

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.plot (for developers).

16.9.21 mvpa.misc.plot .base

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.plot.base (for developers).

Functions

See Also:

Full API documentation of errLinePlot() in module mvpa.misc.plot.base.
See Also:

Full API documentation of inverseCmap() in module mvpa.misc.plot.base.
See Also:

Full API documentation of plotBars() in module mvpa.misc.plot.base.

See Also:

Full API documentation of plotDatasetChunks() in module mvpa.misc.plot.base.
See Also:

Full API documentation of plotFeatureHist() in module mvpa.misc.plot.base.
See Also:

Full API documentation of plotSamplesDistance() in module mvpa.misc.plot.base.

16.9.22 mvpa.misc.plot.erp

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.plot.erp (for developers).

Functions

See Also:
Full API documentation of plotERP() in module mvpa.misc.plot.erp.
See Also:
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Full API documentation of plotERPs() in module mvpa.misc.plot.erp.

16.9.23 mvpa.misc.plot.topo

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.plot.topo (for developers).

Functions

See Also:
Full API documentation of plotHeadOutline() in module mvpa.misc.plot.topo.
See Also:

Full API documentation of plotHeadTopography() in module mvpa.misc.plot.topo.

16.9.24 mvpa.misc.state

Classes to control and store state information.
It was devised to provide conditional storage

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.state (for developers).

Classes

AttributeWithUnique

class AttributeWithUnique (name=None, hasunique=True, doc="Attribute with unique’)
Bases: mvpa.misc.state.CollectableAttribute

Container which also takes care about recomputing unique values
XXX may be we could better link original attribute to additional attribute which actually stores the values
(and do reverse there as well).
*don’t need to mess with getattr since it would become just another attribute
*might be worse design in terms of comprehension
otake care about _set, since we shouldn’t allow change it externally
For now lets do it within a single class and tune up getattr
hasunique
reset ()
uniqueValues

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the At t ributeWithUnigue documentation.

Full API documentation of AttributeWithUnique in module mvpa.misc.state.

AttributesCollector

class AttributesCollector (name, bases, dict)
Bases: type

Intended to collect and compose StateCollection for any child class of this metaclass
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See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the At t ributesCollector documentation.

Full API documentation of AttributesCollector in module mvpa.misc.state.

ClassWithCollections

class ClassWithCollections (descr=None, **kwargs)
Bases: object

Base class for objects which contain any known collection

Classes inherited from this class gain ability to access collections and their items as simple attributes. Access
to collection items “internals” is done via <collection_name> attribute and interface of a corresponding
Collection.

descr
Description of the object if any

reset ()
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the ClassWithCollections documentation.

Full API documentation of ClassWithCollections in module mvpa.misc.state.

CollectableAttribute

class CollectableAttribute (name=None, doc=None)
Bases: object

Base class for any custom behaving attribute intended to become part of a collection.

Derived classes will have specific semantics:

StateVariable: conditional storage
*AttributeWithUnique: easy access to a set of unique values within a container
eParameter: attribute with validity ranges.

—ClassifierParameter: specialization to become a part of Classifier’s params collection
—KernelParameter: —//— to become a part of Kernel Classifier’s kernel_params collection

Those CollectableAttributes are to be groupped into corresponding collections for each class by statecollec-
tor metaclass, ie it would be done on a class creation (ie not per each object)

isSet

name

reset ()
Simply reset the flag

value
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the CollectableAttribute documentation.

Full API documentation of CollectableAttribute in module mvpa.misc.state.
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Collection

class Collection (items=None, owner=None, name=None)
Bases: object

Container of some CollectableAttributes.

*Public Access Functions: isKnown
*Access Implementors: _getListing, _getNames
*Mutators: __init__

*R/0 Properties: listing, names, items
XXX Seems to be not used and duplicating functionality: _gerListing (thus listing property)

Initialize the Collection

sitems (dict of CollectableAttribute’s) — items to initialize with
eowner (object) — an object to which collection belongs
ename (basestring) — name of the collection (as seen in the owner, e.g. ‘states’)

add (item)
Add a new CollectableAttribute to the collection

eitem (CollectableAttribute) — or of derived class. Must have ‘name’ assigned

TODO: we should make it stricter to don’t add smth of
wrong type into Collection since it might lead to problems
Also we might convert to __setitem__
get (index, default)
Access the value by a given index.
Mimiquing regular dictionary behavior, if value cannot be obtained (i.e. if any exception is caught)
return default value.

getvalue (index)
Returns the value by index

isKnown (index)
Returns True if state index is known at all

isSet (index=None)
If item (or any in the present or listed) was set

eindex (None or basestring or list of basestring) — What items to check if they were set
in the collection

items

listing
str(object) -> string
Return a nice string representation of the object. If the argument is a string, the return value is the
same object.

name

names
Return ids for all registered state variables

owner

remove (index)
Remove item from the collection

reset (index=None)
Reset the state variable defined by index

setvalue (index, value)
Sets the value by index

whichSet ()
Return list of indexes which were set
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See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Collect ion documentation.

Full API documentation of Collection in module mvpa.misc.state.

DatasetAttribute

class DatasetAttribute (name=None, hasunique=True, doc="Attribute with unique’)
Bases: mvpa.misc.state.AttributeWithUnique

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the DatasetAttribute documentation.

Full API documentation of DatasetAttribute in module mvpa.misc.state.

FeatureAttribute

class FeatureAttribute (name=None, hasunique=True, doc="Attribute with unique’)
Bases: mvpa.misc.state.AttributeWithUnique

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the FeatureAttribute documentation.

Full API documentation of FeatureAttribute in module mvpa.misc.state.

Harvestable

class Harvestable (attribs=None, copy_attribs="copy’, **kwargs)
Bases: mvpa.misc.state.ClassWithCollections

Classes inherited from this class intend to collect attributes within internal processing.

