Use Cases Guide for the Textual User Interface

Open TURNS version 0.12.1

November 8, 2008

Open TURNS — Use Cases Guide for the Textual User Interface 1

Contents

Introduction 3
1 Probabilistic input vector modelisation 4
1.1 Without samples on data 4
1.1.1 UC : List of usual distributions oo 4
1.1.2 UC : Creation of a truncated distribution 15
1.1.3 UC : Creation of a copula and a composed copula 16
1.1.4 UC : Creation of nD distribution from (marginals, copula) 20
1.1.5 UC : Creation of a nD distribution from a Mixture 22
1.1.6 UC : Manipulation of a distribution 26
1.1.7 UC : Creation of the random input vector from a distribution 33
1.2 With samples on data : manipulationondata oo 34
1.2.1 UC : Import / Export data from a file at format CSV (Comma Separated Value) 35

1.2.2 UC : Drawing Empirical CDF, Histogram, Clouds / PDF or superposition of two clouds
from data e 36

1.2.3 UC: Do two samples have the same distribution : QQ-plot visual test, Smirnov numerical
test . . e e e 41
1.2.4 UC : Are two scalar samples independent : ChiSquared test, Pearson test, Spearman test 43

1.2.5 UC : Particular manipulations of the Pearson and Spearman tests, when the first sample
is of dimension superior to 1. L e 45
1.2.6 UC : Regression test between two scalar numerical samples 48

1.2.7 UC : Distribution fitting tests, numerical and visual validation tests : ChiSquared test,
Kolmogorov test, QQ-plot graph 49

1.2.8 UC : Normal distribution fitting test, visual validation tests (Henry line) and numerical
validation tests in extreme zones (Anderson Darling test and Cramer Von Mises test) . 52

1.2.9 UC : Making a choice between multiple fitted distributions : Kolmogorov ranking,
ChiSquared ranking and BIC ranking Lo oL, 56

1.2.10 UC : PDF fitting by kernel smoothing and graphical validation : superposition of the
empirical and kernel smoothing CDF oo, 59
1.2.11 UC : Building and validating a linear model from two samples 63

1.2.12 UC : Statistical manipulations on data : min, max, covariance, skewness, kurtosis, quan-

tile, empirical CDF, Pearson, Kendall and Spearman correlation matrixes and rank/sort
functionnalities L L 70
1.2.13 UC : Drawing one cloud L 74
2 Creation of the limit state function and the output variable of interest 75
2.1 Creation of the limit state function 75
2.1.1 UC : From an external wrapper with gradient and hessian implementations 75
2.1.2 UC : From an analytical formula declared in line 7
2.1.3 UC : Introducing some deterministic variables, using a LinearNumericalMathFunction . 78
2.1.4 UC : Introducing some deterministic variables, optimising memory and CPU time . .. 80
2.1.5 UC : Manipulation of a NumericalMathFunction 82

2.2 Creation of the output variable of interest from the limit state function and the random input
VECEOT o o e e e e e e e e e 84
2.2.1 UC : Creation of the ouput random vector, 84
2.2.2 UC : Extraction of a random subvector from a random vector 85

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 2
3 Uncertainty propagation and Uncertainty sources ranking 86
3.1 Deterministic approach : Min/Max studyo 86
3.1.1 UC : Creation of a deterministic experiment plane 86
3.1.2 UC : Drawing an experiment plane in dimension 2 92
3.1.3 UC : Creation of a deterministic experiment plane in the physical space (type : Axial)
where levels are proportionnal to the standard deviation of each component of the random
input vector, and centered on the mean vector of the random input vector 92
3.1.4 UC : Creation of a random experiment plane 94
3.1.5 UC: Min/Max research of the output variable of interest from an experiment plane in the
physical space (deterministic or random) of the input random vector and deterministic
sensitivity of the output variable to the input vector at a particular point 95
3.2 Random approach : central uncertainty Lo 96
3.2.1 UC : Correlation analysis on samples : Pearson and Spearman coefficients, PCC, PRCC,
SRC, SRRC coefficients e 96
3.2.2 UC : Moments evaluation from the Taylor variance decomposition method and evaluation
of the importance factors associatedo oo 97
3.2.3 UC : Quantile estimations : Wilks and empirical estimators 98
3.3 Random approach : threshold exceedance L. 101
3.3.1 UC : Creation of an event in the physical and the standard spaces 101
3.3.2 UC : Manipulation of a StandardEvent 102
3.3.3 UC : Probability evaluation from FORM method and results associated : importance
factors, reliability indexes, sensitivity on the FORM event probability and Hasofer-Lind
reliability index L 103
3.3.4 UC : Probability evaluations from SORM methods and results associated : importance
factors, reliability indexes, sensitivity on the Hasofer-Lind reliability index 108
3.3.5 UC : Probability evaluation from the Monte Carlo simulation method, determination of
the confidence interval of the probability and drawing of the convergence curve with the
confidence curves e e 114
3.3.6 UC : Probability evaluation from Directional Sampling method, determination of the
confidence interval and drawing of the convergence curve with the confidence curves 118
3.3.7 UC : Probability evaluation from Importance Sampling method centered on the design
point issued from the FORM method, determination of the confidence interval and draw-
ing of the convergence curve with the confidence curves 125
4 Construction of a response surface 130
4.1 UC : Linear and Quadratic Taylor approximations 130
4.2 UC : Linear approximation response surface by least squares method from a sample of the input
vector and the real function Lo Lo 131
4.3 UC : Linear approximation response surface by least squares method from a sample of the input
vector and a sample of the output vector Lo oL 132
5 How to save and load a study ? 133
5.1 UC:Howtosaveastudy 7 e 134
52 UC:Howtoload astudy 7 e 135
6 Annexe 1: One example of a complete study 138
6.1 Presentation of the study case 138
6.2 The TUI File e e 139

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 3

Introduction

This guide aims at facilitating the use of Open TURNS through its textual User interface (TUI), by proposing
numerous examples of TUI studies.

The presentation of the Use Cases Guide follows the methodology of uncertainty treatment presented in the
scientific documentation of Open TURNS : examples are divided into four steps corresponding to the four steps
of an uncertainty treatment study.

The example list presented here is not exhaustive but recovers most of the standard User needs. The TUI
enables the User to perform much more functionalities of the openturns python library than those presented
here : it is necessary for the User to refer to the complete python documentation of the openturns python
library to have the whole list of what is possible to perform.

It is important to note that the python test files given in open source with the code source of Open TURNS
are very useful : they provide to the User an example of the utilisation of each object of Open TURNS. The
User is invited to refer to them : they will surely help him to write his study through the TUI with the right
syntax.

In order to write a python file using fonctionalities proposed by the openturns python module, it is necessary
to load the module in the python shell. If there is no danger to overload functionalities coming from other
python modules, the loading command is :

1 from openturns import x I

Otherwise, if some functionalities of the openturns python module might overload some functionalities coming
from other python modules, it is preferable to launch the command :

1 import openturns I

In that second case, each call to an openturns type must be accompagnied by the prefix openturns. For example,
to create a NumericalPoint of dimension 2, the command is myNumericalPoint = openturns. Numerical Point(2).

In order to visualize graphics through the TUI, it is necessary to import the functionality ViewlImage from the
openturns_viewer module, thanks to the command :

1 from openturns_viewer import Viewlmage I

The command :

1 dir()

gives a general overview of the whole objects proposed by the openturns python library.

The command help gives detailed information on each object of the openturns python library. For example, to
get information on the object NumericalPoint, the command is :

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 4

1 help(NumericalPoint)

or

1 help(openturns.NumericalPoint)

according to the way the openturns python module has been loaded.
In order to quit the help document, tape the key gq.

If myObject is one instance of an openturns object, then the command :

1 myObject. I

followed by the Tabulation key lists all the methods proposed by the object myObject.

In order to have some automatic completion of the openturns objects and their methods, it is necessary to type
the following command in the current python session :

1 import readline
2 import rlcompleter

3 readline.parse_and_bind(’’tab: complete’’)

These commands may be written in the file .pythonrc.py put in the root repertory $HOME : it will be auto-
matically taken into account for current python sessions.
Then, in order to complete and list all the openturns objects which begin by Num, the command is :

1 Num[TAB]

To list all the methods proposed by the NumericalMathFunction object, the command is :

1 NumericalMathFunction . [TAB]

where [T'AB] is the Tabulation touch.

1 Probabilistic input vector modelisation

The objective of the section is to model the probabilistic input vector, described with different ways, according
to available data .
It corresponds to the step “Step B : Quantify the uncertainty sources” of the global methodology.

1.1 Without samples on data
1.1.1 UC : List of usual distributions

The objective of this section is to list all the usual distributions proposed by Open TURNS and to precise how
each distribution is created, with its different arguments.

The different distributions proposed by Open TURNS are listed here after.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface

e Continuous distributions :

Name probability density function conditions param. 1 param. 2
(,0,a,b)
—a)" V(b —z)t r>0,t>r = b—a)r
B (x—a) (b—=)) p=a+(b—a)7
eta b—a) VBt —7) Loy (2) a<b (r,t,a,b) o= (b a)r Y=E
t/r(t+1)
Exponential /\eszM’)l[wroo[(x) A>0 A\ 7) -
k
A 1) n=5+n
Gamma 2 (A —))F Ve N 7>1[.Y,+oc[(x) k>0,A>0 (k, A7) (w,0,7), A
I(®) oo VE
-~
—a(z— =Te 4
Gumbel — |qe(z=A)—e7 277 a>0 (o, B) (n,0)" { e ’
li= Ti4+1 — X4
, =n n (z1, (hi, 1))
Histogram Z hilig, 2, 11(2)/S 5=y hili 1<i<n
i=1 l7 2 0
exp (ZE“)
Logistic 5 Lo, +00[(€) B>0 (. B) -
g1+ (252)]
) foate=mip) (1,0,7), param. 3 : (u,%,7)
_1 A2 —iy) 1,2
LogNormal | €~ : 140 (2) o1>0 (11, 01,7) po=e20TH 4y
2o (z —) o= (e%"?*“l)m
gtc;r:ieif?’:; al pr(z) given under the table - (v,6,7) -
Normal 1 . e—%(z—g)tg’l(z—g) %(U:) é—(g)%g7 (g, ﬁ) or
(nD) (2m) % (detx)? RSPD,0i >0 (1, %)
1 -’ _1u
Student NIE 5)(1 + (z V,u))"z v>2 (v, 1) -
272
T —a
<zr<
(m—a)(b—a) G=T=m
Triangular -z m<z<b a<m<b,a<b|(a,m,b) -
(b—m)(b—a) -
0 otherwise.
1 T—pin
Truncated o) (tbn, O,y a, b)
Normal (I)(b;:n) _ (D(a;:n) 1 (2) on >0 -
Uniform ﬁl[a’b] (z) a<b (a,b) -
(s 0,7)
— T/ = 1
Weibull g(%)ﬁflﬂ 1 ool (@) a>0,8>0 [(a,f.7) p=ol(l+5)+7y
o= a\/F(l +2)-T2(1+)

(*) Let’s note that a random variable X is said to have a standard non-central student distribution 7 (v,¢) if

it can be written as:
N

VC/v

where N has the normal distribution A/(§,1) and C has the x?(v) distribution, N and C being independent.

f/ log(t)e™"dt.
0

(1)

'Euler’s constant Ye =

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 6

The non-central Student distribution in OpenTURNS has an additional parameter v such that the random
variable X is said to have a non-central Student distribution 7 (v, d,~) if X —~ has a standard 7 (v, d) distri-

bution.

We explicitate here the probability density function of the Non Central Student :

exp(=5/2) < 5 ><u+1)/2 50 P(%ﬂ)
L(j+1)

Pr(®) = w2 \v T @+ 7

e Discrete distributions :

((ﬂf+v)5 Vf$2>

Name Distribution conditions param. 1
Geometric P(X =k)=p(1—p)** ke N* p
0<pi<1
z; €N
MultiNomial N! « N—s n ((pr)1<k<n, N)
P X — — 1 . n 1 _ SESno
(HD) (7 Q) xl' T !(N—S)!pl Pn (q) q:Zpk <1
k=1
s=> g _,xx <|N
)\k
Poisson P(X =k) = ge** keN A
0 < pe <1,
User defined P(X =2,) = pp) N (@)
(nD) = Zy) = Pk)1<k<N Zpk -1 Lk, Pk)1<k<N
k=1

Furthermore, for all these 1D usual distributions, it is possible to truncate them within [a, b], [a, +o0[or | — 00,]

(see UC.1.1.2).

’ Requirements I none

e the random input distribution
Results
type : Distribution

The creation of each distribution is described in the following Python script :

00 3 O U i W N

CONTINUOUS distributions

Beta
Ppal Param : Beta(r, t, a, b)
beta = Beta (2., 3., 0., 2.)

Param 1 Beta (mu, sigma, a, b, 1)
Param 1 is coded by 1

beta = Beta(2., 3., 0., 2., 1)

It 1s also possible to write

beta = Beta((2., 3., 0.,

beta = Beta()

2., Beta.MUSIGMA)
Default construction ==> Beta(r, t, a, b)= Beta(2, 4,

—1, 1)

(©2007 EDF - EADS - PhiMeca

13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
57
58
59

Open TURNS — Use Cases Guide for the Textual User Interface

Frponential
Ppal Param : Ezponential (lambda, gamma)

exponential = Exponential (1., 2.)
Default construction ==> Ezponential (lambda, gamma) = Ezponential (1.0,
0.0)
exponential = Exponential ()
Gamma
Ppal Param : Gamma(k, lambda, gamma)
gamma = Gamma (3., 1., 2.)
Param 1 : Gamma(mu, sigma, gamma, 1)

Param 1 is coded by 1

gamma = Gamma(3., 1., 2., 1)

It 1s also possible to write

gamma = Gamma(3., 1., 2.,Gamma.MUSIGMA)

Default construction ==> Gamma(k, lambda, gamma) = Gamma(1.0, 1.0, 0.0)
gamma = Gamma()

Gumbel
Ppal Param : Gumbel(alpha, beta)
gumbel = Gumbel (1., 2.)
Param 1 : Gumbel(mu, sigma, 1)
Param 1 is coded by 1
gumbel = Gumbel (1., 2., 1)
It 1s also possible to write
gumbel = Gumbel (1., 2.,Gumbel.MUSIGMA)
Default construction ==> Gumbel(alpha, beta) = Gumbel(1.0, 1.0)
gumbel = Gumbel ()

Histogram

FEzxample : n = 8, z1 = 0.0 and
(hi,li) {i=1, ..., 8 = (1., 1.), (4., 2.), (2., 3.)
The heights (hi) are automatically renormalized
Ppal Param : Histogram (z1, (hi,li)_{i=1, ..., n})
collection = H1btogramPa1rCollect10n()
collection [0] = HistogramPair (1., 1.)
collection [1] = HistogramPair (4., 2.)
collection [2] = HistogramPair (2., 3.)
histogram = Histogram (0., collection)

Logistic
Ppal Param : (alpha, beta)
logistic = Logistic (1., 2.)
Default construction ==> Logistic (alpha, beta) = Logistic (0.0, 1.0)
logistic = Logistic ()

LogNormal

(©2007 EDF - EADS - PhiMeca

60
61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
77
78

79
80
81
82

83
84

85
86
87
88
89

90
91
92
93
94
95
96
97
98
99
100
101
102

Open TURNS — Use Cases Guide for the Textual User Interface

Ppal Param : LogNormal(mu_l, sigma_l ,gamma)
lognormal = LogNormal(1., 2., 1.)

Param 1 : LogNormal(mu, sigma, gamma, 1)

Param 1 is coded by 1

lognormal = LogNormal (1., 2., 1., 1)

It 1s also possible to write

lognormal = LogNormal (1., 2., 1., LogNormal . MUSIGMA)
Param 2 : LogNormal(mu, sigma/mu, gamma, 2)
Param 2 is coded by 2

lognormal = LogNormal (1., 2., 1., 2)

It 1s also possible to write

lognormal = LogNormal (1., 2., 1., LogNormal.MUSIGMAOVERMU)
Default construction ==> LogNormal(mu_l, sigma_l,gamma) = LogNormal (0.0,

1.0, 0.0)
logNormal = LogNormal ()

Normal(1D)
Ppal Param : Normal(mu, sigma) = Normal(2.0, 1.0)
normallD = Normal (2.0, 1.0)

Default construction ==> 1D Normal distribution with zero mean and unit

variance
normallD _standard = Normal ()

Non Central Student

Ppal Param : NonCentralStudent (nu, delta, gamma) = NonCentralStudent (3.0,

1.0, 0.0)
nonCentralStudent = NonCentralStudent (3.0, 1.0, 0.0)

Default construction ==> NonCentralStudent (nu, delta, gamma) =

NonCentralStudent (5.0, 0.0, 0.0)
nonCentralStudent = NonCentralStudent ()

Normal (nD)

Ppal Param : Normal(mu, sigma, R)
normal2D_1 = Normal (NumericalPoint (2, 1.), NumericalPoint (2, 2.),
IdentityMatrix (2))
Ppal Param : Normal(mu, C)
normal2D_2 = Normal(NumericalPoint (2, 1.), CovarianceMatrix(2))
2D Normal distribution with zero mean and identity covariance matrizc:
normal2D _standard = Normal (2)
In order to create a Normal of dimension n
with 0 mean and Identity wvariance matrix
normalStandardnD = Normal (n)
Student
Paraml = Student (nu, mu)
student = Student (3., 2.)
Default construction ==> Student(nu, mu) = Student (3.0, 0.0)

(©2007 EDF - EADS - PhiMeca

103
104
105
106
107
108
109
110
111
112
113
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

Open TURNS — Use Cases Guide for the Textual User Interface 9

student = Student ()

Triangular
Ppal Param = Triangular(a,m,b)
triangular = Triangular (1., 2., 4.)
Default construction == Triangular(a, m, b) = Triangular(—1.0, 0.0, 1.0)
triangular = Triangular ()

TruncatedNormal

Paraml = TruncatedNormal(mu-n, sigma_-n, a, b)
truncatednormal = TruncatedNormal (1., 2., —1., 5.)
Default construction ==> TruncatedNormal(mu.n, sigma_-n, a, b) =
TruncatedNormal (0.0, 1.0, —1.0, 1.0)
TruncatedNormal = TruncatedNormal ()
Uniform
Paraml = Uniform(a,b)
uniform = Uniform (1., 2.)
Default construction ==> Uniform(a,b) = Uniform(—1.0, 1.0)
uniform = Uniform ()
Weibull

Paraml = Weibull(e, beta, gamma)

weibull = Weibull (1., 2., 3.)

Param 1 = Weibull (mu, sigma, gamma, 1)

Param 1 is coded by 1

weibull = Weibull (1., 2., 3.,1)

It 1s also possible to write

weibull = Weibull (1., 2., 3., Weibull .MUSIGMA)

Default construction == Weibull(e, beta, gamma) = Weibull (1.0, 1.0, 0.0)
weibull = Weibull ()

DISCRETE distributions

Multinomial
Ppal Param : MultiNomial ((p-i)_-{i=1, ..., n}, N)
distribution = MultiNomial (NumericalPoint (4, 0.25), 5)

Geometric
Ppal Param : Geometric(p)
geometric = Geometric (0.3)

Poisson
Ppal Param : Poisson(lambda)
poisson = Poisson (3)

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 10

150 # User defined (nD), n=2

151 # We create a collection of pair (zi, pi), i=1,2,3, each xi in R"2

152 collection = UserDefinedPairCollection (3, UserDefinedPair(NumericalPoint (2),
0.0))

153

154 # First pair : (z1 = (1.0, 1.5), pl = 0.30)

155 x1 = NumericalPoint (2)

156 x1[0] = 1.0

157 x1[1] = 1.5

158 collection [0] = UserDefinedPair(x1, 0.30)

159

160 # Second pair : (z2 = (2.0, 2.5), p2 = 0.30)

161 x2 = NumericalPoint (2)

162 x2[0] = 2.0

163 x2[1] = 2.5

164 collection [1] = UserDefinedPair(x2, 0.30)

165

166 # Third pair : (z8 = (3.0, 3.5), p3 = 0.40)

167 x3 = NumericalPoint (2)

168 x3[0] = 3.0

169 x3[1] = 3.5

170 collection [2] = UserDefinedPair (x3, 0.40)

171

172 # Create the UserDefined distribution

173 distribution = UserDefined (collection)

The pdf of the usual distributions are drawned in Figures 1to 23.

PDF - Beta(r.t,a,b) PDF - Beta(r.t,a,b)

0.5

08
04

PDF
06
PDF
3

04

02
1

oo
0.0

Figure 1: PDF of a distribution. Figure 2: PDF of a Beta distribution.

The Histogram distribution explicited in the Use Case is drawn in Figures 24 and 25.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 11

PDF - Beta(r,t.a,b) PDF - Beta(r.t,a,b}
W Eot (2.0, 40,00, 20}) mEeh(20, 25,00, 20))
<]
w + w
55 gl
6 1‘ é 0‘0 0'5 1‘0 1‘5 2‘0 2‘5 3'0
X X
Figure 3: PDF of a Beta distribution. Figure 4: PDF of a Beta distribution.
PDF - Beta(r.t.a,b) PDF - Beta(r.t,a,b)
. =Bets0 5, 10,00, 20}) o | =Beta(0.5, 20, 0.0, 20}
@ o
5| 5o
=+
31 o]
-2 -1 0 1 2 3 4 -1 0 1 2
X X
Figure 5: PDF of a Beta distribution. Figure 6: PDF of a Beta distribution.
PDF - Beta(r.t.a,b) PDF - Exponential{lambda, gammay)
A =geiao0, 120,00,20) =4 = Espomeriial(10,00)
5 g
21 « |
<+ |
0‘0 0‘5 1‘0 1‘5 2‘0 7‘2 7‘1 6 1‘ 2' 3‘ l‘l
X X
Figure 7: PDF of a Beta distribution. Figure 8: PDF of a Exponential distribution.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 12

PDF - Gamma(k, lambda, gamma)

e r—

Figure 9: PDF of a Gamma distribution.

PDF - Gamma(k, lambda, gamma)

=Gammap 5, 10,00

Figure 11: PDF of a Gamma distribution.

PDF - Logistic(alpha, beta)}

028
L

= Logitiz(0.0, 1)

PDF
0.1% 0.20
‘ ‘

a.10
L

008
L

Q.00
L

Figure 13: PDF of a logistic distribution.

PDF - Gammal(k, lambda, gamma)

o =Gamma(z5, 10,00)
@
o

PDF
0.20 0.25
; :

0.10

Figure 10: PDF of a Gamma distribution.

PDF - Gumbel(alpha, beta)

=Gurbel(10, 10)

o

o

o
[T
=]
o

oA

=

24

T
-2 0 2 4 6

Figure 12: PDF of a Gumbel distribution.

PDF - LogNermal{mu_|, sigma_l, gamma)

= Loghioimal 1.0, 0.5,0.0)

=
&
]
w
& 4
o
o
& o
=

W

=}

= 2
=
o
o
w
a
=1
=1
S
o

Figure 14: PDF of a LogNormal distribution.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 13

PDF - Normal{mu, sigmay}

i otz 1)
a
o
w
o
g =
-
s
=
-2 a 2 4 [}

Figure 15: PDF of a Normal distribution.

PDF - Triangular(a, m, b}

=Triangular{1.0,30,40)

Figure 17: PDF of a Triangular distribution.

PDF - TruncatedNormal(mu_n, sigma_n, a, b)

04

PDF
02
;

= Truncatedniomal2.0, 10, <19, 5.0)

Figure 19: PDF of a TruncatedNormaldistribution.

Figure 18:

PDF - Student{mu, sigmay}

= studart(a.0, 1)
@
=1
o
G
o
e
|
= T T T T
-2) 2 4

Figure 16: PDF of a Student distribution.

PDF - TruncatedNormal({mu_n, sigma_n, a, b)

-] /\ e T I

@
.

|

1.0 1.5 2‘0 25 3.0
ke
PDF of a TruncatedNormal distribution.
PDF - Uniform(a, b}

=8 = Unifom(2.0, 10)
&

|

Figure 20: PDF of a Uniform distribution.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 14

PDF - Weibull(e, beta, gammay) PDF - Weibull{mu, sigma, gamma)

= Viebuli{10, 10, 0.0} =Webull(20, 11, 0.0}

PDF
06 oe 10
PDF

0.4
000 D005 0410 0.5 020 025 030
L L L) L L |

02

00

Figure 21: PDF of a Weibull distribution. Figure 22: PDF of a Weibull distribution.

PDF - NonCentralStudent{nu, delta, gamma)

= HonentaStidentia 5, 0.0,00)

POF
0.2

oo

Figure 23: PDF of a Non Central Student distribution.

Histogram pdf Histogram cdf
ﬂ =isngram pf
8. =
g
f=]
©
E°|
2
5 |
g |
< T T T T T T
-2 0 2 4 6 8 10
X X
Figure 24: PDF of an Histogram distribution Figure 25: CDF of an Histogram distribution

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 15

1.1.2 UC : Creation of a truncated distribution

The objective of the US is to truncate a 1D distribution already defined. Open TURNS enables to truncate
the distribution in its lower area, or its upper area or in both lower and upper areas. After having truncated
a distribution, it is possible to recuperate the initial distribution thanks to the method getDistribution().

Let’s consider X a random variable whith respectively Fx and px its cumulative and probability density
functions, and (a,b) € RU +o00. The random variable Y = X/[a, b] which is the random variable X given that
X € [a,b] is defined by the following cumulative and probability density functions Fy and py :

for y > b,
0 for y < a,
Vy € R, Fy(y) = Prob(X <y /X € [a,b]) =
FX(y)_FX(a) forye[a b]
Fx(b) — Fx(a) ’
0 fory>bory<a

Vy € R,PY(y) = 1

WPX(?/) for y € [a, b]

e some lower and upper bounds : myLowerBound, myUpperBound

type : reals

Requirements || § , 1D distribution : myEntireDistribution

type : a Distribution which implementation is UsualDistribution or
ComposedDistribution or Mixture

e a distribution : myTruncatedDistribution
Results
type : a TruncatedDistribution

Python script for this UseCase :

1
2

3

S Ot

o

CASE 1 : Truncate the distribution whithin the range $[myLowerBound,
myUpperBound] $
myTruncatedDistribution = TruncatedDistribution (Distribution (
myEntireDistribution), myLowerBound, myUpperBound)

CASE 2 : Truncate the distribution whithin the range $[myLowerBound, \infty/[$
or $[myLowerBound, maz[$ if
myFEntireDistribution was already bounded by maz
myTruncatedDistribution = TruncatedDistribution (Distribution (
myEntireDistribution), myLowerBound, TruncatedDistribution .LOWER)

(©2007 EDF - EADS - PhiMeca

11

12
13

14
15

Open TURNS — Use Cases Guide for the Textual User Interface 16

CASE 8 : Truncate the distribution whithin the range $[—\infty, myUpperBound[$
or $[min, myUpperBound[$ if
myFEntireDistribution was already bounded by min
myTruncatedDistribution = TruncatedDistribution (Distribution (
myEntireDistribution), myUpperBound, TruncatedDistribution .UPPER)

Recuperate the initial distribution
initialDistribution = myTruncatedDistribution. getDistribution ()

Figures 26 and 27 show the PDF and CDF of the truncated distributions of a Logistic(a = 1.0, 5 = 2.0)
respectively within the ranges [4.0, o[, [-2.0,5.0] and [—o0, 3.0].

Truncated of the logistic(alpha=1.0, beta=2.0) distribution — PDF

<+ | ritia] Lagistic
= ™ Truncated whithin |-2.0, 5.0]
= Truncated under 30
Truncated ypper 40
= |
[}
oo
n =
peg
=
[=]

T
-10 -5 0] 10

Figure 26: PDF of several truncated Logistic distributions

1.1.3 UC : Creation of a copula and a composed copula

The objective of this Use Case is to manipulate copulas of Open TURNS.

A copula may be considered as the restriction to [0, 1]™ of a distribution with uniform 1D marginals on [0, 1]
and this copula as copula. That’s why an object of type Copula offers the same methods as an object of type

Distribution (see U.C. 1.1.6 to have the list of the methods).
Table. 1 gives the expression of bidimensional copulas proposed by Open TURNS.

Furthermore, Open TURNS enables to create some copula as the product of other copulas : if C7 and Cy are
two copulas respectively of random vectors in R™ and R™2, we can create the copula of a random vector of
R™ 72 poted C as follows :

C(U]_, e 7un) — Cl(ula e 7un1)02(un1+la e ’un1+n2)

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 17

Truncated of the logistic(alpha=1.0, beta=2.0) distribution - CDF

=

CDF
06 08
1

0.4

02
L

= ritial Logistic

= Tiuncated whithin |-2.0, 5.0]

= Tiuncated under 30
Truncated pper 40

T
-10 -5 0 S 10

Figure 27: CDF of several truncated Logistic distributions

Name Dimension C(u, - ,up) Parameters
Independent n H U; n
i=1
_ , 1
e lu) plw) g &2 9pt 1 12 _ p
pst +1 R=
Normal 2 / / ——————exp <—> dsdt | = p 1
—00 —00 2 1—p? 2(1 — p?
T/ p (p?) pel-1,1]
>~ (u1) > (un) 1 1
Normal n / / exp <—a:tR1x) dz R, SDP
~o0 —o (2m)/2, [det(R) 2= = -
1 —0Ouy 1 —Oug 1
Frank 2 ——log (1+ (e UG 0#0
0 e ?—1
~1/6
Clayton 2 (ul_e +uy? — 1) >0
0 0 1/6
Gumbel 2 exp (— ((— log(u1))” + (— log(u2))) > 6>1

Table 1: Expressions of the copulas of Open TURNS.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface

18

It means that both subvectors (u1,- - ,up,) and (Up 41, ,Un,+n,) Of R™ and R™ are independent.

Requirements } [none

e a Normal, Clayton, Gumbel, Frank and Independent copulas : nor-
malCopula, claytonCopula, gumbelCopula, frankCopula, indepen-
dentCopula

Results type : NormalCopula, ClaytonCopula, GumbelCopula, FrankCopula,
IndependentCopula

e a composed copula : finalCopula

type : ComposedCopula

Python script for this UseCase :

0O 3 O T i W N

W W W RN DNDNDNDNDDNDDDNDDNDDNDN = === e = =
NP OO0 IO U WNEFE O OWWIO U WD~ O o

INDEPENDENT copula

Independent Copula parametered by its dimension
For example, dimension = 8§
dim = 3
independentCopula = IndependentCopula (dim)

NORMAL copula

Case 1 : Normal Copula parametered by its correlation matriz R
For example, dimension = 8 and R
dim = 3

R = CorrelationMatrix (dim)
for i in range(dim—1)
R[i, i + 1] = 0.8

Create a normal copula from the correlation matriz R
normalCopula = NormalCopula(R)
normalCopula.setName (”a.normal_copula”)

Case 2 : Create a normal copula from the Spearman rank correlation
For example, dimension = 8 and S :
dim = 3

S = CorrelationMatrix (dim)
for i in range(1,dim)
S[i, i — 1] = 0.25

matriz S

(©2007 EDF - EADS - PhiMeca

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
o4
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

Open TURNS — Use Cases Guide for the Textual User Interface

19

Create the correlation matric R of the mnormal copula
from the Spearman correlation matriz S
R = NormalCopula.getNormalCorrelationFromSpearmanCorrelation (S)

Create the mnormal copula from the R correlation matrix
normalCopula = NormalCopula(R)
normalCopula.setName (” another _normal_copula”)

Case 8 : Normal Copula parametered by its dimension

Correlation matriz R is equal to identity
dim = 3
normalCopula = NormalCopula (dim)

CLAYTON copula

Only for dimension = 2

Clayton copula is parametered by theta whithout restriction
For example, theta = —2.5

theta = —2.5

claytonCopula = ClaytonCopula(theta)

GUMBEL copula

Only for dimension = 2

Gumbel copula is parametered by theta whithout restriction
For example, theta = 2.5

theta = 2.5

gumbelCopula = ClaytonCopula(theta)

FRANK copula

Only for dimension = 2

Frank copula is parametered by theta whithout restriction
For example, theta = 9.2

theta = 9.2

frankCopula = FrankCopula(theta)

COMPOSED copula

For example, the GumbelCopula concatenated to a Clayton one
Create the collection of copulas

copulaColl = CopulaCollection (2)

copulaColl [0] = Copula(gumbelCopula)

copulaColl [1] = Copula(claytonCopula)

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 20

81
82 # Create the composed copula in R/
83 finalCopula = ComposedCopula(copulaColl)

We draw in Figures 28 to 32 the iso-curves of the PDF respectively of some copulas of type : independent,
Normal, Clayton, Gumbel, Frank.

