
A Model-View-Controller pattern implementation

for Pygtk2

Version 0.9.0

Roberto Cavada ∗

January 15, 2004

1 Introduction

This document contains information about the functionalities and the architec-
ture of a Model-View-Controller Infrastructure (MVC from here on) for Pygtk

version 2. The aim is to supply the essential information in order to make
everyone able to interact, modify and extend the infrastructure, as well as for
creating new applications based on this infrastructure. This document is not
complete, and it has been extracted from another document which describes
the architecture of gNuSMV 1, the new GUI for the NuSMV model checker2.
gnusmv is strongly based on the MVC pattern implementation for Pygtk we
developed at ITC-irst.

Section 2 briefly gives an overview of the general architecture for a gNuSMV

application based on Python and the GTK toolkit, showing all major parts, and
how these depend on each other.

Section 3 describes the basement of a GUI application, the Model-View-
Controller Infrastructure. An example via a simple Sequence Diagram is also
provided, in order to better fix concepts.

Finally, Sections 4 and 5 supply some further details about implementation,
via an example. The example aims to make more concrete the ideas described
in all previous sections.

2 Architectural Overview

Figure 1 shows the high level software architecture for an application based on
Pygtk and the supplied MVC Infrastructure. It shows the functional architec-
ture as well.

∗ITC-irst, Trento, Italy, cavada@irst.itc.it
1See at http://nusmv.irst.itc.it/gnusmv
2See at http://nusmv.irst.itc.it

1

Python−GTK Bridge

Python EnvironmentGlade Library GTK Toolkit

MVC Services

MVC−based Application Layer

Figure 1: High-Level Block Architecture

In terms of functionalities, at the highest level is located the Application
Layer, which is partially based on the MVC Infrastructure, and whose imple-
mentation depends on the application semantics.

The MVC Services Layer supplies a quasi-generic platform which imple-
ments the MVC pattern. In the current implementation, the View part partially
depends on the GTK graphical toolkit.

Lower layers supply several functionalities concerning the graphical toolkit
(GTK and Glade) and the Scripting Environment (Python).

3 MVC Infrastructure

The MVC pattern used inside gNuSMV is a simplified version of the ”official“
pattern generally described by Software Engineering Theory (for example, see
http://www.object-arts.com/EducationCentre/Overviews/MVC.htm).

VIEWCONTROLLERMODEL
N1 1 1

Figure 2: Simplified Model-View-Controller Pattern

Simplification consists in the fact that in the more general pattern the
Constroller-View relationship allows a 1-N cardinality. Also the implementation
aims to highlight and address practical requirements (w.r.t. the GTK toolkit),
rather than to be strictly and formally faithful implementation of the pattern.

Figure 2 shows three interconnected parts:

Model Contains the state of the application. Also it provides support to ac-
cess and modify the state, and knows how to handle dependencies between
different parts in the state. For example the application logic could re-
quire that changing a variable, causes a changing of another. It is not
required the Model’s user to be aware about this dependency, because
Model autonomously handles it.

2

Zero, one or more Controllers can be connected to one Model (see Con-
troller, below). Furthermore, one or more Views can be associated with
parts of the state; for example a numerical variable could be visualized
as a number, as well as a graphic bar. It is important to remark that a
Model does not know that a set of Views are connected to its state.

View Views show parts of the Model state, and interactively exchange informa-
tion with the User, via input/output devices. View also interacts with the
Controller (see below), sending event-associated signals to the Controller,
and receiving information to visualize.

A View also associates a set of widget trees, deriving from the Glade File,
as well as from the ad-hoc View Representation. Since a Widget contains a
state, this implementation differs from the standard MVC pattern, where
generally the View side is completely stateless.

As for the Model, a View does not know the semantics concerning what
it visualizes, as well as the Model it is connected to.

Controller The Controller realizes the connection between Models and Views.
The Controller contains the GUI logic: for example, it stores the informa-
tion about what happens when a button is clicked (i.e. handlers of signal
are located inside the Controller.)

Two particular mechanisms make the isolation between Model and Con-
troller, and between View and Controller (see sections 3.1 and 3.2 below).