Subclassing Harvestable we gain ability to collect any internal data from the processing which is especially
important if an object performs something in loop and discards some intermidiate possibly interesting results
(like in case of CrossValidatedTransferError and states of the trained classifier or TransferError).

Initialize state of harvestable

eattribs (list of basestr or dicts) — What attributes of call to store and return within har-
vested state variable. If an item is a dictionary, following keys are used ['name’, ‘copy’]

ecopy_attribs (None or basestr) — Default copying. If None — no copying, ‘copy’ - shal-
low copying, ‘deepcopy’ — deepcopying

harvest_attribs
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Harvestable documentation.

Full API documentation of Harvestable in module mvpa.misc.state.

ParameterCollection

class ParameterCollection (items=None, owner=None, name=None)
Bases: mvpa.misc.state.Collection
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Container of Parameters for a stateful object.
Initialize the Collection
sitems (dict of CollectableAttribute’s) — items to initialize with

*owner (object) — an object to which collection belongs
ename (basestring) — name of the collection (as seen in the owner, e.g. ‘states’)

resetvalue (index, missingok=False)
Reset all parameters to default values

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the ParameterCollection documentation.

Full API documentation of ParameterCollection in module mvpa.misc.state.

SampleAttribute

class SampleAttribute (name=None, hasunique=True, doc="Attribute with unique’)
Bases: mvpa.misc.state.AttributeWithUnique

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the SampleAttribute documentation.

Full API documentation of SampleAttribute in module mvpa.misc.state.

SampleAttributesCollection

class SampleAttributesCollection (items=None, owner=None, name=None)
Bases: mvpa.misc.state.Collection

Container for data and attributes of samples (ie data/labels/chunks/...)

Initialize the Collection

eitems (dict of CollectableAttribute’s) — items to initialize with
eowner (object) — an object to which collection belongs
ename (basestring) — name of the collection (as seen in the owner, e.g. ‘states’)

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the SampleAttributesCollection documentation.

Full API documentation of SampleAttributesCollection in module mvpa.misc.state.

StateCollection

class StateCollection (items=None, owner=None)
Bases: mvpa.misc.state.Collection

Container of StateVariables for a stateful object.

*Public Access Functions: isKnown, isEnabled, isActive
*Access Implementors: _getListing, _getNames, _getEnabled
sMutators: __init__, enable, disable, _setEnabled

*R/0 Properties: listing, names, items

*R/W Properties: enabled
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Initialize the state variables of a derived class

eitems (dict) — dictionary of states

cowner (Stateful) — object which owns the collection

ename (basestring) — literal description. Usually just attribute name for the collection,
e.g. ‘states’

disable (index)
Disable state variable defined by index id

enable (index, value=True, missingok=False)
Enable state variable given in index

enabled
Return list of enabled states

*nondefault (bool) — Either to return also states which are enabled simply by default
einvert (bool) — Would invert the meaning, ie would return disabled states

isActive (index)
Returns True if state index is known and is enabled

isEnabled (index)
Returns True if state index is enabled

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the StateCollection documentation.

Full API documentation of StateCollection in module mvpa.misc.state.

StateVariable

class StateVariable (name=None, enabled=True, doc="State variable’)
Bases: mvpa.misc.state.CollectableAttribute

Simple container intended to conditionally store the value
enable (value=False)
isEnabled

reset ()
Simply detach the value, and reset the flag

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the StateVariable documentation.

Full API documentation of StateVariable in module mvpa.misc.state.

16.9.25 mvpa.misc.stats

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.stats (for developers).
See Also:

Full API documentation of chisquare() in module mvpa.misc.stats.

16.9.26 mvpa.misc.support

Support function — little helpers in everyday life

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.support (for developers).
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Classes

Event

class Event (**kwargs)

Bases: dict
Simple class to define properties of an event.

The class is basically a dictionary. Any properties can be pass as keyword arguments to the constructor,
e.g.

>>> ev = Event (onset=12, duration=2.45)

Conventions for keys:

onsetThe onset of the event in some unit.

duration
The duration of the event in the same unit as onset.

label E.g. the condition this event is part of.

chunk
Group this event is part of (if any), e.g. experimental run.

features
Any amount of additional features of the event. This might include things like physiological measures,
stimulus intensity. Must be a mutable sequence (e.g. list), if present.

asDescreteTime (dt, storeoffset=False)
Convert onset and duration information into descrete timepoints.

dt (float) — Temporal distance between two timepoints in the same unit as onset and
duration.

sstoreoffset (bool) — If True, the temporal offset between original onset and descretized
onset is stored as an additional item in features.
Return

A copy of the original Event with onset and optionally duration replaced by their corre-
sponding descrete timepoint. The new onset will correspond to the timepoint just before
or exactly at the original onset. The new duration will be the number of timepoints cov-
ering the event from the computed onset timepoint till the timepoint exactly at the end,
or just after the event.
Note again, that the new values are expressed as #timepoint and not in their original unit!

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Event documentation.

Full API documentation of Event in module mvpa.misc.support.

Harvester

class Harvester (source, calls, simplify_results=True)

Bases: object

World domination helper: do whatever it is asked and accumulate results

*Might we need to deepcopy attributes values?
*Might we need to specify what attribs to copy and which just to bind?

Initialize

esource — Generator which produce food for the calls.
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ecalls (sequence of HarvesterCall instances) — Calls which are processed in the loop. All
calls are processed in order of apperance in the sequence.

esimplify_results (bool) — Remove unecessary overhead in results if possible (nested lists
and dictionaries).

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the Harvester documentation.

Full API documentation of Harvester in module mvpa.misc.support.

HarvesterCall

class HarvesterCall (call, attribs=None, argfilter=None, expand_args=True, copy_attribs=True)
Bases: object

Initialize
sexpand_args (bool) — Either to expand the output of looper into a list of arguments for
call
eattribs (list of basestr) — What attributes of call to store and return later on?
ecopy_attribs (bool) — Force copying values of attributes
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the HarvesterCall documentation.

