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1 Introduction

This document is part of Open TURNS' documentation. Its aim is to introduce the global methodology for
the quanti�cation of uncertainties by a model-based approach, and the methods proposed by Open TURNS to
carry out the di�erent steps of such a study. Indeed, even if each industrial study exhibits some particularities,
a common framework composed of four steps is proposed.

• Step A: speci�cation of the case-study: uncertainty sources, model and criteria
The objective is to identify the sources of uncertainty, and the major characteristics of interest of the
system studied that are in�uenced by these sources.

• Step B: quantifying the sources of uncertainty
The characteristics of the uncertainty sources are determined in a deterministic or probabilistic framework.

• Step C: uncertainty propagation
A numerical method is carried out to compute the uncertainty of the system's characteristics of interest.

• Step C': ranking of the sources of uncertainty / sensitivity analysis
Chosen indicators are used to rank the uncertainty sources with respect to their impact on the uncertainty
of the system's characteristics of interest.

The �rst part of this document brie�y presents each step, and illustrates the key points through a realistic �
even though simpli�ed � example.
In the second part of the document, the focus is placed on the methods that an analyst may use in Open
TURNS to carry out steps B, C and C'. For each method, a synthetic form is given to highlight:

• the mathematical principles,

• the position of the method in the global methodology,

• some basic recommendations on when and how to use (and not to use) the method,

• some key bibliographic references.

For the practical side i.e. the use of these functions in Open TURNS Textual User Interface, the user is referred
to the [TUI user manual] and [TUI use-cases guide].

Presentation of the �ood example
Suppose that the industrial study concerns a dyke built along a river to protect an industrial facility from
�oods. For the industry that runs this facility, a risk exists: even if the dyke would have been high enough
to contain the major �oods of the last century, one does not know if the protection will be su�cient to face
the next �ood. For instance, meteorological events vary from year to year and are thus considered random, at
least given our current knowledge in this scienti�c �eld. Therefore, an uncertainty study becomes valuable to
ensure risk control (the dyke should be high enough to limit the risk of inundation) and economical optimization
(the construction and maintenance cost increase with the dyke height, which should consequently not be either
under or over-dimensioned).

c©2007 EDF - EADS - PhiMeca
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2 Global methodology of an uncertainty study

2.1 Step A: speci�cation of the case-study

The �rst step of an uncertainty study can be roughly described as �the de�nition of the problem". This may
seem obvious, but starting an uncertainty study requires an analysis of some key issues � the foundations that
will ensure that the industrial goals have been correctly translated in mathematical terms.

2.1.1 Variables of interest, model and input variables

In our framework, a variable of interest denotes a scalar variable on which the uncertainty is to be quanti�ed.
A model denotes a mathematical function that enables the computation of a set variable of interest, being given
several input variables on which the user may have data and/or expert/engineering judgement. The basis of
the uncertainty study is the following mathematical equation:

y = h (x, d)

where:

• y =
(
y1, . . . , yny

) ∈ Rny is a vector that regroups the variables of interest,

• h denotes the model,

• x =
(
x1, . . . , xnx

) ∈ Rnx denotes the vector of input variables of the model on which uncertainties are to
be studied,

• d =
(
d1, . . . , dnd

) ∈ Rnd denotes the vector of input variables of the model treated as certain (uncertainties
are negligible/neglected, or a penalized value is used).

Model h
x

d
y

input
variables variables of

interest

Illustration on the �ood example
A key variable to be studied is the annual maximum water level; in addition, one may also want to consider the
annual cost including damage caused by possible �oods and maintenance of the dyke. Therefore, two variables
of interest y =

(
y1, y2

)
can be studied: y1 denotes the annual maximum water level, and y2 denotes the overall

annual cost. y1 can be evaluated via more or less complex hydrological models, the main input factors being the
river �ow and some characteristics of the river bed (such as Strickler's coe�cient to represent the friction i.e.
the bed roughness). y2 requires in addition an economical model to assess the costs (systematic maintenance
and damages repair).
Some of the models input variables are uncertain: the river �ow and bed's characteristics are naturally variable
from year to year, and damage cost may not be well known. They are therefore part of x, even if some of
them may be put in d by using penalized value (e.g. a maximal damage cost or a �worst possible" Strickler's
coe�cient). This last approach could be chosen if too scarce information is available on these sources of
uncertainty.
Note that every model is a simpli�ed view of reality, which introduces another source of uncertainty in the
analysis. Thus, one has to keep in mind the importance of a compromise between model uncertainty (complex
models usually o�er a more accurate evaluation of the variable of interest) and input variables uncertainty
(complex models may involve much more uncertain factors on which information has to be available).
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2.1.2 Criteria of the uncertainty study

Now that the general context has been staged, one major question is still to be addressed before moving to
the core of the uncertainty study. The variable(s) of interest for the user are known to be uncertain, and
this uncertainty is to be quanti�ed; but what exactly could we or should we use to measure uncertainty?
Open TURNS' methodology proposes deterministic and probabilistic criteria that meet many industrial cases
requirements.

Deterministic criteria
In a deterministic context, one may want to assess the range of possible values of y, that is to say a subset
Dy ⊂ Rny in which we are sure to �nd y. In the following, we will refer to this type of uncertainty measurement
as a deterministic criterion; Open TURNS proposes methods that can be used to estimate the minimum and
the maximum of a variable of interest.
This approach is the easiest to understand from a conceptual point of view, easier anyway than the probabilistic
approach that we will now address. But we will see in step C that it is not always the less demanding approach
in terms of CPU time.

Probabilistic criteria: probability of exceeding a threshold / failure probability, and quantile
Most of the methods proposed in Open TURNS use a probabilistic framework. In such a context, the vector
y of variables of interest is seen as a mathematical object called random vector, usually noted in capital letters
Y . Roughly speaking, this means that one associates a probability to each interval (and more generally to each
subset of values). Note that in such an approach, the range of possible values of Y may be in�nite e.g. the water
level in our �ood problem may be somewhere between 0 and +∞, even if very large values will be associated
to probabilities that are extremely close to zero.
The most complete measure of uncertainty when dealing with a random vector is the probability distribution.
One way to characterize a probability distribution is the following function FY , called cumulative distribution
function:

FY
(
y1, . . . , yny

)
= P

(
Y 1 ≤ y1, . . . , Y ny ≤ yny)

In an uncertainty study, one may want to assess the value of the cumulative distribution function at least in
certain points. More precisely, focus may be placed on the following quantities.

• Probability of exceeding a threshold: the aim is to assess the probability of the event D = �the variable of
interest Y i exceeds a threshold important for the industrial goals at stakes (e.g. safety)":

P
(
Y i > threshold

)
= 1− FY i (threshold)

In industrial applications concerning structural reliability, one often talks of �failure probability", term
that will also be used in Open TURNS' documentation. By convention (also derived from the �eld of
structural reliability), the event �threshold exceeded" is often re-written as:

Df =
{
x ∈ Rnx

∣∣g (x, d) < 0
}

• Quantiles: the aim is to assess the threshold that a variable of interest may exceed with a probability
equal to a given value. For α ∈]0, 1[, the quantile of level α of a scalar variable of interest Y i is de�ned as
follows:

qY i(α) is the scalar such that P
(
Y i ≤ qY i(α)

)
= FY i (qY i(α)) = α

These criteria are very rich in terms of industrial meanings. But their assessment may be sometimes quite
demanding in terms of CPU time (step C) and/or knowledge on the sources of uncertainty (step B). This is
why in some applications, practitioners may be interested in more simple probabilistic criteria.

c©2007 EDF - EADS - PhiMeca
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Probabilistic criteria: central dispersion
The expectation/average value µi and variance σ2

i of a variable of interest Y i are de�ned as follows:

µi = E
(
Y i
)
, σ2

i = E
[(
Y i − µi

)2]
Exception made of very particular cases, these two quantities are not su�cient to compute the probability of
exceeding a threshold, or a quantiles. But they provide an �order of magnitude" of uncertainty: the standard
deviation σi (square root of the variance) � normalized by the average value µi in order to remove scale e�ects
� is an indicator of the dispersion of the variable of interest Y i. Values distant from µi are more likely if σi is
large.

Model h
x
d y

input
variables

variables of
interest

criteria of the study
-- deterministic
-- probabilistic: central
dispersion, probability of
exceeding a threshold / failure
probability, quantile

Step A: specification of the case-study

Illustration on the �ood example
In our �ood example, practitioners may be interested is the probability of a �ood over a year. Since Y 1 denotes
the annual maximum water level:

P
(
Y 1 > dyke height

)
= 1− FY 1 (dyke height)

Another probabilistic quantity of interest would be the 99%-quantile of the variable of interest Y 1, that is
to say the level of water that is exceeded only 1 time per century on average (probability of exceeding the
threshold equal to 1%). Note that here, one has in mind very low probabilities. But if the description of the
methods proposed in Open TURNS often place the focus on low probabilities assessment � which yields speci�c
di�culties � it is obviously possible to use these methods in order to adress �non-rare" events.
The value of these indicators (probability of �ood and quantiles) is relevant only if one is able to provide
an accurate probabilistic model of the uncertainty sources (e.g. the river �ow and the bed's characteristics),
problem that will be addressed in step B. If information on the uncertainty sources is scarce or di�cult to
collect, a �rst uncertainty study could focus on the expectation and standard deviation of the variable Y 1,
which will bring some �rst useful � even though limited � informations on uncertainty.

2.2 Step B: quantifying uncertainty sources

Once step A has been carried out, the next step is to de�ne a model to represent the uncertainties on the vector
x. The methods to be used depend mainly on the type of criteria chosen (deterministic or probabilistic) and
on the information available (statistical datasets and/or expert/engineering judgement).

Deterministic criteria
In a deterministic framework, the range of possible values has to be determined for each component of the
uncertainty sources x.

c©2007 EDF - EADS - PhiMeca
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Probabilistic criteria
In a probabilistic framework, the vector x of uncertainty sources is seen as a random vector denoted by X. The
uncertainty study then requires to assess the probability distribution of X.
The �rst question that has to be investigated concerns the possible dependencies between uncertain variables.
Common physical phenomenon may link several components of vector X; then obtaining an information on Xi

would change our knowledge of Xj . If such dependencies are suspected, a multi-dimensional analysis is required
in order not to bias the results of the uncertainty study. In case of independence, a uni-dimensional analysis
for each Xi is su�cient.
In this version, Open TURNS proposes a way of building a multi-dimensional probability distribution of X in
two sub-steps.

• First, a uni-dimensional analysis has to be carried out for each uncertainty source Xi. The methods
proposed by Open TURNS are described below.

• Second, some measures of the dependencies between the sources of uncertainty are to be determined
through expert/engineering judgement or statistical tools provided by Open TURNS. The measures used
by Open TURNS are correlation coe�cients; the underlying mathematical tools are so-called �copulas".

In the uni-dimensional case, the way to build a probability distribution depends on the available data.

• Sometimes, the only available information is an expert/engineering judgement based on an analysis of
the underlying physics, feedback of experience from other studies, dedicated literature, etc. Then, Open
TURNS proposes a list of parametric models that describe various types of uncertainty thanks to a small
number of parameters; these parameters can be chosen according to expert/engineering judgement.

• Suppose now that datasets are available: several measurements of the variable Xi have been carried out
previously. Then, one may use again a parametric model, but this time with the help of statistical tools
provided by Open TURNS in order to choose the most relevant model, estimate its parameters and validate
the resulting model. Anyway, there still exists a risk of choosing a non-relevant parametric model, which
may result in an inaccurate uncertainty study. The user may avoid this risk by choosing a non-parametric
model proposed by Open TURNS: the result is only �data-driven" � which ensures robustness � but the
number of data required is much larger than for a parametric model, especially if the uncertainty study
focus on rare events.

Note that whatever the method used to build a probability distribution (parametric or non-parametric),
two phases can be distinguished: the construction of the model, and its critical analysis regarding the
objectives of the study (based on data or expert/engineering judgement). This second phase should focus
on the �important" parts of the probability distribution: for instance, if the criterion of the study is a
rare quantile, a special attention has often to be paid to extreme values of the uncertain variables. If the
criterion deals with central dispersion, the requirement on extreme values are less important.

Model hx
d y

input
variables variables of

interest
criteria of the study
-- deterministic
-- probabilistic: central
dispersion, probability of
exceeding a threshold / failure
probability, quantile

Step B: quantifying
uncertainty sources
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Illustration on the �ood example
In a deterministic framework, note that the upper limit for the river �ow is always relative: whatever �realistic"
value is proposed, one has to be aware that there is still a residual risk of exceeding this limit.
If a probabilistic framework is considered, some uncertainty sources can be reasonably assumed independent:
there is no physical reason that may justify a dependancy between the river �ow and Strickler's friction coe�cient
(knowing the �ow of arriving water does not give any information on the state of the river bed). But if several
uncertain variables characterize the river bed (e.g. Strickler's coe�cient and some indicators of topography),
the question of dependency should be investigated in order not to false the results of the study, even if it is an
additional source of complexity.
Finally, note that some relationships between the variable of interests and some uncertain variables are mono-
tonic. For instance, the maximum value of the water level will be reached for the highest possible value considered
for the river �ow, since a non-decreasing relation intuitively exists between these variables. Therefore, studying
a high quantile of the water level requires a good con�dence in the probabilistic model of extreme river �ow
values.

2.3 Step C: uncertainty propagation

Now that the analysis on the uncertainty sources has been carried out, the next goal is to translate the model
chosen in step B in terms of uncertainty on the variables of interest via the relation:

y = h (x, d)

The method to be used depends on the criteria of the study, and on some characteristics of the model h.

Deterministic criteria
In this situation, range of values have been determined for x. Finding the minimum and maximum values of y
is quite easy if the model h is monotonous with respect to x (one only has to consider the boundary values of
x). But in a more general context, this is a potentially complex optimization problem. Open TURNS proposes
a simpli�ed approach based on design of experiments to estimate extreme values of y.

Probabilistic criteria
Step B has provided the probability distribution of X. The objective is then to assess some characteristics of
interest of the distribution of Y = h (X, d): probability of exceeding a threshold, quantile, or expectation and
variance. Open TURNS proposes a set of relevant methods for each of these quantities.

• For the assessment of expectation/variance or threshold exceeding probability, Open TURNS proposes
both approximation methods (numerically e�cient whatever the CPU cost of a run of h, but only valid
if the analyst can justify some properties of h e.g. regular, close to linear, etc.) and robust sampling
methods (no assumption is made on h, but CPU-cost becomes a more critical issue).

• For the assessment of a quantile, Open TURNS proposes a sampling method.

c©2007 EDF - EADS - PhiMeca
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Model hx
d y

input
variables variables of

interest
criteria of the study
-- deterministic
-- probabilistic: central
dispersion, probability of
axceeding a threshold / failure
probability, quantile

Step B: quantifying
uncertainty sources

Step C: uncertainty
propagation

Illustration on the �ood example
In a deterministic framework, the computation of extremum values is facilitated by the fact that some relation-
ships between the variable of interests and some uncertain variables are monotonic, as mentioned above: the
maximum value of the water level will be reached for the highest possible value considered for the river �ow.
In a probabilistic framework, the complexity of the hydrological model h plays an important role in the prop-
agation method to be chosen. If a simple model with a low CPU cost is used, robust sampling methods are
the most natural candidates. Otherwise, approximation methods and/or accelerated sampling methods may be
attractive. Note that one does not have to choose a unique method: cross-validating the results by using several
propagation methods may be fruitful!

2.4 Step C': Ranking uncertainty sources / Sensitivity analysis

In a probabilistic framework, a better understanding of uncertainties can be achieved by analysing the contribu-
tion of the di�erent uncertainty sources to the uncertainty of the variables of interest. For each couple �criteria
of the study / propagation method used in step C", post-treatment procedures are proposed by Open TURNS
in order to rank the uncertainty sources.
It is important to note that an uncertainty study rarely stops after a �rst processing of steps A, B, C and
C', and the last step then plays a crucial role. Indeed, the ranking results highlight the variables that truly
determine the relevancy of the �nal results of the study. If the uncertainty model of some of these variables
has been chosen a bit roughly in step B e.g. because of time constraints or any practical di�culties, collecting
further informations on these meaningful sources would be a relevant move to re�ne the analysis.

Model hx
d y

input
variables variables of

interest
criteria of the study
-- deterministic
-- probabilistic: central
dispersion, probability of
exceeding a threshold / failure
probability, quantile

Step B: quantifying
uncertainty sources

Step C: uncertainty
propagation

Step C': uncertainty
ranking / sensitivity analysis

c©2007 EDF - EADS - PhiMeca



Open TURNS � Reference Guide 11

Illustration on the �ood example
It is important to note that the result of the uncertainty ranking is strongly linked to the type of criterion
considered. For instance, suppose that the central dispersion of the annual maximum water level is studied.
Suppose also that the river �ow is pointed out by uncertainty ranking as the most important uncertain variable,
the other ones having almost a negligible impact. However, it would be dangerous to say without further
investigation that this would be the same if the focus is shifted towards extreme values of the variable of
interest (high quantile or rare probability). it is quite possible that the role of bed's roughness uncertainty will
be increased since extreme values of the water level may come only from the conjunction of a high �ow and a
high roughness.
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3 Open TURNS' methods for Step B: quantifying uncertainty sources

This section is organized in three parts. The �rst one gives the list of probabilistic uncertainty models proposed
by Open TURNS. The second part gives an overview of the content of the statistical toolbox that may be
used to build these uncertainty models if data are available. The last part is dedicated to the mathematical
description of each method.

3.1 Probabilistic models proposed in Open TURNS

Open TURNS proposes two di�erent types of probabilistic models: non-parametric and parametric ones.

3.1.1 Non-parametric models
• [Empirical Cumulative Distribution Function] � see page 14

• [Kernel smoothing] � see page 16

3.1.2 Parametric models
• [Usual uni- and multi-dimensional probability distribution functions] � see page 24

• [Copulas: a mathematical tool for multi-dimensional distributions] � see page 35

3.2 Classical statistical tools for uncertainty quanti�cation

Building a dataset may require to aggregate several data sources; Open TURNS o�ers some techniques to check
beforehand if these data sources are indeed related to the same probability distribution.
Moreover, when a parametric model is used, Open TURNS provide statistical tools to estimate the parameters,
validate the resulting model and address the important issue of dependencies among uncertainty sources.

3.2.1 Aggregation of two samples

• Qualitative analysis

� [Graphical analysis using QQ-plot] � see page 39

• Quantitative analysis

� [Smirnov test] � see page 42

3.2.2 Estimation of a parametric models
• [Maximum Likelihood method] � see page 44

3.2.3 Analysis of the goodness of �t of a parametric model

• Qualitative goodness-of-�t analysis

� [Graphical analysis] � see page 47

• Quantitative goodness-of-�t analysis

� [Chi-square test] � see page 51

� [Kolmogorov-Smirnov test] � see page 53

� [Cramer-Von-Mises test] � see page 56

� [Anderson-Darling test] � see page 58

� [Bayesian Information Criterion (BIC)] � see page 60
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3.2.4 Detection and quanti�cation of dependencies among uncertainty sources

• Linear correlations

� [Pearson correlation coe�cient] � see page 62

� [Pearson independence test] � see page 65

• Monotonous correlations

� [Spearman correlation coe�cient] � see page 67

� [Spearman independance test] � see page 70

• Model-free dependency analysis

� [Chi-square independence test] � see page 72

• Regression methods

� [Linear regression] � see page 74
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3.3 Methods description

3.3.1 Step B � Empirical cumulative distribution function

Mathematical description

Goal

The empirical cumulative distribution function provides a graphical representation of the probability distri-
bution of a random vector without implying any prior assumption concerning the form of this distribution.
It concerns a non-parametric approach which enables the description of complex behaviour not necessarily
detected with parametric approaches.
Therefore, using general notation, this means that we are looking for an estimator F̂N for the cumulative
distribution function FX of the random variable X =

(
X1, . . . , XnX

)
:

F̂N ↔ FX

Principle of the method for nX = 1

Let us �rst consider the uni-dimensional case, and let us denote X = X1 = X. The empirical probability
distribution is the distribution created from a sample of observed values {x1, x2, . . . , xN}. It corresponds to
a discrete uniform distribution on {x1, x2, . . . , xN}: where X ′ follows this distribution,

∀ i ∈ {1, . . . , N} , Pr (X ′ = xi
)

=
1
N

The empirical cumulative distribution function F̂N with this distribution is constructed as follows:

FN (x) =
1
N

N∑
i=1

1{xi≤x}

The empirical cumulative distribution function FN (x) is de�ned as the proportion of observations that are
less than (or equal to) x and is thus an approximation of the cumulative distribution function FX(x) which
is the probability that an observation is less than (or equal to) x.

FX(x) = Pr (X ≤ x)

The diagram below provides an illustration of an ordered sample {5, 6, 10, 22, 27}.
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Principle of the method for nX > 1

The method is similar for the case nX > 1. The empirical probability distribution is a distribution created
from a sample {x1, x2, . . . , xN}. It corresponds to a discrete uniform distribution on {x1, x2, . . . , xN} :
where X ′ follows this distribution,

∀ i ∈ {1, . . . , N} , Pr (X ′ = xi
)

=
1
N

Thus we have:

FN (x) =
1
N

N∑
i=1

1{x1
i≤x1,...,x

nX
N ≤xnX}

in comparison with the theoretical probability density function FX :

FX(x) = P
(
X1 ≤ x1, . . . , XnX ≤ xnX)

Other notations

This method is also referred to in the literature as the empirical distribution function.

Link with OpenTURNS methodology

This method is used in step B �Quantifying Sources of Uncertainty". It enables us to obtain a representation
of the distribution of the vector X of uncertain variables de�ned in step A �Specifying Criteria and the Case
Study", without applying any a priori modelling hypotheses.

References and theoretical basics

This method has the advantage of depending only on the observed values, without any other modelling
assumptions (as in the [kernel smoothing method]). Nevertheless, in the case where little data is available,
the estimation of the criteria de�ned in step A can be less precise with this non-parametric method than
with a parametric approach (e.g. the models described in [standard parametric models]).
The following bibliographical references provide main starting points for further study of this method:

• Saporta G. (1990). �Probabilités, Analyse de données et Statistique", Technip

• Dixon W.J. & Massey F.J. (1983) �Introduction to statistical analysis (4th ed.)", McGraw-Hill
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3.3.2 Step B � Density by Kernel Smoothing

Mathematical description

Goal

Kernel smoothing methods enable to estimate probability density functions without any reference to a
statistical model. It can uncover structural features in the data which a parametric approach might not
reveal.
So, following the general notations, it means we are looking for an estimator f̂hN (x) of the probability density
function of the input random vector X:

f̂hN (x)↔ fX(x)

These methods require a set of initial data to build this estimator.
Principles of the method for nX = 1

The principles of the method are �rst presented in dimension nX = 1. The principles are similar in dimension
nX > 1 and the formulas will be presented in the following paragraph of this �le.
Thus, let us note x = x1 = x and (x1, ..., xN ) a sample of the input random variable X. This random
variable X is supposed to follow a continuous density fX , which is of course unknown. This method enables
to build an estimate of the probability density function driven by the initial data set. This 'estimated'
function, called the kernel density estimator f̂hN , will replace the 'true' density function fX in the rest of
the modelling steps. This function is built to converge in a certain sense to this density fX . The kernel
density estimator is a random variable de�ned by:

f̂hN (x) =
1
Nh

N∑
i=1

K

(
x−Xi

h

)
where:

• K is called the Kernel. Its properties are the followings:

� It can be a proper pdf, usually chosen to be unimodal and symmetric about zero.

� The center of the kernel is placed right over each data point.

� The in�uence of each data point is spread about its neighborhood.

� The contribution from each point is summed to overall estimate.

• h is the bandwidth. Its properties are the followings:

� It represents a scaling factor,

� It controls how wide the probability mass is spread around each point.

� It controls the smoothness or roughness of a density estimate.

� The bandwidth selection bears danger of under- or over-smoothing.

• X1, . . . , XN are N random variables following the same probability density function fX . Its realization
is the sample of points x1, . . . , xN .
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• x is a value of the input variable.

We recap hereafter di�erent questions linked to the use of these methods:

• How to choose the optimal bandwidth h (= hopt)?

• Which Kernels K are to be used?

How to choose the optimal bandwidth hopt?

Therefore, f̂hN (x) is the weighted mean of the probability density functions K centered on the variables
Xk. The in�uence of each variable Xk is controlled by the bandwidth h. The optimal bandwidth is de�ned
towards the following AMISE criterion (Asymptotic Mean Integrated Squared Error). The optimization
of the AMISE criterion traduces the trade-o� to be found between the convergence of the expectation and
the convergence of the variance of the estimator of the pdf.

AMISE(h) =
∫

R
[AB2(x, h) +AV (x, h)] dx

where:

AB(x, h) ≈ E[f̂hN (x)− fX(x)]

AV (x, h) ≈ Var
[
f̂hN (x)

]
= E[(f̂hN (x)− fX(x))2]

Finally, it can be demonstrated that AMISE(h) is minimum for:

hopt =

(
‖K‖22

σ4
K

∥∥f ′′X∥∥2

2

) 1
5

× 1
N1/5

where:

• N is the size of the sample of data,

• ‖K‖22 is the L2 norm of the Kernel,

• σK is the standard deviation of the Kernel,

• ‖f ′′X‖22 is the L2 norm of the 'true' probability density function fX . It is usually unknown but one has
to make the assumption that it is �nite.

AMISE(h) is thus equal to:

AMISE(hopt) =
5
4

(σK ‖K‖22)4/5
∥∥f ′′∥∥2/5

2

1
N4/5

As a remark, a pdf estimation by histogram is less 'e�cient' (see references) as it decreases the AMISE
evaluation by a power 2/3 in the number of samples N .

Which Kernels K are used?
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Di�erent Kernels are available in the literature. Within Open TURNS, the only Kernel to be proposed is
the Gaussian one N (0, σK), de�ned by:

K(x) =
1√

2.π.σK
. exp−x

2/(2.σ2
K)

The Plug-in method within Open TURN'S

A general rule can be given to use the Kernel smoothing method:

1. Choose hopt as a �rst guess as if the pdf fX to be built were a Gaussian law N (µ, σ),

h1
opt
∼= 1.364 ∗ σ ∗

(
‖K‖22
σ4
K

)1/5

N−1/5

2. Estimate ‖f ′′‖2 with the �rst estimation of the bandwidth h1
opt,

3. Inject the new value of ‖f ′′‖2 to re adjust h2
opt.

Application in dimension nX > 1

The process is very similar in higher dimension. The Kernel estimator is the following:

f̂hN (x) = Kh(x) =
1

(detH)1/2
∗K

(
tx.H−1.x

2

)
Within Open TURNS, only the Gaussian Kernel Φ is used:

K(x) = ΦnX (x) =
1

(2.π)
nX
2

. exp(−
tx.x

2
)

For one given sample of size N , the optimal bandwidth hiopt is obtained following:

hiopt =
(

4
nX + 2

)1/(nX+4) σ̂iN
N1/(nX+4)

where:

• nX is the dimension of the space.

• (σ̂iN )2 is an estimator of the standard deviation of the i− th component obtained from N the realiza-
tions.

• H = diag((h1
opt)

2, . . . , (hNopt)
2), it represents the covariance matrix.

Other notations

En français, reconstruction à noyaux, lissage à noyaux.
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Link with OpenTURNS methodology

This method is part of the step B of the global methodology. It requires a sample of the input variables
for the problem de�ned in the step A of the global methodology. It enables to build an expression of the
probability density function of the input variables without any a priori reference to a parametric probability
density function. The number of parameters to be determined is not known a priori and depends on the
size of the sample.

References and theoretical basics

This method is very convenient in the sense that it is only attached to the real dataset. No more assumption
is required on the feature of the probability density function. Nevertheless, for the practical cases where the
data are scarce, the accuracy of the estimation of a criterion can be worse by a non parametric approach
than the one obtained by a parametric approach for the same size of the dataset. A parametric approach
is well adapted when the pdf can be justi�ed either by expert judgement or by return of experience.
David W. Scott, 'Multivariate Density Estimation'.

