
Mausezahn User’s Guide

Author: Herbert Haas
Address: herbert AT perihel DOT at

http://www.perihel.at/sec/mz
Revision: 0.20
Date: 2008-05-15
Copyright: Copyright (c) 2007, 2008 by Herbert Haas.

Contents

1 What is Mausezahn?

2 Disclaimer and License

3 Basics

3.1 How to specify hex digits

3.2 Basic operations

3.3 The automatic packet builder

3.4 Packet count and delay

3.5 Optional address modifications

4 Layer-2

4.1 Direct link access

4.2 ARP

4.3 BPDU

4.4 802.1Q VLAN Tags

4.5 MPLS labels

5 Layer 3-7

5.1 IP

5.2 UDP

5.3 ICMP

5.4 TCP

5.5 DNS

6 Dear fans

1

http://www.perihel.at/sec/mz

1 What is Mausezahn?

Mausezahn is a fast traffic generator written in C which allows you to send nearly every possible
and impossible packet. Mausezahn can be used for example

• As traffic generator (e. g. to stress multicast networks)

• For penetration testing of firewalls and IDS

• For DoS attacks on networks (for audit purposes of course)

• To find bugs in network software or appliances

• For reconnaissance attacks using ping sweeps and port scans

• To test network behaviour under strange circumstances (stress test, malformed packets,
...)

• As didactical tool during lab exercises

...and more. Mausezahn is basically a versatile packet creation tool on the command line with a
simple syntax and online help. It could also be used within (bash-) scripts to perform combination of
tests.

Currently Mausezahn is only available for Linux platforms. There will be also a Windows version
soon(er or later).

2 Disclaimer and License

Mausezahn is basically a traffic generator as well as a network and firewall testing tool. Don’t use this
tool when you are not aware of its consequences or have only little knowledge about networks and data
communication. If you abuse Mausezahn for unallowed attacks and get caught, or damage something
of your own, then this is completely your fault.

Mausezahn (C)2008 by Herbert Haas is a (currently) closed source but free software. That is you
can download and share it for free. If you make Mausezahn part of any software distribution or similar
bundle you are required to include this license and disclaimer notes.

Update: Since version 0.33 Mausezahn is licensed under GPLv2.

3 Basics

3.1 How to specify hex digits

Many arguments allow direct byte input. Bytes are represented as two hexadecimal digits. Multiple
bytes must be separated either by spaces, colons, or dashes -- whatever you prefer. The following byte
strings are equivalent:

"aa:bb cc-dd-ee ff 01 02 03-04 05"

"aa bb cc dd ee ff:01:02:03:04 05"

3.2 Basic operations

The basic syntax on the command line is explained when you execute Mausezahn without arguments.
Note: Don’t forget that on the CLI the Linux shell (usually the Bash) interpretes spaces as a

delimiter character. That is, if you are specifying an argument that consists of multiple words with
spaces inbetween, you MUST group this with quotes. For example, instead of

mz eth0 -t udp sp=1, dp=80, p=00:11:22:33

2

you could either omit the spaces

mz eth0 -t udp sp=1,dp=80,p=00:11:22:33

or, even more safe, use quotes:

mz eth0 -t udp "sp=1, dp=80, p=00:11:22:33"

In order to monitor what’s going on you can enable the verbose mode using the -v option. The
opposite is the quiet mode (-q) which will keep Mausezahn absolutely quiet (except for error messages
and warnings.)

Don’t confuse the payload argument p=... with the padding option -p. The latter is used outside
the quotes!

3.3 The automatic packet builder

An important argument is “-t” which invokes a packet builder. Currently there are packet builders for
ARP, BPDU, IP, partly ICMP, UDP, and TCP. (Additionally you can insert a VLAN tag or a MPLS
label stack but this works independent of the packet builder.)

You get context specific help of every packet builder using the help keyword, such as:

mz -t bpdu help
mz -t tcp help

For every packet you may specify an optional payload. This can be done either via HEX notation
using the payload (or short p) argument or directly as ASCII text using the -P option:

mz eth0 -t ip -P "Hello World" # ASCII payload
mz eth0 -t ip p=68:65:6c:6c:6f:20:77:6f:72:6c:64 # hex payload
mz eth0 -t ip "proto=89, \

p=68:65:6c:6c:6f:20:77:6f:72:6c:64, \ # same with other
ttl=1" # IP arguments

Note: The raw link access mode only accepts hex payloads (because you specify everything in hex
here.)

