
Generic Access Control Lists with PHP
Mike Benoit <ipso@snappymail.ca>
James Russell <james-phpgacl@ps2-pro.com>
Karsten Dambekalns <k.dambekalns@fishfarm.de>

Copyright © 2002,2003,2004 Mike Benoit
Copyright © 2003, James Russell
Copyright © 2003, Karsten Dambekalns

Document Version: 58

Last Updated: September 3, 2005 - 06:55 PM

mailto:ipso@snappymail.ca
mailto:k.dambekalns@fishfarm.de
mailto:james-phpgacl@ps2-pro.com

Table of Contents
Table of Contents...2

About...4

What is it?...4

Where can I get it?...4

What do I need to run it?..4

Who is responsible for it?...4

Introduction...5

Understanding Access Control..5

Who/Where..5

Who/Where..6

Defining access control with phpGACL...6

Fine-grain access control...7

Multi-level Groups..8

How does phpGACL determine permissions?..9

Adding groups..10

Adding people..11

Resolving conflicts...11

Naming Access Objects...12

Adding Sections...14

Multiple Purposes...15

Access eXtension Objects...16

Installation...18

Basic setup...18

Advanced setup...20

Reusing an already existing ADOdb installation...20

Reusing an already existing Smarty installation...20

How do I move the phpGACL files out of my website tree while leaving a link in the tree
for administration?...20

Using phpGACL in your application...21

Basic usage..21

Advanced usage..21

Using the ACL admin utility..22

ACL's..22

Creating...22

Sections...23

Extended Return Value...24

Notes..24

Glossary..25

ACO..25

ARO..25

AXO..25

References...26

phpGACL API...26

phpGACL Examples and Tutorials..26

Access Control Resources..26

FAQ...27

Can phpGACL handle large sets of data?...27

About

What is it?

phpGACL is an set of functions that allows you to apply access control to arbitrary objects (web
pages, databases, etc) by other arbitrary objects (users, remote hosts, etc).

It offers fine-grained access control with simple management, and is very fast.

It is written in PHP (hence phpGACL), a popular scripting language that is commonly used to
dynamically create web pages. The GACL part of phpGACL stands for Generic Access Control
List.

Where can I get it?

phpGACL is hosted by sourceforge.net at http://phpGACL.sourceforge.net/

What do I need to run it?

phpGACL requires a relational database to store the access control information. It accesses
this database via an abstract wrapper called ADOdb. This is compatible with databases such
as PostgreSQL, MySQL and Oracle.

phpGACL is written in the PHP scripting language. It requires PHP 4.2 and above.

Access Control List administration is performed by a web interface, and therefore it is
necessary to have a web server with PHP support, such as Apache.

Who is responsible for it?

Mike Benoit <ipso@snappymail.ca> is the author and project manager.

James Russell <james-phpgacl@ps2-pro.com> and Karsten Dambekalns
<k.dambekalns@fishfarm.de> did the documentation.

mailto:k.dambekalns@fishfarm.de
mailto:ames-phpgacl@ps2-pro.com
mailto:ipso@snappymail.ca
http://httpd.apache.org/
http://www.php.net/
http://php.weblogs.com/adodb
http://phpGACL.sourceforge.net/

Introduction

Understanding Access Control

The best way to explain access control is to use examples with real things rather than trying to
relate to concepts.

Han is captain of the Millennium Falcon and Chewie is his second officer. They've taken on
board some passengers: Luke, Obi-wan, R2D2 and C3PO. Han needs to define access
restrictions for various rooms of the ship: The Cockpit, Lounge, Engines and the external Guns.

Han says: "Me and Chewie should have access to everywhere, but after a particularly messy
hyperdrive repair, I forbid Chewie from going near the Engine Room ever again. Passengers
are confined to the Passenger's Lounge."

Let's assume from now on that access is Boolean. That is, the result of looking up a person's
access to a room is either ALLOW or DENY. There is no middle ground.

