Musical MIDI Accompaniment

Reference Manual

Bob van der Poel
Wynndel, BC, Canada

bvdp@uniserve.com

September 21, 2004

1 Overview and Introduction
License, Version and Legalities
Installing a#m
Running adm
Comments
Theory Of Operation . .
Case Sensitivity

1.1
1.2
1.3
1.4
1.5
1.6

2 Running am

2.1 Command Line Options
2.2 Lines and Spaces
2.3 Programming Comments
3 Tracks and Channels
3.1 afm Tracks
3.2 Track Channels
3.3 Track Descriptions . . .
331 Drum
332 Chord
333 Arpeggio
334 Scale
335 Bass.......
336 Walk
3.3.7 Solo and Melody
34 Silencing a Track
4 Patterns
4.1 Defining a Pattern . . .
41.1 Bass.......
412 Chord
413 Arpeggio

Table Of Contents

11
11
13
13

14
14
14
15
15
16
16
16
16
17
17
17

18
18

21
22

Table Of Contents

10

4.1.4 Walk . . . e
4.1.5 Scale
4.1.6 Drum e e
417 DrumTone e e e
4.2 Including Existing Patterns in New Definitions
4.3 Multiplying and Shifting Patternso L L Lo
Sequences
5.1 SeqClear e
5.2 SeqRnd
5.3 SegNoRnd e
54 SeqSizeo . e
Grooves
6.1 Creating A Groove o e e
6.2 Using AGroove i e
Riffs
Musical Data Format
8.1 BarNumbers e e
82 BarRepeat e
8.3 Chords e
8.4 ReStS . . . e
8.5 Case Sensitivity L. e e
8.6 LyriCcs L e
Solo and Melody Tracks
9.1 NoteDataFormat. e e
9.2 KeySig o e e
9.3 AutoSoloTracks
94 Drum Solo Tracks
9.5 Mallet e
05.1 Rate e
052 Decay o e e e e e
Chord Voicing
10.1 Voicing o e e e
10.1.1 VoicingMode e
10.1.2 Voicing Range e
10.1.3 Voicing Center i e e e
10.1.4 Voicing Move e e e e
10.1.5 Voicing Dir e
10.1.6 VoicingRmove e
10.2 Compress o v v v i e e e e e e e e e e
10.3 DupRoot e e

22
23
23
24
25
25

29
30
31
32
32

33
33
34

36

39
39
40
40
41
42
42

46
47
49
49
49
50
50
51

52
52
53
54
54
54
55
55
55
56

Table Of Contents

11

12

13

14

15

10.4 Invert . . .
10.5 Limit . . .
10.6 Range . . .

Tempo and Timing

11.1 Tempo . .
11.2 Time . ..
11.3 TimeSig . .
11.4 BeatAdjust
11.5 Fermata . .
11.6 Cut

Volume and Dynamics

12.1 Accent . .

12.2 AdjustVolume L

12.3 Volume . .

12.4 Crescand Decresc o o o 0 e e e

12.5 RVolume .

12.6 Saving and Restoring Volumes

Repeats

Variables, Conditionals and Jumps

14.1 Variables .

14.1.1 Set[string] e

14.1.2 Mset

[lines] MsetEnd/EndMset

14.1.3 UnSet VariableName e
14.1.4 ShowVars e e
14.1.5 IncandDec e e
14.1.6 VExpandOnor Off
14.2 Predefined Variables

14.3 Conditionals
144 Goto . ..

Low Level MIDI Commands

15.1 Channel . .
15.2 ChannelPref
15.3 ChShare . .
154 MIDI . ..
15.5 MidiFile .
15.6 MIDISeq .
15.7 MIDIVoice
15.8 MIDIClear
159 Pan
15.10 Portamento

56
57
58

59
59
60
60
60
62
63

66
67
68
68
68
69
70

71

73
73
74
74
74
74
75
75
76
77
79

80
80
81
81
82
83
84
86
87
87
88

Table Of Contents M

15.11 ChannelVolume 88
16 Other Commands and Directives 90
16.1 Articulate e e 90
16.2 COPY . . o o o e e e e 91
16.3 Comment e e e e e 91
164 Debug e e e 92
16.5 Delete 93
16.6 Direction e 93
16.7 Duplicate e 93
16.8 Harmony e e 94
169 HarmonyOnly e 95
16.10 Octave e e e 96
16.11 Off e 96
16.1200 L e e e 96
16.13 Print e e e 96
16.14 PrintActive e e e e 97
16.1SRSKIp . . . o . e e e 97
16,16 RTIME o o e e 98
16.17 ScaleType o e e e 98
1618 Seq . . . o o o e e e e 98
16,19 Strum e e 99
16.20 TransSpose v v v o v e e e e e e e e e e e e e e e 100
16.21 Unify o e e 100
16.22 VOICE o o e e e e e e e 101
16.23 VoiceTr e e e 101
17 Begin/End Blocks 103
I17.1 Begin e e e e e e 103
17.2 End e e 104
18 Documentation Strings 105
18.1 DoC e 105
18.2 Author e 105
19 Paths, Files and Libraries 106
19.1 File EXtensions 0 i i e e e e e e 106
19.2 Eof e e 107
19.3 LibPath e 107
19.4 OutPath e 108
19.5 Include 108
19.6 IncPath e e 109
19.7 USe o e e e e 109
19.8 MmaStart e 110
199 MmaEnd 111

Table Of Contents

20

21

19.10RCFiles e e
19.11 Library Files e

Creating Effects
20.1 Overlapping Notes o e e e
20.2 Jungle Birds

Frequency Asked Questions
21.1 AABA SongForms e
21.2 Where’sthe GUI? o

Symbols and Constants

Al Chord Names e e e

A2 MIDIVoices e
A.2.1 Voices, Alphabetically
A2.2 Voices, ByMIDI Value

A3 Drum Notes e e e
A.3.1 Drum Notes, Alphabetically
A.3.2 Drum Notes,by MIDI Value

A4 MIDIControllers e e
A.4.1 Controllers, Alphabetically
A.42 Controllers,by Value L

Command Summary

113
113
114

115
115
116
116

117
117
120
120
121
123
123
123
125
125
126

128

Chapter 1

Overview and Introduction

Musical MIDI Accompaniment, !, generates standard MIDI? files which can be used as a backup track
for a soloist. It was written especially for me—I am an aspiring saxophonist and wanted something to
practice my jazz solos. With a#m I can create a track based on the chords in a song, transpose it to the
correct key for my instrument, and play my very bad improvisations until they get a bit better.

I also have a small combo group which is always missing at least one player. With a#m generated tracks
we can practice and perform even if a rhythm player is missing. This all works much better than I expected
when [started to write the program.

1.1 License, Version and Legalities

The program am was written and is copyright Robert van der Poel, 2002/2004.

This program, the accompanying documentation, and library files can be freely distributed according to
the terms of the GNU General Public License (see the distributed file “COPYING”).

If you enjoy the program, make enhancements, find bugs, etc. send a note to me at bvdpQuniserve.com;
or a postcard (or even money) to PO Box 57, Wynndel, BC, Canada VOB 2NO.

The current version of this package is maintained at: http://mypage.uniserve.com/ bvdp/mma/mma.
html.

This document reflects version 0.10d of asm.

Warning: This program is currently in a beta state. The commands used in the input files, the
output, the overall logic and anything else you can think of might change in the future.

This manual most likely has lots of errors. Spelling, grammar, and probably a number of the

examples need fixing. Please give me a hand and report anything. .. it’ll make it much easier
for me to generate a really good product for all of us to enjoy.

"Musical MIDI Accompaniment and the short form a7 in the distinctive script are names for a program written by Bob van
der Poel. The “MIDI Manufacturers Association, Inc.” uses the acronym MMA, but there is no association between the two.
ZMIDI is an acronym for Musical Instrument Digital Interface.

1.2 Installing M Overview and Introduction

1.2 Installing afm

i 1s a Python program developed with version 2.3 of Python. At the very least you will need this version
(or later) of Python!

To play the MIDI files you’ll need a MIDI player. Pmidi, tse3play, and many others are available for Linux
systems. For Windows and Mac systems I’m sure there are many, many choices.

