
A short tutorial for gtkmvc

Roberto Cavada ∗

June 11, 2004

1 What is this?

gtkmvc is a practical implementation of Model-View-Controller and Observer

patterns. The goal of this tutorial is to provide readers with sufficient awareness
about what gtkmvc is and what it can do, in order to allow them to quickly
decide whether it might be useful or not for their needs.

The tutorial is thought to be minimal. For any further information the user
should refer to the manual pages.

2 The example in few words

The sample application must provide a single window, with a label showing
the value of a numeric counter. The window contains also a button, which
increments the counter by one every time it is pressed.

Since this tutorial must fit into few pages, the example is extremely simple.
Moreover, a more convoluted example would not help to better understand what
gtkmvc can be used for.

3 The framework

The implementation of this example is split into two parts. In the first one, the
GUI is automatically constructed from a glade file. In the second one, the GUI
is constructed ’by hand’, by creating and connecting manually all widgets.

The latter solution is mainly presented to make this tutorial more complete,
but the readers should keep in mind that they are going to adopt the former
most of the times, or even more often a mixture of them, where many parts
come from one or more glade files, and some others are built manually.

The use of glade files is also the reason why the gtkmvc framework is split
into three distinct parts. It is a matter of fact that in practice the Model-View-
Controller pattern will almost always collapse to a two-level framework, where

∗ITC-irst, Trento, Italy, cavada@irst.itc.it

1

the View and the Controller are represented by a unique monolithic entity (let’s
call it V&C), and the Model is still separated by the rest.

The gtkmvc framework provides three well-distinguishable levels, to allow
the pure-glade parts to go into the View side (in a direct and very natural way),
and all the remaining parts that would be put in the V&C part, to go either in
the Controller part, or in the View part, depending on how much close to the
GUI stuff are.

For example, all the widgets signal handlers must go in the Controller side,
whereas the code that sets some attributes of a specific widget might live either
in the Controller or in the View, depending on how much those attributes are
bounded to the application logic.

The more some code depends on the logic of the application, the farther it
lives from the View side. If some code depends only on the logic without any
relation with the GUI stuff, it must live in the Model.

4 The implementation glade-based

4.1 The model

The model is represented by class MyModel, derived from class Model, that in
turn is provided by the framework.

The class MyModel contains a field called counter to hold the value of a
numeric counter. Since we are interested in monitoring and show any change of
this counter, we declare it as an observable property.

from gtkmvc.model import Model

class MyModel (Model):

observable properties:

__properties__ = { ’counter’ : 0 }

def __init__(self):

Model.__init__(self)

return

pass # end of class

All that it is required to do, is calling class Model’s constructor from within
the derived class’ constructor, and defining a class variable properties con-
taining the name of the observable properties, and the associated initial values.
The class Model will do all the boring work automatically.

4.2 The glade-based view

glade-2 while editing the example is depicted in figure 1. The names for the
main window, the label and the button are significant, and signal clicked of the
button has been associated with a function called on button clicked.

2

Figure 1: glade-2 in action

The result is saved in gtkmvc-example.glade.
The view is represented by class MyView, that derives from class View provided

by gtkmvc. The class View can be thought as a container that holds a set of
widgets, and may associate each widget with a string name. When a glade file
is used to build the view, each widget will be associated automatically inside
the view with the corresponding name occurring in the glade file.

Moreover, each View instance is connected to a corresponding Controller,
and when built from a glade file, methods inside the Controller will be scanned
to try to connect automatically all signals declared in the glade file.

from gtkmvc.model import Model

This is file model.py

from gtkmvc.view import View

class MyView (View):

def __init__(self, ctrl):

View.__init__(self, ctrl, ’gtkmvc-example.glade’)

return

pass # end of class

Class MyView calls simply View’s class constructor from within its constructor,
by passing the Controller instance which it belongs to, and the glade file name.
All the hard work is carried out by class View.

3

4.3 The controller

The controller - so to speak - is the most complicated part of this example.
It is the only part of the MVC pattern which knows the model and the view
instances which it is linked to. These are accessible via members self.model

and self.view respectively.

This is file ctrl_glade.py

from gtkmvc.controller import Controller

import gtk

class MyController (Controller):

def __init__(self, model):

Controller.__init__(self, model)

The controller is an observer for properties contained in

the model:

self.model.registerObserver(self)

return

def registerView(self, view):

"""This method is called by the view, that calls it when it is

ready to register itself. Here we connect the ’pressed’ signal

of the button with a controller’s method. Signal ’destroy’

for the main window is handled as well."""

Controller.registerView(self, view)

connects the signals:

self.view[’main_window’].connect(’destroy’, gtk.mainquit)

initializes the text of label:

self.view[’label’].set_text("%d" % self.model.counter)

return

signals:

def on_button_clicked(self, button):

self.model.counter += 1 # changes the model

return

observable properties:

def property_counter_change_notification(self, model, old, new):

self.view[’label’].set_text("%d" % new)

print "Property ’counter’ changed from %d to %d" % (old, new)

return

pass # end of class

In the class constructor, at first base class constructor is called, passing the

4

Model instance this Controller instance belongs to. From that moment on, class
member self.model will be accessible.