If we mapped this statement into an access matrix showing who has access to where, it would
look something like this (O means ALLOW, X means DENY):

Who/Where Cockpit Lounge Guns Engines

Han O O O O

Chewie O O O X

Obi-wan X O X X

Luke X O X X

R2-D2 X O X X

C3PO X O X X

The columns list the rooms that Han wants to restrict access to, and the rows list the people
that might request access to those rooms. More generally, the "rooms" are "things to control
access on". We call these Access Control Objects (ACOs). The "people" are "things
requesting access". We call these Access Request Objects (AROs). The people request
access to the rooms, or in our terminology, AROs request access to the ACOs.

There is a third type of Object, the Access eXtention Object (AXO) that we'll discuss later.
These objects share many attributes and are collectively referred to as Access Objects.

Managing access using an access matrix like the one above has advantages and
disadvantages.

Advantages:

• It's very fine-grained. It's possible to control access for an individual person if
necessary.

• It's easy to see who has access to what. The answer is stored in the intersection of the
person and the room.

Disadvantages:

• It's difficult to manage on a large scale. 6 passengers and 4 places is fairly simple, but
what if there were thousands of passengers and hundreds of places, and you need to
restrict access to large groups of them at once, but still retain enough fine-grained
control to manage access for an individual? That would mean a lot of fiddly and lengthy
adjustment to the matrix, and it's a difficult task to verify that the final matrix is correct.

• It's hard to summarize or visualize. The above example is fairly simple to summarize in
a few sentences (as Han did above), but what if the matrix looked like this?

Who/Where Cockpit Lounge Guns Engines

Han O O O O

Chewie O X O X

Obi-wan X O X X

Luke O O O X

R2-D2 X O X O

C3PO O O X O

This matrix is not so obvious to summarize, and it's not clear to the reader why those
access decisions might have been made in the first place.

Defining access control with phpGACL

It seems that for large or complex situations, this 'access matrix' approach is clearly unsuitable.
We need a better system that maintains the advantages (fine-grain control and a clear idea of
who has access to what) but removes the disadvantages (difficult to summarize, and difficult to
manage large groups of people at once). One solution is phpGACL.

phpGACL doesn't describe access from the 'bottom-up' like the Access Matrix above. Instead,
it describes it 'top-down', like the textual description of Han's access policy. This is a very
flexible system that allows you to manage access in large groups, it neatly summarizes the
access policy, and it's easy to see who has access to what.

An ARO tree defines a hierarchy of Groups and AROs (things that request access). This is
very similar to a tree view of folders and files. The 'folders' are the Groups and the 'files' are
AROs.

Let's make an ACL tree for the people on Han's ship. First we define some categories for the
people. It's clear that Han and Chewie run the ship, and the rest of them are just passengers:

Millennium Falcon Passengers Group
Crew Group
 Han ARO
 Chewie ARO
Passengers Group
 Obi- wan ARO
 Luke ARO
 R2D2 ARO
 C3PO ARO

This tree by itself doesn't specify any access policy; it just shows how we're grouping the
people who might request access (AROs).

We apply access restrictions by assigning instructions about a particular room (ACO) to Groups
or AROs in the tree. Han says: "By default, no-one should be allowed access to any room on
the Millennium Falcon. But the Crew should have access to every room. The Passengers
should only have access to the Lounge."

Millennium Falcon Passengers
Crew [ALLOW: ALL]
 Han
 Chewie
Passengers [ALLOW: Lounge]
 Obi- wan
 Luke
 R2D2
 C3PO

To interpret this ARO tree, we start from the top and work our way down.

Firstly, the default policy is always to deny access. Permissions have been overridden for the
"Crew", so they have access to everywhere ("ALL" is a synonym for all rooms: "Cockpit,
Lounge, Guns, Engines"). The "Passengers" have access only to the Lounge.

This way of describing the access policy is much clearer than the access matrix. You can easily
see who has access to what, and it's easier to determine why they've got access (it seems
obvious that Han and Chewie would have access to everything, since they're grouped under
"Crew").

To summarize:

• Access Control Objects (ACOs) are the things we want to control access to (e.g. web
pages, databases, rooms, etc).

• Access Request Objects (AROs) are the things that request access (e.g. people,
remote computers, etc)

• ARO trees define a hierarchy of Groups and AROs. Groups can contain other Groups
and AROs.

