Development of Scientific
Applications with the Mobile
Robot Programming Toolkit

The MRPT reference book

by Jose Luis Blanco Claraco
Machine Perception and Intelligent Robotics Laboratory
University of Malaga

Version: August 10, 2009

ii

Copyright (© 2008-2009 Jose Luis Blanco Claraco and contributors.
All rights reserved.

Permission is granted to copy, distribute verbatim copies and print this docu-
ment, but changing or publishing without a written permission from the authors is
not allowed.

Note:

This book is uncompleted. The most up-to-date version will always be available
online at:

http://mrpt.sourceforge.net/mrpt-book/

Recent updates:

e Aug 10, 2009: Added description of resampling schemes (Ch[23.3).

e Apr 21, 2009: Updated to MRPT 0.7.0. Added sections on: fixed-size ma-
trixes (Ch[7.1.2), metric maps (Ch[19), file formats (Chl4).

http://mrpt.sourceforge.net/mrpt-book/

iv

Contents

I First steps‘

‘1 Introduction

1.1 Why a new library?‘
1.2 What is MRPT?o
‘1.3 What is this book about?‘
1.4 What is this book not about?
1.5 How much does it cost? oo
‘1.6 0S restrictions‘
1.7 Robotic software architectures
2 Compiling

2.1 Binary distributions
‘2.2 Prerequisites‘

221 GNU/LINUN . « . o oo

2.2.2 WIndows . . . o oo
2.3 Compiling e

2.4 Building optiongJ

‘II User Euidé

3 Applications
3.1 pf—localizationl
‘3.1.1 DescriptionJ
3.1.2 Usaée
3.1.3 Example configuration file
3.2 RawLogViewer‘
321 Description
322 Usage o

vi CONTENTS

3.3 rbpf—slag 15

3.3.1 DescriptionJ 15

332 Usage o e 15

3.3.3 Example configuration file 15

3.4 rawlog—grabbeﬂ 16
3.4.1 Description oo 16

342 Usage 16

3.4.3 Configuration files 16

4 File formats 19
III Programming guid 21
5 The libraries 23
6 Your first MRPT program 25
6.1 Source fileso 26
6.2 The CMake project 1O o e 28
6.3 Generating the native projects‘ 29
6.4 Compila 29
6.5 SUMMATY . . . o o o o e 29

7 Linear algebra 31
.............................. 31
711 Declaration oo 31

712 TFixed-size matrices 33

713 Storageinfiles 33
.............................. 33
721 Declaration oo 33

722 ReSIZING . o . o o oo 34

7.2.3 Storage in files L. 34

‘7.3 Basic operations L 35
‘7.4 Optimized matrix operations‘ 36
7.5 Text owtput] . . . o o o 37
‘7.6 matrices manipulation 37
7.6.1 Extracting a submatrix 37

7.6.2 Extracting a vector from a matrid 37

7.6.3 Building a matrix from parts 38

‘7.7 Matrix decomposition 38

CONTENTS

8 Mathematic algorithms‘
8.1 Fourier Transform (FET)o oo
8.2 Statistics
8.3 Spline interpolation.
‘8.4 Spectral graph partitioning
8.5 Quaternions‘
8.6 Geometry functions. oo

8.7 Numeric Jacobian estimation|

9 3D geometrﬁ
‘9.1 IntroductionJ
9.2 Homogeneous coordinates geometr;ﬂ
9.3 Geometry elements in MRPTo oo ..
931 2D POIMES .« « v o e e e
9.3.2 3D Points .« o oo
9.3.3 2D POSES . . . e
‘9.3.4 3D poses

‘10 Serialization
‘10.1 The problem of persistence
10.2 Approach used in MRPT . . oo
10.3 Run-time class identification
10.4 Writing new serializable classes

10.5 Serializing STL containerso

‘11 Smart Pointers
11.1 Overview v v vt e e e e
11.2 Uses within MRPT oo oooo e
‘11.3 Do’s and Don’ts‘
11.3.1 Always create from dynamic memory
‘11.3.2 Do not create a SM from a local variable
11.3.3 Freeing a shared objecto . oo

11.3.4 Freeing an alias onlﬁ

12 Images
12.1 The central class for images

‘12.2 Basic image operations
‘12.3 Feature extractionJ
12.4 SIFT descriptors‘

vii

39
39
39
39
39
39
39
39

41
41
41
41
41
41
41
41

45
45
45
47
48
48

49
49
49
49
49
49
49
49

viii

13 Rawlog files (datasets)‘

13.1 Format #1: A Bayesian filter-friendly file format]
‘13.1.1 DescriptionJ

13.1.2 Actual contents of a ”.rawlog” file in this format, . . .

‘13.2 Format #2: An timestamp-ordered sequence of observations‘ .
13.2.1 Description

‘13.2.2 Actual contents of a ”.rawlog” file in this format‘ C

‘13.3 Compression of rawlog ﬁles‘
‘13.4 Generating Rawlog ﬁles‘

13.5 Reading Rawlog files

13.5.1 Option A: Streaming from the ﬁlé

‘13.5.2 Option B: Read at once

‘14 GUI classes

‘14.1 Windows from console programs

‘14.2 Bitmapped ;zraphics‘
‘14.3 3D rendered EraDhics‘
‘14.4 2D vectorial DlOtS‘

15 OS Abstraction Layeﬂ

‘15.1 Cross platform Support
‘15.2 Function Areas

15.2.1 Threading
15.2.2 Sockets
15.2.3 Time and datd
‘15.2.4 String parsing

.....................

116 Probability density functions (pdfs)

‘16.1 Efficient pose sample generator

17 Random number generators

17.1 Generators oo
‘17.2 Multiple samples

‘18 Observations

18.1 The generic interface
‘18.2 Implemented observations
18.2.1 Monocular images‘
18.2.2 Stereo images‘

CONTENTS

53
53
93
o4
o4
o4
54
54
95
56
56
56

57
57
57
57
57

59
99
99
99
59
59
99
59

61
61

63
63
63

65

CONTENTS

19

Metric map classes‘

19.1 The generic interface of mapd
19.2 The “multi-metric map” containeﬂ
19.3 Tmplemented MAPS . . .« . o ottt
19.4 Configuration block for a multi-metric map

20

Probabilistic Motion Models

20.1 Introduction.
20.2 Gaussian probabilistic motion model
20.3 Thrun et al.’s book particle motion mode]J

21

Sensor Interfaces‘

21.1 Communications oo
21.1.1 Serial ports‘
21.1.2 USB FIFO with FTDI chipsetl

21.2 Summary of SEMSOTS . o o e

21.3 The unified sensor interfacé

21.4 How rawlog-grabber works

22 Kalman filters

92.1 Tntroduction o oo
222 Algorithms
22.3 How to implement a problem as a KF‘

23

Particle ﬁlters‘

923.1 Introduction o oo

23.2 Algorithms oo
23.2.1 SIé

23.2.2 Auxiliary PF

23.23 Optimal PF

23.2.4 Optimal-rejection sampling PF

‘23.3 Resampling schemes‘
‘23.4 Implementation exaleeS‘

ix

67
67
68
68
69

71
71
72
75

77
7
7
78
78
79
79

81
81
81
81

CONTENTS

Listings

‘6.1 A very simple MPRT DrofzramJ

xi

xii

LISTINGS

Part 1

First steps

Chapter 1

Introduction

1.1 Why a new library?

Many good scientific programs and programming libraries exist out there.
When working with matrices, vectors, and graphical representations, appli-
cations like MATLAB or Octave excel. If one’s needs are efficient image
algorithms under C and C++, OpenCV or VXL are good bets. Other
libraries provide Bayesian inference or random number generators for a va-
riety of probability distributions. When interfacing a variety of sensors, a
low-level language as C is probably one of the best ways to develop a ro-
bust and efficient implementation. A problem raises only when a project
requires performing many or all of these tasks under a single and sensible
development framework, since each library declares its own data structures.
For example, an image grabbed by an OpenCV program cannot be directly
sent to a MATLAB program which detects features.

The development of mobile robotics software is one of those complex
projects that require having at hand a variety of heterogeneous tools: a
robot may capture an image from an [EEE1394 camera, extract features
from it, read odometry information from wheel encoders through a serial
port, and then fuse all these data using a Kalman filter in matrix form.
This contains tasks which range from low-level code (close to hardware), up
to linear algebra.

1.2 What is MRPT?

To face the development of such software, we have created the Mobile Robot
Programming Toolkit, or MRPT. This framework acts as the glue that makes

3

4 CHAPTER 1. INTRODUCTION

possible to interconnect several third-party libraries, but it also implements
several features on its own.

Despite the name, MRPT currently comprises several generic libraries in
C++ which can be perfectly employed for developing any kind of scientific
application that requires 2D plots, linear algebra, 3D geometry, Bayesian
inference, 3D scene animations, or any combination of them.

In the specific field of mobile robotics, MRPT is aimed to help researchers
to design and implement algorithms in the areas of Simultaneous Localiza-
tion and Mapping (SLAM), computer vision and motion planning (obstacle
avoidance). The libraries include classes for easily managing 3D(6D) ge-
ometry, probability density functions (pdfs) over many predefined variables
(points and poses, landmarks, maps), Bayesian inference (Kalman filters,
particle filters), image processing, path planning and obstacle avoidance,
3D visualization of all kind of maps (points, occupancy grids, landmarks,...),
and “drivers” for a variety of robotic sensors.

1.3 What is this book about?

This document tries to address the needs of two different kinds of readers:

e Firstable, users of the MRPT programs. The toolkit is not only a
collection of libraries, but also contains some ready-to-use programs.
With those applications, a user can record data from a mobile robot,
manipulate the logs if needed, and create point or occupancy grid-
maps using state-of-the-art algorithms without typing a single line of
source code.

e Developers. Users who pretend to integrate their own algorithms
into MRPT or to use it as a layer on which to develop more powerful
applications or libraries.

Obviously, many readers may fit within both kinds of readers, but for
reasons of clarity, this book is structured into two well-differentiated parts.
Part II addresses using existing programs, while Part IIT discusses more
in-deep details required for MRPT programmers.

1.4 What is this book not about?

The intention is that this book does not become one of those boring, and
nearly useless hard copies of a library reference. This book pretends to

1.5. HOW MUCH DOES IT COST? 5

let a programmer know what is inside MRPT, as a birth-eye-view. Once
he or she needs to handle any specific class, the reference documentation
(created with Doxygen) will be an invaluable tool, and indeed one of our
main concerns during the development of MRPT has been an extensive and
good reference documentation, which is available online at the MRPT web
site [?].