Full API documentation of HarvesterCall in module mvpa.misc.support.

MapOverlap

class MapOverlap (overlap_threshold=1.0)
Bases: object

Compute some overlap stats from a sequence of binary maps.

When called with a sequence of binary maps (e.g. lists or arrays) the fraction of mask elements that are
non-zero in a customizable proportion of the maps is returned. By default this threshold is set to 1.0, i.e.
such an element has to be non-zero in all maps.

Three additional maps (same size as original) are computed:

eoverlap_map: binary map which is non-zero for each overlapping element.

spread_map: binary map which is non-zero for each element that is
non-zero in any map, but does not exceed the overlap threshold.

*  eovstats_map: map of float with the raw elementwise fraction of overlap.
All maps are available via class members.
Nothing to be seen here.

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the MapOverlap documentation.

Full API documentation of MapOverlap in module mvpa.misc.support.
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Functions

RFEHistory2maps (history)
Convert history generated by RFE into the array of binary maps

Example:
history2maps(N.array( [ 3,2,1,0 ]))
array([[ 1., 1., 1., 1.],
[t,1,1,01r[1,1,0.,0.],[1.,0.,0.,0.1])
See Also:
Full API documentation of RFEHistory2maps() in module mvpa.misc.support.

getBreakPoints (itfems, contiguous=True)
Return a list of break points.

eitems (iterable) — list of items, such as chunks

econtiguous (bool) — if True (default) then raise Value Error if items are not contiguous,
i.e. a label occur in multiple contiguous sets

Raises
ValueError

Returns
list of indexes for every new set of items

See Also:
Full API documentation of getBreakPoints() in module mvpa.misc.support.

getUniqueLengthNCombinations (data, n)
Generates a list of lists containing all combinations of elements of data of length ‘n’ without repetitions.

data: list n: integer

This function is adapted from a Java version posted in some forum on the web as an answer to the question
‘How can I generate all possible combinations of length n?’. Unfortunately I cannot remember which forum
it was.

See Also:
Full API documentation of getUniqueLengthNCombinations() in module mvpa.misc.support.

idhash (val)
Craft unique id-+hash for an object

See Also:
Full API documentation of idhash() in module mvpa.misc.support.

indentDoc (v)
Given a value returns a string where each line is indented

Needed for a cleaner __repr__ output v - arbitrary
See Also:
Full API documentation of indentDoc() in module mvpa.misc.support.

isInVolume (coord, shape)
For given coord check if it is within a specified volume size.

Returns True/False. Assumes that volume coordinates start at 0. No more generalization (arbitrary minimal
coord) is done to save on performance

See Also:
Full API documentation of isInVolume() in module mvpa.misc.support.

isSorted (items)
Check if listed items are in sorted order.
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eitems (iterable container) —

Returns
True if were sorted. Otherwise False + Warning

See Also:
Full API documentation of isSorted() in module mvpa.misc.support.

reuseAbsolutePath (filel, file2, force=False)
Use path to filel as the path to file2 is no absolute path is given for file2

force (bool) — if True, force it even if the file2 starts with /

See Also:
Full API documentation of reuseAbsolutePath() in module mvpa.misc.support.

transformWithBoxcar (data, startpoints, boxlength, offset=0, fx=<function mean at 0x879909c>)
This function extracts boxcar windows from an array. Such a boxcar is defined by a starting point and
the size of the window along the first axis of the array (boxlength). Afterwards a customizable function is
applied to each boxcar individually (Default: averaging).

*data (array) — An array with an arbitrary number of dimensions.
estartpoints (sequence) — Boxcar startpoints as index along the first array axis
*boxlength (int) — Length of the boxcar window in #array elements

*offset (int) — Optional offset between the configured starting point and the actual begin-
ing of the boxcar window.

Return type
array (len(startpoints) x data.shape[1:])

See Also:

Full API documentation of transformWithBoxcar() in module mvpa.misc.support.

16.9.27 mvpa.misc.transformers

Simply functors that transform something.

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.transformers (for developers).

Class
OverAxis

class OverAxis (transformer, axis=None)
Bases: object

Helper to apply transformer over specific axis
Initialize transformer wrapper with an axis.

etransformer — A callable to be used

eaxis (None or int) — If None — apply transformer across all the data. If some int — over
that axis

See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the OverAxis documentation.

Full API documentation of OverAxis in module mvpa.misc.transformers.
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Functions
Absolute (x)
Returns the elementwise absolute of any argument.
See Also:
Full API documentation of Absolute() in module mvpa.misc.transformers.

FirstAxisMean (x)
Mean computed along the first axis.

See Also:
Full API documentation of FirstAxisMean() in module mvpa.misc.transformers.

GrandMean (x)
Just what the name suggests.

See Also:
Full API documentation of GrandMean() in module mvpa.misc.transformers.

Identity (x)
Return whatever it was called with.

See Also:
Full API documentation of Identity() in module mvpa.misc.transformers.

LlNormed (x, norm=1.0, reverse=False)
Norm the values so that L._1 norm (sumlx|) becomes norm

See Also:
Full API documentation of L1Normed() in module mvpa.misc.transformers.

L2Normed (x, norm=1.0, reverse=False)
Norm the values so that regular vector norm becomes norm

More verbose: Norm that the sum of the squared elements of the returned vector becomes norm.
See Also:
Full API documentation of L2Normed() in module mvpa.misc.transformers.

OneMinus (x)
Returns elementwise ‘1 - x” of any argument.

See Also:
Full API documentation of OneMinus() in module mvpa.misc.transformers.

RankOrder (x, reverse=Fualse)
Rank-order by value. Highest gets 0

See Also:
Full API documentation of RankOrder() in module mvpa.misc.transformers.

ReverseRankOrder (x)
Convinience functor

See Also:
Full API documentation of ReverseRankOrder() in module mvpa.misc.transformers.