A Controller perfectly knows how the connected Model and View are im-
plemented, and knows both the state and presentation semantics. A Con-
troller is associated to one Model (has a relationship), and in the current
implementation is associated only to one View.

3.1 Observable properties

Models do not know that are connected to a set of controllers, because this
knowledge implies the knowledge of the GUI semantics, which should be out-
of-scope for Models.

Nevertheless, sometimes it is necessary a Model notifies the GUI logic (gen-
erally the Controllers set, but also other models) that the state changed. This
practical requirement has been allowed by extending the Model state with a
mechanism called Observable Properties. An observable property is a part of
the Model state which is also externally observable via an Observer. Every time
an observable property changes, any interested Observer will be notified of the
event.

Figure 3 shows a Model containing an observable property (color). When
color changes to red, all connected Observers will be notified. Each Observer
will then perform the necessary operation in order to make the View showing
the occurred change.

3

property: color

MODEL

color:

VIEW

CONTROLLER

SIGNALS HANDLER

Figure 3: Interaction between Model-Controller and View-Controller

Each Observer declares it is interested in receiving notifications on one or
more properties changing, by a mechanism called Registration. Once an Ob-
server (for example, a Controller) registered itself among the Model it is asso-
ciated with, it will be notified of all changes of the observable properties. The
Observers will be notified only of the property changes that they are actually
interested in observing.

An implicit syntactical rule binds observable properties names to notifica-
tions sockets inside Observers. This rule allows an automatic connection, and
fixes a sort of ”rule“ for methods names.

Later in this document, some implementation details are discussed, and
further details about observable properties are presented. Finally, an example
in the latest part should make all these concepts clearer.

3.2 View Registration

Current implementation allows only a 1-1 relationship between Controller and
View. Anyway a registration mechanism has been used to connect those two
parts, allowing for more generic relationship in the future, when a Controller
could handle more than one Views, or a View can be shared between different
Controllers.

After the creation, a Vies must register itself with a Controller. From there
on, the Controller can access the state and methods inside the View. When
the view registers itself with a Controller, all signals are also automatically
connected to the corresponding semantics inside the Controller. Connection in
this case is performed by means of an implicit syntax rule, which binds a signal
name to a corresponding function name.

4

4 Details of implementation

This section presents some details regarding the implementation of the MVC
framework in Python.

4.1 Models, Controllers and Views

The MVC Infrastructure essentially supplies three base classes which implement
respectively a View, a Model and a Controller. Developers must derive custom
classes from the base classes set, adding the implementation which depends on
the application semantics.

Model base class Supplies servicing for:

• Fully automatic Observable Properties

• Automatic broadcast notification when observable properties change.

Controller base class Supplies servicing for:

• Automatic registration inside the associated Model.

• Easy access to the associated Model and View for any derived class.

View base class Supplies servicing for:

• Automatic widgets tree registration. Input can be a set of root wid-
gets stored inside a Glade File, or a completely customized widgets
hierarchies.

• Automatic registration inside the associated Controller.

• Automatic signals connection to methods supplied by the associated
Controller.

• Widget retrieval inside the set of hierarchy. Widget can be accessed
by using the name they have been defined from within Glade, at
design time.

4.1.1 Model

User’s models must derive from this base class. Models must be used to hold the
data of the application. They can be connected to observers (like Constrollers)
by a mechanism discussed by section 4.2. It is important to note that apart from
the registration phase, the model do not know that there exists a set observers
connected to it.

All the code strictly related to the data of the application (i.e. not related
to any view of those data) will live in the model class.

5

4.1.2 Controller

User’s controllers must derive from this class. A controller is always associated
with one model, that the controller can monitor and modify. At the other side
the controller can control a View. Two members called model and view holds
the corresponding instances.

Typically (but not always!) a Controller instance is also an Observer for
some Observable Property inside the controlled model. Indeed, the constructor
gets a model instance, that the controller uses to register itself as an observer
of the model.