But before reading that documentation, the programmer should have a
gross idea of how things are managed within MRPT, and that is precisely
the aim of this book.

1.5 How much does it cost?

MRPT is free software. Free in both senses: you can use it without any
cost, and it is an Open Source project. We have released the sources under
GNU General Public License 3. Feel free to modify the sources for your
needs, to the extent allowed by the aforementioned license. If you want to
contribute with patches or bug reports (or even better, bug fixes!), please
contact the authors through the mailing list: mrpt-help@lists.sourceforge.net

Despite its beginnings at the MAPIR Laboratory in the University of MRPT is released
Malaga, several people world-wide have contributed in different ways to its under GNU GPL 3.
development since its release as an Open Source project. We kindly thank
everyone who has helped in any way, and hope more people continue getting
involved in the futuri.

1.6 OS restrictions

MRPT is designed to be cross-platform. It works under 32bit and 64bit
systems. Thus, the good news is that any user application developed with
MRPT and no other OS-dependant API will also become cross-platform
without any extra effort.

The libraries are daily tested under Windows 32bit and Linux. In theory
they should also work under any POSIX-compatible system equipped with
a decent C++ compiler, like Mac OS X, Solaris, BSDs, etc, but we have not
verified all these platforms yet@.

'The complete list of authors can be checked out online at
http://babel.isa.uma.es/mrpt/index.php/Authors

2An up-to-date list of systems where MRPT has been completely tested can be found
in http://babel.isa.uma.es/mrpt/index.php/Supported_Platforms

6 CHAPTER 1. INTRODUCTION

1.7 Robotic software architectures

MRPT provides several ready-to-use data structures and algorithms which
can be directly used to build software aimed to be run on a vehicle or robot.
In fact, some MRPT applications (e.g. rawlog-grabber) are designed for
this purpose.

However, intelligent robots usually require a much more complex soft-
ware than a single application. Robotic software architectures play the role
of splitting the code into independent programs (or “modules”) which, as a
whole, comprise the robot software. In such a framework MRPT might be
just a “low-level” library.

A number of publicly available frameworks exist. In our group, we de-
veloped the BABEL system [?], available online for download at [?]. Other
development environments are the Player project [?], MOOS [?] and CAR-
MEN [?].

Chapter 2
Compiling

This chapter explains how to compile the MRPT libraries and applications,
and also whether a user may instead prefer a pre-compiled version.

If you are sure you prefer (or have to) compile MRPT from sources, skip
the next section and continue with section 2.2.

2.1 Binary distributions

For Windows users, may want to only use existing MRPT applications,
so they do not pretend to develop custom programs based on MRPT. For
such users, precompiled binary distributions of MRPT exist and perhaps
are a better choice than compiling it from sources. These binary packages
also allow compiling custom MRPT-based programs, but if the user needs
a compiler different that Visual Studio C++, MRPT had to be compiled
from sources. For Linux users, precompiled packages from the repositories
are recomendable not only for using MRPT applications, but also for devel-
opment.

In the case of 32bit Windows XP/Vista, binary packages are available
for download at the main MRPT download page!.

There are packages for GNU /Linux for the following distributions:

e Debian (unstable and testing repository).
e Ubuntu (from version 9.04).

e Fedora Core 9,10 and 11.

"http://babel.isa.uma.es/mrpt /downloads,/

7

8 CHAPTER 2. COMPILING

All the packages can be installed by executing:
$ sudo apt-get install mrpt-apps mrpt-dev mrpt-doc
or manually from synaptic or the appropriate package manager.

2.2 Prerequisites

As with any mid or large-size software collection, MRPT requires some
programs and libraries to be installed in your system before you can compile
it. Next sections explain the required steps for each system, but in general
the main requisites are:

e CMake: A powerful cross-platform build system.
e wxWidgets: An extensive GUI toolkit.

e OpenCV: A widely-used computer vision library.

2.2.1 GNU/Linux
Debian, Ubuntu

Invoke:

sudo apt-get install build-essential cmake libwxgtk2.8-dev libwxbase2.8-dbg
libwxgtk2.8-dbg libftdi-dev libglut3-dev libhighgui-dev 1ib3ds-dev
libboost-program-options-dev

Note that if version 2.8 of wxWidgets is not available in your distribution,
it would have to be installed manually.

Fedora

Invoke as root:
yum install gcc gcc-c++ make cmake wxGTK-devel opencv-devel freeglut-devel
1ib3ds-devel boost-dev

OpenSUSE

Invoke:

sudo zypper install make gcc gcc-c++ cmake cmake-gui pkg-config
zlib-devel wxGTK-devel wxGTK-gl libusb-devel freeglut-devel 1lib3ds-devel
libboost-program-options

Installing OpenCV on OpenSUSE

2.3. COMPILING 9

Source directory Binary directory

] mrpt-0.6.2] my-mrpt-bin HHI:>
=] CMakelLists.txt

=] CMakeCache.txt
] src

=) MRPTConfig.cmake] }
7 include b IC—)| Visual Studio

] bin

L () =

Figure 2.1: The concepts of source and binary (or build) directories with
the CMake toolchain.

OpenCV must be downloaded and compiled from sources manually in
OpenSUSE. Download the opencv-1.0.0.tar.gz Linux sources and follow these
steps:

1. Install the dependencies. This will assure some packages required by
OpenCV GUI and video grabbing. Invoke:

sudo zypper install make gcc gcc-c++ wxGTK-devel 1libdc1394-devel
librawl394-devel libpng-devel libjpeg-devel

Optionally, if you enable the ”Packman repository”, the package ffm-
peg should be also installed.
2. Decompress the tarball:

tar -xf opencv-1.0.0.tar.gz

3. Then go to the newly created directory and invoke the configure tool:
./configure

If everything goes fine, no error will be reported as all the dependencies
are satisfied. Now compile and install OpenCV with:

make && sudo make install && sudo /sbin/ldconfig

http://sourceforge.net/project/showfiles.php?group_id=22870&package_id=16948

10 CHAPTER 2. COMPILING

2.2.2 Windows
2.3 Compiling

2.4 Building options

The table summarizes the most important options which can be set through
the CMake gui (ccmake, cmakesetup, or cmake-gui):

For all platforms/compilers

BUILD_SHARED_LIBS Build static libraries if set to OFF, or dynamic libraz
BUILD_EXAMPLES Whether you want to compile all the examples in the
MRPT_HAS_BUMBLEBEE To enable integration of the Bumblebee stereo camer
MRPT_ALWAYS_CHECKS_DEBUG If set to ON, additional security checks will be perfor
MRPT_ALWAYS_CHECKS_DEBUG_MATRICES If set to ON, additional security checks will be perfor
MRPT_OCCUPANCY_GRID_CELLSIZE Can be either 8 or 16 (bits). The size of each cell in
USER_EXTRA_CPP_FLAGS You can add here whatever additional flags to be pas
MRPT_HAS_ASTAN_FONTS Enables Asian fonts in CCanvas, but increases librar
BUILD_xSENS Whether to use the CMT library for interfacing xSen

Microsoft Visual Studio

CMAKE_MRPT_HAS_VLD Whether to include the Visual Leak Detector (VLK). Default is OFF. |

GNU GCC compiler only

MRPT_ENABLE_LIBSTD_PARALLEL_MODE Enables the experimental GNU libstdc++ parallel mo
MRPT_ENABLE_PROFILING Enables generation of information required for profilin
MRPT_OPTIMIZE_NATIVE Enables optimization for the current architecture (-mt

Part 11

User guide

11

Chapter 3

Applications

3.1 pf-localization

3.1.1 Description
3.1.2 Usage
3.1.3 Example configuration file

13

14 CHAPTER 3. APPLICATIONS

3.2 RawLogViewer

3.2.1 Description
3.2.2 Usage

3.3. RBPF-SLAM

3.3 rbpf-slam

3.3.1 Description
3.3.2 Usage
3.3.3 Example configuration file

15

16 CHAPTER 3. APPLICATIONS

3.4 rawlog-grabber

3.4.1 Description

rawlog-grabber is a command-line application which uses a generic sensor
architecture to allow collecting data from a variety of robotic sensors in real-
time taking into account the different rates at each sensor may work. This
program creates a thread for each sensor declared in the config file and then
saves the timestamp-ordered observations to a rawlog file - the format of
those files is explained in Chapter

The valuable utility of this application is to collect datasets from mobile
robots for off-line processing.

3.4.2 Usage

This program is invoked from the command line with:

rawlog—grabber <config_file.ini>

3.4.3 Configuration files

The format of the configuration file is explained in the comments of the

following prototype file. Refer also to the directory
MRPT/shared/mrpt/config_files/rawlog-grabber

for more sample files and to the next sections for each specific sensor].

//

// Ezample config file for rawlog—grabber

//

// ~ The MRPT project

// Jose Luis Blanco Claraco (C) 2005—2008
//

// Each section [XXXXX] (except [global]) sets up a thread in

// the rawlog—grabber standalone application . FEach thread collects
// data from one sensor or device, then the main thread groups

// and orders them before streaming everything to a rawlog file.

// The name of the sections can be arbitrary and independent

// of the sensor label. The driver for each sensor is actually
// determined by the field ”driver”, which must match the name
// of some class in mrpt:: hwdrivers implementing CGenericSensor.
//

// Section: Global settings to the application

"However, notice that the most up-to-date documentation will be always available in
the reference of CGenericSensor and their derived classes.

http://babel.isa.uma.es/mrpt/reference/stable/classmrpt_1_1hwdrivers_1_1_c_generic_sensor.html

3.4. RAWLOG-GRABBER 17

//

[global]

// The prefiz can contain a relative or absolute path.
// The final name will be <PREFIX>_date_time.rawlog
rawlog_prefix = dataset

// Milliseconds between thread launches
time_between_launches = 800

// SF=1: Enabled —> Observations will be grouped by time periods.
// SF=0: Disabled —> All the observations are saved independently

// and ordered solely by their timestamps.
use_sensoryframes = 1

// Only if 7use_sensoryframes =1": The mazimum time difference between
// observations within a single sensory—frame.