You’ll need a text editor to create input files.
M consists of a variety of bits and pieces:

71 The executable Python script, mma, must somewhere in your path. For users running a Windows
system, please check our website for details on how to install on these systems.>

73 A number of Python modules. These should all be installed under the directory /usr/local/
share/mma/modules.

J3 A number of library files defining standard rhythms. These should all be installed under the directory
/usr/local/share/mma/lib/stdlib.

The script “install” will (hopefully) install 4% properly for you. It assumes that main script is to be
installed in /usr/local/bin and the support files in /usr/local/share/mma. If you want an alternate
location, you can edit the paths in the script. The only supported alternate to use is /usr/share/mma.

In addition, you can run a#m from the directory created by the untar. This is not recommended, but will
show some of a#m’s stuff.

You should be “root” to run the install script.

1.3 Running afm

For details on the command line operations in ##7 please refer to chapter 2.
To create a MIDI file you need to:

1. Create a text file (also referred to as the “input file”’) with instructions which 2471 understands. This
includes the chord structure of the song, the rhythm to use, the tempo, etc. The file can be created
with any suitable text editor.

2. Process the input file. From a command line the instruction:
mma myfile <ENTER>
will invoke ##71 and, assuming no errors are found, create a MIDI file “myfile.mid”.

3. Play the MIDI file with any suitable MIDI player.

3If someone using a Mac system could let me know how to install on this system I'd be glad to include those details on my
website.

1.4 Comments Overview and Introduction

4. Edit the input file again and again until you get the perfect track.

5. Share any patterns, sequences and grooves with the author so they can be included in future releases!
An input file consists of the following information:

1. afm directives. These include Tempo, Time, Volume, etc. See chapter 16. .

2. Pattern, Sequence and Groove See chapters 4, 5 and 6.

3. Music information. See chapter 8.

4. Comment lines and blank lines. See below.

Items 1 to 3 are detailed later in this manual. Please read them before you get too involved in this program.

1.4 Comments

We do believe that proper indentation, white space and comments are a good thing. But, in most cases 2
really doesn’t care:

71 Any leading space or tab characters are ignored,
71 Multiple tabs and other white space are treated as single characters,
71 Any blank lines in the input file are ignored.
Each line is initially parsed for comments. A comment is anything following a *//” (2 forward slashes).*

Comments are stripped from the input stream. Lines starting with the Comment directive are also ignored.
See the comment discussion for details (see page 91).

1.5 Theory Of Operation

To understand how a#m7 works it’s easiest to look at the initial development concept.Initially, a program
was wanted which would take a file which looked something like:

Tempo 120
Fm
Cc7

and end up with a MIDI file which played the specified chords over a drum track.

Of course, after starting this “simple” project a lot of complexities developed.

4We wanted to use “#” for comments, but that sign is used for “sharps” in chord notation.

1.6 Case Sensitivity Overview and Introduction

First, the chord/bar specifications. Just having a single chord per bar doesn’t work—many songs have
more than one chord per bar. Second, what is the rhythm of the chords? What about a bass line? Oh, and
what drum track?

Well, things got more complex after that. At a bare minimum, we needed the ability to:
73 Be able to specify multiple chords per bar,
JJ Be able to define different patterns for chords, bass lines and drum tracks,
JJ Make the input files easy to create and debug,
71 Provide a reusable library that a user could simply plug in, or modify.
From these simple needs a7 was created.

The basic building blocks of am are patterns. A pattern is a specification which tells 247 what notes of
a chord to play, the start point in a bar for the chord/notes, and the duration and the volume of the notes.

M patterns are combined into sequences. This lets you create multi-bar rhythms.

A collection of patterns can be saved and recalled as grooves. This makes it easy to pre-define complex
rhythms in library files and incorporate them into your song with a simple two word command.

Mm is bar or measure based (we use the words interchangeably in this document). This means that A=z
processes your song one bar at a time. The music specification lines all assume that you are specifying a
single bar of music. The number of beats per bar can be adjusted; however, all chord changes must fall on
a beat division (the playing of the chord or drum note can occur anywhere in the bar).

To make the input files look more musical, 267 supports repeats and repeat endings. However, complex-
ities like D.S. and Coda are not internally supported (but can be created by using the Gofo command).

1.6 Case Sensitivity

Just about everything in a a4 file is case insensitive.
This means that the command:
Tempo 120
could be entered in your file as:
TEMPO 120
or even
TeMpO 120
for the exact same results.

Names for patterns, and grooves are also case insensitive.

1.6 Case Sensitivity Overview and Introduction

The only exceptions are the names for chords and filenames. In keeping with standard chord notation,
chord names are in mixed case; this is detailed in Chapter 8. Filenames are covered in Chapter 19.

10

Chapter 2

Running M

am is a command line program. To run it, simply type the program name followed by the required options.

For example,

mma test

processes the file “test”! and creates the MIDI file “test.mid”.

2.1 Command Line Options

The following command line options are available:

Option

Description

-V
-d

Show program’s version number and exit.

Enable LOTS of debugging messages. This option is mainly designed for program
development and may not be useful to users.

A debug subset. This option forces the display of complete filenames/paths as they
are opened for reading. This can be quite helpful in determining which library files
are being used.

Display patterns as they are defined. The result of this output is not exactly a duplicate
of your original definitions. Most notable are that the note duration is listed in MIDI
ticks, and symbolic drum note names are listed with their numeric equivalents.

Display sequence info during run. This shows the expanded lists used in sequences.
Useful if you have used sequences shorter (or longer) than the current sequence
length.

! Actually, the file “test” or “test.mma” is processed. Please read section 19.1 (see page 106).

11

2.1 Command Line Options Running M

-r Display running progress. The bar numbers are displayed as they are created com-
plete with the original input line. Don’t be confused by multiple listing of “*” lines.
For example the line

33 Cm * 2
would be displayed as:

88: 33 Cm *2

89: 33 Cm *2
This makes perfect sense if you remember that the same line was used to create both
bars 88 and 89.

-n Disable generation of MIDI output. This is useful for doing a test run or to check for
syntax errors in your script.

-e Show parsed/expanded lines. Since a7 does some internal fiddling with input lines,
you may find this option useful in finding mismatched BEGIN blocks, etc.

-C Display the tracks allocated and the MIDI channel assignments after processing the
input file. No output is generated.

-mBARS | Set the maximum number of bars which can be generated. The default setting is 500
bars (a long song!?). This setting is needed since you can create infinite loops by
improper use of the goto command. If your song really is longer than 500 bars use
this option to increase the permitted size.

-g Update the library database for the files in the LibPath. You should run this command
after installing new library files or adding a new groove to an existing library file. If
the database (stored in the file MMADIR) is not updated, a7 will not be able to auto-
load an unknown groove.

The current installation of 4471 does not set directory permissions. It simply copies
whatever is in the distribution. If you have trouble using this option, you will proba-
bly have to reset the permissions on the lib directory.

am will update the groove database with all files in the current LibPath. All files
must have a “.mma” extension. Any directory containing a file named MMAIGNORE
will be ignored. Note, that MMAIGNORE consists of all uppercase letters and is usually
an empty file.

-G Same as the “-g” option (above), but the uppercase version forces the creation of a
new database file—an update from scratch just in case something really goes wrong.

-fFILE Set output to FILE. Normally the output is sent to a file with the name of the input file
with the extension “.mid” appended to it. This option lets you set the output MIDI
file to any filename.

-Mx Generate type 0 or 1 MIDI files. The paramater “x” must be set to the single digit
“0” or ”1”. For more details, see the MidiSMF section on see page 83.

The following commands are used to create the documentation. As a user you should
probably never have a need for any of them.

2500 bars with 4 beats per bar at 200 BPM is about 10 minutes.

12

2.2 Lines and Spaces Running M

-Dx Expand and print Doc commands used to generate the standard library reference. No
MIDI output is generated when this command is given. Doc strings in RC files are
not processed. Files included in other files are processed.

-Dn Create a table of the available chord types.

-Dda Create a table of the MIDI drum note names, arranged alphabetically.
-Ddm Create a table of the MIDI drum note names, arranged by MIDI value.
-Dia Create a table of the MIDI instrument names, arranged alphabetically.
-Dim Create a table of the MIDI instrument names, arranged by MIDI value.