SecondAxisMaxOfAbs (x)
Max of absolute values along the 2nd axis

See Also:
Full API documentation of SecondAxisMaxOfAbs() in module mvpa.misc.transformers.

SecondAxisMean (x)
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Mean across 2nd axis
to combine multiple sensitivities to get sense about mean sensitivity across splits

See Also:
Full API documentation of SecondAxisMean() in module mvpa.misc.transformers.

SecondAxisSumOfAbs (x)
Sum of absolute values along the 2nd axis

*to combine multiple sensitivities to get sense about what features are most influential

See Also:

Full API documentation of SecondAxisSumOfAbs() in module mvpa.misc.transformers.

16.9.28 mvpa.misc.vproperty

C++-like virtual properties

The comprehensive API documentation for this module, including all technical details, is available in the Epydoc-
generated API reference for mvpa.misc.vproperty (for developers).

VProperty

class VProperty (fget=None, fset=None, fdel=None, doc="")
Bases: object

Provides “virtual” property: uses derived class’s method
See Also:

Derived classes might provide additional methods via their base classes. Please refer to the list of base classes (if
it exists) at the begining of the VP roperty documentation.

Full API documentation of VProperty in module mvpa.misc.vproperty.
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clfs.stats, 143
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misc.
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.irelief, 155
.noiseperturbation, 157
.pls, 158
searchlight, 158
.splitmeasure, 159
172

args, 172

bv, 172

bv.base, 173
cmdline, 173
data_generators, 174
errorfx, 176
exceptions, 177
£s1,178
fsl.base, 178
fsl.flobs, 180

fx, 181

io, 182

io.base, 182
io.eepbin, 186
io.hamster, 186
io.meg, 187

param, 188

state, 190
support, 195
transformers, 199
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A

absminDistance() (in module mvpa.clfs.distance), 131

Absolute() (in module mvpa.misc.transformers), 200

active (mvpa.base.verbosity.SetLogger attribute), 171

AdaptiveNormal (class in mvpa.clfs.stats), 143

AdaptiveNullDist (class in mvpa.clfs.stats), 143

AdaptiveRDist (class in mvpa.clfs.stats), 144

add() (mvpa.clfs.transerror.SummaryStatistics
method), 150

add() (mvpa.misc.cmdline.OptionGroups method), 173

add() (mvpa.misc.state.Collection method), 192

AFNI, 8

aggregateFeatures() (in module mvpa.datasets.miscfx),
108

alternative build procedure, 12

INDEX

biases (mvpa.clfs.smlr.SMLR attribute), 142

binary packages, 9

BinaryClassifier (class in mvpa.clfs.base), 125

Block-averaging, 85

block-averaging, 81

BLR (class in mvpa.clfs.blr), 131

BoostedClassifier (class in mvpa.clfs.base), 125

BoostedClassifierSensitivity Analyzer (class in
mvpa.measures.base), 152

BoxcarMapper (class in mvpa.mappers.boxcar), 118

BrainVoyagerRTC (class in mvpa.misc.bv.base), 173

build instructions, 11

building from source, 11

building on Windows, 12

analyzer (mvpa.measures.base.ProxyClassiﬁerSensitivityAQalyzer

attribute), 154

C (mvpa.datasets.base.Dataset attribute), 99

analyzers (mvpa.measures.base.CombinedFeaturewiseDatasetddieadurstance() (in module mvpa.clfs.distance), 131

attribute), 153
anova, 31
API reference, 3
applyMapper() (mvpa.datasets.base.Dataset method),
100
applyMapper() (mvpa.datasets.meta.MetaDataset
method), 107
asDescreteTime() (mvpa.misc.support.Event method),
196
asstring() (mvpa.clfs.transerror.ConfusionMatrix
method), 148
(mvpa.clfs.transerror.RegressionStatistics
method), 149
(mvpa.clfs.transerror.SummaryStatistics
method), 150
AttributesCollector (class in mvpa.misc.state), 190
AttributeWithUnique (class in mvpa.misc.state), 190
AUCETrrorFx (class in mvpa.misc.errorfx), 176
aucs (mvpa.clfs.transerror. ROCCurve attribute), 149
autoNullDist() (in module mvpa.clfs.stats), 146

B

backports, 9

BestDetector (class in mvpa.featsel.helpers), 161

bestindex (mvpa.featsel.helpers.BestDetector attribute),

161
(mvpa.measures.base.StaticDatasetMeasure

attribute), 155

asstring()

asstring()

bias

cdf() (mvpa.clfs.stats.AdaptiveRDist method), 144

cdf() (mvpa.clfs.stats.FixedNullDist method), 144

cdf() (mvpa.clfs.stats. MCNullDist method), 145

cdf() (mvpa.clfs.stats.Nonparametric method), 145

cdf() (mvpa.clfs.stats.NullDist method), 146

cfg, 39

ChainMapper (class in mvpa.mappers.base), 114

changelog, 91

ChannelDataset (class in mvpa.datasets.channel), 103

channelids (mvpa.datasets.channel.ChannelDataset at-
tribute), 103

channels (mvpa.misc.io.eepbin.EEPBin attribute), 186

chirpLinear() (in module mvpa.misc.data_generators),
174

Chunk, 85

chunks, 17

chunks (mvpa.datasets.base.Dataset attribute), 100

citation, 4

classifier, 20

Classifier (class in mvpa.clfs.base), 126

classifier error, 23

classifier weights, 31

ClassifierCombiner (class in mvpa.clfs.base), 127

ClassifierError (class in mvpa.clfs.transerror), 147

ClassWithCollections (class in mvpa.misc.state), 191

clean() (mvpa.clfs.stats. MCNullDist method), 145

clf (mvpa.clfs.base.ProxyClassifier attribute), 130

clf (mvpa.clfs.transerror.ClassifierError attribute), 147
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clf (mvpa.measures.base.Sensitivity attribute), 154