Independent copula Normal copula, rho=0.8

0.6 08
rarginal 2
06 0e

marginal 2
0.4

04

02
0.2

| S

00
0.0

= rmaCepuls - POF
T T T T T T T T T T T T
o0 02 0.4 06 08 10 0.0 02 04 0.6 08 1.0
marginal 1 marginal 1

Figure 28: Iso-PDF of an independent copula. Figure 29: Iso-PDF of a Normal copula.

Clayton copula, theta=2.5 Gumbel copula, theta=2.5

10
1.0

08
08

0.6
marginal 2
06

marginal 2
04
L

04
.

02
02

2 =ClaylnCopula ka-FDF 2 =Gunbe Copula o-F DF
0‘0 0‘2 0‘4 0‘6 O‘B 1‘0 0‘0 0‘2 0'4 0‘6 DIB 1'0
marginal 1 marginal 1
Figure 30: Iso-PDF of a Clayton copula. Figure 31: Iso-PDF of a Gumbel copula.

1.1.4 UC : Creation of nD distribution from (marginals, copula)

The objective of the US is to model a distribution, described by its marginal distributions and its dependence
structure (a particular copula). This UC is particularly adapted to the modelisation of the distribution of the
input random vector.

The example here is a distribution of dimension 3 defined by :
e Beta, Triangular and Uniform marginals,

e an independent copula.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 21

Frank copula, theta=9.2

marginal 2

T T T T T
00 02 04 06 0g 10
marginal 1

Figure 32: Iso-PDF of a Frank copula.

Requirements M none

Results

e a nD distribution : myDistribution

type : Distribution which implementation is a ComposedDistribution

Python script for this UseCase :

0 ~J O Ui Wi

e s S Srupy Y
© 00 O ULk W N = O ©

20
21
22
23

Creat

e a collection of distribution of dimension 3§

aCollection = DistributionCollection (3)

Creat

e the first marginal : Weibul(mu, sigma, gamma) = Weibull (2.0, 1.0, 0.0)

weibDist = Weibull (2.0, 1.0, 0.0, Weibull .MUSIGMA)
weibDist .setName (” First .Marginal.: _Weibull”)
aCollection [0] = Distribution (weibDist)

Creat

e the second marginal : Triangular(a,m,b) = Triangular (1.0, 3.0, 5.0)

triangularDist = Triangular (1.0, 3.0, 5.0)
triangularDist .setName (” Second _Marginal._:_Triangular”)
aCollection [1] = Distribution (triangularDist)

Creat

e the third marginal : Uniform(a,b) = Uniform (2.0, 4.0)

uniformDist = Uniform (2.0, 4.0)
uniformDist .setName (” Third _Marginal_: _Uniform”)

aCollection [2] = Distribution (uniformDist)
Create a copula : Normal copula of dimension 8 fom Spearman rank correlation
matrix
spearmanMatrix = CorrelationMatrix (3)
spearmanMatrix [0 ,1] = 0.25
spearmanMatrix [1,2] = 0.25
aCopula = NormalCopula(NormalCopula.

GetNormalCorrelationFromSpearmanCorrelation (spearmanMatrix))

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 22

24 aCopula.setName (” Normal_copula”)

25

26 # Instanciate one distribution object

27 myDistribution = ComposedDistribution(aCollection, Copula(aCopula))
28

29 # Give a Description to the Distribution

30 aDescription = Description (3)

31 aDescription [0] = "X1_distribution”

32 aDescription [1] = "X2_distribution”

33 aDescription [2] = ”"X3_distribution”

myDistribution.setDescription (aDescription)

We draw in Figures 33 to 35 the iso-curves of each 2D distribution defined by two of the three components of
the distribution.

Iso—PDF of marginals (1,2) of the 3D distribution

uy o | ™ ComposedDitribution Eo-FDF
04CBREETE

Second Marginal : Triangular

T
0 1 2 3 4 S 5]
First Marginal - Weibull

Figure 33: Iso-PDF of the distribution defined by the marginals 1 and 2.

1.1.5 UC : Creation of a nD distribution from a Mixture

In Open TURNS, a Mixture is a distribution which probability density function is a linear combination of
probability density functions.

The objective of the US is to model a distribution, defined as a mixture. This UC is particularly adapted to
the modelisation of the distribution of the input random vector.

The example here is a mixture of three 1D distributions Triangular(1.0, 2.0, 4.0), Normal(-1.0, 1.0) and Uni-

form(5.0, 6.0), with respective weights : (0.2, 0.3, 0.5).
The PDF and CDF graphs the mixture distribution are drawn in Figures 36 and 37.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 23

Iso—-PDF of marginals (1,3) of the 3D distribution

2 | | | = ComposedDistribution o-F OF
- HE
E| |
E | 8
o
E [an)
£
j=]
=
C
=
W oo
oy .
£
=
o
=
=
=
ey
Fow
o
(A
L
= X gt
o
T T T T T T T
0 1 2 3 4 5 5]

First Marginal : Weibull

Figure 34: Iso-PDF of the distribution defined by the marginals 1 and 3.

Iso-PDF of marginals (2,3) of the 3D distribution

40

Third Marginal : Uniform
3.0 35

25

20

Second Marginal : Triangular

Figure 35: Iso-PDF of the distribution defined by the marginals 2 and 3.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 24

Requirements M none

e a mixture distribution : myMizture

type : Mixture
Results
e a random input vector : input

type : RandomVector wich implementation is a UsualRandomVector

Python script for this UseCase :

0 ~J O U i W N

O W W W W WD NNDNDDNDDDDNDDNDDNDN M = =
U W OO0 IO UUER WNNRE O OWOWO Uik WwWwNh—=O©o

Create the three distributions
Triangular (1.0, 2.0, 4.0)
triang = Triangular (1.0, 2.0, 4.0)
Normal(—1.0, 1.0)
norm = Normal(—1.0, 1.0)
Uniform (5.0, 6.0)
unif = Uniform (5.0,6.0)

Create a collection of distribution
aCollection DistributionCollection (3)

aCollection [0] = Distribution (triang)
aCollection [1] = Distribution (norm)
aCollection [2] = Distribution (unif)

Put weight to each distribution
CARE : these weights must be in [0,1]

If not normalised (ie sum = 1.0), weights are modified to have sum = 1.0

Weight of the Triangular distribution in [0,1]
aCollection [0].setWeight (0.20)

Weight of the Normal distribution in [0,1]
aCollection [1].setWeight (0.50)

Weight of the Weibull distribution in [0,1]
aCollection [2].setWeight (0.30)

Instanciate one distribution object
myMixture = Mixture(aCollection)

Draw the PDF and CDF of this distribution
Impose a z—range
myMixture_pdf = myMixture.drawPDF(—3.0,7.0)
myMixture_pdf.setLegendPosition (” topleft”)

(©2007 EDF - EADS - PhiMeca

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Open TURNS — Use Cases Guide for the Textual User Interface 25

myMixture_cdf = myMixture.drawCDF(—3.0,7.0)

Or impose a bounding box : xz—range and y—range
boundingBoxr = [zmin, zmaz, ymin, ymaz]
myBoundingBox = NumericalPoint (4)
myBoundingBox [0] = xmin

myBoundingBox [1] = xmax

myBoundingBox [2] = ymin

myBoundingBox [3] = xmax

myMixture_cdf.setBoundingBox (myBoundingBox)

In order to see the graphs whithout creating the files .EPS, .PNG and .FIG
Show (myMixture_pdf)
Show (myMixture_cdf)

Create the files .EPS, .PNG and .FIG
myMixture_pdf.draw(” pdf_Mixture”)
myMixture_cdf.draw (” cdf _Mixture”)

Visualize the file .PNG wththin the TUI
Viewlmage (myMixture_pdf. getBitmap ())
Viewlmage (myMixture_cdf. getBitmap ())

Mixture pdf
[=]
) | ®Misure pof
& -
[[9]
C\! |
[=-
[=)
C\! |
[=-
- 10
335
[=-
=}
[[9]
C)_ -
[=-
[
C)_ -
[=- T T T T T
-2 0 2 4 6

Figure 36: PDF of the Mixture distribution = 0.2*Triangular(1.0, 2.0, 4.0) + 0.5*Normal(-1.0, 1.0) 4+ 0.3*Uni-
form(5.0, 6.0)

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 26

Mixture cdf

1.0

~ ™ Misture odf

cat
04 06 0.8

0.2

0.0

Figure 37: CDF of the Mixture distribution = 0.2*Triangular(1.0, 2.0, 4.0) + 0.5*Normal(-1.0, 1.0) 4+ 0.3*Uni-
form(5.0, 6.0)

1.1.6 UC : Manipulation of a distribution

The objective of this UC is to describe the main functionalities that Open TURNS enables to manipulate a
distribution of dimension n > 1.

Let’s note X = (X1, -+, X,) the random vector associated to that distribution, which PDF is note p. Open
TURNS enables :

to ask for the dimension, with the method getDimension,

if n > 1, to extract the extracted distribution of dimension k < n corresponding to £ 1D marginals, with
the method getMarginal,

to get the copula, with the method getCopula, only for the types UsualDistribution and ComposedDis-
tribution (defined from the 1D marginals and a copula),

to ask for some properties on the copula, with the method hasIndependentCopula, hasEllipticalCopula,
only for the types Usual Distribution and ComposedDistribution (defined from the 1D marginals and a
copula),

to evaluate the mean vector (potentially of dimension 1), the covariance matrix (potentially of dimension
1 x 1), the standard deviation, skewness and kurtosis vectors (potentially of dimension 1), with the meth-
ods getMean, getStandardDeviation, getCovariance, getKurtosis, getSkewness, defined by the following

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface

27

expressions :

E[X] =
StdDev[X] =
Cov[X]

skewness| X] =

kurtosis| X] =

(E[X1],--- , E[X,))
(VE[(X1 — E[X1])%,- -, VE[(Xn — E[X4))?])

(E[(X; — E[X))(X; — E[X;])])i
. >3_

(E

(E

(
(

(X1 — E[Xi])

Var[X4]

(X1 — E[X4])

Var[Xi]

Var[X,]

e to evaluate the roughness, with the method getRoughness, defined by :

roughness(X) = ||p|| 2

/x p*(z)dzx

(X, — BX)
Var[X,]

>4

e to get once the distribution or simultaneously n realisations, with the method getRealization, getNumer-

icalSample,

e to evaluate the Cumulative Density Function (CDF) or the Probability Density Function (PDF) at a
point, with the method computeCDF, computePDF,

e to evaluate a quantile, with the method computeQuantile,

e to evaluate the derivative of the CDF or PDF with respect to the parameters of the distribution at a
particular point, with the methods computeCDFGradient, computePDFGradient,

e to draw :

— for a 1D distribution : the PDF and CDF curves, with the methods drawPDF, drawCDF,

— for a 2D distribution : the PDF and CDF iso-curves, with the methods drawPDF, drawCDF,

and the PDF and CDF curves of its 1D marginals, with the methods drawMarginall DPDF, draw-
Marginall DCDEF |

— for a nD with n > 3 distribution :

the PDF and CDF of each 1D marginal, with the methods
drawMarginall DPDF, drawMarginall DCDF and the PDF and CDF iso-curves for a specified 2D
marginal, with the methods drawMarginal2DPDF, drawMarginal2DCDF.

Let’s note that it is possible to visualise a graph hithin the TUI whithout creating the .EPS, .PNG or .FIG
files, thanks to the command Show.

Requirements

e one distribution : dist

type : Distribution

Results

][none

Python script for this UseCase :

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface

28

0O 3 O T i Wi

Get the dimension
dim = dist.getDimension ()

print "Dimension.of_.the_distribution._=."

, dim
Get the marginals
the 1—th marginal
Care : the numerotation begins at 0
marginal i = dist.getMarginal (i)

the marginal of the sub—distribution defined by several components
Put the indices of the concerned components together
for example, the three first components (if dimension >2)

indices = Indices (3)
indices [0] = 0
indices [1] =1

indices [2] = 2
3Dmarginal 123 = dist.getMarginal (indices)

Get the copula
CARE : only for a ComposedDistribution
copula = dist.getCopula()

Ask some properties on the copula
print "hasIndependentCopula”, dist.hasIndependentCopula
print "hasEllipticalCopula”, dist.hasEllipticalCopula

Get the mean vector of the distribution
meanVector = dist.getMean ()

Get the covariance matriz of the distribution
meanVector = dist.getCovariance ()

Get the kurtosis wvector of the distribution
kurtosisVector = dist.getKurtosis ()

Get the standard deviation wvector of the distribution
standardDeviationVector = dist.getStandardDeviation ()

Get the skewness wvector of the distribution
skewnessVector = dist.getSkewness|()

Get the roughness of the distribution
roughness = dist.getRoughness|()

Get one realisation of the distribution
oneRealisationVector = dist.getRealization ()

(©2007 EDF - EADS - PhiMeca

48
49
50
51
52
53
o4
55
56
57
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
72

Open TURNS — Use Cases Guide for the Textual User Interface

Get several realisations of the distribution
For example,
100 _realisations

100 ones
dist . getNumericalSample (100)

Evaluate the CDF and PDF
if the dimension
at pointValue=2.3

CARE :
For example,
pointValue
CDF _value = dist .computeCDF (pointValue)
PDF _value = dist.computePDF (pointValue)

CARE :
For example,

if the dimension is >1
with dimension 2,
pointVector = NumeriaclPoint (2)
pointVector [0] = 2.3

pointVector [1]
CDF_vector = dist.computeCDF (pointVector)
PDF _vector = dist .computePDF (pointVector)

at pointVector=(2.8, 4.5)

Evaluate the quantile of order p
the quantile 90%
quantile_Vector_90 = dist.computeQuantile (0.90)

For example,

FEvaluate the derivatives of the PDF/CDF with respect to the parameters at a
particular point
For example, with dimension 2, at pointVector=(2.3, 4.5)

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

derivatives PDF _Vector = dist.computePDFGradient(pointVector)
derivatives_.CDF_Vector = dist.computeCDFGradient(pointVector)

: Draw the PDF and CDF for a distribution of dimension 1

No specification of support
PDF_1D_graph = dist .drawPDF ()

Or Specify the support a and b (two scalars)

For example, a=—10.0 and b=10.0

PDF_1D _graph =
CDF_1D_graph =

dist .drawPDF (a,b)
dist .drawCDF (a,b)

Or impose a bounding box
boundingBox
myBoundingBox
myBoundingBox |
myBoundingBox [1]

- z—range and y—range
[zmin, zmaz, ymin, ymax]
NumericalPoint (4)

| = xmin

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 30

95 myBoundingBox [2] = ymin

96 myBoundingBox [3] = xmax

97 PDF _1D graph.setBoundingBox (myBoundingBox)
98

99 # In order to see the graph whithout creating the associated files
100 Show (PDF_1D _graph)

101 Show (CDF_1D_graph)

102

103 # Create the files corresponding to the graph

104 # the files .EPS, .PNG and .FIG are created in the current python session
105 PDF_1D_graph.draw (" PDF _graph”)

106 CDF_1D _graph.draw (” CDF _graph”)

07

108 # Or only the .EPS file

109 # 640 and 480 are the pixels number in both axes

110 PDF_1D_graph.draw (” PDF _graph” , 640, 480, Graphlmplementation .EPS)
111 CDF_1D _graph.draw (” CDF _graph” , 640, 480, GraphImplementation.EPS)
112

113 # Visualize the PNG file whithin the TUI

114 ViewImage (PDF_1D _graph . getBitmap ())

115 ViewImage (CDF_1D _graph. getBitmap ())

116

117

118 # GRAPH 2 :Draw the PDF and CDF iso—curves for a distribution of dimension 2
119

120 # No specification of support

121 PDF _graph = dist .drawPDF ()

122 CDF _graph = dist .drawCDF ()

123

124 # Or Specify the support pointMin and pointMazx

125 # the graph will be drawned in the box with low—left corner : pointMin
126 # and up—right corner : pointMazx

127 # For example, pointMin=(—3.0, —2.0) and pointMazx=(4.0, 5.0)

128 pointMin = NumericalPoint (2)

129 pointMin [0] = —3.0

130 pointMin [1] = —2.0

131 pointMax = NumericalPoint (2)

132 pointMax [0] = 4.0

133 pointMax [1] = 5.0

134 PDF _graph = dist .drawPDF (pointMin, pointMax)

135 CDF _graph = dist .drawCDF (pointMin , pointMax)

136

137 # Or impose a bounding boxr : xz—range and y—range
138 # boundingBox = [zmin, zmaz, ymin, ymaz]

139 myBoundingBox = NumericalPoint (4)

140 myBoundingBox [0] = xmin

141 myBoundingBox [1] = xmax

142 myBoundingBox [2] = ymin

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 31

143 myBoundingBox [3] = xmax

144 PDF _graph.setBoundingBox (myBoundingBox)

145

146 # In order to see the graph whithout creating the associated files

147 Show (PDF _graph)

148 Show (CDF _graph)

149

150 # Create the files corresponding to the graph

151 # the files .EPS, .PNG and .FIG are created in the current python session

152 PDF _graph.draw (” PDF _graph”)

153 CDF _graph.draw (” CDF _graph”)

154

155 # Or only the .EPS file

156 # 640 and 480 are the pizxels number in both azes

157 PDF graph.draw (” PDF _isocurves_graph”, 640, 480, GraphImplementation.EPS)

158 CDF _graph.draw (” CDF _isocurves_graph”, 640, 480, Graphlmplementation .EPS)

159

160 # Visualize the PNG file in the TUI

161 ViewImage (PDF _graph . getBitmap ())

162 ViewImage (CDF_graph . getBitmap ())

163

164

1656 # GRAPH 3 :Draw the PDF and CDF of the 1D marginals for a distribution of
dimension >=2

166

167 # For example, marginal 1

168 # Care : the numerotation begins at 0

169

170 # Specify the support a and b (two scalars) and the number of points of the
curve

171 # For example, a=—10.0 and b=10.0

172 a = —10.0

173 b = 10.0

174 pointnumber = 101

175 PDF _graph = dist.drawMarginallDPDF (i, a, b, pointnumber)
176 CDF graph = dist .drawMarginalIDCDF (i, a, b, pointnumber)

77
178 # Or impose a bounding box : z—range and y—range
179 # boundingBox = [zmin, zmaz, ymin, ymaz]

180 myBoundingBox =
181 myBoundingBox [0]

182 myBoundingBox [1] = xmax
183 myBoundingBox [2] = ymin
184 myBoundingBox [3] = xmax

185 PDF graph.setBoundingBox (myBoundingBox)

186

187 # In order to see the graph whithout creating the associated files
188 Show (PDF _graph)

NumericalPoint (4)
= xmin

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 32

189 Show (CDF _graph)

190

191 # Create the files corresponding to the graph

192 # the files .EPS, .PNG and .FIG are created in the current python session

193 PDF _graph.draw (” PDF _graph”)

194 CDF _graph . draw (” CDF _graph”)

195

196 # Or only the .EPS file

197 # 640 and 480 are the pizels number in both azxes

198 PDF graph.draw (” PDF_1DMarginals_graph”, 640, 480, GraphImplementation.EPS)

199 CDF _graph.draw (” CDF_1DMarginals_graph” , 640, 480, GraphImplementation.EPS)

200

P01 # Visualize the PNG file in the TUI

P02 ViewImage (PDF _graph. getBitmap ())

203 ViewImage (CDF _graph . getBitmap ())

204

205

206 # GRAPH 4 :Draw the PDF and CDF iso—curves for a distribution of dimension n>2

P07

208 # For example, the marginals i and j

209 # Care : the numerotation begins at 0

210

P11 # Specify the support pointMin and pointMax, and the number of points of the
curve (all vectors)

P12 # For example, pointMin=(—3.0, —2.0) and pointMazxr=(4.0, 5.0)

213 pointMin = NumericalPoint (2)

214 pointMin [0] = —3.0

215 pointMin [1] = —2.0

216 pointMax = NumericalPoint (2)

217 pointMax [0] = 4.0

218 pointMax [1] = 5.0

219 pointNumber = NumericalPoint (2)

220 pointNumber [0] = 101

P21 pointNumber[1] = 101

D22 PDF _graph = dist.drawMarginal2DPDF (i, j, pointMin, pointMax, pointNumber)

P23 CDF graph = dist .drawMarginal2DCDF (i, j, pointMin, pointMax, pointNumber)

P24

225 # Or impose a bounding box : z—range and y—range

P26 # boundingBox = [zmin, zmaz, ymin, ymaz]

P27 myBoundingBox = NumericalPoint (4)

P28 myBoundingBox [0]

229 myBoundingBox [1] = xmax

230 myBoundingBox [2] = ymin

231 myBoundingBox [3] = xmax

P32 PDF graph.setBoundingBox (myBoundingBox)

233

P34 # In order to see the graph whithout creating the associated files

235 Show (PDF _graph)

= xmin

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 33

236 Show (CDF _graph)
R37

238 # Create the files corresponding to the graph

239 # the files .EPS, .PNG and .FIG are created in the current python session
240 PDF _graph.draw (” PDF_2DMarginal_ij_graph”)

P41 CDF _graph.draw (” CDF_2DMarginal ij_graph”)

P42

P43 # Or only the .EPS file

P44 # 640 and 480 are the pizels number in both azxes

P45 PDF graph.draw (” PDF_2DMarginal ij_graph” , 640, 480, Graphlmplementation .EPS)
P46 CDF _graph.draw (” CDF_2DMarginal_ij_graph”, 640, 480, Graphlmplementation.EPS)
D47

P48 # Visualize the PNG file in the TUI

249 ViewImage (PDF _graph. getBitmap ())
ViewImage (CDF _graph. getBitmap ())

We draw respectively in Figures 38 and 39 the iso-curves of the PDF of the two following distributions :

e Distribution 1 : Mixture of Normal distributions of dimension 2

e Distribution 2 : Composed Distribution, with a Gumbel copula and each marginal some mixture of
normals of dimension 1.

Iso-PDF — Examplel

marginal 2

marginal 1

Figure 38: Iso-curves of the PDF of Distribution 1 : Mixture of Normal distributions of dimension 2.

1.1.7 UC : Creation of the random input vector from a distribution

The objective of this UC is to model a random vector described by its joint probability density function. This
random vector is called a UsualRandomuvector. This UC is particularly adapted to the input random vector.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 34

Iso-PDF — Example2

10

- ‘ ™ ComposedDistribution iso—POF

Marginal 2 : mixture of normals
0 5
1 |

-10

T T T T T
-10 -5 0 5 10

Marginal 1 © mixture of normals

Figure 39: Iso-curves of the PDF of Distribution 2 : Composed Distribution, with a Gumbel copula and each
marginal some mixture of normals of dimension 1.

e the input distribution : inputDistribution
Requirements
type : Distribution

e the random input vector : inputRandom Vector
Results
type : RandomVector which implementation is a UsualRandom Vector

Python script for this UseCase :

Create the UsualRandomVector ’inputRandomVector’ from

the Distribution ’“inputDistribution’
inputRandomVector = RandomVector (inputDistribution)

1.2 With samples on data : manipulation on data

It is important to note that all the Use Cases described in this section are usefull to fit a distribution from a
sample in order to model the random input vector. However, it is possible to apply them to fit a distribution
to the output variable of interest when described by a sample.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 35

1.2.1 UC : Import / Export data from a file at format CSV (Comma Separated Value)

The objective of this UC is to import a file at format CSV containing a list of data and to export a Numeri-
calSample into a file at format CSV.
To be a proper sample file, the following rules must be respected :

e Data are presented in line : each line corresponds to the realisation of the aleatory vector. The number
of lines is the size of the sample. The number of data on each line is the dimension of the sample.

e Data must be separated by a ”;”.
e No missing data must appear (it means each line must have the same number of data).

e Each data must described with a number as 73.7” or ”3.e-4”.

When a line presents an error, the line is ignored but all the right ones are taken into account. The number of
lines which don’t follow the previous rules are signaled and the reason is given.

e 3 file containing data : sampleFile.csv

type : a CSV format file respecting rules explicited before

Requirements
e or a numerical sample to be stored : mySampleToBeStored
type : a NumericalSample
e the sample issued from the data file sampleFile.csv : aSample
type : a NumericalSample

Results

e a file containingmySampleToBeStored : mySampleStoredFile.csv

type : a CSV format file respecting rules explicited before

Python script for this UseCase :

0 g O U i W N

e e G s
=~ Ww N = OO

IMPORT o CSV FILE

We give in argument of the static method ImportFromCSVFile()
the absolute adress of the file sampleFile. csv
for example : /tmp/sampleFile. csv
if only the name sampleFile.csv is fulfilled ,
Open TURNS looks for the file in the current directory
aSample = NumericalSample.ImportFromCSVFile(” /tmp/sampleFile.csv”)

We give a name to the sample loaded
aSample.setName(” first .data_sample”)

EXPORT INTO A CSV FILE

(©2007 EDF - EADS - PhiMeca

15
16
17
18
19
20

Open TURNS — Use Cases Guide for the Textual User Interface 36

We give in argument of the dynamic method exportToCSVFile

the absolute adress where the storing file mySampleStoredFile. csv
will be created

for example : /tmp/mySampleStoredFile. csv

if only the name mySampleStoredFile.csv is fulfilled ,

Open TURNS creates the file in the current directory
mySampleToBeStored . exportToCSVFile (” /tmp/mySampleStoredFile.csv”)

1.2.2 UC : Drawing Empirical CDF, Histogram, Clouds / PDF or superposition of two clouds
from data

The objective of this UC is to draw :
e the empirical cumulative density function (CDF) from data : GRAPH 1,

e the histogram from data : GRAPH 2 (with imposed number of bars) and GRAPH 3 (with free number
of bars) ,

e the superposition of two 2D samples where the first sample is given as sample and the second sample is
evaluated from a given from a 2D distribution : GRAPH 4,

e the superposition of two 2D samples where both samples are given as samples : GRAPH 5.
To draw an histogram, it is possible :
e to fix the number of bars,

e or not to mention it : Open TURNS will determine automatically the bandwith of the histogram according
to the Silverman rule (gaussian empirical rule).

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 37

Requirements

e one scalar numerical sample : sample

e two 2D numerical samples : sample2, sample3
type : NumericalSample

e one 2D distribution : dist2D

type : Distribution

Results

e the files containing the empirical CDF graph : sampleCDF.png, sam-
pleCDF.eps, sampleCDFZoom.png, sampleCDFZoom.eps

type : files at format PNG or EPS or FIG

e the files containing the histogram graph : sampleHist.png, sample-
Hist.eps, sampleHistOpt.png, sampleHistOpt.eps

type : files at format PNG or EPS or FIG

e the files containing the superposed samples (sample 2 and issued from
dist2D) : sampleCloudPdf.png, sampleCloudPdf.eps

type : files at format PNG or EPS or FIG

e the files containing the superposed samples (sample 2 and issued from
dist2D) : sampleClouds.png, sampleClouds.eps

type : files at format PNG or EPS or FIG

Python script for this UseCase :

1

T W N

oo N O

11
12
13
14
15
16
17

GRAPH 1 Empirical CDF graph
Generate the Graph structure for the empirical CDF graph
graph range : min(sample) — 1, man(sample) + 1
CARE : sample must be of dimension 1
sampleCDF = VisualTest.DrawEmpirical CDF (sample, sample.getMin() [0] — 1.0,
sample.getMax () [0] + 1.0)
Or impose a bounding box : z—range and y—range
boundingBoxr = [zmin, zmaz, ymin, ymaz]
myBoundingBox = NumericalPoint (4)
myBoundingBox [0] = xmin
myBoundingBox [1] = xmax
myBoundingBox [2] = ymin
myBoundingBox [3] = xmax
sampleCDF . setBoundingBox (myBoundingBox)
In order to see the graph whithout creating the associated files
Show (sampleCDF)

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 38

18

19 # Draw the graph on the file sampleCDF.png and sampleCDF . eps

20 # if the file adress is not fulfilled , the file 4is created in the current
directory

21 sampleCDF . draw (”sampleCDF”)

22

23 # View the bitmap file

24 ViewImage (sampleCDF . getBitmap ())

25

26 # Check if it worked

27 print ”bitmap.=.” , sampleCDF.getBitmap ()

28 print ”postscript.=." , sampleCDF.getPostscript ()

29

30 # GRAPH 2 : Histogram graph with number of bars fized by the user

31 # Generate the Graph structure for the histogram graph

32 # Number of bars fized to 10

33 # CARE : sample must be of dimension 1

34 sampleHist = VisualTest.DrawHistogram (sample, 10)

35

36 # Or zoom the histogramm : impose a bounding box : xz—range and y—range

37 # boundingBox = [xzmin, zmazx, ymin, ymax]

38 myBoundingBox = NumericalPoint (4)

39 myBoundingBox [0] = xmin

40 myBoundingBox [1] = xmax

41 myBoundingBox [2] = ymin

42 myBoundingBox [3] = xmax

43 sampleHist . setBoundingBox (myBoundingBox)

44

45 # In order to see the graph whithout creating the associated files

46 Show (sampleHist)

47

48 # Draw the graph on the file sampleHist.png and sampleHist.eps

49 # if the file adress is mot fulfilled , the file is created in the current
directory

50 sampleHist .draw (”sampleHist”)

51

52 # View the bitmap file

53 ViewImage (sampleHist . getBitmap ())

54

55 # Check if it worked

56 print ”bitmap.=.” , sampleHist.getBitmap ()

57 print ”postscript.=." , sampleHist.getPostscript ()

58

59 # GRAPH 3 : Histogram graph with free number of bars
60 # (automatically determined by Open TURNS according to the Silverman rule)

61 # Generate the Graph structure for the histogram graph
62 # CARE : sample must be of dimension 1
63 sampleHistOpt = VisualTest.DrawHistogram (sample)

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 39

64

65 # Or zoom the histogramm : impose a bounding box : xz—range and y—range

66 # boundingBox = [xzmin, zmazx, ymin, ymax]

67 myBoundingBox = NumericalPoint (4)

68 myBoundingBox [0] = xmin

69 myBoundingBox [1] = xmax

70 myBoundingBox [2] = ymin

71 myBoundingBox [3] = xmax

72 sampleHistOpt . setBoundingBox (myBoundingBox)

73

74 # Draw the graph on the file sampleHistOpt.png and sampleHist. eps

75 # if the file adress is not fulfilled , the file 4is created in the current
directory

76 sampleHistOpt .draw (” sampleHistOpt”)

7

78 # In order to see the graph whithout creating the associated files

79 Show (sampleHistOpt)

80

81 # View the bitmap file

82 ViewImage (sampleHistOpt . getBitmap ())

83

84 # Check if it worked

85 print ”bitmap.=_" , sampleHistOpt.getBitmap ()

86 print ”postscript.=." , sampleHistOpt.getPostscript ()

87

88

89 # GRAPH 4 : Superposition of two 2D samples where
90 # first sample is given as sample
91 # second sample is issued from a 2D distribution

92 # CARE : sample2 must be of dimension 2

93 # and dist is of dimension 2

94 # the sample issued from dist2D have the same size than sample?