A number of the debugging commands can also be set dynamically in a song. See the debug section (see
page 92) for details.

2.2 Lines and Spaces

When a#m reads a file it processes the lines in various places. The first reading strips out blank lines and
comments of the “//” type.

On the initial pass though the file any continuation lines are joined. A continuation line is any line ending
with a single “\”—simply, the next line is concatenated to the current line to create a longer line.

Unless otherwise noted in this manual, the various parts of a line are delimited from each other by runs
of whitespace. Whitespace can be tab characters or spaces. Other characters may work, but that is not
recommended, and is really determined by Python’s definitions.

2.3 Programming Comments

am is designed to read and write files; it is not a filter (this could be changed, but we’re not sure why this
would be needed).

As noted earlier in this manual, 4472 has been written entirely in Python.There were some initial concerns
about the speed of a “scripting language” when the project was started, but Python’s speed appears to
be entirely acceptable. On an AMD Athlon 1900+ system running Mandranke Linux 9.2, most of songs
compile to MIDI in well under one second. If you need faster results, you’re welcome to recode this
program into C or C++, but it would be cheaper to buy a faster system, or spend a bit of time tweaking
some of the more time intensive Python loops.

The manual has been prepared with the IXTEX typesetting system. Once life and the program settle down
the source files may be released as well. Currently, there are two versions available: a PDF file intended
for printing (generated with dvipdf) and a HTML version (transformed with I&TEX2HTML) for electronic
viewing. If other formats are needed . .. please offer to volunteer.

13

Chapter 3

Tracks and Channels

This chapter discusses a2 tracks and MIDI channels. If you are reading this manual for the first time you
might find some parts confusing. If you do just skip ahead—you can run a7 without knowing many of
these details.

3.1 am Tracks

To create your accompaniment tracks, a7 divides output into several internal tracks. There are a total of
8 different types of tracks, and an unlimited number of sub-tracks.

When a2 is initialized there are no tracks assigned; however, as your library and song files are processed
various tracks will be created Each created a unique name. The track types are discussed later in this
chapter, but for now they are Bass, Chord, Walk, Drum, Arpeggio, Scale, Melody and Solo.

(1321

All tracks are named by appending a ““-” and*“name” to the type-name. This makes it very easy to remember
the names, without any complicated rules. So, drum tracks can have names “Drum-1”, “Drum-Loud” or
even “Drum-a-long-name”. The other tracks follow the same rule.

In addition to the hyphenated names described above, you can also name a track using the type-name.
So, “DRUM” is a valid drum track name. In our library files we usually use the type-name to describe
patterns.

All track names are case insensitive. This means that the names “Chord-Sus”, “CHORD-SUS” and
“CHORD-sus” all refer to the same track.

If you want to see the names defined in a song, just run 4471 on the file with the “-c”” command line option.

3.2 Track Channels

MIDI defines 16 distinct channels numbered 1 to 16.! There is nothing which says that “chording” should
be sent to a specific channel, but the drum channel should always be channel 10.?

"We use the values 1 to 16 in this document. Internally they are stored as values 0 to 15.
2This is not a MIDI rule, but a convention established in the GM (General MIDI) standard. If you want to find out more
about this, there are lots of books on MIDI available.

14

3.3 Track Descriptions Tracks and Channels

For a#m to produce any output, a MIDI channel must be assigned to a track. During initialization all of the
DRUM tracks are assigned to special MIDI channel 10. As musical data is created other MIDI channels
are assigned to various tracks as needed.

Channels are assigned from 16 down to 1. This means that the lower numbered channels will most likely
not be used, and will be available for other programs or as a “keyboard” track on your synth.

In most cases this will work out just fine. However, there are a number of methods you can use to set the
channels “manually.” You might want to read the sections on Channel (see page 80), ChShare (see page
81), On (see page 96), and Off (see page 96).

Why bother with all these channels? It would be much easier to put all the information onto one channel,
but this would not permit you to set special effects (like Portamento or Pan) for a specific track. It would
also mean that all your tracks would need to use the same instrumentation.

3.3 Track Descriptions

You might want to come back to this section after reading more of the manual. But, somewhere we need
to describe the different track types, and why they exist.

Musical accompaniment comes in a combination of the following:
41 Chords played in a rhythmic or sustained manner,
73 Single notes from chords played in a sustained manner,
73 Bass notes. Usually played one at a time in a thythmic manner,
J3 Scales, or parts of scales. Usually as an embellishment,
71 Single notes from chords played one at time: arpeggios.
73 Drums and other percussive instruments played rhythmically.

Of course, this leaves the melody ... but that is up to you, not a#2. . . but, if you suspect that some power
is missing here, read the brief description of Solo and Melody tracks (see page 17) and the complete “Solo
and Melody Tracks” chapter (see page 46).

i comes with several types of tracks, each designed to fill different accompaniment roles. However, it’s
quite possible to use a track for different roles than originally envisioned. For example, the bass track can
be used to generate a single, sustained treble note—or, by enabling Harmony multiple notes.

The following sections describe the tracks and give a few suggestions on their uses.

3.3.1 Drum

Drums are the first thing we usually think about when we hear the word “accompaniment”. All 4471 drum
tracks share MIDI channel 10, which is a GM MIDI convention. Drum tracks play single notes determined

15

3.3 Track Descriptions Tracks and Channels

by the Tone setting for a particular sequence.

3.3.2 Chord

If you are familiar with the sound of guitar strumming, then you’re familiar with the sound of a chord.
a#m chord tracks play a number of notes, all at the same time. The volume of the notes (and the number of
notes) and the rhythm is determined by pattern definitions. The instrument used for the chord is determined
by the Voice setting for a sequence.

3.3.3 Arpeggio

In musical terms an arpeggio” is the notes of a chord played one at a time. 2#m arpeggio tracks take the
current chord and, in accordance to the current pattern, play single notes from the chord. The choice of
which note to play is mostly decided by ###1. You can help it along with the Direction modifier.

We use Arpeggio tracks quite often to highlight rhythms. Using the RSKkip directive produces broken
arpeggios.

Using different note length values in patterns helps to make interesting accompaniments.

3.3.4 Scale

Another embellishment. When a7 plays a scale, it first determines the current chord. Its scales are started
on the first note of the chord (if the chord is a C7, the scale will be a C scale). Currently, three types of
scales are supported: major, natural minor and chromatic.

The major scale is selected for all chords which are not of a minor flavor, or if the ScaleType is set to
Major.

The natural minor scale is selected for all “minor” chords. This includes chords such as “Cm7”, “G#m13”,
etc. If the ScaleType is set to Minor this scale is always used.

If the ScaleType is set to Chromatic, then a chromatic scale is used.

am plays successive notes of a scale. The timing and length of the notes is determined by the current
pattern. Depending on the Direction setting, the notes are played up, down or up and down the scale.

3.3.5 Bass

Bass tracks are designed to play single notes for a chord for standard bass patterns. The note to be played,
as well as its timing, is determined by the pattern definition. The pattern defines which note from the

3The term is derived from the Italian “to play like a harp”.

16

3.4 Silencing a Track. Tracks and Channels

current chord to play. For example, a standard bass pattern might alternate the playing of the root and fifth
notes of a scale or chord. You could also use Bass tracks to play single, sustained treble notes.

3.3.6 Walk
The Walk tracks are designed to imitate “walking bass” lines. Traditionally, they are played on bass
instruments like the upright bass, bass guitar or tuba.

A Walk track uses a pattern to define the note timing and volume. Which note is played is determined
from the current chord and a simplistic algorithm. There is no user control over the note selection.

3.3.7 Solo and Melody

Solo and Melody tracks are used for arbitary note data. Most likely, this is a melody or counter-melody
... but these tracks can also be used to create interesting ending, introductions or transitions.

3.4 Silencing a Track

There a number of ways to silence a track:
JJ Use the Off (page 96) command to stop the generation of MIDI data,
JJ Disable the sequence for the bar with an empty sequence (page 30).
71 Delete the entire sequence with SegClear (page 30).
43 Disable the MIDI channel with a “Channel 0” (page 80).

Please refer to the appropiate sections on this manual for further details.