An important method that user can override is registerView, that the as-
sociated view will call during registration. This can be used to connect cus-
tom signals to widgets of the view, or to perform some initialization that can
be performed only when model, controller and view are actually connected.
registerView gets the view instance that is performing its registration within the
controller. If user overrides registerView, they must call method registerView

of the base class.
The controller holds all the code that lives between data in model and the

view. For example the controller will read a property value from the model, and
will send that value to the view, to visualize it. If the property in the model
is an Observable Property that the Controller is interested in monitoring, than
when somebody will change the property, the controller will be notified and will
update the view.

4.1.3 View

User’s views derives from base class View. This is the only part specific for the
Pygtk graphic toolkit.

A View is always associated to a Controller (that gets with its constructor
call). When the view is created, it register itself to the controller by calling
method Controller.registerView.

A View is also associated to a set of widgets. In general, this set can be
organized as a set of trees of widgets. Each tree can be optionally be generated
by using the Glade application (see section 5.1).

The View contructor is quite much complicated:

def __init__(self, controller, glade_filename=None,

glade_top_widget_name=None, parent_view=None,

register=True)

glade filename can be a string or a list of strings. In any case weach string
provided represents the file name of Glade output. Typically each glade
file contains a tree of widgets.

glade top widget name can be a string or a list of strings. Each string pro-
vided is associated to the parameter glade filename content, and represent
the name of the widget in the widgets tree hierarchy to be considered as
top level. This let the user to select single parts of the glade trees passed.

6

parent view is the view instance to be considered parent of self. Generally
this parameter is None.

register is a flag used to delay view’s registration. If your derived view class
adds some widgets “manually” by creating on the fly them (see below),
you want to delay the view registration (performed by the View class
contructor) ’till all ad-hoc widgets have been actually created. Since the
View’s constructor must be called at the beginning of your derived view
class, you can avoid the View constructor calling Controller.registerView
by setting this flag to False. After your view class contructor built all the
widgets, it is responsible for calling Controller.registerView to perform
the registration. (This is definitly more complicated to explain than to
understand...)

The View class also can be considered a map, that associates widget names
to the corresponding widget objects. If file test.glade contains a Button you
called start button from within Glade, you can create the view and use it as
follows:

from gtkmvc.view import View

class MyView (View):

def __init__(self, controller):

View.__init__(self, controller, ‘‘test.glade’’)

return

pass

m = MyModel()

c = MyController(m)

v = MyView(c)

v[’start_button’] # this returns a gtk.Button object

Instead of using only Glade files, sometimes the derived views create a set
of widgets on the fly. If these widgets must be accessed later, they can be
associated simply by (continuing the code above):

v[’vbox_widget’] = gtk.VBox()

...

Typically the creation on the fly of new widgets is performed by the derived
view contructor, that will delay the view registration.

Another important mechanism provided by the class View is the signal au-
toconnection. By using Glade users can associate to widget signals functions
and methods to be called when associated events happen. When performs the
registration, the View searches inside the corresponding Controller instance for
methods to associate with signals, and all methods found are automatically
connected.

7

4.2 Observable Properties in details

The mechanism of the Observable Properties (OP) is fully automatic, since its
management is carried out by the base class Model.

Basically the user derives from class Model, and adds a class variable called
properties . This variable must be a map, whose elements’ keys are names

of properties, and the associated values are the intial values.
For example, suppose you want to create an OP called name initially associ-

ated to the value “Rob”:

from gtkmvc.model import Model

class MyModel (Model):

__properties__ = { ’name’ : ’Rob’ }

def __init__(self):

Model.__init__(self)

...

return

pass # end of class

That’s all. By using a specific metaclass, property name will be automatically
added, as well as all the code to handle it.

This means that you can use the property in this way:

m = MyModel()

print m.name # prints ’Rob’

m.name = ’Roberto’ # changes the property value

What’s missing is now an observer, to be notified when the property changes:

class AnObserver :

def __init__(self, model):

model.registerObserver(self)

...

return

def property_name_change_notification(self, model, old, new):

print ‘‘Property name changed from ’%s’ to ’%s’’’ % (old, new)

return

pass # end of class

The constructor gets an istance of a Model, and registers the class instance
itself to the given model, to become an observer of that model instance.