95 cloudPdfGraph = VisualTest.DrawClouds(sample2, Distribution (dist2D))
96

97 # Impose a bounding box : xz—range and y—range

98 # boundingBox = [xzmin, zmazx, ymin, ymax]

99 myBoundingBox = NumericalPoint (4)

100 myBoundingBox [0] = xmin

101 myBoundingBox [1] = xmax

102 myBoundingBox [2] = ymin

103 myBoundingBox [3] = xmax

104 cloudPdfGraph.setBoundingBox (myBoundingBox)

105

106 # In order to see the graph whithout creating the associated files
107 Show (cloudPdfGraph)

108

109 # Draw the graph on the file sampleCloudPdf.png and sampleCloudPdf. eps

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface

40

print ”postscript.=." , cloudPdfGraph2.getPostscript ()

110 # if the file adress is not fulfilled , the file is created in the current
directory

111 cloudPdfGraph .draw(”sampleCloudPdf”)

112

113 # View the bitmap file

114 ViewImage (cloudPdfGraph . getBitmap ())

115

116 # Check if it worked

117 print ”bitmap.=." , cloudPdfGraph.getBitmap ()

118 print ”postscript.=." , cloudPdfGraph.getPostscript ()

119

120 # GRAPH 5 : Superposition of the two 2D samples : sample2 and sampled

121 # CARE : sample2 and sampled3 must be of dimension 2

122 cloudPdfGraph2 = VisualTest.DrawClouds(sample2, sample3)

123

124 # Impose a bounding box : z—range and y—range

125 # boundingBoxr = [zmin, zmaz, ymin, ymaz]

126 myBoundingBox = NumericalPoint (4)

127 myBoundingBox [0] = xmin

128 myBoundingBox [1] = xmax

129 myBoundingBox [2] = ymin

130 myBoundingBox [3] = xmax

131 cloudPdfGraph.setBoundingBox (myBoundingBox)

132

133 # In order to see the graph whithout creating the associated files

134 Show (cloudPdfGraph?2)

135

136 # Draw the graph on the file sampleCloudPdf.png and sampleCloudPdf.eps

137 # if the file adress is not fulfilled , the file 4is created in the current
directory

138 cloudPdfGraph2.draw(”sampleClouds”)

139

140 # View the bitmap file

141 ViewImage (cloudPdfGraph2 . getBitmap ())

142

143 # Check if it worked

144 print ”bitmap.=.” , cloudPdfGraph2.getBitmap ()

For example, Figure 40 contains the GRAPH3 obtained with a sample of size 1000 from a Normal(0.0, 1.0)
distribution.

For example, Figure 41 contains the GRAPH4 obtained by giving :

e a sample (actually generated from a 2D Normal distribution with (2.0, 2.0) mean (1.0, 1.0) standard

deviation and p = —0.8 correlation coefficient),

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 41

e a 2D Normal distribution with (2.0, 2.0) mean (1.0, 1.0) standard deviation and p = +0.8 correlation

coefficient

sample histogram

frequency
0.2 0.3 0.4

0.1

0.0

.

.

7

AT

Al I

A ! 1% .%% 44

realizations

Figure 40: Histogram from a sample.

two samples clouds

Figure 41: Superposition of two 2D clouds.

1.2.3 UC : Do two samples have the same distribution : QQ-plot visual test, Smirnov numerical

test

The objective of this UC is to decide whether both samples follow the same distribution or not.
To help the decision, Open TURNS proposes one visual test and one numerical test :

e the QQ-plot visual test : Open Turns associates the empirical quantiles of each data from the both
numerical samples,

e the Smirnov test : it tests if both samples (continuous ones only) follow the same distribution. If F;
and F,; are the empirical cumulative density functions of both samples of size n; and nz, the Smirnov
test evaluates the decision variable :

nino
D? = F* — F*
,/nl o sgpl o () = Fp ()]

which tends towards the Kolmogorov distribution. The hypothesis of same distribution is rejected if D?
is too high (depending on the p-value threshold).

e two numerical continuous samples of dimension 1 : continuousSam-

plel, continuousSample2

o test result : resultSmirnov

type : TestResult

Requirements
type : NumericalSample
e the files containing the QQ-plot graph : twoSamplesQQ@Plot.png,
twoSamplesQQPlot.eps
Results type : files at format PNG or EPS or FIG

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 42

Python script for this UseCase :

1 # GRAPH 1 : Q@Q-plot graph

2
3
4

20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35

36
37
38
39
40
41

Generate the Graph structure for the Q@-plot graph

number of points of the graph fized to 100 (20 by default)

twoSamplesQQPlot = VisualTest.DrawQQplot(continuousSamplel ,
continuousSample2 , 100)

Impose a bounding box : z—range and y—range
boundingBoxr = [zmin, zmaz, ymin, ymaz]
myBoundingBox = NumericalPoint (4)
myBoundingBox [0] = xmin

myBoundingBox [1] = xmax

myBoundingBox [2] = ymin

myBoundingBox [3] = xmax

twoSamplesQQPlot . setBoundingBox (myBoundingBox)

In order to see the graph whithout creating the associated files
Show (twoSamplesQQPlot)

Draw the graph on the file twoSamples@Q@Plot.png and twoSamplesQQPlot.eps

if the file adress is not fulfilled , the file is created in the current
directory

twoSamplesQQPlot . draw (” twoSamplesQQPlot”)

View the bitmap file
Viewlmage (twoSamplesQQPlot . getBitmap ())

Check if it worked
print ”bitmap.=.” , twoSamplesQQPlot.getBitmap ()

print ”postscript.=." , twoSamplesQQPlot.getPostscript ()
Smirnov Test : test if two samples have a monotonous relation
HO : same continuous distribution
Test = True <=> same continuous distribution
p—value threshold : probability of the HO reject zome : 1—0.90
p—value : probability (test wvariable decision > test wvariable decision

evaluated on the samples)
Test = True <=> p—value > p—value threshold
resultSmirnov = HypothesisTest.Smirnov (continuousSamplel , continuousSample2 ,

0.90)

Print result of the Smirnov Test
print ”Test_Succes.?.”, (resultSmirnov.getBinaryQualityMeasure ()==1)

Get the p—value of the Smirnov Test
print "p—value_of_the_Smirnov._Test_=_’

)

, resultSmirnov.getPvalue ()

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 43

Get the p—value threshold of the Test

9

print "p—value_threshold .=.”, resultSmirnov.getThreshold ()

1.2.4 UC : Are two scalar samples independent : ChiSquared test, Pearson test, Spearman test

The objective of this UC is to decide whether two samples are independent or not.
To help the decision, Open TURNS proposes the following tests :

e the ChiSquared test : it tests if both scalar samples (discret ones only) are independent.
If n;j is the number of values of the sample ¢ = (1, 2) in the modality 1 < j < m, n; = Z NijNj = Z ngj,

j i
and the ChiSquared test evaluates the decision variable :

ngn.;

D? — ZZ (”ij ;.n.;@)2
i g

n

wich tends towards the x?(m — 1) distribution. The hypothesis of independence is rejected if D? is too
high (depending on the p-value threshold).

e the Pearson test : it tests if there exists a linear relation between two scalar samples which form a gaussian
vector (which is equivalent to have a linear correlation coefficient not equal to zero).

1 1
If both samples are = (z;)1<i<n and y = (¥;)1<i<n, and T = - Z z; and § = - Zyi, the Pearson test
evaluates the decision variable : ' '
b YD —9)
V(i —)2 2 (yi — 4)?
The variable D tends towards a y%(n — 2), under the hypothesis of normality of both samples. The

hypothesis of a linear coefficient equal to 0 is rejected (which is equivalent to the independence of the
samples) if D is too high (depending on the p-value threshold).

e the Spearman test : it tests if there exists a monotonous relation between two scalar samples.
If both samples are z = (7;)1<i<n and y = (¥i)1<i<n,, the Spearman test evaluates the decision variable :

6> (ri — s:)°

D=1-
n(n?—1)

where r; = rank(z;) and s; = rank(y;). D is such that +/n — 1D tends towards the gaussian (0,1)
distribution.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 44

e two continuous scalar numerical samples of dimension 1 : continuous-
Samplel, continuousSample2

type : NumericalSample

Requirements
e two discrete scalar numerical sample discreteSamplel, discreteSam-
ple2
type : NumericalSample
e tests results : resultChiSquared, resultPearson, resultSpearman
Results

type : TestResult

Python script for this UseCase :

1 # ChiSquared Independance test : test if two scalar samples (of sizes not
necessarily equal) are independant ¢

2 # Care : discrete distributions only

3 # HO = independent samples

4 # p—value threshold : probability of the HO reject zome : 1—0.90

5 # p—value : probability (test wvariable decision > test wvariable decision
evaluated on the samples)

6 # Test = True <=> p—value > p—value threshold

7 resultChiSquared = HypothesisTest.ChiSquared (discreteSamplel ,
discreteSample2, 0.90)

8

9 # Print result of the ChiSquared Test

10 print ”Test_Succes.?.”, (resultChiSquared.getBinaryQualityMeasure ()==1)

11

12 # Get the p—value of the Test

13 print "p—value_of_the__Test.=.", resultChiSquared.getPvalue ()

14

15 # Get the p—value threshold of the ChiSquared Test

16 print "p—value_threshold.=.", resultChiSquared.getThreshold ()

17

18 # Pearson Test : test if two scalar samples which form a gaussian vector are

independent (based on the evaluation of the linear correlation coefficient)

19 # HO : independent samples (linear correlation coefficient = 0)

20 # Test = True <=> independent samples (linear correlation coefficient = 0)

21 # p—value threshold : probability of the HO reject zome : 1—0.90

22 # p—value : probability (test wvariable decision > test wvariable decision
evaluated on the samples)

23 # Test = True <=> p—value > p—value threshold

24 resultPearson = HypothesisTest.Pearson(continuousSamplel , continuousSample2 ,
0.90)

25

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 45

26 # Print result of the Pearson Test
27 print "Test_.Succes_?.”, (resultPearson.getBinaryQualityMeasure ()==1)
28
29 # Get the p—value of the Pearson Test
30 print ”"p—value_of_the_Pearson_Test.=.", resultPearson.getPvalue()
31
32 # Get the p—value threshold of the Test
33 print "p—value_threshold _=.”, resultPearson.getThreshold ()
34
35 # Spearman Test : test if two scalar samples have a monotonous relation
36 # HO : no monotonous relation between both samples
37 # Test = True <=> no monotonous relation
38 # p—value threshold : probability of the HO reject zome : 1—0.90
39 # p—value : probability (test wvariable decision > test wvariable decision
evaluated on the samples)
40 # Test = True <= p—wvalue > p—value threshold
41 resultSpearman = HypothesisTest.Spearman (continuousSamplel ,
continuousSample2 , 0.90)
42
43 # Print result of the Spearman Test
44 print ”Test_Succes.?.”, (resultSpearman.getBinaryQualityMeasure ()==1)
45
46 # Get the p—value of the Spearman Test
47 print "p—value_of_the_Spearman._Test_=.", resultSpearman.getPvalue ()
48
49 # Get the p—value threshold of the Test
print ”"p—value._.threshold._=.”, resultSpearman.getThreshold ()

1.2.5 UC : Particular manipulations of the Pearson and Spearman tests, when the first sample
is of dimension superior to 1.

The objective of this UC is to decide whether two samples follow a monotonous or linear relation in the case
where the first sample is of dimension > 1.

The Pearson and Spearman tests are evaluated successively between some (or all) coordinates of the first sample
and the second one, which must be of dimension 1.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 46
e one continuous scalar numerical sample of dimension n : continuous-
Samplel
type : NumericalSample
Requirements
e one continuous scalar numerical sample of dimension 1 : continuous-
Sample?2
type : NumericalSample
e tests results : resultPartialPearson, resultFullPearson, resultPartialS-
Results pearman, resultFullSpearman
type : TestResultCollection
Python script for this UseCase :
1
2 # Partial Pearson Test : test if two scalar samples which form a gaussian wvector
are independent (based on the evaluation of the linear correlation
coefficient)
3 # HO : independent samples (linear correlation coefficient = 0)
4 # Test = True <=> independent samples (linear correlation coefficient
) # p—value threshold : probability of the HO reject zome : 1—0.90
6 # p—value : probability (test wvariable decision > test wvariable decision
evaluated on the samples)
7 # Test = True <= p—wvalue > p—value threshold
8
9 # selection of coordinates of continuousSamplel to be tested to
continuousSample2
10 # for example, coordinates 1, 2, 8, 4, 5, (suppose n>H)
11 selection = Indices (5)
12 for i in range(5)
13 selection [i] = i
14
15 # Perform the Partial Pearson Test
16 resultPartialPearson = HypothesisTest.PartialPearson (continuousSamplel ,
continuousSample2 , selection , 0.90)
17
18 # Print the global result of the Pearson Test
19 print "Test_global_result.:.”, resultPartialPearson
20
21 # Print result of the Pearson Test for each coordinate tested
22 for i in range(5)
23 print ”Test_Succes_for_Coordinate_=__", selection[i], 7.7, (
resultPartialPearson [i]. getBinaryQualityMeasure ()==1)
24

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 47

25 # Get the p—value of the Pearson Test

26 print "p—value_of_the_Pearson_.Test_.=.”, resultPartialPearson|[i].
getPvalue ()

27

28 # Get the p—value threshold of the Test

29 print "p—value_threshold._for_Coordinate_=..", selection[i], ".=.",
resultPartialPearson[i]. getThreshold ()

30

31 # Full Pearson Test : it performs the partial Pearson test on the whole
coordinates of the first sample

32

33 # Perform the Full Pearson Test

34 resultFullPearson = HypothesisTest.FullPearson (continuousSamplel ,
continuousSample2 , 0.90)

35

36 # Same manipulations than those effected on resultPartialPearson to get the
results

37

38 # Partial Spearman Test : test if two scalar samples have a monotonous relation

39 # HO : no monotonous relation between both samples

40 # Test = True <=> no monotonous relation

41 # p—value threshold : probability of the HO reject zome : 1—0.90

42 # p—value : probability (test wvariable decision > test wvariable decision
evaluated on the samples)

43 # Test = True <=> p—wvalue > p—value threshold

44

45 # selection of coordinates of continuousSamplel to be tested to
continuousSample2

46 # for example, coordinates 1, 2, 8, 4, 5, (suppose n>H)

47 selection = Indices (5)

48 for i in range(5)

49 selection [1] = i

50

51 # Perform the Partial Spearman Test

52 resultPartialSpearman = HypothesisTest.PartialSpearman (continuousSamplel ,
continuousSample2 ; selection , 0.90)

53

54 # Print the global result of the Spearman Test

55 print "Test_global_result_:_.", resultPartialSpearman

56

57 # Print result of the Spearman Test for each coordinate tested

58 for i in range(5)

59 print ”Test_Succes_for_Coordinate_=..", selection[i], "7.7, (

resultPartialSpearman [i]. getBinaryQualityMeasure ()==1)

60

61 # Get the p—value of the Spearman Test

62 print ”"p—value_of_the_Spearman_Test.=.", resultPartialSpearman[i].

getPvalue ()

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 48

63

64 # Get the p—value threshold of the Test

65 print "p—value._threshold_for_Coordinate._=_.", selection[i], ".=.",
resultPartialSpearman [i]. getThreshold ()

66

67 # Full Spearman Test : it performs the partial Pearson test on the whole
coordinates of the first sample

68

69 # Perform the Full Spearman Test

70 resultFullSpearman = HypothesisTest.FullSpearman (continuousSamplel ,
continuousSample2, 0.90)

71

72 # Same manipulations than those effected on resultPartialSpearman to get the

results

1.2.6 UC : Regression test between two scalar numerical samples

The objective of this UC is to detect a linear relation between two scalar numerical samples.

e one continuous scalar numerical sample of dimension n : continuous-
Samplel

type : NumericalSample
Requirements
e one continuous scalar numerical sample of dimension 1 : continuous-

Sample2

type : NumericalSample

e tests results : resultPartialRegression, resultFullRegression, resultPar-
Results tialSpearman, resultFullSpearman

type : TestResultCollection

Python script for this UseCase :

1

2 # Partial Regression Test between 2 samples : firstSample of dimension n and
secondSample of dimension 1. If firstSample[i] is the numerical sample
extracted from firstSample (ith coordinate of each point of the numerical
sample), PartialRegression performs the Regression test simultaneously on all
firstSample [i] and secondSample, for i in the selection. The Regression test
tests if the regression model between two scalar numerical samples 1is
significant. It is based on the deviation analysis of the regression. The
Fisher distribution is wused.

3

4 # selection of coordinates of continuousSamplel to be tested to

continuousSample2

(©2007 EDF - EADS - PhiMeca

—
— O © 00 g O Ot

—_

12
13
14
15
16
17
18

19
20
21

22
23
24

25
26

27
28
29

30
31

Open TURNS — Use Cases Guide for the Textual User Interface 49

for example, coordinates 1, 2, 8, 4, 5, (suppose n>¥5)
selection = Indices (5)
for i in range(5)

selection[i] = i

Perform the Partial Regression Test
resultPartialRegression = HypothesisTest.PartialRegression (continuousSamplel
, continuousSample2 , selection, 0.90)

Print the global result of the Regression Test

2

print "Test_global_result.:_.”, resultPartialRegression

Print result of the Regression Test for each coordinate tested
for i in range(5)
print ”Test_Succes_for_Coordinate_=__.", selection[i], "?.7, (
resultPartialRegression [i]. getBinaryQualityMeasure ()==1)

”

Get the p—value of the Regression Test
print "p—value_of_the_Regression_Test_=._
getPvalue ()

”

, resultPartialRegression[i].

Get the p—value threshold of the Test
print "p—value_threshold _.for_Coordinate_=__
resultPartialRegression [i]. getThreshold ()

7, selection[i], ".=.7,

Full Regression Test : it performs the partial Regression test on the whole
coordinates of the first sample

Perform the Full Regression Test
resultFullRegression = HypothesisTest.FullRegression (continuousSamplel ,
continuousSample2, 0.90)

Same manipulations than those realised on resultPartialRegression to get
the results

1.2.7 UC : Distribution fitting tests, numerical and visual validation tests : ChiSquared test,
Kolmogorov test, QQ-plot graph

The objective of this UC is to :

e perform some parametric fitting tests on a numerical sample in dimension 1, with the maximum likelihood
principle or the moment based method,

e validate these estimations with numerical tests : the Kolmogorov test (continuous distributions) or the
ChiSquared test (discrete distributions),

e validate these estimations with a visual test : the QQ-plot graph.

The QQ-plot visual validation test is used with a numerical sample (representing the data) and a distribution
(representing the fitted one). For each point of the numerical sample used in the graph, Open Turns evaluates

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 50

its empirical quantile and associates to it the corresponding quantile from the fitted distribution.

The example here presents :

e the fitting of a numerical sample of dimension 1 with a Beta distribution, its validation with the Kol-
mogorov test and the QQ-Plot graph,

e the fitting of a numerical sample of dimension 1 with a Poisson distribution, its validation with the Chi
Squared test and the QQ-Plot graph.

e a scalar numerical sample (data) : sample
Requirements
type : NumericalSample

e a Beta fitted continuous distribution : estimatedBetaDistribution
type : Distribution

e a Uniform continuous fitted distribution : estimated UniformDistribu-
tion

type : Distribution

e a Poisson discrete fitted distribution : estimatedPoissonDistribution
type : Distribution

Results e the files containing the QQ-plot graph : QQPlot.png, QQPlot.eps
type : files at format PNG or EPS or FIG

e a numerical validation by the Kolmogorov test for two continuous
distributions (p-value)

type : TestResult

e a numerical validation by the ChiSquared test for discrete distribution
(p-value)

type :TestResult

Python script for this UseCase :

1

0 O O W N

Fit o Beta distribution to the sample
Create a Beta factory
factory = BetaFactory ()

FEstimate the beta parameters

We estimate all the parameters of the Beta distribution from sample
estimatedBetaDistribution = factory.buildlmplementation (sample)

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 51

9 # Display the resulted distribution with its parameters

10 print ”"Estimated._Beta_distribution=", estimatedBetaDistribution

11

12 # Validate the Beta fitted distribution with the Kolmogorov Test

13 # Test = True <=> the sample follows a Beta distribution (HO hypothesis)

14 # p—value threshold : probability of the HO reject zone = 1—0.95

15 # p—value : probability (test wvariable decision > test wvariable decision
evaluated on the samples)

16 # Test = True (=1) <=> p—value > p—value threshold

17 resultKolmogorov = FittingTest ().Kolmogorov(sample
estimatedBetaDistribution, 0.95)

18

19 # Print result of the Kolmogorov Test

20 print ”Test_Succes.?.”, (resultKolmogorov.getBinaryQualityMeasure ()==1)

21

22 # Get the p—value of the Kolmogorov Test

23 print "p—value_of_the_Kolmogorov_Test.=.", resultKolmogorov.getPvalue ()

24

25 # Get the p—value threshold of the Kolmogorov Test

26 print "p—value_threshold =.”, resultKolmogorov.getThreshold ()

27

28 # Validate the Beta fitting with a visual test : QQ-plot test

29 # Generate the Graph structure for the Q@-plot graph

30 # number of points of the graph fized to 100 (20 by default)

31 sampleBetaQQPlot = VisualTest .DrawQQplot (sample, Distribution (
estimatedBetaDistribution), 100)

32

33 # Impose a bounding box : xz—range and y—range

34 # boundingBox = [xzmin, zmaz, ymin, ymax]

35 myBoundingBox = NumericalPoint (4)

36 myBoundingBox [0] = xmin

37 myBoundingBox [1] = xmax

38 myBoundingBox [2] = ymin

39 myBoundingBox [3] = xmax

40 sampleBetaQQPlot . setBoundingBox (myBoundingBox)

41

42 # In order to see the graph whithout creating the associated files

43 Show (sampleBetaQQPlot)

44

45 # Draw the graph on the file Beta@QQ@Plot.png and twoSamplesQQPlot.eps

46 # if the file adress is not fulfilled , the file is created in the current
directory

47 sampleBetaQQPlot . draw (” SampleBetaQQPlot”)

48

49 # View the bitmap file

50 ViewImage (sampleBetaQQPlot . getBitmap ())

51

52 # Check if it worked

(©2007 EDF - EADS - PhiMeca

53
54
55
56
o7
58
99
60
61
62
63
64
65
66
67
68
69
70

71
72
73

74
75
76
77
78
79
80
81

Open TURNS — Use Cases Guide for the Textual User Interface 52

print ”bitmap.=_", sampleBetaQQPlot.getBitmap ()
print " postscript.=.", sampleBetaQQPlot.getPostscript ()

Fit a Poisson distribution to the sample
Create a Poisson factory
factory = PoissonFactory ()

FEstimate the Poisson parameters
We estimate all the parameters of the Poisson distribution from sample
estimatedPoissonDistribution = factory.buildImplementation (sample)

Display the resulted distribution with its parameters
print ”"Estimated._.Poisson._.distribution=", estimatedPoissonDistribution

Validate the Poisson fitted distribution with the ChiSquared Test

Test = True <=> the sample follows a Beta distribution (HO hypothesis)

p—value threshold : probability of the HO reject zone = 1—0.95

p—value : probability (test wvariable decision > test wvariable decision
evaluated on the samples)

Test = True (=1) <=> p—value > p—value threshold

Number of parameters estimated from sample : 1

resultChiSquared = FittingTest ().ChiSquared (sample,
estimatedPoissonDistribution, 0.95, 1)

Print result of the ChiSquared Test
print ”Test_.Succes.?.”, (resultChiSquared.getBinaryQualityMeasure ()==1)

Get the p—value threshold of the ChiSquared Test
print "p—value._threshold .=.”, resultChiSquared.getPvalue ()

Get the p—wvalue threshold (corresponding to the confidence level) of the
ChiSquared Test
print "p—value_of_the_ChiSquared._Test_=.", resultChiSquared.getThreshold ()

Figures 42 and 43 show a QQ-Plot graph to test the adequation of a sample coming from a Beta(r = 1.2, t =
3.4,a=1.0,b=2.0) to:

e the Beta(r = 1.2, t = 3.4, a = 1.0, b = 2.0) distribution : visual validation of the fitting,

e the Weibull(u = 1.5, 0 = 1.0, v = 1.0) : visual invalidation of the fitting.

1.2.8 UC : Normal distribution fitting test, visual validation tests (Henry line) and numerical
validation tests in extreme zones (Anderson Darling test and Cramer Von Mises test)

The objective of this UC is to fit a normal distribution to a scalar numerical sample, with the maximum like-
lihood principle or the moment based method, and to validate it with visual and numerical tests.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 53

sample versus model QQplot

™ petn qoplot
© |
© |
@
o]
[=]
£ < |
o |
. /
1.0 12 14 16 18

sample

Figure 42: Fitting validation by the QQ-Plot graph : Beta fitting to a Beta-sample.

sample versus model QQplot

™ Eetaqoplt

1.0 12 14 16 18
sample

Figure 43: Fitting invalidation by the QQ-Plot graph : Weibull fitting to a Beta sample.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 54

To help this decision, Open TURNS proposes the following tests :
e the Henry line visual test, which is the QQ-Plot graph adapted to the normal distribution,

e the Anderson Darling test : this test gives more importance to extreme values. If F;, is the empirical
cumulative density function of the sample (z;)1<i<n and if (z(;))1<i<n is the ordered sample, the Anderson
Darling test evaluates the decision variable :

[(Bw) - F@)’
At = | F)(1 = Fa) T

=n

=m0 1) llog(f () +log(1l — Flaguin)]

i=1

Under the hypothesis of normality of the distribution F', the decision variable has a tabulated distribution.

e the Cramer Von Mises test : this test gives also more importance to extreme values. If F), is the empirical
cumulative density function of the sample (z;)1<i<, and if (ﬂf(i))lgign is the ordered sample, the Cramer
Von Mises test evaluates the decision variable :

CM = /R(Fn(x)—F(w))2dF(w)

Under the hypothesis of normality of the distribution F, the decision variable has a tabulated distribution.

e a scalar numerical sample (data) : sample

Requirements
type : NumericalSample
e a normal fitted distribution : estimatedNormalDistribution
type : Distribution
e the files containing the Henry line graph : HenryPlot.png, Henry-
Plot.eps
type : files at format PNG or EPS or FIG
Results

e anumerical validation by the Anderson Darling test for two continuous
distributions (p-value)

type : TestResult

e a numerical validation by the test for Cramer Von Mises discrete dis-
tribution (p-value)

type : TestResult

Python script for this UseCase :

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 55

1 # Henry line graph

2 # Generate the Graph structure for the Henry line graph

3 henryPlot = VisualTest.DrawHenryLine (sample)

4

5 # Impose a bounding box : xz—range and y—range

6 # boundingBox = [zmin, zmazx, ymin, ymax]

7 myBoundingBox = NumericalPoint (4)

8 myBoundingBox [0] = xmin

9 myBoundingBox [1] = xmax

10 myBoundingBox [2] = ymin

11 myBoundingBox [3] = xmax

12 henryPlot.setBoundingBox (myBoundingBox)

13

14 # In order to see the graph whithout creating the associated files

15 Show (henryPlot)

16

17 # Draw the graph on the file HenryPlot.png and HenryPlot.eps

18 # if the file adress is not fulfilled , the file 1is created in the current
directory

19 henryPlot.draw (” HenryPlot”)

20

21 # View the bitmap file

22 ViewImage (HenryPlot . getBitmap ())

23

24 # Check if it worked

25 print ”bitmap.=.”, HenryPlot.getBitmap ()

26 print ”"postscript.=.", HenryPlot.getPostscript ()

27

28 # Anderson Darling Test

29 # Test = True <=> the sample follows a Normal distribution (HO hypothesis)

30 # p—wvalue threshold : probability of the HO reject zome = 1—0.95

31 # p—value : probability (test wvariable decision > test wvariable decision
evaluated on the samples)

32 # Test = True (=1) <=> p—value > p—value threshold

33 # Number of parameters estimated from sample : }

34 resultAndersonDarling = NormalityTest.AndersonDarlingNormal (sample, 0.95)

35

36 # Print result of the Anderson Darling Test

37 print ”"Test.Succes.?.”, (resultAndersonDarling.getBinaryQualityMeasure ()==1)

38

39 # Get the p—wvalue of the Anderson Darling Test

40 print "p—value_of_the_Anderson_Darling_Test_.=.", resultAndersonDarling.
getPvalue ()

41

42 # Get the p—wvalue threshold of the Anderson Darling Test

43 print "p—value_threshold._=_.", resultAndersonDarling.getThreshold ()

44

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 56

45 # Cramer Von Mises Test

46 # Test = True <=> the sample follows a Normal distribution (HO hypothesis)

47 # p—value threshold : probability of the HO reject zone = 1—0.95

48 # p—value : probability (test wvariable decision > test wvariable decision
evaluated on the samples)

49 # Test = True (=1) <=> p—wvalue > p—value threshold

50 # Number of parameters estimated from sample : j

51 resultCramerVonMises = NormalityTest.CramerVonMisesNormal (sample, 0.95)

52

53 # Print result of the Cramer Von Mises Test

54 print "Test_Succes.?.”, (resultCramerVonMises.getBinaryQualityMeasure ()==1)

55

56 # Get the p—value of the Cramer Von Mises Test

57 print "p—value_of_the_Cramer_.Von_Mises_.Test_=.", resultCramerVonMises.
getPvalue ()

58

59 # Get the p—value threshold of the Cramer Von Mises Test

60 print ”"p—value._threshold .=.”, resultCramerVonMises.getThreshold ()

Figures 44 and 45 show the Henry Line of a sample coming from a :

e Normal(y = 0.0, 0 = 1.0) distribution : visual validation of the normality,

e Beta(r = 0.7, t = 1.6, a = 0.0, b = 2.0) distribution : visual invalidation of the normality.

Henry Curve Henry Curve

N iy

3 2 - 0 1 5 3 0.0 05 1.0 15 270
sample sample

Figure 44: Validation of the hypothesis of normality by the Figure 45: Invalidation of the hypothesis of normalityHenry
Henry Line for a Normal-sample. Line for a Beta-sample.

1.2.9 UC : Making a choice between multiple fitted distributions : Kolmogorov ranking, ChiSquared
ranking and BIC ranking

The objective of this UC is to help to make a choice between several distributions fitted to a numerical sample.
This choice can be motivated by :

e the ranking by the Kolmogorov p-values (for continuous distributions),

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 57

e the ranking by the ChiSquared p-values (for discrete distributions),
e the ranking BIC values.

It does not necessarily require to know the parameters of the different distributions tested. It is possible to
precise :

e the distribution type only : in that case, Open TURNS builds a factory for each distribution type. Open
TURNS first evaluates the parameters of the distribution (through the maximum likelihood rule or the
moment based one) and then ranks the distributions according to the criteria selected,

e some complete distributions with their parameters : Open TURNS will only evaluate the criteria selectd
on each of them and rank them.