• The default 'catch-all' policy for the ARO tree is always "DENY ALL".

• To assign access policy, work your way down the tree, explicitly assigning permissions
to Groups and AROs for each ACO as the need arises.

Fine­grain access control

Oops! What about Chewie? By grouping him in "Crew", Han has indirectly given him access to
the Engines! He doesn't want that after what Chewie recently did to the hyperdrive, so he adds
a rule to disallow this:

Millennium Falcon Passengers
Crew [ALLOW: ALL]
 Han
 Chewie [DENY: Engines]
Passengers [ALLOW: Lounge]
 Obi- wan

 Luke
 R2D2
 C3PO

This is an example of the way you can control access policy in a fine-grained manner. It is not
necessary to move Chewie to another Group; we simply over-ride the access policy at a lower
level.

Another example of fine-grain control happens when the Empire attacks; Han needs to let Luke
man the guns, and let R2D2 repair the hyperdrive in the Engine room. He can do this by over-
riding the general permissions granted by their status as a "Passenger":

Millennium Falcon Passengers
Crew [ALLOW: ALL]
 Han
 Chewie [DENY: Engines]
Passengers [ALLOW: Lounge]
 Obi- wan
 Luke [ALLOW: Guns]
 R2D2 [ALLOW: Engines]
 C3PO

Multi­level Groups

Groups can be extended to any level in the ARO tree. For example, you could add a Group
"Jedi" to "Passengers". Most passengers would be categorized under "Passengers", but Luke
and Obi-wan would be under "Jedi" and therefore might be extended extra privileges (like
access to the Cockpit):

Millennium Falcon Passengers
Crew [ALLOW: ALL]
 Han
 Chewie [DENY: Engines]
Passengers [ALLOW: Lounge]
 Jedi [ALLOW: Cockpit]
 Obi-wan
 Luke [ALLOW: Guns]
 R2D2 [ALLOW: Engines]
 C3PO

How does phpGACL determine permissions?

When the ship's computer (running phpGACL of course) checks access, the only question it
can ask itself is "Does person X have access to room Y?" In phpGACL terms, this is rephrased
as "Does ARO 'X' have access to ACO 'Y'?"

phpGACL determines whether a specific person has access to a specific room by working from
the top of the ARO tree towards the specified person, noting explicit access controls for that
place along the way. When it reaches that person, it uses the last explicit access control it
encountered as the result to return. In this way, you can define access controls for groups of
people, but over-ride them further down the tree if you need to.

Example 1: We ask: "Does Luke have access to the Lounge?".

• Set the default result, "DENY".

• Work out a path to Luke:

Millennium Falcon Passengers Passengers Jedi Luke→ → →

• Start at the top of the tree and move towards Luke: The "Millennium Falcon
Passengers" node doesn't say anything about any room, so do nothing here.

• Move on to "Passengers", which explicitly says that "Passengers" have Lounge
access, so change the internal result to "ALLOW".

• Move to the "Jedi" node, which doesn't mention the Lounge at all.

• Finally move to Luke's node, and again there's nothing there about the Lounge.

• There's nowhere left to go, so the result returned is the current value of the internal
result: "ALLOW"

Example 2: We ask: "Does Chewie have access to the Engines?"

• Set the default result, "DENY".

• Work out a path to Chewie:

Millennium Falcon Passengers Crew Chewie→ →

• Start at the top of the tree and move towards Chewie. The "Millennium Falcon
Passengers" node doesn't say anything about anywhere, so do nothing here.

• Move on to "Crew", which explicitly says that "Crew" have Engine access, so change
the internal result to "ALLOW".

• Move to Chewie's node, and there's an explicit rule saying that he doesn't have access
to the Engines, so change the internal result to "DENY".

• There's nowhere left to go, so the result returned is the current value of the internal
result: "DENY"

As you can see from the examples, if a Group doesn't explicitly specify a permission for a
room, then that Group inherits the access restrictions of its parent for that room. If the root
node ("Millennium Falcon Passengers") doesn't specify a permission, it inherits it from the
default setting ("DENY ALL" in the above examples).