clfs (mvpa.clfs.base.BoostedClassifier attribute), 125

coarsenChunks() (in module mvpa.datasets.miscfx),
108

CollectableAttribute (class in mvpa.misc.state), 191

Collection (class in mvpa.misc.state), 192

ColumnData (class in mvpa.misc.io.base), 182

135
compute_lml_gradient_logscale()
(mvpa.clfs.kernel. KernelSquaredExponential
method), 137
compute_log_marginal_likelihood()
(mvpa.clfs.blr.BLR method), 131
compute_M_H() (mvpa.measures.irelief.IterativeRelief

combined_analyzer (mvpa.measures.base.BoostedClassifierSensitivityeAmadyzeéb 6

attribute), 152
CombinedClassifier (class in mvpa.clfs.base), 127
CombinedFeaturewiseDatasetMeasure (class in
mvpa.measures.base), 152
CombinedMapper (class in mvpa.mappers.base), 115

compute_M_H() (mvpa.measures.irelief.IterativeRelief_Devel

method), 157
config file, 40
ConfigManager (class in mvpa.base.config), 168
configuration, 39

combiner (mvpa.algorithms.cvtranserror.Cross Validated Ti@osthrfiomiBasedError (class in mvpa.clfs.transerror),

attribute), 167
(mvpa.clfs.base.CombinedClassifier

tribute), 127

compute() (mvpa.clfs.kernel.Kernel method), 133

compute() (mvpa.clfs.kernel.KernelConstant method),
133

compute() (mvpa.clfs.kernel. KernelExponential
method), 134

compute() (mvpa.clfs.kernel.KernelLinear
134

compute() (mvpa.clfs.kernel. KernelMatern_3_2
method), 135

compute() (mvpa.clfs.kernel.KernelRationalQuadratic
method), 136

compute() (mvpa.clfs.kernel. KernelSquaredExponential
method), 136

compute() (mvpa.clfs.transerror.SummaryStatistics
method), 150

compute_gradient() (mvpa.clfs.kernel.Kernel method),
133

compute_lml_gradient()
method), 133

compute_lml_gradient()
(mvpa.clfs.kernel.KernelConstant
133

compute_lml_gradient()
(mvpa.clfs.kernel. KernelExponential
method), 134

compute_lml_gradient()
(mvpa.clfs.kernel.KernelLinear
135

compute_lml_gradient()
(mvpa.clfs.kernel. KernelSquaredExponential
method), 136

compute_lml_gradient_logscale()
(mvpa.clfs.kernel.Kernel method), 133

compute_lml_gradient_logscale()
(mvpa.clfs.kernel. KernelConstant
133

compute_lml_gradient_logscale()
(mvpa.clfs.kernel. KernelExponential
method), 134

compute_Iml_gradient_logscale()
(mvpa.clfs.kernel.KernelLinear

combiner at-

method),

(mvpa.clfs.kernel.Kernel

method),

method),

method),

method),

147
ConfusionMatrix (class in mvpa.clfs.transerror), 148
ConvergenceError (class in mvpa.misc.exceptions), 177
convertFeaturelds2FeatureMask()
(mvpa.datasets.base.Dataset method), 100
convertFeatureMask2Featurelds()
(mvpa.datasets.base.Dataset method), 100
convertOutlds2InMask()
(mvpa.mappers.mask.MaskMapper method),
120
convertOutlds20utMask()
(mvpa.mappers.mask.MaskMapper method),
120
copy() (mvpa.datasets.base.Dataset method), 100
cross-validation, 24, 58, 82
CrossValidatedTransferError (class in
mvpa.algorithms.cvtranserror), 166
CustomSplitter (class in mvpa.datasets.splitter), 110

D

data (mvpa.misc.io.base.DataReader attribute), 183

data formats, 19

data splitting, 20

DataReader (class in mvpa.misc.io.base), 183

Dataset, 85

dataset, 16

Dataset (class in mvpa.datasets.base), 99

dataset attribute, 16

DatasetAttribute (class in mvpa.misc.state), 193

DatasetError (class in mvpa.misc.exceptions), 178

DatasetMeasure (class in mvpa.measures.base), 153

datasetmethod() (in module mvpa.datasets.base), 103

datasets (mvpa.datasets.meta.MetaDataset attribute),
107

Debian, 9

debug, 41, 43

Decoding, 85

default (mvpa.misc.param.Parameter attribute), 188

defineFeatureGroups() (mvpa.datasets.base.Dataset
method), 100

DenseArrayMapper (class in mvpa.mappers.array), 113

descr (mvpa.misc.state.ClassWithCollections attribute),
191

DescreteMetric (class in mvpa.mappers.metric), 121
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design2labels() (in module mvpa.misc.io.base), 185

detrending, 44

development, 79

development snapshot, 11

disable() (mvpa.misc.state.StateCollection method),
195

discardOut() (mvpa.mappers.mask.MaskMapper
method), 120

doubleGammaHRF() (in module mvpa.misc.fx), 181

dt (mvpa.datasets.channel.ChannelDataset attribute),
103

dt (mvpa.misc.io.eepbin.EEPBIin attribute), 186

dumbFeatureBinaryDataset() (in module
mvpa.misc.data_generators), 174
dumbFeatureDataset() (in module

mvpa.misc.data_generators), 174
dump() (mvpa.misc.io.hamster.Hamster method), 187
durations (mvpa.misc.fsl.base.FsIEV3 attribute), 179