The example is the ranking through successively the three criteria (Kolmogorov, ChiSquared and BIC) of the
following models :

e the Beta model (continuous) ,
e the Triangular model (continuous) ,
e the Poisson model (discrete) ,

o the Geometric model (discrete).

e a numerical sample (data) : sample
Requirements
type : NumericalSample

e a continuous distribution which ranks first by the Kolmogorov test :
bestDistributionKolmogorov

type : Distribution

e a continuous distribution which ranks first by the BIC test : bestDis-

Results tributionBIC

type : Distribution

e a discrete distribution which ranks first by the ChiSquared test : best-
Distribution ChiSquared

type : Distribution

Python script for this UseCase :

=W N

CASE 1 : We don’t specify the parameters of the distributions tested

Create a collection of factories for all the models we want to test
collectionContinuousFactory = FactoryCollection (2)

(©2007 EDF - EADS - PhiMeca

0 3 S ot

11
12

13
14
15

16
17
18

19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42
43
44

45
46

Open TURNS — Use Cases Guide for the Textual User Interface

collectionContinuousFactory [0] = DistributionFactory (BetaFactory ())
collectionContinuousFactory [1] = DistributionFactory (TriangularFactory ())
collectionDiscreteFactory = FactoryCollection (2)
collectionDiscreteFactory [0] = DistributionFactory (PoissonFactory ())
collectionDiscreteFactory [1] = DistributionFactory (GeometricFactory ())

Rank the 2 continuous models by the Kolmogorov p—wvalues
bestDistributionKolmogorov = FittingTest.BestModelKolmogorov (sample ,
collectionContinuousFactory)

Get all information on that distribution
print ”"best_continuous.distribution _by_Kolmogorov._=.",
bestDistributionKolmogorov

Rank the 2 continuous models bythe BIC wvalues
bestDistributionBIC = FittingTest.BestModelBic(sample,
collectionContinuousFactory)

Get all information on that distribution
print "best_continuous.distribution _by_BIC_.=.”, bestDistributionBIC

Rank the 2 discrete models by the ChiSquared p—wvalues
bestDistributionChiSquared = FittingTest.BestModelChiSquared (sample ,
collectionDiscreteFactory)

Get all information on that distribution
print "best_continuous.distribution._by..=.”, bestDistributionChiSquared

CASE 2 : We specify the parameters of the distributions tested

Create a collection of distributions we want to test
collectionContinuousDistribution = DistributionCollection (2)
collectionContinuousDistribution [0] = Distribution (Beta(1., 2., 3., 4.))
collectionContinuousDistribution [1] = Distribution (Triangular (1., 2., 4.))
collectionDiscreteDistribution = DistributionCollection (2)
collectionDiscreteDistribution [0] = Distribution (Poisson(2))
collectionDiscreteDistribution [1] = Distribution (Geometric(0.2))

Rank the 2 continuous models by the Kolmogorov p—wvalues
bestDistributionKolmogorov = FittingTest.BestModelKolmogorov (sample ,
collectionContinuousDistribution)

Get all information on that distribution
print "best_continuous_distribution .by_Kolmogorov._=.",

bestDistributionKolmogorov

Rank the 2 continuous models bythe BIC values

(©2007 EDF - EADS - PhiMeca

47

48
49
50
51
52
53

54
55
56

Open TURNS — Use Cases Guide for the Textual User Interface 59

bestDistributionBIC = FittingTest.BestModelBic(sample,
collectionContinuousDistribution)

Get all information on that distribution
print "best_continuous.distribution _by_BIC_.=.", bestDistributionBIC

Rank the 2 discrete models by the ChiSquared p—wvalues
bestDistributionChiSquared = FittingTest.BestModelChiSquared (sample ,
collectionDiscreteDistribution)

Get all information on that distribution
print "best_continuous_distribution_by_..=_.", bestDistributionChiSquared

1.2.10 UC : PDF fitting by kernel smoothing and graphical validation : superposition of the
empirical and kernel smoothing CDF

The objective of this UC is to model the PDF of a random vector, described by a numerical sample thanks to
the kernel smoothing method and to superpose on the same graph the kernel smoothing PDF and the histogram
built from the same numerical sample.

In dimension 1, the kernel smoothed PDF p,, has the following expression, where K is the kernel PDF, n the
numerical sample size and (X1, -, X,,) € R" the numerical sample whith Vi, X; € R :

12 s X
=1

In dimension d > 1, the kernel of Open TURNS is the product kernel, K4, defined by the following expression,
where z = (2!, 29) € R :

oIl

which leads to the kernel smoothed PDF in dimension d, where (X;,---,X,,) is the numerical sample of
dimension d:

1 g Lo XJ
Let’s note that the bandwith is the vector h = (h!,--- ,hd).

The choice of the kind of the kernel is free in Open TURNS : it is possible to select any 1D distribution and
to define it as a kernel. However, in order to optimise the efficiency of the kernel smoothing fitting (it means
to minimise the AMISE error), it is recommended to select a symetric distribution for the kernel. All the
distribution default constructors of Open TURNS create a symetric default distribution when possible. It is
also possible to work with the Epanechnikox kernel, which is a Beta(r = 2,t =4,a = —1,b = 1).

The default kernel is a product of standard Normal distribution. The dimension of the product is automatically
evaluated from the numerical sample.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 60

The bandwith A may be fixed by the User. However, it is recommended to let Open TURNS evaluate it
automatically from the numerical sample according to the Scott rule. The bandwith is evaluate for each
direction according to the Scott rule :

i O _1(d+4) 9
Scott — n ()
OK
where 67 is the standard deviation of the ¢ — th component of the sample (X,---,X,,), and ok the standard

deviation of the 1D kernel K.

Note that this bandwith is a simplification of the Silverman bandwith which minimises the AMISE error when
using a Normal kernel in order to fit a gaussian vector whith independent components. That’s why the Scott
bandwith may appear too large when the real probability density fucntion presents several maximum.

The Silverman rule proposes the following bandwith, in dimension d with a normal kernel Normal(0.0,1.0):

‘ 4\ /) .
Siw(V) = <d+2> G~/ A+ (3)

The Scott proposition is based on the following remarks :

remains in [0.924,1.059] when the dimension d varies : Scott

4\ V)
_— ~1 4
= g

e Remark 2 : in the case of dimension d = 1, the Silverman rule applied to the kernels K; and K, not
necessarily normal, leads to both bandwiths h! and h? such as :

1/(d+4)
e Remark 1 : the coefficient (4)

d+2
fixedit to 1 :

hgao(K1) ok, [UKlR(Kl)r/E)

h2,.(K2) ok, |ok,R(K2)

()

where R(K) = [K?(z)dz. Furthermore, the quantity ok, R(K1) is quasi equal to 1 whatever the kernel
K. Thus, relation (5) simplifies in :

oK
h%ilv(KQ) = hAlS'ilv(Kl) - (6>

0Ky

Scott spreads the relation (6) to any direction, whith K; a Normal kernel : relations (4), (3) and (6)
finally lead to the Scott relation (2).

In dimension 1, the boundary effects may be taken into account in Open TURNS : the boundaries are automat-
ically detected from the numerical sample (with the min and max functions) and the kernel smoothed PDF is
corrected in the boundary areas to remain within the boundaries, according to the miroring technique :

e the Scott bandwith is evaluated frome the numerical sample : h

e two subsamples are extracted from the inital numerical sample, containing all the points within the range
[min, min + h[and Jmax — h, max],

e both subsamples are transformed into their symetric samples with respect their respective boundary : its
results two samples within the range |min — h, min] and [maz, mazx + h|,

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 61

e a kernel smoothed PDF is built from the new numerical sample composed with the initial one and the
two new ones, with the previous bandwith h,

e this last kernel smoothed PDF is truncated within the inital range [min, max] (conditionnal PDF).

e a nD-sample : sample
Requirements
type : NumericalSample

e 3 kernel smoothed distribution : kernelSmoothedDist
Results
type : Distribution

Python script for this UseCase :

0O 3 O U i Wi

QDN DNDNDNDDNDDNDDNDNDNDDN = == = = =
O O 00 JO UL WNRHFE O OO ULk W~ OO

31

STEP 1 : Creation of the kernel

Create the default kernel : kernel product of N(0.0, 1.0)
kernel = KernelSmoothing ()

Create a specified kernel
for example, a Uniform one
the default construction of the Uniform
creates the Uniform(—1.0, 1.0)
kernel = KernelSmoothing(Distribution (Uniform ()))

Specify totally the kernel
CARE : the kermel smoothing is more efficient
when the kernel support is symetric qith respect to 0
myDist = Triangular(—2.0, 0.0, 2.0)
kernel = KernelSmoothing (Distribution (myDist))

STEP 2 : Creation of the kernel smoothed distribution
The dimension of the distribution is automatically
detected from the numerical sample

With no bandwith specification
With no boudary treatment

kernelSmoothedDist = kernel.buildlmplementation (sample)

Check the bandwidth wused
print ”kernel_bandwidth=" , kernel.getBandwidth ()

Specify a particular bandwith

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 62

32 myBandwith = NumericalPoint (sample.getDimension (), 1.0)

33 kernelSmoothedDist = kernel.buildlmplementation (sample, myBandwith)

34

35 # Add a boundary treatment

36 # CARE : only in dimension 1

37 kernelSmoothedDist = kernel.buildlmplementation (sample, ’TRUE’)

38 # or

39 kernelSmoothedDist = kernel.buildlmplementation (sample, myBandwith, ’TRUE’)
40

41

42 # GRAPH : In dimension 1, superposition of the kernel smoothed CDF
43 # and the empirical CDF

44 # Create the graph containing the kernel smoothed PDF

45 kernelSmoothedCDF = kernelSmoothedDist .drawCDF ()

46

47 # Draw the empirical CDF of the sample on the same graph

48 empirical CDF = VisualTest.DrawEmpirical CDF (sample ,sample.getMin () [0] ,sample.
getMax () [0])

49 drawableEmpirical CDF = empirical CDF . getDrawable (0)

50

51 # Add the second drawable on the first graph

52 kernelSmoothedCDF . addDrawable (drawableEmpirical CDF')

53

54 # Impose a bounding box : xz—range and y—range

55 # boundingBox = [zmin, zmaz, ymin, ymaz]

56 myBoundingBox = NumericalPoint (4)

57 myBoundingBox [0] = xmin

58 myBoundingBox [1] = xmax

59 myBoundingBox [2] = ymin

60 myBoundingBox [3] = xmax

61 kernelSmoothedCDF . setBoundingBox (myBoundingBox)

62

63 # In order to see the graph whithout creating the associated files

64 Show (kernelSmoothedCDF)

65

66 # Draw the final graph on the file smoothedCDF—EmpiricalCDF at format .eps,
png and . fig

67 # if the adress is not fulfilled , the file is created in the current
directory

68 kernelSmoothedCDF . draw (”smoothedCDF—Empirical CDF”)

69

70 # View the bitmap file

71 ViewImage (kernelSmoothedCDF . getBitmap ())

72

73 # Check the adress of the bitmap and Postscript files

74 print ”bitmap=", kernelSmoothedCDF .getBitmap ()

print” postscript=", kernelSmoothedCDF . getPostscript ()

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 63

Figures 46 and 47 show a 1D kernel smoothing of a distribution of type Mixture which PDF is defined by :
0.2*Triangular(1.0, 2.0, 4.0) + 0.5*Normal(-1.0, 1.0) 4+ 0.3*Exponential(1.0, 3.0), thanks to a numerical sample
of size 10*, with a Normal kernel, a Triangular one and the Epanechnikov one.

Figures 48 and 49 show the effect of the boundary treatment in the kernel smoothing through the example of
the exponential distribution Exp(\ = 2.0, = 0.0). A Normal kernel is used.

Kernel smoothing of the PDF

0.20
L

POF
016

010

0.08
L

0.00

Figure 46: PDF of the kernel smoothing
distributions and of the real one.

Effect of the boundary treatment on the kernel smoothing

= Exponential POF
=L.ainalsmaothing whith boundary tisatme nt
=jeimslsmaothing whithoutboundary trestmert

PDF

08

0.0

Figure 48: Effect of the boundary treat-
ment on the kernel smoothing PDF of an
exponential distribution.

Kernel smoothing of the CDF

06 0.8 1.0

CDF

04
L

0.2

0.0

Figure 47: CDF of the kernel smoothing
distributions and of the real one.

Etfect of the boundary treatment on the kernel smoothing

0.6 0e

CDF

04
L

0.2

= Exponentisl G DF
= karnel smoathing whith boundary beatment

00

=ksmal smasthing whithout boundary treatmant

T T T T T T T
-1.0 -05 oo 05 1.0 1.5 20

Figure 49: Effect of the boundary treat-
ment on the kernel smoothing CDF of an
exponential distribution.

1.2.11 UC : Building and validating a linear model from two samples

The objective of this UC is to build a linear regression model between a the scalar variable Y and the n-

dimensionnal one X = (X;)i<p, as follows :

?ZGQ—I—ZGZ‘XZ‘-FE
i

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 64

where € is the residual, supposed to follow the Normal(0.0, 1.0) distribution.
Each coefficient a; is evaluated from both samples Ysample and Xsample and is accompagnied by a confidence
interval and a p-value (wich tests if they are significantly different from 0.0).

The linear model may be used to evaluate predictions on particular sample of the variable X : particularXSam-

ple.

The linear model may be validated :

e graphically if Xsample is of dimension 1, by drawing on the same graph the cloud (Xsample, Ysample)
and the regression line, with the Open TURNS method DrawLM VisualTest,

e numerically with the following Open TURNS tests :

LMRSquared Test which tests the quality of the linear regression model. It evaluates the indicator
R? (regression variance analysis) and compares it to a level,

LMRAdjustedSquared which tests the quality of the linear regression model. It evaluates the indicator
R? adjusted (regression variance analysis) and compares it to a level,

LMFisher Test which tests the nullity of the regression linear model coefficients (Fisher distribution
used),

LMResidual Test which tests, under the hypothesis of a gaussian sample, if the mean of the residual
is equal to zero. It is based on the Student test (equality of mean for two gaussian samples).

The hypothesis on the residuals (centered gaussian distribution) may be validated :

e graphically if Xsample is of dimension 1, by drawing the residual couples (€& ,~ei+1), where the residual ¢;
is evaluated on the samples (Xsample, Ysample) : ¢; = Ysample; — Y; with Y; = ag + a3 X sample;. The
Open TURNS method is DrawLMResidualtest

e numerically with the LMResidualMean Test wich tests, under the hypothesis of a gaussian sample, if the
mean of the residual is equal to zero. It is based on the Student test (equality of mean for two gaussian

samples).
e a 1D-sample : Ysample
type : NumericalSample
e a nD-sample : Xsample
Requirements

type : NumericalSample
e a nD-sample : particularXSample

type : NumericalSample

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 65

e a linear regression model : linearRegressionModel
type : LinearModel

e the linear coefficients (a;)o<i<n : coefValues
type : scalarCollection

e the confidence intervals of each coefficient a;
type : ConfidencelntervalCollectionf

e the p-values of each coefficient a;

type : ConfidencelntervalCollection

e the predicted value on a particular sample : predictedSample
type : NumericalSample

e the sample of resual values: residualSample

type : NumericalSample

Results e the graph superposing the samples cloud and the regression line (in
case of dimension 1 for X) : linearRegressionModel.png, linear-
RegressionModel.eps

type : files at format PNG or EPS or FIG

e the graph of residual values : residualGraph.png, residualGraph.eps
type : files at format PNG or EPS or FIG

e LMRAdjustedSquared test result : resultLMRAdjustedSquared
type : TestResult

e LMRSquared test result : resultLMRSquared

type : TestResult

e LMFisher test result : resultLMFisher

type : TestResult

e LMResidualMean test result : resultLMResidualMean

type : TestResult

Python script for this UseCase :

1 # (Create the linear model from both sample : Ysample function of Xsample
2 # CARE : Xsample is of dimension n and Ysample of dimension 1

(©2007 EDF - EADS - PhiMeca

N O U = W

© 0o

11
12
13
14
15
16

17
18
19

20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40

41

42
43

Open TURNS — Use Cases Guide for the Textual User Interface 66

The level confidence to evaluate the confidence interval is set to 0.90
linearRegressionModel = LinearModelFactory () .buildLM (Xsample, Ysample, 0.90)

Get the coefficients ai
print " coefficients._of_.the_linear_regression.model_=." |
linearRegressionModel . getRegression ()

Get the confidence intervals of the ai coefficients
print ”confidence_intervals_of_the_.coefficients.=.” |, linearRegressionModel.
getConfidencelntervals ()

Get the p values of the (n+1) coefficients ai:
print "p—value_of_each_coefficient_=.” | linearRegressionModel.getPValues ()

Fvaluate the predictions on the sample particularXSample
2

print "predicted._values_on_particularXSample_.=.” , linearRegressionModel.
getPredict (particularXSample)

Get the residuals
print ”"residuals_values._=_’
Ysample)

)

, linearRegressionModel. getResidual (Xsample,

GRAPH 1 : Validate the model with a visual test
superposition of clouds (Xsample, Ysample)
ONLY if Xsample is a SCALAR numerical sample
+ linear regression model
Create the graph structure
linearRegressionGraph = VisualTest.DrawLMVisualTest (Xsample, Ysample,
linearRegressionModel)

Impose a bounding box : xz—range and y—range

boundingBox = [xzmin, zmazx, ymin, ymax]
myBoundingBox = NumericalPoint (4)
myBoundingBox [0] = xmin

myBoundingBox [1] = xmax

myBoundingBox [2] = ymin

myBoundingBox [3] = xmax

linearRegressionGraph . setBoundingBox (myBoundingBox)

In order to see the graph whithout creating the associated files
Show (linearRegressionGraph)

Draw the graph on the file linearRegressionModel.png and
linearRegressionModel. eps

if the file adress is not fulfilled , the file is created in the current
directory

linearRegressionGraph .draw(”linearRegressionModel”)

(©2007 EDF - EADS - PhiMeca

44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

Open TURNS — Use Cases Guide for the Textual User Interface

67

View the bitmap file
ViewImage (linearRegressionGraph . getBitmap ())

Check if it worked
print ”bitmap.=.” , linearRegressionGraph.getBitmap ()
print ”postscript.=." , linearRegressionGraph.getPostscript ()

GRAPH 2 : Draw the graph of the residual values
couples (residual i, residual i+1)
ONLY if Xsample is a SCALAR numerical sample
Create the graph structure
residualValuesGraph = VisualTest.DrawLMResidualTest (Xsample, Ysample,
linearRegressionModel)

Impose a bounding box : xz—range and y—range
boundingBox = [xzmin, zmazx, ymin, ymax]

myBoundingBox = NumericalPoint (4)
myBoundingBox [0] = xmin
myBoundingBox [1] = xmax
myBoundingBox [2] = ymin
myBoundingBox [3] = xmax

linearRegressionGraph . setBoundingBox (myBoundingBox)

In order to see the graph whithout creating the associated files
Show (residualValuesGraph)

Draw the graph on the file residualGraph.png and residualGraph.eps

if the file adress is not fulfilled , the file 1is created in the current
directory

residualValuesGraph .draw(”residualGraph”)

View the bitmap file
Viewlmage (residualValuesGraph . getBitmap ())

Check if it worked
print ”bitmap.=." , residualValuesGraph.getBitmap ()
print ”"postscript.=.” , residualValuesGraph.getPostscript ()

LMRSquared Test tests the quality of the linear regression model.
It evaluates the R"2 indicator (regression variance analysis)
and compares it to a lewvel
HO = R"2 > level
Test = True <=> R"2 > level
p—value threshold : level CARE : it is NOT a probability here!
p—value : R°2 CARE : it is NOT a probability here!
Test = True <=> p—value > p—value threshold

The two following tests must be equal

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 68

90 # Test 1 : We don’t give the linear model wich is evaluated and then tested

91 resultLMRSquaredl = LinearModelTest.LMRSquared (sampleX, sampleY, 0.90)

92

93 # Test 2 : We give the regression linear model evaluated previously

94 resultLMRSquared2 = LinearModelTest . LMRSquared (sampleX , sampleY ,
linearRegressionModel ; 0.90)

95

96 # Print result of the LMRSquared Test

97 print ”Test_Succes.?.”, (resultLMRSquaredl.getBinaryQualityMeasure ()==1)

98

99 # Get the p—value of the LMRSquared Test

100 # CARE : it is NOT a probability here! but the R"2 wvalue

101 print "p—value_of_the _LMRSquared_Test_=.", resultLMRSquaredl.getPvalue ()

102

103 # Get the p—value threshold of the LMRSquared Test

104 # CARE : it is NOT a probability here! but the level=0.90 here

105 print "p—value_threshold. .=.", resultLMRSquaredl.getThreshold ()

106

107

108 # LMAdjustedRSquared Test tests the quality of the linear regression model.
109 # It evaluates the adjusted R"2 indicator (regression wvariance analysis)
110 # and compare it to a level

111 # HO = adjusted aR"2 > level

112 # Test = True <=> adjusted R"2 > level

113 # p—value threshold : level CARE : it is NOT a probability here!

114 # p—value : adjusted R"2 CARE : it is NOT a probability here!

115 # Test = True <= p—wvalue > p—value threshold

116

117 # The two tests must be equal

118 # We don’t give the linear model wich ts evaluated and then tested

119 resultLMAdjustedRSquaredl = LinearModelTest.LMAdjustedRSquared (sampleX,
sampleY, 0.90)

120

121 # We give the regression linear model evaluated previously

122 resultLMAdjustedRSquared2 = LinearModelTest.LMAdjustedRSquared (sampleX ,
sampleY , linearRegressionModel, 0.90)

123

124 # Print result of the LMAdjustedRSquared Test

125 print ”Test_Succes.?.”, (resultLMAdjustedRSquaredl.getBinaryQualityMeasure ()
—=1)

126

127 # Get the p—value of the LMAdjustedRSquared Test

128 # CARE : it is NOT a probability here! but the R"2 walue

129 print "p—value_of_the_LMAdjustedRSquared._Test_=_", resultLMAdjustedRSquaredl
.getPvalue ()

130

131 # Get the p—wvalue threshold of the LMAdjustedRSquared Test

132 # CARE : it is NOT a probability here! but the level=0.90 here

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 69

133 print "p—value_threshold _=.", resultLMAdjustedRSquaredl.getThreshold ()

134

135 # LMPFisher Test tests the nullity of the regression linear model coefficients (
Fisher distribution wused).

136 # HO = the linear relation coefficients are those evaluated by the linear
regresion

137 # Test = True <=> the linear relation coefficients are those evaluated by
the linear regresion

138 # p—value threshold : probability of the HO reject zone : 1—0.90

139 # p—value : probability (test wvariable decision > test wvariable decision
evaluated on the samples)

140 # Test = True <=> p—wvalue > p—value threshold

141

142 # The two tests must be equal

143 # Test 1 : We don’t give the linear model wich is evaluated and then tested

144 resultLMFisherl = LinearModelTest.LMFisher (sampleX, sampleY, 0.90)

145

146 # Test 2 : We give the regression linear model evaluated previously

47 resultLMFisher2 = LinearModelTest . LMFisher (sampleX, sampleY,
linearRegressionModel , 0.90)

148

149 # Print result of the LMFisher Test

150 print ”Test_Succes.?.”, (resultLMFisherl.getBinaryQualityMeasure ()==1)

151

152 # Get the p—value of the LMFisherTest

153 print "p—value_of_the_LMFisher_Test.=.", resultLMFisherl.getPvalue ()

154

155 # Get the p—value threshold of the LMFisher Test

156 print ”"p—value.threshold. .=.”, resultLMFisherl.getThreshold ()

157

158 # LMResidualMean Test tests, under the hypothesis of a gaussian sample, if the
mean of the residual is equal to zero. It is based on the Student test (
equality of mean for two gaussian samples).

159 # HO = the residuals have a mean equal to zero

160 # Test = True <=> the residuals have a mean equal to zero

161 # p—value threshold : probability of the HO reject zone : 1—0.90

162 # p—value : probability (test wvariable decision > test wvariable decision
evaluated on the samples)

163 # Test = True <=> p—value > p—value threshold

164

165 # The two tests must be equal

166 # Test 1 : We don’t give the linear model wich is evaluated and then tested

167 resultLMResidualMeanl = LinearModelTest.LMResidualMean (sampleX , sampleY ,
0.90)

168

169 # Test 2 : We give the regression linear model evaluated previously

170 resultLMResidualMean2 = LinearModelTest.LMResidualMean (sampleX , sampleY ,

linearRegressionModel ;, 0.90)

(©2007 EDF - EADS - PhiMeca

171
172
173
174
175
176

77

178

Open TURNS — Use Cases Guide for the Textual User Interface 70

Print result of the LMResidualMean Test
print ”"Test_Succes.?.”, (resultLMResidualMeanl . getBinaryQualityMeasure ()==1)

Get the p—value of the LMResidualMeanTest
print "p—value_of_the_LMResidualMean_Test_=.” , resultLMResidualMeanl .
getPvalue ()

Get the p—value threshold of the LMResidualMean Test
print "p—value_threshold. .=.”, resultLMResidualMeanl.getThreshold ()

The following figures draw the regression model superposed on the samples cloud (Xsample, Ysample) of size
103 and the residuals graph in both cases :

e where the regression model seems validated : Figures 50 and 51,
e where the regression model doesn’t seem to be validated (relation of kind Y = X?) : Figures 52 and 53.

e where the regression model doesn’t seem to be validated (relation of kind Y = sin(X)) : Figures 54 and

. residual(i) versus residual(i-1)
original sample versus LM modeled one
o ™ Triangulzr Linearhdode | ezidua| Text|
8 i :grj:r:r?:‘las:;:::mnode\v'suaﬁest . .
[P
o b gt b
0 T Y =
al L - FrA R Y
_ st MR
_ PR - --i_'s. 'ﬂ" gy -
o = L P
&] AL B 'f..‘\
3 B " .] =
g " .:“-.._"-E] Pt e LR
=N T ’, . iy "
o | o 2 31 LA ey
0 T Vi Lty L
AT I i
=) L IR e
— 7 c\|‘ L '....- "o
-
o 7
T T T T . T ;
-3 -2 -1 0 1 2 3

2 4 6 8 10 redidual(i-1)

Figure 51: Visual Validation of the Linear Regression Model

Figure 50: Visual validation of the Linear Regression Model. .
: residuals graph.

1.2.12 UC : Statistical manipulations on data : min, max, covariance, skewness, kurtosis, quan-
tile, empirical CDF, Pearson, Kendall and Spearman correlation matrixes and rank/sort
functionnalities

The objective of this UC is to describe the main statistical functionalities that Open TURNS enables to ma-
nipulate some data, represented by a NumericalSample.

Open TURNS enables to calculate per components :

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 71

original sample versus LM modeled one residual(i) versus residual(i-1)

o
S
- ™ Triangular Linearhode| visus Test] . " ™ Triangular Linearhode| esidual Test
= rginal Sample [Te}
=
j= 2
[++] L]
.

<
©

=

S

.
> 91- i o

]

o«

et
<
ol

.
(=15 ol e w
.
.
T

redidual(i-

1)

Visual invalidation of the Linear Regression

Figure 52: Visual invalidation of the Linear Regression Figure 53:

Model. Model : residuals graph.
original sample versus LM modeled one residual(i) versus residual(i-1)
L] ™ Triangular Linearhiode| vizus Test] = ™ Triangulsr Linearhiods | esidua] Teet
o .‘.. o i Onginal Sample o | - F . = -
0 | A] A 19 |
< LI - t j H @
- H ' J H =
S B N g
f=) g 3 A
L= :] v .] " T o
fa L | a7 Y & i o
0 { : i P S
i ! - r . o
i . % . i I i
J-l' u %) ;: L .
< - " Ly =ling s =}
o ~ L'} i N
w1 # : t: " T
a & 8 10

Figure 54: Visual invalidation of the Linear Regression Figure 55: Visual invalidation of the Linear Regression

Model.

Model :

red|dua|(| 1)

residuals graph.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 72

min and max per component, with the methods getMin, getMazx
range per component, with the method computeRangePerComponent

mean, variance, standard deviation , skewness and kurtosis per component, with the methods compute-
Mean, computeVariancePer Component, computeStandardDeviationPerComponent, computeSkewnessPer-
Component, computeKurtosisPerComponent

empirical median and other quantiles per component, with the methods computeMedianPerComponent,
computeQuantilePerComponent

Open TURNS enables some global calculs :

covariance of the sample, with the methods computeCovariance

standard deviation of the sample : the Cholesky factor of the covariance matrix, with the methods
computeStandardDeviation

Pearson, Kendall and Spearman correlation matrix, with the methods computePearsonCorrelation, com-
puteKendallTau, computeSpearmanCorrelation

empirical CDF evaluated on a point, with the methods computeEmpirical CDF

empirical quantiles, with the method computeQuantile.

At last, it is possible :

to copy into a NumericalSample whose components are the respective ranks of the components, with the
method rank,

to copy into a NumericalSample whose components are all sorted in ascending order, with the method
sort

to extract the (i + 1) component whose components are all sorted in ascending order, with the method
sort(i)

to copy into a NumericalSample whose NumericalPoints are reordered such that the (i + 1) component
is sorted in ascending order, with the method sortAccordingA Component(i),

to keep from the Numericalsample only the 4 first points, with the method split (i),
to translate the points of the NumericalSample, with the method translate ,
to multiply all the components of the points by a factor, with the method scale,

to remove a particular point from the NumericalSample, with the method erase.

Requirements

e a numerical sample : sample

type : NumericalSample

Results

e statistical elements listed previously

type : NumericalPoint, SquareMatrix or CorrelationMatrix

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 73

Python script for this UseCase :

© 00 g O U i W N~

=
N = O

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Get min
print
print

Get the
print

Get the
print

Get the
print

and max per component
"Min.per _component.=" , sample.getMin ()
"max._per _component._=" , sample.getMax ()

range per component
”Range._per._component .=

)

, sample.computeRangePerComponent ()

mean per component
"Mean_.=" , sample.computeMean ()

standard deviation per component
”Standard._deviation._per_component.=" , sample.

computeStandardDeviationPerComponent ()

Get the
print

Get the
print

Get the
print

Get the
print

Get the
print

(0.

Get the
print

Get the
print

Get the
print

Variance per component
”"Variance_.=" , sample.computeVariancePerComponent ()

Skewness per component
”Skewness.=" | sample.computeSkewnessPerComponent ()

Kurtosis per component
"Kurtosis.=" , sample.computeKurtosisPerComponent ()

median per component
”"Median_per _component_=" , sample.computeMedianPerComponent ()

empirical 0.95 quantile per component
”70.95_.quantile _per.component_=" , sample.computeQuantilePerComponent
95)

sample covariance
"Covariance_.=" , sample.computeCovariance ()

sample standard deviation
”Standard.deviation.=" | sample.computeStandardDeviation ()

sample Pearson correlation matriz
"Pearson._correlation_=" | sample.computePearsonCorrelation ()

Get the sample Kendall correlation matriz

print

"Kendall_correlation.=" |, sample.computeKendallCorrelation ()

Get the sample Spearman correlation matric

print

”Spearman.correlation.=" |, sample.computeSpearmanCorrelation ()

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 74

44 # Get the wvalue of the empirical CDF at point POINT

45 POINT = sample.computeQuantilePerComponent (0.25)
46 print ”Empirical .CDF.at._point .POINT_.=.” , sample.computeEmpiricalCDF (POINT)
47

48 # Get the empirical 0.95 quantile
print ”70.95_quantile._.=" | sample.computeQuantile (0.95)

To illustrate each method, we give here an example in dimension 2 : consider the following NumericalSample
numSample = [(1.3,1.2); (4.1,1.0); (2.3,2.7)]. Then,
At last, it is possible :

e new = numSample.rank() : new = [(0,1);(2,0); (1,2)],

e new = numSample.sort() : new = [(1.3,1.0);(2.3,1.2); (4.1,2.7)],

e new = numSample.sort(0)) : new = [(1.3);(2.3); (4.1)],

e new = numSample.sort According AComponent(1) : new = [(4.1,1.0); (1.3,1.2); (2.3,2.7)],

o new = numSample.split(2) : new = [(2.3,2.7)] and numSample = [(1.3,1.2); (4.1,1.0)],

o new = numSample.translate(Numerical Point(2,1.0) : new = [(2.3,2.2); (4.1,2.0); (3.3, 3.7)],
e new = numSample.scale(Numerical Point(2,2.0) : new = [(2.6,2.4); (8.2,2.0); (4.6,5.4)],

e new = numSample.erase(1l) : new = [(1.3,1.2); (2.3, 2.7)].