This implies a couple of interesting points about the ARO tree:

• The ARO tree always shows the full list of the AROs. It would not make sense to ask
"Does Jabba have access to the Cockpit?" because Jabba has not been defined in this
system. However, phpGACL does not check to see if AROs or ACOs exist before
performing the check, so if this question was actually asked then the result would be
the default "DENY".

• The ARO tree may not display some defined ACOs, and relies on the default setting to
define access policy. For example, say Han defined a "Bathroom" ACO. Any question

like "Does Luke have access to the Bathroom?" would have the answer "DENY",
because the default is "DENY" and nowhere in the ARO tree does it ever explicitly
mention the Bathroom. Keep in mind when examining the ARO tree that some ACOs
may not be visible.

Note: When asking phpGACL questions about access to an ACO, it is not possible to use
Groups as AROs (even though it might 'seem' right). For example, it is impossible to answer
the question "Do Passengers have access to Guns?" The complete answer is not a Boolean
"ALLOW" or "DENY", but the more complex "Luke and Obi-wan can but R2D2 and C3PO
cannot." phpGACL is not designed to return that kind of answer.

Adding groups

Han feels this ACL is starting to look a little complicated. There are so many exceptions!
Perhaps he should make another group, "Engineers", containing the people who are allowed
access to the Engines and Guns. That group should contain Han and R2D2 since they're both
capable of repairing the engines and guns. This means Han can remove some of those messy
exceptions-to-the-rules, and that has the benefit of making the description clearer:

Default: DENY ALL
Millennium Falcon Passengers
Crew [ALLOW: ALL]
 Han
 Chewie [DENY: Engines]
Passengers [ALLOW: Lounge]
 Jedi [ALLOW: Cockpit]
 Obi- wan
 Luke [ALLOW: Guns]
 R2D2
 C3PO
Engineers [ALLOW: Engines, Guns]

 Han
 R2D2

We can read this as "By default, no-one has access to anywhere. Crew have access to
everywhere (except Chewie, who has no access to the Engines). Passengers only have
access to the Lounge, except Jedi who also have access to the Cockpit. Luke has access to
the Guns too. Engineers are allowed access to the Engines and Guns."

Most importantly, we can see that Han and R2D2 are now in two places in the ACL. It is not
necessary for them to be uniquely categorized at all. This defines the policy more clearly to the
reader: "Ahh, Han and R2D2 have access to the Engines and Guns because they're
engineers."

Adding people

Han goes to Cloud City to pick up Lando and get some repairs. Lando's the Millennium
Falcon's previous owner, so Han reckons he qualifies as Crew. Lando also offers the services
of his top engineer, Hontook, for help with repairing the ship while they're in dock.

Default: DENY ALL
Millennium Falcon Passengers
Crew [ALLOW: ALL]
 Han

 Chewie [DENY: Engines]
 Lando
Passengers [ALLOW: Lounge]
 Jedi [ALLOW: Cockpit]
 Obi- wan
 Luke [ALLOW: Guns]
 R2D2
 C3PO
Engineers [ALLOW: Engines, Guns]
 Han
 R2D2
 Hontook

This shows how easy it is to grant new people access. If we used the original matrix scheme,
we'd have to set permissions for each room for both Lando and Hontook. Instead, we simply
add them to their appropriate groups and their access is implicitly and easily defined.

Resolving conflicts

What happens if we add Chewie to the list of Engineers?

Default: DENY ALL
Millennium Falcon Passengers
Crew [ALLOW: ALL]
 Han
 Chewie [DENY: Engines]
 Lando
Passengers [ALLOW: Lounge]
 Jedi [ALLOW: Cockpit]
 Obi- wan
 Luke [ALLOW: Guns]
 R2D2
 C3PO
Engineers [ALLOW: Engines, Guns]
 Han
 R2D2
 Hontook
 Chewie

This makes Chewie's access to the Engines ambiguous, because now there are two paths
from the root of the tree to Chewie. If the ship's computer follows one path (along the "Crew"
branch), the result is "DENY access to Engines." If it follows the other path (along the
"Engineers" branch) then the result is "ALLOW access to Engines". So, is he allowed or
denied?

phpGACL will warn you if you add or edit an multiply-grouped ARO in such a way that the
ARO's access to an arbitrary ACO would be ambiguous. But it is up to you to resolve the
conflict.