[Parametric Analysis]

Examples

Example n◦1: Choice of the bandwidth h

This example illustrates the e�ect of the choice of the bandwidth h on the estimation of the pdf compared
to the optimal one (Figure n◦xx3). Depending on the choice of h, one could observe for the same size N of
input values over-smoothing e�ects (�gure N◦xx1) or under-smoothing (Figure n◦xx2) e�ects. In any case,
the Kernel smoothing method is still converging when one adds samples but more slowly as if an optimal
bandwidth had been chosen.
Oversmoothing e�ect

In this case, h is bigger than the optimal choice hopt. The e�ect of the values is more widely spread as in
the optimal case. The 'vicinity' (in the AMISE sense) with the 'true' pdf is deteriorated at a given number
of sample.
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Undersmoothing e�ect

In this case, h is smaller than the optimal choice hopt. The e�ect of the values is more locally focused on
the values obtained in the data set than in the optimal case. The 'vicinity' (in the AMISE sense) with the
'true' pdf is deteriorated at a given number of sample N .
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Optimal smoothing

Following the previous rule, for a Gaussian law
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Examples n◦2 and 3: Di�erence between parametric and non parametric modelling

Within these two examples, we try to illustrate the di�erences (advantages and drawbacks) of a parametric
approach and a non parametric approach when one tries to build the pdf of an unknown pdf.

1. Example n◦2: Symmetric law
The 'true' pdf fX to be built is a Gaussian law N (3, 1). It has to be estimated by a sample of size
200.
The parametric approach pre supposes the knowledge of this statistical model and estimates the
parameters of the Gaussian law by a maximum likelihood method.
The non parametric approach does pre suppose the statistical model and �ts the estimated pdf to the
data set.
If one can justify the statistical model, it is preferable to choose a parametric approach.
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2. Example n◦3: Non Symmetric law
The 'true' pdf fX to be built is a Gamma law −(5, 2). It has to be estimated by a sample of size 200.

The parametric approach Parametric estimation tries to estimate a Gaussian law by a maximum
likelihood approach.
The non parametric approach is still only sticked to the data set and does not require the knowledge
of the statistical model.
If the statistical model is not known, it is more robust to choose a non parametric approch.

Example n◦4: E�ect of the number of samples
When the statistical model is the 'true' one, a small number of data has a stronger impact on the non
parametric approach than on the parametric approach.
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3.3.3 Step B � Standard parametric models

Mathematical description

Objective

Parametric models aim to describe probability distributions of a random variable with the aid of a limited
number of parameters θ. Therefore, in the case of continuous variables (i.e. where all possible values are
continuous), this means that the probability density of X =

(
X1, . . . , XnX

)
can be expressed as fX(x; θ). In

the case of discrete variables (i.e. those which take only discrete values), their probabilities can be described
in the form P (X = x; θ).

Available distributions for nX = 1

Let us �rst consider 1 dimension and let X = X1 = X. The standard distributions available in Open
TURNS are listed in this section. We start with continuous distributions.

• Normal distribution (or Gaussian distribution) : θ = (µ, σ), with the constraint σ > 0. The
probability density is given as:

fX(x; θ) =
1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

We note that a random variable which follows a Normal distribution as de�ned here takes real values
from R. µ provides the most likely value (for which the probability density function is at its highest),
and the density function is symmetric around this value (the values µ−a and µ+a are equally likely);
µ is also the expected value (mean) of this distribution. Whilst σ provides a measure of dispersion:
the larger it is, the �atter the probability density function is (i.e. values far away from µ are still
likely, or in other words possible values are more spread out).
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• Gumbel distribution : θ = (α, β), with the constraint α > 0. The probability density function is
expressed as:

fX(x; θ) = α exp
(
−α(x− β)− e−α(x−β)

)

We note that a random variable which follows a Gumbel distribution as de�ned here takes real values
from R. β describes the most likely value, but this is less than the expected value of the distribution
because the distribution is asymmetric (right skewed): the probability values in the distribution's right
tail (i.e. values greater than β) decrease more gradually than those in the left tail (i.e. values less
than β). a provides a measure of dispersion: the probability density function �attens as α decreases.
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• Logistic distribution : θ = (α, β), with the constraint β ≥ 0. The probability density function is
expressed as:

fX(x; θ) =
exp

(
x−α
β

)
β
[
1 + exp

(
x−α
β

)]2

We note that a random variable which follows a logistic distribution as de�ned here takes real values
from R. α describes the most likely value. β provides a measure of dispersion: the probability density
function �attens as β decreases.
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• Student's t-distribution : θ = (ν, µ), with the constraint ν ≥ 2. The probability density function
is expressed as:

fX(x; θ) =
1√

νB
(

1
2 ,

ν
2

) (1 +
(x− µ)2

ν

)− 1
2

(ν+1)

where B describes the function beta. We note that a random variable which follows a Student's t-
distribution as de�ned here takes real values from R. µ describes the most likely value. ν is a measure
of dispersion: the probability density function �attens as ν decreases.

2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

Student distribution (20,5)

Value of X

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n 

fu
nc

tio
n

Student pdf

• Exponential distribution : θ = (λ, γ), with the constraint λ > 0. The probability density function
is expressed as:

fX(x; θ) = λ exp (−λ(x− γ)) 1γ≤x
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We note that a random variable which follows an Exponential distribution as de�ned here takes values
in the range [γ,+∞), and is right skewed. Both a and ÿ in�uence the dispersion. The expected value
of the distribution is γ + 1/λ. The coe�cient of variation (standard deviation / mean) is constant
and equal to 1 whatever the value of λ.
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• Weibull distribution : θ = (α, β, γ), with the constraints α > 0, β > 0. probability density function
is expressed as:

fX(x; θ) =
β

α

(
x− γ
α

)β−1

exp

(
−
(
x− γ
α

)β)
1γ≤x

We note that a random variable which follows a Weibull distribution as de�ned here takes values in
the range [γ,+∞), and is right skewed. Both α and β in�uence the dispersion. We note that the
distribution becomes more skewed as β decreases. In the case where β = 1 this is corresponds to the
Exponential distribution.
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• Gamma distribution : θ = (λ, k, γ), with the constraints λ > 0, k > 0. The probability density
function is expressed as:

fX(x; θ) =
λ

Γ(k)
(λ(x− γ))k−1 exp (−λ(x− γ)) 1γ≤x

where Γ is the gamma function. We note that a random variable which follows a gamma Distribution
as de�ned takes values in the range [γ,+∞), and is right skewed.
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Gamma pdf

• Lognormal distribution : θ = (µl, σl, γ), with the constraint σl > 0. The probability density
function is expressed as:

fX(x; θ) =
1

σl(x− γ)
√

2π
exp

(
−1

2

(
ln(x− γ)− µl

σl

)2
)

1γ≤x
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We note that a random variable which follows a Log-normal distribution as de�ned here takes values
in the range [γ,+∞), and is right skewed.
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• Truncated Normal Distribution : θ = (µn, σn, a, b), with the constraints σn > 0, b > a. The
probability density function is expressed as:

fX(x; θ) =
ϕ(x−µnσn

)/σn

Φ( b−µnσn
)− Φ(a−µnσn

)
1a≤x≤b

where ϕ and Φ represent the probability density and the cumulative distribution function respectively
of the reduced centred Normal distribution (i.e. the mean µ zero and standard deviation σ equal to
1). We note that a random variable that follows a Truncated Normal Distribution takes values in
the interval [a, b]. µ describes the most likely value. Whilst σ provides a measure of dispersion: the
probability density function �attens as s increases (the probability density becomes zero for values
outside the interval [a, b]).
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TruncatedNormal pdf

• Triangular distribution : θ = (a, b,m), with the constraints a ≤ m, m ≤ b, b > a. The probability
density function is expressed as:

fX(x; θ) =


2 x−a

(m−a)(b−a) if a ≤ x ≤ m
2 b−x

(b−m)(b−a) if m ≤ x ≤ b
0 otherwise

We note that a random variable that follows a triangular distribution as de�ned here takes in the
interval [a, b]. m describes the most likely value.
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• Uniform distribution : θ = (a, b), with the constraint a < b. The probability density function is
expressed as:

fX(x; θ) =
1

b− a1a≤x≤b

c©2007 EDF - EADS - PhiMeca



Open TURNS � Reference Guide 31

We note that a random variable that follows a uniform distribution as de�ned here takes values in the
interval [a, b]. All values in this interval are equally-likely.
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• Beta distribution : θ = (r, t, a, b), with the constraints r > 0, t > r, b > a. The probability density
function is expressed as:

fX(x; θ) =
(x− a)r−1(b− x)t−r−1

(b− a)t−1B(r, t− r) 1a≤x≤b

where B denotes the Beta function. We note that a random variable that follows a Beta distribution
as described here takes values in the interval [a, b].
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Still in 1 dimension, Open TURNS also o�ers Discrete Distributions.
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• Geometric distribution : θ = p, with the constraint 0 < p < 1. all natural numbers x ∈ N∗,

P (X = x; θ) = p (1− p)x−1

We note that a random variable that follows a Geometric Distribution as de�ned here takes values
from N∗.
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• Poisson distribution : θ = λ, with the constraint λ > 0. For all x ∈ N,

P (X = x; θ) =
λx

x!
exp (−λ)

We note that a random variable that follows a Poisson distribution as de�ned here takes values from
N.
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Available distributions for nX > 1

Let us now consider nX > 1. Currently only one continuous distribution is available in Open TURNS.

• Multi-Normal Distribution (or Multivariate Normal Distribution) : θ = (µ,C), where µ is
a vector of size nX and C is a nX by nX positive de�nite symmetric matrix. The probability density
function is expressed as:

fX(x; θ) =
1√

det C(2π)nX/2
exp

(
−1

2
(x− µ)tC−1(x− µ)

)
where (x−µ)t the transpose vector. We note that a random variable that follows a Normal distribution
as described here takes values from RnX .

Other notations

Link with OpenTURNS methodology

These probability distributions can be used in step B �Quantifying Sources of Uncertainty". Choosing a
probability distribution is equivalent to implicitly making a hypothesis on the type of uncertainty of one of
the variables X de�ned in step A �Specifying Criteria and the Case Study".

References and theoretical basics

This parametric approach has the advantage of characterizing the uncertainty using a reduced number
of parameters. This is particularly useful when there is little data available for the unknown variables
(situation in which a non-parametric approach would be limited � see [empirical distribution function] and
[kernel smoothing]) and even when there is no data (the analysis can thus only rely on expert judgement,
easier to interpret when there are few distribution parameters).

Moreover, a parametric approach is often preferable when the uncertainty study criterion de�ned in step A
is concerned with a rare event, obtaining a precise evaluation of the necessary criteria generally necessitates
the extrapolation of X values from the observed data. Beware however! An unwise modelling assumption
(bad choice of distribution) can lead to an erroneous extrapolation and thus the results of the study may
be false!

The correct choice of probability distribution is thus crucial. Statistical tools are available to vali-
date or invalidate the choice of distribution given a set of data (see for example [Graphical analysis]
[Kolmogorov-Smirnov test] ). But consideration of the underlying context is also recommended. For ex-
ample:

• the Normal distribution is relevant in metrology to represent certain measures of uncertainty.

• the Exponential distribution is useful for modelling uncertainty when considering the life duration of
material that is not subject to ageing,
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• the Gumbel distribution is de�ned to describe extreme phenomenon (e.g. maximal annual �ow of a
river or of wind speed)

Certain distributions are often used to express expert judgement in simple terms:

• the Uniform distribution expresses knowledge concerning the absolute limits of variables (i.e. the
probability to exceed these limits is strictly zero) without any other prior assumption about the
distribution (such as, for example the mean value or the most likely value),

• the Triangular distribution expresses knowledge concerning the absolute limits of variables and the
most likely value.

Finally, an important point concerning the multi-dimensional case where nX > 1. Choosing the type
of distribution implies an assumption about the uncertainty of each of the variables Xi, but also on the
potential inter-dependencies between variables. These inter-dependencies between unknown variables can
consequently have an impact on the results of the uncertainty study.
Readers wishing to consider the dependencies in their study more deeply are referred to, for example,
[copula method], [linear correlation], [rank correlation].

The following bibliographical references provide main starting points for further study of this method:

• Saporta, G. (1990). �Probabilités, Analyse de données et Statistique", Technip

• Dixon, W.J. & Massey, F.J. (1983) �Introduction to statistical analysis (4th ed.)", McGraw-Hill

• Bhattacharyya, G.K., and R.A. Johnson, (1997). �Statistical Concepts and Methods", John Wiley
and Sons, New York.
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3.3.4 Step B � Independent Copula - Normal Copula

Mathematical description

Goal

To de�ne the joined probability density function of the random input vector X by composition, one needs:

• the speci�cation of the copula of interest C with its parameters,

• the speci�cation of the nX marginal laws of interest FXi of the nX input variables Xi.

The joined cumulative density function is therefore de�ned by :

P
(
X1 ≤ x1, X2 ≤ x2, · · · , XnX ≤ xnX) = C

(
FX1(x1), FX2(x2), · · · , FXnX (xnX )

)
Within this part, we de�ne the concept of copula and its use within Open TURNS.

Principles

The copulas enable to represent the part of the joined cumulative density function which is not described
by the marginal laws. It enables to represent the dependence structure of the input variables. A copula is
a special cumulative density function de�ned on [0, 1]nX whose marginal laws are uniform on [0, 1]. The
choice of the dependence structure is disconnected from the choice of the marginal laws.

Basic properties of copulas

Roughly speaking, a copula is a nU -dimensional cumulative density function with uniform marginals.

• C(u) ≥ 0, ∀u ∈ [0, 1]nU

• C(u) = ui, ∀u = (1, . . . , 1, ui, 1, . . . , 1)

• For all N -box B = [a1, b1]× · · · × [anU , bnU ] ∈ [0, 1]nU , we have VC(B) ≥ 0, where:

� VC(B) =
∑

i=1,··· ,2nU sign(vi)×C(vi), the summation being made over the 2nU vertices vi of B.
� sign(vi) = +1 if vki = ak for an even number of k′s, sign(vi) = −1 otherwise.

Copulas available within Open TURNS

Di�erent copulas are available within Open TURNS:

• Independent Copula: It means that all the input variables are independent the ones from the others.
The independent copula is de�ned by:

CIndep(u1, u2, · · · , un U ) =
n U∏
i=1

ui
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• Gaussian Copula: The Gaussian copula is parametrized by a correlation matrix R. The Gaussian
copula is thus de�ned by:

CGaussR = Φn U
R

(
Φ−1(u1),Φ−1(u2), · · · ,Φ−1(un U )

)
where:

� ΦnX
R is the multinormal cumulative density function in dimension nX :

ΦnX
R (x) =

∫ x1

−∞
. . .

∫ xnX

−∞
1

(2π.det R)
nX
2

. e−
tu.R.u

2 du1 . . . dunX

� Φ is the cumulative distribution function of the normal law in dimension 1:

Φ(x) =
∫ x

−∞
1√
2π

e−
t2

2 dt

� R is the correlation matrix. This matrix is de�ned by its algebric properties: symmetric, de�nite
and positive.

The correlation matrix R can be obtained by di�erent means:

� If one knows the Spearmann correlation Matrix, that is to say,

ρSij = ρS(Xi, Xj) = ρP (FXi(Xi), FXj (Xj))

the correlation matrix R is deduced by the following formula:

Rij = 2 sin(
π

6
ρSij)

� If one knows the Kendall measure of correlation, that is to say,

τij = τ(Xi, Xj) = P ((Xi1 −Xi2).(Xj1 −Xj2) > 0)− P ((Xi1 −Xi2).(Xj1 −Xj2) < 0)

where (Xi1 , Xj1) and (Xi2 , Xj2) follow the law of (Xi, Xj), the correlation matrix R is deduced
by the following formula:

Rij = sin(
π

2
.τij)

� If one knows the Pearson correlation Matrix RP , there are two possibilities:

1. If and only if all the marginal laws are Gaussian,

R ≡ RP

2. In the other cases, one has to build the correlation matrix R by inversion of the following
formula from the Pearson Correlation Matrix RP :

RP
ij =

∫ ∫
R2

(xi − E[Xi])(xj − E[Xj ])Φij(xi, xj ,Rij)dxidxj

Other notations
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Link with OpenTURNS methodology

This method of modelling the dependencies between the input variables is part of the step B of the global
methodology ("quantify sources of uncertainty"). It enables to build an expression of the probability
density function of the input variables X de�ned in step A ("speci�cation of the model and criteria")
by composition with the marginal distributions of each Xi. This method requires the knowledge of the
Spearman correlation matrix or the Kendall correlation measure. It can also be used if one knows the
Pearson correlation matrix, but only with the assumption of Gaussian marginal laws for all the input
variables.

References and theoretical basics

One has to pay attention that the composition of the marginal distributions and the copulas available in
Open TURNS is not su�cient to represent all types of dependencies (see examples in the next section).
Previous statistical and/or justi�cations should be done to justify this choice of modeling dependencies.
Besides, as previously discussed, the use of Copula is totally decoupled from the knowledge of the marginal
laws of the input variables.
The following references give a �rst entry point to the Copulas:

• Nelsen, 'Introduction to Copulas'

• Embrechts P., Lindskog F., Mc Neil A., 'Modelling dependence with copulas and application to Risk
Management', ETZH 2001.

Examples

First, let us present two examples of copulas
Second, we are going to illustrate our way to build pdf for di�erent combinations of copulas and marginal
laws. The following examples present the building of the joined pdf for of the couple (X1, X2).

1. Independent Copula CIndep(u1, u2) = u1.u2

(a) X1 ↪→ U(−0.5, 0.5), X2 ↪→ U(−0.5, 0.5)

(b) X1 ↪→ U(−0.5, 0.5), X2 ↪→ G(0, 1)

(c) X1 ↪→ G(0, 1), X2 ↪→ G(0, 1)

2. Gaussian Copula CGR(u1, u2) = Φ2
R(Φ−1(u1),Φ−1(u2))

(a) R is a Spearman correlation Matrix, R =
(

1 0.5
0.5 1

)
i. X1 ↪→ U(−0.5, 0.5), X2 ↪→ U(−0.5, 0.5)
ii. X1 ↪→ U(−0.5, 0.5), X2 ↪→ G(0, 1)
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iii. X1 ↪→ G(0, 1), X2 ↪→ G(0, 1)

(b) R is a Spearman correlation Matrix, R =
(

1 −0.8
−0.8 1

)
i. X1 ↪→ U(−0.5, 0.5), X2 ↪→ U(−0.5, 0.5)
ii. X1 ↪→ U(−0.5, 0.5), X2 ↪→ G(0, 1)
iii. X1 ↪→ G(0, 1), X2 ↪→ G(0, 1)

(c) R is a Pearson correlation Matrix, R =
(

1 −0.8
−0.8 1

)
i. X1 ↪→ G(0, 1), X2 ↪→ G(0, 1)
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3.3.5 Step B � Using QQ-plot to compare two samples

Mathematical description

Goal

Let X be a scalar uncertain variable modelled as a random variable. This method is concerned with
the construction of a dataset prior to the choice of a probability distribution for X. A QQ-plot (where
�QQ" stands for �quantile-quantile") is a tool that may be used to compare two samples {x1, . . . , xN}
and {x′1, . . . , x′M} ; the goal is to determine graphically whether these two samples come from the same
probability distribution or not. If this is the case, the two samples should be aggregated in order to increase
the robustness of further statistical analyses.

Principle of the method

A QQ-plot is based on the notion of quantile. The α-quantile qX(α) of X, where α ∈ (0, 1), is de�ned as
follows:

P (X ≤ qX(α)) = α

If a sample {x1, . . . , xN} of X is available, the quantile can be estimated empirically:

1. the sample {x1, . . . , xN} is �rst placed in ascending order, which gives the sample
{
x(1), . . . , x(N)

}
;

2. then, an estimate of the α-quantile is:

q̂X(α) = x([Nα]+1)

where [Nα] denotes the integral part of Nα.

Thus, the jth smallest value of the sample x(j) is an estimate q̂X(α) of the α-quantile where α = (j − 1)/N
(1 < j ≤ N). Let us then consider our second sample {x′1, . . . , x′M}; this one also provides an estimate
q̂′X(α) of this same quantile:

q̂′X(α) = x′([M×(j−1)/N ]+1)

If the the two samples correspond to the same probability distribution, then q̂X(α) and q̂′X(α) should be
close. Thus, graphically, the points {(q̂X(α), q̂′X(α)) , α = (j − 1)/N, 1 < j ≤ N} should be close to the
diagonal.
The following �gure illustrates the principle of a QQ-plot with two samples of size M = 50 and N = 50.
Note that the unit of the two axis is that of the variable X studied. In this example, the points remain
close to the diagonal and the hypothesis �the two samples come frome the same distribution" does not seem
irrelevant, even if a more quantitative analysis (see [Smirnov test]) should be carried out to con�rm this.
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Other notations
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Link with OpenTURNS methodology

This method is used in step B �Quantifying Sources of Uncertainty". It is a tool for the construction of a
dataset that can be used afterwards to choose a probability distribution for some uncertain variables de�ned
in step A �Specifying Criteria and the Case Study".

References and theoretical basics

A QQ-plot is a graphical analysis, the conclusion of which remains obviously subjective. The reader is
referred to [Smirnov test] for a more quantitative analysis. The following bibliographical references provide
main starting points for further study of this method:

• Saporta, G. (1990). �Probabilités, Analyse de données et Statistique", Technip

• Dixon, W.J. & Massey, F.J. (1983) �Introduction to statistical analysis (4th ed.)", McGraw-Hill

• D'Agostino, R.B. and Stephens, M.A. (1986). �Goodness-of-Fit Techniques", Marcel Dekker, Inc.,
New York.

• Bhattacharyya, G.K., and R.A. Johnson, (1997). �Statistical Concepts and Methods", John Wiley
and Sons, New York.

• Sprent, P., and Smeeton, N.C. (2001). �Applied Nonparametric Statistical Methods � Third edition",
Chapman & Hall
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3.3.6 Step B � Comparison of two samples using Smirnov's test

Mathematical description

Goal

Let X be a scalar uncertain variable modelled as a random variable. This method is concerned with the
construction of a dataset prior to the choice of a probability distribution for X. Smirnov's test is a tool
that may be used to compare two samples {x1, . . . , xN} and {x′1, . . . , x′M} ; the goal is to determine whether
these two samples come from the same probability distribution or not. If this is the case, the two samples
should be aggregated in order to increase the robustness of further statistical analyses.

Principle of the method

Smirnov's test is a statistical test based on the maximum distance between the cumula-
tive distribution function F̂N and F̂ ′M of the samples {x1, . . . , xN} and {x′1, . . . , x′M} (see
[empirical cumulative distribution function]). This distance is expressed as follows:

D̂M,N = sup
x

∣∣∣F̂N (x)− F̂ ′M (x)
∣∣∣

The probability distribution of the distance D̂M,N is asymptotically known (i.e. as the size of the samples
tends to in�nity). If M and N are su�ciently large, this means that for a probability α, one can calculate
the threshold / critical value dα such that:

• if D̂M,N > dα, we conclude that the two samples are not identically distributed, with a risk of error
α,

• if D̂M,N ≤ dα, it is reasonable to say that both samples arise frome the same distribution.

An important notion is the so-called �p-value" of the test. This quantity is equal to the limit error probability
αlim under which the �identically-distributed" hypothesis is rejected. Thus, the two samples will be supposed
identically distributed if and only if αlim is greater than the value α desired by the user. Note that the
higher αlim − α, the more robust the decision.

Other notations

This test is also referred to as the Kolmogorov-Smirnov's test for two samples.

Link with OpenTURNS methodology

This method is used in step B �Quantifying Sources of Uncertainty". It is a tool for the construction of
a dataset that can be used afterwards to choose a probability distribution for some uncertain variables
de�ned in step A �Specifying Criteria and the Case Study".

References and theoretical basics
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The test is concerned with the maximum deviation between the tw empirical distributions; it is by nature
highly sensitive to presence of local deviations (two samples may be rejected even if they seem similar for
almost the whole domain of variation).

We remind the reader that the underlying theoretical results of the test are asymptotic. There is no rule
to determine the minimum number of data values one needs to use this test; but it is often considered a
reasonable approximation when N is of an order of a few dozen.
The following bibliographical references provide main starting points for further study of this method:

• Saporta G. (1990). �Probabilités, Analyse de données et Statistique", Technip

• Dixon W.J. & Massey F.J. (1983) �Introduction to statistical analysis (4th ed.)", McGraw-Hill
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3.3.7 Step B � Maximum Likelihood Method

Mathematical description

Goal

This method is concerned with the parametric modelling of a probability distribution for a random vec-
tor X =

(
X1, . . . , XnX

)
. The appropriate probability distribution is found by using a sample of data

{x1, . . . , xN}. Such an approach can be described in two steps as follows:

• Choose a probability distribution (e.g. the Normal distribution, or any other distribution available in
OpenTURNS see [standard parametric models]),

• Find the parameter values θ that characterize the probability distribution (e.g. the mean and standard
deviation for the Normal distribution) which best describes the sample {x1, . . . , xN}.

The maximum likelihood method is used for the second step.

Principle

In the current version of Open TURNS this method is restricted to the case where nX = 1 and continuous
probability distributions. Please note therefore that X = X1 = X in the following text. The maximum
likelihood estimate (MLE) of θ is de�ned as the value of θ which maximizes the likelihood function L (X, θ):

θ̂ = argmax L (X, θ)

Given that {x1, . . . , xN} is a sample of independent identically distributed (i.i.d) observations,
L (x1, . . . , xN , θ) represents the probability of observing such a sample assuming that they are taken from a
probability distribution with parameters θ. In concrete terms, the likelihood L (x1, . . . , xN , θ) is calculated
as follows:

L (x1, . . . , xN , θ) =
N∏
j=1

fX (xj ; θ) if the distribution is continuous, with density fX (x; θ)

For example, if we suppose that X is a Gaussian distribution with parameters θ = {µ, σ} (i.e. the mean
and standard deviation),

L (x1, . . . , xN , θ) =
N∏
j=1

1
σ
√

2π
exp

[
−1

2

(
xj − µ
σ

)2
]

=
1

σN (2π)N/2
exp

− 1
2σ2

N∑
j=1

(xj − µ)2


The following �gure graphically illustrates the maximum likelihood method, in the particular case of a
Gaussian probability distribution.
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In general, in order to maximize the likelihood function classical optimisation algorithms (e.g. gradient
type) can be used. The Gaussian distribution case is an exception to this, as the maximum likelihood
estimators are obtained analytically:

µ̂ =
1
N

N∑
i=1

xi, σ̂2 =
1
N

N∑
i=1

(xi − µ̂)2

Other notations

Link with OpenTURNS methodology

Having speci�ed the variable of interest and having de�ned a criterion (step A �Specifying Criteria and the
Case Study"), the uncertainty of the input variableXi must be then quanti�ed in step B. The superscript i is
omitted, as only a single component is used here, that is a single unknown variable (or source of uncertainty).

Input:
{x1, . . . , xN} : sample data
Distribution : : Distribution type chosen from the proposed continuous 1-dimensional distributions in
[standard parametric models]

Output :
θ̂ : maximum likelihood estimate of θ

References and theoretical basics
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The sample size used in the maximum likelihood method has an e�ect on the quality of results. In fact:

• as N tends to in�nity, the asymptotic theory results assure, under certain assumptions concerning the
regularity of the model, that the MLE is the best possible estimator (its bias tends towards 0 i.e. no
tendency towards under- or over-estimation, the uncertainty of θ̂ is lesser than in all other unbiased
estimation methods); in practice, one often considers the asymptotic behaviour to be reached when
N ≥ a few dozens, even if no theoretical rule can assure this with certitude.

• if N is smaller, the MLE is still useful but θ̂ is less robust (uncertainty greater and bias possible).

A more advanced study of the goodness-of-�t of the selected probability distribution with the given sam-
ple data is described in [Graphical analysis] [Kolmogorov-Smirnov test] , [Cramer-Von Mises test] ,
[Anderson-Darling test] and [BIC criterion].
The following bibliographical references provide main starting points for further study of this method:

• Saporta G. (1990). �Probabilités, Analyse de données et Statistique", Technip

• Dixon W.J. & Massey F.J. (1983) �Introduction to statistical analysis (4th ed.)", McGraw-Hill
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3.3.8 Step B � Graphical goodness-of-�t analysis

Mathematical description

Goal

This method is concerned with the modelling of a probability distribution of a random vector X =(
X1, . . . , XnX

)
. It seeks to verify the compatibility between a sample of data {x1, x2, . . . , xN} and a

candidate probability distribution previous chosen. Open TURNS enables the use of graphical tools to
answer this question in the one dimensional case nX = 1, and with a continuous distribution.