E

EEPBin (class in mvpa.misc.io.eepbin), 186
EEPDataset (class in mvpa.datasets.eep), 104
ElementSelector (class in mvpa.featsel.helpers), 161
elementsize (mvpa.mappers.metric.DescreteMetric at-
tribute), 121
enable() (mvpa.misc.state.StateCollection method), 195
enable() (mvpa.misc.state.StateVariable method), 195
enabled (mvpa.misc.state.StateCollection attribute),
195
enhancedClassDocString() (in
mvpa.base.dochelpers), 169
enhancedDocString() (in
mvpa.base.dochelpers), 169
environment variable
MVPA_DEBUG, 43
MVPA_DEBUG_METRICS, 43
MVPA_QUICKTEST, 94
MVPA_SEED, 44
MVPA_SVM_BACKEND, 93
MVPA_TESTS_LABILE, 44, 93
MVPA_TESTS_QUICK, 44, 94
MVPA_VERBOSE, 42
MVPA_VERBOSE_OUTPUT, 39
MVPA_WARNINGS_BT, 43
MVPA_WARNINGS_COUNT, 42, 43
MVPA_WARNINGS_SUPPRESS, 43
Epoch, 85
equalDefault (mvpa.misc.param.Parameter attribute),
188

module

module

error, 23

error (mvpa.clfs.transerror.ConfusionMatrix attribute),
148

(mvpa.clfs.transerror.RegressionStatistics  at-
tribute), 149

(mvpa.clfs.transerror.SummaryStatistics ~ at-
tribute), 150

errorfx (mvpa.clfs.transerror. TransferError attribute),

151

error

€rror

Event (class in mvpa.misc.support), 196

EventDataset (class in mvpa.datasets.event), 105

Example, 85

example, 45

example fMRI dataset, 47

examples, 3

exists() (in module mvpa.base.externals), 170

extend_args() (in module
mvpa.clfs.libsmlrc.ctypes_helper), 138

F

F-score, 31

Feature, 85

feature, 17, 18

feature selection, 19, 31, 33, 81

feature_ids, 81

feature_ids (mvpa.measures.base.Sensitivity attribute),
154

feature_selection (mvpa.clfs.base.FeatureSelectionClassifier

attribute), 128

feature_selections (mvpa.featsel.base.FeatureSelectionPipeline

attribute), 160
FeatureAttribute (class in mvpa.misc.state), 193
FeatureSelection, 35
FeatureSelection (class in mvpa.featsel.base), 160
FeatureSelectionClassifier, 35
FeatureSelectionClassifier (class in mvpa.clfs.base),
127
FeatureSelectionPipeline (class in mvpa.featsel.base),
160
FeaturewiseDatasetMeasure
myvpa.measures.base), 153
Fedora, 14
felements

(class in

(mvpa.featsel.helpers.FractionTailSelector

attribute), 162

filter_coord (mvpa.mappers.metric.DescreteMetric at-
tribute), 121

FirstAxisMean() (in module mvpa.misc.transformers),
200

fit (mvpa.clfs.stats.Nonparametric attribute), 145

fit() (mvpa.clfs.stats. AdaptiveNullDist method), 143

fit() (mvpa.clfs.stats.FixedNullDist method), 144

fit() (mvpa.clfs.stats. MCNullDist method), 145

fit() (mvpa.clfs.stats.NullDist method), 146

FixedErrorThresholdStopCrit (class in
mvpa.featsel.helpers), 162
FixedNElementTailSelector (class in

mvpa.featsel.helpers), 162
FixedNullDist (class in mvpa.clfs.stats), 144
forward mapping, 18
forward() (mvpa.mappers.base.ChainMapper method),
114
forward() (mvpa.mappers.base.CombinedMapper
method), 115
forward() (mvpa.mappers.base.Mapper method), 116
forward() (mvpa.mappers.base.ProjectionMapper

method), 118

Index
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forward() (mvpa.mappers.boxcar.BoxcarMapper
method), 119

forward() (mvpa.mappers.mask.MaskMapper method),

getNeighbor() (mvpa.mappers.base.CombinedMapper
method), 115
getNeighbor() (mvpa.mappers.base.Mapper method),

120 116

forward() (mvpa.mappers.samplegroup.SampleGroupMapgetiNeighbor() (mvpa.mappers.metric.Metric method),
method), 123 122

FractionTailSelector (class in mvpa.featsel.helpers), getNeighborIn() (mvpa.mappers.base.Mapper method),
162 116

free software, 3 getNeighbors() (mvpa.mappers.base.Mapper method),

FSL, 8, 44 117

FsIEV3 (class in mvpa.misc.fsl.base), 179

G

gaussian process regression, 26

get() (mvpa.base.config.ConfigManager method), 168

get() (mvpa.misc.state.Collection method), 192

get_argtypes() (in module
mvpa.clfs.libsmlrc.ctypes_helper), 138

getAsDType() (mvpa.base.config.ConfigManager
method), 168
getboolean() (mvpa.base.config.ConfigManager

method), 169
getBreakPoints() (in module mvpa.misc.support), 198
getData() (mvpa.misc.io.base.DataReader method),
183
getEV() (mvpa.misc.fsl.base.FsSIEV3 method), 179
getInld() (mvpa.mappers.base.Mapper method), 116
getInld() (mvpa.mappers.mask.MaskMapper method),