SF_max_time_span = 0.25 // seconds

// Observations will be processed at the main thread with this period
GRABBER_PERIOD_MS = 1000 // ms

// Here follow sections for each sensor.
// This is one example for a Hokuyo laser scanner:

//
// SENSOR: LASER_2D

//

[LASER-2D |

driver = CHokuyoURG

process_rate = 90 ; Hz

sensorLabel = HOKUYOUTM

pose_x =0 ; Laser range scaner 3D position
pose_y =0 : on the robot (meters)
pose_-z = 0.31

pose_yaw = 0 ; Angles in degrees
pose_pitch = 0

pose_roll =0

COM_port_WIN = COM3

COM _port_LIN = ttyACMO

Specification for: Hokuyo Laser
Specification for: GPS

Specification for: Camera

18

CHAPTER 3. APPLICATIONS

Chapter 4

File formats

In this chapter we summarize the format of MRPT data files which are
managed by the library itself and some of the applications, sorted by their
most common file extensions.

e .gridmap (or compressed version .gridmap.gz). A 2D occupancy
grid map. These files consist on one COccupancyGridMap2D object
serialized into a binary file. See Chapter [10] for more details on how
to serialize and de-serialize objects.

e .ini. Configuration files. The format is plain text, with the file
structured in sections (denoted as [NAME]) and variables within each
section (denoted by var=value). These files can contain comments,
which may start with ; or //.

e .simplemap (or compressed version .simplemap.gz). A collection of
pairs location-observations, from which metric maps can be built eas-
ily. The file actually contains a binary serialization of an object of
the class CSensFrameProbSequence. See Chapter [10 for more de-
tails on how to serialize and de-serialize objects. The application
observations2map can convert a simplemap file into a set of different
metric maps (grid maps, point maps,...) and save them to different
files. Refer to the documentation of that program for details.

e .rawlog. Robotic datasets. The format of these files is explained
in detail in the Chapter [13. These files can be managed and visual-
ized with the application RawlogViewer, or captured from sensors by
rawlog-grabber.

19

20

CHAPTER 4. FILE FORMATS

Part 111

Programming guide

21

Chapter 5

The libraries

23

24 CHAPTER 5. THE LIBRARIES

The Mobile Robot Programming Toolkit (MRPT)

MRPT applications |

libmrpt-reactivenav libmrpt-hmtslam libmrpt-hwdrivers

libmrpt-core

libmrpt-sift-hess H libmrpt-ann ll libmrpt-3ds I | libmrpt-aria I

A—» B :Auses B

Bumblebee

Figure 5.1: An overview of the individual libraries within MRPT.

Chapter 6

Your first MRPT program

At this point, it is assumed that MRPT has been already compiled in any
arbitrary user directory (or, optionally, installed in the system, e.g. using
synaptic). If this is not the case, refer to Chapter[2]for instalation instruc-
tions.

In this chapter you will learn the basics of the CMake building system
and how to use it to create and compile a very simple MRPT program. The
complete files of this example can be found within the MRPT packages at
MRPT/doc/mrpt_examplel.tar. g.

1Or downloaded from this link: mrpt_examplel.tar.gz

25

http://babel.isa.uma.es/mrpt-browse-code/mrpt-0.6.3/doc/mrpt_example1.tar.gz

26 CHAPTER 6. YOUR FIRST MRPT PROGRAM

6.1 Source files

The first step is to include the MRPT headers in your program. Inserting
the following lines will probably be enough for most applications:

#include <mrpt/core.h>

using mamespace mrpt;

using mamespace mrpt:: utils;
using mamespace mrpt:: poses;
using mamespace mrpt::slam;
using mamespace std;

If you prefer to explicitly refer to MRPT classes through their names-
paces (like typing mrpt: :math::CMatrixFloat instead of CMatrixFloat),
remove the using namespace statements (and prepare your fingers to type a
few extra characters!).

The header mrpt/core.h includes all the classes in a number of names-
paces:

1. mrpt: :bayes: Different particle filters and Kalman filter algorithms.
2. mrpt::compress: Data compression/decompression algorithms.
3. mrpt::gui: GUI windows for 2D and 3D visualization.
4. mrpt::math: A lot of functions for maths stuff, vectors, matrices, etc.
5. mrpt::opengl: 3D scene representation and rendering.
6. mrpt: :poses: 2D and 3D geometry and pdf.
7. mrpt::random: Pseudo-random numbers generators.
8. mrpt::scan_matching: Scan matching-related static functions.
9. mrpt::slam: SLAM, localization, maps, robot’s observations, etc.
10. mrpt::synch: Multi-threading, synchronization utilities
11. mrpt::system: OS abstraction layer.
12. mrpt: :topography: GPS coordinate transformations, etc.
13. mrpt::utils: Serialization, sockets, streams, etc.

14. mrpt::vision: Classes for computer vision, detectors, features, track-
ing.

6.1. SOURCE FILES 27

If you want to include classes from additional libraries, like mrpt-hwdrivers,
the corresponding include statements must be added:

#include <mrpt/hwdrivers.h> // Includes mrpt:: hwdrivers namespace
using mamespace mrpt:: hwdrivers;

Now we will see a complete program. This very basic example just
creates a pair of 2D (z,y, ¢) and 3D (z,y, z, yaw, pitch, roll) poses and com-
putes the composed pose R & C' and the distances between them:

Listing 6.1: A very simple MPRT program

#include <mrpt/core.h>

using mamespace mrpt:: utils;
using mamespace mrpt:: poses;
using mamespace std;

int main ()

// Robot pose: 2D (z,y,phi)
CPose2D R(2,1, DEG2RAD(45.0));

// Camera pose relative to the robot: 6D (z,y,z,yaw,pitch,roll).
CPose3D C(0.5,0.5,1.5,
DEG2RAD(—90.0) ,DEG2RAD (0) ,DEG2RAD(—90.0));

cout << "R:.” << R << endl;

cout << "C:.” << C << endl;

cout << "R4C:” << (RHC) << endl;

cout << 7 |R-C|=_" << R.distanceTo(C) << endl;
return 0;

Now, save this program as test.cpp and half the work is done!

28 CHAPTER 6. YOUR FIRST MRPT PROGRAM

6.2 The CMake project file

The simplest CMake project must contain just one file CMakeLists.txt.
Create a file with that name and with the following contents in the same
directory than the file test.cpp:

PROJECT (mrpt_examplel)

CMAKE MINIMUM_REQUIRED (VERSION 2.4)
#
Indicate CMake 2.7 and above that we don’t want to miz relative
and absolute paths in linker lib lists.

Run ”cmake —help—policy CMP0003” for more information .

#

1f (COMMAND cmake_policy)
cmake_policy (SET CMP0003 NEW)

endif (COMMAND cmake_policy)

#

The list of ”1libs” which can be included 1is:

— core: The main library. It will be included by default.
— hmtslam —> libmrpt—hmtslam

— hwdrivers —> libmrpt—hwdrivers

— reactivenav —> libmrpt—reactivenav

— aria —> libmrpt—aria

— zsens —> libmrpt—zsens

#

FIND PACKAGE(MRPT REQUIRED core) # hwdrivers aria ...)

Declare the target (an ezecutable)
ADD_EXECUTABLE(mrpt_examplel
test.cpp

)

Tell the compiler to link against MRPT libraries .
TARGET_LINK_LIBRARIES (mrpt_examplel ${MRPT_LIBS})

There are two important steps in this CMake script: looking for the
MRPT library and defining a target (which eventually will become a Visual
Studio Project, or a Makefile) named mrpt_examplel which contains only
one source file test. cpp.

Let’s review briefly how CMake look for the MRPT library. Recall Fig-
ure 2.1 and the discussion in that chapter on source vs. binary directories
in CMake. With the command FIND_PACKAGE(...), CMake will look for
a file named MRPTConfig.cmake, which contains information such as where
are the library header directories, or which libraries should a program link
against. If you have compiled MRPT manually, this directory will be your
MRPT binary directory. If MRPT has been installed in a Unix system, it
should be located at /usr/share/mrpt/.

6.3. GENERATING THE NATIVE PROJECTS 29

6.3 Generating the native projects

Now, a native project must be created to compile your program, where na-
tive means a project for your preferred compiler or IDE which is supported
by CMake. Some examples are: Unix makefiles, Visual Studio solutions,
Code Blocks projects, Eclipse projects, etc. In any case, create a new di-
rectory to make an off-tree build, for example first_mrpt_bin. We will
refer to the directory with the sources (test.cpp and CMakeLists.txt), as
path_first_mrpt_src.

Under Unix or GNU/Linux, go to the new empty directory and invoke:

first_mrpt_bin$ ccmake {path_first_mrpt_src}

On Windows, execute cmake-gui or cmakesetup and select the source
({path_first_mrpt_src}) and binary (first_mrpt_bin) directories. Note
that in some Linux distributions cmake-gui is also available.

At this point, press the button “configure” in CMake, then “generate”
to build your project. If CMake complains about not finding MRPT, set
manually the variable MRPT_DIR to the directory where you compiled MRPT
(or /usr/share/mrpt/ if it was installed through synaptic or apt).

6.4 Compile

Once generated the project for your favorite compiler, just manage it as
usual. For example, for Unix Makefiles, go to the binary directory and
invoke make. For Visual Studio, open the solution file mrpt-examplel.sln
and compile as usual.

6.5 Summary

Creating user applications with MRPT requires adding the corresponding
MRPT headers to the sources and creating a CMake project which includes
MRPTConfig.cmake using the command FIND_PACKAGE(MRPT REQUIRED).
The simple project presented in this chapter could be hopefuly used as a
base for the user to create more complex applications.

30

CHAPTER 6. YOUR FIRST MRPT PROGRAM

Chapter 7

Linear algebra

In this chapter you will learn one of the most basic features of MRPT: vector
and matrix manipulation. The basic syntax in many cases will remain very
close to that used in MATLAB, although the syntax must change a little
for using the most optimized functions if the application performance is a
priority.

In the following, all the required classes can be included in a program
with:

#include <mrpt/core.h>

using mamespace mrpt;

using mamespace mrpt :: math;
using mamespace mrpt:: utils;
using mamespace mrpt::system ;

Currently there is no support for reading/writing binary MATLAB files,
but this limitation is not severe since files saved from MATLAB in plain
text (with the format --ascii) are fully supported.

Notice that, like in C/C++ languages in general, the first element in
any sequence has the index 0. This convention also applies to all matrices
and vectors in MRPT. As usual, for matrices the first index corresponds to
rows.