Principle of the method

Let us limit the case to nX = 1. Thus we denote X = X1 = X. The �rst graphical tool provided by
Open TURNS is a QQ-plot (where �QQ" stands for �quantile-quantile"). In the speci�c case of a Normal
distribution (see [standard parametric models]), Henry's line may also be used.

QQ-plot A QQ-Plot is based on the notion of quantile. The α-quantile qX(α) of X, where α ∈ (0, 1), is
de�ned as follows:

P (X ≤ qX(α)) = α

If a sample {x1, . . . , xN} of X is available, the quantile can be estimated empirically:

1. the sample {x1, . . . , xN} is �rst placed in ascending order, which gives the sample
{
x(1), . . . , x(N)

}
;

2. then, an estimate of the α-quantile is:

q̂X(α) = x([Nα]+1)

where [Nα] denotes the integral part of Nα.

Thus, the jth smallest value of the sample x(j) is an estimate q̂X(α) of the α-quantile where α = (j − 1)/N
(1 < j ≤ N).
Let us then consider the candidate probability distribution being tested, and let us denote by F its cumu-
lative distribution function. An estimate of the α-quantile can be also computed from F :

q̂′X(α) = F−1 ((j − 1)/N)

If F is really the cumulative distribution function of F , then q̂X(α) and q̂′X(α) should be close. Thus,
graphically, the points {(q̂X(α), q̂′X(α)) , α = (j − 1)/N, 1 < j ≤ N} should be close to the diagonal.
The following �gure illustrates the principle of a QQ-plot with a sample of size N = 50. Note that the
unit of the two axis is that of the variable X studied; the quantiles determined via F are called here �value
of T". In this example, the points remain close to the diagonal and the hypothesis �F is the cumulative
distribution function of X" does not seem irrelevant, even if a more quantitative analysis (see for instance
[Kolmogorov-Smirnov goodness-of-�t test]) should be carried out to con�rm this.
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In this second example, the candidate distribution function is clearly irrelevant.
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Henry's line This second graphical tool is only relevant if the candidate distribution function being tested
is gaussian. It also uses the ordered sample

{
x(1), . . . , x(N)

}
introduced for the QQ-plot, and the empirical

cumulative distribution function F̂N presented in [empirical cumulative distribution function].
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By de�nition,

x(j) = F̂−1
N

(
j

N

)
Then, let us denote by Φ the cumulative distribution function of a Normal distribution with mean 0 and
standard deviation 1. The quantity t(j) is de�ned as follows:

t(j) = Φ−1

(
j

N

)

If X is distributed according to a normal probability distribution with mean µ and standard-deviation σ,
then the points

{(
x(j), t(j)

)
, 1 ≤ j ≤ N} should be close to the line de�ned by t = (x− µ)/σ. This comes

from a property of a normal distribution: it the distribution of X is really N (µ, σ), then the distribution of
(X − µ)/σ is N (0, 1).
The following �gure illustrates the principle of Henry's graphical test with a sample of size N = 50. Note
that only the unit of the horizontal axis is that of the variable X studied. In this example, the points
remain close to a line and the hypothesis �the distribution function of X is a gaussian one" does not seem
irrelevant, even if a more quantitative analysis (see for instance [Kolmogorov-Smirnov goodness-of-�t test])
should be carried out to con�rm this.
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In this second example, the hypothesis of a gaussian distribution seems far less relevant because of the
behaviour for small values of X.
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Other notations

Link with OpenTURNS methodology

This method is used in step B �Quantifying Sources of Uncertainty", to verify if the probability distribution
is appropriate to describe the uncertainty of a component Xi of the vector of unknown variables de�ned in
step A �Specifying Criteria and the Case Study".

References and theoretical basics

Since QQ-plot and Henry's line are graphical analysis, their conclusion remain obviously subjective. The
reader is referred to [Komogorov-Smirnov test], [Cramer-Von-Mises test], [Anderson-Darling test] for a more
quantitative analysis.
The following bibliographical references provide main starting points for further study of this method:

• Saporta G. (1990). �Probabilités, Analyse de données et Statistique", Technip

• Dixon W.J. & Massey F.J. (1983) �Introduction to statistical analysis (4th ed.)", McGraw-Hill
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3.3.9 Step B � Chi-squared goodness of �t test

Mathematical description

Goal

This method is concerned with the modelling of a probability distribution of a random vector X =(
X1, . . . , XnX

)
. It seeks to verify the compatibility between a sample of data {x1, x2, . . . , xN} and a can-

didate probability distribution previous chosen. Open TURNS enables the use of the χ2 Goodness-of-Fit
test to answer this question in the one dimensional case nX = 1, and with a discrete distribution.

Principle

Let us limit the case to nX = 1. Thus we denote X = X1 = X. We also note that as we are considering
discrete distributions i.e. those for which the possible values of X belong to a discrete set E , the candidate
distribution is characterised by the probabilities {p(x; θ)}x∈E .
The chi squared test is based on the fact that if the candidate distribution is appropriate, the number of
values in the sample x1, x2, ..., xN that are equal to x should be on average equal to Np(x; θ). The idea is
therefore to compare the �theoretical values" with the actual observed values. This comparison is performed
with the aid of the following �distance".

D̂2
N =

∑
x∈EN

(Np(x)− n(x))2

n(x)

where EN denotes the elements of E which have been observed at least once in the data sample and where
n(x) denotes the number of data values in the sample that are equal to x.

The probability distribution of the distance D̂2
N is asymptotically known (i.e. as the size of the sample tends

to in�nity), and this asymptotic distribution does not depend on the candidate distribution being tested. If
N is su�ciently large, this means that for a probability α, one can calculate the threshold / critical value)
dα such that:

• if D̂N > dα, we reject the candidate distribution with a risk of error α,

• if D̂N ≤ dα, the candidate distribution is considered acceptable.

An important notion is the so-called �p-value" of the test. This quantity is equal to the limit error probability
αlim under which the candidate distribution is rejected. Thus, the candidate distribution will be accepted
if and only if αlim is greater than the value α desired by the user. Note that the higher αlim − α, the more
robust the decision.

Other notations

Link with OpenTURNS methodology

This method is used in step B �Quantifying Sources of Uncertainty", to verify if the probability distribution
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is appropriate to describe the uncertainty of a component Xi of the vector of unknown variables de�ned in
step A �Specifying Criteria and the Case Study".

Input data:
{x1, . . . , xN} : data sample
Distribution : probability distribution that we are testing for goodness-of-�t

Parameters:
α : Level of signi�cance for the test

Outputs:
Result : Binary variable specifying whether the candidate distribution is rejected (0) or not (1)
αlim : p-value of the test

References and theoretical basics

The test is suitable for discrete distributions. It cannot be used for continuous distributions except by
means of an arbitrary discretisation of possible values of X, an important source of potential error. Readers
interested in Goodness of Fit tests for continuous variables are referred to [Kolmogorov-Smirnov test] ,
[Cramer-Von Mises test], [Anderson-Darling test] in the reference documentation.

Even for discrete distributions, certain precautions must be taken when using this test. Firstly, the critical
value dα is only valid for a su�ciently large sample size. No rule exists to determine the minimum number
of data values necessary in order to use this test; it is often thought, however, that the approximation
is reasonable when N is of the order of a few dozen. But whatever the value of N , the distance � and
similarly the p-value � remains a useful tool for comparing di�erent probability distributions to a sample.
The distribution which minimizes D̂N � or maximizes the p-value � will be of interest to the analyst.
On the other hand, the calculation of dα and of the p-value should in theory be modi�ed if we are testing
the goodness of �t of a parametric model and if the parameters of the candidate distribution have been
estimated from the same sample. The current version of Open TURNS, however, does not permit such a
modi�cation, and so the results must be used with care when the p-value αlim and the desired error risk α
are very close.

The following bibliographical references provide main starting points for further study of this method:

• Saporta, G. (1990). �Probabilités, Analyse de données et Statistique", Technip

• Dixon, W.J. & Massey, F.J. (1983) �Introduction to statistical analysis (4th ed.)", McGraw-Hill

• D'Agostino, R.B. and Stephens, M.A. (1986). �Goodness-of-Fit Techniques", Marcel Dekker, Inc.,
New York.

• Bhattacharyya, G.K., and R.A. Johnson, (1997). �Statistical Concepts and Methods", John Wiley
and Sons, New York.

• Sprent, P., and Smeeton, N.C. (2001). �Applied Nonparametric Statistical Methods � Third edition",
Chapman & Hall
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3.3.10 Step B � Kolmogorov-Smirnov goodness-of-�t test

Mathematical description

Goal

This method is concerned with the modelling of a probability distribution of a random vector X =(
X1, . . . , XnX

)
. It seeks to verify the compatibility between a sample of data {x1, x2, . . . , xN} and a can-

didate probability distribution previous chosen. Open TURNS enables the use of the Kolmogorov-Smirnov
Goodness-of-Fit test to answer this question in the one dimensional case nX = 1, and with a continuous
distribution.

Principle

Let us limit the case to nX = 1. Thus we denote X = X1 = X. This goodness-of-�t test is based on
the maximum distance between the cumulative distribution function F̂N of the sample {x1, x2, . . . , xN}
(see [empirical cumulative distribution function]) and that of the candidate distribution, denoted F . This
distance may be expressed as follows:

D = sup
x

∣∣∣F̂N (x)− F (x)
∣∣∣

With a sample {x1, x2, . . . , xN}, the distance is estimated by:

D̂N = sup
i=1...N

∣∣∣∣F (xi)− i− 1
N

;
i

N
− F (xi)

∣∣∣∣
The probability distribution of the distance D̂N is asymptotically known (i.e. as the size of the sample
tends to in�nity). If N is su�ciently large, this means that for a probability α and a candidate distribution
type, one can calculate the threshold / critical value dα such that:

• if D̂N > dα, we reject the candidate distribution with a risk of error α,

• if D̂N ≤ dα, the candidate distribution is considered acceptable.

Note that dα does not depend on the candidate distribution F being tested, and the test is therefore relevant
for any continuous distribution.
An important notion is the so-called �p-value" of the test. This quantity is equal to the limit error probability
αlim under which the candidate distribution is rejected. Thus, the candidate distribution will be accepted
if and only if αlim is greater than the value α desired by the user. Note that the higher αlim − α, the more
robust the decision.
The diagram below illustrates the principle of comparison with the empirical cumulative distribution func-
tion for an ordered sample {5, 6, 10, 22, 27}; the candidate distribution considered here is the Exponential
distribution with parameters λ = 0.07, γ = 0 (see [standard parametric models]).
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Other notations

This method is also referred to in the literature as Kolmogorov's Test.

Link with OpenTURNS methodology

This method is used in step B �Quantifying Sources of Uncertainty", to verify if the probability distribution
is appropriate to describe the uncertainty of a component Xi of the vector of unknown variables de�ned in
step A �Specifying Criteria and the Case Study".

Input data:
{x1, . . . , xN} : data sample
Distribution : probability distribution that we are testing for goodness-of-�t

Parameters:
α : Level of signi�cance for the test

Outputs:
Result : Binary variable specifying whether the candidate distribution is rejected (0) or not (1)
αlim : p-value of the test

References and theoretical basics

The test is concerned with the maximum deviation between the empirical distribtuion and the candidate
distribution, it is by nature highly sensitive to presence of local deviations (a candidate distribution may
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be rejected even if it correctly describes the sample for almost the whole domain of variation).

We remind the reader that the underlying theoretical results of the test are asymptotic. There is no rule
to determine the minimum number of data values one needs to use this test; but it is often considered a
reasonable approximation when N is of an order of a few dozen. But whatever the value of N , the distance
� and similarly the p-value � remains a useful tool for comparing di�erent probability distributions to a
sample. The distribution which minimizes D̂N � or maximizes the p-value � will be of interest to the analyst.
We also point out that the calculation of dα should in theory be modi�ed if on is testing the goodness-of-�t
to a parametric model where the parameters have been estimated from the same sample. The current
version of Open TURNS does not allow this modi�cation, and the results should be therefore used with
caution when the p-value αlim and the desired error risk α are very close.
Readers interested in Goodness of Fit tests for continuous distributions are referred to[Cramer-Von Mises test]
and [Anderson-Darling test] in the reference documentation.
The following bibliographical references provide main starting points for further study of this method:

• Saporta, G. (1990). �Probabilités, Analyse de données et Statistique", Technip

• Dixon, W.J. & Massey, F.J. (1983) �Introduction to statistical analysis (4th ed.)", McGraw-Hill

• NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/

• D'Agostino, R.B. and Stephens, M.A. (1986). �Goodness-of-Fit Techniques", Marcel Dekker, Inc.,
New York.

• Bhattacharyya, G.K., and R.A. Johnson, (1997). �Statistical Concepts and Methods", John Wiley
and Sons, New York.

• Sprent, P., and Smeeton, N.C. (2001). �Applied Nonparametric Statistical Methods � Third edition",
Chapman & Hall
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3.3.11 Step B � Cramer-Von Mises goodness-of-�t test

Mathematical description

Objective

This method is concerned with the modelling of a probability distribution of a random vector X =(
X1, . . . , XnX

)
. It seeks to verify the compatibility between a sample of data {x1, x2, . . . , xN} and a

candidate probability distribution previous chosen. Open TURNS enables the use of the Cramer-von-Mises
Goodness-of-Fit test to answer this question in the one dimensional case nX = 1, and with a continuous
distribution. The current version is limited to the case of the Normal distribution.

Principle

Let us limit the case to nX = 1. Thus we denote X = X1 = X. This goodness-of-�t test is based
on the distance between the cumulative distribution function F̂N of the sample {x1, x2, . . . , xN} (see
[empirical cumulative distribution function]) and that of the candidate distribution, denoted F . This dis-
tance is no longer the maximum deviation as in the [Kolmogorov-Smirnov test] but the distance squared
and integrated over the entire variation domain of the distribution:

D =
∫ ∞
−∞

[
F (x)− F̂N (x)

]2
dF

With a sample {x1, x2, . . . , xN}, the distance is estimated by:

D̂N =
1

12N
+

N∑
i=1

[
2i− 1

2N
− F (xi)

]2

The probability distribution of the distance D̂N is asymptotically known (i.e. as the size of the sample
tends to in�nity). If N is su�ciently large, this means that for a probability α and a candidate distribution
type, one can calculate the threshold / critical value dα such that:

• if D̂N > dα, we reject the candidate distribution with a risk of error α,

• if D̂N ≤ dα, the candidate distribution is considered acceptable.

Note that dα depends on the candidate distribution F being tested; the current version of Open TURNS is
limited to the case of the Normal distribution.
An important notion is the so-called �p-value" of the test. This quantity is equal to the limit error probability
αlim under which the candidate distribution is rejected. Thus, the candidate distribution will be accepted
if and only if αlim is greater than the value α desired by the user. Note that the higher αlim − α, the more
robust the decision.

Other notations

-
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Link with OpenTURNS methodology

This method is used in step B �Quantifying Sources of Uncertainty", to verify if the probability distribution
is appropriate to describe the uncertainty of a component Xi of the vector of unknown variables de�ned in
step A �Specifying Criteria and the Case Study".

Input data:
{x1, . . . , xN} : data sample
Distribution : normal probability distribution that we are testing for goodness-of-�t

Parameters:
α : Level of signi�cance for the test

Outputs:
Result : Binary variable specifying whether the candidate distribution is rejected (0) or not (1)
αlim : p-value of the test

References and theoretical basics

The test concerns the deviation squared and integrated over the entire variation domain, it often appears
to be more robust than the Kolmogorov-Smirnov test.

We remind the reader that the underlying theoretical results of the test are asymptotic. There is no rule
to determine the minimum number of data values one needs to use this test; but it is often considered a
reasonable approximation when N is of an order of a few dozen. But whatever the value of N , the distance
� and similarly the p-value � remains a useful tool for comparing di�erent probability distributions to a
sample. The distribution which minimizes D̂N � or maximizes the p-value � will be of interest to the analyst.
We also point out that the calculation of dα should in theory be modi�ed if on is testing the goodness-of-�t
to a parametric model where the parameters have been estimated from the same sample. The current
version of Open TURNS does not allow this modi�cation, and the results should be therefore used with
caution the p-value αlim and the desired error risk α are very close.
Readers interested in Goodness of Fit tests for continuous distributions are referred to
[Kolmogorov-Smirnov test] and [Anderson-Darling test] in the reference documentation.

The following bibliographical references provide main starting points for further study of this method:

• Saporta, G. (1990). �Probabilités, Analyse de données et Statistique", Technip

• Dixon, W.J. & Massey, F.J. (1983) �Introduction to statistical analysis (4th ed.)", McGraw-Hill

• D'Agostino, R.B. and Stephens, M.A. (1986). �Goodness-of-Fit Techniques", Marcel Dekker, Inc.,
New York.

• Bhattacharyya, G.K., and R.A. Johnson, (1997). �Statistical Concepts and Methods", John Wiley
and Sons, New York.

• Sprent, P., and Smeeton, N.C. (2001). �Applied Nonparametric Statistical Methods � Third edition",
Chapman & Hall
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3.3.12 Step B � Anderson-Darling goodness-of-�t test

Mathematical description

Objective

This method is concerned with the modelling of a probability distribution of a random vector X =(
X1, . . . , XnX

)
. It seeks to verify the compatibility between a sample of data {x1, x2, . . . , xN} and a

candidate probability distribution previous chosen. Open TURNS enables the use of the Anderson-Darling
Goodness-of-Fit test to answer this question in the one dimensional case nX = 1, and with a continuous
distribution. The current version is limited to the case of the Normal distribution.

Principle

Let us limit the case to nX = 1. Thus we denote X = X1 = X. This goodness-of-�t test is based
on the distance between the cumulative distribution function F̂N of the sample {x1, x2, . . . , xN} (see
[empirical cumulative distribution function]) and that of the candidate distribution, denoted F . This dis-
tance is a quadratic type, as in the [Cramer-Von Mises test], but gives more weight to deviations of extreme
values:

D =
∫ ∞
−∞

[
F (x)− F̂N (x)

]2

F (x) (1− F (x))
dF (x)

With a sample {x1, x2, . . . , xN}, the distance is estimated by:

D̂N = −N −
N∑
i=1

2i− 1
N

[
lnF (x(i))− ln

(
1− F (x(N+1−i))

)]
where

{
x(1), . . . , x(N)

}
describes the sample placed in ascending order.

The probability distribution of the distance D̂N is asymptotically known (i.e. as the size of the sample
tends to in�nity). If N is su�ciently large, this means that for a probability α and a candidate distribution
type, one can calculate the threshold / critical value dα such that:

• if D̂N > dα, we reject the candidate distribution with a risk of error α,

• if D̂N ≤ dα, the candidate distribution is considered acceptable.

Note that dα depends on the candidate distribution F being tested; the current version of Open TURNS is
limited to the case of the Normal distribution.
An important notion is the so-called �p-value" of the test. This quantity is equal to the limit error probability
αlim under which the candidate distribution is rejected. Thus, the candidate distribution will be accepted
if and only if αlim is greater than the value α desired by the user. Note that the higher αlim − α, the more
robust the decision.

Other notations

-
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Link with OpenTURNS methodology

This method is used in step B �Quantifying Sources of Uncertainty", to verify if the probability distribution
is appropriate to describe the uncertainty of a component Xi of the vector of unknown variables de�ned in
step A �Specifying Criteria and the Case Study".

Input data:
{x1, . . . , xN} : data sample
Distribution : normal probability distribution that we are testing for goodness-of-�t

Parameters:
α : Level of signi�cance for the test

Outputs:
D̂N : Distance between theoretical and empirical values
dα : Threshold / Critical value which if exceeded the tested probability is rejected
Result : Binary variable specifying whether the candidate distribution is rejected or not

References and theoretical basics

The Anderson-Darling test is theoretically designed to be more sensitive to the quality of �t in the tails of
the distribution. A user interested in the extreme values of the source of uncertainty being studied will �nd
this particularly interesting but we stress that both tails of the distribution, upper and lower, will in�uence
the test results.

We remind the reader that the underlying theoretical results of the test are asymptotic. There is no rule
to determine the minimum number of data values one needs to use this test; but it is often considered a
reasonable approximation when N is of an order of a few dozen. But whatever the value of N , the distance
� and similarly the p-value � remains a useful tool for comparing di�erent probability distributions to a
sample. The distribution which minimizes D̂N � or maximizes the p-value � will be of interest to the analyst.
We also point out that the calculation of dα should in theory be modi�ed if on is testing the goodness-of-�t
to a parametric model where the parameters have been estimated from the same sample. The current
version of Open TURNS does not allow this modi�cation, and the results should be therefore used with
caution the p-value αlim and the desired error risk α are very close.
Readers interested in Goodness of Fit tests for continuous distributions are referred to
[Kolmogorov-Smirnov test] and [Cramer-von-Mises test] in the reference documentation.

The following bibliographical references provide main starting points for further study of this method:

• NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/

• D'Agostino, R.B. and Stephens, M.A. (1986). �Goodness-of-Fit Techniques", Marcel Dekker, Inc.,
New York.

• Sprent, P., and Smeeton, N.C. (2001). �Applied Nonparametric Statistical Methods � Third edition",
Chapman & Hall
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3.3.13 Step B � Bayesian Information Criterion (BIC)

Mathematical description

Goal

This method is concerned with the modelling of a probability distribution of a random vector X =(
X1, . . . , XnX

)
. It seeks to rank variable candidate distributions by using a sample of data {x1, x2, . . . , xN}.

Open TURNS enables the use of the Bayesian Information Criterion (BIC) to answer this question in the
one dimensional case nX = 1.

Principle

Let us limit the case to nX = 1. Thus we denote X = X1 = X. Moreover, let us denote byM1,. . . ,MK

the parametric models envisaged by the user among the [standard parametric models] . We suppose here
that the parameters of these models have been estimated previously by the [maximum likelihood method]
on the basis of the sample {x1, x2, . . . , xn}. We denote by Li the maximized likelihood for the modelMi.
By de�nition of the likelihood, the higher Li, the better the model describes the sample. However, using
the likelihood as a criterion to rank the candidate probability distributions would involve a risk: one
would almost always favour complex models involving many parameters. If such models provide indeed
a large numbers of degrees-of-freedom that can be used to �t the sample, one has to keep in mind that
complex models may be less robust that simpler models with less parameters. Actually, the limited available
information (N data points) does not allow to estimate robustly too many parameters.
The BIC criterion can be used to avoid this problem. The principle is to rank M1,. . . , MK according to
the following quantity:

BICi = log (Li)− pi
2

log(n)

where pi denotes the number of parameters being adjusted for the modelMi. The larger BICi, the better
the model. Note that the idea is to introduce a penalization term that increases with the numbers of
parameters to be estimated. A complex model will then have a good score only if the gain in terms of
likelihood is high enough to justify the number of parameters used.
The term �Bayesian Information Criterion" comes the interpretation of the quantity BICi. In a bayesian
context, the unknow �true" model may be seen as a random variable. Suppose now that the user does
not have any informative prior information on which model is more relevant among M1,. . . , MK ; all the
models are thus equally likely from the point of view of the user. Then, one can show that BICi is an
approximation of the posterior distribution's logarithm for the modelMi.

Other notations

Link with OpenTURNS methodology

This method is used in step B �Quantifying Sources of Uncertainty", to verify if the probability distribution
is appropriate to describe the uncertainty of a component Xi of the vector of unknown variables de�ned in
step A �Specifying Criteria and the Case Study".
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References and theoretical basics

Compared to other criteria proposed in literature for model selection and based on the same idea of pe-
nalization (such as the AIC criterion), the BIC criterion tends to favour models with a small number of
parameters. Moreover, note that the undelying hypothesis is that the user does not have any signi�cant
prior information on which model is more relevant; if such prior information is available (for instance via
literature or expert judgement), the BIC criterion becomes less relevant.
Readers interested in other ways to rank candidate models referred to [Kolmogorov-Smirnov test] ,
[Cramer-Von Mises test] and [Anderson-Darling test] in the reference documentation.
The following bibliographical references provide main starting points for further study of this method:

• Saporta, G. (1990). �Probabilités, Analyse de données et Statistique", Technip

• Dixon, W.J. & Massey, F.J. (1983) �Introduction to statistical analysis (4th ed.)", McGraw-Hill

• D'Agostino, R.B. and Stephens, M.A. (1986). �Goodness-of-Fit Techniques", Marcel Dekker, Inc.,
New York.

• Bhattacharyya, G.K., and R.A. Johnson, (1997). �Statistical Concepts and Methods", John Wiley
and Sons, New York.

• Burnham, K.P., and Anderson, D.R (2002). �Model Selection and Multimodel Inference: A Practical
Information Theoretic Approach", Springer
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3.3.14 Step B � Pearson Correlation Coe�cient

Mathematical description

Goal

This method is concerned with the parametric modelling of a probability distribution for a random vector
X =

(
X1, . . . , XnX

)
. It aims to measure a type of dependence (here a linear correlation) which may exist

between two components Xi and Xj .

Principle

The Pearson's correlation coe�cient ρU,V aims to measure the strength of a linear relationship between two
random variables U and V . It is de�ned as follows:

ρU,V =
Cov [U, V ]
σUσV

where Cov [U, V ] = E [(U −mU ) (V −mV )], mU = E [U ], mV = E [V ], σU =
√

Var [U ] and σV =
√

Var [V ].
If we have a sample made up of a set of N pairs {(u1, v1), (u2, v2), . . . , (uN , vN )}, Pearson's correlation
coe�cient can be estimated using the formula:

ρ̂U,V =

N∑
i=1

(ui − u) (vi − v)√√√√ N∑
i=1

(ui − u)2 (vi − v)2

where u and v represent the empirical means of the samples (u1, . . . , uN ) and (v1, . . . , vN ).
Pearson's correlation coe�cient takes values between -1 and 1. The closer its absolute value is to 1, the
stronger the indication is that a linear relationship exists between variables U and V . The sign of Pearson's
coe�cient indicates if the two variables increase or decrease in the same direction (positive coe�cient) or
in opposite directions (negative coe�cient). We note that a correlation coe�cient equal to 0 does not
necessarily imply the independence of variables U and V : this property is in fact theoretically guaranteed
only if U and V both follow a Normal distribution. In all other cases, there are two possible situations in
the event of a zero Pearson's correlation coe�cient:

• the variables U and V are in fact independent,

• or a non-linear relationship exists between U and V .
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Other notations

The estimate ρ̂ of Pearson's correlation coe�cient is sometimes denoted by r.

Link with OpenTURNS methodology

Pearson's correlation coe�cient can be used in step B �Quantifying Sources of Uncertainty". Hav-
ing de�ned the vector X of input variables in step A �Specifying Criteria and the Case Study",
[Pearson's Independence Test] shows how to test for the existence of a linear type of dependency between
two components Xi and Xj . Such a relationship should in fact be taken in to account so as not to falsify
the results of step C �Propagation of Uncertainty".
Pearson's correlation coe�cient is also used in step C' �Sensitivity Analysis and Ranking of
Sources of Uncertainty". If a propagation of uncertainty with Monte-Carlo simulation (step C,
[Mean and Variance Estimation using Standard Monte Carlo] ) has been carried out, [Pearson's Ranking]
shows the user how to class the components of the input vector X according to their impact on the uncer-
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tainty of a �nal variable / output variable de�ned in step A.

References and theoretical basics

Regardless of the method used in step B or step C', we recall that the Pearson's coe�cient is only useful in
measuring a linear relationship between two variables. Readers are referred to the following references:

• Saporta, G. (1990). �Probabilités, Analyse de données et Statistique", Technip

• Dixon, W.J. & Massey, F.J. (1983) �Introduction to statistical analysis (4th ed.)", McGraw-Hill

• Bhattacharyya, G.K., and R.A. Johnson, (1997). �Statistical Concepts and Methods", John Wiley
and Sons, New York.
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3.3.15 Step B � Pearson's correlation test

Mathematical description

Goal

This method is concerned with the modelling of a probability distribution of a random vector X =(
X1, . . . , XnX

)
. It seeks to �nd a type of dependency (here a linear correlation) which may exist between

two components Xi and Xj .