120

getInlds() (mvpa.mappers.mask.MaskMapper method),
120

getInSize() (mvpa.mappers.base.ChainMapper

method), 114

getInSize() (mvpa.mappers.base.CombinedMapper
method), 115

getInSize() (mvpa.mappers.base.Mapper method), 116

getInSize() (mvpa.mappers.base.ProjectionMapper
method), 118

getInSize() (mvpa.mappers.boxcar.BoxcarMapper
method), 119

getInSize() (mvpa.mappers.mask.MaskMapper
method), 120

getInSize() (mvpa.mappers.samplegroup.SampleGroupMapper

method), 123

getLabels_map() (mvpa.clfs.transerror.ConfusionMatrix
method), 148

getLabelsMap() (mvpa.datasets.base.Dataset method),
100

getMajority Vote() (mvpa.clfs.knn. kNN method), 137

getMask() (mvpa.mappers.mask.MaskMapper
method), 120

getMetric() (mvpa.mappers.base.Mapper method), 116

getMVPattern() (in module
mvpa.misc.data_generators), 174

getNColumns() (mvpa.misc.io.base.ColumnData
method), 182

getNeighbor() (mvpa.mappers.base.ChainMapper
method), 114

getNeighbors() (mvpa.mappers.metric.DescreteMetric
method), 121

getNeighbors() (mvpa.mappers.metric.Metric method),
122

getNEVs() (mvpa.misc.fsl.base.FsIEV3 method), 179

getNFeatures() (mvpa.datasets.base.Dataset method),
100

getNFeatures() (mvpa.datasets.meta.MetaDataset
method), 107

getNRows() (mvpa.misc.io.base.ColumnData method),

182

getNSamples() (mvpa.datasets.base.Dataset method),
100

getNSamples() (mvpa.datasets.meta.MetaDataset

method), 107

getNSamples() (mvpa.misc.io.base.SampleAttributes
method), 184

getOutld() (mvpa.mappers.mask.MaskMapper
method), 120

getOutSize() (mvpa.mappers.base.ChainMapper
method), 114

getOutSize() (mvpa.mappers.base.CombinedMapper
method), 115

getOutSize() (mvpa.mappers.base.Mapper method),
117

getOutSize() (mvpa.mappers.base.ProjectionMapper
method), 118

getOutSize()  (mvpa.mappers.boxcar.BoxcarMapper
method), 119

getOutSize() (mvpa.mappers.mask.MaskMapper
method), 120

getOutSize() (mvpa.mappers.samplegroup.SampleGroupMapper

method), 123

getPropsAsDict() (mvpa.misc.io.base.DataReader
method), 183

getRandomSamples() (mvpa.datasets.base.Dataset

method), 100
getRandomSamples() (mvpa.datasets.meta.MetaDataset
method), 108

getSamplesPerChunkLabel() (in module
mvpa.datasets.miscfx), 109

getSensitivity Analyzer()
(mvpa.clfs.base.BoostedClassifier method),

125
getSensitivity Analyzer()

method), 126
getSensitivity Analyzer()

(mvpa.clfs.base.FeatureSelectionClassifier

(mvpa.clfs.base.Classifier
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method), 128

getSensitivity Analyzer()
(mvpa.clfs.base.MappedClassifier
128

getSensitivity Analyzer()
(mvpa.clfs.base.ProxyClassifier
130

getSensitivity Analyzer()
(mvpa.clfs.base.SplitClassifier
130

getSensitivity Analyzer()
method), 142

getUniqueLengthNCombinations()
mvpa.misc.support), 198

getvalue() (mvpa.misc.state.Collection method), 192

getWeighted Vote() (mvpa.clfs.knn. kNN method), 137

Git, 11,79

Git repository, 11

method),

method),

method),
(mvpa.clfs.smlr.SMLR

(in module

GPR, 26

gradient() (mvpa.clfs.kernel.KernelExponential
method), 134

gradient() (mvpa.clfs.kernel.KernelMatern_3_2

method), 135
gradient() (mvpa.clfs.kernel.KernelRationalQuadratic
method), 136
GrandMean() (in module mvpa.misc.transformers), 200
group_kwargs() (in module mvpa.misc.args), 172