7.1 DMatrices

7.1.1 Declaration

MRPT defines two kind of matrices: variable-sized and fixed-sized. Most of
this chapter will focus on the dynamic-size kind, but most of the operators

31

32 CHAPTER 7. LINEAR ALGEBRA

and methods are applicable to both types of objects.
Matrices are implemented as class templates in MRPT, but the following
two types are provided for making programs more readable:

typedef CMatrixTemplateNumeric<float> CMatrixFloat ;
typedef CMatrixTemplateNumeric<double> CMatrixDouble;

A matrix with any given size can be created by passing it at construction
time, or otherwise it can be resized later as shown in this example:

CMatrixDouble M(2,3); // Create a 223 matriz
cout << M(0,0) << endl; // Print out the left—top element

CMatrixDouble A; // Another way of creating
A.setSize (3,4); // a 2z3 matriz
A(2,3) = 1.0; // Change the bottom—right element

A matrix can be resized at any time, and the contents are preserved if
possible. Notice also in the example how the element at the r’th row and
c’'th column can be accessed through M(r,c).

Sometimes, predefined values must be loaded into a matrix, and writing
all the assignments element by element can be tedious and error prone. In
those cases, better use this constructor:

const double numbers[] = {

1 72 737

4.6,6 3

CMatrixDouble N(2,3,numbers);

cout << ”Initialized omatrix:.” << endl << N << endl;

If the size of the vector does not fit exactly the matrix, an exception will
raise at run-time. This example above also illustrates how to dump a matrix
to the console, which is useful for debugging in case of small matrices.

7.2. VECTORS 33

7.1.2 Fixed-size matrices

When the size of matrices is known a priori, it is advisable to use the al-
ternative implementation based on fixed-size matrices’. These objects are
managed very similarly to dynamic matrices, including most operators and
methods. Naturally, the only difference comes into their declaration:

const double numbers[] = {

1,2,3,

4,5,6 };

CMatrixFixedNumeric<double ,2,3> N (numbers);
cout << ”Initialized omatrix:_.” << endl << N << endl;

Predefined type names exist for double matrices of many common sizes:

CMatrixFixedNumeric<double ,10,3> M;
CMatrixDouble33 A= ("M) = M; // Predefined type for 3z3

Whenever possible, employ fixed-sized matrices, especially for small ma-
trices, since the speed gain can be in the order of ten or more for most
operations.

7.1.3 Storage in files

When managing large matrices, it is useful to load or save them in files.
In particular, it would be even more handful to make those files compati-
ble with MATLAB. This format exists and is as simple as plain text files.
For example, the following small program loads a matrix from a file, then
compute its eigenvectors and save them to a different file:

CMatrixDouble H,Z,D;

H.loadFromTextFile("H. txt”); // H<— ’H.txzt’

H.eigenVectors (Z,D); // Z: eigenvectors, D: eigenvalues
Z.saveToTextFile (7Z. txt”); // Save Z in ’Z.txzt’

7.2 Vectors

7.2.1 Declaration

The base class for vectors is the standard STL container std::vector,
such as a user will normally declare and manipulate objects of the types

IThis feature is available in MRPT 0.7.0 or newer.

34 CHAPTER 7. LINEAR ALGEBRA

vector_float or Vector_double@, for element types being float or double,
respectively:

typedef std::vector<float> vector_float;
typedef std::vector<double> vector_double;

7.2.2 Resizing

To resize a vector we must use the standard std: : vector methods, that is:

vector_double V(5,1); // Create a vector with 5 ones.
V.resize (10);
cout << V << endl; // Print out the wvector to console

7.2.3 Storage in files

There is less support yet to vector I/O than in the case of matrices, so it is
normally advisable to use matrices when loading text files, especially when
the format of the file is unknown (e.g. column vs. row vector).

Reading a vector from a text file

This works for row vectors only:

vector_double v;
loadVector (CFileInputStream (”in.txt”), v);

Saving to a text file

The function vectorToTextFile allows saving as a row, as a column, and
optionally, to append at the end of the existing file:

vector_double v(4,0); // [0 0 0 0]

vectorToTextFile (v, ”ol.txt”); // Save as row
vectorToTextFile (v, ”02.txt”, true); // Append a new row
vectorToTextFile (v, ”03.txt”, false, true); // Save as a column

2One can also use CVectorFloat and CVectorDouble, which have some useful op-
erations implemented as methods, but most MRPT interfaces expect the simpler STL
containers.

7.3. BASIC OPERATIONS

Serializing

35

If you prefer to serialize the vectors in binary form (see chapter [10), that
can be done as simply as:

vector_double v = linspace(0,1,100);

CFileOutputStream (?dump. bin”) << v;

/)10 . 1]

7.3 Basic operations

In this section we will go through a quick summary of unary and binary
operations for matrices, vectors, or a mix of them. Table [7.3] lists some
of the most simple of these operations in common mathematical notation,

in C4++ using MRPT operators and alternative functional forms.

Most

operations apply indistinctly to dynamic and fixed-size matrices.

Description Operation MRPT C++ 2nd alternative
Read element a— M(i,j) a = M(i,j) a=M.get_unsafe(i,])
Write element M(i,j) — a M(i,j) = a M.get_unsafe(i,j)=a
Matrix inverse M1 'M M.inv()
Matrix transpose MT "M
Matrix assignment Q—M Q=M
Matrix comparison Q= M? Q==M, Q=M
Matrix sum/substract | M +Q, M — Q M+Q, M-Q
In place sum M — M+Q M+=Q
Vector sum/substract V4w, v—w V+W, V-W
Scalar multiplication M «— Ma M*=a
Matrix multiplication MQ M*Q
Matrix multiplication M — MQ M = M*Q M.multiply (Q)
Matrix/vector mult. Muv M*v
Multiply by inverse MQ! M/Q
Determinant | M| M.det()

Naturally, some operations carry restrictions on the sizes of the operants (e.g.
matrix multiplication). An exception will be thrown if invalid operations are found
in run-time for dynamic-size matrix, while the compiler will complain about the
invalid operation for fixed-size ones.

This table does not contain all the implemented operators, for all the details

please refer to:

e mrpt::math

e mrpt::math::CMatrixTemplateNumeric<T>

http://babel.isa.uma.es/mrpt/reference/svn/namespacemrpt_1_1math.html
http://babel.isa.uma.es/mrpt/reference/svn/classmrpt_1_1math_1_1_c_matrix_template_numeric.html

36 CHAPTER 7. LINEAR ALGEBRA

Other methods which may be easy to remember to those programmers famil-
iarized with MATLAB are:

e M.ones(A,B) : Generates a A X B matrix of ones.
e M.zeros(A,B) : Generates a A x B matrix of zeroes.

M.unit (A) : The A x A unity matrix.

e size(M,1) : Number of rows in M, equivalent to M.getRowCount ().
e size(M,2) : Number of columns in M, equivalent to M.getColCount ().

e v=linspace(a,b,N) : Generates a vector v with N elements in the range
[a, b].

e mean(v), stddev(v) : Mean and standard deviation of the vector v. There
is also a combined meanAndStd(...).

e cumsum(v) : Cumulative sum of vector v.

e histogram(v,...) : Histogram of a vector. See reference documentation.
As an example of the operators described so far, the equation

R=H-C-H'

can be implemented with the next code fragment:

CMatrixDouble C(3,3);
CMatrixDouble H(5,3);

// C=diag ([1 2 3])

C(0,0) = 1;
c(1,1) = 2;
c(2,2) = 3;

// randomize matriz
mrpt :: random : : matrixRandomUni(H, —1.0,1.0);

CMatrixDouble R =H x C x ("H);

However, this operation, like many others have specialized methods which much
better performance. These common expressions should be known to take advantage
of them, hence they are summarized in the next section.

7.4 Optimized matrix operations

Many common operations with matrices have efficient implementations, as summa-
rized in Table[7.3] In the table M, A, B, C represent matrices while v, w are vectors
and z is a scalar. All these elements must be of the appropriate sizes for the cor-
responding operations to make sense. For clarity, some terms in the “operation”
column are represented in MATLAB notation.

7.5. TEXT OUTPUT

37

Operation Efficient implementation Remarks
M=M+AT M.add_At (A)

M=M+A+AT M.add_AAt (A) A square

M = ABT M.multiply_ABt(A,B)

M= AAT M.multiply_AAt(A)

M=ATA M.multiply_AtA(A)

w = Ab A.multiply_Ab(b,w)

w=ATb A.multiply_Atb(b,w)

M= AB M.multiply_result_is_symmetric(A,B) AB symmetric
M = ABAT A.multiply_HCHt(B,M) B symmetric
M =M+ ABAT A.multiply_HCHt(B,M,false,0,true) B symmetric
z=ABAT A.multiply_HCHt_scalar(B) B sym., result 1x1
M = ABC M.multiply_ABC(A,B,C)

M = ABCT M.multiply_ABCt(A,B,C)

M = AB(ro : end,co : (co +¢)) A.multiply_SubMatrix(B,M,c0,r0,c)

M=A""1 A.inv_fast(M) Contents of A are lost
sum(A(:)) M. sumA11()

7.5 Text output

7.6 matrices manipulation

7.6.1 Extracting a submatrix

For example, the following MATLAB statement:

A=C(6:8,7:8);

becomes:
CMatrixDouble C(10,10);
CMatrixDouble A(3,2); // Set to the size of the patch to eztract

C.extractMatrix (5,6 ,A)

Notice again how in MATLAB the first elements are referenced as 1 while in
MRPT they have 0 as index.

7.6.2 Extracting a vector from a matrix

Extracting a column, for example v = C(:, 3), can be implemented with:

CMatrixDouble C(10,10);
vector_double v;
C.extractCol (2,v);

And equivalently for rows, for example v = C(4,:):

CMatrixDouble C(10,10);
vector_double v;
C.extractRow (5,v);

38 CHAPTER 7. LINEAR ALGEBRA

7.6.3 Building a matrix from parts

A matrix can be also built from its 4 parts, such as:

w=(e p)

with:

CMatrixDouble M;
M. joinMatrix(A,B,C,D);

Many other methods exist (please, see the reference for further details) with self-
explaining names: insertRow, appendRow, insertCol, insertMatrix (for inserting
a submatrix in a larger matrix), etc.

7.7 Matrix decomposition

Chapter 8

Mathematic algorithms

8.1 Fourier Transform (FFT)

8.2 Statistics

Mean, std, meanAndStd.

8.3 Spline interpolation

8.4 Spectral graph partitioning
8.5 Quaternions

8.6 Geometry functions

8.7 Numeric Jacobian estimation

39

40

CHAPTER 8. MATHEMATIC ALGORITHMS

Chapter 9

3D geometry

9.1 Introduction
9.2 Homogeneous coordinates geometry

9.3 Geometry elements in MRPT

9.3.1 2D points
9.3.2 3D points
9.3.3 2D poses
9.3.4 3D poses

41

42

CHAPTER 9. 3D GEOMETRY

R —]

v

Figure 9.1: A point in 2D.