To receive notifications for the property name, the observer must define a
method called property name change notification that when is automatically
called will get the instance of the model containing the changed property, and
the property’s old and new values.

8

As you can see, an Observer is not required to derive from a specific class.
Anyway, in the MVC framework models and mostly controllers are use also as
observers.

Here follows an example of usage:

m = MyModel()

o = AnObserver(m)

print m.name # prints ’Rob’

m.name = ’Roberto’ # changes the property value, o is notified

Things so far are easy enough, but they get a bit complicated when you
derive custom models from other custom models. For example, what happens
to OP if you derive a new model class from the class MyModel?

In this case the behaviour of the OP trusty follows the typical Object Ori-
ented rules:

1. Any OP in base class are inherited by derived classes

2. Derived class can override any OP in base classes

3. If multiple base classes defines the same OP, only the first OP will be
accessible from the derived class

For example:

from gtkmvc.model import Model

class Test1 (Model):

__properties__ = {

’prop1’ : 1

}

def __init__(self):

Model.__init__(self)

this class is an observer of its own properties:

self.registerObserver(self)

return

def property_prop1_change_notification(self, model, old, new):

print "prop1 changed from ’%s’ to ’%s’" % (old, new)

return

pass # end of class

class Test2 (Test1):

__properties__ = {

’prop2’ : 2,

9

’prop1’ : 3

}

def __init__(self):

Test1.__init__(self)

also this class is an observer of itself:

self.registerObserver(self)

return

def property_prop2_change_notification(self, model, old, new):

print "prop2 changed from ’%s’ to ’%s’" % (old, new)

return

pass

test code:

t1 = Test1()

t2 = Test2()

t2.prop2 = 20

t2.prop1 = 30

t1.prop1 = 10

When executed, this script generates this output:

prop2 changed from ’2’ to ’20’

prop1 changed from ’3’ to ’30’

prop1 changed from ’1’ to ’10’

As you can see, t2.prop1 overrides the OP prop1 defined in Test1 (they have
different intial values). Test2 could also override method property prop1 change notification:

class Test2 (Test1):

... copy from previous definition, and add:

def property_prop1_change_notification(self, model, old, new):

print "Test2: prop1 changed from ’%s’ to ’%s’" % (old, new)

return

pass

As you expect, the output in this case would be:

prop2 changed from ’2’ to ’20’

Test2: prop1 changed from ’3’ to ’30’

prop1 changed from ’1’ to ’10’

4.2.1 Special members for Observable Properties

Classes derived from Model, that exports OPs, have several special members.
Advanced user might be interested can override some of them, but in general
they should be considered as private members.

10

properties A class (static) member that maps property names and intial
values. This must be provided as a map by the user.

derived properties Automatically generated static member that maps the
OPs exported by all base classes. This does not contain OPs that the class
overrides.

prop ¡property name¿ This is an autogenerated variable to hold the prop-
erty value. For example, a property called x will generate a variable called
prop x.

get prop ¡property name¿ This public method is the getter for the property.
It is automatically generated only if the user does not define one. This
means that the user can change the behaviour of it by defining their own
method. For example, for property x the method is get prop x. This
method gets only self and returns the corresponding property value.

set prop ¡property name¿ This public method is customizable like get prop <property name> .
This does not return anything, and gets self and the value to be as-
signed to the property. The default autogenerated code also calls method
gtkmvc.Model.notify property change to notify the change to all registered
observers.

For further details about this topic see metaclasses PropertyMeta and ObservablePropertyMeta

from package support.

5 A simple application

This section describes the process of creation of a sample application, from
the design with Glade, to the integration of views and code inside the MVC
Infrastructure.

We want to design and implement a simple application constituted by only
one window, containing two string labels. One label shows a text, while the
other shows the number of characters displayed (i.e. the length of the string) by
the first one. There is also a button the user can press. By pressing the button,
the user can change the displayed text, and of course this action might change
also the displayed text length. Figure 4 gives an idea on how the application
should appear.

Figure 4: The sample Application

11

5.1 Glade

Figure 5 shows Glade and a project named example. The sample GUI has only
one top-level window (named window1).