H

HalfSplitter (class in mvpa.datasets.splitter), 111

Hamster (class in mvpa.misc.io.hamster), 187

handleDocString() (in module mvpa.base.dochelpers),
169

handlers (mvpa.base.verbosity.Logger attribute), 171

harvest_attribs (mvpa.misc.state.Harvestable attribute),
193

Harvestable (class in mvpa.misc.state), 193

Harvester (class in mvpa.misc.support), 196

HarvesterCall (class in mvpa.misc.support), 197

hasunique (mvpa.misc.state.AttributeWithUnique at-
tribute), 190

history, 3

hlcuster, 8

I (mvpa.datasets.base.Dataset attribute), 99

Identity() (in module mvpa.misc.transformers), 200

idhash (mvpa.datasets.base.Dataset attribute), 101

idhash() (in module mvpa.misc.support), 198

idsbychunks() (mvpa.datasets.base.Dataset method),
101

idsbylabels() (mvpa.datasets.base.Dataset method), 101

idsonboundaries() (mvpa.datasets.base.Dataset
method), 101

IFS, 37

IFS (class in mvpa.featsel.ifs), 165

incremental feature search, 37

indent (mvpa.base.verbosity.LevelLogger attribute),
170

indentDoc() (in module mvpa.misc.support), 198

index() (mvpa.datasets.base.Dataset method), 101

installation, 9

intensities (mvpa.misc.fsl.base.FSIEV3 attribute), 179

internals (mvpa.clfs.warehouse.Warehouse attribute),
151

InvalidHyperparameterError
mvpa.misc.exceptions), 178

invariant features, 81

[Python, 8

isActive() (mvpa.misc.state.StateCollection method),
195

isDefault (mvpa.misc.param.Parameter attribute), 188

isEnabled (mvpa.misc.state.StateVariable attribute),
195

isEnabled() (mvpa.misc.state.StateCollection method),
195

isInVolume() (in module mvpa.misc.support), 198

isKnown() (mvpa.misc.state.Collection method), 192

isSet (mvpa.misc.state.CollectableAttribute attribute),
191

isSet() (mvpa.misc.state.Collection method), 192

isSorted() (in module mvpa.misc.support), 198

isTrained() (mvpa.clfs.base.Classifier method), 126

isValidInld() (mvpa.mappers.base.Mapper method),
117

isValidInld() ~ (mvpa.mappers.boxcar.BoxcarMapper
method), 119

isValidInId() (mvpa.mappers.mask.MaskMapper
method), 120

isValidOutld() (mvpa.mappers.base.Mapper method),
117

isValidOutld() (mvpa.mappers.boxcar.BoxcarMapper
method), 119

items (mvpa.clfs.warehouse. Warehouse attribute), 151

items (mvpa.misc.state.Collection attribute), 192

IterativeRelief (class in mvpa.measures.irelief), 155

IterativeRelief_Devel (class in mvpa.measures.irelief),
157

IterativeReliefOnline (class in mvpa.measures.irelief),
156

IterativeReliefOnline_Devel
mvpa.measures.irelief), 156

(class in

(class in

K

k() (mvpa.measures.irelief.IterativeRelief method), 156
k-nearest-neighbour, 26
Kernel (class in mvpa.clfs.kernel), 133
KernelConstant (class in mvpa.clfs.kernel), 133
KernelExponential (class in mvpa.clfs.kernel), 134
KernelLinear (class in mvpa.clfs.kernel), 134
KernelMatern_3_2 (class in mvpa.clfs.kernel), 135
KernelMatern_5_2 (class in mvpa.clfs.kernel), 135
KernelParameter (class in mvpa.misc.param), 188
KernelRationalQuadratic (class in mvpa.clfs.kernel),
136
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KernelSquaredExponential (class in mvpa.clfs.kernel),
136

kNN, 26

kNN (class in mvpa.clfs.knn), 137

L

L (mvpa.datasets.base.Dataset attribute), 100

L1Normed() (in module mvpa.misc.transformers), 200

L2Normed() (in module mvpa.misc.transformers), 200

Label, 85

labels, 17

labels (mvpa.clfs.transerror.ClassifierError attribute),
147

labels (mvpa.clfs.transerror.ConfusionMatrix attribute),
148

labels (mvpa.datasets.base.Dataset attribute), 101

labels2chunks() (in module mvpa.misc.io.base), 185

labels_map (mvpa.clfs.transerror.ConfusionMatrix at-
tribute), 148

labels_map (mvpa.datasets.base.Dataset attribute), 101

LARS, 26

least angle regression, 26

leastSqFit() (in module mvpa.misc.fx), 181

leave-one-out, 20

level (mvpa.base.verbosity.LevelLogger attribute), 170

LevelLogger (class in mvpa.base.verbosity), 170

Ifprev (mvpa.base.verbosity.Logger attribute), 171

LIBSVM, 8, 12

license, 3
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penalized logistic regression, 26

percentCorrect (mvpa.clfs.transerror.ConfusionMatrix
attribute), 148
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registered (mvpa.base.verbosity.SetLogger attribute),
171

RegressionStatistics (class in mvpa.clfs.transerror), 149

RelativeRMSErrorFx (class in mvpa.misc.errorfx), 176

releases, 11

reload() (mvpa.base.config.ConfigManager method),
169
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reset() (mvpa.misc.state.StateVariable method), 195

reset()

212

Index



PyMVPA Manual, Release 0.4.0

resetvalue() (mvpa.misc.param.Parameter method), 189
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retrain() (mvpa.clfs.base.Classifier method), 126

reuseAbsolutePath() (in module mvpa.misc.support),
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method), 104

suggested software, 8

summaries (mvpa.clfs.transerror.SummaryStatistics at-
tribute), 150

summary() (mvpa.clfs.base.Classifier method), 126

summary() (mvpa.clfs.base.CombinedClassifier
method), 127

summary() (mvpa.clfs.base.ProxyClassifier method),
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SMLRWeights (class in mvpa.clfs.smlr), 143

source package, 11
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splitcfg() (mvpa.datasets.splitter.Splitter method), 113
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splitDataset() (mvpa.datasets.splitter.Splitter method),
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SplitFeaturewiseMeasure (class in
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splitter, 20

Splitter (class in mvpa.datasets.splitter), 112
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method), 103

SummaryStatistics (class in mvpa.clfs.transerror), 150
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module
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splitter (mvpa.clfs.base.SplitClassifier attribute), 130
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mvpa.clfs.distance), 132
StateCollection (class in mvpa.misc.state), 194
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StateVariable (class in mvpa.misc.state), 195
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(in module
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threshold (mvpa.featsel.helpers.FixedErrorThresholdStopCrit
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method), 173
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toEvents() (mvpa.misc.fsl.base.FSIEV3 method), 179
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tofile() (mvpa.misc.fsl.base.McFlirtParams method),
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tofile() (mvpa.misc.io.base.ColumnData method), 183

tofile() (mvpa.misc.io.base.SampleAttributes method),
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train() (mvpa.mappers.base.ChainMapper method), 115

train() (mvpa.mappers.base.CombinedMapper
method), 116

train() (mvpa.mappers.base.Mapper method), 117

train() (mvpa.mappers.base.ProjectionMapper
method), 118
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warning, 41, 42
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train() (mvpa.mappers.samplegroup.SampleGroupMapperwindows, 9
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mvpa.misc.support), 199
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mvpa.misc.io.base), 184

U
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UC (mvpa.datasets.base.Dataset attribute), 100

UL (mvpa.datasets.base.Dataset attribute), 100
uniquechunks (mvpa.datasets.base.Dataset attribute),
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uniquelabels (mvpa.datasets.base.Dataset attribute),
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uniqueValues (mvpa.misc.state.AttributeWithUnique
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UnknownStateError (class in mvpa.misc.exceptions),
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untrain() (mvpa.clfs.base.BoostedClassifier method),
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untrain() (mvpa.clfs.base.Classifier method), 126

untrain() (mvpa.clfs.base.ClassifierCombiner method),
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untrain() (mvpa.clfs.base.CombinedClassifier method),
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(mvpa.clfs.base.FeatureSelectionClassifier

method), 128

untrain() (mvpa.clfs.base.ProxyClassifier method), 130

untrain() (mvpa.clfs.knn. kNN method), 137

untrain() (mvpa.clfs.libsvmc.svm.SVM method), 140

Vv
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value (mvpa.misc.param.Parameter attribute), 189
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X
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Z

zscore() (in module mvpa.datasets.miscfx), 109
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