3.4 Packet count and delay

Per default only one packet is sent. If you want to send more packets then use the count option -c
<count>. When count is zero then Mausezahn will send forever.

Per default Mausezahn sends at maximum speed (and this is really fast ;-)). If you don’t want to
overwhelm your network devices or have other reasons to send at a slower rate then you might want to
specify a delay using the -d <delay> option.

If you only specify a numeric value it is interpreted in microsecond units. Alternatively, for easier
use, you might specify units such as seconds sec or milliseconds msec. (You can also abbreviate this
with s or m.)

Note: Don’t use spaces between the value and the unit!
Here are typical examples:

Send infinite frames as fast as possible:

mz eth0 -c 0 "aa bb cc dd"

Send 100,000 frames with a 50 msec interval:

mz eth0 -c 100000 -d 50msec "aa bb cc dd"

Send infinite BPDU frames in a 2 second interval:

3

mz eth0 -c 0 -d 2s -t bpdu conf

Note: Currently Mausezahn does not support fractional numbers. If you want to specify for example
2.5 seconds then express this e. g. in milliseconds (2500 msec).

3.5 Optional address modifications

You can always specify source and/or destination MAC addresses using the -a and -b options, respec-
tively. These options also allow keywords such as rand, own, bpdu, cisco, and others.

Similarily you can specify source and destination IP addresses using the -A and -B options, respec-
tively. These options also support FQDNs (i. e. domain names) and ranges such as 192.168.0.0/24
or 10.0.0.11-10.0.3.22. Additionally (only) the source address supports the rand keyword (ideal for
attacks).

Note: When you use the packet builder for IP-based packets (e. g. UDP or TCP) then Mausezahn
automatically cares about correct MAC and IP addresses (i. e. it performs ARP, DHCP, and DNS for
you). But when you specify at least a single link-layer address (or any other L2 option such as a VLAN
tag or MPLS header) then ARP is disabled and you must care for the Ethernet destination address for
yourself.

4 Layer-2

4.1 Direct link access

Mausezahn allows you to send ANY chain of bytes directly through your Ethernet interface:

mz eth0 "ff:ff:ff:ff:ff:ff ff:ff:ff:ff:ff:ff 00:00 ca:fe:ba:be"

This way you can craft every packet you want but you must do it by hand.
Note: On WiFi interfaces the header is much more complicated and automatically created by the

WiFi-driver. I plan to add ’direct WiFi access’ as another option soon(er or later).
As example to introduce some interesting options, lets continuously send frames at max speed with

random source MAC address and broadcast destination address, additionally pad the frame to 1000
bytes:

mz eth0 -c 0 -a rand -b bcast -p 1000 "08 00 aa bb cc dd"

The direct link access supports automatic padding using the -p <total frame length> option.
This allows you to pad a raw L2 frame to the desired length. You must specify the total length and
the total frame length must have at least 15 bytes for technical reasons. Zero bytes are used for this
padding.

4.2 ARP

Mausezahn provides a simple interface to the ARP packet. You can specify the ARP method (re-
quest|reply) and up to four arguments: sendermac, targetmac, senderip, targetip, or short smac,
tmac, sip, tip.

By default an ARP reply is sent with your own interface addresses as source MAC and IP address,
and a broadcast destination MAC/IP address.

Send a gratitious ARP (as used for duplicate IP detection):

mz eth0 -t arp

ARP cache poisoning:

mz eth0 -t arp "reply, senderip=192.168.0.1, targetmac=00:00:0c:01:02:03, \
targetip=172.16.1.50"

4

where by default your interface MAC address will be used as sendermac, senderip denotes the
spoofed IP, targetmac and targetip identifies the receiver.

By default the Ethernet source address is your interface MAC and the destination address is
broadcast. Of course you can change this using again the flags -a and -b.

4.3 BPDU

Mausezahn provides a simple interface to the 802.1d BPDU frame format (used to create the Spanning
Tree in bridged networks).

By default standard IEEE 802.1d (CST) BPDUs are sent and it is assumed that your computer
wants to become the root bridge (rid=bid).

Optionally the 802.3 destination address can be a specified MAC address, broadcast, own MAC, or
Cisco’s PVST+ MAC address. The destination MAC can be specified using the -b command which
(besides MAC addresses) accepts keywords such as bcast, own, pvst, or stp (default).

Since version 0.16 PVST+ is supported. Simply specify the VLAN for which you want to send a
BPDU:

mz eth0 -t bpdu "vlan=123, rid=2000"

See mz -t bpdu help for more details.