Principle

The Pearson's correlation coe�cient ρU,V , de�ned in [Pearson's Coe�cient] , measures the strength of a
linear relationship between two random variables U and V . If we have a sample made up of N pairs
{(u1, v1), (u2, v2), (uN , vN )}, we denote ρ̂U,V to be the estimated coe�cient.
Even in the case where two variables U and V have a Pearson's coe�cient ρU,V equal to zero, the estimate
ρ̂U,V obtained from the sample may be non-zero: the limited sample size does not provide the perfect image
of the real correlation. Pearson's test nevertheless enables one to determine if the value obtained by ρ̂U,V is
signi�cantly di�erent from zero. More precisely, the user �rst chooses a probability α. From this value the
critical value dα is calculated such that:

• if |ρ̂U,V | > dα, one can conclude that the real Pearson's correlation coe�cient ρU,V is not zero; the
risk of error in making this assertion is controlled and equal to α;

• if |ρ̂U,V | ≤ dα, there is insu�cient evidence to reject the null hypothesis ρU,V = 0.

An important notion is the so-called �p-value" of the test. This quantity is equal to the limit error probability
αlim under which the null correlation hypothesis is rejected. Thus, Pearson's coe�cient is supposed non
zero if and only if αlim is greater than the value α desired by the user. Note that the higher αlim − α, the
more robust the decision.

Other notations

-
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Link with OpenTURNS methodology

The Pearson's test is used in step B �Quantifying Sources of Uncertainty". It enables us to verify if a linear
type of dependency exists between the two components Xi and Xj of the input variable vector X de�ned in
step A �Specifying Criteria and the Case Study". Such a relationship should in fact be taken into account
to avoid distortion of results in step C �Propagation of Uncertainty".
Input data :

Two samples
{
xi1, . . . , x

i
N

}
and

{
xj1, . . . , x

j
N

}
of variables Xi and Xj , each pair

(
xik, x

j
k

)
corresponding to

a simultaneous sampling of the two variables
Parameters :
a probability α taking values strictly between 0 and 1, de�ning the risk of permissible decision error (sig-
ni�cance level)
Outputs :
Result : Binary variable specifying whether the hypothesis of a correlation coe�cient equal to 0 is rejected
(0) or not (1)
αlim : p-value of the test

References and theoretical basics

Certain precautions should be taken when interpreting the Pearson's test results.

• The underlying theory of the Pearson test assumes in fact that the variables Xi and Xj are both
normally distributed. In all other cases, the decision produced by the test is only valid if the sample
size N is su�ciently large (in practice N ≥ a few dozen, even if there is no theoretical result that
enables us to prove that asymptotic behaviour has been attained).

• Still considering the case of distributions other than the Normal distribution, whatever the value of
N , we recall that ρXi,Xj = 0 does not enable us to conclude that Xi and Xj are independent (see
[Pearson's Correlation Coe�cient]).

• More generally, the numerical value of Pearson's correlation coe�cient can only be interpreted
when the two variables studied Xi and Xj are related in a linear way; the scatter plot of points{

(xi1, x
j
1), . . . , (xiN , x

j
N )
}
provides some indication concerning the validity of this hypothesis.

The following pages describe methods which enable us to test the hypothesis of the Normal distribution

using the available sample
{
xi1, . . . , x

i
N

}
and

{
xj1, . . . , x

j
N

}
: [Kolmogorov-Smirnov Goodness of Fit Test],

[Cramer-von Mises Goodness of Fit Test], [Anderson-Darling Goodness of Fit Test].
Out of Pearson's test validity domain (i.e. linear relationship, Normal distributions), [Spearman's test]
provides some answers.
The following bibliographical references provide main starting points for further study of this method:

• Saporta, G. (1990). �Probabilités, Analyse de données et Statistique", Technip

• Dixon, W.J. & Massey, F.J. (1983) �Introduction to statistical analysis (4th ed.)", McGraw-Hill

• Bhattacharyya, G.K., and R.A. Johnson, (1997). �Statistical Concepts and Methods", John Wiley
and Sons, New York.
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3.3.16 Step B � Spearman correlation coe�cient

Mathematical description

Goal

This method is concerned with the parametric modelling of a probability distribution for a random vector
X =

(
X1, . . . , XnX

)
. It aims to measure a type of dependence (here a monotonous correlation) which may

exist between two components Xi and Xj .

Principle

The Spearman's correlation coe�cient ρSU,V aims to measure the strength of a monotonic relationship be-
tween two random variables U and V . It is in fact equivalent to the Pearson's correlation coe�cient after hav-
ing transformed U and V to linearize any monotonic relationship (remember that Pearson's correlation coef-
�cient may only be used to measure the strength of linear relationships, see[Pearson's Correlation Coe�cient]
):

ρSU,V = ρFU (U),FV (V )

where FU and FV denote the cumulative distribution functions of U and V .
If we arrange a sample made up of N pairs {(u1, v1), (u2, v2), . . . , (uN , vN )}, the estimation of Spearman's
correlation coe�cient �rst of all requires a ranking to produce two samples (u1, . . . , uN ) and (v1, . . . , vN ).
The ranking u[i] of the observation ui is de�ned as the position of ui in the sample reordered in ascending
order: if ui is the smallest value in the sample (u1, . . . , uN ), its ranking would equal 1; if ui is the second
smallest value in the sample, its ranking would equal 2, and so forth. The ranking transformation is a
procedure that takes the sample (u1, . . . , uN )) as input data and produces the sample (u[1], . . . , u[N ]) as an
output result.
For example, let us consider the sample (u1, u2, u3, u4) = (1.5, 0.7, 5.1, 4.3). We therefore have
(u[1], u[2]u[3], u[4]) = (2, 1, 4, 3). u1 = 1.5 is in fact the second smallest value in the original, u2 = 0.7
the smallest, etc.
The estimation of Spearman's correlation coe�cient is therefore equal to Pearson's coe�cient estimated
with the aid of the N pairs (u[1], v[1]), (u[2], v[2]), . . . , (u[N ], v[N ]):

ρ̂SU,V =

N∑
i=1

(
u[i] − u[]

) (
v[i] − v[]

)
√√√√ N∑

i=1

(
u[i] − u[]

)2 (
v[i] − v[]

)2
where u[] and v[] represent the empirical means of the samples (u[1], . . . , u[N ]) and (v[1], . . . , v[N ]).
The Spearman's correlation coe�cient takes values between -1 and 1. The closer its absolute value is to 1,
the stronger the indication is that a monotonic relationship exists between variables U and V . The sign
of Spearman's coe�cient indicates if the two variables increase or decrease in the same direction (positive
coe�cient) or in opposite directions (negative coe�cient). We note that a correlation coe�cient equal to 0
does not necessarily imply the independence of variables U and V . There are two possible situations in the
event of a zero Spearman's correlation coe�cient:

• the variables U and V are in fact independent,
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• or a non-monotonic relationship exists between U and V .
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Other notations

Spearman's coee�cient is often referred to as the rank correlation coe�cient.

Link with OpenTURNS methodology

Spearman's correlation coe�cient can be used in step B �Quantifying Sources of Uncertainty". Hav-
ing de�ned the vector X of input variables in step A �Specifying Criteria and the Case Study",
[Spearman's Independence Test] shows how to test for the existence of a monotonous type of dependency
between two components Xi and Xj . Such a relationship should in fact be taken in to account so as not to
falsify the results of step C �Propagation of Uncertainty".
Spearman's correlation coe�cient is also used in step C' �Sensitivity Analysis and Ranking of
Sources of Uncertainty". If a propagation of uncertainty with Monte-Carlo simulation (step C,
[Mean and Variance Estimation using Standard Monte Carlo]) has been carried out, [Spearman's Ranking]
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shows the user how to class the components of the input vector X according to their impact on the uncer-
tainty of a �nal variable / output variable de�ned in step A.

References and theoretical basics

Regardless of the method used in step B or step C', we recall that the Spearman's coe�cient is only use-
ful in measuring a monotonous relationship between two variables. Readers are referred to the following
references:

• Saporta, G. (1990). �Probabilités, Analyse de données et Statistique", Technip

• Dixon, W.J. & Massey, F.J. (1983) �Introduction to statistical analysis (4th ed.)", McGraw-Hill

• Bhattacharyya, G.K., and R.A. Johnson, (1997). �Statistical Concepts and Methods", John Wiley
and Sons, New York.

• Sprent, P., and Smeeton, N.C. (2001). �Applied Nonparametric Statistical Methods � Third edition",
Chapman & Hall
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3.3.17 Step B � Spearman correlation test

Mathematical description

Goal

This method is concerned with the modelling of a probability distribution of a random vector X =(
X1, . . . , XnX

)
. It seeks to �nd a type of dependency (here a monotonous correlation) which may ex-

ist between two components Xi and Xj .

Principle

The Spearman's correlation coe�cient ρSU,V , de�ned in [Spearman's Coe�cient], measures the strength of a
monotonous relationship between two random variables U and V . If we have a sample made up of N pairs
{(u1, v1), (u2, v2), (uN , vN )}, we denote ρ̂SU,V to be the estimated coe�cient.

Even in the case where two variables U and V have a Spearman's coe�cient ρSU,V equal to zero, the estimate

ρ̂SU,V obtained from the sample may be non-zero: the limited sample size does not provide the perfect image

of the real correlation. Pearson's test nevertheless enables one to determine if the value obtained by ρ̂SU,V is
signi�cantly di�erent from zero. More precisely, the user �rst chooses a probability α. From this value the
critical value dα is calculated automatically such that:

• if
∣∣∣ρ̂SU,V ∣∣∣ > dα, one can conclude that the real Spearman's correlation coe�cient ρSU,V is not zero; the

risk of error in making this assertion is controlled and equal to α;

• if
∣∣∣ρ̂SU,V ∣∣∣ ≤ dα, there is insu�cient evidence to reject the null hypothesis ρSU,V = 0.

An important notion is the so-called �p-value" of the test. This quantity is equal to the limit error probability
αlim under which the null correlation hypothesis is rejected. Thus, Spearman's's coe�cient is supposed non
zero if and only if αlim is greater than the value α desired by the user. Note that the higher αlim − α, the
more robust the decision.

���

Other notations
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-

Link with OpenTURNS methodology

The Spearman's test is used in step B �Quantifying Sources of Uncertainty". It enables us to verify if a
monotonous type of dependency exists between the two components Xi and Xj of the input variable vector
X de�ned in step A �Specifying Criteria and the Case Study". Such a relationship should in fact be taken
into account to avoid distortion of results in step C �Propagation of Uncertainty".
Input data :

Two samples
{
xi1, . . . , x

i
N

}
and

{
xj1, . . . , x

j
N

}
of variables Xi and Xj , each pair

(
xik, x

j
k

)
corresponding to

a simultaneous sampling of the two variables
Parameters :
a probability α taking values strictly between 0 and 1, de�ning the risk of permissible decision error (sig-
ni�cance level)
Outputs :
Result : Binary variable specifying whether the hypothesis of a correlation coe�cient equal to 0 is rejected
(0) or not (1)
αlim : p-value of the test

References and theoretical basics

Certain precautions should be taken when interpreting the Spearman's test results.

• Remember that ρXi,Xj = 0 does not enable us to conclude that Xi and Xj are independent (see
[Spearman's correlation coe�cient]).

• More generally, the numerical value of Spearman's correlation coe�cient can only be interpreted
when the two variables studied Xi and Xj are related in a monotonous way; the scatter plot of points{

(xi1, x
j
1), . . . , (xiN , x

j
N )
}
provides some indication concerning the validity of this hypothesis.

The following bibliographical references provide main starting points for further study of this method:

• Saporta, G. (1990). �Probabilités, Analyse de données et Statistique", Technip

• Dixon, W.J. & Massey, F.J. (1983) �Introduction to statistical analysis (4th ed.)", McGraw-Hill

• Bhattacharyya, G.K., and R.A. Johnson, (1997). �Statistical Concepts and Methods", John Wiley
and Sons, New York.

• Sprent, P., and Smeeton, N.C. (2001). �Applied Nonparametric Statistical Methods � Third edition",
Chapman & Hall
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3.3.18 Step B � Chi-squared test for independence

Mathematical description

Goal

This method is concerned with the parametric modelling of a probability distribution for a random vector
X =

(
X1, . . . , XnX

)
. We seek here to detect possible dependencies that may exist between two components

Xi and Xj . In response to this, Open TURNS o�ers the use of the χ2 test for Independence for discrete
probability distributions.

Principle

As we are considering discrete distributions, the possible values for Xi and Xj respectively belong to the
discrete sets Ei and Ej . The χ2 test of independence can be applied when we have a sample consisting of N

pairs
{

(xi1, x
j
1), (xi2, x

j
2), (xiN , x

j
N )
}
. We denote:

• nu,v the number of pairs in the sample such that xik = u and xjk = v,

• niu the number of pairs in the sample such that xik = u,

• njv the number of pairs in the sample such that xjk = v.

The test thus uses the quantity denoted D̂2
N :

D̂2
N =

∑
u∈Ei

∑
v∈E2

(
pu,v − pjvpiu

)2

piup
j
v

where:

pu,v =
nu,v
N

, piu =
niu
N
, pjv =

njv
N

The probability distribution of the distance D̂2
N is asymptotically known (i.e. as the size of the sample tends

to in�nity). If N is su�ciently large, this means that for a probability α, one can calculate the threshold
(critical value) dα such that:

• if D̂N > dα, we conclude, with the risk of error α, that a dependency exists between Xi and Xj ,

• if D̂N ≤ dα, the independence hypothesis is considered acceptable.

An important notion is the so-called �p-value" of the test. This quantity is equal to the limit error probability
αlim under which the independence hypothesis is rejected. Thus, independence is assumed if and only if
αlim is greater than the value α desired by the user. Note that the higher αlim − α, the more robust the
decision.

Other notations

This method is also referred to in the literature as the χ2 test of contingency.
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Link with OpenTURNS methodology

The χ2 independence test is used in step B �Quantifying Sources of Uncertainty". It enables the existence
of a dependency between two components Xi and Xj of the input vector X, de�ned in step A �Specifying
Criteria and the Case Study", to be veri�ed.
Input data :

Two samples
{
xi1, . . . , x

i
N

}
and

{
xj1, . . . , x

j
N

}
of variables Xi and Xj , each pair

(
xik, x

j
k

)
corresponding to

a simultaneous sampling of the two variables
Parameters :
a probability α taking values strictly between 0 and 1, de�ning the risk of permissible decision error (sig-
ni�cance level)
Outputs :
Result : Binary variable specifying whether the hypothesis of independence is rejected (0) or not (1)
αlim : p-value of the test

References and theoretical basics

The χ2 test of independence can be applied when the two variables of study are discrete. Its use for
continuous distributions is only possible by means of an arbitrary discretisation of possible values of X, a
high source of potential error.
On the other hand, no hypothesis is made in the form of the relationship between the two tested variables.
Readers interested in the detection of dependencies between two continuous variables are referred to
[Pearson's Test] and [Spearman's test] in the reference documentation.

The following bibliographical references provide main starting points to further study of this method:

• Saporta, G. (1990). �Probabilités, Analyse de données et Statistique", Technip

• Dixon, W.J. & Massey, F.J. (1983) �Introduction to statistical analysis (4th ed.)", McGraw-Hill

• Bhattacharyya, G.K., and R.A. Johnson, (1997). �Statistical Concepts and Methods", John Wiley
and Sons, New York.

• Sprent, P., and Smeeton, N.C. (2001). �Applied Nonparametric Statistical Methods � Third edition",
Chapman & Hall
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3.3.19 Step B � Linear regression

Mathematical description

Goal

This method is concerned with the parametric modelling of a probability distribution for a random vector
X =

(
X1, . . . , XnX

)
. It aims to measure a type of dependence (here a linear relation) which may exist

between a component Xi and other uncertain variables Xj .

Principle of the method

The principle of the multiple linear regression model is to �nd the function that links the variable Xi to
other variables Xj1 ,. . . ,XjK by means of a linear model:

Xi = a0 +
∑

j∈{j1,...,jK}
ajX

j + ε

where ε describes a random variable with zero mean and standard deviation σ independent of the input
variables Xi. For given values of Xj1 ,. . . ,XjK , the average forecast of Xi is denoted by X̂i and is de�ned
as:

X̂i = a0 +
∑

j∈{j1,...,jK}
ajX

j

The estimators for the regression coe�cients â0, â1, . . . , âK , and the standard deviation σ are obtained from
a sample of (Xi, Xj1 , . . . , XjK ), that is a set of N values (xi1, x

j1
1 , . . . , x

jK
1 ),. . . ,(xin, x

j1
n , . . . , x

jK
n ). They are

determined via the least-squares method:

{â0, â1, . . . , âK} = argmin
n∑
k=1

xik − a0 −
∑

j∈{j1,...,jK}
ajx

j
k

2

In other words, the principle is to minimize the total quadratic distance between the observations xik and
the linear forecast x̂ik.
Some estimated coe�cient â` may be close to zero, which may indicate that the variable Xj` does not
bring valuable information to forecast Xi. Open TURNS includes a classical statistical test to identify
such situations: Fisher's test. For each estimated coe�cient â`, an important characteristic is the so-called
�p-value" of Fisher's test. The coe�cient is said to be �signi�cant" if and only if α`lim is greater than a value
α chosen by the user (typically 5% or 10%). The higher the p-value, the more signi�cant the coe�cient.
Another important characteristic of the adjusted linear model is the coe�cient of determination R2. This
quantity indicates the part of the variance of Xi that is explained by the linear model:

R2 =

n∑
k=1

(
xik − xi

)2 − n∑
k=1

(
xik − x̂ik

)2
∑n

k=1

(
xik − xi

)2
where xi denotes the empirical mean of the sample

{
xi1, . . . , x

i
n

}
.

Thus, 0 ≤ R2 ≤ 1. A value close to 1 indicates a good �t of the linear model, whereas a value close to
0 indicates that the linear model does not provide a relevant forecast. A statistical test allows to detect
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signi�cant values of R2. Again, a p-value is provided: the higher the p-value, the more signi�cant the
coe�cient of determination.
By de�nition, the multiple regression model is only relevant for linear relationships, as in the following
simple example where X2 = a0 + a1X

1.

2 4 6 8 10

5
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15
20
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30

X1

X
2

Xsample LinearModel visualTest
Original Sample

In this second example (still in dimension 1), the linear model is not relevant because of the exponential shape
of the relation. But a linear approach would be useful on the transformed problem X2 = a0 + a1 expX1.
In other words, what is important is that the relationships between Xi and the variables Xj1 ,. . . ,XjK is
linear with respect to the regression coe�cients aj .

2 4 6 8 10

0
50
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0

X1

X
2

Xsample LinearModel visualTest
Original Sample

The value of R2 is a good indication of the goodness-of �t of the linear model. However, several other
veri�cations have to be carried out before concluding that the linear model is satisfactory. For instance,
one has to pay attentions to the �residuals" {u1, . . . , uN} of the regression:

uj = xi − x̂i

A residual is thus equal to the di�erence between the observed value of Xi and the average forecast provided
by the linear model. A key-assumption for the robustness of the model is that the characteristics of the
residuals do not depend on the value of Xi, Xj1 ,. . . ,XjK : the mean value should be close to 0 and the
standard deviation should be constant. Thus, plotting the residuals versus these variables can fruitful.
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In the following example, the behaviour of the residuals is satisfactory: no particular trend can be detected
neither in the mean nor in he standard deviation.
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X1

X
2

Xsample LinearModel residual Test

The next example illustrates a less favourable situation: the mean value of the residuals seems to be close
to 0 but the standard deviation tends to increase with X. In such a situation, the linear model should be
abandoned, or at least used very cautiously.
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Triangular LinearModel residual Test

Other notations

Link with OpenTURNS methodology
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Multiple linear regression can be used in step B �Quantifying Sources of Uncertainty". Having de�ned the
vector X of input variables in step A �Specifying Criteria and the Case Study", linear regression allows to
detect a linear type of dependency between uncertain variables. Such a relationship should in fact be taken
in to account so as not to bias the results of step C �Propagation of Uncertainty".

References and theoretical basics

As we have seen in the mathematical description, there is a consequent list of veri�cations that have to be
carried to validate the linear model. In particular, underlying assumptions on the residuals are important
to ensure the robustness of the average forecast. Detecting a non-conform behaviour of the residuals can
also provide leads on transformations that could be carried out before applying linear regression (such as
considering the logarithm of a variable instead of the variable itself).
The following bibliographical references provide main starting points for further study of this method:

• Saporta, G. (1990). �Probabilités, Analyse de données et Statistique", Technip

• Dixon, W.J. & Massey, F.J. (1983) �Introduction to statistical analysis (4th ed.)", McGraw-Hill

• NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/

• Bhattacharyya, G.K., and R.A. Johnson, (1997). �Statistical Concepts and Methods", John Wiley
and Sons, New York.
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4 Open TURNS' methods for Step C: uncertainty propagation

This section is organized according to the di�erent uncertainty criterion de�ned in step A: deterministic min-
max criterion, probabilist criterion on central dispersion (expectation and variance), probability of exceeding a
threshold / failure probability, and probabilistic criterion based on quantiles. Each method proposed for these
criteria is described at the end of the section.

4.1 Deterministic min-max criterion

Only a simpli�ed approach is available in the current version of Open TURNS.
• [Seeking extreme values on a discrete set of inputs chosen through desig of experiment] � see page 79

4.2 Probabilistic criteria

4.2.1 Central dispersion

Two categories of method are proposed: approximation methods and sampling methods.

• Approximation methods

� [Quadratic combination / Perturbation method] � see page 81

• Sampling methods

� [Standard Monte-Carlo simulation] � see page 84

4.2.2 Probability of exceeding a threshold / failure probability / probability of an event

Again, two categories of method are proposed: approximation methods and sampling methods.

• Approximation methods

� FORM-SORM methods∗ [Preliminary iso-probabilistic transformation] � see page 87
∗ [FORM algorithm] � see page 91
∗ [SORM algorithm] � see page 95
∗ [Reliability index] � see page 99

� Validation of FORM-SORM underlying hypothesis∗ [Preliminary sphere sampling] � see page 102
∗ [Strong-maximum test] � see page 104

• Sampling methods

� [Standard sampling method] � see page 109

� Accelerated simulation∗ [Importance sampling] � see page 112
∗ [Directional simulation] � see page 114
∗ [Latin Hypercube Sampling] � see page 118

4.2.3 Quantile of a variable of interest

Only one sampling approach is available in the current version of Open TURNS.
• [Standard sampling method and Wilk's formula] � see page 121
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4.3 Methods description

4.3.1 Step C � Min-Max Approach using Design of Experiments

Mathematical description

Goal

The method is used in the following context: x =
(
x1, . . . , xnX

)
is a vector of unknown variables, d a vector

considered to be well known or where uncertainty is negligible, and y = h(x, d) =
(
y1, . . . , ynY

)
describes

the variables of interest. The objective here is to determine the extreme (minimum and maximum) values
of the components of y for all possible values of x.

Principle

Determining the extreme (minimum and maximum) values of the variables y for the set of all possible
values of x can prove to be a complex optimisation problem when this set of values are continuous. This
complex problem is simpli�ed here, the extreme values of y are sought for only a �nite set of combinations
{x1, . . . , xN} chosen using a design of experiments. This technique aims to explore in the most appropriate
manner, the set of possible values of x for a �xed value of N .
The method is made up of three steps:

• choice of experiment design used to determine the combinations {x1, . . . , xN} of unknown variables
(crossed, factorial or combined design of experiments),

• calculation of y
i

= h(xi, d) for i = 1, . . . , N ,

• calculation of min1≤i≤N yki and of max1≤i≤N yki , together with the combinations related to these
extreme values: xk,min = argmin1≤i≤Nyki and xk,max = argmax1≤i≤Nyki .

To construct a design of experiment in Open TURNS, the user provides a �central" point x0 for x, as
well as a set of levels k1, . . . , km. The diagrams below illustrate this principle showing di�erent types of
3-dimensional designs (nX = 3, x =

(
x1, x2, x3

)
). The central value is taken to be equal to 0, and only one

single level k1 = 1 is used.

(0,0,0)

(1,-1,1)(-1,-1,1)

(-1,1,1)

(-1,1,-1) (1,-1,-1)

(1,-1,-1)

(1,1,1)

x1
x2

x3

factorial design

(0,0,0)

(0,-1,0)

(0,0,1)

(1,-1,-1)

(-1,0,0)

(1,0,0)

x1
x2

x3

axial design

(0,0,-1)

x1
x2

x3

composite design

(-1,-1,-1)

The factorial design contains a central point x0 as well as the points
{(
x1

0 ± kj , . . . , xnX0 ± kj
)}

1≤j≤m. In
other words, the design includes 1 +m× 2nX di�erent points.
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The axial design contains the central point x0 as well as the points{(
x1

0 ± kj , x2
0, . . . , x

nX
0

)
,
(
x1

0, x
2
0 ± kj , x3

0, . . . , x
nX
0

)
,
(
x1

0, x
2
0, . . . , x

nX−1
0 , xnX0 ± kj

)}
1≤j≤m

. In other

words, the design includes 1 +m× 2nX di�erent points.

The composite design de�ned in Open TURNS includes the set of points de�ned in a factorial design and
in a crossed design.

Other notations

One can also refer to the terms �deterministic" study of uncertainty or the study of uncertainty �by intervals",
when �xing a lower and upper value for each of the input components xi, and by seeking the minimum and
maximum values in a complete (factorial) design with the combinations of x also generated.

Link with OpenTURNS methodology

This method is used in step C �Propagation of uncertainty" to evaluate a deterministic minimum-maximum
type of criterion for the output value de�ned in step A �Specifying the Criteria and the Case Study".
Input Data:

• x: vector of unknown variables de�ned in step A,

• d: vector of deterministic calculation parameters,

• y = h(x, d): output variables / variables of interest speci�ed in step A,

Method Parameters:

• type of design of experiment to be used (factorial, axial, composite),

• calculation parameters for the design of the experiment,

Output Data:

• {x1, . . . , xN}: combinations of unknown variable determined by the design of the experiment,

• min1≤i≤N yki and max1≤i≤N yki : extremes for the variable of interest,

• argmin1≤i≤Nyki and xmax = argmax1≤i≤Nyki : combinations of uncertain variables associated with
these extremes.

References and theoretical basics

This approach using the design of experiments does not require the function h to have any special property.
The extremes thus determined, however, only give an approximate idea of the variation range for the variable
of interest; in this simpli�ed approach which does not make use of a real optimisation algorithm, it does
in no way guarantee in general that one has approached or contained the function extremes, except in
particular cases e.g. monotonic model h.
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4.3.2 Step C � Quadratic Combination / Perturbation Method

Mathematical description

Goal
The quadratic combination approach is a probabilistic approach designed to propagate the uncertainties of
the input variables X through the model h towards the output variables Y . It enables to access the central
dispersion (Expectation, Variance) of the output variables.

Principles

This method is based on a Taylor decomposition of the output variable Y towards the X random vectors
around the mean point µ

X
. Depending on the order of the Taylor decomposition (classically �rst order or

second order), one can obtain di�erent formulas. For easiness of the reading, we �rst present the formulas
with nY = 1 before the ones obtained for nY > 1.

Case nY = 1

As Y = h(X), the Taylor decomposition around x = µ
X
at the second order yields to:

Y = h(µ
X

)+ < ∇h(µ
X

), X − µ
X
> +

1
2
<< ∇2h(µ

X
, µ

X
), X − µ

X
>, X − µ

X
> +o(Cov [X])

where:

• µ
X

= E [X] is the vector of the input variables at the mean values of each component.

• Cov [X] is the covariance matrix of the random vector X. The elements are the followings :
(Cov [X])ij = E

[(
Xi − E

[
Xi
])× (Xj − E

[
Xj
])]

• ∇h(µ
X

) = t
(
∂y
∂xj

)
x= µ

X

= t
(
∂h(x)
∂xj

)
x= µ

X

is the gradient vector taken at the value x = µ
X

and

j = 1, . . . , nX .

• ∇2h(x, x) is a matrix. It is composed by the second order derivative of the output variable towards the

ith and jth components of x taken around x = µ
X
. It yields to:

(
∇2h(µ

X
, µ

X
)
)
ij

=
(
∂2h(x,x)
∂xi∂xj

)
x= µ

X

• <,> is a scalar product between two vectors.