If we now asked phpGACL the question "Does Chewie have access to Engines?" the result
returned is the result given by the last ACL entry to be modified (this is phpGACL's policy). In
this case the result is ALLOW, because the "ALLOW: Engines, Guns" directive assigned to the
Engineers Group is more recent than the "DENY: Engines" directive assigned to Chewie's
Group.

When ambiguous access entries exist in the ACL, the ACL is said to be inconsistent.
Inconsistent ACLs can be very dangerous, and you may unwittingly provide access to
inappropriate people if you allow your ACL to remain in this state. When phpGACL warns you
that the ACL is inconsistent, it is best to resolve the conflicts as soon as possible to regain
consistency.

To resolve the conflict in this case, we could either:

• Remove the "DENY: Engines" directive from Chewie's entry under the Crew Group.

• Add a "DENY: Engines" directive to Chewie's entry under the Engineers Group.

• Remove Chewie from the Engineers Group, since Han doesn't think him a worthy
Engineer anyway.

Han chooses option 3, and removes Chewie from the Engineers list.

Naming Access Objects

phpGACL uniquely identifies each Access Object (AROs, AXOs and ACOs) with a two-keyword
combination and it's Access Object type.

The tuple "(Access Object type, Section, Value)" uniquely identifies any Access Object.

The first element of the tuple is the type of Access Object (ARO, AXO or ACO).

The second element of the tuple, called the Section, is a user-defined string which names the
general category of the Access Object. Multiple Access Objects can share the same Section
name. The Section name should be short but descriptive. It's used in the user interface in
selection boxes, so try not to make it too long.

Sections are stored in a flat namespace; they are not nestable like Groups. Sections have
nothing to do with Groups or the ARO/AXO trees - they are purely a mechanism for helping to
maintain large numbers of Access Objects.

The third element of the tuple is a user-defined name for the Access Object, and is called the
Value. A Value cannot contain spaces (however, a Section can).

Both Section and Values are case sensitive.

Aside: It is commonly asked why strings are used to identify Access Objects, rather than
integers which ostensibly seem faster. The answer is for legibility. It is much easier to
understand:

acl_check('system', 'login', 'users', 'john_doe');
than:

acl_check(10, 21004, 15, 20304);

Since it is often obvious from the context which type of Access Object we are referring to, the
interface for phpGACL (and this documentation) drops the Access Object type and uses the
format "Section > Value" when displaying the name of an Access Object. However, the API
requires an Access Object's "Section" and "Value" to be specified in separate function
arguments (the Access Object type is usually implicit in the argument description).

Example ACO "Section > Values":

• "Floors > 1st"

• "Floors > 2nd"

• "Rooms > Engines"

Example ARO "Section > Values":

• "People > John_Smith”

• “People > Cathy_Jones”

• “Hosts > sandbox.something.com”

Example API usage:

• acl_check (aco_section, aco_value, aro_section, aro_value);

• acl_check ('Floors', '2nd', 'People', 'John_Smith');

Valid Naming Restrictions Examples:

• "ACO -Frob > Flerg", "ARO - Frob > Flerg" (The Section and Value are the same in
both, but this is fine as namespaces are separate across Access Object types)

• "ACO -Frob > Flerg", "ACO - Frob > Queegle" (The Access Object type and Section
are the same, but this is fine as the Values are different)

• "AXO - Frob Hrung > Flerg" (Sections can contain spaces)

Invalid Naming Restrictions Examples:

• "ACO - Frob > Flerg", "ACO - Frob > Flerg" ("Access Object type - Section > Value"
must be unique)

• "ACO - Frob > Flerg Habit" (Values cannot contain spaces)

Adding Sections

Before you can add a new Access Object, its Section must be defined. To add a new section,
use the add_object_section() function.

add_object_section (

string NAME, A short description of what this Section is for. (e.g.
"Levels in building").

string VALUE, The name of the Section (e.g. "Floor").