4.4 802.1Q VLAN Tags

Mausezahn allows simple VLAN tagging for IP (and other higher layer) packets. Simply use the option
-Q <[CoS:]VLAN>, such as -Q 10 or -Q 3:921. By default CoS=0.

For example send a TCP packet in VLAN 500 using CoS=7:

mz eth0 -t tcp -Q 7:500 "dp=80, flags=rst, p=aa:aa:aa"

You can create as many VLAN tags as you want! This is interesting to create QinQ encapsulations
or VLAN hopping:

Send this UDP packet with VLAN tags 100 (outer) and 651 (inner)
mz eth0 -t udp "dp=8888, sp=13442" -P "Mausezahn is great" -Q 100,651

Don’t know if this is useful anywhere but at least it is possible:
mz eth0 -t udp "dp=8888, sp=13442" -P "Mausezahn is great" \

-Q 6:5,7:732,5:331,5,6

Mix it with MPLS:
mz eth0 -t udp "dp=8888, sp=13442" -P "Mausezahn is great" -Q 100,651 -M

Only in raw Layer 2 mode you must create the VLAN tag completely by yourself. For example
if you want to send a frame in VLAN 5 using CoS 0 simply specify 81:00 as type field and for the next
two bytes the CoS (, CFI) and VLAN values:

mz eth0 -b bc -a rand "81:00 00:05 08:00 aa-aa-aa-aa-aa-aa-aa-aa-aa"

4.5 MPLS labels

Mausezahn allows you to insert one or more MPLS headers. Simply use the option -M <label:CoS:TTL:BoS>
where only the label is mandatory. If you specify a second number it is interpreted as the experimen-
tal bits (the CoS usually). If you specify a third number it is interpreted as TTL. Per default the TTL
is set to 255.

5

The Bottom of Stack flag is set automatically (otherwise the frame would be invalid) but if you
want you can also set or unset it using the S (set) and s (unset) argument. Note that the BoS must be
the last argument in each MPLS header definition.

Here are some examples:

Use MPLS label 214
mz eth0 -M 214 -t tcp "dp=80" -P "HTTP..." -B myhost.com

Use three labels (the 214 is now the outer)
mz eth0 -M 9999,51,214 -t tcp "dp=80" -P "HTTP..." -B myhost.com

Use two labels, one with CoS=5 and TTL=1, the other with CoS=7
mz eth0 -M 100:5:1,500:7 -t tcp "dp=80" -P "HTTP..." -B myhost.com

Unset the BoS flag (which will result in an invalid frame)
mz eth0 -M 214:s -t tcp "dp=80" -P "HTTP..." -B myhost.com

5 Layer 3-7

IP, UDP, and TCP packets can be padded using the -p option. Currently 0x42 is used as padding byte
(’the answer’). You cannot pad DNS packets (would be useless anyway).

5.1 IP

Mausezahn allows you to send any (malformed or correct) IP packet. Every field in the IP header can
be manipulated.

The IP addresses can be specified via the -A and -B options, denoting the source and destination
address, respectively. You can also specify an address range or a host name (FQDN). Additionally, the
source address can also be random.

By default the source address is your interface IP address and the destination address is a broadcast.
Here are some examples:

ascii payload:
mz eth0 -t ip -A rand -B 192.168.1.0/24 -P "hello world"

hex payload:
mz eth0 -t ip -A 10.1.0.1-10.1.255.254 -B 255.255.255.255 p=ca:fe:ba:be

will use correct source IP address:
mz eth0 -t ip -B www.xyz.com

The Type of Service (ToS) byte can either be specified directly by two hexadecimal digits (which
means you can also easily set the Explicit Congestion Notification (ECN) bits (LSB 1 and 2) or you
may only want to specify a common DSCP value (bits 3-8) using a decimal number (0..63):

Packet sent with DSCP = Expedited Forwarding (EF):
mz eth0 -t ip dscp=46,ttl=1,proto=1,p=08:00:5a:a2:de:ad:be:af

If you leave the checksum zero (or unspecified) the correct checksum will be automatically com-
puted. Note that you can only use a wrong checksum when you also specify at least one L2 field
manually (because then the packet is not sent through the kernel).

6

5.2 UDP

Mausezahn support easy UDP datagram generation. Simply specify the destination address (-B option)
and optionally an arbitrary source address (-A option) and as arguments you may specify the port
numbers using the dp (destination port) and sp (source port) arguments and a payload.