17

Chapter 4

Patterns

2 builds its output based on patterns and sequences supplied by you. These can be defined in the same
file as the rest of the song data, or can be included (see chapter 19) from a library file.

A pattern is a definition for a voice or track which describes what rhythm to play during the current bar.
The actual notes selected for the rhythm are determined by the song bar data (Chapter 8).

4.1 Defining a Pattern

The formats for the different tracks vary, but are similar enough to confuse the unwary.
Each pattern definition consists of three parts:

J3 A unique label to identify the pattern. This is case-insensitive. Note that the same label names can
be used in different tracks—for example, you could use the name “MyPattern” in both a Drum and
Chord pattern. .. but this is probably not a good idea. Names can use punctuation characters, but

¢ 9 €69

must not begin with an underscore (“_"). The pattern names “z” or “Z” and “-” are also reserved.

€6,

JJ A series of note definitions. Each set in the series is delimited with a “;”.
73 The end of the pattern definition is indicated by the end-of-line.

In the following sections we show the definitions in continuation lines; however, it is quite legal to mash
all the information onto a single line.

The following concepts are used when defining a pattern:

Start When to start the note. This is expressed as a beat offset. For example, to start a note at the start of
a bar you use “1”, the second beat would be “2”, the fourth “4”, etc. You can easily use off-beats
as well: The “and” of 2 is “2.5”, the “and ahh” of the first beat is “1.75”, etc. Using a beat offset
greater than the number of beats in a bar or less than “1” is not permitted. See Time (see page 60).

Duration The length of a note is somewhat standard musical notation. Since it is impractical to draw in
graphical notes or even to use fractions like § a#m uses a shorthand notation detailed in the following
table:

18

4.1 Defining a Pattern

Patterns

Notation | Description

1 Whole note

2 Half

4 Quarter

8 Eighth

16 Sixteenth

32 Thirtysecond

64 Sixtyfourth

3 One note of an eighth-note triplet
0 A single MIDI tick

The last note length, “0” is a special value often used in drum tracks where the actual “ringing”’length
appears to be controlled by the MIDI synth, not the driving program. Internally, a “0” note length in
converted to a single MIDI tick.

Lengths can have a single or double dot appended. For example, “2.” is a dotted half note and “4..”
adds an eight and sixteenth value to a quarter note.

€ 9

Note lengths can be combined using “+”. For example, to make a dotted eight note use the notation
“8+16”, a dotted half “2+4”, and a quarter triplet “3+3”.

It is permissible to combine notes with “dots” and “+”’s. The notation “2.+4” would be the same as
a whole note.

The actual length of the note will be adjusted by the Articulate value (see page 90).

Volume The MIDI velocity! to use for the specified note. For a detailed explanation of how a¢m calculates
the volume of a note, see chapter 12.

MIDI velocities are limited to the range O to 127. However, a1 does not check the volumes specified
in a pattern for validity. This is a feature. If you want to ensure that a note is always sounded use a
very large value (eg. 1000) for the volume. That way, future adjustments will maintain a large value
and this large value will be clipped to the maximum permitted MIDI velocity.

In most cases velocities in the range 50 to 100 are useful.

Offset The offset into the current chord. If you have, for example, a C minor chord (C, Eb, and G) has 3
offsets: 0, 1 and 2. Note that the offsets refer to the chord not the scale. For example, a musician
might refer to the “fifth”—this means the fifth note of a scale ...in a major chord this is the third
note, which has an offset of 2 in 2.

Patterns can be defined for Bass, Walking, Chord, Arpeggio, Chord and Drum tracks. All patterns are
shared by the tracks of the same type—Chord-Sus and Chord-Piano share the patterns for Chord. As a
convenience, ¢ will permit you to define a pattern for a sub-track, but remember that it will be shared
by all similar tracks. For example:

Drum Define S1 1 0 50

IMIDI “note on” events are declared with a “velocity” value. Think of this as the “striking pressure” on a piano.

19

4.1 Defining a Pattern Patterns

and

Drum-woof Define S1 1 0 50

Will generate identical outcomes.?

4.1.1 Bass

A bass pattern is defined with:
Position Duration Offset Volume ;
Each group consists of an beat offset for the start point, the note duration, the note offset and volume.

The note offset is one of the digits “1”, “3” or “5”, each representing the “root”, “third” or “fifth” of the
chord scale. Internally, 247 translates this into the values “0”, “1” and “2” and plays the appropriate note
from the current chord.

(I3

The note offset can be modified by appending a single or multiple set of “+” or signs. Each “+” will
force the note up an octave; each “-” forces it down. This modifier is handy in creating bass patterns when
you wish to alternate between the root note and the root up an octave ...but we’re sure users will find
other interesting patterns. There is no limit to the number of “+”s or “-”’s. You can even use both together
if you’re in a mood to obfuscate.

Bass Define Broken8 1 8 1 90 ; \
2 8580 ; \
38390 ; \
4 8 1+ 80

Sheet Music Equivalent

e

- N
=4 i"fﬁvg'f

Example 4.1: Bass Definition

Example 4.1 defines 4 bass notes (probably staccato eight notes) at beats 1, 2, 3 and 4 in a § time bar. The
first note is the root of the chord, the second is the fifth; the third note is the third; the last note is the root

ZWhat really happens is that the definition is stored in a slot matching the track’s type, not it’s name.

20

4.1 Defining a Pattern Patterns

up an octave. The volumes of the notes are set to a MIDI velocity of 90 for beats 1 and 3 and 80 for beats
2 and 4.

You should note that the application of chord modifications like Invert will change the notes selected since
am just selects the first, second or third note in the chord. This is convenient if you are using a Bass
pattern for a harmony line, etc. Generally speaking, if you are using a Bass pattern for a conventional bass
line pattern, don’t apply modifiers like /nvert to it.

4.1.2 Chord

A Chord pattern is defined with:
Position Duration Volumel Volume2 .. ;

Each group consists of an beat offset for the start point, the note duration, and the volumes for each note
in the chord. If you have fewer volumes than notes in a chord, the last volume will apply to the remaining
notes.

Chord Define Straight4+3 1 4 100 ; \
20 ; \

100 ;\

20 ; \

380 ; \

3 80

oo W N
oW Wb b

Sheet Music Equivalent

N
>

¢

S

|—3—l

Example 4.2: Chord Definition

Example 4.2 defines a § pattern in a quarter, quarter, quarter, triplet thythm. The quarter notes sound on
beats 1, 2 and 3; the triplet is played on beat 4. The example assumes that you have C major for beats 1
and 2, and G major for 3 and 4.

Using a volume of “0” will disable a note. So, you want only the root and third of a chord to sound, you
could use something like:

Chord Define Dups 1 8 90 0 90 0; 3 8 90 0 90 O

21

4.1 Defining a Pattern Patterns

4.1.3 Arpeggio

An Arpeggio pattern is defined with:
Position Duration Volume ;

The arpeggio tracks play notes from a chord one at a time. This is quite different from chords where the
notes are played all at once—refer to the Strum directive (see page 99).

Each group consists of an beat offset, the note duration, and the note volume. You have no choice as to
which notes of a chord are played (however, they are played in alternating ascending/descending order.>
Volumes are selected for the specific beat, not for the actual note.

Arpeggio Define 4s 1 4 100; \

2 4 90; \
3 4 100; \
4 4 100
Sheet Music Equivalent
@
@ @
o) r

Example 4.3: Arpeggio Definition

Example 4.3 plays quarter note on beats 1, 2, 3 and 4 of a bar in § time.

4.14 Walk

A Walking Bass pattern is defined with:
Position Duration Volume ;

Walking bass tracks play up and down the first part of a scale, paying attention to the “color”* of the chord.
Walking bass lines are very common in jazz and swing music. The appear quite often as an “emphasis”
bar in marches.

3See the Direction command (see page 93).

“The color of a chord are items like “minor”, “major”, etc. The current walking bass algorithm generates acceptable
(uninispired) lines. If you want something better there is nothing stopping you from using a Riff to over-ride the computer
generated pattern for important bars.

22

4.1 Defining a Pattern Patterns

Each group consists of an beat offset, the note duration, and the note volume. a2 selects the actual note
pitches to play based on the current chord (you cannot change this).