int ORDER, An arbitrary value which affects the order this Section
appears in the UI.

bool HIDDEN, Whether this should appear in the UI or not (TRUE
means that is will be hidden).

string GROUP_TYPE) The Access Object type ("aco", "aro" or "axo")

Han creates 3 Sections for the AROs. "Humans", "Aliens" and "Androids". Let's list the AROs
with their full names

Millennium Falcon Passengers
Crew [ALLOW: ALL]
 "Humans > Han"
 "Aliens > Chewie" [DENY: Engines]
 "Humans > Lando"
Passengers [ALLOW: Lounge]
 Jedi [ALLOW: Cockpit]
 "Humans > Obi-wan"
 "Humans > Luke" [ALLOW: Guns]
 "Androids > R2D2"
 "Androids > C3PO"
Engineers [ALLOW: Engines, Guns]
 "Humans > Han"
 "Androids > R2D2"
 "Aliens > Hontook"

Sections are just a way of categorizing Access Objects, to make the user interface more
usable, and the code for acl_check() more readable. They do not affect the way phpGACL
determines access to an object. They cannot be nested (so it would not be able to create a
"Males" sub-Section under "Humans" for example; you'd have to create a Section called
"Humans-Male" or similar)

Multiple Purposes

You may need to use phpGACL for multiple independent purposes. For example, you may
need to restrict user access to web pages, and also remote host access to your server. The
two tasks are not related.

phpGACL can handle this in three different ways.

• It can use an alternative database to store the access tables.

• It can use the same database but with differently named access tables. (this feature is
not implemented yet).

• You can store the Access Objects for both purposes in the same tables, and carefully
manage your list so that they don't conflict.

To implement Option 1 (and Option 2 when it becomes available), use the $gacl_options array
when creating a new phpGACL class. This allows you to specify the database and table name
prefixes to use:

$gacl_options = array(
'db_table_prefix' => 'gacl_',
'db_type' => 'mysql',
'db_host' => 'host1',
'db_user' => 'user',
'db_password' => 'passwd',
'db_name' => 'gacl');

$gacl_host1 = new gacl($gacl_options);

To implement Option 3, you must be careful, since phpGACL doesn't know the relationship
between your different tasks, and it will be possible to make meaningless Access Policy
Directives.

For example, say Han wanted to restrict access to other ships contacting his ship's computer,
in addition to restricting access to the different rooms. To do this, he might add "Luke's X-Wing
Fighter" as a remote ship ARO (in addition to other ships and an ACO for the ship's computer).
Because all AROs are in the same ARO tree, it would be possible to create an APD like "Ships
> Luke's X-Wing Fighter" [ALLOW: "Rooms > Lounge"], which would be totally meaningless! To
help reduce mistakes like this, good Section naming can make it clearer what Access Objects
are for which tasks. It should be obvious to any administrator that it's meaningless to assign a
Ship permission to use a Room.

Access eXtension Objects

Access eXtension Objects (AXOs) can add a 3rd dimension to the permissions that can be
configured in phpGACL. We've seen how phpGACL allows you to combine an ARO and an
ACO (2 dimensions) to create an Access Policy Directive. This is great for simple permission
requests like:

Luke (ARO) requests access to "Guns" (ACO)

If that's all you need, that's fine - AXOs are totally optional.

But because all ACOs are considered equal, it makes it difficult to manage if there are many
ACOs. If this is the case, we can change the way we look at Access Objects to manage it more
easily.

AXOs are identical to AROs in many respects. There is an AXO tree (separate from the ARO
tree), with it's own Groups and AXOs. When dealing with AXOs, consider an AXO to take the
old role of the ACO (i.e. "things to control access on"), and change the view of ACOs from
"things to control access on" to "actions that are requested".

ARO and ACO-only View:

• AROs: Things requesting access

• ACOs: Things to control access on

ARO, ACO and AXO View:

• AROs: Things requesting access

• ACOs: Actions that are requested

• AXOs: Things to control access on

Example:

A website manager is trying to manage access to projects on the website. The ARO tree
consists of all the users:

Website
Administrators
 Alice

 Carol
Users
 Bob
 Alan

The projects are organized by Operating System into categories in the AXO tree:

Projects
Linux
 SpamFilter2
 AutoLinusWorshipper
Windows
 PaperclipKiller
 PopupStopper

The actions that can be taken with each project are "View" and "Edit". These are the ACOs.