1.2.13 UC : Drawing one cloud

The objective of this UC is to draw on a graph one point cloud of dimension 2.

e one numerical sample of dimension 2 : sample

Requirements

type : NumericalSample

e the files containing the cloud graph : Graph_Cloud_OT.png,
Results Graph_Cloud_-OT.eps

type : files at format PNG or EPS or FIG

Python script for this UseCase :

1 # Create an empty graph
myGraph = Graph(”Sample”, "x1”, "x2”, True, ”"topright”)
print “myGraph=" , myGraph

Create the cloud Drawable
cloud : filled squares in blue

S O = W N

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 75

7 myCloud = Cloud (sample, ”blue”, ”fsquare” ,” First._Cloud”)
8 print “myCloud=" , myCloud
9
10 # Then, add it in the empty graph
11 myGraph . addDrawable (Drawable (myCloudl))
12
13 # Impose a bounding box : z—range and y—range
14 # boundingBox = [zmin, zmaz, ymin, ymaz]
15 myBoundingBox = NumericalPoint (4)
16 myBoundingBox [0] = xmin
17 myBoundingBox [1] = xmax
18 myBoundingBox [2] = ymin
19 myBoundingBox [3] = xmax
20 myGraph . setBoundingBox (myBoundingBox)
21
22 # In order to see the graph whithout creating the associated files
23 Show (myGraph)
24
25 # Draw the graph containing the cloud
26 myGraph . draw (” Graph_Cloud_OT”)
27
28 # View the bitmap file
29 Viewlmage (myGraph. getBitmap ())
30
31 # Check if it worked
32 print ”bitmap=" , myGraph.getBitmap ()
print ”postscript=" , myGraph.getPostscript ()

The following Figure (56 draw the superposition of two clouds of dimension 2 and size 1000, realisations of

e a Normal distribution with 0 mean, unit standard deviation and independant components,

e a Normal distribution with unit-mean, unit-standard deviation and independant components.

2 Creation of the limit state function and the output variable of interest

The objective of the section is to specify the limit state function and the output variable of interest, defined
from the limit state function.
It corresponds to the step 'Step A : Specify the output variable of interest’ of the global methodology.

2.1 Creation of the limit state function
2.1.1 UC : From an external wrapper with gradient and hessian implementations
The objective of this UC is to specify the limit state function, defined through an external wrapper .

The example here is the wrapper poutre.xml which contains the implementations of :

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 76

Distribution 1 sample

a = First Cloud
= Second Cloud
- 4

I’I\J
o
3%
.

Figure 56: Superposition of two normal NumericalSample of dimension 2.

e the function func_erec_compute_deviation,
e its gradient grad_exec_compute_deviation and

e its hessian hes_exec_compute_deviation.

It is necessary to refer to the documentation Open TURNS - Wrappers Guide to have explanations on what
constitues an Open TURNS wrapper.

Requirements || e wrapper of the limit state function poutre.xml

e the limit state function : poutre(*)
Results
type : NumericalMathFunction

(*) :
poutre : | R4 — R
FL? (7)

EF L1 = —
(77))'_>y0 3EI

Python script for this UseCase :

1 # Create the limit state function ’‘poutre’ from the wrapper ’poutre’
2 poutre = NumericalMathFunction (” poutre”)

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface s

2.1.2 UC : From an analytical formula declared in line

The objective of this UC is to specify the limit state function, defined through an analytical formula declared
in line. Open TURNS automatically gives to the analytical formula an implementation for the gradient and
the hessian : by default,

e the gradient evaluation method is the centered finite difference method, with the differential increment
h = le — 5 for each direction,

e the hessian evaluation method is the centered finite difference method, with the differential increment
h = le — 4 for each direction.

it is possible to change the evaluation method for the gradietn or the hessian. The following Use Case shows
how to proceed.

The example here is the AnalyticalFunction myAnalyticalFunction defined by the formula :

myAnalytical Function : R? — R

(xo, 1) — Yo = —(6+a:3 — 1)

Requirements } [none

e the analytical limit state function : myAnalytical Function
Results
type : NumericalMathFunction

Python script for this UseCase :

0 g O T Wi~

S e S
TR W N~ OO

17
18
19
20

Describe the input vector of dimension 2

inputFunc = Description (2)
inputFunc [0] = ”x0”
inputFunc [1] = 7"x1”

Describe the output vector of dimension 1
outputFunc = Description (1)
outputFunc[0] = ”Output_Variable_of_Interest._1”

Give the formulas

formulas = Description (outputFunc. getSize ())
formulas [0] = " —(6.—.x1_4+.x0"2)”
print ”"formulas=" , formulas

Create the analyticalfunction ’‘myFunction’
myAnalyticalFunction = NumericalMathFunction (inputFunc, outputFunc, formulas

)

Change the gradient evaluation method
(some algorithms need it)
Type : non centered finite difference method

(©2007 EDF - EADS - PhiMeca

21

22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39

Open TURNS — Use Cases Guide for the Textual User Interface 78

myGradient = NonCenteredFiniteDifferenceGradient (NumericalPoint (2, 1.0e—7),
myAnalyticalFunction. getEvaluationlmplementation ())
print "myGradient_.=." , myGradient

Substitute the gradient
myAnalyticalFunction.setGradientImplementation (myGradient)

Change the hessian evaluation method
type : non centered finite difference method
myHessian = CenteredFiniteDifferenceHessian (NumericalPoint (2, 1.0e—7),
myAnalyticalFunction. getEvaluationImplementation ())
print "myHessian_=.” , myHessian

Substitute the hessian
myAnalyticalFunction.setHessianImplementation (myHessian)

Check if it worked

x = NumericalPoint (myAnalyticalFunction. getInputNumericalPointDimension ())
x[0] = 1.0

x[1] = 2.0

print "myAnalyticalFunction(”, x[0], 7,7, x[1], 7)=", myAnalyticalFunction (x

)

2.1.3 UC : Introducing some deterministic variables, using a LinearNumericalMathFunction

We suppose that the following limit state function limitStateFunc has been created in Open TURNS :

limitStateFunc: | R® — RP
X +— limitStateFunc(X)

Suppose now that some of the input variables are deterministic : the random input vector is reduced to a
subvector of X : X, € R"rob, with ny.p < n.
Let’s note X = (X, o5 Xger)-

In order to create the new limit state function associated to the random input vector X, it is necessary to

compose the initial limit state function limitState Frunc with the linear function increase defined by :

increase : | R"rob — R™

X — increase(X

<> prob —prob) = éiXprob + E

where 4 is the matrix in M, , , , (R) defined by :

and B the vector in R” defined by :

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 79

Then, the new limit state function associated to the random input vector X, is
newLimitState Func = limitState Func o increase

defined by :

newLimitStateFunc : | Rt — RP

Xprop > newLimitStateFunc(X,,)

The example here is the limit state function poutre defined in Eq.(7) and the random input vector (E, F, L, I)
that is reduced to the subvector (E, F'). The other variables (L, I) are fixed to (10.0,5.0).

e the initial limit state function : poutre

Requirements
type : LinearNumericalMathFunction (R4 — R)
e the increase function
type : NumericalMathFunction (R? — R?)
Results

e the new limit state function : poutreReduced = poutre o increase

type : NumericalMathFunction (R? — R)

Python script for this UseCase :

0O ~J O UL i W N

NN~ = = == =
W N H O OWOW-IO U WN—=OO

Dimension of the random input vector
stochasticDimension = 2

Dimension of the deterministic input vector
deterministicDimension = 2

Dimension of the input wvector of the limit state function ’‘poutre’

inputDim = poutre.getInputNumericalPointDimension ()

Fize deterministic values for the two last wvariables
of the input vecteor (E,F,L,I)

L
X2 =10.0
1
X3 = 5.0

Create the ’increase’ linear function
a LinearNumericalMathFunction expression s
linear % (X— center) + constant
center = null
center = NumericalPoint (stochasticDimension)

constant term = (0.0, 0.0, X2, X3)"t

(©2007 EDF - EADS - PhiMeca

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Open TURNS — Use Cases Guide for the Textual User Interface 80

constant = NumericalPoint (inputDim)
constant [0] = 0.0
constant [1] = 0.0
constant [2] = X2
constant [3] = X3

Linear term (lines number, columns number)

linear = Matrix (inputDim, stochasticDimension)
linear [0,0] = 1.0

linear [0,1] = 0.0

linear [1,0] = 0.0

linear [1,1] = 1.0

linear [2,0] = 0.0

linear [2,1] = 0.0

linear [3,0] = 0.0

linear [3,1] = 0.0

’increase’ = linear x (X— center) + constant
increase = LinearNumericalMathFunction (center , constant, linear , ”increase”)

Create the new limit state function

’poutreReduced = poutre o increase’
poutreReduced = NumericalMathFunction(poutre, increase)
Check if it worked

x = NumericalPoint (increase.getInputNumericalPointDimension ()
x[0] = 50.0

x[1] = 1.0

print ”poutreReduced (x)=", poutreReduced(x)

xRef = NumericalPoint (inputDim)

2.1.4 UC : Introducing some deterministic variables, optimising memory and CPU time

Let’s have the same context than in the UC2.1.3. The idea here is to avoid the introduction of the potentially
huge matrix A and the gradient matrix and hessian tensor of the functions increase and poutre. For that last
problem, it is sufficient to define the gradient matrix and hessian tensor to the final function poutre Reduced
from a finite difference technique.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 81

The function increase is defined as follows :

increase : | R™prob — R"

"input Probl”

Xoob =| " — increase(X

"input ProbN prob”

7input Probl”

"input ProbN prob”

*pmb) valDetl

valDet Ndet

where all the (valDetl, ...,valDet Ndet) are the nge; values of the determinist components of X.

The same example is re-written in the folloing Use Case.

e the initial limit state function : poutre

Requirements
type : LinearNumericalMathFunction (R4 — R)
e the increase function
type : NumericalMathFunction (R? — R?)
Results

e the new limit state function : poutreReduced = poutre o increase

type : NumericalMathFunction (R? — R)

Python script for this UseCase :

© 00 J O U i W N~

S S S
ST W N~ O

17
18
19
20

Dimension of the random input wvector
stochasticDimension = 2

Dimension of the deterministic input wvector
deterministicDimension = 2

Dimension of the input vector of the limit state function ’poutre
- p p
inputDim

)

= poutre.getInputNumericalPointDimension ()

Fize deterministic values for the two last wvariables
of the input vecteor (E,F,L,I)

L
X2 = 10.0
1
X3 =5.0

Create the

“increase ' fumnction

Describe the input vector of dimension 2
inputlncrease = Description (2)
inputIncrease [0] = "E”

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 82

21 inputlncrease [1] = "F”

22

23 # Describe the output wvector of dimension 1

24 outputlncrease = Description (4)

25 outputlncrease [0] = "E”

26 outputIncrease [1] = "F”

27 outputIncrease [2] = "L”

28 outputlncrease [3] = 71”7

29

30 # Give the formulas

31 formulas = Description (4)

32 formulas [0] = "E”

33 formulas [1] = "F”

34 formulas [2] = X2

35 formulas [3] = X3

36 print "formulas=" , formulas

37

38 # Create the analyticalfunction ’increase’

39 increase = NumericalMathFunction(inputIncrease, outputlncrease, formulas)

40

41 # Create the new limit state function

42 # ’poutreReduced = poutre o increase’

43 poutreReduced = NumericalMathFunction(poutre, increase)

44

45 # Give directly to the ’poutreReduced’ function a gradient evaluation method

46 # thanks to the finite difference technique

47 # For example, radient technique : non centered finite difference method

48 myGradient = NonCenteredFiniteDifferenceGradient (NumericalPoint (2, 1.0e—7),
poutreReduced . getEvaluationImplementation ())

49 print "myGradient_.=_.” , myGradient

50

51 # Substitute the gradient

52 poutreReduced .setGradientImplementation (myGradient)

53

54 # Give directly to the ’‘poutreReduced’ function a hessian evaluation method
55 # thanks to the finite difference technique

56 # type : non centered finite difference method

57 myHessian = CenteredFiniteDifferenceHessian (NumericalPoint (2, 1.0e-7),
poutreReduced . getEvaluationImplementation ())

58 print "myHessian_.=.” , myHessian

59

60 # Substitute the hessian

poutreReduced . setHessianImplementation (myHessian)

2.1.5 UC : Manipulation of a NumericalMathFunction

The objective of this UC is to describe the main functionalities that Open TURNS enables to manipulate a
numerical function f: R" — RP,

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface

83

Open TURNS enables :

e to ask the dimension of its input and output vectors, with the methods getInputDimension, getOutput-

Dimension,

e to evaluate itself, its gradient and hessian, with the methods gradient, hessian. The evaluation of the
function is a vector of dimension p, the gradient is a matrix with p rows and n columns, the hessian is a

tensor of order 3 with p rows, n columns and n sheets,

e to evaluate the number of times the function or its gradient or its hessian have been evaluated since
the beginning of the python session, with the methods getEvaluationCallsNumber, getGradientCall-

sNumber, getHessianCallsNumber,

e to ask the description of its input and output vectors, with the methods getInputDescription, getOutput-

Description,

e to extract its components if p > 1, wich are functions f; : R” — R, with the method getMarginal,

e to ask for its parameters with the method getParameters,
e to define its parameters, with the method setParameters,

e to compose two functions,

e to ask for the valid operators in Open TURNS, the valid constants and functions, with the methods

GetValidOperators, GetValidConstants, GetValidFunctions.

’ Requirements M

e a function f: R™ — RP: myFunction
Results
type : NumericalMathFunction

Python script for this UseCase :

© 00 J O U i W N~

S G S g Syt
DL W N~ O

Ask for the dimension of the input and output vectors
print myFunction. getInputDimension ()
print myFunction.getOutputDimension ()

FEvaluate the function at a particular point
point = NumericalPoint (myFunction. getInputDimension ())
functinovector = myFunction(point)

FEvaluate the gradient of the function at a particular point
gradientMatrix = myFunction. gradient (point)

Fvaluate the hessian of the function at a particular point
hessianMatrix = myFunction. hessian (point)

(©2007 EDF - EADS - PhiMeca

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Open TURNS — Use Cases Guide for the Textual User Interface 84

Get the number of times the function has been evaluated
callsNumber = myFunction. getEvaluationCallsNumber ()

Get the number of times the gradient has been evaluated
callsNumber = myFunction. getGradientCallsNumber ()

Get the number of times the hessian has been evaluated
callsNumber = myFunction. getHessianCallsNumber ()

Get the description of its input and output vectors
print myFunction. getInputDescription ()
print myFunction. getOutputDescription ()

Get the component 1

Care : the numerotation begins at 0
i=3
component = myFunction.getMarginal (i)

Get the parameters of the function
paremeters = myFunction.getParameters()

Set the parameters of the function
myFunction.setParameters ()

Compose the two NumericalMathFunction : h=fog
g=NumericalMathFunction (f,g)

Get the wvalid operators in Open TURNS
print NumericalMathFunction. GetValidOperators ()

Get the valid functions in Open TURNS
print NumericalMathFunction. GetValidFunctions ()

Get the wvalid constants in Open TURNS
print NumericalMathFunction.GetValidConstants ()

2.2 Creation of the output variable of interest from the limit state function and the
random input vector

The objective of the section is to determine the output variable of interest directly from a limit state function
and a random input vector declared previously.

2.2.1 UC : Creation of the ouput random vector

We suppose in that section that the random input vector is exactly the entry vector of the limit state function.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 85

e the limit state function : myFunction

type : NumericalMathFunction

Requirements
e the random input vector : inputVector
type : RandomVector which implementation is a UsualRandomVector
e the output variable of interest output = myFunction(input)

Results

type : RandomVector which implementation is a CompositeRan-
domVector

Python script for this UseCase :

1 # Create the output variable of interest ’output = poutre(input)’
2 output = RandomVector (myFunction, input)

3

4 # Name the output variable of interest

5 # for example, it is of dimension 1

6 outputDescription = Description (dim)

7 outputDescription [0] = ”Output_Variable_.Of_Interest._1”

8

output.setDescription (outputDescription)

2.2.2 UC : Extraction of a random subvector from a random vector

The objective of this UC is to extract a subvector from a random vector which has been defined as well as a
UsualRandomvector (it means thanks to a distribution, see UC. 1.1.7) than as a CompositeRandomVector (as
the image through a limit state function of an input random vector, see UC. 2.2.1).

Let’s note Y = (Y1, -+ ,Y,) a random vector and I C [1,n] a set of indices :
e In the first case, the subvector is defined by ¥ = (Y)ier,

e In the second case, where Y = f(X) with f = (f1,--, fn), fi some scalar functions, the sub vector is
Y = (fi(X))ier-

e the random vector : myRandom Vector

Requirements type : RandomVector wich implementation is a UsualRandomVector
or CompositeRandomVector
e the extracted random vector : myFxtractedRandom Vector
Results

type : RandomVector which implementation is a UsualRandomVector
or CompositeRandomVector

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 86

Python script for this UseCase :

© 00 J O U i W N~

e S e S et
O O UL i Wi~ O

CASE 1 : Get the marginal of the random wvector
Corresponding to the component i

Care : mnumerotation begins at 0
myExtractedRandomVector = myRandomVector. getMarginal (i)

CASE 2 : Get the marginals of the random wvector
Corresponding to several components

decribed in the mylndice table

For example, components 0, 1, and 5

mylndices = Indices (3)
mylIndices [0] = 0
mylndices [1] = 1
mylIndices [2] = 5

myExtractedRandomVector = myRandomVector. getMarginal (myIndices)

3 Uncertainty propagation and Uncertainty sources ranking

The objective of this section is to manipulate all the functionalities to propagate uncertainties from the random
input vector through the limit state function until the output variable of interest.
It corresponds to the step 'Step C : Propagate the uncertainties’ of the global methodology.

3.1 Deterministic approach : Min/Max study
In this section, we focus on the deterministic approach which consists of researching the variation range of the
output variable of interest.

3.1.1 TUC : Creation of a deterministic experiment plane

Open TURNS enables to define four types of deterministic experiment planes : axial, composite, factorial and
box. In order to define an experiment plane, follow the 3 steps, whatever the type of the experiment plane,
where n is the dimension of the space and nje,e; the number of levels (the same for each direction) :

e Step 1 : Define a reduced and centered grid structure, centered on 0 € R™, by specifying the levels which
will be consider on each direction,

e Step 2 : Scale each direction with a specific scale factor for each direction, in order to give a unit effect
on each direction,

e Step 3 : Translate the scaled grid structure onto a specified center point.
Each experiment plane has a specific method to define its reduced and centered grid structure :
e Axial : the points grid is obtained by discretizing each direction according to the specified levels, sym-

metrically with respect to 0. The number of points generated is 1 4 21 * Njeye;-

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface

87

e Factorial : the points grid is obtained by discretizing each principal diagonal according to the specified

levels, symmetrically with respect to 0. The number of points generated is 1 + 2™ * Njeyer-

e Composite : the points grid is obtained as the union between an axial and a factorial experiment plane.

The number of points generated is 1 + 21 * Njeyper + 2™ * Nyeyel-

e Box : the points grid is obtained by discretizing the unit pavement [—0.5,0.5]", regularly with the
n

number of intermediate points specified for each direction. The number of points generated is H(2 +

Nyevel (direction 1)).

i=1

In order to scale each direction according to a specified factor or/and to translate the points grid until a spec-

ified center, the methods scale and translate must be used.

The following example works in R2.

Requirements || e none

e a centered and reducted grid structure : myCenteredReductedPlane

type : an ExperimentPlane, which type is Axial, Composite, Factorial
or Box

Results e the numerical sample associated to the centered and reducted grid

structurethen scaled then translated grid structrue : myFEzperi-

mentPlane

type : a NumericalSample

Python script for this UseCase :

© 00 J O U i W N~

e g O S S—u—
N O T W N~ O

Define a scale factor for each direction
scaledVector = NumericalPoint (2)
scaledVector [0] = 1.5
scaledVector [1] = 2.5
Define the translation wuntil the final center of the experiment plane
translationVector = NumericalPoint (2)
translationVector [0] = 2
translationVector [1] = 3
Define the different levels of the grid structure
CARE : for the azial, composite and factorial experiment planes,
these levels are all applied along each direction
Here : 8 levels on each direction
levels = NumericalPoint (3)
levels [0] =1

(©2007 EDF - EADS - PhiMeca

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60

Open TURNS — Use Cases Guide for the Textual User Interface 88

levels [1] = 1.5
levels [2] = 3.
For the box experiment plane, levels specifies the number of
intermediate points on each direction (one per direction)
Here : direction 1 will be discretised with 2 intermediate points
and direction 2 with 4 intermediate points
levelsBox = NumericalPoint (2)
levels [0] = 2
levels [1] = 4
STEP 1 : Define a reduced and centered grid structure

AXIAL structure
myCenteredReductedGrid = Axial(2,levels)

COMPOSITE structure
myCenteredReductedGrid = Composite(2,levels)

FACTORIAL structure
myCenteredReductedGrid = Factorial (2,levels)

BOX structure
myCenteredReductedGrid = Box(levelsBox)

Generate the centered and reduzted grid structure
myExperimentPlane = myCenteredReductedGrid. generate ()

Get the number of points of the grid structure
a NumericalSample is created
pointsNumber = myExperimentPlane. getSize ()
STEP 2 : Scale each direction with a specific scale factor
The NumericalSample is transformed
myExperimentPlane. scale (scaledVector)

STEP 8 : Translate the scaled grid structure onto a specified center point

The NumericalSample is transformed
myExperimentPlane. translate (translationVector)

Figures 57 to 68 draw the different grid structures obtained after the scale or translate methods.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 89

Axial Grid Scaled Axial Grid
o w o
o lf|3 4
5 5 i t i : 3) 5 t 2 .
x x
Figure 57: Axial Experiment Plane : initial grid. Figure 58: Axial Experiment Plane : after scaling.

Translated Scaled Axial Grid

S

10

Figure 59: Axial Experiment Plane : after scaling and translation.

Factorial Grid Scaled Factorial Grid
B o = o @
¥ %
24 o B o
-3 -2 -1 Q 1 2 3 —4 -2 Q 2 4
x x
Figure 60: Factorial Experiment Plane : initial grid. Figure 61: Factorial Experiment Plane : after scaling.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 920

Translated Scaled Factorial Grid

10

Figure 62: Factorial Experiment Plane : after scaling and translation.

Composite Grid Scaled Composite Grid
o] o
= o o o o a o o =R e o a o o L3 o
o w
I 1
24 o o o o o
3 5 i ¢ i 2 3 A 5 ¢ 2 .
x x
Figure 63: Composite Experiment Plane : initial grid. Figure 64: Composite Experiment Plane : after scaling.

Translated Scaled Composite Grid

a a I

10

’I“
=
RIS
IS
o

Figure 65: Composite Experiment Plane : after scaling and translation.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 91
Box Grid Scaled Box Grid
< o
o W
= =2
o e .] . . . 0| e
]]
~ [=1
5] .
4]‘.4 —6.2 0‘0 0‘.2 0‘4 70‘.5 O‘O 0!5

Figure 66: Box Experiment Plane : initial grid.

Figure 67: Box Experiment Plane :

Translated Scaled Box Grid

a & S a a &
=
~
w
« a & A a a &
o
s
o a a a a a S
o
< |
ol
a s a a a S
T T T
1.5 20 2.5

Figure 68: Box Experiment Plane :

after scaling and translation.

after scaling.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 92

3.1.2 UC : Drawing an experiment plane in dimension 2

This UseCase draws an experiment plane in dimension 2.

e the points of an experiment plane : mySample

Requirements

type : a NumericalSample

o the files containing the graph, in format .EPS, .FIG, .PNG : experi-
Results mentPlane

type : -

Python script for this UseCase :

1 # Draw it

2 mySampleDrawable = Cloud (mySample, ”blue”, ”square”, "My.experiment._Plane”)
3 graph = Graph(”My_experiment._Plane” , "x”, "y”, True)

4 graph . addDrawable (mySampleDrawable)

5 graph .draw (” experimentPlane”)

6 ViewImage (graph . getBitmap ())

7

8 # In order to see the drawable whithout creating the associated files
9 # CARE : it requires to have created the graph structure before

10 Show (mySampleDrawable)

11 # or to see the graph whithout creating the associated files

12 Show (graph)

3.1.3 UC : Creation of a deterministic experiment plane in the physical space (type : Axial)
where levels are proportionnal to the standard deviation of each component of the random
input vector, and centered on the mean vector of the random input vector

In this Use Case, the objective is to determine the variation range of the output variable of interest from a
deterministic experiment plane on the random input vector.

The example here is an axial experiment plane where levels are proportionnal to the standard deviation of each
component of the random input vector, and centered on the mean vector of the random input vector.

There are three levels : +/-4, +/-8, 4+/-16 around a center fixed equal to the center point (0).

The dilatation vector is composed of the standard deviation of each component of the random input vector.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface

93

e the input vector : nput

Requirements
type : RandomVector
e an experiment plane : myPlane
type : Axial

Results

e a sample of input according to myPlane : inputSample

type : NumericalSample

Python script for this UseCase :

0 3 O T W N~

O W W W N DNNNDNDDNDDDDDNDNDN M= === e =
WNH OOWWIOD TR WNEFE O OWOWIO U A WwWwNhEFE oo
RN

#

#

#
7

#
7
7

In order to use the ’sqrt’ function
from math import x

Dimension of the use case : 4
dim = 4

Give the levels of the experiment plane
here, 3 levels : +/—4, +/-8, +/—16
levelsNumber = 3
levels = NumericalPoint (levelsNumber, 0.0, ”Levels”)
levels [0] = 4
levels [1] = 8
levels [2] = 16

Create the axial plane centered on the wvector (0)
and with the levels ’levels’
myPlane = Axial(dim, levels)

Generate the points according to the structure
of the experiment plane (in a reduced centered space)
inputSample = myPlane. generate ()

Scale the structure of the experiment plane

proportionnally to the standard deviation of each component

of ’input’ in case of a RandomVector
Scaling vector for each dimension of the levels of the structure
to take into account the dimension of each component

scaling = NumericalPoint (dim, 0)

scaling [0] = sqrt(input.getCovariance () [0,0])
scaling [1] = sqrt(input.getCovariance()[1,1])
scaling [2] = sqrt(input.getCovariance()[2,2])
scaling [3] = sqrt(input.getCovariance () [3,3])
inputSample.scale(scaling)

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 94

35 # Translate the monReducedSample onto the center of the experiment plane
36 # Translation wvector for each dimension

37 center = input.getMean ()
inputSample. translate (center)

3.1.4 UC : Creation of a random experiment plane

We determine the variation range of the output variable of interest from a random experiment plane on the
random input vector.

The example here is the generation of a sample of size 102, according to the random distribution of the input
vector input.

Before any simulation, we initialise the state of the random generator.

e the input vector : input
Requirements
type : RandomVector

e sample inputSample generated according to the distribution of input
Results
type : NumericalSample

Python script for this UseCase :

1 # Initialise the state of the random generator
2 # thanks to the fonctionality SetSeed(n) where n is an UnsignedLong in [0,
2°(32)—1]

3 # which enables an easy initialisation for the user

4 RandomGenerator. SetSeed (77)

5

6 # or by specifying a complete state of the random generator : particularState
7 # coming from a previous particularState = RandomGenerator. GetState ()
8 # RandomGenerator. SetState (particularState)

9

10 # Get the complete state of the random generator before simulation

11 randomGeneratorStateBeforeRandomExperiment = RandomGenerator. GetState ()
12

13 # Generate a random sample of size 100 according to the distribution

14 # of the input vector ’input

15 size = 100
16 inputSample = input.getNumericalSample (size)
, inputSample

”

17 print "inputSample_—=._

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 95

3.1.5 UC : Min/Max research of the output variable of interest from an experiment plane in the
physical space (deterministic or random) of the input random vector and deterministic
sensitivity of the output variable to the input vector at a particular point

The objective of this UC is to evaluate the min and max values of the output variable of interest from an
experiment plane in the physical space and to evaluate the gradient of the limit state function defining the
output variable of interest at a particular point.

The example here is the limit state function poutre defined in Eq.(7) with the random input vector (E, F, L, I).

e the sampled generated according to the (deterministic or random one)
experiment plane of the random input vector input : inputSample

type : NumericalSample

Requirements
e the limit state function : poutre
type : NumericalMathFunction
e the sample of the output variable of interest output = poutre(input)
corresponding to inputSample : outputSample
type : NumericalSample
e the min and max of the output variable of interest output
Results

type : NumericalPoint

e the deterministic gradient of output with respect to input at a partic-
ular point inputg

type : Matrix

Python script for this UseCase :

1 # Dimension of the wuse case : 4

2 dim = 4

3

4 # Generate the walues of the output variable of interest
5 # ’output = poutre(input)’ corresponding to ’inputSample’
6 outputSample = poutre(inputSample)

7 print "outputSample_=_", outputSample

8

9 # Get the min and the max of the output variable, component by component
10 min = outputSample.getMin ()

11 max = outputSample.getMax ()

12 print “max.=..”, max

13 print “min.=_..” , min

14

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 96

15 # Get the gradient of ’‘poutre’ with respect to ’input’
16 # at a particular point “input_0’

17 input0 = NumericalPoint (dim)
18 input0 [0] = 50

19 input0[1] =1

20 input0[2] = 10

21 input0[3] =5
22 sensitivity = poutre.gradient (input0)

)

23 print "sensitivity_at_point_inputO.=.", sensitivity

3.2 Random approach : central uncertainty
In this section, we focus on the random approach which aims at evaluating the central tendance of the output

variable of interest.

In order to evaluate the central tendance of the output variable of interest described by a numerical sample, it
is possible to use all the functionalities described in the Use Case 1.2.12.

The Use Case 3.2.1 describes the correlation analysis we can perform between the random input vector, de-
scribed by a numerical sample, and the output variable of interest described by a numerical sample too.

3.2.1 UC : Correlation analysis on samples : Pearson and Spearman coefficients, PCC, PRCC,
SRC, SRRC coefficients

e a first numerical sample : inputSample, may be of dimension ;1

type : NumericalSample

Requirements
e a second numerical sample : outputSample, must be of dimension =1
type : NumericalSample
e the different correlation coefficients : PCCcoefficient, PRCCcoeffi-
cient, SRCcoefficient, SRR Ccoefficient, pearsonCorrelation, spear-
Results manCorrelation

type : NumericalPoint

Python script for this UseCase :

1 # PCC coefficients evaluated between the outputSample and each coordinate of
inputSample

2 PCCcoefficient = CorrelationAnalysis .PCC(inputSample, outputSample)

3

4 # PRCC evaluated between the outputSample and each coordinate of inputSample (
based on the rank wvalues)

5 PRCCcoefficient = CorrelationAnalysis .PRCC(inputSample, outputSample)

(©2007 EDF - EADS - PhiMeca

© 0 NS

10

11
12
13
14
15

16
17
18
19

Open TURNS — Use Cases Guide for the Textual User Interface 97

SRC evaluated between the outputSample and each coordinate of inputSample
SRCcoefficient = CorrelationAnalysis .SRC(inputSample, outputSample)

SRRC evaluated between the outputSample and each coordinate of inputSample (
based on the rank wvalues)
SRR Ccoefficient = CorrelationAnalysis.SRRC(inputSample, outputSample)

Pearson Correlation Coefficient
CARE : inputSample must be of dimension 1
pearsonCorrelation = CorrelationAnalysis.PearsonCorrelation (inputSample
outputSample)

Spearman Correlation Coefficient
CARE : inputSample must be of dimension 1
spearmanCorrelation = CorrelationAnalysis.SpearmanCorrelation (inputSample ,

outputSample)

3.2.2 UC : Moments evaluation from the Taylor variance decomposition method and evaluation
of the importance factors associated

The objective of this UC is to evaluate the mean and standard deviation of the output variable of interest
thanks to the Taylor variance decomposition method of order one or two.

e the random input vector : input

type : RandomVector which implementation is a UsualRandom Vector

Requirements e the output variable of interest : output
type : RandomVector which implementation is a CompositeRan-
domVector
e Moments (order 1, 2, 3) of the variable of interest and its components
type : NumericalPoint, Matrix
Results

e Importance factors from quadratical cumul method only for output of
dimension 1

type : NumericalPoint

Python script for this UseCase :

=W N

Create a quadraticCumul algorithm
myQuadraticCumul = QuadraticCumul (output)

Stream out the result

(©2007 EDF - EADS - PhiMeca

0 3 S ot

11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Open TURNS — Use Cases Guide for the Textual User Interface 98

print "myQuadraticCumul=", myQuadraticCumul

Compute the several elements provided by the quadratic cumul algorithm

First order mean

print ”First_order._.mean=", myQuadraticCumul.getMeanFirstOrder ()

Second order mean

print ”Second._order_mean=", myQuadraticCumul.getMeanSecondOrder ()
Cowvariance Matriz

print ” Covariance=", myQuadraticCumul. getCovariance ()

Importance factors

CARE : for this calculus only, the output wvariable of interest must be of
dimension 1

print ”"Importance_factors=", myQuadraticCumul. getImportanceFactors ()

Graph 1 : Importance Factors graph

importanceFactorsGraph = myQuadraticCumul . drawImportanceFactors ()

In order to see the graph whithout creating the associated files
Show (importanceFactorsGraph)

Create the .PNG, .EPS and .FIG files
importanceFactorsGraph.draw (” ImportanceFactorsDrawingQuadraticCumul”)

View the bitmap file
Viewlmage (importanceFactorsGraph . getBitmap ())

Check if it worked
print ”bitmap=" , importanceFactorsGraph.getBitmap ()
print ”postscript=", importanceFactorsGraph.getPostscript ()

Figure 69 shows an importance factors pie evaluated from the quadratic cumul method, in the beam example
described here before, where :

E follows the Beta(r = 0.94, t = 3.19, a = 2.78¢7, b = 4.83¢7) distribution,
F follows the LogNormal(u = 3eb, 0 = 9e3, v = 1.5¢e4) distribution,

L follows the Uniform(a = 250, b = 260) distribution,

I follows the Beta(r = 2.5, t = 4.0, a = 3.1e2, b = 4.5¢2) distribution,

the four components are independent.