Approximation at the order 1 - Case nY = 1

Expectation:

E [Y ] = h(µ
X

)

Variance:
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Var [Y ] =
nX∑
i,j=1

∂h(µ
X

)
∂Xi

.
∂h(µ

X
)

∂Xj
.(Cov [X])ij

Approximation at the order 2 - Case nY = 1

Expectation:

E [Y ] = h(µ
X

) +
1
2
.

nX∑
i,j=1

∂2h(µ
X
, µ

X
)

∂xi∂xj
.(Cov [X])ij

Variance:
The decomposition of the variance at the order 2 is not implemented in the standard version of Open
TURNS. It requires both the knowledge of higher order derivatives of the model and the knowledge of
moments of order strictly greater than 2 of the pdf.

Case nY > 1

The quadratic combination approach can be developped at di�erent orders from the Taylor decomposition
of the random vector Y . As Y = h(X), the Taylor decomposition around x = µ

X
at the second order yields

to:

Y = h(µ
X

)+ < ∇h(µ
X

), X − µ
X
> +

1
2
<< ∇2h(µ

X
, µ

X
), X − µ

X
>, X − µ

X
> +o(Cov [X])

where:

• µ
X

= E [X] is the vector of the input variables at the mean values of each component.

• Cov [X] is the covariance matrix of the random vector X. The elements are the followings :

(Cov [X])ij = E
[(
Xi − E

[
Xi
])2]

• ∇h(µ
X

) = t
(
∂yi

∂xj

)
x= µ

X

= t
(
∂hi(x)
∂xj

)
x= µ

X

is the transposed Jacobian matrix with i = 1, . . . , nY

and j = 1, . . . , nX .

• ∇2h(x , x) is a tensor of order 3. It is composed by the second order derivative towards the ith and jth

components of x of the kth component of the output vector h(x). It yields to:
(∇2h(x)

)
ijk

= ∂2(hk(x))
∂xi∂xj

• < ∇h(µ
X

), X − µ
X
>=

∑nX
j=1

(
∂y

∂xj

)
x=µ

X

.
(
Xj − µj

X

)
• << ∇2h(µ

X
, µ

X
), X − µ

X
>, X − µ

X
>=

(
t(Xi − µi

X
).
(

∂2yk

∂xi∂xk

)
x=µ

X

.(Xj − µj
X

)
)
ijk

Approximation at the order 1 - Case nY > 1

Expectation:
E [Y ] ≈ h(µ

X
)
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Pay attention that E [Y ] is a vector. The kth component of this vector is equal to the kth component of the
output vector computed by the model h at the mean value. E [Y ] is thus the computation of the model at
mean.
Variance:

Cov [Y ] ≈t ∇ h(µ
X

).Cov [X] .∇ h(µ
X

)

Approximation at the order 2 - Case nY > 1

Expectation:

E [Y ] ≈ h(µ
X

) +
1
2
.∇2h(µ

X
, µ

X
)� Cov [X]

This last formulation is the reduced writing of the following expression:

(E [Y ])k ≈ (h(µ
X

))k +

 nX∑
i=1

1
2

(Cov [X])ii.(∇2 h(X))iik +
nX∑
i=1

i−1∑
j=1

(Cov [X])ij .(∇2 h(X))ijk


k

Variance:
The decomposition of the variance at the order 2 is not implemented in the standard version of Open
TURNS. It requires both the knowledge of higher order derivatives of the model and the knowledge of
moments of order strictly greater than 2 of the pdf.

Other notations

Perturbation methods

Link with OpenTURNS methodology

This method is part of the step C 'Propagation of Uncertainties' of the global methodology. It requires the
de�nition of the input random vector X, the de�nition of the model of interest h ((both should have been
done in step speci�cation of model and criteria).

References and theoretical basics

This method is well �tted when one wants to obtain the parameters of the central dispersion. Be careful,
if the model is largely non linear or not monotonous, the Taylor approximation at the order 2 may not be
accurate on the domain of the input variables and thus the assessment of the �rst and second order moments
may be largely false. Besides, one has to pay attention that this method is generally not justi�ed to compute
low probabilities. Pay attention that the mean and variance obtained by quadratic decomposition should
not be used tu deduce low probabilities. For instance, the 95 % quantile of Y i is generally not equal to the
µiY + 1, 64.σi - except if one may prove that Y i follows a gaussian distribution - and the error is potentially
huge.
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4.3.3 Step C � Estimating the mean and variance using the Monte Carlo Method

Mathematical description

Goal

Let us denote Y = h (X, d) =
(
Y 1, . . . , Y nY

)
, where X =

(
X1, . . . , XnX

)
is a random vector, and d a

deterministic vector. We seek here to evaluate, the characteristics of the central part (central tendency
and spread i.e. mean and variance) of the probability distribution of a variable Y i, using the probability
distribution of the random vector X.

Principle

The Monte Carlo method is a numerical integration method using sampling, which can be used, for example,
to determine the mean and standard deviation of a random variable Y i (if these quantities exist, which is
not the case for all probability distributions):

mY i =
∫
u fY i(u) du, σY i =

√∫
(u−mY i)

2 fY i(u) du

where fY i represents the probability density function of Y i.
Suppose now that we have the sample

{
yi1, . . . , y

i
N

}
of N values randomly and independently sampled from

the probability distribution fY i ; this sample can be obtained by drawing a N sample {x1, . . . , xN} of the
random vector X (the distribution of which is known) and by computing y

j
= h

(
xj , d

) ∀1 ≤ j ≤ N . Then,

the Monte-Carlo estimations for the mean and standard deviation are the empirical mean and standard
deviations of the sample:

m̂Y i =
1
N

N∑
j=1

yij , σ̂Y i =

√√√√ 1
N

N∑
j=1

(
yij − m̂Y i

)2

These are just estimations, but by the law of large numbers their convergence to the real valuesmY i and σY i
is assured as the sample size N tends to in�nity. The Central Limit Theorem enables the di�erence between
the estimated value and the sought value to be controlled by means of a con�dence interval (especially if N
is su�ciently large, typically N > a few dozens even if there is now way to say for sure if the asymptotic
behaviour is reached). For a probability α strictly between 0 and 1 chosen by the user, one can, for example,
be sure with a con�dence α, that the true value of mY i is between m̂i,inf and m̂i,sup calculated analytically
from simple formulae. To illustrate, for α = 0.95:

m̂i,inf = m̂Y i − 1.96
σ̂Y i√
N
, m̂i,sup = m̂Y i + 1.96

σ̂Y i√
N
, that is to say Pr (m̂i,inf ≤ mY i ≤ m̂i,sup) = 0.95

The size of the con�dence interval, which represents the uncertainty of this mean estimation, decreases as
N increases but more gradually (the rate is proportional to

√
N : multiplying N by 100 reduces the length

of the con�dence interval |m̂i,inf − m̂i,sup| by a factor 10).
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Other notations

Direct sampling, crude Monte Carlo method, Classical Monte Carlo integration

Link with OpenTURNS methodology

In the overall process, the Monte Carlo simulation method for estimating the variance appears in step C
�Propagation of Uncertainty" when the study of uncertainty is concerned with the dispersion of the variable
of interest Y i de�ned in step A �Specifying Criteria and the Case Study". To be more precise, this method
requires that the following steps have previously been previously completed:

• step A: speci�cation of input variables X and d and the output variable of interest Y = h(X, d),

• step B: use of one of the proposed techniques for determining the probability distribution of the
variable X,

The method's parameters are the following:

• number N of simulations,

• probability α giving the required con�dence level for the con�dence intervals,

The method described here returns the following results:

• the Monte-Carlo estimates m̂Y i and σ̂Y i for the mean and standard deviations of the variable of
interest Y i,

• the con�dence interval [m̂i,inf , m̂i,sup] for the mean mY i .

References and theoretical basics

The Monte-Carlo method does not require any assumptions on the form of the function h which relates X
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and Y , except that the expected value and standard deviation of Y i should exist (which is not the case, for
example, if Y i follows the Cauchy distribution).
Actually, the only limitation resides in N , the number of simulations, which if not su�ciently high (because
of the CPU time required for an estimation of Y = h(X, d)), can result in too greater uncertainty for the
estimations of m̂Y i and σ̂Y i . It is �tting then to verify the convergence of the estimators, especially by
plotting the graph of the coe�cient de variation σ̂Y i/m̂Y i as a function of N : if convergence is not visible,
it is necessary to increase N or if needed to choose another propagation method to estimate the central
uncertainty of Y (see [Quadratic combination / Perturbation method]).
The following references provide a bibliographic starting point for interested readers for further study of the
method described here:

• Robert C.P., Casella G. (2004). �Monte Carlo Statistical Methods", Springer, ISBN 0-387-21239-6,
2nd ed.

• Rubinstein R.Y. (1981). �Simulation and The Monte Carlo methods", John Wiley & Sons

• �Guide to the expression of Uncertainty in Measurements (GUM)", ISO publication
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4.3.4 Step C � Iso-probabilistic transformation preliminary to FORM-SORM methods

Mathematical description

Goal

The isoprobabilistic transformation is used under the following context: X is a probabilistic input vector,
fX(x) its joint probability density function, Fi the marginals if its components, RX = [rij ] its linear correla-

tion matrix whose generic term is rij = E
[(

Xi −mi

σi

)(
Xj −mj

σj

)]
, withmi = E

[
Xi
]
et σi =

√
Var [Xi].

Let us denote by d a determinist vector, g(X , d) the limit state function of the model,
Df = {X ∈ Rn / g(X , d) ≤ 0} the event considered here and g(X , d) = 0 its boundary.

One way to evaluate the probability content of the event Df :

Pf =
∫
Df
fX(x) dx, (1)

is to introduce the Nataf isoprobabilistic transformation wich maps the probabilistic model in terms of X
onto an equivalent model in terms of n independant standard normal random U .

Principle
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DfDf

u-spacex-space

Xi

Xj

E(Xi)

E(Xj)
E(X)

Ui

Uj

P ∗

0

Nataf

Nataf isoprobabilistic transformation

βHL

φn(u) = 1√
2π

n e−
1
2
||u||2

G(U , d) = 0

g(X , d) = 0

The Nataf isoprobabilistic transformation wich maps the probabilistic model in terms ofX onto an equivalent
model in terms of n independent standard normal random variables U in the following two steps :

• Step 1 : T1 : the input random vector X is mapped onto a random vector Y , that is supposed to
have standard normal components.

• Step 2 : T2 : Y is mapped onto the random vector U whose components are standard normal and
independant.
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The �rst step is T1 : Rn → Rn :

Y = T1(X) =


Φ−1(F1(X1))
Φ−1(F2(X2))

...
Φ−1(Fn(Xn))

 . (2)

where Φ(z) =
1√
2π

∫ z

−∞
exp(−u

2

2
) du.

Let us denote by RY = (ρij ] the linear correlation matrix of the gaussian random vector Y . Due to the
above assumptions, one gets:

rij = E
[(

Xi −mi

σi

)(
Xj −mj

σj

)]
= E

[(
F−1
Xi (Φ(Y i))−mi

σi

)(
F−1
Xj (Φ(Y j))−mj

σj

)]

=
∫∫ (

F−1
Xi (Φ(yi))−mi

σi

)(
F−1
Xj (Φ(yj))−mj

σj

)
φ2(yi, yj , ρij)dyidyj

(3)

The probability density function of Y is the multinormal distribution (4):

φn(y,RY ) =
1√

(2π)ndet(RY )
exp(−1

2
ytR−1

Y y) (4)

The second step is T2 : Rn → Rn :

Y = T2(Y ) = Γ0Y (5)

where Γ0 = B−1 whith B is the lower triangular Cholesky factor of RY : RY = B.Bt.

The isoprobabilistic transform is used in the First and Second Order reliability Method to evaluate the
probability content of the event Df (refer to [FORM] and [SORM]).

Other notations

�

Link with OpenTURNS methodology

Within the global methodology, the isoprobabilistic transformation is used in the First and Second Order
reliability Method to evaluate the probability content of the event Df .

References and theoretical basics
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The following di�culties have been mentioned in the literature:

• the determination of such a gaussian random vector from (3) is not always possible, which happens
in particularly when the coe�cients rij are too close to 1 or -1,

• even in the case where the determination of the coe�cients ρij is possible, the matrix RY obtained
this way might not be a correlation matrix (i.e. it might not be positive de�nite),

• the numerical resolution of equation (3) is computationally demanding.

This last point has generated some analytical approximations as :

ρij = f(density parameters , rij) × rij , (6)

where f is a function of the marginal distributions of Xi and Xj , and rij (DerKiureghian).

Let's note some usefull references:

• O. Ditlevsen and H.O. Madsen, 2004, �Structural reliability methods,� Department of mechanical
engineering technical university of Denmark - Maritime engineering, internet publication.

• J. Goyet, 1998,�Sécurité probabiliste des structures - Fiabilité d'un élément de structure,� Collège de
Polytechnique.

• A. Der Kiureghian, P.L. Liu, 1986,�Structural Reliability Under Incomplete Probabilistic Information�,
Journal of Engineering Mechanics, vol 112, n◦1, pp85-104.

• H.O. Madsen, Krenk, S., Lind, N. C., 1986, �Methods of Structural Safety,� Prentice Hall.

Examples

Let's apply this method to the following analytical example which considers a cantilever beam, of Young's
modulus E, length L, section modulus I. We apply a concentrated bending force at the other end of the
beam. The vertical displacement y of the extrême end is equal to :

y(E,F, L, I) =
FL3

3EI

The objective is to propagate until y the uncertainties of the variables (E,F, L, I).
The input random vector is X = (E,F, L, I), which probabilistic modelisation is (unity is not precised):

E = Normal(50, 1)
F = Normal(1, 1)
L = Normal(10, 1)
I = Normal(5, 1)

The four random variables are independant.
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The event considered is the threshold exceedance : Df = {(E,F, L, I) ∈ R4 / y(E,F, L, I) ≥ 3}.

In that case, the isoprobabilistic transformation maps the random vector (E,F, L, I) into the random vector
U such as : 

U1 = E−50
1

U2 = F−1
1

U3 = L−10
1

U4 = I−5
1

The limit state function is :{
in the x-space : g(E,F, L, I) = −y(E,F, L, I) + 3
in the u-space : G(U) = g(50 + U1, 1 + U2, 10 + U3, 5 + U4).
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4.3.5 Step C � FORM

Mathematical description

Goal

The First Order Reliability Method is used in the following context: X denotes a random input vector,
representing the sources of uncertainties, fX(x) its joint density probability, d a deterministic vector, rep-
resenting the �xed variables g(X , d) the limit state function of the model, Df = {X ∈ Rn / g(X , d) ≤ 0}
the event considered here and g(X , d) = 0 its boundary (also called limit state surface).
The objective of FORM is to evaluate the probability content of the event Df :

Pf =
∫
g(X , d)≤0

fX(x) dx. (7)

Principle

P *�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

Df

u-space

Ui

Uj

0

tangent hyperplane

βHL

φn(u) = 1√
2π

n e−
1
2
||u||2

G(U , d) = 0

FORM approximation

The principle is:

1. Map the probabilistic model in terms ofX onto an equivalent model in terms of n independent standard
normal random variables gathered in the vetor U . Refer to [Iso Probabilistic Transformation] to obtain
details on the mapping function denoted by T : U = T (X). The mapping of the limit state function
is G(U , d) = g(T−1(U , d)). Then, the event considered becomes : Df = {U ∈ Rn /G(U , d) ≤ 0}
and eq.(7) becomes:

Pf =
∫
G(U , d)≤0

φn(u) du). (8)
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In the u-space, the joint probability density function is the standard multi-normal density, whose most
interesting characteristics are its rotational symmetry and its rapid decay with increasing distance form
the origin.

2. Approximate the limit state surface in the u-space by a linear surface at the design point P ∗, where
P ∗ is the point located on the limit state surface of maximum likelihood: the characteristics of the
u-space mas such that P ∗ is the point on the limit state surface closest to the origin. P ∗ is the result
of a constrained optimisation problem.

3. In the u-space, the probability content eq. (7) where the limit state surface has been approximated
by a linear surface (hyperplane) by can be obtained exactly:

Pf,FORM =
∣∣∣∣ Φ(−βHL) if the origin of the u-lies in the domain Df

Φ(+βHL) otherwise
(9)

where βHL is the Hasofer-Lind reliability index, which means the distance of the design point P ∗ to
the origin of the u-space, and Φ is the gaussian cumulative density probability.

Other notations

Here, the event considered is explicited directly from the limit state function g(X , d) : this is the classical
structural reliability formulation.
However, if the event is a threshold exceedance, it is useful to explicite the variable of interest Z = g̃(X , d),
evaluated from the model g̃(.). In that case, the event considered, associated to the threshold zs has the
formulation : Df = {X ∈ Rn /Z = g̃(X , d) > zs} and the limit state function is : g(X , d) = zs − Z =
zs− g̃(X , d). Pf is the threshold exceedance probability, de�ned as : Pf = P (Z ≥ zs) =

∫
g(X , d)≤0 fX(x) dx.

Link with OpenTURNS methodology

Within the global methodology, the First Order Reliability Method is used in the step C: �Uncertainty
propagation� in the case of the evaluation of the probability of an event by an approximation method.
It requires to have ful�lled the following steps beforehand:

• step A: identify of an input vector X of sources of uncertainties and an output variable of interest
Z = g̃(X, d), result of the model g̃(); identify a probabilistic criteria such as a threshold exceedance
Z > zs or equivalently a failure event g(X , d) ≤ 0,

• step B: identify one of the proposed techniques to estimate a probabilistic model of the input vector
X,

• step C: select an appropriate optimisation algorithm among those proposed.

The First Order Reliability Method provides the following results:

• the FORM probability calculated by eq.9,
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• the importance factors associated to the event (refer to [Importance Factors] ),

• if asked by the user, the sensitivity factors associated to the event (refer to [Sensitivity Factors] ).

References and theoretical basics

One is usually interested in the evaluation of a very small probability P ∗ where the evaluation of
the limit state function of the model requires computationally expensive subroutines. The FORM
method has been designed speci�cally for such cases for which simulation techniques (see for instance
[standard sampling approach]) are computationally prohibitive.

The quality of the results obtained by the First Order Reliability Method depends on:

• the hypothesis of the mapping T of the x-space in the u-space: [IsoProbabiliticFunction] shows cases
where the mapping is not feasible. In such cases, it may imply to modify the probabilistic modelisation
of the problem if one wants to apply the Form method with the Nataf isoprobabilistic transformation.

• the quality of the optimisation algorithm used to �nd the design point: it is important that the
optimisation converges towards the global minimum of the distance function

• the quality of the computation of the gradients of the limit state function. It is important to choose
an optimisation algorithm adapted to the model considered

• the quality of the design point in the u-space. It has several �elds:

� the shape of the limit state surface: the boundary is supposed to be well approximated by a
plane near the design point,

� the unicity of the design point in the u-space: FORM is valid when there is only one point on
the limit state surface at a distance minimal to the origin,

� the strongness of the design point: FORM is valid under the hypothesis that most of the con-
tribution to Pf is concentrated in the vicinity of the design point, which is the case both when
around P ∗, the contribution decreases rapidly with the distance to P ∗ and when there is no local
maximum with comparable density.

The �rst hypothesis can be checked by testing other method to evaluate Pf : SORM (refer to [SORM]
) that takes into account the curvatures of the surface, or importance sampling techniques (refer to
[Importance sampling]) that makes no hypothesis on the shape of the surface.
The unicity and the strongness of the design point can be checked thanks to the Strong Maximum
Test (refer to [Strong Max Test]).
Accelerated sampling techniques such as directional sampling (refer to [Directional sampling]) are also
still valid if the unicity or strongness are doubtful.
A limitation of FORM (or SORM) approximation is that it is generally impossible to quantify the
approximation error. Although the method has been used satisfactorily in many circumstances, it is
generally useful, if computationally possible, to validate Form/Som using at least one of the techniques
above mentioned.

Let's note some usefull references:
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• Breitung, 1984, �Asymptotic Approximation for multinormal Integrals,� Journal of Engineering Me-
chanics, ASCE, 110(3), 357-366.

• O. Ditlevsen and H.O. Madsen, 2004, �Structural reliability methods,� Department of mechanical
engineering technical university of Denmark - Maritime engineering, internet publication.

• H. O. Madsen, Krenk, S., Lind, N. C., 1986, �Methods of Structural Safety,� Prentice Hall.

Examples

Let's apply this method to the following analytical example which considers a cantilever beam, of Young's
modulus E, length L, section modulus I. We apply a concentrated bending force at the other end of the
beam. The vertical displacement y of the extrême end is equal to :

y(E,F, L, I) =
FL3

3EI

The objective is to propagate until y the uncertainties of the variables (E,F, L, I).
The input random vector is X = (E,F, L, I), which probabilistic modelisation is (unity is not precised):

E = Normal(50, 1)
F = Normal(1, 1)
L = Normal(10, 1)
I = Normal(5, 1)

The event considered is the threshold exceedance : Df = {(E,F, L, I) ∈ R4 / y(E,F, L, I) ≥ 3} We obtain
the following results :

• design point in the x-space, P ∗ = (E∗ = 49.97, F ∗ = 1.842, l∗ = 10.45, I∗ = 4.668)

• the generalized and Hasofer reliability index : βg = βHL = 1.009

• the FORM probability : Pf,FORM = 1.564e−1
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4.3.6 Step C � SORM

Mathematical description

Goal

The Second Order Reliability Method is used in the same context as the First Order Reliability: refer to
[FORM] for further details. The objective of SORM is to evaluate the probability content of the event Df :

Pf =
∫
g(X , d)≤0

fX(x) dx. (10)

Principle

P *�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

Df

u-space

Ui

Uj

0

tangent quadratic surfaceβHL

φn(u) = 1√
2π

n e−
1
2
||u||2

G(U , d) = 0

SORM approximation

The principle is the same as for FORM. In the u-space, eq. (10) becomes :

Pf =
∫
G(U , d)≤0

φn(u) du. (11)

The di�erence with FORM comes from the approximation of the limit state surface at the design point
P ∗ in the u-space : SORM approximates it by a quadratic surface which curvatures are evaluated at the
design point.
Let us denote by n the dimension of the random vector X and (κi)1≤i≤n−1 the n − 1 main curvatures of
the limite state function at the design point in the standard space.
Several approximations are available in the standard version of Open TURNS, detailed here in the case
where the origin of the standard space does not belong to the failure domain:
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• Breitung's formula is an asymptotic results (Breitug, 1984):

PBreitung ' (2π)
n−1

2 e−β
2
HL |J | 12 (12)

where 

J = (∇l(U))t.C(U).∇l(U)
C(U) = matrix of cofactors of H(U)

H(U) = (
∂l(U)
∂ui∂uj

− λi ∂G(U)
∂ui∂uj

)i,j=1...n

l(U) = log(φn(U))

λi =
|∇l(U)|
|∇G(U)|

(13)

• Hohenbichler's formula is an approximation of equation (12):

PHohenbichler = Φ(−βHL)
n−1∏
i=1

(
1− φ(−βHL)

Φ(−βHL)
κi

)1/2

(14)

This formula is valid only in case of gaussian copula for the dependance structure of the random vector
X and if ∀i, 1− φ(−βHL)

Φ(−βHL)κi > 0.

• Tvedt's formula (Tvedt, 1988) :

PTvedt = A1 +A2 +A3

A1 = Φ(−βHL)
i=N−1∏
i=1

(1 + βHLκi)
−1/2

A2 = [βHLΦ(−βHL)− φ(βHL)]

N−1∏
j=1

(1 + βHLκi)
−1/2 −

N−1∏
j=1

(1 + (1 + βHL)κi)
−1/2


A3 = (1 + βHL) [βHLΦ(−βHL)− φ(βHL)]

N−1∏
j=1

(1 + βHLκi)
−1/2

−Re
N−1∏

j=1

(1 + (i+ βHL)κj)
−1/2


(15)

where Re is the complex real part and i the complex number such that i2 = −1.
This formula is valid only in case of gaussian copula for the dependance structure of the random vector
X and if ∀i, 1 + βκi > 0 and ∀i, 1 + (1 + β)κi > 0.

Other notations

�
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Link with OpenTURNS methodology

Within the global methodology, the Second Order Reliability Method is used in the step C : �Uncertainty
propagation� in the case of the evaluation of the probability of an event by an approximation method.
It requires to have ful�lled the following steps beforehand:

• step A1: identify of an input vector X of sources of uncertainties and an output variable of interest
Z = g̃(X, d), result of the model g̃(); identify a probabilistic criteria such as a threshold exceedance
Z > zs or equivalently a failure event g(X , d) ≤ 0,

• step B: identify one of the proposed techniques to estimate a probabilistic model of the input vector
X,

• step C: select an appropriate optimisation algorithm among those proposed.

The Second Order Reliability Method provides the following results :

• the SORM probabilities calculated in Eqs. (12),(14), (15)

• the importance factors associated to the event : refer to [Importance Factors] to obtain details,

• if asked by user, the sensitivity factors associated to the event : refer to [Sensitivity Factors] to obtain
details.

References and theoretical basics

The motivations for using SORM are similar to the motivations for using FORM. As it takes into account
the curvatures of the limi state surface, SORM is usually more accurate than FORM e.g. in case when the
event boundary is highly curved.

The quality of the results obtained by the Second Order Reliability Method depends on the same points
as the FORM approximation. The shape of the event boundary must be well approximated by a quadratic
surface near the design point.

The evaluation of the previous formulas requires that the limit state function be di�erentiable at the design
point.

The Tvedt formula is exact for a quadratic surface and asympototically exact for another types of surfaces.
The Hoen-Bichler formula is a vraint as regards to the Breitung one.

Let us note some useful references :

• Breitung K., �Asymptotic approximation for probability integral,� Probability Engineering Mechanics,
1989, Vol 4, No. 4.

• Breitung (1984), �Asymptotic Approximation for multinormal Integrals,� Journal of Engineering Me-
chanics, ASCE, 110(3), 357-366.

• Hohenbichler M., Rackwitz R., 1988, �Improvement of second order reliability estimates by importance
sampling,� Journal of Engineering Mechanics, ASCE,114(12), pp 2195-2199.
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• Tvedt L. 1988, �Second order reliability by an exact integral,� proc. of the IFIP Working Conf.
Reliability and Optimization of Structural Systems, Thoft-Christensen (Ed), pp377-384.

• Zhao Y. G., Ono T., 1999, �New approximations for SORM : part 1�, Journal of Engineering Mechanics,
ASCE,125(1), pp 79-85.

• Zhao Y. G., Ono T., 1999, �New approximations for SORM : part 2�, Journal of Engineering Mechanics,
ASCE,125(1), pp 86-93.

• Adhikari S., 2004, �Reliability analysis using parabolic failure surface approximation�, Journal of
Engineering Mechanics, ASCE,130(12), pp 1407-1427.

Examples

Let's apply this method to the following analytical example which considers a cantilever beam, of Young's
modulus E, length L, section modulus I. We apply a concentrated bending force at the other end of the
beam. The vertical displacement y of the extrême end is equal to :

y(E,F, L, I) =
FL3

3EI

The objective is to propagate until y the uncertainties of the variables (E,F, L, I).
The input random vector is X = (E,F, L, I), which probabilistic modelisation is (unity is not precised):

E = Normal(50, 1)
F = Normal(1, 1)
L = Normal(10, 1)
I = Normal(5, 1)

The four random variables are independant.

The event considered is the threshold exceedance : Df = {(E,F, L, I) ∈ R4 / y(E,F, L, I) ≥ 3} We obtain
the following results : 

PBreitung = 2.5491e−1 %
PHohenbichler = 2.648e−1 %
PTvedt = 2.601e−1

These three approximations are coherent between them, which increases con�dence in these results.
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4.3.7 Step C � Reliability Index

Mathematical description

Goal

The generalised reliability index β is used under the following context : X is a probabilistic input vector,
fX(x) its joint density probability, d a determinist vector, g(X , d) the limit state function of the model,
Df = {X ∈ Rn / g(X , d) ≤ 0} the event considered here and g(X , d) = 0 its boundary.
The probability content of the event Df is Pf :

Pf =
∫
g(X , d)≤0

fX(x) dx. (16)

The generalised reliability index is de�ned as :

βg = Φ−1(1− Pf ) = −Φ−1(Pf ).