9.3. GEOMETRY ELEMENTS IN MRPT 43

X
Figure 9.2: A pose in 2D.
2 Z
() Rol
l (3rd)
. >y
/ Pitch
(2nd)
X Yaw
(1st) __, Arrow indicates

positive direction

Figure 9.3: A pose in 3D.

44

CHAPTER 9. 3D GEOMETRY

Chapter 10

Serialization

10.1 The problem of persistence

Serializing consists of taking an existing object and converting it into a sequence
of bytes, in any given format, such as the contents and state of the object can be
afterward reconstructed, or deserialized.

10.2 Approach used in MRPT

There are many C++ libraries for serializing out there (e.g. boost), although the
MRPT C++ library uses a simple, custom implementation with the following aims:

1. Simplicity: A few and small core functions only.

2. Versioning: If a class changes along time (something really common), a
new version number will be assigned to its serialization, but old stored data
can be still imported.

3. C++ compiler independence: Use only standardized data-lengths. For
example, a data of type "int” has different lengths depending on the machine,
thus it is not allowed to serialize an ”int” variable without forcing it to a
known length.

Currently, the only supported format for serialization is binary, i.e. there is
no support for XML. The reason is that, for robotic applications, it is typically
more important to save data size (and transmission times) between a running,
real-time system. The actual binary frame for each serialized object is sketched in
Figure [10.12.

'In versions before MRPT 0.5.5 the end flag was not present and the first and third
fields were 4 bytes wide (instead of just 1). However, data saved in the old format can be
still loaded without problems.

45

46 CHAPTER 10. SERIALIZATION

1 byte N bytes 1 byte 1 byte
Class name Class name Serialization . End flag
1
length (N) (without final \0°) version Object data 0x88
MSB LSB

Figure 10.1: The binary format of serialized objects in MRPT.

When an object is serialized, its contents are written to a generic destination via
a CStream class. The list of currently implemented streams are (see the reference
of utils: :CStream for more information).

The typical usage of serialization for storing an existing object into, for example,
a file, is to use the << operator of the CStream class:

#include <mrpt/core.h>

using mamespace mrpt;

using mamespace mrpt::slam;

using mamespace mrpt:: math;

using mnamespace mrpt:: utils;

int main ()
// Declare serializable objects:
COccupancyGridMap2D grid;
CMatrix M(6,6);
// Do whatever . ..

// Serialize it to a file:
CFileOutputStream (”saved . gridmap”) << grid << M;

return 0;

To restore a saved object, you can use two methods, depending of whether
you are sure about the class of the object which will be read from the stream,
or not. If you know the class of the object to be read, you can simply use the
i, operator towards an existing object, which will be passed by reference and its
contents overwritten with those read from the stream. An example:

// Declare serializable objects:
COccupancyGridMap2D grid;
CMatrix M;

// Load from the file:
CFilelnputStream (”saved . gridmap”) >> grid >> M;

The other situation if when you don’t know the class of the object which will be
read. In this case it must be declared a smart pointer to a genericutils: :CSerializable

http://babel.isa.uma.es/mrpt/reference/stable/classmrpt_1_1utils_1_1_c_stream.html

10.3. RUN-TIME CLASS IDENTIFICATION 47

object (initialized as NULL to indicate that it is empty), and after using the >>
operator it will point to a newly created object with the deserialized object:

// Declare serializable objects:
CSerializablePtr obj; // NULL pointer

// Load from the file:
CFilelnputStream (”saved . gridmap”) >> obj;

std :: cout << ”Object_class:” << obj—>GetRuntimeClass()—>className;

The next section explains the most important methods of utils: :CSerializable
and runtime class information. In the case of loading objects of unknown class, it
is important to read the MRPT registration mechanism and when you should call
it manually.

Note that these code examples do not catch potential exceptions (more about
exception management in the MRPT here).

Apart from using the operators << and >> over a utils: :CStream, there are two
independent functions, utils: :0bjectToStringand utils: :StringToObject, which
serialize and deserialize, respectively, an object into a standard STL string (std: : string).
The difference of these functions with serialization over normal CStream’s is that
the binary data stream is encoded to avoid null characters (?\0’), such as the re-
sulting string can be passed as a char *. Avoid using these functions but when
strictly necessary, since they introduce an additional processing delay.

10.3 Run-time class identification

All serializable classes must inherit from the virtual class utils::CSerializable, which
provides standard methods to manage any serializable object without knowing its
real class. The most common operation is probably to check whether an object is
of a given type, which can be performed by:

CSerializablePtr obj;
stream >> obj;

// Test if ”obj” points to an object of class ”CMatriz”.
if (IS_CLASS (obj ,CMatrix))

// Or (old format):

if (obj—>GetRuntimeClass() == CLASS_.ID(CMatrix))

If the class to test is not in the current namespace (and there is not a using namespace NAMESPACE;),
you can alternatively use CLASS_ID_NAMESPACE, for example:

if (obj—>GetRuntimeClass () == CLASSIDNAMESPACE(CMatrix, UTILS))

The method CSerializable::GetRuntimeClass() actually returns a pointer to a
UTILS:: TRuntimeClassld data structure, which contains other useful members:

1. The class name as a string:

48 CHAPTER 10. SERIALIZATION

obj—>GetRuntimeClass()—>className;

2. Checking whether a class is a descendent of a given virtual class. An example:

void func(CMetricMap * aMap)
if (IS.DERIVED (aMapCPointsMap))
CPointsMap #pMap = (CPointsMap*) aMap;

}
}

Other useful method of any serializable object is CSerializable::duplicate, which
makes a copy of the object. The internal data, pointers, etc... will be really
duplicated and the original object can be safely deleted.

10.4 Writing new serializable classes

10.5 Serializing STL containers

MRPT supports serializing arbitrarily complex data structures mixing STL con-
tainers, plain data types and MRPT classes. For example:

std :: multimap<double ,std :: pair <CPose3D, COccupancyGridMap2D> > myVar;
file << myVar;

The code above will compile and work without the need of the user to write
any extra code for the multimap<> type.
In the case of STL containers, the binary format consists on:

e The dump of a std::string with the STL container name (dumped using the
serialization format explained above).

e The dump of the strings representing each of the types kept by the container
(the key and value for a map, the values for a list, etc...).

e The number of elements in the container (for all containers but std::pair).

e The recursive dump of each of the elements. Here the same may apply if
the elements are STL containers. For normal MRPT classes, the format
explained above is used here.

Chapter 11

Smart Pointers

11.1 Overview

Why are smart pointers (SM) needed? Aliases.

In MRPT we have chosen the wonderful implementation of smart pointers found
in the STLplus C++ Library Collection [?] due to its versatility, clean interface
and proven robustness. In the following we give some basic tips on SM usage which
should be enough in most situations. If more in-deep information is needed, please
refer to the project website in [?].

11.2 Uses within MRPT
11.3 Do’s and Don’ts

11.3.1 Always create from dynamic memory
11.3.2 Do not create a SM from a local variable
11.3.3 Freeing a shared object

11.3.4 Freeing an alias only

49

50

CHAPTER 11.

SMART POINTERS

Chapter 12

Images

12.1 The central class for images

The main class for image storage is CImage, which internally fully relies on the IPL
format and OpenCV functions for memory management, format conversions, file
I/0, etc. Basically, it is a wrapper for OpenCV C library functionality with the
more attractive appearance of a C++ class and extended with many MRPT-specific
algorithms.

12.2 Basic image operations
12.3 Feature extraction

12.4 SIFT descriptors

o1

52

CHAPTER 12. IMAGES

Chapter 13

Rawlog files (datasets)

This chapter describes the two formats for datasets in MRPT’s binary format, called
“rawlogs”. Many existing formats can be imported as rawlogs due to its versatility
to cope with a wide range of robotic sensors (see the chapter on Observations for
more details).

Rawlog files are the input of many MRPT applications for off-line processing.
The application RawlogViewer incorporates several tools to visualize and manipu-
late these files.

13.1 Format #1: A Bayesian filter-friendly file
format

13.1.1 Description

The purpose of a rawlog file is to reflect as accurately as possible all the data
gathered by a robot as it moves through an environment, autonomously or manually
guided.

Under the perspective of Bayesian SLAM methods, these data are divided in
two clearly differentiated groups: actions, and observations, denoted typically as
ur and zx in the literature, respectively.

Hence, to ease the implementation of Bayesian methods in the MRPT, a rawlog
file is divided in a sequence of actions, observations, actions, observations,
... 7Actions” typically include robot motor actuations (odometry), but any kind
of user-defined actions can be defined as well (e.g. robot arm actuations). ” Obser-
vations” include readings from the rest of robotic sensors: laser scanners, images
from cameras, sonar ranges, etc.

Note that the intention of grouping several observations between two consecu-
tive actions is to assure they are gathered approximately at the same time, although
each individual observation has its own timestamp.

53

54 CHAPTER 13. RAWLOG FILES (DATASETS)

13.1.2 Actual contents of a ”.rawlog” file in this format
A rawlog file is a binary serialization of alternating objects of the classes:

e CActionCollection, one or more actions (e.g. odometry), and

e CSensoryFrame, which stores the observations.

The serialization mechanism of the MRPT is explained in Chapter 10.

13.2 Format #2: An timestamp-ordered sequence
of observations

13.2.1 Description

While the previous format is really well-suited for Bayesian approaches with clearly
separate steps of process action-process observation, in the case of complex datasets
with many different sensors, working at different rates, and possibly without odom-
etry (the typical ’action’ in SLAM algorithms), it is more clear to just store datasets
as an ordered list of observations.

13.2.2 Actual contents of a ”.rawlog” file in this format

In this case, the rawlog file is a binary serialization of objects derived from the
class slam::CObservation. In this case, odometry (if present) is also stored as an
observation. The serialization mechanism of the MRPT is explained in Chapter[T0.

The applications RawLogViewer, rawlog-grabber, and the class slam::CRawlog
all support both rawlog formats.

13.3 Compression of rawlog files

Since MRPT 0.6.0 all rawlog files are transparently compressed using the
gzip algorithm. The compression level is set to 'minimum’ to reduce as much
as possible the computational load, while still deflating file sizes to approximately
33%.