You can also easily specify a whole port range which will result in sending multiple packets. Here
are some examples:

Send test packets to the RTP port range:

mz eth0 -B 192.168.1.1 -t udp "dp=16384-32767, p=A1:00:CC:00:00:AB:CD:EE:EE:DD:DD:00"

Send a DNS request as local broadcast (often the local router replies):

mz eth0 -t udp "dp=53, p=c5-2f-01-00-00-01-00-00-00-00-00-00-03-77-77-77-03-
78-79-7a-03-63-6f-6d-00-00-01-00-01"

Additionally you may specify the lenght and checksum using the len and sum arguments (will be
set correctly by default).

Note Several protocols have same arguments such as len (length) and sum (checksum). If you specified
a udp type packet (via -t udp) and want to modify the IP length, then use the alternate keyword
iplen and ipsum. Also note that you must specify at least one L2 field which tells Mausezahn
to build everything without help of your kernel (the kernel would not allow to modify the IP
checksum and the IP length).

5.3 ICMP

Mausezahn currently only supports ICMP Redirect packets.
Additional ICMP types will be supported in future. Currently you would need to taylor them by

your own, e. g. using the IP packet builder (setting proto=1).
Use the mz -t icmp help for help on actually implemented options.

5.4 TCP

Mausezahn allows you to easily taylor any TCP packet. Similar as with UDP you can specify source
and destination port (ranges) using the sp and dp arguments.

Then you can directly specify the desired flags using an “|” as delimiter if you want to specify
multiple flags. For example, a SYN-Flood attack against host 1.1.1.1 using a random source IP address
and periodically using all 1023 well-known ports could be created via:

mz eth0 -A rand -B 1.1.1.1 -c 0 -t tcp "dp=1-1023, flags=syn" \
-P "Good morning! This is a SYN Flood Attack. \

We apologize for any inconvenience."

Be careful with such SYN floods and only use them for firewall testing. Check your legal position!
Remember that a host with an open TCP session only accepts packets with correct socket information

(addresses and ports) and a valid TCP sequence number (SQNR). If you want to try a DoS attack by
sending a RST-flood and you do NOT know the target’s initial SQNR (which is normally the case) then
you may want to sweep through a range of sequence numbers:

mz eth0 -A legal.host.com -B target.host.com -t tcp "sp=80,dp=80,s=1-4294967295"

Fortunately the SQNR must match the target host’s acknowledgement number plus the announced
window size. Since the typical window size is something between 40000 and 65535 you are MUCH
quicker when using an increment using the ds argument:

7

mz eth0 -A legal.host.com -B target.host.com \
-t tcp "sp=80, dp=80, s=1-4294967295, ds=40000"

In the latter case Mausezahn will only send 107375 packets instead of 4294967295 (which results in
a duration of approximately 1 second compared to 11 hours!).

Of course you can taylor any TCP packet you like. In future Mausezahn may support an automatic
3-way handshake.

As with other L4 protocols Mausezahn builds a correct IP header but you can additionally access
every field in the IP packet (also in the Ethernet frame).

5.5 DNS

Mausezahn supports UDP-based DNS requests or responses. Typically you may want to send a query
or an answer. As usual you can modify every flag in the header. Here is an example of a simple query:

./mz eth0 -B mydns-server.com -t dns "q=www.ibm.com"

You can also create server-type messages:

./mz eth0 -A spoofed.dns-server.com -B target.host.com \
"q=www.topsecret.com, a=172.16.1.1"

The syntax according to the online help (-t dns help) is:

query|q = <name>[:<type>] where type is per default "A"
(and class is always "IN")

answer|a = [<type>:<ttl>:]<rdata> ttl is per default 0.
= [<type>:<ttl>:]<rdata>/[<type>:<ttl>:]<rdata>/...

Note: If you only use the ’query’ option then a query is sent. If you additonally add an ’answer’
then an answer is sent.

Examples:

q = www.xyz.com
q = www.xyz.com, a=192.168.1.10
q = www.xyz.com, a=A:3600:192.168.1.10
q = www.xyz.com, a=CNAME:3600:abc.com/A:3600:192.168.1.10

Please try out mz -t dns help to see the many other optional command line options.

6 Dear fans

Mausezahn is still under heavy development and you may expect new features very soon.
Please report to herbert AT perihel DOT at regarding:

• Bugs

• Important features you miss

• How you used Mausezahn

• Interesting observations with Mausezahn at the network

Also consider a donation. ;-)

8