Now we want Bob to have "View" access to all the Linux projects, so it's possible to add an
ACL that links Bob's ARO to the View ACO and the Linux AXO, and thus we can ask the
question:

Bob (ARO) requests access to "View" (ACO) the project(s) called "Linux" (AXO)

Keep in mind AXO's are optional, if you don't specify an AXO when calling acl_check() and a
matching ACL exists with no AXO, it will be allowed. However if only ACLs exist with AXO's,
and you call acl_check() without an AXO, it will fail.

So basically as soon as you specify an AXO when calling acl_check(), acl_check() will only
search ACLs containing AXO's. If no AXO is specified, only ACLs without AXOs are searched.
This in theory (I haven't benchmarked) gives us a slight performance increase as well.

Installation

Basic setup

1. Untar the distribution .tar.gz file into the root or a subdirectory of your web site. You might
want to rename it to something more suitable.

2. Edit phpgacl/gacl.class.php using your favourite editor and set the db_type, db_host,
db_user, db_password, and db_name you will be using.

Now edit phpgacl/admin/gacl_admin.inc.php to hold the same information. This file is
used by the setup script as well as the ACL admin backend.

The reason for two files holding that (same) information, is that the core ACL library
gacl.class.php is much smaller than the full-fledged API class, and there is no need to
include all the code when you just want to call acl_check().

3. Create the database you specified in db_name on the server.

4. Surf to http://yoursite.net/phpgacl/setup.php. The required tables will be installed based on
your choice of database. Don't be afraid of the truckload of output, if all goes well you will
see only success messages.

5. Now follow the last advice shown on that screen and create the
phpgacl/admin/smarty/templates_c directory. It must be writable by the user the webserver
runs as. If you don't do this, you will not be able to use the CAL admin!

6. Click the link at the bottom of the successful setup page or surf to:
http://yoursite.net/phpgacl/admin/acl_admin.php

Advanced setup

Reusing an already existing ADOdb installation

If you already have ADOdb installed you can get phpGACL to use this copy of ADOdb.

1. Edit phpgacl/gacl.class.php so that ADODB_DIR reflects the location of the ADOdb library
in your path.

2. Rename the phpgacl/adodb folder to something else like adodb_x and reload the
phpgacl/admin/acl_admin.php page to ensure it still works.

3. Erase the adodb directory installed with phpGACL.

Reusing an already existing Smarty installation

If you already have ADOdb installed you can get phpGACL to use this copy of ADOdb.

1. Edit phpgacl/admin/gacl_admin.inc.php so that the variables $smarty_dir and
$smarty_compile_dir reflect the location of the Smarty library in your path and the
template_c directory you already use.

Move the templates directory that came with phpGACL to another directory (e.g. one level
up). Adjust the $smarty_template_dir so it points to the new location. If you like you can
move those templates to your existing templates folder, of course.

2. Rename the phpgacl/smarty folder to something else like smarty_x and reload the
phpgacl/admin/acl_admin.php page to ensure it still works.

3. Erase the smarty directory installed with phpGACL.

How do I move the phpGACL files out of my website tree while leaving a link in the tree
for administration?

1. Go to your website root.

2. Move the phpGACL directory to your includes directory and create a symlink to the admin
directory where you want the admin tool to go. For example:

mv phpgacl/ /www/includes_directory
ln -s /www/includes_directory/phpgacl/admin/ gacl

3. Now surfing to http://yoursite.net/gacl/acl_admin.php will take you to the admin page. If it
doesn't work, make sure your Webserver allows symbolic links in the website tree.

Using phpGACL in your application

Basic usage

This example shows a basic example of using phpGACL in your code. It uses the ADOdb
abstraction layer as well, and shows a simple way to validate a login attempt against a
database.