3.2.3 UC : Quantile estimations : Wilks and empirical estimators

The objective of this UC is to evaluate a particular quantile, with the empirical estimator or the Wilks one,
from a numerical sample of the random variable. Each estimation is associated to a confidence interval, which

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 99

Importance Factors from Quadratic Cumul - Unnamed

E :15.805179%

|:5.048703%

F:78.144649% L:1.001469%

Figure 69: Importance Factors from the Taylor variance decomposition method in the beam example.

level is specified.

Let’s suppose we want to estimate the quantile g, of order « of the variable Y : Proba(Y < ¢,) = «, from
the numerical sample (Y1,...,Yy,) of size n, with a confidence level equal to 3. We note (Y(1),...,Y(n)) the
numerical sample where the values are sorted in ascending order.

The empirical estimator, noted ¢g"'*, and its confidence intervall, is defined by the expressions :

o — y(Ea)

P(ga € [y, Y Um])

=

in = Ena— agy/na(l —a))

in = Ena+ agy/na(l — a))

The Wilks estimator, noted qZVﬁilks , and its confidence intervall, is defined by the expressions :

q;/[,/élks — yh—i)
P(ga < qY§*) > f

i>0/n> Nwiks(a, 5,1)

Once the order ¢ has been chosen, the Wilks number Ny xs(a, 3,1) is evaluated by Open TURNS, thanks to
the static method ComputeSampleSize(a, 3,1) of the Wilks object.

In the example, we want to evaluate a quantile o = 95%, with a confidence level of 3 = 90% thanks to the 4th
maximum of the ordered sample (associated to the order i = 3).

Care : ¢ = 0 signifies that the Wilks estimator is the maximum of the numerical sample : it corresponds to the
first maximum of the numerical sample.

Before any simulation, we initialise the state of the random generator.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 100

The method computeQuantile evaluates the empirical quantile from a numerical sample in the case of dimension
n > 1. However, the evaluation of the confidence interval is given only in the case of dimension 1.
Furter more, the Wilks estimator and its confidence interval is evaluated in the case of dimension 1 only.

e the output variable of interest of dimension 1 : output

Requirements
type : RandomVector
e the quantile estimators
type : NumericalSaclar
Results

e Confidence Interval length

type : NumericalScalar

Python script for this UseCase :

1 # Initialise the state of the random generator
2 # thanks to the fonctionality SetSeed(n) where n is an UnsignedLong in [0,
2°(32) 1]

3 # which enables an easy initialisation for the wuser

4 RandomGenerator. SetSeed (77)

5

6 # or by specifying a complete state of the random generator : particularState
7 # coming from a previous particularState = RandomGenerator. GetState ()

8 # RandomGenerator. SetState (particularState)

9

10 # Get the complete state of the random generator before simulation

11 randomGeneratorStateBeforeMonteCarlo = RandomGenerator. GetState ()

12

13 # Order of the quantile to estimate

14 alpha = 0.95

15

16 # Confidence level of the estimation

17 beta = 0.90

18

19

20 # Empirical Quantile Estimator

21

22 # Get the numerical sample of the wvariable
23 N =10"4

24 outputNumericalSample = output.getNumericalSample (N)

25

26 # Get the empirical estimation

27 empiricalQuantile = outputNumericalSample.computeQuantile (alpha)
28

(©2007 EDF - EADS - PhiMeca

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
o8
59
60
61
62
63

Open TURNS — Use Cases Guide for the Textual User Interface 101

Confidence interval of the Empirical Quantile Estimator
Get the indices of the confidence interval bounds
aAlpha = Normal(1).computeQuantile((1—beta) /2)
min = int (Nxalpha — aAlphaxsqrt{nxalphax(1—alpha)})
max = int (Nxalpha + aAlphaxsqrt{n*xalphax(l1—alpha)})

Get the sorted numerical sample
sortedOutputNumericalSample = outputNumericalSample.sort ()

Get the Confidence interval [infQuantile, supQuantile]
infQuantile = sortedOutputNumericalSample [min][0]
infQuantile = sortedOutputNumericalSample [max][0]

Wilks Quantile Estimator

Get the Wilks number : the minimal number of realisations to perform

in order to garantee that the empirical quantile alpha be greater than

the theoretical one with a probability of beta,

when the empirical quantile is evaluated with the (n—i)th maximum of the
sample.

For the example, we consider alpha=0.95, beta=0.90 and i=3

By default, i=0 (empirical quantile = mazimum of the sample)

wilksNumber = Wilks.ComputeSampleSize (0.95, 0.90, 3)

Get the numerical sample of the wvariable
outputNumericalSample = output.getNumericalSample (wilksNumber)

Get the sorted numerical sample
sortedOutputNumericalSample = outputNumericalSample.sort ()

Calculate the indice of the Wilks quantile
indice = wilksNumber—i

Get the empirical estimation
wilksQuantile = sortedOutputNumericalSample[indice][0]

3.3 Random approach : threshold exceedance

In this section, we focus on the random approach which aims at evaluating the probability of an event, defined
as a threshold exceedance.

3.3.1 UC : Creation of an event in the physical and the standard spaces

This section gives elements to create events in the physical space Event and in the standard space StandardFEvent.

The example here is the output variable output defined from the limit state function poutre defined in Eq.(7)

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 102

and the random input vector (E, F, L, I). The event considered is :
myEvent = {(E,F,L,I) € R*/poutre(E,F,L,I) < —1.5}.

e the random input vector : input

type : RandomVector which implementation is a UsualRandomVector

Requirements |- the output variable of interest : output of dimension 1
type : RandomVector which implementation is a CompositeRan-
domVector
e the events in the physical and standard spaces : myFEvent, myStan-
Results dardEvent

type : Event and StandardEvent

Python script for this UseCase :

Create an event in the physical space
from the wvariable of interest ’output’
myEvent = Event (output, ComparisonOperator(Less()), —1.5, "Event.1")

Create an standard event in the standard space
1 : from the wvariable of interest ’output’
myStandardEvent = StandardEvent (output, ComparisonOperator (Less()), 1.0)

© 00 O O W N~

2 : Butld a standard event based on an event
myStandardEvent2 = StandardEvent (myEvent)

—_
o

3.3.2 UC : Manipulation of a StandardEvent

This section gives elements to manipulate an StandardFEvent in Open TURNS .

The example here is an output variable output defined from the limit state function fand the random input
vector input. The event considered is :

myEvent = {output = f(input) < —1.5}.

e an event expressed in the physical space : myFEvent

type : Event

Requirements
e the associated event in the standard space : myStandardEvent
type : StandardEvent

Results J[none

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 103

Python script for this UseCase :

NGO NI

myEvent : E = (output=f(input), operator : <, threshold : —1,5)

Realization of ’input’ as antecedent of ’output’
print "myStandardEvent.(as_a_.RandomVector)_antecedent._realization._=" ,
RandomVector (myStandardEvent) . getImplementation () . getAntecedent () .
getRealization ()

Realization of ’'myFEvent’ as a Bernoulli
print "myStandardEvent.realization=" |, myStandardEvent.getRealization ()

Sample of 10 realizations of 'myFEvent as a Bernoull:
print "myStandardEvent._sample=" | myStandardEvent.getNumericalSample (10)

Realization of ’input’ as antecedent of ’'myFEvent’
print "myStandardEvent_antecedent._realization=" |, myStandardEvent.
getImplementation () .getAntecedent ().getRealization ()

3.3.3 UC : Probability evaluation from FORM method and results associated : importance
factors, reliability indexes, sensitivity on the FORM event probability and Hasofer-Lind
reliability index

The objective of this UC is to evaluate the event probability from the FORM method and all the reliability
indicators associated to the FORM method.
The constraints algorithms presnt in open TURNS are :

e Abdo-Rackwitz,
e Cobyla, which doesn’t require the gradient evaluation of the limit state function,

e SQP.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 104

Requirements

e the random input vector : input

type : RandomVector which implementation is a UsualRandomVector
e the output variable of interest : output of dimension 1

type : RandomVector which implementation is a CompositeRan-

domVector

e the limit state function limitStateFunction such as :

StateFunction(input)
type : NumericalMathFunction
e the event in physical space myFEvent

type : Event

output = limit-

Results

e FORM Event probability

type : NumericalScalar

e Reliability Index

type : NumericalScalar

e Importance factors

type : NumericalPoint

e Reliability index Sensitivity factors
type : AnalyticalSensitivity

e Event probability Sensitivity factors
type : AnalyticalSensitivity

e sensitivity graphs

type Graph

Python script for this UseCase :

0 ~J O U i W N

Create a NearestPoint algorithm with Cobyla
myCobyla = Cobyla ()
Give default specific parameters to the Cobyla algoithm
myCobyla.setSpecificParameters (CobylaSpecificParameters ())

print 7 Specific_Parameters_of_Cobyla.=_

2

, myCobyla.getSpecificParameters ()

We could have created a NearestPoint algorithm with AbdoRackwitz
myAbdoRackwitz = AbdoRackwitz ()

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 105

9 # myAbdoRackwitz. setSpecificParameters (AbdoRackwitzSpecificParameters())

10 # print "Specific Parameters of AbdoRackwitz = 7, myAbdoRackwitz.
getSpecificParameters ()

11

12 # We could have created a NearestPoint algorithm with SQP

13 # mySQP = SQP()

14 # mySQP. setSpecificParameters (SQPSpecificParameters())

15 # print 7Specific Parameters of SQP = 7, mySQP. getSpecificParameters ()

16

17 # Change the parameters of the algorithm

18 myCobyla.setMaximumIterationsNumber (100)

19 myCobyla.setMaximumAbsoluteError (1.0e—10)

20 myCobyla.setMaximumRelativeError (1.0e—10)

21 myCobyla.setMaximumResidualError (1.0e—10)

22 myCobyla.setMaximumConstraintError (1.0e—10)

23 print ”myCobyla=", myCobyla

24

25 # Create a FORM algorithm

26 # The first parameter is a NearestPointAlgorithm

27 # The second parameter is an FEvent in the physical space

28 # The third parameter is a starting point for the design point research

29 mean = input.getMean ()

30 myAlgo = FORM(NearestPointAlgorithm (myCobyla), myEvent, mean)

31 # or:

32 # myAlgo = FORM(NearestPointAlgorithm (myAbdoRackwitz), myEvent, mean)

33 # myAlgo = FORM(NearestPointAlgorithm (mySQP), myFEvent, mean)

34 print 7“FORME" | myAlgo

35

36 # Save the number of calls to the limit state fucntion, its gradient and hessian
already done

37 limitStateFunctionCallNumberBefore = limitStateFunction .
getEvaluationCallsNumber ()

38 limitStateFunctionGradientCallNumberBefore = limitStateFunction.
getGradientCallsNumber ()

39 limitStateFunctionHessianCallNumberBefore = limitStateFunction.
getHessianCallsNumber ()

40

41 # Perform the simulation

42 myAlgo.run ()

43

44 # Save the number of calls to the limit state fucntion, its gradient and hessian
already done

45 limitStateFunctionCallNumberAfter = limitStateFunction.
getEvaluationCallsNumber ()

46 limitStateFunctionGradientCallNumberAfter = limitStateFunction .
getGradientCallsNumber ()

47 limitStateFunctionHessianCallNumberAfter = limitStateFunction.

getHessianCallsNumber ()

(©2007 EDF - EADS - PhiMeca

48
49
50
51
52
53

54
55
56
o7
58
59
60
61

62
63
64
65
66
67
68
69
70

71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

Open TURNS — Use Cases Guide for the Textual User Interface 106

Stream out the result
result = myAlgo. getResult ()

Generalized and Hasofer reliability index

print 7 generalized.reliability _.index=" , result.
getGeneralisedReliabilityIndex ()
print 7 Hasofer_reliability _index=" , result.getHasoferReliabilityIndex ()

ive e design point in e standard and physical spaces

Give the desi int in the standard d physical
print ”standard._space.design_point=" , result.getStandardSpaceDesignPoint ()
print ”physical_space_design_point=" |, result.getPhysicalSpaceDesignPoint ()

Is the standard point origin in failure space?
print 7is._standard._point_origin.in_failure._space?.”, result.
getIsStandardPointOriginInFailureSpace ()

Give the FORM probability of the event ’'myFEvent’
print “event.probability=" , result.getEventProbability ()

Importance factors : numerical results
print “importance.factors=" , result.getImportanceFactors()

Hasofer Reliability Index Sensitivity @ numerical results
hasoferReliabilityIndexSensitivity = result.
getHasoferReliabilityIndexSensitivity ()
print "hasoferReliabilitylndexSensitivity =." |
hasoferReliabilityIndexSensitivity

FORM FEvent Probability Sensitivity : numerical results
eventProbabilitySensitivity = result.getEventProbabilitySensitivity ()
print "eventProbabilitySensitivity_.=." , eventProbabilitySensitivity

Graph 1 : Importance Factors graph
importanceFactorsGraph = result.drawlmportanceFactors ()
importanceFactorsGraph .draw (” ImportanceFactorsDrawingFORM”)

View the bitmap file
ViewImage (importanceFactorsGraph . getBitmap ())

Check that the correct files have been generated

by computing their checksum

print ”bitmap=" , importanceFactorsGraph.getBitmap ()

print ”postscript=" , importanceFactorsGraph.getPostscript ()

In order to see the graph whithout creating the associated files
Show (importanceFactorsGraph)

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 107

92 # Graph 2 : Hasofer Reliability Index Sensitivity Graphs graph
93 reliabilityIndexSensitivityGraphs = result.
drawHasoferReliabilityIndexSensitivity ()

94

95 # Sensitivity to parameters of the marginals of

96 # the input random wector

97 graph2a = reliabilityIndexSensitivityGraphs [0]

98 graph2a.draw(” HasoferReliabilityIndexMarginalSensitivityDrawing”)
99

100 # View the bitmap file

101 ViewImage (graph2a . getBitmap ())

102

103 # Check that the correct files have been generated

104 # by computing their checksum

105 print ”bitmap=" , graph2a.getBitmap ()

106 print ”postscript=" , graph2a.getPostscript ()

107

108 # In order to see the graph whithout creating the associated files
109 Show (graph2a)

110

111 # Sensitivity to the other parameters (dependance)

112 graph2b = reliabilityIndexSensitivityGraphs [1]

113 graph2b.draw (” HasoferReliabilityIndexOtherSensitivityDrawing”)

114

115 # or in order to quickly draw it : with default options

116 # default options : 640, 480 and the files are on the current repertory
117 importanceFactorsGraph .draw (” ImportanceFactorsDrawingFORM”)

118 # View the bitmap file

119 Viewlmage (graph2b. getBitmap ())

120

121 # Check that the correct files have been generated

122 # by computing their checksum

123 print ”bitmap=" , graph2b.getBitmap ()

124 print ”postscript=" , graph2b.getPostscript ()

125

126 # In order to see the graph whithout creating the associated files
127 Show (graph2b)

128

129 # Graph 38 : FORM FEvent Probability Sensitivity Graphs graph

130 eventProbabilitySensitivityGraphs = result.drawEventProbabilitySensitivity ()
131

132 # Sensitivity to parameters of the marginals of the input random wvector
133 graph3a = eventProbabilitySensitivityGraphs [0]

134 graph3a.draw(” EventProbabilityIndexMarginalSensitivityDrawing”)
135

136 # View the bitmap file

137 Viewlmage (graph3a. getBitmap ())

138

(©2007 EDF - EADS - PhiMeca

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

Open TURNS — Use Cases Guide for the Textual User Interface 108

Check that the correct files have been generated
by computing their checksum

print ”bitmap=" , graph3a.getBitmap ()

print ”"postscript=" , graph3a.getPostscript ()

In order to see the graph whithout creating the associated files
Show (graph3a)

Sensitivity to the other parameters (dependance)
graph3b = eventProbabilitySensitivityGraphs [1]
graph3b.draw (” EventProbabilityIndexOtherSensitivityDrawing”)

View the bitmap file
Viewlmage (graph3b . getBitmap ())

Check that the correct files have been generated
by computing their checksum

print ”bitmap=" , graph3b.getBitmap ()

print ”postscript=" , graph3b.getPostscript ()

In order to see the graph whithout creating the associated files
Show (graph3b)

Figure 70 shows an importance factors pie evaluated from the FORM method, in the beam example described
here before, where :

e E follows the Beta(r = 0.94, t = 3.19, a = 2.78¢7, b = 4.83¢7) distribution,
e F follows the LogNormal(p = 3e5, 0 = 9e3, v = 1.5e4) distribution,

e L follows the Uniform(a = 250, b = 260) distribution,

e [follows the Beta(r = 2.5, t = 4.0, a = 3.1e2, b = 4.5¢2) distribution,

e the four components are independant.

The output is expressed in centimeters.
The event considered is :
myEvent = {output = f(input) < —30}.

3.3.4 UC : Probability evaluations from SORM methods and results associated : importance
factors, reliability indexes, sensitivity on the Hasofer-Lind reliability index

The objective of this UC is to evaluate the event probability from the SORM method and all the reliability
indicators associated to the SORM method.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 109

Importance Factors from Design Point - Event 1

E:6.294015%

F : 87.831756%
|:4.849944%

L:1.024285%

Figure 70: Importance factors from the FORM method.

Hasofer Reliability Index Sensitivities — Marginal parameters — Even

= Beta |r 4,350
= | oghha rmal | muLog,zig maLog,gamma]
= inform Jab]

A — Beta |r t,3,0]

sensivities

10 15
parameters

P=n
o

Figure 71: Hasofer Reliability Index sensitivities with respect to the marginal parameters.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 110
‘0ORM - Event Probability Sensitivities — Marginal parameters — Evel
Bata |r t,ab]
= | cghlarmal |mulag,zigmalog,gamma]
= niform jak]
o Beta |rt,a]
<
o
v =
L o
g o
@
=
5y
o
L]
i —
3 =
0 5 10 15
parameters
Figure 72: FORM probability sensitivities with respect to the marginal parameters.
e the random input vector : input
type : RandomVector which implementation is a UsualRandomVector
e the output variable of interest of dimension 1 : output
type : RandomVector which implementation is a CompositeRan-
domVector
Requirements
e the limit state function limitStateFunction such as : output = limit-
StateFunction(input)
type : NumericalMathFunction
e the event in physical space myFEvent
type : Event
e SORM Event probabilities (Breitung, HohenBichler and Tvedt ap-
proximations)
type : NumericalScalar
e Reliability Index
type : NumericalScalar
Results e Importance factors
type : NumericalPoint
e Reliability index Sensitivity factors
type : AnalyticalSensitivity (©2007 EDF - EADS - PhiMeca

e graphs

—~

Open TURNS — Use Cases Guide for the Textual User Interface 111

Python script for this UseCase :

0 g O T Wi

NN DNDNDDNDNDNDINR R = = =
N O UL WN P O OO0 Utk WN PO ©

28
29
30
31
32
33
34
35
36
37

38

Create a NearestPoint algorithm with Cobyla
myCobyla = Cobyla ()
Give default specific parameters to the Cobyla algoithm
myCobyla.setSpecificParameters (CobylaSpecificParameters())
print ” Specific_Parameters_of_Cobyla_.=_", myCobyla.getSpecificParameters ()

We could have created a NearestPoint algorithm with AbdoRackwitz
myAbdoRackwitz = AbdoRackwitz ()
myAbdoRackwitz. setSpecificParameters (AbdoRackwitzSpecificParameters())

Change the parameters of the algorithm
myCobyla.setMaximumIterationsNumber (100)
myCobyla.setMaximumAbsoluteError (1.0e—10)
myCobyla.setMaximumRelativeError (1.0e—10)
myCobyla.setMaximumResidualError (1.0e—10)
myCobyla.setMaximumConstraintError (1.0e—10)
print “myCobyla=", myCobyla

Create a SORM algorithm
The first parameter is a NearestPointAlgorithm
The second parameter is an event
The third parameter is a starting point for the design point research
mean = input.getMean ()
myAlgo = SORM(NearestPointAlgorithm (myCobyla), myEvent, mean)
print ”SORM=" | myAlgo

Save the number of calls to the limit state fucntion, its gradient and hessian
already done

limitStateFunctionCallNumberBefore = limitStateFunction .
getEvaluationCallsNumber ()

limitStateFunctionGradientCallNumberBefore = limitStateFunction.
getGradientCallsNumber ()

limitStateFunctionHessianCallNumberBefore = limitStateFunction.

getHessianCallsNumber ()

Perform the simulation
myAlgo.run ()

Save the number of calls to the limit state fucntion, its gradient and hessian
already done
limitStateFunctionCallNumberAfter = limitStateFunction .
getEvaluationCallsNumber ()
limitStateFunctionGradientCallNumberAfter = limitStateFunction.
getGradientCallsNumber ()
limitStateFunctionHessianCallNumberAfter = limitStateFunction.

(©2007 EDF - EADS - PhiMeca

39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
o8

59
60
61
62
63
64
65
66
67
68

69
70
71

72
73
74

75
76
77

78

Open TURNS — Use Cases Guide for the Textual User Interface 112

getHessianCallsNumber ()

Stream out the result
result = myAlgo. getResult ()

ive e design point in e standard and physical spaces

Give the desi int in the standard d physical
print 7”standard._space.design.point=" ,result.getStandardSpaceDesignPoint ()
print "physical_space_design_point=" |, result.getPhysicalSpaceDesignPoint ()

Is the standard point origin in failure space?

print 7is._standard._point_origin.in_failure._space?.”, result.
getIsStandardPointOriginInFailureSpace ()
Importance factors : numerical results
print "importance_factors=" | result.getImportanceFactors()
Give the SORM probability of the event myFEvent

with Breitung approximation

print 7 Breitung_event_probability=", result.getEventProbabilityBreitung ()

with HohenBichler approzimation

print ”HohenBichler_event_probability=", result.

getEventProbabilityHohenBichler ()

with Tvedt approximation

print 7Tvedt_.event_.probability=", result.getEventProbabilityTvedt ()
Hasofer Reliability Index : numerical results

print 7 Hasofer_reliability _index=", result.getHasoferReliabilityIndex ()
Generalised Reliability Indexes

with Breitung approximation
print 7 Breitung.generalized._.reliability_.index=", result.
getGeneralisedReliabilityIndexBreitung ()

with HohenBichler approzimation
print ”HohenBichler_.generalized._reliability ._.index=", result.
getGeneralisedReliabilityIndexHohenBichler ()

with Tvedt approximation
print 7"Tvedt_.generalized._.reliability_index=", result.
getGeneralisedReliabilityIndexTvedt ()

Hasofer Reliability Index Sensitivity : numerical results
hasoferReliabilityIndexSensitivity = result.
getHasoferReliabilityIndexSensitivity ()
print "hasoferReliabilitylndexSensitivity .=.",
hasoferReliabilityIndexSensitivity

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 113

79

80

81 # Graph 1 : Importance Factors graph

82 importanceFactorsGraph = result.drawlmportanceFactors ()

83 importanceFactorsGraph.draw (” ImportanceFactorsDrawingFORM”)

84

85 # View the bitmap file

86 ViewImage (importanceFactorsGraph . getBitmap ())

87

88 # Check that the correct files have been generated

89 # by computing their checksum

90 print ”bitmap=" , importanceFactorsGraph.getBitmap ()

91 print ”"postscript=" , importanceFactorsGraph.getPostscript ()

92

93 # In order to see the graph whithout creating the associated files

94 Show (importanceFactorsGraph)

95

96 # Graph 2 : Hasofer Reliability Index Sensitivity Graphs

97 reliabilityIndexSensitivityGraphs = result.
drawHasoferReliabilityIndexSensitivity ()

98

99 # Sensitivity to parameters of the marginals of

100 # the input random vector

101 graph2a = reliabilityIndexSensitivityGraphs [0]

102 graph2a.draw(” HasoferReliabilityIndexMarginalSensitivityDrawing”)

103

104 # View the bitmap file

105 ViewImage (graph2a . getBitmap ())

106

107 # Check that the correct files have been generated

108 # by computing their checksum

109 print ”bitmap=" , graph2a.getBitmap ()

110 print ”postscript=" , graph2a.getPostscript ()

111

112 # In order to see the graph whithout creating the associated files

113 Show (graph2a)

114

115 # Sensitivity to the other parameters (dependence)

116 graph2b = reliabilityIndexSensitivityGraphs [1]

117 graph2b .draw (” HasoferReliabilityIndexOtherSensitivityDrawing”)

118

119 # Check that the correct files have been generated

120 # by computing their checksum

121 print ”bitmap=" , graph2b.getBitmap ()

122 print ”postscript=" , graph2b.getPostscript ()

123

124 # In order to see the graph whithout creating the associated files

125 Show (graph2b)

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 114

3.3.5 UC : Probability evaluation from the Monte Carlo simulation method, determination of
the confidence interval of the probability and drawing of the convergence curve with the
confidence curves

The objective of this UC is to evaluate the event probability from the Monte Carlo simulation method and its
confidence interval.

The probability P is evaluated with a simulation methods by the estimator P, as defined :
1 =n
Po=—-> X,
i=1
where
122
Xi=->Y Y.
p k=1
The random variable Y,j is adapted to the simulation used :

e with the Monte Carlo method, Y}’ = leyent,

e with the Directional Simulation, Yki is the sum on one set of directions given by the Sampling strategy of
the contribution of each direction to the event probability, this contribution being evaluated by the Root
Strategy. With the RandomDirection Sampling Strategy, one set of directions is made of 2 directions.
With the OrthogonalDirection Sampling Strategy parametered by the integer g, one set of directions is
made of C12¢ directions.

The parameter n is called the QuterSamling and the parameter p the BlockSize.

In the Monte Carlo method, the limit state function is evaluated n * p times. In the Directional Simulation
method, the limit state function is evaluated in average n#p(mean number of evaluations of the limit state function on ©

For the Directional Simulation method, it is recommended to fix BlockSize = 1.

Open TURNS enables to :

e store the numerical sample of the input random vector and the associated one of the output random vector
which have been used to evaluate the Monte Carlo probability estimator. Points are stored according to
a particular HistoryStrategy that we specify thanks to the method setInputOutputStrategy proposed by
the MonteCarlo class.

e draw the convergence graph of the probability estimator with the confidence curves associated to a
specified level. Values of P, and o2 (empirical variance of the estimator P,) are stored according to a
particular HistoryStrategy that we specify thanks to the method setConvergenceStrategy proposed by the
MonteCarlo class.

In order to prevent a memory problem, the User has the possibility to choose the storage strategy used to save
the numerical samples. Four strategies are proposed :

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 115

e the Null strategy where nothing is stored. This strategy is proposed by the Null class which requires to
specify no argument.

e theFull strategy where every point is stored. Be careful! The memory will be exhausted for huge samples.
This strategy is proposed by the Full class which requires to specify no argument.

e the Last strategy where only the IV last points are stored, where N is specified by the User. This strategy
is proposed by the Last class which requires to specify the number of points to store.

e the Compact strategy where a regularly spaced sub-sample is stored. The minimum size N of the stored
numerical sample is specified by the User. The stored numerical sample will have a size whithin N and
2N. This strategy is proposed by the Compact class which requires to specify the number of points to
store.

Before any simulation, we initialise the state of the random generator.

e the event we want to evaluate the pobability : myFEvent

Requirements
type : Event or StandardEvent
e MonteCarlo Event probability
type : NumericalScalar
e Confidence Interval length
Results

type : NumericalScalar
e Variance of the MonteCarlo probability estimator

type : NumericalScalar

Python script for this UseCase :

N =

S O = W

© 00

10
11
12
13
14

Initialise the state of the random generator
thanks to the fonctionality SetSeed(n) where n is an UnsignedLong in [0,
2°(32)—1]
which enables an easy initialisation for the user
RandomGenerator. SetSeed (77)

or by specifying a complete state of the random generator
particularState

coming from a previous particularState = RandomGenerator. GetState ()

RandomGenerator. SetState (particularState)

Get the complete state of the random generator before simulation
randomGeneratorStateBeforeMonteCarlo = RandomGenerator. GetState ()

Create a Monte Carlo algorithm
myAlgo = MonteCarlo (myEvent)

(©2007 EDF - EADS - PhiMeca

15
16
17
18
19
20
21
22

23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Open TURNS — Use Cases Guide for the Textual User Interface

Mazximum number of extern iterations
myAlgo.setMaximumOuterSampling (N)

The simulation sampling is subsampled in samples of

BlockSize size (distribution service)

for MonteCarlo, LHS and Importance Sampling methods, we recommend

to use BlockSize = number of available CPU if the limit state function 1is
low CPU,

else it is recommanded to fix BlockSize to a high value (Care : the less
OuterSampling

iterations , the less points in the convergence graph!).

myAlgo.setBlockSize (1)

The maximum number of evaluations of the limit state function
defining ‘myFEvent’ is : MaximumOQuterSampling x BlockSize

Maximum Coefficient of wvariation of the simulated sample
myAlgo.setMaximumCoefficientOfVariation (0.1)
print ”Monte_Carlo=" , myAlgo

Define the HistoryStrategy to store the numerical samples generated
both for the input random vector and the output random vector

Null strategy

myAlgo.setInputOutputStrategy (HistoryStrategy (Null()))

Full strategy

myAlgo.setInputOutputStrategy (HistoryStrategy (Full()))

Compact strategy : N points

myAlgo.setInputOutputStrategy (HistoryStrategy (Compact(N)))

Last strategy : N points

myAlgo.setInputOutputStrategy (HistoryStrategy (last (N)))

Define the HistoryStrategy to store the values of P_-n and σ_n
used ot draw the convergence graph

Null strategy

myAlgo.setConvergenceStrategy (HistoryStrategy (Null()))

Full strategy

myAlgo.setConvergenceStrategy (HistoryStrategy (Full()))

Compact strategy : N points

myAlgo.setConvergenceStrategy (HistoryStrategy (Compact(N)))

Last strategy : N points

myAlgo.setConvergenceStrategy (HistoryStrategy (Last(N)))

Perform the simulation

myAlgo.run ()

Stream out the result

result = myAlgo. getResult ()

(©2007 EDF - EADS - PhiMeca

116

61
62
63
64
65
66

67
68
69
70
71
72
73

74
75
76
77
78
79
80
81

82
83
84
85
86

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

Open TURNS — Use Cases Guide for the Textual User Interface 117

print ”Monte_Carlo_result=" | result

Display the number of iterations executed and the number of
evaluations of the limite state function
print "number_of_executed._iterations.=." | result.getOuterSampling()
print "number_of.__evaluations_.of_the_.limit_state_function_defining _myEvent_=_
7, result.getOuterSampling ()*result.getBlockSize ()

9

Display the Monte Carlo probability of ’'myFEvent’
probability = result.getProbabilityEstimate ()
print ”Monte_Carlo_probability _estimation_=.", probability

Display the wvariance of the Monte Carlo probability estimator
print 7 Variance_of_the_Monte_.Carlo_probability cestimator_=.", result.

getVarianceEstimate ()

Display the confidence interval length centered around the
MonteCarlo probability MCProb
IC = [MCProb — 0.5« length , MCProb + 0.5x%length]
level 0.95
length95 = result.getConfidenceLength (0.95)
print 70.95_.Confidence_Interval_length_=.", length95
print "IC_at_0.95_=_[", probability — 0.5xlength95, ”;.”, probability 4+ 0.5x

length95, 7]”

level 0.90

length90 = result.getConfidenceLength (0.90)

print 70.90_.Confidence_Interval_length_=.", length90

print "IC_at_.0.90_=.[", probability — 0.5xlength90, ”;.”, probability 4+ 0.5x
length90, ”]”

Draw the convergence graph and the confidence intervalle of level alpha
By default , alpha = 0.95
alpha = 0.95
convergenceGraph = myAlgo.drawProbabilityConvergence (0.90)

Impose a bounding box : xz—range and y—range

boundingBox = [xzmin, zmazx, ymin, ymax]
myBoundingBox = NumericalPoint (4)
myBoundingBox [0] = xmin

myBoundingBox [1] = xmax

myBoundingBox [2] = ymin

myBoundingBox [3] = xmax

convergenceGraph .setBoundingBox (myBoundingBox)

In order to see the graph whithout creating the associated files
Show (convergenceGraph)

(©2007 EDF - EADS - PhiMeca

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

Open TURNS — Use Cases Guide for the Textual User Interface 118

Create the files .EPS, .PNG and .FIG
convergenceGraph .draw(” convergenceGraphe”)

View the PNG file whithin the TUI
Viewlmage (convergenceGraph . getBitmap ())

Get the numerical samples of the input and output random vectors

stored according to the History Strategy specified

and used to evaluate the probability estimator and its wvariance
inputSampleStored = myAlgo. getInputStrategy () .getSample ()
outputSampleStored = mmyAlgo. getOutputStrategy () .getSample ()

Get the wvalues of the estimator and its wvariance
stored according to the History Strategy specified
and used to draw the convergence graph
myAlgo. getConvergenceStrategy () . getSample ()

The following example illustrates the different storage strategy :

Initial Sample =
123456789 10 11 12

Null strategy sample =
Full strategy sample =
123456789 10 11 12

Last strategy sample (large storage : 36 last points) =
123456789 10 11 12

Last strategy sample (small storage : 4 last points) =
9 10 11 12

Compact strategy sample (large storage : 36 points) =
123456789 10 11 12

Compact strategy sample (small storage : 4 points) =
246810 12

3.3.6 UC : Probability evaluation from Directional Sampling method, determination of the
confidence interval and drawing of the convergence curve with the confidence curves

The Directional Sampling simulation operates in the standard space and define the maximum distant point of
the standard space equal to 8 by default. This value may be changed (method setMazimumDistance()).