If compatibility with old versions is required, the files can be renamed to
.rawlog.gz, then decompressed using standard tools. To enable compressed in-
put/output in your code, replace the stream classes by their gzip equivalents:

e CFileInputStream — CFileGZInputStream

e CFileOutputStream — CFileGZOutputStream

http://babel.isa.uma.es/mrpt/reference/svn/class_m_r_m_l_1_1_c_action_collection.html
http://babel.isa.uma.es/mrpt/reference/svn/class_m_r_m_l_1_1_c_sensory_frame.html
http://babel.isa.uma.es/mrpt/reference/svn/classmrpt_1_1slam_1_1_c_observation.html
http://babel.isa.uma.es/mrpt/reference/svn/classmrpt_1_1slam_1_1_c_rawlog.html

13.4. GENERATING RAWLOG FILES

13.

4 Generating Rawlog files

95

This section describes the generic method to generate rawlog files from your own
source code, which is useful to transform existing datasets into the MRPT format,
or to capture online data from robotics sensors. The procedure to capture rawlogs
using BABEL modules [?, ?] is explained in the MRPT wiki site. A standalone
application that grabs rawlogs from a set of robotic sensors is now also included
with MRPT, the program rawlog-grabber (see Section [3.4).

#include <mrpt/core.h>

using mamespace mrpt;

using mamespace mrpt:: utils;
using mamespace mrpt::slam;
using mamespace mrpt:: poses;

int

main ()

CFileOutputStream f(”my_dataset.rawlog”);

while (there_is_more_data)

{

g

CActionCollection actions ;
CSensoryFrame SF;

// Fill out the actions:

CActionRobotMovement2D myAction; // For example, 2D odometry
myAction . computeFromOdometry (...);

actions.insert (myAction);

// Fill out the observations:
//
// Create a smart pointer with an empty observation
CObservation2DRangeScanPtr myObs = CObservation2DRangeScanPtr
myObs—>... // Fill out the data

SF.insert (myObs); // "myObs” will be automatically freed.

// Save to the rawlog file:
//

f << actions << SF;

return 0;

}

:: Crea|

te ();

56 CHAPTER 13. RAWLOG FILES (DATASETS)

13.5 Reading Rawlog files

13.5.1 Option A: Streaming from the file

This is the preferred mode of operation in general: actions and observations are read
sequentially from the file, processed, freed, and so on. In this way only the required
objects are loaded in memory at any time, which is mandatory when managing
large datasets (e.g. containing thousands of embedded images). However, notice
that if images are stored externally the rawlog could be loaded at once without
problems.

A typical loop for loading a rawlog in this way is shown next:

CFileGZInputStream rawlogFile (filename); // 7 file . rawlog”
CActionCollectionPtr action; // Smrt. pointer to actions
CSensoryFramePtr observations; // Smrt. pointer to observations
size_t rawlogEntry=0;

bool end = false;

// Load action from rawlog:

while (readActionObservationPair (
rawlogFile
action ,
observations ,
rawlogEntry))

{
// Process action & observations

B

// Smart pointers will be deleted automatically.

13.5.2 Option B: Read at once

A rawlog file can be read as a whole using the class slam::CRawlog. Notice that
this may be impractical for very large datasets (several millions of entries) due to
memory requirements, but for mid-sized datasets it definitively is the easiest way
of loading rawlogs.

CRawlog dataset ;
dataset .loadFromRawLogFile (filename);

http://babel.isa.uma.es/mrpt/reference/svn/classmrpt_1_1slam_1_1_c_rawlog.html

Chapter 14

GUI classes

14.1 Windows from console programs
14.2 Bitmapped graphics

See mrpt: :gui::CDisplayWindow.

14.3 3D rendered graphics

See mrpt: :gui::CDisplayWindow3D.

14.4 2D vectorial plots

See mrpt: :gui::CDisplayWindowPlots.

o7

o8

CHAPTER 14. GUI CLASSES

Chapter 15

OS Abstraction Layer

15.1 Cross platform Support

To write cross-platform and cross-compiler code, we need a layer of functions that
act like a minimum set of services found on any OS and compiler. In MRPT, these
methods are concentrated in the namespace mrpt: :system: :os, and comprise a
range of different areas as enumerated next.

15.2 Function Areas
15.2.1 Threading

15.2.2 Sockets

15.2.3 Time and date

15.2.4 String parsing
15.2.5 Files

59

60

CHAPTER 15.

OS ABSTRACTION LAYER

Chapter 16

Probability density functions
(pdfs)

16.1 Efficient pose sample generator

61

62 CHAPTER 16. PROBABILITY DENSITY FUNCTIONS (PDFS)

Chapter 17

Random number generators

17.1 (Generators

17.2 Multiple samples

63

64

CHAPTER 17.

RANDOM NUMBER GENERATORS

Chapter 18

Observations

18.1 The generic interface

18.2 Implemented observations

18.2.1 Monocular images

18.2.2 Stereo images

65

66 CHAPTER 18. OBSERVATIONS

CObservationImage
Reference system on the camera:

r
Image plane
Focal point gep ;
CPose3D cameraPose; ‘ N X
z y

Robot on-board

reference system
y

Figure 18.1: Representation of single camera observations.

CObservationStereoImages
Reference systems related to both cameras:

LEFT CAMERA RIGHT CAMERA
z z
Left camera’s Left image plane it Right image pla 7
focal point 9 | P 9 g P
CPose3D cameraPose; ‘ N X X
\ .4 : b ANS i
5 y _/y nght camera's
\ focal point
Robot on-board

reference system -
’ CPose3D rightCameraPose; ‘

<

(It can be any 3D relation, it does
not need to be at the “right”)

Figure 18.2: Representation of stereo image observations.

Chapter 19

Metric map classes

19.1 The generic interface of maps

All metric maps in MRPT have a common interface to ease polymorphism and
generic programming. The base class is mrpt::slam::CMetricMap. All the map
classes are within the namespace mrpt: :slam, which is omitted in the rest of the
chapter for readability.

We review next only the most important methods of this interface:

bool insertObservation (
const CObservation *obs,
const CPose3D xrobotPose=NULL)

By invoking this method, the map will be updated from the new information
provided by the passed observation. It is important to remark that not all the
maps can process all the kinds of observations. The returned boolean value actually
indicates whether the map was affected by the observation. For example, inserting
a 2D laser scan in an occupancy grid map will update it, while an observation of
gas concentrations will not.

For most kinds of maps, it is crucial to provide a second argument with the
location of the robot when the observation was taken from. Notice that the relative
position of the sensor with respect to the robot is already taken into account during
the process of updating the map, that is, the same robotPose must be used for a
robot carrying three different laser scanners, as long as the location of each sensor
is correctly annotated within the corresponding observation objects.

double computeObservationLikelihood (
const CObservation *obs,
const CPose3D &takenFrom)

This important method evaluates the log-likelihood of a given observation, con-
ditional to the robot being at the given location in map coordinates. If a given map
have no way to infer any sensible value for the likelihood (e.g. a visual landmark

67

http://babel.isa.uma.es/mrpt/reference/svn/classmrpt_1_1slam_1_1_c_metric_map.html

68 CHAPTER 19. METRIC MAP CLASSES

map queried for the likelihood of a laser scanner), an arbitrary constant value will
be returned. This method is at the core of most Bayesian approaches to particle
filtering-based localization and mapping.

void saveMetricMapRepresentationToFile (
const std ::string &filNamePrefix) const

Useful for debugging, this method dumps one or several files with different
representations of the map.

19.2 The “multi-metric map” container

The most powerful tool when dealing with metric maps is an especial kind of map:
the “multi-metric map”. This class offers the interface of a normal metric map, but
it holds internally an arbitrary number of other metric maps.

To realize of the potential and simplicity of this approach, imagine programming
a method which inserts scans from 3 laser range finders into a 3D point map (so,
a point cloud is built incrementally). By just replacing the point map by a multi-
metric map, we can now build the point cloud and, at our choice, three occupancy
grid maps, once for each height. The original code would need no changes at all.

This is the reason of calling the MRPT map model hierarchical, in the sense
that one map (the multi-metric map) propagates all the calls to the child maps.

19.3 Implemented maps

1. The generic map container: Multi-metric map. Implemented in the class
CMultiMetricMap.

2. Beacon maps. A map of 3D beacons with an ID, used for range-only local-
ization and SLAM. Implemented in CBeaconMap.

3. 2D gas concentration maps. A planar lattice of gas concentrations, used for
gas concentration mapping. See the class CGasConcentrationGridMap2D.

4. 2D height (or elevation) maps. A lattice where each cell keeps the average

elevation (”z” coordinate) of the points sensed within its square area. See
the class CHeightGridMap2D.

5. Landmark maps. A set of 3D landmarks with IDs and a 3D Gaussian dis-
tribution for its position. Used mainly for visual SLAM. Implemented in
CLandmarksMap.

6. Occupancy grid maps. A planar occupancy grid map. Occupancy probabil-
ities are kept as log-odds for a better dynamic range in the possible values
of each cell. It is used in many SLAM and particle filter-based localization
programs. See the class COccupancyGridMap2D.

http://babel.isa.uma.es/mrpt/reference/svn/classmrpt_1_1slam_1_1_c_multi_metric_map.html
http://babel.isa.uma.es/mrpt/reference/svn/classmrpt_1_1slam_1_1_c_beacon_map.html
http://babel.isa.uma.es/mrpt/reference/svn/classmrpt_1_1slam_1_1_c_gas_concentration_grid_map2_d.html
http://babel.isa.uma.es/mrpt/reference/svn/classmrpt_1_1slam_1_1_c_height_grid_map2_d.html
http://babel.isa.uma.es/mrpt/reference/svn/classmrpt_1_1slam_1_1_c_landmarks_map.html
http://babel.isa.uma.es/mrpt/reference/svn/classmrpt_1_1slam_1_1_c_occupancy_grid_map2_d.html

19.4. CONFIGURATION BLOCK FOR A MULTI-METRIC MAP 69

7. Point maps. A virtual class for maps of 2D or 3D points. It implements

KD-tree look-up efficient look-up methods based on KD-trees. The derived classes are:
is built-in in
all point maps. (a) Simple point maps. A type of point map where each point only have

(x,y,2) coordinates. See CSimplePointsMap.

(b) Colored point maps. A type of point map where each point have (x,y,z)
coordinates, plus RGB color data. Implemented in CColouredPointsMap.

19.4 Configuration block for a multi-metric map

Typically, all the parameters to configure a multi-metric map can be loaded from
a INI-like configuration file (or any other textual input, such as an input box in a
GUI). Of course, they can be also hard-coded.