Walk Define Walk4 1 4 100 ; \
2 4 90; \
34 90

Example 4.4: Walking Bass Definition

Example 4.4 plays a bass note on beats 1, 2 and 3 of a bar in } time.

4.1.5 Scale

A scale pattern is defined with:
Position Duration Volume ;

Each group consists of an beat offset for the start point, the note duration, and volume.

Scale Define S1 1 1 90
Scale Define S4 S1 * 4
Scale Define S8 S1 * 8

Example 4.5: Scale Definition

Example 4.5 defines three scale patterns: “S1” is just a single whole note, not that useful on its own, but it
used as a base for “S4” and “S8”.

“S4” is 4 quarter notes and “S8” is 8 eight notes. All the volumes are set to a MIDI velocity of 90.

Scale patterns are quite useful in endings. More options for scales detailed in the ScaleDirection (see page
93) and ScaleType (see page 98) sections.

4.1.6 Drum

Drum tracks are a bit different from the other tracks discussed so far. Instead of having each track saved
as a separate MIDI track, all the drum tracks are combined onto MIDI track 10.

A Drum pattern is defined with:

Position Duration Volume;

23

4.1 Defining a Pattern Patterns

Drum Define S2 1 0 100; \
2 080 ; \
30 100 ; \
4 0 80

Example 4.6: Drum Definition

Example 4.6 plays a drum sound on beats 1, 2, 3 and 4 of a bar in § time. The MIDI velocity (volume) of
the drum is 100 on beats 1 and 3; 80 on beats 2 and 4.

In this example we have used the special duration of “0” which indicates 1 MIDI tick.

4.1.7 Drum Tone

Essential to drum definitions is the Tone directive.

When a drum pattern is defined, there is no drum tone or note specified in the pattern.. By default, all
drum patterns use a snare drum sound. But, this can (and should) be changed using the Tone directive.
This is normally issued at the same time as a sequence is set up (see chapter 5).

Tone is a list of drum sounds which match the sequence length. Here’s a short, concocted example (see
the library files for many more):

Drum Define S1 1 0 90

Drum Define S2 S1 * 2

Drum Define S4 S1 * 4

SeqClear

SegSize 4

Drum Sequence S4 S2 S2 S4

Drum Tone SnareDruml SideKick LowToml Slap

Here we first define the drum patterns “S2” to sound a drum on beats 1 and 3 and “S4” to sound on beats
1, 2, 3 and 4 (see section 4.3 for details on the “*” option). Next we set a sequence size of 4 bars and
set a drum sequence to use this pattern. Finally, we instruct 242 to use a SnareDrum1 sound in bar 1, a
SideKick sound in bar 2, a LowToml1 in bar 3 and a Slap in bar 4. If the song has more than four bars, this
sequence will be repeated.

In most cases you will probably use a single drum tone name for the entire sequence, but it can be useful
to alternate the tone between bars.

To repeat the same “tone” in a sequence list, use a single “/”.

The “tone” can be specified with a MIDI note value or with a symbolic name. For example, a snare drum
could be specified as “38” or “SnareDrum1”. Appendix A.3 lists all the defined symbolic names.

24

4.2 Including Existing Patterns in New Definitions Patterns

4.2 Including Existing Patterns in New Definitions

When defining a pattern, you can use an existing pattern name in place of a definition grouping. For
example, if we have already defined a chord pattern (which is played on beats 1 and 3) as:

Chord Define M13 1 4 80; 3 4 80

We can create a new pattern which plays on same beats and adds a single push note just before the third
beat:

Chord Define M1+3 M13; 2.5 16 80 O
A few points to note:
JJ the existing pattern must exist and belong to the same track,
JJ the existing pattern is expanded in place,

JJ it is perfectly acceptable to have several existing definitions, just be sure to delimit each with a ;”,

JJ the order of items in a definition does not matter, each will be placed at the correct position in the
bar.

This is a powerful shortcut in creating patterns. See the included library files for examples.

4.3 Multiplying and Shifting Patterns

Since most pattern definitions are, internally, repetitious, you can create complex rhythms by multiplying
a copy of an existing pattern. For example, if you have defined a pattern to play a chord on beats 1 though
4 (a quarter note strum), you can easily create a similar pattern to play eighth note chords on beats 1, 1.5,
etc. though 4.5 with a command like:

Track Define NewPattern OldPattern * N

where “Track” is a valid track name (““Chord”, “Walk™, “Bass”, “Arpeggio” or “Drum”, as well as “Chord2”
or “DRUM3”, etc.).

The “*” is absolutely required.
“N” can be any integer value between 2 and 100.

In example 4.7 we start by defining a Drum pattern which plays a drum tone on beat 1 (assuming § time).
We then derive a new pattern, “S13” which is the old “S1” multiplied by 2. This new pattern will play a
tone on beats 1 and 3.

Next, “S1234” is created. This plays 4 notes on the each beat.

Note the definition for “S64”. We could have multiplied “S32” by 2, but for illustrative purposes have
used “S1” and multiplied it by 64.

25

4.3 Multiplying and Shifting Patterns Patterns

Drum Define S1 1 1 100
Drum Define S13 S1 * 2
Drum Define S1234 S2 * 2
Drum Define S8 S1234 * 2
Drum Define S16 S8 * 2
Drum Define S32 S16 * 2
Drum Define S64 S1 * 64

Example 4.7: Multiply Define

When sz multiplies an existing pattern it will (usually) do what you expect. The start positions for all
notes are adjusted to the new positions; the length of all the notes are adjusted (quarter notes become
eighth notes, etc.). No changes are made to note offsets or volumes.

Example 4.8 shows how to get a swing pattern which might be useful on a snare drum.

Begin Drum Define
SB8 1 2+16 0 90 ; 3.66 4+32 80
SB8 SB8 * 4

End

Sheet Music Equivalent, Normal Notation

4

Sheet Music Equivalent, Actual Rhythm

LT MIITD,

Example 4.8: Swing Beat Drum Definition

To see the effects of multiplying patterns, create a simple test file and process it though a2 with the “-p”
option.

26

4.3 Multiplying and Shifting Patterns Patterns

Even cooler® is combining a multiplier, and existing pattern and a new pattern all in one statment. The
following is quite legal (and useful):

Drum Define D1234 1 0 90 * 4
which creates drum hits on beats 1, 2, 3 and 4.
More contrived (but we need examples) is:
Drum Define Dfunny D1234 * 2; 1.5 0 70 * 2
If you’re really interested in the result, run 4471 with the “-p” option with the above definition.

An existing pattern can be modified by shifting it a beat, or portion of a beat. This is done in a am
definition with the Shift directive. Example 4.9 shows a triplet pattern created to play on beat 1, and then
a second pattern played on beat 3.

Chord Define C1-3 1 3 90; \
1.33 3 90; 1.66 3 90

=

Chord Define C3-3 Cl-3 Shift 2

G e

Example 4.9: Shift Pattern Definition

£

Note that the shift factor can be a negative or positive value. It can be fractional. Just be sure that the
factor doesn’t force the note placement to be less than 1 or greater than the Time setting.

And, just like the multiplier discussed earlier you can shift patterns as they are defined. And shifts and
multipliers can be combined. So, to define a series of quarter notes on the offbeat you could use:

Drum Define D1234’ 1 0 90 * 4 Shift .5

which would create the same pattern as the longer:

SIn this case the word “cool” substitutes for the more correct “useful”.

27

4.3 Multiplying and Shifting Patterns Patterns

Drum Define D1234’ 1.5 1 90; 2.5 1 90; 3.5 1 90; 4.5 1 90

28

Chapter 5

Sequences

Patterns by themselves don’t do much good. They have to be combined into sequences to be of any use to
you or to M.

A sequence command sets the pattern(s) used in creating each track in your song:
Track Sequence Patternl Pattern2
“Track” can be any valid track name: “Chord”, “Walk”, “Walk-Sus”, “Arpeggio-88”, etc.

All pattern names used when setting a sequence need to be defined when this command is issued; or you
can use what appears to be a pattern definition right in the sequence command by enclosing the pattern
definition in a set of curly brackets “{ }”.