The Directional Sampling simulation method is defined from :

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 119

e an event,
e a Root Strategy :

— RiskyAndFast : for each direction, we check whether there is a sign change of the standard limit
state function between the maximum distant point (at distance MazimumDistance from the center
of the standard space) and the center of the standard space.

In case of sign change, we research one root in the segment [origine, maximum distant point] with
the selectionned non linear solver.
As soon as founded, the segment [root, infinity point] is considered within the failure space.

— MediumSafe : for each direction, we go along the direction by step of length stepSize from the origin
to the maximum distant point (at distance MazimumDistance from the center of the standard space)
and we check whether there is a sign change on each segment so formed.

At the first sign change, we research one root in the concerned segment with the selectionned non
linear solver. Then, the segment [root, maximum distant point] is considered within the failure
space.

If stepSize is small enough, this strategy garantees us to find the root which is the nearest from the
origine.

— SafeAndSlow : for each direction, we go along the direction by step of length stepSize from the origine
to the maximum distant point(at distance MazimumDistance from the center of the standard space)
and we check whether there is a sign change on each segment so formed.

We go until the maximum distant point. Then, for all the segments where we detected the presence
of a root, we research the root with the selectionned non linear solver. We evaluate the contribution
to the failure probability of each segment.

If stepSize is small enough, this strategy garantees us to find all the roots in the direction and the
contribution of this direction to the failure probability is precisely evaluated.

e a Non Linear Solver :

— Bisection : bisection algorithm,
— Secant : based on the evaluation of a segment between the two last iterated points,

— Brent : mix of Bisection, Secant and inverse quadratic interpolation.
e and a Sampling Strategy :

— RandomDirection : we generate one point on the sphere unity according to the uniform distribution
and we consider both opposite directions so formed. So one set of direction is composed of 2
directions.

— OrthogonalDirection : this strategy is parametered by k € N. We generate one direct orthonor-
malised base (e, ..., e,) within the set of orthonormalised bases. We consider all the renormalised
linear combinations of k£ vectors within the n vectors of the base, where the coefficients of the linear
combinations are equal to +1,—1. There are C*2* new vectors v;. We consider each direction
defined by each vector v;. So one set of direction is composed of C*2F directions.

If k =1, we consider all the axes of the standard space.

Open TURNS enables to store the numerical samples of the input and output random vectors used to evaluate
the Monte Carlo probability estimator and also the values of P, and o2 (empirical variance of the estimator
P,) used to draw the convergence graph of the probability estimator. In order to have more information of the

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 120

different storage strategies, see UC.3.3.5.
Before any simulation, we initialise the state of the random generator.

The example here is a Directional Sampling simulation method defined by :

e its parameters by default (TEST 1) : Root Strategy by default : Slow and Safe, Non Linear Solver :
Brent algorithm, Sampling Strategy : Random Direction,

e some other parameters (TEST 2) : Root Strategy by default : Risky And Fast, Non Linear Solver : Brent
algorithm, Sampling Strategy : Orthogonal Direction.

e the output variable of interest output of dimension 1

type : RandomVector which implementation is a CompositeRan-
domVector

e the limit state function limitStateFunction such as : output = limit-
Requirements StateFunction(input)

type : NumericalMathFunction
e the event in physical space : myFEvent

type : Event

e Directional Sampling Event probability
type : NumericalScalar

e Confidence Interval length

Results
type : NumericalScalar

e Variance of the Directional Sampling probability estimator

type : NumericalScalar

Python script for this UseCase :

w N

© 00 N O Ut

Initialise the state of the random generator
thanks to the fonctionality SetSeed(n) where n is an UnsignedLong in [0,
2°(32)—1]
which enables an easy initialisation for the wuser
RandomGenerator. SetSeed (77)

or by specifying a complete state of the random generator : particularState
coming from a previous particularState = RandomGenerator. GetState ()
RandomGenerator. SetState (particularState)

(©2007 EDF - EADS - PhiMeca

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47

48
49

Open TURNS — Use Cases Guide for the Textual User Interface 121

TEST 1

Root Strategy by default

Directional Sampling from an event

Non Linear Solver : Brent algorithm
Sampling Strategy : Random Direction

Get the complete state

Safe And Slow

of the random generator before simulation

stateBeforeDirectionalSimulationTestl = RandomGenerator. GetState ()

Create a Directional Sampling algorithm
DirectionalSampling (myEvent)

myAlgo

Mazximum number of external

myAlgo . setMaximumOuterSampling (250)

The simulation sampling

tterations

is subsampled in samples of

BlockSize size (distribution service)

for the Directional Sampling method, we recommend
to use BlockSize = 1
myAlgo.setBlockSize (1)

Maximum Coefficient of wvariation of the simulated sample
myAlgo.setMaximumCoefficientOfVariation (0.1)

print 7 DirectionalSampling=", myAlgo

Save the number of calls to the limit
already done

state fucntion, its gradient and hessian

limitStateFunctionCallNumberBefore = limitStateFunction .
getEvaluationCallsNumber ()

limitStateFunctionGradientCallNumberBefore = limitStateFunction.
getGradientCallsNumber ()

limitStateFunctionHessianCallNumberBefore = limitStateFunction.

getHessianCallsNumber ()

Perform the simulation
myAlgo.run ()

Save the number of calls to the limit
already done
limitStateFunctionCallNumberAfter = limitStateFunction .

getEvaluationCallsNumber ()
limitStateFunctionGradientCallNumberAfter = limitStateFunction.
getGradientCallsNumber ()
limitStateFunctionHessianCallNumberAfter = limitStateFunction.
getHessianCallsNumber ()

Stream out the result

result

myAlgo. getResult ()

state fucntion, its gradient and hessian

(©2007 EDF - EADS - PhiMeca

50
51
52
53
54

55

56
57
o8
59
60
61
62
63

64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

Open TURNS — Use Cases Guide for the Textual User Interface 122
print " DirectionalSampling_result=", result

Display the number of iterations executed and

the number of evaluations of the limit state function
print "number_of_executed._external_iterations.=." |, result.getOuterSampling

()

print "number_of._evaluations.of_the_limit_state_function.defining._myEvent_=

”

= I

limitStateFunctionCallNumberAfter — limitStateFunctionCallNumberBefore

Display the Directional Sampling probability of ’myFvent’
probability = result.getProbabilityEstimate ()

”

print 7 DirectionalSampling._probability_estimation_=.", probability

Display the wvariance of the Directional Sampling probability estimator

print " Variance_of_the_.Directional _Sampling_probability_estimator._=_’

result . getVarianceEstimate ()

Display the confidence interval length centered around the
Directional Sampling probability DSProb

IC = [DSProb — 0.5xlength , DSProb + 0.5%length]

level 0.95

length95 = result.getConfidenceLength (0.95)

print 70.95_.Confidence_.Interval_length_=.", length95

i

)

print "IC_at_0.95.=.[", probability — 0.5xlength95, ”;.”, probability + 0.5x

length95 , 7]”

Draw the convergence graph and the confidence intervalle of level
By default, alpha = 0.95
alpha = 0.95
convergenceGraph = myAlgo.drawProbabilityConvergence (0.90)

Impose a bounding box : z—range and y—range
boundingBox = [zmin, zmazx, ymin, ymax]

myBoundingBox = NumericalPoint (4)
myBoundingBox [0] = xmin
myBoundingBox [1] = xmax
myBoundingBox [2] = ymin
myBoundingBox [3] = xmax

convergenceGraph .setBoundingBox (myBoundingBox)

In order to see the graph whithout creating the associated files
Show (convergenceGraph)

Create the files .EPS; .PNG and .FIG
convergenceGraph .draw(” convergenceGraphe”)

View the bitmap file

alpha

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 123

94 ViewImage (convergenceGraph . getBitmap ())

95

96

97 # TEST 2 : Directional Sampling from an event, a root strategy
98 # and a directional sampling strategy

99 # Root Strategy by default : MediumSafe

100 # Non Linear Solver : Brent algorithm

101 # Sampling Strategy : Orthogonal Direction

102

103 # Get the complete state of the random generator before simulation

104 stateBeforeDirectionalSimulationTest2 = RandomGenerator. GetState ()

105

106 # Create a Directional Sampling algorithm

107 myAlgo2 = DirectionalSampling (myEvent, RootStrategy (MediumSafe()),
SamplingStrategy (OrthogonalDirection (output.getDimension () ,2)))

108

109 # Mazximum number of extern iterations

110 myAlgo2.setMaximumOuterSampling (250)

111

112 # The simulation sampling is subsampled in samples

113 # of BlockSize size (distribution service)

114 # for the Directional Sampling method, we recommend

115 # to use BlockSize = 1

116 myAlgo2.setBlockSize (1)

117

118 # Maximum Coefficient of wvariation of the simulated sample

119 myAlgo2.setMaximumCoefficientOfVariation (0.1)

120 print 7" DirectionalSampling=", myAlgo2

121

122 # Save the number of calls to the limit state fucntion, its gradient and hessian
already done

123 limitStateFunctionCallNumberBefore = limitStateFunction.
getEvaluationCallsNumber ()

124 limitStateFunctionGradientCallNumberBefore = limitStateFunction.
getGradientCallsNumber ()

125 limitStateFunctionHessianCallNumberBefore = limitStateFunction.
getHessianCallsNumber ()

126

127 # Perform the simulation

128 myAlgo2.run ()

129

130 # Save the number of calls to the limit state fucntion, its gradient and hessian
already done

131 limitStateFunctionCallNumberAfter = limitStateFunction .
getEvaluationCallsNumber ()

132 limitStateFunctionGradientCallNumberAfter = limitStateFunction.
getGradientCallsNumber ()

133 limitStateFunctionHessianCallNumberAfter = limitStateFunction.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 124

getHessianCallsNumber ()

134

135 # Stream out the result

136 result2 = myAlgo2. getResult ()

137 print 7" DirectionalSampling_result=", result2
138

139 # Display the number of iterations ezxecuted and the number of
140 # evaluations of the limit state function

141 print "number_of_executed_external_iterations.=.", result2.getOuterSampling
()
142 print "number_of__evaluations_.of_the_limit_state_function_.defining _myEvent._=

.7, limitStateFunctionCallNumberAfter —
limitStateFunctionCallNumberBefore

143

144 # Display the Directional Sampling probability of ’‘myFEvent’

145 probability2 = result2.getProbabilityEstimate ()

146 print 7 DirectionalSampling_probability_estimation_=.", probability2

147

148 # Display the wariance of the Directional Sampling probability estimator

149 print ”Variance_of_the_.Directional _Sampling_probability_estimator._.=.",
result2.getVarianceEstimate ()

150

151 # Display the confidence interval length centered around
152 # the Directional Sampling probability DSProb

153 # IC = [DSProb — 0.5xlength, DSProb + 0.5%length]

154 # level 0.95

155 length95 = result2.getConfidenceLength (0.95)

156 print 70.95_Confidence_.Interval_length_=.", length95

157 print "IC_at_.0.95.=.[", probability2 — 0.5%xlength95, ”;.”, probability2 +

0.5%length95, ”]”
158

159 # Draw the convergence graph and the confidence intervalle of level alpha
160 # By default , alpha = 0.95

161 alpha = 0.95

162 convergenceGraph2 = myAlgo2.drawProbabilityConvergence (0.90)
163

164 # Impose a bounding box : xz—range and y—range
165 # boundingBox = [zmin, zmaz, ymin, ymaz]

166 myBoundingBox = NumericalPoint (4)

167 myBoundingBox [0] = xmin

168 myBoundingBox [1] = xmax

169 myBoundingBox [2] = ymin

170 myBoundingBox [3] = xmax

171 convergenceGraph2.setBoundingBox (myBoundingBox)
172

173 # Create the files .EPS; .PNG and .FIG

174 convergenceGraph2.draw(” convergenceGraphe2”)

175

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 125

76 # In order to see the graph whithout creating the associated files
7 Show (convergenceGraph?2)

79 # View the bitmap file whithin the TUI
ViewImage (convergenceGraph2 . getBitmap ())

3.3.7 UC : Probability evaluation from Importance Sampling method centered on the design
point issued from the FORM method, determination of the confidence interval and draw-
ing of the convergence curve with the confidence curves

The objective of this UC is to evaluate the event probability from the Importance Sampling simulation method
centered on the design point issued from the FORM method and its confidence intervaland its confidence in-
terval. Open TURNS enables to draw the convergence graph of the probability estimator with the confidence
curves associated to a specified level.

The importance density may be declared either in the physical space (TEST1) or in the standard space (TEST?2).

The example here is a Normal distribution of importance :
e centered on the pysical design point with a specified correlation matrix,
e centered on the standard design point with a correlation matrix equal to Identity.

Open TURNS enables to store the numerical samples of the input and output random vectors used to evaluate
the Monte Carlo probability estimator and also the values of P, and o, (empirical variance of the estimator
P,) used to draw the convergence graph of the probability estimator. In order to have more information of the
different storage strategies, see UC.3.3.5.

Before any simulation, we initialise the state of the random generator.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 126
e the design point evaluated after the FORM method in the physical
and standard spaces : physicalDesignPoint, standardDesignPoint
type : NumericalPoint
e the correlation matrix and the deviation vector of the importance
Requirements distribution in the physical space : sigma, R
type : NumericalPoint and CorrelationMatrix
e the event in physical and standard spaces : myFEvent, myStandardE-
vent
type : Event, StandardEvent
e Directional Sampling Event probability
type : NumericalScalar
e Confidence Interval length
Results
type : NumericalScalar
e Variance of the Directional Sampling probability estimator
type : Matrix
Python script for this UseCase :
1
2 # Initialise the state of the random gemnerator
3 # thanks to the fonctionality SetSeed(n) where n is an UnsignedLong in [0,
2°(32)—1]
4 # which enables an easy initialisation for the wuser
5 RandomGenerator. SetSeed (77)
6
7 # or by specifying a complete state of the random generator : particularState
8 # coming from a previous particularState = RandomGenerator. GetState ()
9 # RandomGenerator. SetState (particularState)
10
11 # TEST 1 = Create an importance sampling algorithm in the physical space
12 # around the design point
13
14 # Get the complete state of the random generator before simulation
15 randomGeneratorStateBeforelmportanceSamplingTestl = RandomGenerator. GetState ()
16
17 # Distribution of importance in the physical space Normal (mean, sigma, R)
18 mylmportance = Normal(physicalDesignPoint , sigma, R)
19

(©2007 EDF - EADS - PhiMeca

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44

45
46
47
48
49
50
51

52
53
54
55
56
57
o8
59

60
61
62
63

Open TURNS — Use Cases Guide for the Textual User Interface 127

myAlgol = ImportanceSampling (myEvent, Distribution (mylmportance))

Maximum number of extern iterations
myAlgol.setMaximumOuterSampling (250)

The maximum number of evaluations of the limit state function
defining ‘myFEvent’ is : MaximumOQOuterSampling x BlockSize
myAlgol.setBlockSize (4)

Mazxzimum Coefficient of wvariation of the simulated sample
myAlgol.setMaximumCoefficientOfVariation (0.1)

print ”ImportanceSampling=" , myAlgol

Perform the simulation
myAlgol.run ()

Stream out the result
resultl = myAlgol. getResult ()
print ”Importance.Sampling_result=" , resultl

Display the number of iterations executed and the number of
evaluations of the limite state function
print "number_of_executed_external_iterations.=." , resultl.getOuterSampling

()

print "number_of__evaluations_of_the_limit._state_function_.defining _myEvent._=
7

27, resultl.getOuterSampling ()*resultl.getBlockSize ()

Display the Importance Sampling probability of "myFEvent’
probabilityl = resultl.getProbabilityEstimate ()
print "Importance_Sampling._probability _estimation.=_.", probabilityl

Display the wvariance of the Importance Sampling probability estimator
print 7 Variance_of_the_Importance_Sampling_probability _estimator._=.",

resultl.getVarianceEstimate ()

Display the confidence interval length centered around the
Importance Sampling probability ISProb
IC = [ISProb — 0.5«length, ISProb + 0.5xlength]
level 0.95
length95 = resultl.getConfidenceLength (0.95)
print 70.95_Confidence_Interval_length_=.", length95
print "IC_at_.0.95.=.[", probabilityl — 0.5xlength95, ”;.”, probability2 +

0.5%length95, ”7]”
Draw the convergence graph and the confidence intervalle of level alpha

By default, alpha = 0.95
alpha = 0.95

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 128

64 convergenceGraph = myAlgol.drawProbabilityConvergence (0.90)
65

66 # Impose a bounding box : z—range and y—range
67 # boundingBox = [xzmin, xmaz, ymin, ymaz]

68 myBoundingBox = NumericalPoint (4)

69 myBoundingBox [0] = xmin

70 myBoundingBox [1] = xmax

71 myBoundingBox [2] = ymin

72 myBoundingBox [3] = xmax

73 convergenceGraph .setBoundingBox (myBoundingBox)
74

75 # In order to see the graph whithout creating the associated files
76 Show (convergenceGraph)

7

78 # Create the files .EPS, .PNG and .FIG

79 convergenceGraph .draw (” convergenceGraphe”)

80

81 # View the PNG file whithin the TUI

82 ViewImage (convergenceGraph . getBitmap ())

83

84

85 # TEST 2 : Create an importance sampling algorithm in the standard space

86 # around the design point

87

88 # Get the complete state of the random generator before simulation

89 randomGeneratorStateBeforelmportanceSamplingTest2 = RandomGenerator. GetState ()
90

91 # Distribution of importance in the standard space : ’‘mylmportance’ considered
in the standard space

92 sigma = NumericalPoint (standardDesignPoint . getDimension (), 1.0)

93 R = CorrelationMatrix (standardDesignPoint . getDimension())

94 mylmportance = Normal (standardDesignPoint , sigma, R)

95 myAlgo2 = ImportanceSampling (myStandardEvent, Distribution (myImportance))

96

97 # Mazximum number of extern iterations

98 myAlgo2.setMaximumOuterSampling (250)

99

100 # The maximum number of evaluations of the limit state function

101 # defining ‘myFEvent’ is : MazimumOuterSampling * BlockSize

102 myAlgo2.setBlockSize (4)

103

104 # Maximum Coefficient of wvariation of the simulated sample

105 myAlgo2. setMaximumCoefficientOfVariation (0.1)

106

107 print ”Importance_Sampling=" , myAlgo2

108

109 # Perform the simulation

110 myAlgo2.run ()

(©2007 EDF - EADS - PhiMeca

111
112
113
114
115
116
117
118

119

120
121
122
123
124
125
126

127
128
129
130
131
132
133
134

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

Open TURNS — Use Cases Guide for the Textual User Interface 129

Stream out the result
result2 = myAlgo2. getResult ()
print ”Importance.Sampling_result=" | result2

Display the number of iterations executed and the number of
evaluations of the limite state function
print "number_of_executed_external_iterations.=." |, result2.getOuterSampling

()

print "number_of__evaluations.of_the_limit_state_function._.defining_myEvent_=

7

7, result2.getOuterSampling () xresult2 . getBlockSize ()

Display the Importance Sampling probability of {\itshape myFEvent}
probability2 = result2.getProbabilityEstimate ()
print "Importance_Sampling_probability_estimation_=.", probability2

Display the wvariance of the Importance Sampling probability estimator
print " Variance_of_the_Importance_.Sampling_probability _estimator._=.",

result2.getVarianceEstimate ()

Display the confidence interval length centered around
the Importance Sampling probability ISProb
IC = [ISProb — 0.5xlength, ISProb + 0.5xlength]
level 0.95
length95 = result2.getConfidenceLength (0.95)
print 70.95_Confidence_.Interval_length_=.", length95
print "IC_at_.0.95.=.[", probability2 — 0.5%xlength95, ”;.”, probability2 +
0.5%length95, ”]”

Draw the comnvergence graph and the confidence intervalle of level alpha
By default, alpha = 0.95
alpha = 0.95
convergenceGraph = myAlgo2.drawProbabilityConvergence (0.90)

Impose a bounding box : xz—range and y—range
boundingBox = [zmin, zmaz, ymin, ymaz]

myBoundingBox = NumericalPoint (4)
myBoundingBox [0] = xmin
myBoundingBox [1] = xmax
myBoundingBox [2] = ymin
myBoundingBox [3] = xmax

convergenceGraph .setBoundingBox (myBoundingBox)

In order to see the graph whithout creating the associated files
Show (convergenceGraph)

Create the files .EPS, .PNG and .FIG
convergenceGraph .draw(” convergenceGraphe”)

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 130

View the PNG file whtithin the TUI

ViewImage (convergenceGraph . getBitmap ())

4 Construction of a response surface

The objective of this UC is to build a response surface from a function. This response surface may be built
from :

e the linear or quadratic Taylor approximations of the function at a particular point,
e or a linear approximation by least squares method from a sample of the input vector and the function,
e or a linear approximation by least squares method from a sample of the input vector and one of the
output variable.
4.1 UC : Linear and Quadratic Taylor approximations

This section details the first method to construct a response surface : from the linear or quadratic Taylor
approximations of the function at a particular point.

e a function : myFunc

Requirements
type : NumericalMathFunction
e the linear Taylor approximation myLinearTaylor
type : LinearTaylor

Results

e the quadratic Taylor approximation myQuadratic Taylor

type : QuadraticTaylor

Python script for this UseCase :

Taylor approximations at point ’‘center’
center = NumericalPoint (myFunc. getInputNumericalPointDimension ())
for i in range(center.getDimension())
center [i] = 1.0+1

Create the linear Taylor approximation
myLinearTaylor = LinearTaylor(center, myFunc)

© 00 J O U i W N~

Create the quadratic Taylor approximation
myQuadraticTaylor = QuadraticTaylor (center , myFunc)

—_
o

—
—_

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 131

12 # Perform the approzimations

13 # linear Taylor approximation

14 myLinearTaylor.run ()

15 print "my_linear_Taylor.=" |, myLinearTaylor

16

17 # quadratic Taylor approximation

18 myQuadraticTaylor.run ()

19 print "my_quadratic_Taylor_.=" , myQuadraticTaylor

20

21 # Stream out the result

22 # linear Taylor approximation

23 linearResponseSurface = myLinearTaylor. getResponseSurface ()
24 print "responseSurface.=" , linearResponseSurface

25

26 # quadratic Taylor approximation

27 quadraticResponseSurface = myQuadraticTaylor.getResponseSurface ()
28 print ”"quadraticResponseSurface_.=" , quadraticResponseSurface
29

30 # Compare the approximations and the function at a particluar point
31 # point ’center’

32 print "myFunc(” , center , ”7)=" | myFunc(center)

33 print ”linearResponseSurface(” , center , ”7)=" | linearResponseSurface(
center)

34 print ”"quadraticResponseSurface(” , center , 7)=" , quadraticResponseSurface

(center)

4.2 UC : Linear approximation response surface by least squares method from a sample
of the input vector and the real function

This section details the second method to construct a response surface : by least squares method from a sample
of the input vector and the real function. The output sample is obtained by evaluating the function on the
input sample.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 132

e the limit state function : myFunc

type : NumericalMathFunction

Requirements
e a sample of the input vector : inputSample
type : NumericalSample
e linear approximation by least squares method responseSurface
type : NumericalMathFunction
Results

e the coefficients of the linear approximation myFunc(X) = AX + B

type : Matrix (A) , NumericalPoint (B)

Python script for this UseCase :

1 # Create the LinearLeastSquares algorithm

2 myLeastSquares = LinearLeastSquares (inputSample, myFunc)
3

4 # Perform the algorithm

5 myLeastSquares.run ()

6 print "myLeastSquares=", myLeastSquares

7

8 # Stream out the results

9 # get the matriz A

10 linear = myLeastSquares. getLinear ()

11 print "A_=_", linear

12

13 # Get the constant term B :

14 constant = myLeastSquares. getConstant ()

15 print "B.=.” , constant

16

17 # Get the linear response surface

18 responseSurface = myLeastSquares. getResponseSurface ()
19 print "responseSurface=", responseSurface

20

21 # Compare the two models at a particular point ’inPoint’
22 print ” (myFunc”, inPoint, ”)=", myFunc(inPoint)

23 print "responseSurface(”, inPoint, ”)=", responseSurface(inPoint)

4.3 UC : Linear approximation response surface by least squares method from a sample
of the input vector and a sample of the output vector

This section details the second method to construct a response surface : by least squares method from a sample
of the input vector and the associated sample of the output variable.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 133

e a sample of the input vector : inputSample

type : NumericalSample

Requirements
e the associated sample of the output vector : outputSample
type : NumericalSample
e linear approximation by least squares method responseSurface
type : NumericalMathFunction

Results

e the coefficients of the linear approximation AX + B

type : Matrix (A) , NumericalPoint (B)

Python script for this UseCase :

1 # Create the LinearLeastSquares algorithm

2 myLeastSquares = LinearLeastSquares (inputSample, outputSample)
3

4 # Perform the algorithm

5 myLeastSquares.run ()

6 print "myLeastSquares=", myLeastSquares
7

8 # Stream out the results

9 # get the matriz A

10 linear = myLeastSquares. getLinear ()

11 print "A_=_", linear

12

13 # Get the constant term B :
14 constant = myLeastSquares. getConstant ()
15 print "B_.=_", constant

16

17 # Get the linear response surface

18 responseSurface = myLeastSquares. getResponseSurface ()
19 print "responseSurface=", responseSurface

5 How to save and load a study ?

The objective of this UC is to describe how to save some results obtained within a study and how to load a
study performed previously, with some results.

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 134

The mechanism of Open TURNS is detailed through the two following use cases. We give an example on a
NumericalPoint and a NumericalMathFunction but it can be used for most objects.

The principle is the following one : all along the study, we create a list of objects we want to save, thanks to

the command .add(). Then, at the end of the study, we save the list with the command .save(). Only at that
time, all the study is saved.

5.1 UC : How to save a study ?

’ Requirements M none

e an object containing all the objects saved : myStudy
type : Study

Results
e a file . XML containing all the objects saved : myXMLFile. XML

type : file . XML

Python script for this UseCase :

N

0 O O W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Create the name of the file .XML which will be created at the adress /tmp
if the adress is not precised, the file .XML is created in the current

repertory
fileName = " /tmp/myXMLFile”

Create a Study Object which will contain all the objects saved
myStudy = Study ()

Associate it to the file XML just created
myStudy . setStorageManager (XMLStorageManager (fileName))

Perform here the study
for example, a NumericalPoint is created we want to save
pl = NumericalPoint (3, 0., ”Good”)

pl[0] = 10.

pl[1] = 11.

pl[2] = 12.

desc = pl.getDescription ()
desc [0] = "x”

desc[1] = "y”

desc[2] = "2

pl.setDescription (desc)

Add the NumericalPoint to the list of the objects saved
myStudy . add (pl)

Create an analytical NumericalMathFunction
input = Description (2)

(©2007 EDF - EADS - PhiMeca

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50

Open TURNS — Use Cases Guide for the Textual User Interface 135

input [0] = "a”

input [1] = "b”

output = Description (3)

output [0] = 7sum”

output [1] = ”prod”

output [2] = "mean”

formulas = Description (output.getSize())
formulas [0] = "a+b”

formulas [1] = "axb”

formulas [2] = 7 (a+b) /2"

analytical = NumericalMathFunction (input, output, formulas, ”analytical”)

Add the NumericalMathFunction to the list of the objects saved
myStudy .add (analytical)

Check the list of objects that will be saved
print 7Study.=.” , myStudy

Remove the NumericalMathFunction to the list of the objects saved
myStudy . remove (analytical)

CARE!! At this point, no object has been saved : only the list have been
written!

SAVE NOW the objects listed

myStudy . save ()

5.2 UC : How to load a study ?

The principle is the following one. In order to be able to manipulate the objects contained in myStudy, it is
necessary to :

e create the same empty structure in the new study,
e fill this new empty structure with the content of the loaded structure, identified with its name or its id.
Each object is identified whether with :

e its name : that’s why it is usefull to give names to the objects we want to save (thanks to the command
setName()). If no name has been given by the User, we can use the name by default given by Open
TURNS. The name of each object saved can be checked in the file. XML created or by printing the study
in the python interface (with the command print).

e or its id number : this id number is unique for each object. It is usefull to separate two objects of same
type which names are identical, equal to the default name given by Open TURNS (for example, two
NumericalPoint the User has not named explicitely, both called "Unnamed’ by Open TURNS). This id
number may be checked by printing the study loaded in the python interface (with the command print)
: be carefull, this print operation must be performed after having loaded the study (the id number may
be different from the one indicated in the file. XML associated to the study).