As βg increases, Pf decreases rapidly.

Principle

Open TURNS standard version evaluates :

• βFORM the FORM reliability index, where Pf is obtained with a FORM approximation (refer to

[FORM]�): in this case, the generalised reliability index is equal to the Hasofer-Lindt reliability index
βHL, which is the distance of the design point from the origin of the standard space,

• βSORM the SORM reliability index, where Pf is obtained with a SORM approximation : Breitung,
Hohen-Bichler or Tvedt (refer to [SORM]),

• βg the generalised reliability index, where Pf is obtained with another technique : Monte Carlo
simulations, importance samplings,... (refer to [Monte Carlo] , [LHS] [Importance samplings] and

[Directional Simulation]�).

Other notations

�

Link with OpenTURNS methodology

Within the global methodology, the reliability index is used in the step C: �Uncertainty propagation� in the
case of the evaluation of the probability of an event.
It requires to have ful�lled before the following steps:

• step A1: identify of an input vector X of sources of uncertainties and an output variable of interest

c©2007 EDF - EADS - PhiMeca



Open TURNS � Reference Guide 100

Z = g̃(X, d), result of the model g̃(),

• step A22: identify a probabilistic criteria such as a threshold exceedance Z > zs or equivalently a
failure event g(X , d) ≤ 0,

• step B: identify one of the proposed techniques to estimate a probabilistic model of the input vector
X,

• step C3: select a method to evaluate the probability content of the event : the FORM or SORM
approximation (step C31) or a simulation method (step C32).

References and theoretical basics

Interesting litterature on the subject is :

• Cornell, �A probability-based structural code,� Journal of the American Concrete Institute, 1969,
66(12), 974-985.

• O. Ditlevsen, 1979, �Generalised Second moment reliability index,� Journal of Structural Mechanics,
ASCE, Vol.7, pp. 453-472.

• O. Ditlevsen and H.O. Madsen, 2004, �Structural reliability methods,� Department of mechanical
engineering technical university of Denmark - Maritime engineering, internet publication.

• Hasofer and Lind, 1974, �Exact and invariant second moment code format,� Journal of Engineering
Mechanics Division, ASCE, Vol. 100, pp. 111-121.

Examples

Let's apply this method to the following analytical example which considers a cantilever beam, of Young's
modulus E, length L, section modulus I. We apply a concentrated bending force at the other end of the
beam. The vertical displacement y of the extrême end is equal to :

y(E,F, L, I) =
FL3

3EI

The objective is to propagate until y the uncertainties of the variables (E,F, L, I).
The input random vector is X = (E,F, L, I), which probabilistic modelisation is (unity is not precised):

E = Normal(50, 1)
F = Normal(1, 1)
L = Normal(10, 1)
I = Normal(5, 1)

The four random variables are independant.
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The event considered is the threshold exceedance : Df = {(E,F, L, I) ∈ R4 / y(E,F, L, I) ≥ 3} We obtain
the following results :

• design point in the x-space, P ∗ = (E∗ = 49.97, F ∗ = 1.842, l∗ = 10.45, I∗ = 4.668)

• generalized and Hasofer-Lind reliability index : βg = βHL = 1.009

• Breitung generalized reliability index βBreitung = 6.591e−1

• HohenBichler generalized reliability index βHohenBichler = 6.285e−1

• Tvedt generalized reliability index βTvedt = 6.429e−1

We note here that the three approximations SORM are consistent between them and di�erent from the
FORM one. It may signify that the curvatures are not important to take into account in the evaluation of
the event probability.
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4.3.8 Step C � Sphere sampling method

Mathematical description

Goal

Within the context of the First and Second Order of the Reliability Method (refer to [FORM] and [SORM]
), the Strong Maximum Test (refer to [Strong Maximum Test] ) helps to check whether the design point
computed is :

• the true design point, which means a global maximum point,

• a strong design point, which means that there is no other local maximum verifying the event and
associated to a value near the global maximum.

The Strong Maximum Test samples a sphere in the standard space. Open TURNS standard version uses
the gaussian random sampling technique described hereafter.

Principle

Open TURNS standard version uses the gaussian random sampling technique:

1. sampling of points in RN according to a radial distribution : we generate N independent standard
normal samples,

2. projection of the points onto S∗ : we map the points di�erent from the origin using the transformation

M 7−→ m such as Om = R
OM
‖OM‖ where R is the radius of the sphere of interest. This transformation

does not depend on the angular coordinates. Thus, the generated points follow a uniform distribution
on S∗.

A result of such an algorithm is drawn on the following �gure 4.3.
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Link with OpenTURNS methodology

Within the global methodology, the sphere sampling method is used in the step C, within the Strong
Maximum Test (refer to [Strong Max Test]).
It requires to have ful�lled the following steps beforehand:

• step A: identify of an input vector X of sources of uncertainties and an output variable of interest
Z = g̃(X, d), result of the model g̃(); identify a probabilistic criteria such as a threshold exceedance
Z > zs or equivalently a failure event g(X , d) ≤ 0,

• step B: identify one of the proposed techniques to estimate a probabilistic model of the input vector
X,

• step C: select an appropriate optimisation algorithm among those proposed to evaluate the Form or
Sorm approximations of Pf ; evaluate the quality of the design point resulting from the previous step
thanks to the Strong Maximum Test.

References and theoretical basics

Other methods can be used to sample the hypersphere of dimension N − 1 in RN : the exclusion method
and the parametric method.
The parametric method uses the polar coordinates : the angle parameters are discretized uniformly. It has
the inconvenient to generate points principally in the two poles zones.
The exclusion method generates points uniformly within the hypercube containing exactly the sphere. Then
we keep only the points located inside the sphere, and we project them on the sphere. This method has
the inconvenient to be ine�cient for high dimensions : the fraction between the volume of the hypersphere
and the volume of the hypercube is less than 0.7% as soon as the dimension is greater than 9. Il means
that for a dimension greater than 9, 99.3% of the points generated are rejected.

Let's note some usefull references:

• Luban, Marshall, Staunton, 1988, �An e�cient method for generating a uniform distribution of points
within a hypersphere,� Computer in Physics, 2(6), 55.
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4.3.9 Step C � Design point validation : Strong Maximum Test

Mathematical description

Goal

The Strong Maximum Test is used under the following context: X denotes a random input vector, repre-
senting the sources of uncertainties, fX(x) its joint density probability, d a determinist vector, representing
the �xed variables g(X , d) the limit state function of the model, Df = {X ∈ Rn / g(X , d) ≤ 0} the event
considered here and g(X , d) = 0 its boundary (also called limit state surface).

The probability content of the event Df :

Pf =
∫
g(X , d)≤0

fX(x) dx. (17)

may be evaluated with the FORM (refer to [FORM]) or SORM method (refer to [SORM]).

In order to evaluate an approximation of Pf , these analytical methods uses the Nataf isoprobabilistic
transformation wich maps the probabilistic model in terms of X onto an equivalent model in terms of n
independant standard normal random U (refer to [Isoprobabilistic Transformation] to have details on the
transformation). In that new u-space, the event has the new expression de�ned from the transformed limit
state function of the model G : Df = {U ∈ Rn /G(U , d) ≤ 0} and its boundary : {U ∈ Rn /G(U , d) = 0}.

These analytical methods rely on the assumption that most of the contribution to Pf comes from points
located in the vicinity of a particular point P ∗, the design point, de�ned in the u-space as the point located
on the limit state surface and of maximal likelihood. Given the probabilistic caracteristics of the u-space,
P ∗ has a geometrical interpretation : it is the point located on the event boundary and at minimal distance
from the center of the u-space. Thus, the design point P ∗ is the result of a constrained optimisation problem.

The FORM/SORM methods suppose that P ∗ is unique.

One important di�culty comes from the fact that numerical method involved in the determination of P ∗

gives no guaranty of a global optimum : the point to which it converges might be a local optimum only. In
that case, the contribution of the points in the vicinity of the real design point is not taken into account,
and this contribution is the most important one.
Furthermore, even in the case where the global optimum has really been found, there may exist another
local optimum P̃ ∗ which likelihood is slightly inferior to the design point one, which means its distance
from the center of the u-space is slightly superior to the design point one. Thus, points in the vicinity of
P̃ ∗ may contribute signi�cantly to the probability Pf and are not taken into account in the Form and Sorm
approximations.
In these both cases, the Form and Sorm approximations are of bad quality because they neglict important
contributions to Pf .

The Strong Maximum Test helps to evaluate the quality of the design point resulting from the optimisation
algorithm. It checks whether the design point computed is :

• the true design point, which means a global maximum point,
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• a strong design point, which means that there is no other local maximum located on the event boundary
and which likelihood is slightly inferior to the design point one.

This veri�cation is very important in order to give sense to the FORM and SORM approximations .

Principle

The principle of the Strong Maximum Test, which principles are drawn on the �gure (4.3) relies on the
geometrical de�nition of the design point.
The objective is to detect all the points P̃ ∗ in the ball of radius Rε = β(1 + δε) which are potentially the
real design point (case of P̃ ∗2 ) or which contribution to Pf is not negligeable as regards the approximations
Form and Sorm (case of P̃ ∗1 ). The contribution of a point is considered as negligeable when its likelihood
in the u-space is more than ε-times lesser than the design point one. The radius Rε is the distance to the
u-space center upon which points are considered as negligeable in the evaluation of Pf .
In order to catch the potential points located on the sphere of radius Rε (frontier of the zone of prospection),
it is necessary to go a little further more : that's why the test samples the sphere of radius R = β(1 + τδε),
with τ > 0.
Points on the sphere sampling ( refer to [Sample Sphere] to have details on the generation of the sample)
which are in the vicinity of the design point P ∗ are less interesting than those verifying the event and located
far from the design point : these last ones might reveal a potential P̃ ∗ which contribution to Pf has to be
taken into account. The vicinity of the design point is de�ned with the angular parameter α as the cone
centered on P ∗ and of half-angle α.
The number N of the simulations sampling the sphere of radius R is determined to ensure that the test
detect with a probability greater than (1 − q) any point verifying the event and outside the design point
vicinity.

O

points detecting P̃ ∗
2

points detecting P̃ ∗
1

P̃ ∗
2

P̃ ∗
1

P ∗

Rε

βHL

R

α

α

points in P ∗ vicinity

Df

Ui

Uj

u-space

G(U , d) = 0

Strong Maximum Test principles

Other notations

�
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Link with OpenTURNS methodology

Within the global methodology, the First Order Reliability Method is used in the step C: �Uncertainty
propagation� in the case of the evaluation of the probability of an event by an approximation method.
It requires to have ful�lled the following steps beforehand:

• step A: identify of an input vector X of sources of uncertainties and an output variable of interest
Z = g̃(X, d), result of the model g̃(); identify a probabilistic criteria such as a threshold exceedance
Z > zs or equivalently a failure event g(X , d) ≤ 0,

• step B: identify one of the proposed techniques to estimate a probabilistic model of the input vector
X,

• step C: select an appropriate optimisation algorithm among those proposed; select the Strong Maxi-
mum Test to validate the design point computed.

The Strong Maximum Test proceeds as follows. The user selects the parameters :

• the importance level ε,

• the accuracy level τ ,

• the con�dence level (1− q).

The Strong Maximum Test will sample the sphere of radius β(1 + τδε), where δε =
√

1− 2 ln(ε)
β2 − 1.

The test will detect with a probability greater than (1− q) any point of Df which contribution to Pf is not
negligeable (i.e. which density value in the u-space is greater than ε times the density value at the design
point).

The Strong Maximum Test provides :

• set 1 : all the points detected on the sampled sphere that are in Df and outside the design point
vicinity, with the corresponding value of the limit state function,

• set 2 : all the points detected on the sampled sphere that are in Df and in the design point vicinity,
with the corresponding value of the limit state function ,

• set 3 : all the points detected on the sampled sphere that are outside Df and outside the design point
vicinity, with the corresponding value of the limit state function,

• set 4 : all the points detected on the sampled sphere that are outside Df but in the vicinity of the
design point, with the corresponding value of the limit state function.

Points are described by their coordinates in the x-space.

References and theoretical basics

The parameter τ is directly linked to the hypothesis according to which the boundary of the space Df
is supposed to be well approximated by a plane near the design point, which is primordial for a FORM
approximation of the probability content of Df . Increasing τ is increasing the area where the approximation
FORM is applied.
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Through the parameter δ, τ also serves as a measure of distance from the design point OP ∗ for a
hypothetical local maximum : the greater it is, the further we search for another local maximum.
Numerical experiments show that it is recommanded to take τ ≤ 4 (see the given reference below).

The following table helps to quantify the parameters of the test for a problem of dimension 5.

βg ε τ 1− q δε N

3.0 0.01 2.0 0.9 4.224e−1 62

3.0 0.01 2.0 0.99 4.224e−1 124

3.0 0.01 4.0 0.9 4.224e−1 15

3.0 0.01 4.0 0.99 4.224e−1 30

3.0 0.1 2.0 0.9 2.295e−1 130

3.0 0.1 2.0 0.99 2.295e−1 260

3.0 0.1 4.0 0.9 2.295e−1 26

3.0 0.1 4.0 0.99 2.295e−1 52

5.0 0.01 2.0 0.9 1.698e−1 198

5.0 0.01 2.0 0.99 1.698e−1 397

5.0 0.01 4.0 0.9 1.698e−1 36

5.0 0.01 4.0 0.99 1.698e−1 72

5.0 0.1 2.0 0.9 8.821e−2 559

5.0 0.1 2.0 0.99 8.821e−2 1118

5.0 0.1 4.0 0.9 8.821e−2 85

5.0 0.1 4.0 0.99 8.821e−2 169

βg ε τ N δε 1− q
3.0 0.01 2.0 100 4.224e−1 0.97

3.0 0.01 2.0 1000 4.224e−1 1.0

3.0 0.01 4.0 100 4.224e−1 1.0

3.0 0.01 4.0 1000 4.224e−1 1.0

3.0 0.1 2.0 100 2.295e−1 0.83

3.0 0.1 2.0 1000 2.295e−1 1.0

3.0 0.1 4.0 100 2.295e−1 1.0

3.0 0.1 4.0 1000 2.295e−1 1.0

5.0 0.01 2.0 100 1.698e−1 0.69

5.0 0.01 2.0 1000 1.698e−1 1.0

5.0 0.01 4.0 100 1.698e−1 1.0

5.0 0.01 4.0 1000 1.698e−1 1.0

5.0 0.1 2.0 100 8.821e−2 0.34

5.0 0.1 2.0 1000 8.821e−2 0.98

5.0 0.1 4.0 100 8.821e−2 0.93

5.0 0.1 4.0 1000 8.821e−2 0.99

As the Strong Maximum Test involves the computation of N values of the limit state function, which is
computationally intensive, it is interesting to have more than just an indication about the quality of OP ∗.
In fact, the test gives some information about the trace of the limit state function on the sphere of radius
β(1 + δ) centered on the origin of the u-space. Two cases can be distinguished:

• Case 1: set 1 is empty. We are con�dent on the fact that OP ∗ is a design point verifying the hypothesis
according to which most of the contribution of Pf is concentrated in the vicinity of OP ∗. By using the
value of the limit state function on the sample (U1, . . . , UN ), we can check if the limit state function
is reasonably linear in the vicinity of OP ∗, which can validate the second hypothesis of FORM.
If the behaviour of the limit state function is not linear, we can decide to use an importance
sampling version of the Monte Carlo method for computing the probability of failure (refer to
[Importance sampling] ). However, the information obtained through the Strong Max Test, accord-
ing to which OP ∗ is the actual design point, is quite essential : it allows to construct an e�ective
importance sampling density, e.g. a multidimensional gaussian distribution centered on OP ∗.

• Case 2: set 1 is not empty. There are two possibilities:

1. We have found some points that suggest that OP ∗ is not a strong maximum, because for some
points of the sampled sphere, the value taken by the limit state function is slightly negative;

2. We have found some points that suggest that OP ∗ is not even the global maximum, because for
some points of the sampled sphere, the value taken by the limit state function is very negative.
In the �rst case, we can decide to use an importance sampling version of the Monte Carlo method
for computing the probability of failure, but with a mixture of e.g. multidimensional gaussian
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distributions centered on the Ui in Df (refer to [Importance Sampling]). In the second case, we
can restart the search of the design point by starting at the detected Ui.

More details can be found in the following reference:

• A. Dutfoy, R. Lebrun, 2006, �The Strong Maximum Test: an e�cient way to assess the quality of a
design point,� PSAM8, New Orleans.
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4.3.10 Step C � Estimating the probability of an event using Sampling

Mathematical description

Goal

Using the probability distribution of a random vector X, we seek to evaluate the following probability:

Pf = P (g (X, d) < 0)

Here, X is a random vector, d a deterministic vector, g(X, d) the function known as �limit state function"
which enables the de�nition of the event Df = {X ∈ Rn / g(X, d) ≤ 0}.
Principle

If we have the set {x1, . . . , xN} of N independent samples of the random vector X, we can estimate P̂f as
follows:

P̂f =
1
N

N∑
i=1

1{g(xi,d)≥0}

where 1{g(xi,d)≥0} describes the indicator function equal to 1 if g(xi, d) ≥ 0 and equal to 0 otherwise; the
idea here is in fact to estimate the required probability by the proportion of cases, among the N samples
of X, for which the event Df occurs.
By the law of large numbers, we know that this estimation converges to the required value Pf as the sample
size N tends to in�nity. A good indicator of the uncertainty of this estimation is the coe�cient of variation,
which describes the relationship between its standard deviation (i.e its dispersion) and its mean, and this
is estimated by:

CV bPf =

(
1− P̂f
NP̂f

)0.5

The Central Limit Theorem enables the di�erence between the estimated value and the sought value to be
controlled by means of a con�dence interval (especially if N is su�ciently large, typically N > a few dozens
even if there is now way to say for sure if the asyptotic behaviour is reached). For a probability α strictly
between 0 and 1 chosen by the user, one can, for example, be sure with a con�dence α, that the true value
of Pf is between P̂f,inf and P̂f,sup calculated analytically from simple formulae. To illustrate, for α = 0.95:

P̂f,inf = P̂f − 1.96

(
P̂f (1− P̂f )

N

)0.5

, P̂f,sup = P̂f + 1.96

(
P̂f (1− P̂f )

N

)0.5

that is to say Pr
(
P̂f,inf ≤ Pf ≤ P̂f,sup

)
= 0.95
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domain DfExample of Monte-Carlo estimation of the probability of the event Df in dimension 2 :here, N=1000; the probability estimate is equal to 0.032 because 32 trials out of 1000 are in the domain Df.The 95% confidence interval is thus [0.021,0.043].
Other notations

Direct sampling, Crude Monte Carlo method, Classical Monte Carlo integration

Link with OpenTURNS methodology

This method is used in step C and enables the probability of exceeding the threshold of an output variable
(we refer to the probability of exceeding the threshold (critical region) because the inequality g(X, d) ≤ 0
by convention de�nes a reliability/critical region, and is in the general case the rewritten inequality of type
Z ≥ threshold where Z is a a random variable function of X and d).
This amounts to calculating the cumulative distribution function of the output variable at a point and thus
propagating the uncertainty de�ned in step B using the model de�ned in step A.

Input data:

• X: random vector modelling the unknown variables de�ned in step A and for which the joint proba-
bility density function has been de�ned in step B,

• d: vector of deterministic calculation parameters,

• g(X, d) < 0: probabilistic criterion speci�ed in step A,

Parameters:

• N : number of simulations to be carried out (samples to be taken) (maximal in the case where(
CV bPf

)
max

is speci�ed, see next parameter),
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•
(
CV bPf

)
max

: maximal coe�cient of variation of the probability estimator (optional),

• α: con�dence level required for the con�dence interval.

Outputs:

• P̂f : estimation of the probability of exceeding the threshold (critical value/region),

• Var(P̂f ): estimation of the variance of the probability estimator,

• P̂f,sup − P̂f,inf : lenght of the con�dence interval.

References and theoretical basics

The standard Monte-Carlo method requires very few special properties for the function g: it should be
measurable and integrable but can be irregular, non-convex. . . On the other hand, this method is not
suitable when the probability to be estimated is small and when the CPU time needed to evaluate the
criterion g(X, d) ≤ 0 is considerable. In practice, the standard Monte-Carlo method is not recommended
except if one has (for Pf < 10−2):

tCPU {g(X, d) ≤ 0}
Pf × (estimation precision)2 ≤ available machine time

where:

• tCPU {g(X, d) ≤ 0} : CPU time needed to evaluation the criterion {g(X, d) ≤ 0} for given data values
of X and d,

• estimation precision: desired limit for the coe�cient of variation of the estimator,

• available machine time: desired limit on the total duration of the estimation.

Readers interested in the problem of estimating the probability of exceeding a threshold are referred to
[FORM], [SORM], [LHS], [Importance Sampling] and [Directional Simulation].
The following provide an interesting bibliographical starting point to further study of this method:

• Robert C.P., Casella G. (2004). Monte-Carlo Statistical Methods, Springer, ISBN 0-387-21239-6, 2nd
ed.

• Rubinstein R.Y. (1981). Simulation and The Monte-Carlo methods, John Wiley & Sons
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4.3.11 Step C � Estimating the probability of an event using Importance Sampling

Mathematical description

Goal
Let us note Df = {x ∈ RnX |g(x, d) ≤ 0}. The goal is to estimate the following probability:

Pf =
∫
Df
fX(x)dx =

∫
RnX

1{g(x,d)≤0 }fX(x)dx = P ({g(X, d) ≤ 0})

Principles
This methode is a method based on sampling. The main idea of the Importance Sampling method is to
replace the initial probability distribution of the input variables by a more "e�cient" one. "E�cient" means
that more events will be counted in the failure domain Df and thus reduce the variance of the estimator
of the probability of exceeding a threshold. Let Y be a random vector such that its probability density
function fY (y) > 0 almost everywhere in the domain Df ,

Pf =
∫

RnX
1{g(x,d)≤0}fX(x)dx

=
∫

RnX
1{g(x,d)≤0}

fX(x)
fY (x)

fY (x)dx

The estimator built by Importance Sampling method is:

P̂Nf,IS =
1
N

N∑
i=1

1{g(Y i),d)≤0}
fX(Y i)
fY (Y i)

where:

• N is the total number of computations,

• the random vectors {Y i, i = 1 . . . N} are independent, identically distributed and following the prob-
ability density function fY

Con�dence Intervals
With the notations,

µN =
1
N

N∑
i=1

1{g(y
i
),d)≤0}

fX(y
i
)

fY (y
i
)

σ2
N =

1
N

N∑
i=1

(1{g(y
i
),d)≤0}

fX(y
i
)

fY (y
i
)
− µN )2

The asymptotic con�dence interval of order 1− α associated to the estimator PNf,IS is

[µN −
q1−α/2.σN√

N
; µN +

q1−α/2.σN√
N

]

where q1−α/2 is the 1− α/2 quantile from the standard distribution N (0, 1).
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Other notations

This method could also be found under the name "Strategic Sampling", "Ponderated Sampling" or "Biased
Sampling" (even if this estimator is not biased as it gives exactly the same result).

Link with OpenTURNS methodology

This method is part of the step C of the global methodology. It requires the speci�cation the joined
probability density function of the input variables and the value of the threshold and the comparison
operator.

References and theoretical basics

There is no general result concerning the reduction of variance of P̂Nf,IS in comparison with the variance of the

initial Monte Carlo estimator P̂Nf,MC . Nevertheless, if one knows well the model (regularity, monotoneous,...),
it is possible to de�ne a more e�cient joined probability density function. Nevertheless, there is a reduction
of variance if one chooses a density fY (y) such that fY (y) > fX(y) almost everywhere in the failure space.

Indeed, in this case
fX(y)

fY (y) < 1 on all the domain, the variance being equal to:

Var
[
P̂f,IS

]
=
∫
Df

(
fX(y)
fY (y)

)2

dy − P 2
f < Var

[
P̂f,MC

]
= Pf − P 2

f

Moreover, one has to pay attention to de�ne the same support for the joined pdf of the input variables to
ensure the convergence.
The following references are a �rst introduction to the Monte Carlo methods:
W.G. Cochran. Sampling Techniques. John Wiley and Sons, 1977.
M.H. Kalos et P.A. Monte Carlo Methods, volume I: Basics. John Wiley and Sons, 1986.
R.Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley and Sons, 1981.
Autres références à intégrer
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4.3.12 Step C � Directional Simulation

Mathematical description

Goal

Using the probability distribution of a random vector X, we seek to evaluate the following probability:

Pf = P (g (X, d) < 0)

Here, X is a random vector, d a deterministic vector, g(X, d) the function known as �limit state function"
which enables the de�nition of the event Df = {X ∈ Rn / g(X, d) ≤ 0}.
Principle

The directional simulation method is an accelerated sampling method. It implies a preliminary
[iso-probabilistic transformation] , as for [FORM] and [SORM] methods; however, it remains based on
sampling and is thus not an approximation method. In the transformed space, the (transformed) uncertain
variables U are independant standard gaussian variables (mean equal to zero and standard deviation equal
to 1).
Roughly speaking, each simulation of the directional simulation algorithm is made of three steps. For the
ith iteration, these steps are the following:

• Let S =
{
u
∣∣||u|| = 1

}
. A point Pi is drawn randomly on S according to a uniform distribution.

• In the direction starting from the origin and passing through Pi, solutions of the equation g(X, d) = 0
(i.e. limits of Df ) are searched. The set of values of u that belong to Df is deduced for these solutions:
it is a subset Ii ⊂ R.

• Then, one calculates the probability qi = P (||U || ∈ Ii). By property of independant standard vari-
able, ||U ||2 is a random variable distributed according to a chi-square distribution, which makes the
computation e�ortless.

Finally, the estimate of the probability Pf after N simulations is the following:

P̂f,DS =
1
N

N∑
i=1

qi

The following �gure illustrates the principle of an iteration in dimension 2.
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The Central Limit Theorem enables the di�erence between the estimated value and the sought value to be
controlled by means of a con�dence interval (if N is su�ciently large, typically N > a few dozens even if
there is now way to say for sure if the asyptotic behaviour is reached). For a probability α strictly between
0 and 1 chosen by the user, one can, for example, be sure with a con�dence α, that the true value of Pf is

between P̂f,inf and P̂f,sup calculated analytically from simple formulae. To illustrate, for α = 0.95:

P̂f,inf = P̂f,DS − 1.96
σq√
N
, P̂f,sup = P̂f,DS + 1.96

σq√
N

that is to say Pr
(
P̂f,inf ≤ Pf ≤ P̂f,sup

)
= 0.95

where σq denotes the empirical standard deviation of the sample {q1, . . . , qN}.
In practice in Open TURNS, the Directional Sampling simulation requires the choice of:

• a Root Strategy :

� RiskyAndFast : for each direction, we check whether there is a sign changement of the standard
limit state function between the maximum distant point (at distance MaximumDistance from
the center of the standard space) and the center of the standard space.
In case of sign changement, we research one root in the segment [origine, maximum distant point]
with the selectionned non linear solver.
As soon as founded, the segment [root, in�nity point] is considered within the failure space.

� MediumSafe : for each direction, we go along the direction by step of lenght stepSize from
the origin to the maximum distant point (at distance MaximumDistance from the center of the
standard space) and we check whether there is a sign changement on each segment so formed.
At the �rst sign changement, we research one root in the concerned segment with the selectionned
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non linear solver. Then, the segment [root, maximum distant point] is considered within the
failure space.
If stepSize is small enough, this strategy garantees us to �nd the root which is the nearest from
the origine.

� SafeAndSlow : for each direction, we go along the direction by step of lenght stepSize from
the origine to the maximum distant point(at distance MaximumDistance from the center of the
standard space) and we check whether there is a sign changement on each segment so formed.
We go until the maximum distant point. Then, for all the segments where we detected a the
presence of a root, we research the root with the selectionned non linear solver. We evaluate the
contribution to the failure probability of each segment.
If stepSize is small enough, this strategy garantees us to �nd all the roots in the direction and
the contribution of this direction to the failure probability is precisely evaluated.

• a Non Linear Solver :

� Bisection : bisection algorithm,

� Secant : based on the evaluation of a segment between the two last iterated points,

� Brent : mix of Bisection, Secant and inverse quadratic interpolation.