SeqClear
SegSize 2
Begin Drum
Sequence Snare4
Tone Snaredruml
End
Begin Drum-1
Sequence Bassl Bass2
Tone KickDrum2
End
Chord Sequence Broken8
Bass Sequence Broken8
Arpeggio Sequence { 1 1 100 * 8 } {11
80 * 4 }

Example 5.1: Simple Sequence

Example 5.1 creates a 2 bar pattern. The Drum, Chord and Bass patterns repeat on every bar; the Drum-1
sequence repeats after 2 bars. Note how the Arpeggio pattern is defined at run-time. !

'If you run afm with the “-s” option you’ll see pattern names in the format “_1”. The leading underscore indicates that the
pattern was dynamically created in the sequence.

29

5.1 SeqClear Sequences

If there are fewer patterns than SegSize, the sequence will be filled out to correct size. If the number of
patterns used is greater than SeqSize (see Chapter 16) a warning message will be printed and the pattern
list will be truncated.

When defining longer sequences, you can use the “repeat” symbol, a single “/”, to save typing. For
example, the following two lines are equivalent:

Bass Sequence Bassl Bassl Bass2 Bass2
Bass Sequence Bassl / Bass2 /

(I3

The special pattern name (no quotes, just a single hyphen), or a single “z” can be used to turn a track
off. For example, if we have set the sequences in example 5.1 and decide to delete the Bass halfway though
the song we could:

Bass Sequence -

(X3 (Xl

The special sequences, or“z”, are also the equivalent of a rest or “tacet” sequence. For example, in
defining a 4 bar sequence with a 1-5 bass pattern on the first 3 bars and a walking bass on bar 4 we might
do something like:

Bass Sequence Bass4-13 / / z
Walk Sequence z / / Walk4-4

When a sequence is created a series of pointers to the existing patterns are created. If you change the
definition of a particular pattern later in your file the new definition will have no effect on your exisiting
sequences.

Sequences are the workhorse of a71. With them you can set up many interesting patterns and variations.
This chapter should certainly give more detail and many more examples.

The following commands help manipulate sequences in your creations:

5.1 SeqClear

This command clears all existing sequences from memory. It is useful when defining a new sequence and
you want to be sure that no “leftover” sequences are active. The command:

SeqClear
deletes all sequence information.
Alternately, the command:
Drum SeqClear
deletes all drum sequences. This includes the track “Drum”, “Druml”, etc.
If you use a sub-track:

Chord-Piano SeqClear

30

5.2 SeqRnd Sequences

only the sequence for that track is cleared.’

In addition to clearing the sequence pattern, the following other settings are restored to a default condition:
JJ Track Invert setting,

Track Sequence Rnd setting,

Track MidiSeq setting,

Track octave,

Track voice,

Track Rvolume,

Track Volume,

Track RTime,

g 9 8 8 a8 a8 4

43 Track Strum.

€ 9

CAUTION: It is not possible to clear only Drum, Chord, etc. using this command. Use the “-” option.

5.2 SeqRnd

Normally, the patterns used for each bar are selected in order. For example, if you had a sequence:
Drum—-2 Sequence Pl P2 P3 z

bar 1 would use “P17, bar 2 “P2”, etc. However, if you set SeqRnd for a specific track, the pattern used
for that track will be selected at random from the sequence list. Note that Z’ bars are included in the
selection. Due to the nature of random selection, it is quite possible to get a several bars with the same (or
in the above case, no) pattern.

You can only use this command in a track or in a global context:
Drum SeqRnd

or
SeqgRnd

The latter example is interesting. Let us assume you have the following sequences defined (the contents
of the patterns don’t matter for the purpose of the example):

Chord Cl1 C2 C3 C4
Bass Bl B2 B3 z

’It is probably easier to use the command:
Chord-Piano Sequence -

if that is what you want to do. In this case only sequence pattern is cleared.

31

5.3 SeqNoRnd Sequences

Walk z / / W1

The idea of the Bass and Walk sequences is to play either one of the patterns, never both. If you were to
randomize the tracks you might get a bar with no bass at all, one of the two, or none. However, if you set
SeqRnd outside the tracks, then you will have one of the following patterns:

Cl Bl z
C2 B2 z
C3 B3 z
C4 =z W1

A SeqRnd is cleared by a SeqClear or a SeqNoRnd directive.
If you have set Invert for a track, the inversions will follow the patterns. For example:

Chord Sequence Cl1 C2 C3 C4
Invert 0 1 2 3 SegRnd

Whenever pattern “C1” is selected it will be used with inversion 0, “C2” will always be inversion 1, etc.

5.3 SeqNoRnd

This command sets the sequence order for the specified track to normal. It undoes the effect of the SeqRnd
directive. Example:

Drum-3 SegNoRnd

5.4 SeqgSize

The number of bars in a sequence are set with the “SeqSize” command. For example:
SegSize 4

sets it to 4 bars. The SeqSize applies to all tracks.

This command resets the sequence counter to 1.

If some sequences have already been defined, they will be truncated or expanded to the new size. Trun-
cation is done by removing patterns from the end of the sequence; expansion is done by duplicating the
sequence until it is long enough.

32

Chapter 6

Grooves

Grooves, in some ways, are #1’°s answer to macros. . . but we think they are cooler, easier to use, and have
a more musical name.

Really, though, a groove is just a simple mechanism for saving and restoring a set of patterns and se-
quences. Using grooves it is easy to create sequence libraries which can be incorporated into your songs
with a single command.

6.1 Creating A Groove

A groove can be created at anytime in an input file with the command:
DefGroove SlowRhumba

Optionally, you can include a documentation string to the end of this command:
DefGroove SlowRumba A descriptive comment!

A groove name can include any character, including digits and punctuation. However, it cannot include a
’/’] .

In normal operation the documentation strings are ignored. However, when a7 is run with the -Dx
command line option these strings are printed to the terminal screen in I£TEX format. The standard library
document is generated from this data. The comments must be suitable for IATEX: this means that special
symbols like “#”, “&”, etc. must be “quoted” with a preceding “\”.

At this point the following information is saved:
JJ Current Sequence size,

The current sequence for each track,

Time setting (quarter notes per bar),

“Accent”,

g 9 9 4

“Articulation” settings for each track,

J1 “Compress”,

IThe */* is reservered for future enhancements.

33

6.2 Using A Groove

JJ “Direction”,

71 “DupRoot”,
71 “Duplicate”,
J1 “Harmony”
J3 “HarmonyOnly””,
3 “Invert”,

J1 “Limit”,

71 “MidiSeq”,
JJ “Octave”,
J1 “RSkip”,

I “Rtime”,

JJ “Rvolume”,
JJ “Scale”,

71 “SeqRnd”, globally and for each track,
J3 “Strum”,

JJ “Tone” for drum tracks,

I “Voice”,

3 “VoicingCenter”,

73 “VoicingMode”,

J1 “VoicingMove”,

4 “VoicingRange”,

43 “Volume” for tracks and master.

6.2 Using A Groove

You can restore a previously defined groove a anytime in your song with:
Groove Name
At this point all of the previously saved information is restored.

A few cautions:

Grooves

34

6.2 Using A Groove Grooves

JJ Pattern definitions are not saved in grooves. Redefining a pattern results in a new pattern definition.
Sequences use the pattern definition in effect when the sequence is declared.

J1 The “SeqSize” setting is restored with a groove. The sequence point is also reset to bar 1. If you
have multi-bar sequences, restoring a groove may upset your idea of the sequence pattern.

To make the creation of variations easier, you can use Groove in a track setting:
Scale Groove Funny

In this case only the information saved in the corresponding DefGroove Funny for the Scale track will be
restored. You might think of this as a “groove overlay”. Have a look at the sample song “Yellow Bird” for
an example.

When restoring track grooves, as in the above example, the SeqSize is not reset. The sequence size of the
restored track is adjusted to fit the current sequence size setting.

If you are using a groove from a library file, you just need to do something like:
Groove Rhumba2
at the appropriate position in your input file.