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 136

In this use case, we load the file saved in the previous use case.

e a file . XML containing all the objects saved previously: myXML-

Requirements File. XML

type : file . XML

e all the objects of the file myXMLFile. XML loaded in the new study
Results

type : -

Python script for this UseCase :

CO 3 O U i W N+

S e
TR W NN~ OO

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Give the name and the adress of the file XML that will be loaded
fileName = 7 /tmp/myXMLFile”

Create a Study Object
myStudy = Study ()

Associate it to the file myXMLFile. XML
myStudy . setStorageManager (XMLStorageManager (fileName))

Load the file and all its objects
myStudy . load ()

Check the content of the myStudy
print 7Study.=.” , myStudy

In order to be able to manipulate the objects contained in myStudy, it is
necessary to

1. create the same empty structure in the new study

2. fill this new empty structure with the content of the loaded structure

Create a NumericalPoint from the one stored in myStudy
pointLoaded = NumericalPoint ()

Fill the new structure point with the content of the NumericalPoint saved
this NumericalPoint is identified with its name ’‘point’
myStudy . fillObject (pointLoaded , ”point”)

Check if it worked : the NumericalPoint ’'pointLoaded’ has been loaded
and we can manipulate it

print ”pointLoaded._=." , pointLoaded

Create an analytical NumericalMathFunction from the one stored in myStudy
analyticalLoaded = NumericalMathFunction ()

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 137

34 # Fill the new structure point with the content of the NumericalMathFunction
saved

35 # this NumericalMathFunction is identified with its id

36 # to read the right id, print myStudy which has already been loaded

37 print ”"Study.=.” , myStudy

38 # Fill the new structure with its id : for example, 32

39 myStudy . fillObject (analyticalLoaded , 32)

40

41 # Check if it worked : the NumericalMathFunction ’analytical’ has been
loaded

42 print ”analyticalLoaded._=.” , analyticalLoaded

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 138

6 Annexe 1 : One example of a complete study

6.1 Presentation of the study case

This Annexe presents several Use Cases described previoulsy in order to show one example of a complete study.
This example has been presented in the ESREL 2007 conference in the paper : Open TURNS, an Open source
initiative to Treat Uncertainties, Risks’N Statistics in a structured industrial approach, from A. Dutfoy(EDF
R&D), I. Dutka-Malen(EDF R&D), R. Lebrun (EADS innovation Works) & all.

Let’s consider the following analytical example of a cantilever beam, of Young’s modulus E, length L, section
modulus /. One end is built in a wall and we apply a concentrated bending load at the other end of the beam.
The deviation (vertical displacement) y of the free end is equal to :

FL3

EFLI)=—
y(?’?) 3EI

E l F A
=]
A § e | a
=
L S=r
€

Figure 73: cantilever beam under a ponctual bending load.

The objective of this UC is to evaluate the influence of uncertainties on the input data (F,F,L,I) on the
deviation y.

We consider a steel beam with a hollow square section of length a = 2.e — 2m and of thickness ¢t = 1.e — 3m.
Thus, the flexion section inertie of the beam is equal to I = 2.47¢ — 9m®*. The beam length is L = 1m. The
Young’s modulus E is E = 2.1ellkg.m~'.s~2. The charge applied is F = 10kg.m.s2.

The random modelisation of the input data is the following one : we consider for each input data a gaussian
distribution, which mean p is the deterministic value given above and which standard deviation is a percentile
of the mean :

e E = Gaussian(ug, 5% * ug)
e F = Gaussian(up, 10% * pr)
e L = Gaussian(ur, 1% * ur)

e I = Gaussian(uyz, 1% * uy)

This example treats the following points of the methodology :
e Deterministic Study : Min/Max study

— with a deterministic experiment plane,

— with a random experiment plane,

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 139

e Random Study : central tendance of the output variable of interest

— Taylor variance decomposition,

— Random sampling,

e Random Study : threshold exceedance: deviation j-lcm

FORM,
SORM,,

— Monte Carlo simulation method,

Directional Sampling method,

Latin HyperCube Sampling method,

— Importance Sampling method

Kernel Smoothing Fitting.

6.2 The TUI File

0O O U i Wi

#! Jusr/bin/env python

from openturns import x

from math import x*

from openturns_viewer import Viewlmage

This function enables a pretty print
def printNumericalPoint (point, digits)
oss = 7 [”7
eps = pow (0.1, digits)
for i in range(point.getDimension())
if i =20
sep = "7
else
sep = ",”
if fabs(point[i]) < eps
oss += sep + str(fabs(point[i]))
else
oss += sep + str(point[i])
sep = 7.7
oss += "]
return oss

of a NumericalPoint

Fonction ’‘poutre’

(©2007 EDF - EADS - PhiMeca

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

Open TURNS — Use Cases Guide for the Textual User Interface 140

We create a numerical math function
myFunction = NumericalMathFunction (” poutre”)

Random input vector

dim = myFunction. getInputNumericalPointDimension ()

We create a normal distribution point of dimension /4
mean = NumericalPoint (dim, 0.0)

FE : steel : 210000 MPa

mean[0] = 2.1ell

F : 1kg : 10N

mean|[l] = 10.0
#L : 1Im
mean[2] = 1.0

I : square hollow section of width 2 cm and thickness Imm : 2.47325 e—9
mean [3] = 2.47325e-9

sigma = NumericalPoint (dim, 1.0)
FE : 5% * mean

sigma [0] = 0.05 % mean|[0]

F : 10% * mean

sigma[l] = 0.1 * mean]|1]

L : 1% * mean

sigma [2] = 0.01 * mean|2]

1 : 1% = mean

sigma [3] = 0.01 * mean[3]

R = IdentityMatrix (dim)

myDistribution = Normal (mean, sigma, R)

input = RandomVector (myDistribution)

output = RandomVector (myFunction, input)

Deterministic Study

print TIEHAHERARRATA A

print 7 _Deterministic.Study”

(©2007 EDF - EADS - PhiMeca

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

Open TURNS — Use Cases Guide for the Textual User Interface 141

print HERAHEERARRATA A

print "deterministic_.evaluation_at_the_mean_point._:.”

print "deviation (mean._point).=.", myFunction (mean)

Min/Max study with deterministic experiment plane

print 7#
print 7 _Min/Max_study._with_.deterministic_experiment._plane”

Creation of the structure of the experiment plane : type Azial

On each direction separately, several levels are evaluated
here, 8 levels : +/—1, +/—8, +/—5 from the center

levelsNumber = 3

levels = NumericalPoint (levelsNumber, 0.0, ”Levels”)
levels [0] =1

levels [1] = 3

levels [2] =5

Creation of the azial plane

myPlane = Axial(dim, levels)

i

print "myPlane.=_.” , myPlane

Generation of points according to the structure of the experiment plane
(in a reduced centered space)

inputSample = myPlane. generate ()

Scaling of the structure of the experiment plane

scaling vector for each dimension of the levels of the structure
to take into account the dimension of each component

for example : the standard deviation of each component of ’input’
in case of a RandomVector

scaling = NumericalPoint (dim)

scaling [0] = sqrt(input.getCovariance () [0,0])
scaling [1] = sqrt(input.getCovariance()[1,1])
scaling [2] = sqrt(input.getCovariance()[2,2])
scaling [3] = sqrt(input.getCovariance () [3,3])
print ”sigma._=.", scaling

inputSample.scale(scaling)

print ”"centered._Sample_=_.", inputSample

Translation of the nonReducedSample onto the center of the experiment plane
center = mean point of the input distribution

(©2007 EDF - EADS - PhiMeca

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

Open TURNS — Use Cases Guide for the Textual User Interface

142

center = input.getMean ()

inputSample. translate (center)

print ”inputSample_.=.", inputSample
pointNumber = inputSample. getSize ()
print 7 points._.number.=." , pointNumber

outputSample = myFunction (inputSample)

minValue = outputSample.getMin ()
maxValue = outputSample.getMax ()

print 7 _From_an_axial__experiment_plane_of_size_=_", pointNumber
print "levels.=."7, levels

print "min.Value_.=.” , minValue [0]

print "max.Value_=." , maxValue[0]

print 29

”

Min/Max study with random experiment plane

print #
print 7 _Min/Max_study._with_random._experiment._plane”
print #

pointNumber = 100
print 7 _From.a.stochastic_experiment._place_of_size._=_
outputSample2 = output.getNumericalSample (pointNumber)

9

, pointNumber

minValue2 = outputSample2.getMin ()
maxValue2 = outputSample2.getMax ()

print "min_Value_=.” , minValue2[0]
print "max.Value_.=.” , maxValue2[0]
print 7”7

Random Study : central tendance of
#H## the output variable of interest

print ” _Random.Study.:_.central_tendance_of”
print ”_the_output_.variable_of_interest”

(©2007 EDF - EADS - PhiMeca

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
P10
P11
212
P13
214
P15
216
R17
218
219
220
P21
P22

Open TURNS — Use Cases Guide for the Textual User Interface

143

print
print
print

We create a quadraticCumul algorithm
myQuadraticCumul = QuadraticCumul (output)

We test the attributs here
print "myQuadraticCumul=", myQuadraticCumul

We compute the several elements provided by the quadratic cumul algorithm

print ”First_order._mean=", myQuadraticCumul.getMeanFirstOrder () [0]
print ”Second._order _mean=", myQuadraticCumul.getMeanSecondOrder () [0]
print ”Standard_deviation=", sqrt(myQuadraticCumul. getCovariance () [0,0])

Random sampling

77, 7) 7 7 7) 7

Print THHHHHHHHHHHHEHHRHHAA AR
print "Random.sampling”

print IR A

sizel = 10000

output_Samplel = output.getNumericalSample(sizel)

outputMean = output_Samplel.computeMean ()

outputCovariance = output_Samplel.computeCovariance ()

print "sample_size _=.", sizel

print "mean.from._sample_=.” , outputMean [0]

print ”"standard._deviation._from._sample.=.", sqrt(outputCovariance[0,0])

Probabilistic Study : threshold exceedance: deviation <—Icm

(©2007 EDF - EADS - PhiMeca

P23
P24
225
226
R27
P28
229
230
231
P32
233
R34
235
236
R37
238
239
240
P41
242
P43
R44
245
P46
R4T
P48
249
250
251
252
253
254
255
256
257
258
259

260

261

262
263

P64
265
P66

Open TURNS — Use Cases Guide for the Textual User Interface 144

iiiaiaiaia

print THHHHHE
print "FORM”
print THHHHHE

We create an FEvent from this RandomVector
threshold = —0.01
myEvent = Event (output, ComparisonOperator(Less()), threshold)

We create a NearestPoint algorithm

myCobyla = Cobyla ()
myCobyla.setSpecificParameters(CobylaSpecificParameters ())
myCobyla.setMaximumIterationsNumber (1000)
myCobyla.setMaximumAbsoluteError (1.0e—10)
myCobyla.setMaximumRelativeError (1.0e—10)
myCobyla.setMaximumResidualError (1.0e—10)
myCobyla.setMaximumConstraintError (1.0e—10)

#print "myCobyla=", myCobyla

We create a FORM algorithm
The first parameter is a NearestPointAlgorithm
The second parameter is an event

The third parameter is a starting point for the design point research
myAlgoFORM = FORM(NearestPointAlgorithm (myCobyla) , myEvent, mean)

#print "FORM=" , myAlgo

Perform the simulation
myAlgoFORM.. run ()

Stream out the result
resultFORM = myAlgoFORM. getResult ()

digits = 5

print "FORM_event.probability=" , resultFORM. getEventProbability ()

print ”generalized_reliability_.index=" , resultFORM.
getGeneralisedReliabilityIndex ()

print ”standard._space._design._point=" , printNumericalPoint (resultFORM.
getStandardSpaceDesignPoint (), digits)

print "physical_space_design_point=" |, printNumericalPoint (resultFORM.

getPhysicalSpaceDesignPoint (), digits)

print 7importance._factors=" , printNumericalPoint (resultFORM.
getImportanceFactors (), digits)
print ”Hasofer_reliability._index=" , resultFORM. getHasoferReliabilityIndex ()

Graph 1 : Importance Factors graph x/

(©2007 EDF - EADS - PhiMeca

267
P68
269
270
R71
R72
273
R74
275
276
R77

R78

279
280
P81
282
P83
284
P85
P86
P87
P88

289
290
P91
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
B11

Open TURNS — Use Cases Guide for the Textual User Interface 145

importanceFactorsGraph = resultFORM.drawlmportanceFactors ()
importanceFactorsGraph .draw (” ImportanceFactorsDrawingFORM”)

View the bitmap file
Viewlmage (importanceFactorsGraph . getBitmap ())

In order to see the graph whithout creating the associated files
Show (importanceFactorsGraph)

Graph 2 : Hasofer Reliability Indexr Sensitivity Graphs graph */

reliabilityIndexSensitivityGraphs = resultFORM.
drawHasoferReliabilityIndexSensitivity ()

reliabilityIndexSensitivityGraphs [0].draw(”
HasoferReliabilityIndexMarginalSensitivityDrawing”)

View the bitmap file
ViewImage (reliabilityIndexSensitivityGraphs [0]. getBitmap())

In order to see the graph whithout creating the associated files
Show(reliabilityIndexSensitivityGraphs [0])

Graph 3 : FORM Event Probability Sensitivity Graphs graph */

eventProbabilitySensitivityGraphs = resultFORM.drawEventProbabilitySensitivity ()

eventProbabilitySensitivityGraphs [0].draw (”
EventProbabilityIndexMarginalSensitivityDrawing”)

View the bitmap file
ViewImage (eventProbabilitySensitivityGraphs [0]. getBitmap())

In order to see the graph whithout creating the associated files
Show (eventProbabilitySensitivityGraphs [0])

il
SORM

iiiaiaiaia

print "FHEAAF
print ”SORM”
print "FHEHAF

We create a SORM algorithm
myAlgoSORM = SORM(NearestPointAlgorithm (myCobyla) , myEvent, mean)

Perform the simulation
myAlgoSORM . run ()

(©2007 EDF - EADS - PhiMeca

312
313
314
B15
316

317

318

319
320

321
322
323
324
325
326
327
328
329
330
331
332
333
334
B335
336
337
338
339
340
B41
342
343
B44
345
346
347
348
349
350
351

352

353

Open TURNS — Use Cases Guide for the Textual User Interface 146

Stream out the result
result SORM = myAlgoSORM. getResult ()

digits = 5

print 7 Breitung.event_probability=" | resultSORM.getEventProbabilityBreitung ()

print 7 Breitung.generalized._reliability .index=" , resultSORM.
getGeneralisedReliabilityIndexBreitung ()

print ”HohenBichler_event_probability=" |, resultSORM.
getEventProbabilityHohenBichler ()

print 7”HohenBichler_generalized_reliability _index=" |, resultSORM.
getGeneralisedReliabilityIndexHohenBichler ()

print "Tvedt_event_probability=" , resultSORM.getEventProbabilityTvedt ()

print ”Tvedt_generalized_reliability_index=" | resultSORM.

getGeneralisedReliabilityIndex ()

A
4 MC

iaaaa

print THHEAHHFAHAAF
print "Monte_Carlo”
print HHHHEHHAHEHHF

maximumOuterSampling = 400
blockSize = 100000
coefficientOfVariation = 0.10

We create a Monte Carlo algorithm

myAlgoMonteCarlo = MonteCarlo (myEvent)

myAlgoMonteCarlo . setMaximumOuterSampling (maximumQOuterSampling)
myAlgoMonteCarlo. setBlockSize (blockSize)
myAlgoMonteCarlo.setMaximumCoefficientOfVariation (coefficientOfVariation)

print 7 MonteCarlo=" , myAlgoMonteCarlo

Perform the simulation
myAlgoMonteCarlo . run ()

Stream out the result
print "MonteCarlo_.result=" , myAlgoMonteCarlo. getResult ()

Display number of iterations and number of evaluations

of the limit state function

print ”"external._iteration._.numbers.=.” | myAlgoMonteCarlo. getResult ().
getOuterSampling ()

print "number_of_evaluations_of_the_limit_state_function_=.", myAlgoMonteCarlo.
getResult () .getOuterSampling ()* myAlgoMonteCarlo. getResult (). getBlockSize ()

”

(©2007 EDF - EADS - PhiMeca

354
355

356
357
358

359
360
361
362
363
364

365
366

367
368
369
370
371
372
373
374
375
376
377
378
379
330
381
382
383
384
385
386
B87
388

389

390

Open TURNS — Use Cases Guide for the Textual User Interface 147

Display the Monte Carlo probability of ’'myFEvent’
print ”"Monte_Carlo_probability _estimation._=.”, myAlgoMonteCarlo. getResult ().
getProbabilityEstimate ()

Display the wvariance of the Monte Carlo probability estimator
print ”Variance._.of_the_Monte_.Carlo_probability _estimator_=.", myAlgoMonteCarlo.
getResult () .getVarianceEstimate ()

Display the confidence interval length centered around

the MonteCarlo probability MCProb

IC = [MCProb — 0.5«length , MCProb + 0.5xlength]

level 0.95

print 70.95_Confidence_Interval_length_=."”, myAlgoMonteCarlo. getResult ().
getConfidenceLength (0.95)

#

print 70.95_Confidence.Interval_=_[", myAlgoMonteCarlo. getResult ().
getProbabilityEstimate () — 0.5xmyAlgoMonteCarlo. getResult ().
getConfidenceLength (0.95), ”7,.”, myAlgoMonteCarlo. getResult ().

getProbabilityEstimate () + 0.5xmyAlgoMonteCarlo. getResult () .
getConfidenceLength (0.95), ”]”

Directional Sampling

7) 7) 7 7 7 7)

Print THHHHHHHHHHHHEHHRHHAA AR
print " Directional _Sampling”

Print THHEHHAHRAHAAHFHAHAHAE
Directional sampling from an event (slow and safe strategy by default)

We create a Directional Sampling algorithm x/

myAlgoDirectionalSim = DirectionalSampling (myEvent)
myAlgoDirectionalSim . setMaximumOuterSampling (maximumOuterSampling * blockSize)
myAlgoDirectionalSim . setBlockSize (1)

myAlgoDirectionalSim .setMaximumCoefficientOfVariation (coefficientOfVariation)

print ” DirectionalSampling=", myAlgoDirectionalSim

Save the number of calls to the limit state fucntion, its gradient and hessian
already done

limitStateFunctionCallNumberBefore = limitStateFunction . getEvaluationCallsNumber
()
limitStateFunctionGradientCallNumberBefore = limitStateFunction .

getGradientCallsNumber ()

(©2007 EDF - EADS - PhiMeca

391

392
393
394
395
396

397

398

399

400
401
102
403
104
405
406

407

408
409
410

A11
412
413

414
415
416
A17
418
419

420

121
422
123
124

Open TURNS — Use Cases Guide for the Textual User Interface 148

limitStateFunctionHessianCallNumberBefore = limitStateFunction .
getHessianCallsNumber ()

Perform the simulation x/
myAlgoDirectionalSim . run ()

Save the number of calls to the limit state fucntion, its gradient and hessian
already done

limitStateFunctionCallNumberAfter = limitStateFunction.getEvaluationCallsNumber
()

limitStateFunctionGradientCallNumberAfter = limitStateFunction.
getGradientCallsNumber ()

limitStateFunctionHessianCallNumberAfter = limitStateFunction .
getHessianCallsNumber ()

Stream out the result */
print ”"Directional .Sampling_result=", myAlgoDirectionalSim . getResult ()

Display number of iterations and number of evaluations

of the limit state function

print "external_iteration .numbers.=_’
getOuterSampling ()

print "number_of_evaluations_of_the_limit_state_function_=.",
limitStateFunctionCallNumberAfter — limitStateFunctionCallNumberBefore

?

, myAlgoDirectionalSim . getResult () .

Display the Directional Simumation probability of ’‘myFEvent’
print 7 Directional_Sampling_probability _estimation.=.", myAlgoDirectionalSim .
getResult () .getProbabilityEstimate ()

Display the wvariance of the Directional Simumation probability estimator
7

print " Variance_of_the_.Directional _Sampling_probability_estimator._=.",
myAlgoDirectionalSim . getResult () .getVarianceEstimate ()

Display the confidence interval length centered around

the Directional Simumation probability DSProb

IC = [DSProb — 0.5xlength, DSProb + 0.5%length]

level 0.95

print 70.95_.Confidence_.Interval_length. =’
getConfidenceLength (0.95)

print 70.95_Confidence.Interval _=_[", myAlgoDirectionalSim.getResult ().
getProbabilityEstimate () — 0.5%xmyAlgoDirectionalSim.getResult ().
getConfidenceLength (0.95), 7 ,.”, myAlgoDirectionalSim.getResult ().
getProbabilityEstimate () + 0.5%xmyAlgoDirectionalSim . getResult ().
getConfidenceLength (0.95), ”]”

Y

, myAlgoDirectionalSim . getResult ().

9

7 7 7 7. 7.
Latin HyperCube Sampling

[[/, 4 A v’

(©2007 EDF - EADS - PhiMeca

425
126
427
128
129
430
431
132
433
134
435
436
437
138
439
440
141
442
143
d44
445
446
A47
148

449
150
151

152
453
154

455
156

457
158
459

460

161
162
163
164

Open TURNS — Use Cases Guide for the Textual User Interface 149

\1ndex{Threshold Probablllty 'LHS}

We create a LHS algorithm

myAlgoLHS = LHS(myEvent)

myAlgoLHS . setMaximumOuterSampling (maximumOuterSampling)

myAlgoLHS . setBlockSize (blockSize)

myAlgoLHS . setMaximumCoefficientOfVariation (coefficientOfVariation)

print 7“LHS=" , myAlgoLHS

Perform the simulation
myAlgoLHS . run ()

Stream out the result
print "LHS_result=" , myAlgoLHS. getResult ()

Display number of iterations and number of evaluations

of the limit state function

print ”"external_iteration_numbers.=.” |, myAlgoLHS. getResult ().getOuterSampling ()

print "number_of_evaluations_of_the_limit_state_function_=.", myAlgoLHS.
getResult () .getOuterSampling () *xmyAlgoLHS. getResult (). getBlockSize ()

Display the LHS probability of {\itshape myFEvent}
print "LHS_probability _estimation._=." , myAlgoLHS. getResult ().
getProbabilityEstimate ()

Display the wvariance of the LHS probability estimator
print ”Variance_of_the_ LHS_probability_estimator._.=.", myAlgoLHS. getResult () .
getVarianceEstimate ()

Display the confidence interval length centered aroung the LHS probability
LHSProb

IC = [LHSProb — 0.5xlength , LHSProb + 0.5xlength]

level 0.95

print 70.95_Confidence_Interval_length_=.", myAlgoLHS. getResult () .
getConfidenceLength (0.95)

print 70.95_Confidence._Interval =_[”, myAlgoLHS. getResult ().
getProbabilityEstimate () — 0.5%xmyAlgoLHS. getResult ().getConfidenceLength
(0.95), 7,.7, myAlgoLHS. getResult () .getProbabilityEstimate () + 0.5*myAlgoLHS.
getResult () .getConfidenceLength (0.95), 7]”

7) 7

7
Importance Sampling

v’ 4

(©2007 EDF - EADS - PhiMeca

465
166
467
168
169
470
A71
472
A73
A74
475
476
477
478

479
480
481

482
483
484
485
486
487
488
189
490
491
192
493

494

495
496
497

498
499
500

H01
502
H03
H04
505

Open TURNS — Use Cases Guide for the Textual User Interface 150

print HERHRHARAFHAFHARATAE
print ”Importance_Sampling”

print ERAHEERARRAT AT

standardSpaceDesignPoint = resultFORM. getStandardSpaceDesignPoint ()
mean = standardSpaceDesignPoint

sigma = NumericalPoint (4, 1.0)

importanceDistribution = Normal(mean, sigma, CorrelationMatrix (4))

myStandardEvent = StandardEvent (myEvent)

myAlgolmportanceSampling = ImportanceSampling (myStandardEvent, Distribution (
importanceDistribution))

myAlgolmportanceSampling . setMaximumOuterSampling (maximumOuterSampling)

myAlgolmportanceSampling . setBlockSize (blockSize)

myAlgolmportanceSampling . setMaximumCoefficientOfVariation (coefficientOfVariation

)

print "Importance_.Sampling=" , myAlgolmportanceSampling

Perform the simulation
myAlgolmportanceSampling . run ()

Stream out the result
print "Importance.Sampling_result=" |, myAlgolmportanceSampling.getResult ()

Display number of iterations and number of evaluations

of the limit state function

print "external_iteration_numbers_=_’
getOuterSampling ()

print "number_of_evaluations_of_the_limit_state_function_=.",
myAlgolmportanceSampling . getResult () . getOuterSampling () *
myAlgolmportanceSampling . getResult () . getBlockSize ()

)

, myAlgolmportanceSampling . getResult ().

Display the Importance Sampling probability of 'myFEvent’
print ”Importance_Sampling_probability cestimation_=.” , myAlgolmportanceSampling.
getResult () .getProbabilityEstimate ()

Display the wvariance of the Importance Sampling probability estimator
print " Variance_of_the_.Importance_Sampling_.probability_estimator._=.",

myAlgolmportanceSampling . getResult () . getVarianceEstimate ()

Display the confidence interval length centered around
the ImportanceSampling probability ISProb

IC = [ISProb — 0.5xlength, ISProb + 0.5%length]

level 0.95

(©2007 EDF - EADS - PhiMeca

06

07

08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47

Open TURNS — Use Cases Guide for the Textual User Interface 151

9

print 70.95_Confidence_Interval_length_=.", myAlgolmportanceSampling. getResult ()

.getConfidenceLength (0.95)

print 70.95_Confidence_Interval =_[", myAlgolmportanceSampling. getResult ().
getProbabilityEstimate () — 0.5%*myAlgolmportanceSampling. getResult ().
getConfidenceLength (0.95), 7 ,.”, myAlgolmportanceSampling. getResult () .
getProbabilityEstimate () + 0.5*myAlgolmportanceSampling. getResult ().
getConfidenceLength (0.95), 7]”

Kernel Smoothing Fitting

b

We generate a sample of the output variable
size = 1000
output_sample = output.getNumericalSample(size)

We build the kernel smoothing distribution

kernel = KernelSmoothing ()

smoothed = kernel.buildImplementation (output_sample)
print "kernel_bandwidth=" |, kernel.getBandwidth ()

We draw the pdf and cdf from kernel smoothing

mean_sample = output_sample.computeMean () [0]

standardDeviation_sample = sqrt (output_sample.computeCovariance() [0,0])
xmin = mean_sample — 4xstandardDeviation_sample

xmax = mean_sample + 4xstandardDeviation_sample

smoothedPDF = smoothed .drawPDF (xmin, xmax, 251)
smoothedPDF . draw (” smoothedPDF”)

smoothedCDF = smoothed .drawCDF (xmin, xmax, 251)
smoothedCDF . draw (” smoothed CDF”)

In order to see the graph whithout creating the associated files
Show (smoothed CDF)
Show (smoothedPDF')

Probability of myFEvent : I1—smoothedCDF (threshold)
print "probability _of_the_event_after_kernel_smoothing.=.”, 1.0 — smoothed.
computeCDF (NumericalPoint (1,threshold))

Superposition of the kernel smoothing pdf and the gaussian one
which mean and standard deviation are those of the output_sample

(©2007 EDF - EADS - PhiMeca

Open TURNS — Use Cases Guide for the Textual User Interface 152

48 meanSample = output_sample.computeMean ()

49 standardDeviationSample = NumericalPoint (1, sqrt(output_sample.computeCovariance
() [0,0]))

50 gaussianDist = Normal (meanSample,standardDeviationSample, CorrelationMatrix (1))

gaussianDistPDF = gaussianDist .drawPDF (xmin, xmax, 251)
gaussianDistPDFDrawable = gaussianDistPDF . getDrawable (0)
gaussianDistPDFDrawable.setColor ('red)

smoothedPDF . addDrawables (gaussianDistPDFDrawable)

smoothedPDF . draw (” smoothedPDF _and_GaussianPDF”)

In order to see the graph whithout creating the associated files
Show (smoothedPDF')

(©2007 EDF - EADS - PhiMeca

Index

Comparison of distribution test
Smirnov, 40
Composed Distribution, 19
Copula
Clayton, 15
Composed copula, 15
Frank, 15
Gumbel, 15
Independent, 15, 19
Normal, 15, 19
Correlation
Correlation matrix of the Normal copula, 15, 19
Partial Pearson correlation coefficient (PCC),
95
Partial rank correlation coefficient (PRCC), 95
Pearson correlation coefficient, 95
Spearman correlation coefficient, 95
Spearman rank correlation matrix, 15, 19
Standard rank regression coefficient (SRRC), 95
Standard regression coefficient (SRC), 95
CSV file, 34

Distribution
Manipulation, 25
Marginals and copula, 19
Usual distribution, 3

Event
Physical space, 100, 102, 107, 113, 117, 124
Standard space, 100, 101, 124
Experiment Plane
Axial, 85, 91
Box, 85
Composite, 85
Drawing, 91
Factorial, 85
Random experiment plane, 93
Scaling, 85, 91
Translation, 85, 91

Fitting Distribution
Kernel smoothing, 58
Parametric method, 48

Fitting Test
Anderson Darling, 51

153

ChiSquared, 48
Cramer Von Mises, 51
Henry line, 51
Kolmogorov, 48
QQ-plot, 40, 48

Graph

Clouds of points, 73

Empirical cumulative density function, 35, 58

FORM importance factors, 102, 107

FORM probability sensitivity, 102

Hasofer reliability index sensitivity, 102, 107

Henry line, 51

Histogram, 35

PDF-CDF curves, 21, 25, 58

PDF-CDF isocurves, 25

QQ-plot, 40, 48, 51

Quadratic Cumul importance factors, 96

Regression linear model, 62

Residual Regression linear model, 62

Specifying the file format, 25

Superposition empirical - kernel smoothed CDF,
58

Superposition of graphs, 73

Superposition two points clouds, 35

Graph Manipulation

Bounding box, 21, 25, 35, 48, 51, 58, 62, 113,
117, 124

Show, 21, 25, 35, 48, 51, 58, 62, 91, 96, 102,
107, 113, 117, 124

Viewlmage, 21, 25, 35, 48, 51, 58, 62, 91, 96,
102, 107, 113, 117, 124

Independence Test
ChiSquared test, 42, 44
Pearson test, 42, 44
Spearman test, 42, 44

Limit State Function
Analytical formula declared in line, 76
External wrapper, 74
Gradient, 76
Hessian, 76
LinearNumericalMathFunction, 77
Reducing the initial limit state function, 77, 79

Open TURNS — Use Cases Guide for the Textual User Interface 154

Mixture Distribution Empirical cumulative density function, 69
Mixture, 21, 25 Empirical quantile, 69
Kendall’s tau, 69
Numerical Math Function Manipulation Kurtosis. 69
Composition, 81 Min - Max, 69
Evaluation, 81 Pearson correlation coefficient, 69
Gradient, 81 Skewness, 69
Hessian, 81 . . Spearman correlation coefficient, 69
Input - Output dimension, 81 Sensitivity Analysis
Marginal, 81 FORM probability, 102
Min-Max, 94

Optimisation Algorithm

AbdoRacwitz, 102 N dSORM probability, 107
Cobyla, 102, 107 ney
SQP, 102 Load, 134

’ Save, 133

Quadratic Cumul, 96
Quantile
Distribution evaluation, 25

Threshold Probability
Directional sampling, 117

.. . . FORM, 102
Empirical estimation, 69 .
. . . Importance sampling, 124
Empirical estimation , 97
Wilks estimation, 97 LHS, 113
’ Monte Carlo, 113
Random Generator, 93, 113, 117, 124, 130, 131 SORM Breitung, Tvedt, Hohenbichler, 107

Random Vector

Extracting a sub vector, 84 Usual Distribution

Beta, 3
Input random vector, 32 B (; ential. 3
xponenti
Output random vector, 79, 83 P ’
. Gamma, 3
Ranking test .
Geometric, 3
BIC, 55
. Gumbel, 3
ChiSquared, 55 .
Histogram, 3
Kolmogorov, 55 .
Logistic, 3

Regression Linear Model
Adjusted R? test, 62
Cloud sample - Line graph, 62
Factory, 62

LogNormal, 3
MultiNomial, 3
Non Central Student, 3

Fisher test, 62 ggf;;i’ i3))
Residual graph, 62 Stndont. 3

Residual test, 62
R? test, 47, 62
ResponseSurface
Linear least squares approximation, 129-131

Triangular, 3
Truncated distribution, 14
TruncatedNormal, 3

Linear Taylor approximation, 129 gnlfo(l;ng 3d ;
Quadratic Taylor approximation, 129 ser delined,
Weibull, 3

Sample Statistics
Rank - Sort functionnalities, 69
Cholesky factor, 69 Wilks, 97
Covariance, 69

View Image, 73

(©2007 EDF - EADS - PhiMeca