Then method Model.registerObserver is called, in order to make the con-
troller an observer for the observable property counter in the model. After
this, every change applied to MyModel class’ member counter will make method
property counter change notification of class MyController be called automat-
ically.

Method registerView is called when a class View instance requires to be
registered to the controller it belongs to. This method is mainly used to connect
signals and initialize the GUI side that depends on the application logic. In the
example, signal destroy of the main window is connected to gtk.mainquit to
close the application when the user closes the window. Notice here the use of
member self.view and how a class View can be used as a map to retrieve widgets
from their names.

Also, the text label is initialized to the initial value of the counter.
Method on button clicked is called as a callback every time the user clicks

the button. The corresponding signal is automatically connected to this method
when class MyView registers itself within the controller.

Finally, method property counter change notification is called when the
property counter in class MyModel changes. The model containing the property,
the old value and the new value are passed to this method. Notice that the
model is passed since the controller might be an observer for more than one
models, even different from the model it is directly connected to in the MVC
chain.

4.4 The main code

Main code is really trivial:

This is file main_glade.py

import gtk

from model import MyModel

from ctrl_glade import MyController

from view_glade import MyView

m = MyModel()

c = MyController(m)

v = MyView(c)

gtk.mainloop()

5 The implementation without glade

5.1 The model

The model does not depend on the controller+view sides, so it is exactly the
same as for the implementation glade-based.

5

5.2 The view

Using manually constructed views is slightly less intuitive that using glade-based
views, since the architecture of the view-side gtkmvc is mainly designed to be
used with glade files.

This is file view_no_glade.py

from gtkmvc.view import View

import gtk

class MyViewNoGlade (View):

def __init__(self, ctrl):

The view here is not constructed from a glade file.

Registration is delayed, and widgets are added manually,

later.

View.__init__(self, ctrl, register=False)

The set of widgets:

w = gtk.Window()

h = gtk.VBox()

l = gtk.Label()

b = gtk.Button("Press")

h.pack_start(l)

h.pack_end(b)

w.add(h)

w.show_all()

We add all widgets we are interested in retrieving later in

the view, by giving them a name. Suppose you need access

only to the main window, label and button. Widgets are

added like in a map:

self[’main_window’] = w

self[’label’] = l

self[’button’] = b

View’s registration was delayed, now we can proceed.

This will allow the controller to set up all signals

connections, and other operations:

ctrl.registerView(self)

return

pass # end of class

The entire work is carried out by the class constructor. At the beginning base
class View is called like in glade-based view class, but now parameter register

is set to False, to delay the registration of the view within the controller. This
to allow manual construction of the widgets set, that later during registration

6

the controller will be able to access.
Following lines are used to build the widgets set, and to associate a few of

them with string names.
Finally, last line calls method registerView of the controller, in order to at

last allow the controller to know about this view.
Notice that here glade file has not been used at all. Nevertheless, a mixed

solution where glade file(s) and manually constructed widgets sets is fully sup-
ported.

5.3 The controller

The controller is the same that has been used for the glade-based version, a
part from a further signal connection that is performed to connect the button
clicked event to class method self.on button clicked. For this reason, class
MyControllerNoGLade is derived from class MyController to reduce typing.

This is file ctrl_no_glade.py

from ctrl_glade import MyController

class MyControllerNoGlade (MyController):

def __init__(self, model):

MyController.__init__(self, model)

return

def registerView(self, view):

MyController.registerView(self, view)

connects the signals:

self.view[’button’].connect(’clicked’, self.on_button_clicked)

return

pass # end of class

5.4 The main code

Like previous version, main code for manually built view is very short:

This is file main_no_glade.py

import gtk

from model import MyModel

from ctrl_no_glade import MyControllerNoGlade

from view_no_glade import MyViewNoGlade

m = MyModel()

c = MyControllerNoGlade(m)

v = MyViewNoGlade(c)

gtk.mainloop()

7

6 More convoluted main code

Finally, this example shows the powerful of the Observer pattern.
Here both the glade-based and manually built versions are being run at the

same time, with a single instance of class MyModel shared between those two
versions. The execution of this example results in two windows being displayed;
by clicking the button of one of them, the counter is incremented, and the labels
in both of them are updated.

This is file main_mixed.py

import gtk

from model import MyModel

from ctrl_no_glade import MyControllerNoGlade

from ctrl_glade import MyController

from view_no_glade import MyViewNoGlade

from view_glade import MyView

m = MyModel()

c1 = MyControllerNoGlade(m)

c2 = MyController(m)

v1 = MyViewNoGlade(c1)

v2 = MyView(c2)

gtk.mainloop()

7 Conclusions

The author does hope that this tutorial will be useful to help those who are
unsettled about whether gtkmvc can fit their needs or not.

Even if very simple, from this tutorial should result clear to the reader that
both the MVC and Observer patterns can strongly improve the quality of middle
and big size GUI applications, especially if combined with the use of glade-based
views.

gtkmvc has been extensively used to produce a few large GUI applications
based on Python and Pygtk-2. In this scenario, many design choices that led to
gtkmvc had been determined from practical needs, and this made easiness and
transparency the most appreciated quality of the framework.

8