One minor problem which may arise is that more than one library file has defined the same groove name.
This might happen if you have a third-party library file. For the proposes of this example, lets assume
that the standard library file “rhumba.mma” and a second file “xyz-rhumba.mma” both define the groove
“Rhumba2”. The auto-load routines (see page 109) which search the library database will load the first
“Rhumba2” it finds, and the search order cannot be determined. To overcome this possible problem, do a
explicit loading of the correct file. In this case, simply do:

Use xyz-rhumba

near the top of your file. And if you wish to switch to the groove defined in the standard file, you can
always do:

Use rhumba

just before the groove call. The Use will read the specified file and overwrite the old definition of
“Rhumba2” with its own.

35

Chapter 7

Riffs

In previous chapters we learned how to create a Pattern which becomes a part of a Sequence. And how to
set a musical style by defining a Groove.

These predfined Grooves are wonderful things. And, yes, entire accompaniment tracks can be created with
just some chords and few Grooves. But, often we want a bit of variety in the track.

The Riff command permits the setting of an alternate pattern for any track for a single bar—this overrides
the current Sequence for that track.

The syntax for Riff is very similar to that of Define, with the execption that no pattern name is used. You
might think of Riff as the setting of an Sequence with an anonymous pattern.

A Riff is set with the command:
Track Riff Pattern

where:

Track is any valid ##m track name,

Pattern is any existing pattern name defined for the specified track, or a pattern definition following the

same syntax as a Define. In addition the pattern can be a single “z”, indicating no pattern for the
specified track.

Following is a short example using Riff to change the Chord Pattern:

Groove Rhumba

1 Fm7

2 Bb7

3 EbM7

Chord Riff 1 4 100; 3 8 90; 3.666 8 80; 4.333 8 70
4 Eb6 / Eb

5 Fm7

In this case we have a Rhumba Groove for the song. But, in bar 4 we want to emphasize the melodic
pattern by chording a quarter-note triplet over beats 3 and 4. In this case we have defined the pattern right
in the Riff command.

Our next example shows that Riff patterns can be defined just like the patterns used in a sequence.

Begin Drum

36

Riffs

Define Emphl 1 0 128
Define Emph8 Emphl * 8
End

Groove Blues

l1cC
2 G
Druml Riff EmphS8
3G
4 F
5¢C

In this case we have defined the Emph8 pattern as a series of eighth notes. We then apply this for the 3rd
bar. If you compile and play this example you will hear a sporadic handclap on bar 3. The Drum1 track
is using a handclap tone with a random skip factor (previously defined in the Blues groove).

€69

The special pattern “z” can be used to turn off a track for a single bar. This is similar to using a “z” in the
Sequence directive.

A few things to keep in mind when using Riffs:
71 A RIiff is in effect for only one bar.

(Y4

73 Riff sequences are always enabled. Even if there is no sequence for a track, or if the “z” sequence is
being used, the pattern specified in Riff will apply.

JJ The existing voicing, articulation, etc. for the track will apply to the Riff.

J1 It’s quite possible to use a macro for repeated Riffs. In example 7.1 we have created a macro which
sets the Volume, Articulate, etc. as well as the pattern. Note how the pattern is initially set as single
whole note, but redfined in the Riff as a run controlled by another macro. In bar 2 an eight note run
is played and in bar 5 this is changed to a run of triplets.

Riffs can also be used to specify a bar of music in a Solo or Melody track. Please see the “Solo and
Melody” chapter (see page 46).

37

Mset CRiff
Begin Scale
Define Run 1 1 120
Riff Run * $SSpeed
Voice AltoSax
Volume £
Articulate 80
Rskip 5
End
MsetEnd
Groove Blues
1cC
Set SSpeed 8
SCRiff
2 G
3G
Set SSpeed 12
SCRIFF
5¢C

Example 7.1: Using Macros and Riffs

Riffs

38

Chapter 8

Musical Data Format

Compared to patterns, sequences, grooves and the various directives used in a2, the actual bar by bar
chord notations are surprisingly simple.

Any line in your input file which is not a directive or comment is assumed to be a bar of chord data.
A line for chord data consists of the following parts:
JJ Optional line number,
43 Chord or Rest data,
41 Optional lyric data,
43 Optional solo or melody data,
JJ Optional multiplier.
Formally, this becomes:
[num] Chord [Chord ...] [lyric] [solo] [* Factor]
As you can see, all that is really needed is a single chord. So, the line:
Cm
is completely valid. As is:
10 Cm Dm Em Fm * 4

The optional solo or melody data is enclosed in “{ }”. The complete format and use is detailed in the Solo
and Melody Tracks chapter (see page 46).

8.1 Bar Numbers

The optional leading bar number is silently discarded by a#z. It is really just a specialized comment which
helps you debug your music. Note that only a numeric item is permitted here.

Get in the habit of using bar numbers. You’ll thank yourself when a song seems to be missing a bar, or
appears to have an extra one. Without the leading bar numbers it can be quite frustrating to match your
input file to a piece of sheet music.

39

8.2 Bar Repeat Musical Data Format

You should note that it is perfectly acceptable to have only a bar number on a line. This is common when
you are using bar repeat, for example:

1Cm * 4
2

(6, - ¥V)

8.2 Bar Repeat

Quite often music has several sequential identical bars. Instead of typing these bars over and over again,
2% has an optional multiplier which can be placed at the end of a line of music data. The multiplier or
factor can is specified as “* NN” This will cause the current bar to repeated the specified number of times.
For example:

Cm / Dm / * 4

produces 4 bars of output with each the first 2 beats of each bar a Cm chord and the last 2 a Dm. (The “/”
is explained below.)

8.3 Chords

The most important part of a musical data line is, of course, the chords. You can specify a different chord
for each beat in your music. For example:

Cm Dm Em Fm

specifies four different chords in a bar. It should be obvious by now that in a piece in § you’ll end up with
a “Cm” chord on beat 1, “Dm” on 2, etc.

If you have fewer chord names than beats, the bar will be filled automatically with the last chord name on
the line. In other words:

Cm
and

Cm Cm Cm Cm
are equivalent (assuming 4 beats per bar). There must be one (or more) spaces between each chord.
One further shorthand is the “/”. This simply means to repeat the last chord. So:

Cm / Dm /

is the same as

40

8.4 Rests Musical Data Format

Cm Cm Dm Dm

It is perfectly okay to start a line with a “/”. In this case the last chord from the previous line is used. If
the first line of music data begins with a “/”” you’ll get an error—a#m tries to be smart, but it doesn’t read
minds.

M recognizes a wide variety of chords in standard notation. Refer to the complete table in the appendix
for details (see page 117).

8.4 Rests

To disable a voice for a beat you can use a “z” for a chord name. If used by itself a “z” will disable all but
the drum tracks for the given beat. However, you can disable “Chord”, “Arpeggio”, “Scale”, “Walk” or
“Bass” tracks as well by appending a track specifier to the “z”. Track specifiers are the single letters “C”,
“A”, “S”, “W”, “B” or ‘D” and “!”. Track specifiers are only valid if you also specify a chord. The track

specifiers are:

D - All drum tracks,

W - All walking bass tracks,

B - All bass tracks,

C - All chord tracks,

A - All arpeggio tracks,

S - All scale tracks,

! - All tracks (almost the same as DWBCA, see below).

Assuming the “C” is the chord and “AB” are the track specifiers:
CzAB - mutes the “A” and “B” tracks,

Z- mutes all the tracks except for the drums,
Cz - is not permitted,
ZAB - is not permitted.

Assuming that you have a drum, chord and bass pattern defined:
Fm z G7zC CmzD
would generate the following beats:

1- Drum pattern, Fm chord and bass,

2 - Drum pattern only,

3 - Drum pattern and G7 bass, no chord,
4 - Cm chord and bass, no drum.

In addition, there is a super-z notation. “z!” forces all instruments to be silent for the given beats. “z!” is
the same as “ZABCDW?”, except that the later is not valid since it needs a prefixed chord.

The “z” notation is used when you have a “tacet” beat or beats. The alternate notations can be used to
silence specific tracks for a beat or two, but this is used less frequently.

41

8.5 Case Sensitivity Musical Data Format

8.5 Case Sensitivity

In direct conflict with the rest of the rules for input files, all chord names are case sensitive. This means
that you can not use notations like “cm”—use “Cm” instead.

The “z” and the associated track specifiers are also case sensitive. For example, the form “Zc” will not
work!