The key structure to use here is TSetOfMetricMaplnitializers. The format of
the configuration files is explained in the reference documentation of:

o TSetOfMetricMaplnitializers::loadFromConfigFile.

For practical examples of use, refer also to the INI files locate in the MRPT
packages at MRPT/share/mrpt/config_files/x*.

http://babel.isa.uma.es/mrpt/reference/svn/classmrpt_1_1slam_1_1_c_simple_points_map.html
http://babel.isa.uma.es/mrpt/reference/svn/classmrpt_1_1slam_1_1_c_coloured_points_map.html
http://babel.isa.uma.es/mrpt/reference/svn/classmrpt_1_1slam_1_1_t_set_of_metric_map_initializers.html
http://babel.isa.uma.es/mrpt/reference/svn/classmrpt_1_1slam_1_1_t_set_of_metric_map_initializers.html

70

CHAPTER 19. METRIC MAP CLASSES

Chapter 20

Probabilistic Motion Models

20.1 Introduction

Within a particle filter, the samples are propagated at each time step using some
given proposal distribution. A common approach for mobile robots is taking the
probabilistic motion model directly as this proposal.

In the MRPT there are two models for probabilistic 2D motion, implemented
in mrpt::slam::CActionRobotMovement2D.

To use them just fill out the option structure motionModelConfiguration and
select the method in:
CActionRobotMovement2D: :TMotionModelOptions: :modelSelection.

An example of usage would be like:

using nmamespace mrpt::slam;
using mamespace mrpt:: poses;

CPose2D actualOdometryReading (0.20, 0.05, DEG2RAD(1.2));

// Prepare the "options” structure :
CActionRobotMovement2D actMov ;
CActionRobotMovement2D :: TMotionModelOptions opts;

opts.modelSelection = CActionRobotMovement2D :: mmThrun;
opts.thrunModel. alfa3_trans_trans = 0.10f;

// Create the probability density
// distribution (PDF) from a 2D odometry reading:
actMov . computeFromOdometry (actualOdometryReading , opts);

// For example, draw one sample from the PDF:
CPose2D sample;
actMov . drawSingleSample(sample);

This chapter provides a description of the internal models used by these meth-
ods.

71

http://babel.isa.uma.es/mrpt/reference/stable/classmrpt_1_1slam_1_1_c_action_robot_movement2_d.html
http://babel.isa.uma.es/mrpt/reference/stable/structmrpt_1_1slam_1_1_c_action_robot_movement2_d_1_1_t_motion_model_options.html

72 CHAPTER 20. PROBABILISTIC MOTION MODELS

New robot pose

odo
¢
A y

Odometry P
increment: 7

-

T
N

Previous robot pose

Figure 20.1: Variables in the Gaussian motion model.

20.2 Gaussian probabilistic motion model

Assume the odometry is read as incremental changes in the 2D robot pose. The
odometry readings are denoted as (Agdo Agd" A;do) . The model for these variables
is depicted in Figure[20.11

The equations that relate the prior robot pose (z y ¢) and the new pose (' y’ ¢')
after the incremental change are: (based on the proposal in [5])

/ Aido : A;do odo
z! x cos(¢ + K2) — sin(¢ +Ao§o) 0 A§do
Vo=l v] sine+ 25 cosle) 0 Ay
¢ ¢ 0 0 1 Ad

Our aim here is to obtain a multivariate Gaussian distribution of the new pose,
given that the prior pose has a known value (it is the particle being propragated).
In this case we can just model how to draw samples from a prior pose of (0 0 0),
and then the samples can be composed using the actual prior pose.

Using this simplification:

20.2. GAUSSIAN PROBABILISTIC MOTION MODEL 73

A, By A =
Select the motion model and its parameters: EEEE e
[1 | |oa | |20
Gaussian model | Thrun's bosk model | Random samples (G view):
. ¥
Ratio miotion to xfy std dev (alfa_1)= |0‘010 J {meterfmeter)
— 150
Ratio rotation to phi std.dev (alfa_z)= |U‘OUl [meterideg)
e — 1.20-
Ratio motion to phi std.dev (alfa_3)= |1‘ODD ‘ (degjmeter)
Ratio retation to phi std.dev (alfa_al= |0‘050 ‘ (deg/deg) 0501

Minimum std.dev, of xjy {min_std_x¥)= |u‘mu ‘ (meters) 0.80 el
Minimum std.dev. of phi {min_std_PHI)= [l J (degrees) 0.30 %
Reset default values ‘ i Apply | [Draw samples 5 nn. X

0.30 1.00 2.00
Apply ta:
7 | 0.30
e 5 -0.60
@ Rawlog in file: Input file: ‘ } [Select... l |<-- Get mode\l
Output file; ‘] [Select.., l 080

Figure 20.2: Simulation of a Gaussian motion model in RawlogViewer.

odo odo

A .
z’ cos —% — sin ; Aode AN
/ — . Aodo Acdo odo — odo
Yy sin —5 cos —5 0 Ay H{ Ay
¢/ Aodo Aodo
0 0 1 2 @

The mean of the Gaussian can be simply computed from the composition of
the prior and the odometry increment. For the covariance, we need to estimate
the variances of the three variables of the odometry increment. We model them
as having independent, zero-mean Gaussian errors. The errors will be composed of
terms that capture imperfect odometry and potential drift effects.

We denote as ¥ the diagonal matrix having the three variances of the odometry
variables, modeled as:

0 pgto = Opgi0 = O + aM (Agd0)2 4 (A9d0)2 4 crp| Age|

Tage = 0§ + g [(Ag0) + (AP + el A"

The default parameters (loaded in the constructor and available in RawLogViewer)
are:

74 CHAPTER 20. PROBABILISTIC MOTION MODELS

o = 0.05 meters/meter
ag = 0.001 meters/degree
ag = 5 degrees/meter
ay = 0.05 degrees/degree
J;”yl:” = 0.01 meters
oyt = 0.20 degrees

And finally, the covariance of the new pose after the odometry increment (C')
is computed by means of:

C=JxJt

where J stands for the Jacobian of H.

An example of samples obtained using this model with the RawLogViewer
application is represented by Figure[20.2]

20.3. THRUN ET AL.’S BOOK PARTICLE MOTION MODEL 75

51‘2

New robot ro
pose

/- \ 5r0t1
Previous
robot pose

trans

Figure 20.3: Variables in the particle-based motion model.

20.3 Thrun et al.’s book particle motion model

Like above, denote the odometry readings as (Agdo Agdo Ag‘i"), and let’s assume

that the prior robot pose is (0 0 0), which means that we want to draw samples
of the robot increment, not the final robot pose (to simplify the equations without
loss of generality). Then, the new robot pose, which we want to draw samples from
is:

(EI COS grotl 0 0 Strans
y/ = sin 57“0251 0 0 5rot1
¢/ 0 1 1 §rot2

Where the variables correspond to the robot pose increment as is shown in
Figure[20.3]

Here, the variables Strans, 5rot1 and Smtg are the result of adding a Gaussian,
zero-mean random noise to the actual odometry readings:

N . 2
5trans - 5trans + €trans €trans ™ N(Oa Gtrans)
N _ 2

6rotl = 5rot1 + €rot1 €Erotl ™~ N(O, Urotl)

_ 2
5r0t2 = 57“0252 + €rot2 €rot2 ™~ N(Ov Urot2)

76 CHAPTER 20. PROBABILISTIC MOTION MODELS

(Ax. Ay, Aphi_degl=
Select the motion model and its parameters: Cancel ToR T EE
TR e o oamm
Gaussian model | Thrun's boek model ‘ Random sarmples (3¥ view):
— Y
alfal rot rot= ‘D.US ‘ (deg/deq)
affaz_rot_trans= |15 (degs/meter] 0:801

alfa3 trans_trans= |0.01 (meters/meter)
alfad_trans_rot= ‘0.0001 (meters/deq)

Number of particles to generate= |300 0.40

Additional std.dev. of)¢y (min_std_xY)= ‘0.001 ‘ (meters)

Additional std.dev. of phi (min_std_PHI)= ‘0.050 (degrees)

Reset default values [Apply] [Drawsamplesl el)) 5 S -
: 0.10 0.60 1.0

Apply to:

[St mods -0.20

@ Rawlog in file: Input file: I I [Select... ‘ l<-- Get modell

output file: | | l Select... ‘

Figure 20.4: Simulation of a particles motion model in RawlogViewer.

The model described in [6] employs the following approximations for the values
of the standard deviations required for the equations above:

Orotl = Q1 |6rot1| + a25trans
Otrans = a35trans + a4(|57‘0t1| + |57‘ot2|>
Orot2 = Q1 |5rot2| + 0525t7"ans

This is the model implemented in CActionRobotMovement2D when setting
?CActionRobotMovement2D:: TMotionModelOptions::modelSelection” to ”mmThrun”.
Actually, a small additional error is summed to each pose component (z,y,) to
avoid that for a null odometry increment the movement for all the particles become
exactly zero, which may lead a particle filter to degenerate.

Figure [20.4 shows an example of samples generated using this model, for an
excessively large value of as (a very large ”slippage”), generated by the application
RawLogViewer.

http://babel.isa.uma.es/mrpt/reference/stable/classmrpt_1_1slam_1_1_c_action_robot_movement2_d.html

Chapter 21

Sensor Interfaces

This chapter describes the two parts in which classes of the library mrpt-hwdrivers
are divided: those providing the basis of communications (USB, serial), and the
sensors themselves.

21.1 Communications

21.1.1 Serial ports

Even nowadays, lots of devices offer serial ports (or embedded USB-to-serial con-
verters) as interfaces due to their simplicity of use. In MRPT, a serial port can be
managed with the class hwdrivers: :CSerialPort. An example of usage would be
as follows:

#include <mrpt/hwdrivers.h>

CSerialPort ser;

ser .setSerialPortName (" ttyS0”); // or "COMS”, ...
ser.setConfig (9600 /xbaudx/, 0 /*no parityx/, 8 /«8 bit wordsx/);
ser .open ();

if (!ser.isOpen()) { // Report error }

ser .Read(...);
ser . Write(...);
ser.close (); // optional: it closes on destruction anyway

In addition, a serial port implements the generic CStream interface, thus it is
perfectly legal to transfer arbitrarily complex objects through a serial connection
as in:

COccupancyGridMap2D map ;
ser << map;

However, the most likely use of a serial ports is to send and receive short textual
messages, thus the most useful methods are Read and Write.