• and a Sampling Strategy :

� RandomDirection : we generate some points on the sphere unity according to the uniform dis-
tribution and we consider both opposite directions so formed.

� OrthogonalDirection : this strategy is parametered by k ∈ N. We generate one direct orthonor-
malised base (e1, . . . , enX ) within the set of orthonormalised bases. We consider all the renor-
malised linear combinations of k vectors within the nX vectors of the base, where the coe�cients
of the linear combinations are equal to +1,−1. There are Ckn2k new vectors vi. We consider each
direction de�ned by each vector vi.
If k = 1, we consider all the axes of the standard space.

Other notations

Link with OpenTURNS methodology

This method is used in step C and enables the probability of exceeding the threshold of an output variable
(we refer to the probability of exceeding the threshold (critical region) because the inequality g(X, d) ≤ 0
by convention de�nes a reliability/critical region, and is in the general case the rewritten inequality of type
Z ≥ threshold where Z is a a random variable function of X and d).
This amounts to calculating the cumulative distribution function of the output variable at a point and thus
propagating the uncertainty de�ned in step B using the model de�ned in step A.

Input data:
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• X: random vector modelling the unknown variables de�ned in step A and for which the joint proba-
bility density function has been de�ned in step B,

• d: vector of deterministic calculation parameters,

• g(X, d) < 0: probabilistic criterion speci�ed in step A,

Parameters:

• N : number of simulations,

• α: con�dence level required for the con�dence interval,

• Root Strategy,

• Non-linear Solver,

• Sampling Strategy.

Outputs:

• P̂f,DS : estimation of the probability of exceeding the threshold,

• Var(P̂f ): estimation of the variance of the probability estimator,

• P̂f,sup − P̂f,inf : lenght of the con�dence interval.

References and theoretical basics

Readers interested in the problem of estimating the probability of exceeding a threshold are also referred
to [FORM], [SORM], [LHS], [Importance Sampling] and [Crude Monte-Carlo sampling].
The following provide an interesting bibliographical starting point to further study of this method:

• Robert C.P., Casella G. (2004). Monte-Carlo Statistical Methods, Springer, ISBN 0-387-21239-6, 2nd
ed.

• Rubinstein R.Y. (1981). Simulation and The Monte-Carlo methods, John Wiley & Sons

• Bjerager, P. (1988). �Probability integration by Directional Simulation". Journal of Engineering
Mechanics, vol. 114, n◦8
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4.3.13 Step C � Estimating the probability of an event using Latin Hypercube Sampling

Mathematical description

Goal
Let us note Df = {x ∈ RnX | g(x, d) ≤ 0}. The goal is to estimate the following probability:

Pf =
∫
Df
fX(x)dx =

∫
RnX

1{g(x,d)≤0}fX(x)dx = P ({ g(X, d) ≤ 0})

Principles

LHS or Latin Hypercube Sampling is a sampling method enabling to better cover the domain of variations
of the input variables, thanks to a strati�ed sampling strategy. This method is applicable in the case of
independent input variables. The sampling procedure is based on dividing the range of each variable into
several intervals of equal probability. The sampling is undertaken as follows:

• Step n◦1 The range of each input variable is strati�ed into isoprobabilistic cells,

• Step n◦2 A cell is uniformly chosen among all the available cells,

• Step n◦3 The random number is obtained by inverting the Cumulative Density Function locally in
the chosen cell,

• Step n◦4 All the cells having a common strate with the previous cell are put apart from the list of
available cells.

The estimator of the probability of failure with LHS is given by:

P̂Nf,LHS =
1
N

N∑
i=1

1{g(Xi,d)≤0}

where the sample of {Xi, i = 1 . . . N} is obtained as described previously.
One can show that:

Var
[
P̂Nf,LHS

]
≤ N

N − 1
.Var

[
P̂Nf,MC

]
where:

• Var
[
P̂Nf,LHS

]
is the variance of the estimator of the probability of exceeding a threshold computed by

the LHS technique,

• Var
[
P̂Nf,MC

]
is the variance of the estimator of the probability of exceeding a threshold computed by

a crude Monte Carlo method.

Con�dence Interval
With the notations,

µN =
1
N

N∑
i=1

1{g(xi),d)≤0}

σ2
N =

1
N

N∑
i=1

(1{g(xi),d)≤0} − µN )2
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the asymptotic con�dence interval of order 1− α associated to the estimator PNf,LHS is

[µN −
q1−α/2.σN√

N
; µN +

q1−α/2.σN√
N

]

where q1−α/2 is the 1− α/2 quantile from the reduced standard gaussian law N (0, 1).
It gives an unbiased estimate for Pf (reminding that all input variables must be independent).

Other notations

This method is derived from a more general method called 'Strati�ed Sampling'.

Link with OpenTURNS methodology

This method is part of the step C of the global methodology. It requires the speci�cation of the joined
probability density function of the input variables and the de�nition of the threshold. The PDF must have
an independent copula.

References and theoretical basics

• This method a priori enables a better exploration of the domain of variations of the input variables.
No general rule can guarantee a better e�ciency of the LHS sampling than the classical Monte Carlo
sampling. Nvertheless, one can show that the LHS strategy leads to a variance reduction if the model
is motoneous over each variable.

• Be careful, this method is valid only if the input random variables are independent!

• Moreover, for reliability problems, when the failure probability is low, the tails of the distributions
usually contain the most in�uent domains in terms of reliability.

• A fruitful link towards the global approach can be established with the �les

[Monte Carlo Method to evaluate a probability to exceed a threshold],
[Importance Sampling to evaluate a probability to exceed a threshold] coming from the methodology.

Examples

To illustrate this method, we consider the sampling strategy of an input vector of dimension 2. Both
components follow a uniform law U(0, 1). The �gure compares the population of 30 points obtained by a
Latin Hypercube Sampling and by a Monte Carlo Sampling.
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With the LHS sampling strategy, each row and each column is �lled by a blue square whereas some row
and column do not contain any red cross.
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4.3.14 Step C � Estimating a quantile by Sampling / Wilks' Method

Mathematical description

Goal

Let us denote Y = h (X, d) =
(
Y 1, . . . , Y nY

)
, where X =

(
X1, . . . , XnX

)
is a random vector, and d a

deterministic vector. We seek here to evaluate, using the probability distribution of the random vector X,
the α-quantile qY i(α) of Y i, where α ∈ (0, 1):

P
(
Y i ≤ qY i(α)

)
= α

Principle

If we have a sample {x1, . . . , xN} ofN independent samples of the random vectorX, qY i(α) can be estimated
as follows:

• the sample {x1, . . . , xN} of vector X is �rst transformed to a sample
{
yi1, . . . , y

i
N

}
of the variable Y i,

using y = h(xi, d),

• the sample
{
yi1, . . . , y

i
N

}
is then placed in ascending order, which gives the sample

{
y(1), . . . , y(N)

}
,

• this empirical estimation of the quantile is then calculated by the formula:

q̂yi(α) = y([Nα]+1)

where [Nα] denotes the integral part of Nα.

For example, if N = 100 and α = 0.95, q̂Z(0.95) is equal to y(96), which is the 5th largest value of the sample{
yi1, . . . , y

i
N

}
. We note that this estimation has no meaning unless 1/N ≤ α ≤ 1 − 1/N . For example, if

N = 100, one can only consider values of a to be between 1% and 99%.

It is also possible to calculate an upper limit for the quantile with a con�dence level β chosen by the user;
one can then be sure with a β level of con�dence that the real value of qY i(α)) is less than or equal to
q̂Y i(α)sup:

P (qY i(α) ≤ q̂Y i(α)sup) = β

The most robust method for calculating this upper limit consists of taking q̂Y i(α)sup = y(j(α,β,N)) where
j(α, β,N) is an integer between 2 and N found by solving the equation:

j(α,β,N)−1∑
k=1

CkNα
k (1− α)N−k = β

A solution to this does not necessarily exist, i.e. there may be no integer value for j(α, β,N) satisfying this
equality; one can in this case choose the smallest integer j such that:

j(α,β,N)−1∑
k=1

CkNα
k (1− α)N−k > β
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which ensures that P (qY i(α) ≤ q̂Y i(α)sup) > β; in other words, the level of con�dence of the quantile
estimation is greater than that initially required.
This formula of the con�dence interval can be used in two ways:

• either directly to determine j(α, β,N) for the values α, β,N chosen by the user,

• or in reverse to determine the number N of simulations to be carried out for the values α, β and
j(α, β,N) chosen by the user; this is known as Wilks' formula.

For example for α = β = 95%, we take j = 59 with N = 59 simulations (that is the maximum value out
of 59 samples) or else j = 92 with N = 93 simulations (that is the second largest result out of the 93
selections). For values of N between 59 and 92, the upper limit is the maximum value of the sample. The
following tabular presents the whole results for N ≤ 1000, still for α = β = 95%.

N Rank of the uper bound of the quantile Rank of the empirical the quantile

59 59 57

93 92 89

124 122 118

153 150 146

181 177 172

208 203 198

234 228 223

260 253 248

286 278 272

311 302 296

336 326 320

361 350 343

386 374 367

410 397 390

434 420 413

458 443 436

482 466 458

506 489 481

530 512 504

554 535 527

577 557 549

601 580 571

624 602 593

647 624 615

671 647 638

694 669 660

717 691 682

740 713 704

763 735 725

786 757 747

809 779 769

832 801 791

855 823 813

877 844 834

900 866 856

923 888 877

945 909 898

968 931 920

991 953 942
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Other notations

q̂Y i(α) is often called the �empirical α-quantile" for the variable Y i.

Link with OpenTURNS methodology

In the overall process, the Monte Carlo simulation method for estimating the variance appears in step C
�Propagation of Uncertainty" when the study of uncertainty is concerned with the dispersion of the variable
of interest Y i de�ned in step A �Specifying Criteria and the Case Study".
Input data:

• X: random vector modelling the unknown variables de�ned in step A and for which the joint proba-
bility density function has been de�ned in step B,

• d: vector of deterministic calculation parameters,

• Y = h(X, d): output variable / variable of interest speci�ed in step A

Parameters:

• α: quantile level (α-quantile),
• β: con�dence level for the quantile's upper bound,
• N : number of simulations to be carried out (which can be computed by Open TURNS using Wilk's
formula)

Outputs:

• q̂Z(α): quantile estimate,

• q̂Z(α)sup: quantile upper bound with con�dence β

References and theoretical basics

The Monte-Carlo standard method does not require the function h to have any special property (it can be
non-linear, non-monotonic, non-di�erentiable, discontinuous, etc.) and the number of necessary simulations
does not depend on the number of components of vector X. On the other hand, this method is not suitable
(for the estimation of the quantile) or is very conservative (for the estimation of the upper limit) if N is
small and if α and β are very close to 1.
The following references provide an interesting bibliographical starting point for further study of the method
described here:

• Wilks, S.S. (1962). �Mathematical Statistics", New York, John Wiley.

• Robert C.P., Casella G. (2004). Monte-Carlo Statistical Methods, Springer, ISBN 0-387-21239-6, 2nd
ed.

• Rubinstein R.Y. (1981). Simulation and The Monte-Carlo methods, John Wiley & Sons
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5 Open TURNS' methods for Step C': ranking uncertainty sources / sen-
sitivity analysis

Ranking methods can be used to analyse the respective importance of each uncertainty source with respect to
a probabilistic criterion. Open TURNS proposes ranking methods for two probabilistic criteria de�ned in the
[global methodology guide]: probabilist criterion on central dispersion (expectation and variance), probability
of exceeding a threshold / failure probability.

5.1 Probabilistic criteria

5.1.1 Central dispersion probabilistic criterion

Each propagation method available for this criterion (see step C) leads to one or several ranking methods.

• Approximation methods

� [Quadratic combination's importance factors] � see page 125

• Sampling methods

� [Ranking based on Pearson correlation] � see page 127

� [Ranking based on Spearman rank correlation] � see page 129

� [Ranking based on Standard Regression Coe�cients (SRC)] � see page 131

� [Ranking based on Partial (Pearson) Correlation Coe�cients (PCC)] � see page 133

� [Ranking based on Partial (Spearman) Rank Correlation coe�cients (PRCC)] � see page 135

5.1.2 Probability of exceeding a threshold / failure probability

• Approximation methods

� FORM-SORM methods
∗ [FORM Importance Factors] � see page 137

∗ [FORM Sensitivity Factors] � see page 140
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5.2 Methods description

5.2.1 Step C' � Importance Factors derived from Quadratic Combination Method

Mathematical description

Goal

The importance factors derived from a quadratic combination method are de�ned to discriminate the
in�uence of the di�erent inputs towards the output variable for central dispersion analysis.

Principles

The importance factors are derived from the following expression. It can be shown by Taylor expansion of
the output variable z (nZ = 1) around x = µ

X
and computation of the variance that :

Var [Z] ≈ ∇h(µ
X

).Cov [X] .t∇h(µ
X

)

which can be re written :

1 ≈
nX∑
i=1

∂h(µ
X

)
∂Xi

×
∑nX

j=1

∂h(µ
X

)

∂xj
.(Cov [X])ij

Var [Y ]

≈ F1 + F2 + . . .+ FnX
Vectorial de�nition

F = ∇h(µ
X

)× Cov [X] .t∇h(µ
X

)
Var [Z]

Scalar de�nition

Fi =
∂h(µ

X
)

∂xi
×
∑nX

j=1

∂h(µ
X

)

∂xj
.(Cov [X])ij

Var [Y ]

where:

• ∇h(x) =
(
∂h(x)
∂xi

)
i=1,...,nX

is the gradient of the model at the point x,

• Cov [X] is the covariance matrix,

• µ
X
is the mean of the input random vector,

• Var [Z] is the variance of the output variable.

Interpretation of the importance factors obtained with Open TURNS when all Xi are independent the one with the others

Each coe�cient ∂h(x)
∂xi

is a linear estimate of the number of units change in the variable y = h(x) as a result
of a unit change in the variable xi. This �rst term depends on the physical units of the variables and is
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meaningful only when the units of the model are known. In the general case, as the variables have di�erent
physical units, it is not possible to compare these sensitivities ∂h(x)

∂xi
the one with the others. This is the

reason why the importance factor used within Open TURNS are normalized factors. These factors enable
to make the results comparable independently of the original units of the inputs of the model. The second

term

PnX
j=1

∂h(µ
X

)

∂xj
.(Cov[X])ij

Var[Z] is the renormalization factor.

To summarize, the coe�cients (Fi)i=1,...,nX represent a linear estimate of the percentage change in the
variable z = h(x) caused by one percent change in the variable xi. The importance factors are independent
of the original units of the model, and are comparable with each other.

Other notations

Importance Factors derived from Perturbation Methods

Link with OpenTURNS methodology

These computations are part of the step C' of the global methodology. It requires to have performed the
steps A, B and C.

References and theoretical basics

The computation of these importance factors enables to rank the in�uence of the input variables towards
the output variable. These factors are computed 'near' the mean value of the output. Thus, it should not
be used to evaluate the importance of the input variable around the tail of the output distribution (high
level quantile for example).

Examples
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5.2.2 Step C' � Uncertainty ranking using Pearson's correlation

Mathematical description

Goal

This method is concerned with analysing the in�uence the random vector X =
(
X1, . . . , XnX

)
has on a

random variable Y j which is being studied for uncertainty. Here we attempt to measure linear relationships
that exist between Y j and the di�erent components Xi.

Principle

Pearson's correlation coe�cient ρY j ,Xi , de�ned in [Pearson's Coe�cient], measures the strength of a linear

relation between two random variables Y j and Xi. If we have a sample made up of N pairs (yj1, x
i
1),

(yj2, x
i
2), . . . , (yjN , x

i
N ), we can obtain ρ̂Y j ,Xi an estimation of Pearson's coe�cient. The hierarchical ordering

of Pearson's coe�cients is of interest in the case where the relationship between Y j and nX variables{
X1, . . . , XnX

}
is close to being a linear relation:

Y j ' a0 +
nX∑
i=1

aiX
i

To obtain an indication of the role played by each Xi in the dispersion of Y j , the idea is to estimate
Pearson's correlation coe�cient ρ̂Xi,Y j for each i. One can then order the nX variables X1, . . . , XnX taking
absolute values of the correlation coe�cients: the higher the value of

∣∣ρ̂Xi,Y j
∣∣ the greater the impact the

variable Xi has on the dispersion of Y j .

Other notations

-

c©2007 EDF - EADS - PhiMeca



Open TURNS � Reference Guide 128

Link with OpenTURNS methodology

After a propagation of uncertainty (step C) using [Standard Monte Carlo] simulation, a hierarchy of sources
of uncertainty can be obtained using Pearson's correlation coe�cients. In fact, the N simulations enable
the pairs (yj1, x

i
1), (yj2, x

i
2),. . . , (yjN , x

i
N ) to be generated, where:

• X =
{
X1, . . . , Xn

}
describes the input vector speci�ed in step A �Specifying Criteria and the Case

Study",

• Y j describes a variable of interest or output variable de�ned in the same step.

The results produced as output of this method are the estimated Pearson's correlation coe�cients ρ̂Xi,Y j

that the user may use, taking absolute values, to order the variables Xi hierarchically.

References and theoretical basics

This method of uncertainty ranking is particularly useful:

• when the study of uncertainty is concerned with the central dispersion of the variable of interest Y j

and not with its extreme values,

• when the relationships between Y j and each of the components of X are close to linear relationships
(so that Pearson's correlation coe�cient can be interpreted),

• when this linear relationship is close to Y j = a0 +
∑nX

i=1 aiX
i (i.e. no product terms of the type

XiXj), and when the components of vector X are statistically independent. If this is not the case,∣∣ρ̂Xi,Y j
∣∣ re�ects not only the in�uence of Xi on Y j but equally the in�uence of other variables Xj

related to Xi (e.g. an unimportant variable Xi could have a strong coe�cient for the correlation with
Y j only because it is related � statistically or by a product term � to another variable Xj which has
enormous impact on Y j).

Readers interested in other methods of uncertainty ranking that can be ap-
plied after Monte-Carlo simulation when the assumptions of linearity and/or inde-
pendence are violated are also referred to [Uncertainty ranking using Spearman] ,
[Hierarchical Ordering using SRC] , [Uncertainty ranking with Pearson's Partial Correlation Coe�cients]
and [Uncertainty ranking using Spearman's Partial Correlation Coe�cients].
The following references provide an interesting bibliographic starting point to further study of the method
described here:

• Saltelli, A., Chan, K., Scott, M. (2000). �Sensitivity Analysis", John Wiley & Sons publishers, Prob-
ability and Statistics series

• J.C. Helton, F.J. Davis (2003). �Latin Hypercube sampling and the propagation of uncertainty anal-
yses of complex systems". Reliability Engineering and System Safety 81, p.23-69

• J.P.C. Kleijnen, J.C. Helton (1999). �Statistical analyses of scatterplots to identify factors in large-
scale simulations, part 1 : review and comparison of techniques". Reliability Engineering and System
Safety 65, p.147-185
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5.2.3 Step C' � Uncertainty ranking using Spearman's correlation

Mathematical description

Goal

This method is concerned with analyzing the in�uence the random vector X =
(
X1, . . . , XnX

)
has on

a random variable Y j which is being studied for uncertainty. Here we attempt to measure monotonic
relationships that exist between Y j and the di�erent components Xi.

Principle

Spearman's correlation coe�cient ρS
Y j ,Xi , de�ned in [Spearman's Coe�cient] , measures the strength of a

monotonic relation between two random variables Y j and Xi. If we have a sample made up of N pairs
(yj1, x

i
1), (yj2, x

i
2), . . . , (yjN , x

i
N ), we can obtain ρ̂S

Y j ,Xi an estimation of Spearman's coe�cient.

Hierarchical ordering using Spearman's coe�cients is concerned with the case where the variable Y j mono-
tonically depends on the nX variables

{
X1, . . . , XnX

}
. To obtain an indication of the role played by each

Xi in the dispersion of Y j , the idea is to estimate the Spearman correlation coe�cients ρ̂S
Xi,Y j

for each i.

One can then order the nX variables X1, . . . , XnX taking absolute values of the Spearman coe�cients: the

higher the value of
∣∣∣ρ̂SXi,Y j

∣∣∣, the greater the impact the variable Xi has on the dispersion of Y j .

Other notations

Link with OpenTURNS methodology

After a propagation of uncertainty (step C) using [Standard Monte Carlo] simulation, a hierarchy of sources
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of uncertainty can be obtained using Spearman's correlation coe�cients. In fact, the N simulations enable
the pairs (yj1, x

i
1), (yj2, x

i
2),. . . , (yjN , x

i
N ) to be generated, where:

• X =
{
X1, . . . , Xn

}
describes the input vector speci�ed in step A �Specifying Criteria and the Case

Study",

• Y j describes the �nal variable of interest or output variable de�ned in the same step.

The results produced as output of this method are the estimated Spearman's correlation coe�cients ρ̂S
Xi,Y j

that the user may use, taking absolute values, to order the variables Xi hierarchically.

References and theoretical basics

This method of hierarchical ordering is particularly useful:

• when the study of uncertainty is concerned with the central dispersion of the variable of interest Y j

and not with its extreme values,

• when the relationships between Y j and each of the components of X are monotonic relationships (so
that Spearman's correlation coe�cient can be interpreted),

• when the components of vector X are statistically independent. If this is not the case,
∣∣∣ρ̂SXi,Y j

∣∣∣ re�ects
not only the in�uence of Xi on Y j but equally the in�uence of other variables Xj related to Xi (e.g.
an unimportant variable Xi could have a strong coe�cient for the correlation with Y j only because
it is related to another variable Xj which has enormous impact on Y j).

Readers interested in other methods of uncertainty ranking that can be applied after Monte-
Carlo simulation when the assumptions of independence are violated are also referred to
[Uncertainty ranking using SRC], [Uncertainty ranking with Pearson's Partial Correlation Coe�cients] and
[Uncertainty ranking using Spearman's Partial Correlation Coe�cients].
The following references provide an interesting bibliographic starting point to further study of the method
described here:

• Saltelli, A., Chan, K., Scott, M. (2000). �Sensitivity Analysis", John Wiley & Sons publishers, Prob-
ability and Statistics series

• J.C. Helton, F.J. Davis (2003). �Latin Hypercube sampling and the propagation of uncertainty anal-
yses of complex systems". Reliability Engineering and System Safety 81, p.23-69

• J.P.C. Kleijnen, J.C. Helton (1999). �Statistical analyses of scatterplots to identify factors in large-
scale simulations, part 1 : review and comparison of techniques". Reliability Engineering and System
Safety 65, p.147-185
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5.2.4 Step C' � Uncertainty Ranking using Standard Regression Coe�cients

Mathematical description

Goal

This method is concerned with analysing the in�uence the random vector X =
(
X1, . . . , XnX

)
has on a

random variable Y j which is being studied for uncertainty. Here we attempt to measure linear relationships
that exist between Y j and the di�erent components Xi.

Principle

The principle of the multiple linear regression model (see [Linear Regression] for more details) consists of
attempting to �nd the function that links the variable Y j to the nx variables X1,. . . ,XnX by means of a
linear model:

Y j = a0 +
nX∑
i=1

aiX
i + ε

where ε describes a random variable with zero mean and standard deviation σ independent of the input
variables Xi. If the random variables X1, . . . , XnX are independent, the variance of Y j can be written as
follows:

Var
[
Y j
]

=
n∑
i=1

a2
iVar

[
Xi
]

+ σ2

The estimators for the regression coe�cients â0, â1, . . . , ânX , and the standard deviation σ are obtained from

a sample of (Y j , X1, . . . , XnX ), that is a set ofN values (yj1, x
1
1, . . . , x

nX
1 ),. . . ,(yjN , x

1
N , . . . , x

nX
N ). Uncertainty

ranking by linear regression uses these estimates, and involves ordering the nX variables X1, . . . , XnX in
terms of the estimated contribution of each Xi to the variance Y j :

Ĉi =
â2
i σ̂

2
i

nX∑
j=1

a2
j σ̂

2
j + σ̂2

where σ̂j describes the empirical standard deviation of the sample (xj1, . . . , x
j
N ). This estimated contribution

is by de�nition between 0 and 1. The closer it is to 1, the greater the impact the variable Xi has on the
dispersion of Y j .

Other notations

The contribution to the variance Ci is sometimes described in the literature as the �importance factor",
because of the similarity between this approach to linear regression and the method of cumulative variance
quadratic which uses the term importance factor (see [Quadratic combination � Perturbation method] and

[Importance Factors]).

Link with OpenTURNS methodology

After a propagation of uncertainty (step C) using [Standard Monte Carlo] simulation, a hierarchy of sources
of uncertainty can be obtained using Linear Regression. In fact, the N simulations enable the pairs (yj1, x

i
1),
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(yj2, x
i
2),. . . , (yjN , x

i
N ) to be generated, where:

• X =
{
X1, . . . , Xn

}
describes the input vector speci�ed in step A �Specifying Criteria and the Case

Study",

• Y j describes the �nal variable of interest or output variable de�ned in the same step.

The results produced as output of this method are the estimated variance contributions Ĉi that the user
may use to order the variables Xi hierarchically.

References and theoretical basics

This method of hierarchical ordering is particularly useful:

• when the study of uncertainty is concerned with the central dispersion of the variable of interest Y j

and not with its extreme values, item when the relationships between Y j and the components of X are
close to linear relationships, and more generally when all the underlying assumptions of the multiple
linear regression model are valid,

• when the components of vector X are independent, because if this is not the case the decomposition
of the variance of Y j given here would be no longer exact,

• when the number N of Monte-Carlo simulations is signi�cantly higher than the number nX of input
random variables (it is preferable to have N/nX at least greater by a factor of 10 so that the estimation
of the nX correlation coe�cients provides a reasonable picture of reality).

Readers interested in the assumptions made for multiple linear regression models and in the tests needed
to validate these assumptions are referred to [Linear Regression].
Other methods of uncertainty ranking can be applied after Monte-Carlo simulation, requir-
ing a lesser number N of simulations or that can deal with non-linear/non-independent cases,
are described in [Uncertainty Ranking using Pearson] , [Uncertainty Ranking using Spearman]
, [Uncertainty Ranking using Pearson's Partial Correlation Coe�cients] and
[Uncertainty Ranking using Pearson's Partial Correlation Coe�cients].
The following references provide an interesting bibliographic starting point to further study of the method
described here:

• Saltelli, A., Chan, K., Scott, M. (2000). �Sensitivity Analysis", John Wiley & Sons publishers, Prob-
ability and Statistics series

• J.C. Helton, F.J. Davis (2003). �Latin Hypercube sampling and the propagation of uncertainty anal-
yses of complex systems". Reliability Engineering and System Safety 81, p.23-69

• J.P.C. Kleijnen, J.C. Helton (1999). �Statistical analyses of scatterplots to identify factors in large-
scale simulations, part 1 : review and comparison of techniques". Reliability Engineering and System
Safety 65, p.147-185
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5.2.5 Step C' � Uncertainty Ranking using Pearson's Partial Correlation Coe�cients

Mathematical description

Goal

This method is concerned with analyzing the in�uence the random vector X =
(
X1, . . . , XnX

)
has on a

random variable Y j which is being studied for uncertainty. Here we attempt to measure linear relationships
that exist between Y j and the di�erent components Xi.

Principle

The basic method of hierarchical ordering using Pearson's coe�cients (see
[Uncertainty Ranking using Pearson] ) is concerned with the case where the variable Y j linearly de-

pends on nX variables
{
X1, . . . , XnX

}
but this can be misleading when statistical dependencies or

interactions between the variables Xi (e.g. a crossed term Xi ×Xj) exist. In such a situation, the partial
correlation coe�cients can be more useful in ordering the uncertainty hierarchically: the partial correlation
coe�cients PCCXi,Y j between the variables Y j and Xi attempts to measure the residual in�uence of Xi

on Y j once in�uences from all other variables Xj have been eliminated.
The estimation for each partial correlation coe�cient PCCXi,Y j uses a set made up of N values{

(yj1, x
1
1, . . . , x

nX
1 ), . . . , (yjN , x

1
N , . . . , x

nX
N )
}

of the vector (Y j , X1, . . . , XnX ). This requires the following

three steps to be carried out:

1. Determine the e�ect of other variables
{
Xj , j 6= i

}
on Y j by linear regression (see [Linear Regression]

); when the values of variable
{
Xj , j 6= i

}
are known, the average forecast for the value of Y j is then

available in the form of the equation:

Ŷ j =
∑

k 6=i, 1≤k≤nX
âkX

k

2. Determine the e�ect of other variables
{
Xj , j 6= i

}
on Xi by linear regression; when the values of

variable
{
Xj , j 6= i

}
are known, the average forecast for the value of Y j is then available in the form

of the equation:

X̂i =
∑

k 6=i, 1≤k≤nX
b̂kX

k

3. PCCXi,Y j is then equal to the Pearson's correlation coe�cient ρ̂
Y j−cY j ,Xi− bXi estimated for the vari-

ables Y j − Ŷ j and Xi − X̂i on the N -sample of simulations (see [Pearson's Coe�cient]).