Project Window

Application

Widget Palette

Widget Tree Window

Properties Window

Figure 5: Designing the example by means of Glade for GTK2

The Widget Tree Window shows the widgets hierarchy. There are essentially
the three main components (one button and two labels), grouped inside a set
of containers, which supplies alignments and resizing capabilities.

On the right side of Figure 5, the Properties Window shows that the widget
named button1 has signal clicked associated with function on button1 clicked.
This means that the Controller will have to supply this function in order to
handle the click event occurring in button1.

5.2 Implementation

The implementation is slightly elaborate for this example, because the goal here
is to show how the sample application can be implemented by using the MVC
Infrastructure.

A basic knowledge of any Object Oriented programming language is sufficient
to understand how this example has been pushed inside the MVC Infrastructure.
On the contrary, a fair knowledge of the Python language is required in order
to understand the code details.

More description section is 4.

12

5.2.1 View

In the example, the View is implemented inside the class ExampleView shown
below.

from gtkmvc.view import View

import os.path

GLADE_NAME = "example.glade"

GLADE_PATH = "./glade"

GLADE = os.path.join(GLADE_PATH, GLADE_NAME)

class ExampleView (View):

"""The application view. Contains only the main window1 tree."""

def __init__(self, controller):

"""Contructor, takes the controller instance to perform registration"""

View.__init__(self, controller, GLADE, "window1")

return

pass # end of class

Global variables named GLADE* identify the Glade File to be used when
loading the GUI representation generated by Glade.

Class ExampleView extends the generic View class, which performs most of
the job, as described above.

5.2.2 Model

Class ExampleModel is as simple as class ExampleView. As for ExampleView, it
extends a base class of the MVC Infrastructure, class Model. The state is rep-
resented by a set of possible messages, as well as by the current message index.
The current message index is also an observable property. A couple of methods
are supplied in order to access the state.

from gtkmvc.model import Model

class ExampleModel (Model):

"""The model contains a set of messages

and an observable property that represent the current message

index"""

Observable property: code for that is automatically generated

by metaclass constructor. The controller will be the observer

for this property

__properties__ = {

"message_index" : -1 # -1 is the initial value

}

def __init__(self):

13

Model.__init__(self)

self.messages= (’Initial message’,

’Another message’,

’A third message...’,

’Model changed again’)

return

def get_message(self, index): return self.messages[index]

def set_next_message(self):

this changes the observable property:

self.message_index = (self.message_index + 1) % len(self.messages)

return

pass # end of class

Notice the class’ variable properties , which is a map of (property, value)
couples. The base class Model belongs to a metaclass which automatically
search for observalbe properties and generates the needed code to handle the
notification. When the value of variable message index changes, all registered
observers will be notified.

5.2.3 Controller

Class ExampleController contains the logic of the application. The controller
handles two signals and the observable property notification. Signals are the
destroy event, invoked when the application quits, and the on button1 clicked,
fired when button1 is pressed.

from gtkmvc.controller import Controller

from gtk import mainquit

class ExampleController(Controller):

"""The only one controller. Handles the button clicked signal, and

notifications about one observable property."""

def __init__(self, model):

"""Contructor. model will be accessible via the member ’self.model’.

Registration is also performed."""

Controller.__init__(self, model)

return

def registerView(self, view):

Controller.registerView(self, view) # Calls the overridden method

Connects the exiting signal:

view.get_top_widget().connect("destroy", mainquit)

14

return

Signal

def on_button1_clicked(self, button):

"""Handles the signal clicked for button1. Changes the model."""

self.model.set_next_message()

return

Observables notifications:

def property_message_index_change_notification(self, model, old, new):

"""The model is changed and the view must be updated"""

msg = self.model.get_message(new)

self.view[’label_text’].set_text(msg)

self.view[’label_text_len’].set_text(str(len(msg)))

return

pass # end of class

The destroy signal is connected when the View registers itself inside the con-
troller, by using the method override of registerView. Method on button1 clicked

calls a method inside the model which changes a part of the state inside the
model. Since that part of the state is an observable property, the associated
observer (which is the controller itself) is notified of the modification, by calling
method property message index change notification. This method updates the
view connected to the controller.

15