7

78 CHAPTER 21. SENSOR INTERFACES

Names of serial ports

In Windows, serial ports appear with names COM1, COM2, COM3, COM4 and \\ . \COMXX
for the rest. However, if you pass a name without the prefix \\.\ it will be added
automatically.

In Linux, a variety of names can be found such as ttyUSBO, ttyS0 or ttyACMO.
It is not required to provide the full path to the device (eg. /dev/ttyS0), as in
Windows, it will be added transparently.

As follows from above, always keep serial port names as strings, not only as a
number since it will be not enough in a cross-platform application.

Timeouts

Slight changes in the timeouts of your connection can be lead to random and hard
to debug errors with no apparent reason. The proper way of setting these delays is
through the method:
void CSerialPort::setTimeouts (
int ReadIntervalTimeout ,
int ReadTotalTimeoutMultiplier ,
int ReadTotalTimeoutConstant ,

int WriteTotalTimeoutMultiplier ,
int WriteTotalTimeoutConstant)

where all the fields have the same meaning than in the Windows APIL.

21.1.2 USB FIFO with FTDI chipset

21.2 Summary of sensors

L'Search for the COMMTIMEOUTS structure for details.

http://www.google.com/search?hl=en&q=COMMTIMEOUTS+msdn&btnI=I'm+Feeling+Lucky

21.3. THE UNIFIED SENSOR INTERFACE 79

21.3 The unified sensor interface

When implementing a new sensor class, the following execution flow must be kept
in mind:

1. Object constructor: Do here basic initialization only. Parameters are still not
set (see next step), thus communications must not be set up at this point.

2. CGenericSensor: :loadConfig: Load here the parameters specific to your
sensor. Notice that the application rawlog-grabber automatically loads the
following parameters (common to all the sensors), thus they must be not
loaded at this point:

(a) “processrate”: The rate in Hertz (Hz) at which the sensor thread
should invoke ”doProcess”. Mandatory parameter.

(b) “max_queue_len”: The maximum number of objects in the observations
queue (default is 100). If overflow occurs, an error message will be issued
at run-time.

3. CGenericSensor: :initialize: Initialize here your connections, send initial
commands to the device, etc.

4. CGenericSensor: :doProcess: This method is called over and over again
while the application is running. Your code must not delay too much and
must always return, i.e. do not insert infinite loops. If a new piece of infor-
mation from the sensor is gathered (which may not always occur), use the
helper method CGenericSensor: :appendObservation to add it to the “out-
put queue”. That is all rawlog-grabber expects from each sensor’s class.
Observations must be inserted in the list in the form of smart pointers (refer
to Chapter[11).

21.4 How rawlog-grabber works

80

CHAPTER 21.

SENSOR INTERFACES

Chapter 22

Kalman filters

22.1 Introduction
22.2 Algorithms

22.3 How to implement a problem as a KF
The example bayesianTracking.

A more complicated model, the problem of 6D SLAM, is discussed in detail in
[2] and implemented as the application kf-slam within MRPT.

81

82

CHAPTER 22. KALMAN FILTERS

Chapter 23

Particle filters

23.1 Introduction

A good tutorial can be found in [1].

23.2 Algorithms

23.2.1 SIR
23.2.2 Auxiliary PF
23.2.3 Optimal PF

23.2.4 Optimal-rejection sampling PF
The method presented in the paper [3].

23.3 Resampling schemes

A common problem of all particle filters is the degeneracy of weights, which consists
in the unbounded increase of the variance of the weights wl? with time. In order to
prevent this growth of variance, which entails a loss of particle diversity, one of a
set of resampling methods must be employed. The aim of resampling is replacing
an old set of N particles by a new one with the same population but where particles
have been duplicated or removed according to their weights. More specifically, the
expected duplication count of the i’th particle, denoted by N;, must tend to Nwl?.
After resampling, all the weights become equal to preserve the importance sampling
of the target pdf.

In this section we briefly review four different strategies for resampling a set of
particles whose normalized weights are given by w!? for i = 1,..., N. The methods
are explained using a visual analogy with a “wheel” whose perimeter is assigned to

83

84 CHAPTER 23. PARTICLE FILTERS

the different particles in such a way that the length associated to the i’th particle
is proportional to its weight wl’. Therefore, picking a random direction in this
“wheel” implies choosing a particle with a probability proportional to its weight.
For a more formal description of the methods, please refer to the excellent paper
by Douc, Cappé and Moulines [4].

23.3. RESAMPLING SCHEMES 85

o
o

3

0)

Figure 23.1: The multinomial resampling algorithm.

e Multinomial resampling: The most straighforward method, where N in-
dependent random numbers are generated to pick a particle from the old set.
In the “wheel” analogy, illustrated in Figure [23.1, this method consists of
picking N independent random directions.

The name of this method comes from the fact that the probability mass
function for the duplication counts NN; is the multinomial distribution with
the weights as parameters.

86 CHAPTER 23. PARTICLE FILTERS

Figure 23.2: The residual resampling algorithm. The shaded areas rep-
resent the integer parts of wl!//(1/N). The residual parts of the weights,
substracting these areas, are taken as the modified weights &l

e Residual resampling: This method comprises of two stages. Firstly, parti-
cles are sampled deterministically by picking N; = | N w[i]J copies of the i’th
particle. Then, multinomial sampling is performed with the residual weights

ol = ol — N;/N.

23.3. RESAMPLING SCHEMES 87

Random

o

Figure 23.3: The stratified resampling algorithm. The entire circunference
is associated to the range [0,1] in the space of the particle weights, hence
dividing it into N equal parts is represented as N circular sectors of 1/N
each.

e Stratified resampling: In this method, the “wheel” representing the old
set of particles is divided into NV equally-sized segments, as represented in
Figure [23.3] Then, N uniform numbers are independently generated like
in multinomial sampling, but instead of mapping each draw to the entire
circunference, they are mapped to its corresponding partition.

88 CHAPTER 23. PARTICLE FILTERS

@' il

Random

"
o

A e

Figure 23.4: The systematic resampling algorithm.

e Systematic resampling: Also called universal sampling, this popular tech-
nique draws only one random number, i.e. one direction in the “wheel”, with
the others N — 1 directions being fixed at 1/N increments from the random

pick.

23.4 Implementation examples

Bibliography

[1]

M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, D. Sci, T. Organ, and
SA Adelaide. A tutorial on particle filters for online nonlinear/non-Gaussian
Bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174-188,
2002.

J.L. Blanco. Derivation and Implementation of a Full 6D EKF-based Solution
to Bearing-Range SLAM. Technical report, 2008.

J.L. Blanco, J. Gonzalez, and J.A. Ferndndez-Madrigal. An optimal filtering
algorithm for non-parametric observation models in robot localization. In IEEFE
International Conference on Robotics and Automation (ICRA’08), pages 461—
466, May 2008.

R. Douc, O. Cappé, and E. Moulines. Comparison of resampling schemes for
particle filtering. In Proceedings of the 4th International Symposium on Image
and Signal Processing and Analysis, pages 64—69, 2005.

Al Eliazar and R. Parr. Learning probabilistic motion models for mobile
robots. ACM International Conference Proceeding Series, 2004.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. The MIT Press,
September 2005.

89

	I First steps
	Introduction
	Why a new library?
	What is MRPT?
	What is this book about?
	What is this book not about?
	How much does it cost?
	OS restrictions
	Robotic software architectures

	Compiling
	Binary distributions
	Prerequisites
	GNU/Linux
	Windows

	Compiling
	Building options

	II User guide
	Applications
	pf-localization
	Description
	Usage
	Example configuration file

	RawLogViewer
	Description
	Usage

	rbpf-slam
	Description
	Usage
	Example configuration file

	rawlog-grabber
	Description
	Usage
	Configuration files

	File formats

	III Programming guide
	The libraries
	Your first MRPT program
	Source files
	The CMake project file
	Generating the native projects
	Compile
	Summary

	Linear algebra
	Matrices
	Declaration
	Fixed-size matrices
	Storage in files

	Vectors
	Declaration
	Resizing
	Storage in files

	Basic operations
	Optimized matrix operations
	Text output
	matrices manipulation
	Extracting a submatrix
	Extracting a vector from a matrix
	Building a matrix from parts

	Matrix decomposition

	Mathematic algorithms
	Fourier Transform (FFT)
	Statistics
	Spline interpolation
	Spectral graph partitioning
	Quaternions
	Geometry functions
	Numeric Jacobian estimation

	3D geometry
	Introduction
	Homogeneous coordinates geometry
	Geometry elements in MRPT
	2D points
	3D points
	2D poses
	3D poses

	Serialization
	The problem of persistence
	Approach used in MRPT
	Run-time class identification
	Writing new serializable classes
	Serializing STL containers

	Smart Pointers
	Overview
	Uses within MRPT
	Do's and Don'ts
	Always create from dynamic memory
	Do not create a SM from a local variable
	Freeing a shared object
	Freeing an alias only

	Images
	The central class for images
	Basic image operations
	Feature extraction
	SIFT descriptors

	Rawlog files (datasets)
	Format #1: A Bayesian filter-friendly file format
	Description
	Actual contents of a ".rawlog" file in this format

	Format #2: An timestamp-ordered sequence of observations
	Description
	Actual contents of a ".rawlog" file in this format

	Compression of rawlog files
	Generating Rawlog files
	Reading Rawlog files
	Option A: Streaming from the file
	Option B: Read at once

	GUI classes
	Windows from console programs
	Bitmapped graphics
	3D rendered graphics
	2D vectorial plots

	OS Abstraction Layer
	Cross platform Support
	Function Areas
	Threading
	Sockets
	Time and date
	String parsing
	Files

	Probability density functions (pdfs)
	Efficient pose sample generator

	Random number generators
	Generators
	Multiple samples

	Observations
	The generic interface
	Implemented observations
	Monocular images
	Stereo images

	Metric map classes
	The generic interface of maps
	The ``multi-metric map'' container
	Implemented maps
	Configuration block for a multi-metric map

	Probabilistic Motion Models
	Introduction
	Gaussian probabilistic motion model
	Thrun et al.'s book particle motion model

	Sensor Interfaces
	Communications
	Serial ports
	USB FIFO with FTDI chipset

	Summary of sensors
	The unified sensor interface
	How rawlog-grabber works

	Kalman filters
	Introduction
	Algorithms
	How to implement a problem as a KF

	Particle filters
	Introduction
	Algorithms
	SIR
	Auxiliary PF
	Optimal PF
	Optimal-rejection sampling PF

	Resampling schemes
	Implementation examples