One can then class the nX variables X1, . . . , XnX according to the absolute value of the partial correlation
coe�cients: the higher the value of

∣∣PCCXi,Y j
∣∣, the greater the impact the variable Xi has on Y j .

Other notations

-
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Link with OpenTURNS methodology

After a propagation of uncertainty (step C) using [Standard Monte Carlo] simulation, a hierarchy of sources
of uncertainty can be obtained Partial Pearson's Correlation Coe�cients. In fact, the N simulations enable
the pairs (yj1, x

i
1), (yj2, x

i
2),. . . , (yjN , x

i
N ) to be generated, where:

• X =
{
X1, . . . , Xn

}
describes the input vector speci�ed in step A �Specifying Criteria and the Case

Study",

• Y j describes the �nal variable of interest or output variable de�ned in the same step.

The results produced as output of this method are Pearson's partial correlation coe�cients PCCXi,Y j , that
the user may use, taking absolute values, to order the variables Xi hierarchically.

References and theoretical basics

This method of hierarchical ordering is particularly useful:

• when the study of uncertainty is concerned with the central dispersion of the variable of interest Y j

and not with its extreme values,

• when the relationships between Y j and each of the components of X are close to linear relationships
(so that Pearson's correlation coe�cient can be interpreted),

• when the number N of Monte-Carlo simulations is signi�cantly higher than the number nX of input
random variables (it is preferable to have N/nX at least greater than a factor of 10 so that the
estimation of the nX partial correlation coe�cients provides a reasonable picture of reality).

Readers interested in the assumptions made for multiple linear regression models and in the tests needed
to validate these assumptions are referred to [Linear Regression].
Other methods of uncertainty ranking can be applied after Monte-Carlo simulation, re-
quiring a lesser number N of simulations or that can treat non-linear cases, are de-
scribed in [Uncertainty Ranking using Pearson] , [Uncertainty ranking using Spearman] , and
[Uncertainty Ranking using Spearman's Partial Correlation Coe�cients].
The following references provide an interesting bibliographic starting point to further study of the method
described here:

• Saltelli, A., Chan, K., Scott, M. (2000). �Sensitivity Analysis", John Wiley & Sons publishers, Prob-
ability and Statistics series

• J.C. Helton, F.J. Davis (2003). �Latin Hypercube sampling and the propagation of uncertainty anal-
yses of complex systems". Reliability Engineering and System Safety 81, p.23-69

• J.P.C. Kleijnen, J.C. Helton (1999). �Statistical analyses of scatterplots to identify factors in large-
scale simulations, part 1 : review and comparison of techniques". Reliability Engineering and System
Safety 65, p.147-185
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5.2.6 Step C' � Uncertainty Ranking using Partial Rank Correlation Coe�cients

Mathematical description

Goal

This method is concerned with analyzing the in�uence the random vector X =
(
X1, . . . , XnX

)
has on

the random variable Y j which is being studied for uncertainty. Here we attempt to measure monotonic
relationships that exist between Y j and the di�erent components Xi.

Principle

The basic method of hierarchical ordering using Spearman's coe�cients (see
[Uncertainty Ranking using Spearman] ) is concerned with the case where the variable Y j monotoni-

cally depends on nX variables
{
X1, . . . , XnX

}
but this can be misleading when statistical dependencies

between the variables Xi exist. In such a situation, the partial rank correlation coe�cients can be more
useful in ordering the uncertainty hierarchically: the partial rank correlation coe�cients PRCCXi,Y j

between the variables Y j and Xi attempts to measure the residual in�uence of Xi on Y j once in�uences
from all other variables Xj have been eliminated.
The estimation for each partial rank correlation coe�cient PRCCXi,Y j uses a set made up of N values{

(yj1, x1
1, . . . , x

nX
1 ), . . . , (yjN, x1

N , . . . , x
nX
N )
}
of the vector (Y j , X1, . . . , XnX ). This requires the following

three steps to be carried out:

1. Determine the e�ect of other variables
{
Xj , j 6= i

}
on Y j by linear regression (see [Linear Regression]

); when the values of variable
{
Xj , j 6= i

}
are known, the average forecast for the value of Y j is then

available in the form of the equation:

Ŷ j =
∑

k 6=i, 1≤k≤nX
âkX

k

2. Determine the e�ect of other variables
{
Xj , j 6= i

}
on Xi by linear regression; when the values of

variable
{
Xj , j 6= i

}
are known, the average forecast for the value of Y j is then available in the form

of the equation:

X̂i =
∑

k 6=i, 1≤k≤nX
b̂kX

k

3. PRCCXi,Y j is then equal to the Spearman's correlation coe�cient ρ̂S
Y j−cY j ,Xi− bXi

estimated for the

variables Y j − Ŷ j and Xi − X̂i on the N -sample of simulations (see [Spearman's Coe�cient]).

One can then class the nX variables X1, . . . , XnX according to the absolute value of the partial rank
correlation coe�cients: the higher the value of

∣∣PRCCXi,Y j
∣∣, the greater the impact the variable Xi has on

Y j .

Other notations

-
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Link with OpenTURNS methodology

After a propagation of uncertainty (step C) using [Standard Monte Carlo] simulation, a hierarchy of sources
of uncertainty can be obtained Partial Rank Correlation Coe�cients. In fact, the N simulations enable the
pairs (yj1, xi1), (yj2, xi2),. . . , (yjN, xiN ) to be generated, where:

• X =
{
X1, . . . , Xn

}
describes the input vector speci�ed in step A �Specifying Criteria and the Case

Study",

• Y j describes the �nal variable of interest or output variable de�ned in the same step.

The results produced as output of this method are partial rank correlation coe�cients PRCCXi,Y j , that the
user may use, taking absolu

References and theoretical basics

This method of hierarchical ordering is particularly useful:

• when the study of uncertainty is concerned with the central dispersion of the variable of interest Y j

and not with its extreme values,

• when the relationships between Y j and each of the components of X are monotonic relationships (so
that Spearman's correlation coe�cient can be interpreted),

• when the number N of Monte-Carlo simulations is signi�cantly higher than the number nX of input
random variables (it is preferable to have N/nX at least greater than a factor of 10 so that the
estimation of the nX partial rank correlation coe�cients provides a reasonable picture of reality).

Readers interested in the assumptions made for multiple linear regression models and in the tests needed
to validate these assumptions are referred to [Linear Regression].
Other methods of uncertainty ranking can be applied after Monte-Carlo simulation, requir-
ing a lesser number N of simulations, are described in [Uncertainty Ranking using Pearson] ,
[Uncertainty ranking using Spearman].
The following references provide an interesting bibliographic starting point to further study of the method
described here:

• Saltelli, A., Chan, K., Scott, M. (2000). �Sensitivity Analysis", John Wiley & Sons publishers, Prob-
ability and Statistics series

• J.C. Helton, F.J. Davis (2003). �Latin Hypercube sampling and the propagation of uncertainty anal-
yses of complex systems". Reliability Engineering and System Safety 81, p.23-69

• J.P.C. Kleijnen, J.C. Helton (1999). �Statistical analyses of scatterplots to identify factors in large-
scale simulations, part 1 : review and comparison of techniques". Reliability Engineering and System
Safety 65, p.147-185
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5.2.7 Step C' � Importance Factors from FORM-SORM methods

Mathematical description

Goal

Importance Factors are evaluated in the following context : X denotes a random input vector, representing
the sources of uncertainties, fX(x) its joint density probability, d a determinist vector, representing the �xed
variables g(X , d) the limit state function of the model, Df = {X ∈ Rn / g(X , d) ≤ 0} the event considered
here and g(X , d) = 0 its boundary (also called limit state surface).
The probability content of the event Df is Pf :

Pf =
∫
g(X , d)≤0

fX(x) dx. (18)

In this context, the probability Pf can often be e�ciently estimated by FORM or SORM approximations
(refer to [FORM] and [SORM]).

The FORM importance factors o�er a way to rank the importance of the input components with respect
the realization of the event. They are often interpreted also as indicators of the impact of modeling the
input components as random variables rather than �xed values. The FORM importance factors are de�ned
as follows.

Principle

The isoprobabilistic transformation used in the FORM and SORM approximation (refer to
[Iso Probabilistic Transformation] ) creates the vector of gaussian components Y as a result of step 1 :
the probabilistic input vector X is mapped onto a probabilistic input vector Y . We suppose here that Y
is a gaussian random vector, centered and reduced.
The �rst step is T1 : Rn → Rn :

Y = T1(X) =


Φ−1(F1(X1))
Φ−1(F2(X2))

...
Φ−1(Fn(Xn))

 . (19)

where Φ(z) =
1√
2π

∫ z

−∞
exp(−u

2

2
) du.

The design point associated to the event considered in the Y -space is noted Y ∗ = (y∗i )i.
The importance factor α2

i of the variable Xi is de�ned as the square of the co-factor of the design point in
the Y -space :

α2
i =

(y∗i )
2

||Y ∗||2
This de�nition guarantees the relation : Σiα

2
i = 1.

Other notations

Here, the event considered is explicited directly from the limit state function g(X , d) : this is the classical
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structural reliability formulation.
However, if the event is a threshold exceedance, it is useful to explicite the variable of interest Z = g̃(X , d),
evaluated from the model g̃(.). In that case, the event considered, associated to the threshold zs has the
formulation : Df = {X ∈ Rn /Z = g̃(X , d) > zs} and the limit state function is : g(X , d) = zs − Z =
zs− g̃(X , d). Pf is the threshold exceedance probability, de�ned as : Pf = P (Z ≥ zs) =

∫
g(X , d)≤0 fX(x) dx.

Thus, the FORM importance factors o�er a way to rank the importance of the input components with respect
to the threshold exceedance by the quantity of interest Z. They can be seen as a speci�c sensitity analysis
technique dedicated to the quantity Z around a particular threshlod rather than to its variance.

Link with OpenTURNS methodology

Within the global methodology, these importance factors are used in the step C': �Ranking sources of
uncertainty� in the case of the evaluation of the probability of an event by an approximation method.
It requires to have ful�lled the following steps beforehand:

• step A: identify of an input vector X of sources of uncertainties and an output variable of interest
Z = g̃(X, d), result of the model g̃(); identify a probabilistic criteria such as a threshold exceedance
Z > zs or equivalently a failure event g(X , d) ≤ 0,

• step B: identify one of the proposed techniques to estimate a probabilistic model of the input vector
X,

• step C: select an appropriate optimisation algorithm among those proposed to evaluate the event
probability : FORM or SORM.

Note that the relevance of FORM importance factors as a means to rank the importance of the sources of
uncertainty is closely dependant on the validity of FORM approximation (refer to [FORM] and [SORM]).

The sensitivity factors (refer to [Sensitivity Factors]) indicate the importance on the Hasofer-Lind reliability
index (refer to [Reliability Index] ) of the value of the parameters used to de�ne the distribution of the
random vector X.

References and theoretical basics

Interesting litterature on the subject is :

• H.O. Madsen, �Omission Sensitivity Factors,� 1988, Structural Safety, 5, 35-45.

Examples

Let's apply this method to the following analytical example which considers a cantilever beam, of Young's
modulus E, length L, section modulus I. We apply a concentrated bending force at the other end of the
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beam. The vertical displacement y of the extrême end is equal to :

y(E,F, L, I) =
FL3

3EI

The objective is to propagate until y the uncertainties of the variables (E,F, L, I).
The input random vector is X = (E,F, L, I), which probabilistic modelisation is (unity is not precised):

E = Normal(50, 1)
F = Normal(1, 1)
L = Normal(10, 1)
I = Normal(5, 1)

The four random variables are independant.
The event considered is the threshold exceedance : Df = {(E,F, L, I) ∈ R4 / y(E,F, L, I) ≥ 3}.
The importance factors obtained are : 

α2
E = 9.456e−2 %
α2
F = 6.959e+1 %
α2
L = 1.948e+1 %
α2
I = 1.084e+1 %
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5.2.8 Step C' � Sensitivity Factors from FORM method

Mathematical description

Goal

Sensitivity Factors are evaluated under the following context : X denotes a random input vector, repre-
senting the sources of uncertainties, fX(x) its joint density probability, d a determinist vector, representing
the �xed variables g(X , d) the limit state function of the model, Df = {X ∈ Rn / g(X , d) ≤ 0} the event
considered here and g(X , d) = 0 its boundary (also called limit state surface).
The probability content of the event Df is Pf :

Pf =
∫
g(X , d)≤0

fX(x) dx. (20)

In this context, the probability Pf can often be e�ciently estimated by FORM or SORM approximations
(refer to [FORM] and [SORM]).

The FORM importance factors o�er a way to analyse the sensitivity of the probability the realization of
the event with respect to the parameters of the probability distribution of X.
Principle

A sensitivity factor is de�ned as the derivative of the Hasofer-Lind reliability index with respect to the
paramater θ. The paramater θ is a parameter in a distribution of the random vector X.

If θ represents the vector of all the parameters of the distribution of X which appear in the de�nition of the
isoprobabilistic transformation T (refer to [IsoProbabiliticFunction]), and U∗θ the design point associated
to the event considered in the U -space, and if the mapping of the limit state function by the T is noted
G(U , θ) = g[T−1(U , θ), d], then the sensitivity factors vector is de�ned as :

∇θβHL = +
1

||∇θG(U∗θ , d)||∇uG(U∗θ , d).

The sensitivity factors indicate the importance on the Hasofer-Lind reliability index (refer to
[Reliability Index] ) of the value of the parameters used to de�ne the distribution of the random vector

X.

Other notations

Here, the event considered is explicited directly from the limit state function g(X , d) : this is the classical
structural reliability formulation.
However, if the event is a threshold exceedance, it is useful to explicite the variable of interest Z = g̃(X , d),
evaluated from the model g̃(.). In that case, the event considered, associated to the threshold zs has the
formulation : Df = {X ∈ Rn /Z = g̃(X , d) > zs} and the limit state function is : g(X , d) = zs − Z =
zs− g̃(X , d). Pf is the threshold exceedance probability, de�ned as : Pf = P (Z ≥ zs) =

∫
g(X , d)≤0 fX(x) dx.

Thus, the FORM sensitivity factors o�er a way to rank the importance of the parameters of the input com-
ponents with respect to the threshold exceedance by the quantity of interest Z. They can be seen as a
speci�c sensitity analysis technique dedicated to the quantity Z around a particular threshlod rather than
to its variance.
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Link with OpenTURNS methodology

Within the global methodology, sensitivity factors are evaluated in the step C
′
: �Ranking sources of uncer-

tainty� in the case of the evaluation of the probability of an event by an approximation method.
It requires to have ful�lled before the following steps:

• step A: input vector X, �nal variable of interest (result of a model), probabilistic criteria (the event
considered) g(X , d) ≤ 0,

• step B: one of the proposed techniques to describe the probabilistic modelisation of the input vector
X,

• step C: one method to evaluate the probability content of the event : the FORM or SORM approxi-
mation

References and theoretical basics

The standard version of Open TURNS takes into account only the sensitivity with respect to the parameters
of the distributino of X which appear in the de�nition of the isoprobabilistic transformation T . It does
not calculate the sensitivity with respect to the other parameters, in particular those of the limite state
function d.

The FORM importance factors (refer to [Importance Factors]) o�er a way to rank the importance of the
input components with respect the realization of the event. They are often interpreted also as indicators
of the impact of modeling the input components as random variables rather than �xed values.

Let's note some usefull references:

• O. Ditlevsen, H.O. Madsen, 2004, �Structural reliability methods,� Department of mechanical engi-
neering technical university of Denmark - Maritime engineering, internet publication.

Examples

Let's apply this method to the following analytical example which considers a cantilever beam, of Young's
modulus E, length L, section modulus I. We apply a concentrated bending force at the other end of the
beam. The vertical displacement y of the extrême end is equal to :

y(E,F, L, I) =
FL3

3EI

The objective is to propagate until y the uncertainties of the variables (E,F, L, I).
The input random vector is X = (E,F, L, I), which probabilistic modelisation is (unity is not precised):
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
E = Normal(50, 1)
F = Normal(1, 1)
L = Normal(10, 1)
I = Normal(5, 1)

The event considered is the threshold exceedance : Df = {(E,F, L, I) ∈ R4 / y(E,F, L, I) ≥ 3}.

If we note µ the mean and σ the standard deviation a the random variable, we obtain the following results,
gathered in the following tables.

βHL µ σ

E 0.0307508 -0.000954364

F -0.834221 -0.000954364

L -0.441319 -0.000954364

I 0.329191 -0.000954364

Pf,FORM µ σ

E -0.00737194 0.000228791

F 0.199989 0.000228791

L 0.105798 0.000228791

I -0.0789175 0.000228791
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6 Response Surface

In some situations, the model h is too CPU-time consuming to enable the uncertainty analysis de�ned in step
A. A possible approach to overcome this di�culty consists in replacing h with a �simpler" model h̃, usually
called response surface (or meta-model, surrogate model). Open TURNS o�ers several classical methods to
build such a response surface.
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6.1 Methods description

6.1.1 Step c' � Response Surface by Taylor Expansion

Mathematical description

Goal

In order to reduce computational costs, we use approximate functions instead of the initial function. When
studying uncertainty management problems, one well-established class of method to deal with suitable
approximations is the response surface method. The basic idea is to replace the initial model by an approx-
imation, the so called response surface, whose function values can be computed more easily. Hence, there
are two steps:

• Step n◦1 Choice of the type of response surface (e.g. polynom,...) caracterized by a set of parameters
/degrees of freedom,

• Step n◦2 Estimation of the parameters of the response surface by a �nite number of computations.

Within this �le, we are dealing with the step n◦1. In this case, we describe the response surface by Taylor
expansion. The initial model is thus replaced by a polynomial expansion: h becomes pTaylor and y becomes

yTaylor. If the response surface is used for the same uncertainty problem, the criterion will be applied not

on y but on yTaylor.

Principles

We give the �rst order and second order Taylor expansions around x = xC .
First order Taylor Expansion

zT = pT1 (x) = h(xC) +
nX∑
i=1

∂h

∂xi
(xC).

(
xi − xiC

)
+ o(‖x− xC‖)

Second Order Taylor Expansion

yT = pT2 (x) = h(xC) +
nX∑
i=1

∂h

∂xi
(xC).

(
xi − xiC

)
+

1
2
.

nX∑
i,j=1

∂2h

∂xi∂xj
(xC).

(
xi − xiC

)
.
(
xj − xjC

)
+ o(‖x− xC‖2)

Vectorial writing

To synthetize these decompositions in a vectorial way, we can write

yT = y
C

+ < L , x− xC > +
1
2
<< Q , x− xC >, x− xC >

where:

• y0 is a constant vector,

• x is the vector of the input variables,
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• xC is a recentring vector dedicated to increase the numerical accuracy,

• L =
(
∂yj

∂xi

)
i=1,...,nY , j=1,...,nX

is the transposed Jacobian matrix,

• Q =
(

∂2yj

∂xi∂xk

)
i=1,...,nY , j,k=1···nX

is the transposed hessian matrix,

Other notations

Link with OpenTURNS methodology

This method is used when one wants to build a surface response (before starting the step A). A Taylor
expansion polynom is well �tted when one wants to replace 'locally' the model of interest. It means that
the model is replaced by the approximate model in a restricted domain of the input variables. One has to
pay attention that this is a strong assumption: this approximate model could behave di�erently from the
initial one and thus induce di�erent results towards the criterion which is studied. The accuracy is degraded
by this approximation and is usually valid only in a small region of interest. To compute the probability of
exceedance of a threshold, the quality of this approximation by Taylor response surface has to be strongly
justi�ed. Anyway, to study central tendencies, it can be very useful.

References and theoretical basics

This method is valid in the neighbourhood of xC or in a larger domain but this has to be justi�ed.
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6.1.2 Step c' � Response Surface by polynome

Mathematical description

Goal

In order to reduce computational costs, we use approximate functions instead of the initial function. When
studying uncertainty management problems, one well-established class of method to deal with suitable
approximations is the response surface method. The basic idea is to replace the initial model by an approx-
imation, the so called response surface, whose function values can be computed more easily. Hence, there
are two steps:

• Step n◦1 Choice of the type of response surface (e.g. polynom,...) caracterized by a set of parameters
/degrees of freedom,

• Step n◦2 Estimation of the parameters of the response surface by a �nite number of computations.

Within this �le, we are dealing with the step n◦1. A classical family of functions is represented by
polynomial families.

Principles of Polynomial Surface Responses

The initial model is noted h and links the input variables x = (x1, . . . , xnx) with the output vari-
ables z = (z1, . . . , znz). To simplify the notations in this �rst part of the �le, we consider that nz = 1
and use z for z1. The results obtained for a polynomial response surface in dimension nz = 1 are given below.

Principles in dimension nz = 1

z = h(x)

The approximate model q is parametrized by the vector a = (a1, · · · , ana) containing na coe�cients. The
approximate values are noted ẑ such that:

ẑ = q (x, a)

If the response surface is linear in its parameters a, that is to say if the response surface is de�ned such
that:

q(x, a) =
na∑
i=1

ai.Ψi(x)

As already mentioned, response surfaces are designed such, that a complex relation between the inputs
and the outputs, is described by an appropriate, but as simple as possible mathematical model. The term
'simple' means in the context of response surfaces, that the model should be continuous in the basic variables
and should have a small number of terms, whose coe�cients can be easily estimated. Polynomial response
surfaces represent a classic way of building response surfaces. Following the previous notations, it only
means that Ψi(x) is a polynom in x. Di�erent families of polynoms are considered within Open TURNS:
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• Linear Polynom
In this case, the family of polynoms which is considered is the following : (Ψi(x))i=1,··· ,na =(
1, x1, . . . , xnX

)
qL(x) = a1 + a2.x

1 + · · ·+ anx+1.x
nX

The number of parameters to be determined is equal to: na = 1 + nX

• Quadratic Polynoms with cross terms
In this case, the family of polynoms which is considered is the following : (Ψi(x))i=1,··· ,na =(
1, x1, . . . , xnX , (x1)2, . . . , (xnX )2, x1.x2, . . . , xnX−1.xnX

)
qQ2(x) = a1+a2.x

1+· · ·+anx+1.xnx+anX+2.(x1)2+· · ·+a2.nX+1.(xnX )2+
nX∑

i,j=1 , i<j

a2.nX+1+i+jx
i.xj

The number of parameters to be determined is equal to: na = 1 + nX + nX + nX .(nX−1)
2

The coe�cients (a) can be obtained by a Least Square method for example (see [] ) from a sample of N
runs obtained with the initial models: (xk)k=1,...,N −→ (zk)k=1,...,N .

Principles in dimension nz ≥ 1
The surface response is built for each dimension. We obtain the following vectorial writing:

ẑ = z0+ < M,x− xC > + << Q, x− xC >, x− xC >

where:

• x is the vector of input variables,

• xC is a remapping vector,

• < M,x− xC >=
(∑nx

j=1Mij .(xj − xjC)
)
i=1,...,nz

,

• << Q, x− xC >, x− xC >=
(∑nx

i=1

∑nx
j=1Qijk.(x

j − xjC).(xk − xkC)
)
k=1,...,nz

,

Other notations

Link with OpenTURNS methodology

This method is used when one wants to build a surface response (before starting a new round from the step
A for example). It requires a set of output values obtained with the initial model computed at di�erent
input values. It enables to create a new 'model' which could be used for the same purpose than the initial
model or for other purposes. In any case, be careful when using this approximate model instead of the
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initial model: it could behave di�erently from the initial one and thus induce di�erent results towards the
criterion which is studied.

References and theoretical basics

The surface response built by this method is fully deterministic.
Link with other �les from the documentation of reference : [Response Surface by Taylor decomposition],
[Least Square method to build response surface]

Saltelli 'Sensitivity Analysis', Wiley
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6.1.3 Step C' � Surface Response obtained by Least Square method

Mathematical description

Goal
In order to reduce computational costs, we use approximate functions instead of the initial function. When
studying uncertainty management problems, one well-established class of method to deal with suitable
approximations is the response surface method. The basic idea is to replace the initial model by an approx-
imation, the so called response surface, whose function values can be computed more easily. Hence, there
are two steps:

• Step n◦1 Choice of the type of response surface (e.g. polynom,...) caracterized by a set of parameters
/degrees of freedom,

• Step n◦2 Estimation of the parameters of the response surface by a �nite number of computations.

Within this �le, we are dealing with the step n◦2, using the response surface family obtained by the
decomposition over a family of functions (polynomial families, ...). The coe�cients of the decomposition
are optimal in a certain way. The Least Square Method enables to de�ne these "best" coe�cients which
minimize the quadratic error between the "true" output values of the model, computed on a �nite set of
input values, and the approximate output values obtained by the response surface on the same �nite set of
input values.

Principles

The initial model is noted h and links the input variables x = (x1, . . . , xnX ) with the output variables
z = (z1, . . . , znY ). To simplify the notations in this �rst part of the �le, we consider that nY = 1 (meaning
that z = z1 is scalar in this �le) and use z for z1. The results obtained for a polynomial response surface
in dimension ny > 1 are given below.

Principles in dimension nz = 1

z = h(x)

The approximate model q is parametrized by the vector a = (a1, · · · , ana) containing na coe�cients. The
approximate values are noted ẑ such that:

ẑ = q (x, a)

We consider ε(x, a) which measures the di�erence between the initial model h and the response surface
model q at a given point x.

ε(x, a) = z − ŷ = h(x)− q(x, a)

We consider thatN computations are realized to build the response surface. TheseN points of computations
are noted:

xk =
(
x1
k, . . . , x

nx
k

)
, k = 1, 2, · · · , N

At each point of computation, it is possible to compute the error ε(xk, a). It is compiled in the following
vector (ε):

ε(a) = (h(x1)− q(x1, a), . . . , h(xN )− q(xN , a))
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The sum of squares of the di�erences between the value of the response surface ẑk = q (xk, a) and the values
of the initial model zk = h(xk) at the N points of computations is equal to:

‖ε(a)‖22 =
N∑
k=1

(
zk − ẑk

)2

The goal of the Least Square method is to minimize this function (tε.ε)(a). The problem to be solved is
thus the following:

â =
Argmin

Rna
(
tε.ε
)

Classical optimization methods can be used to obtain the optimal coe�cients â.
Particular cases

Within Open TURNS, the response surfaces are considered to be linear in a and the decomposition is done
on a polynomial basis.

Surface Responses:
If the response surface is linear in its parameters a, that is to say if the response surface is de�ned such
that:

q(x, a) =
na∑
i=1

ai.Ψi(x)

the previous problem is much more simple and it is possible to show that:

â =
(
tZ.Z)−1

.tZ.z

where z =t (z1, . . . , zN )

Z =

 Ψ1(x1) · · · Ψna(x1)
...

...
Ψ1(xN ) Ψna(xN )



Other notations

Link with OpenTURNS methodology

This method is used when one wants to build a surface response (before starting a new round from the step
A for example). It requires a set of output values obtained with the initial model computed at di�erent
input values or the set of inputs and the initial model. It enables to create a new 'model' which could be
used for the same purpose than the initial model or for other purposes. In any case, be careful when using
this approximate model instead of the initial model: it could behave very di�erently from the initial one
and thus induce very di�erent results towards the criterion which is studied.
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References and theoretical basics

The surface response built by this method is fully deterministic. The condition rank(Z i) ≥ na on the rank
of each matrix (Z i)i=1,...,nY has to be ful�lled, which induces a minimum number of computation N ≥ na.
A fruitful link towards the global approach can be established with the �les: [Response Surface by Taylor],
[Response Surface by Polynoms of order 1 or 2].
The following reference is a good introduction to the subject: Saltelli and Al., 'Sensitivity Analysis', Wiley.
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