// include basic ACL api
include('phpgacl/gacl.class.php');
$gacl = new gacl();

$username = $db->quote($_POST['username']);
$password = $db->quote(md5($_POST['password']));
$sql = 'SELECT name FROM users WHERE name=';
$sql .= $username.' AND password='.$password;
$row = $db->GetRow($sql);

if($gacl->acl_check('system','login','user',$row['name'])){
 $_SESSION['username'] = $row['name'];
 return true;
}
else
 return false;

As you can see there is only one call to acl_check() in this code. What does it do? Well, it

• checks the ARO object $row['name'] from the ARO section 'user'

• against the ACO object 'login' from the ACO section 'system'.

Advanced usage

Using the ACL admin utility

If you want to get a grip on the included ACL admin utitlity, it will help you a lot if you run the
example.php file. It contains some ACO, ARO and AXO objects, as well as some ACL defined
using those objects. After running it, you should see some sample data in the admin interface.

Play around with it, and if you get stuck, come back and read on...

(yet to be written)

ACL's

Creating

You must have a minimum of an ACO and an ARO defined to create an ACL.

Select an ACO Section then select from the available items show in the Access Control
Objects list. Click the [> >] button to add the Section-ACO to the Selected list. You may add
any number of Section-ACO pairs to this list.

Next select an ARO Section. At this point you may select from either the Access Request
Objects list or from the ARO Groups list.

Select on of the ACL Sections (usually “user” for this case), provide a brief description in the
Note area and then click Submit. Click on the “ACL Admin” tab and you will see your new ACL
in the list.

Sections

A default install provides you with two ACL sections – 'system' and 'user'. You would typically
put user created ACL's (for example, those you enter via the admin interface) in the 'user'
section and put ACL's generated by code in the 'system' section. However, you can use the
ACL sections to provide any other logical grouping that suits your purposes.

Extended Return Value

Typically a call to the acl_check method will return a boolean value. However, you may specify
a different value or evan a string to be returned.

For example, you may negotiate for a user to login at a cost of $0.20 per time by default and
another for $0.18 per time under a different scheme. You could create a separate ACL for the
default login and for the special use but varying the 'return value'. If the call to acl_check is
successful, you will know the cost of the login via the return value.

Notes

It's a good idea to add a note when creating an ACL to help remember it's purpose, for
example “Basic permissions for a user in the Administrator group”.

Glossary

ACO

Access Control Object – An action that are requested to be performed.

ARO

Access Request Object – An entity (for example, a user) that is requesting an action to be
performed.

AXO

Access eXtension Object – An object to perform an action on for an entity.

References

phpGACL API

The API documentation is included in the tarball under the /docs/phpdoc/ directory.

phpGACL Examples and Tutorials

See example.php included in the tarball.

Access Control Resources

. . .

FAQ

Can phpGACL handle large sets of data?

Not a problem at all. We've tested up to 100,000 AXO's and 100,000 ARO's on moderate
hardware even. The performance issues come down to how well you can cache the ACL's, and
how fast your database server is.

	Table of Contents
	About
	What is it?
	Where can I get it?
	What do I need to run it?
	Who is responsible for it?

	Introduction
	Understanding Access Control
	Who/Where
	Who/Where

	Defining access control with phpGACL
	Fine-grain access control
	Multi-level Groups
	How does phpGACL determine permissions?
		Millennium Falcon Passengers → Passengers → Jedi → Luke
		Millennium Falcon Passengers → Crew → Chewie

	Adding groups
	Adding people
	Resolving conflicts
	Naming Access Objects
	Adding Sections
	Multiple Purposes
	Access eXtension Objects

	Installation
	Basic setup
	Advanced setup
	Reusing an already existing ADOdb installation
	Reusing an already existing Smarty installation
	How do I move the phpGACL files out of my website tree while leaving a link in the tree for administration?

	Using phpGACL in your application
	Basic usage
	Advanced usage

	Using the ACL admin utility
	ACL's
	Creating
	Sections
	Extended Return Value
	Notes

	Glossary
	ACO
	ARO
	AXO

	References
	phpGACL API
	phpGACL Examples and Tutorials
	Access Control Resources

	FAQ
	Can phpGACL handle large sets of data?