8.6 Lyrics

MIDI files can include song lyrics. And some MIDI players or sequencers can display them as a file is
played. Some, but not all.

We’re not aware of any keyboards which display lyrics. And most Linux based do not display them.
Exceptions to the rule are the programs Kmid which displays and highlights lyrics almost in a Karaoke
manner, xplaymidi and timidity which display the lyrics in a secondary panel.

With this qualifier out of the way, there really is no reason for lyrics NOT to be useful in a program like
. Singers do not want a melody playing while they are vocalizing (really, they are no different in this
than any other instrumentalist). And, it is our understanding that some platforms' other than Linux support
lyric display in a more useful format.

The “Standard MIDI File” document describes a Lyric Meta-event:

FF 05 len text Lyric. A lyric to be sung. Generally, each syllable will be a separate lyric
event which begins at the event’s time.?

Unfortunately, not all players and creators follow the specification—the most notable exception are “.kar”
files. These files eschew the Lyric event and place their lyrics as a Text Event. There are programs strewn
on the net which convert between the two formats, and this author doesn’t really know if conversion is
needed.

If you want to read the word from the source, refer to the official MIDI lyrics documentation at http:
//www.midi.org/about-midi/smf/rp017.shtml.

Just to be on the safe side, a#m2 supports both formats. The Lyric command is used to select the desired
mode.

Lyric EVENT=LYRIC
selects the default Lyric Event mode.

Lyric EVENT=TEXT

IPointers and reviews to other players would be would appreciated.
2] am quoting from “MIDI Documentation” distributed with the TSE Library. Pete Goodcliffe, Oct. 21, 1999. Page 41.

42

8.6 Lyrics Musical Data Format

selects the Text Event mode. Use of this option also prints a warning message.

Another option controlled by the Lyric command is to determine the method used to split words. As
mentioned earlier (and in various MIDI documents), the lyrics should be split into syllables. sz does
this by taking each word (ie. anything with whitespace surrounding it) and setting a MIDI event for that.
However, depending on your player, you might want only one event per bar. You might even want to put
the lyrics for several bars into one event. In this case simply set the “bar at a time” flag:

Lyric SPLIT=BAR
You can return to normal (syllable/word) mode at anytime with:
Lyric SPLIT=NORMAL

Adding a lyric to your song is a simple matter. Just place the text for the lyric for a bar in-between a pair
of []s somewhere in a data bar.> For example:

z [Pardon]

C [me, If I'm]

E7 [sentimental, \r]
C [when we say good]

The lyrics for each bar are separated into individual events, one for each word.
Note the difference in this example:

Lyric Split=Bar

z [Pardon me, If I'm sentimental \r]
C

E7

C [when we say good-bye]

M recognizes two special characters in a Lyric:

71 A \r is converted into an EOL character (hex value 0xOD). A \r should appear at the end of each
lyrical line.

43 A\nis converted into a LF character (hex value 0x0A). A \n should appear at the end of each verse
or paragraph.

When a multi-verse section is created using a Repeat or Goto, different lyrics can be specified for different
passes. In this case you simply specify two more sets of lyrics:

A / Am / [First verse] [Second Verse]

However, for this work properly you must set the internal counter LyricVerse for any verse other than 1.
This counter is set with the command:

Lyric Verse=Value | INC | DEC

This means that you can directly set the value (the default value is 1) with a command like:

3 Although the lyric can be placed anywhere in the bar, we recommend that you only place the lyric at the end of the bar. All
the examples follow this style.

43

8.6 Lyrics Musical Data Format

Lyric Verse=2

And you can increment or decrement the value with the /NC and DEC options. This is handy at to use in
repeat sections:

Lyric Verse=Inc
You cannot set the value to a value less than 1.
There are a couple of special cases:

JJ If there is only one set of lyrics in a line, it will be treated as text for verse 1, regardless of the value
of LyricVerse.

JJ If the value of LyricVerse is greater than the number of verses found after splitting the line, then no
lyrics are produced. In most cases this is probably not what you want.

At times you may wish to override ##7’°s method of determining the beat offsets for a lyric or a single
syllable in a lyric. You can specify the beat in the bar by enclosing the value in “<>" brackets. For
example, suppose that your song starts with a pickup bar and you’d like the lyrics for the first bar to start
on beat 4:

z z z C [<4>Hello]
F [Young lovers]

Assuming § the above would put the word “Hello” at beat 4 of the first bar; “Young” on the first beat of
bar 2; and “lovers” on beat 3 of bar 2.

Note: there must not be a space inside the “<>”, nor can there be a space between the bracket and the
syllable it applies to.

If you really want to have “<>" in your lyric, you can include a dummy to keep a4m happy:
C [<><Verse 1.>This is a Demo]

Example 8.1 4 shows a complete song with lyrics.

“Included in this distribution as songs/twinkle.mma.

44

8.6 Lyrics

Tempo 200
Groove Folk
Repeat
1 G [Twinkle,] [When the]
2 G [Twinkle] [blazing]
3 C [little] [sun is]
4 G [star; \r] [gone, \r]
5 Am [How I] [When he]
6 G [wonder] [nothing]
7 D7 [what you] [shines u-]
8 G [are. \r] [pon. \r]
9 G [Up a-] [then you]
10 D7 [bove the] [show your]
11 G [world so] [little]
12 D [high, \r] [light, \r]
13 G [Like a] [Twinkle,]
14 D7 [diamond] [twinkle,]
15 G [in the] [all the]
16 D7 [sky! \r] [night. \r]
17 G [Twinkle,]
18 G [twinkle]
19 C [Little]
20 G [star, \r]
21 Am [How I]
22 G [wonder]
23 D7 [what you]
24 G [are. \r \n]

Lyric Verse=Inc
RepeatEnd

Example 8.1: Twinkle, Twinkle, Little Star

Musical Data Format

45

Chapter 9

Solo and Melody Tracks

So far we have discussed the creation of accompaniment tracks using drum and chord patterns. However,
there are times when chording (and chord variations such as arpeggios) are not sufficient. Sometimes you
might want a real melody line!

a7 has two internal track types reserved for melodic lines. They are the Solo and Melody tracks. These
two track types are identical with two major exceptions:

41 Solo tracks are only initialized once, at startup. Commands like SeqClear are ignored by Solo tracks.
43 No settings in Solo tracks are saved or restored with Groove commands.

These differences mean that you can set parameters for a Solo track in a preamble in your music file and
have those settings valid for the entire song. For example, you may want to set an instrument at the top of
a song:

Solo Voice TenorSax

On the other hand, Melody tracks save and restore grooves just like all the other available tracks. If we
have the following sequence in a song file:

Melody Voice TenorSax
Groove Blues
musical data

we should not be surprised to find that the Melody track playing with the default voice (Piano).

As a general rule, we have designed Melody tracks as a “voice” to accompany a predefined form defined
in a Groove—it is a good idea to define Melody paramaters as part of a Groove. Solo tracks are thought to
be specific to a certain song file, with their parameters defined in the song file.

Apart from the exceptions noted above, Solo and Melody tracks are identical.

Unlike the other available tracks, you do not define a sequence or pattern for a Solo or Melody track.
Instead, you specify a series of notes as a Riff pattern. For example, consider the first two bars of “Bill
Bailey” (the details of melody notation will be covered later in this chapter):

Solo Riff 4c;2d;4f;

F

Solo Riff 4.a;8gi;4a; 4c+;
F

46

9.1 Note Data Format Solo and Melody Tracks

In this example we have added the melody to our song file.

Speciftying a Riff for each bar of your song can get tedious, so there is a shortcut ... any data surrounded by
curly brackets “{ }” is interpeted as a Riff for a Solo or Melody track. This means that the above example
could be rewritten as:

F {4c;2d;4f;}

F {4.a;8g#;4a;4c+;}
By default the note data is inserted into the Solo track. If more than one set of note data is present, it will
be inserted into the next track set by the AutoSoloTracks command (see page 49).

9.1 Note Data Format

The notes is a Solo or Melody track are specified as a series of “chords”. Each chord can be a single note,
or several notes (all with the same duration). Each chord in the bar is delimited with a single semicolon.

Each chord can have several parts. All missing parts will default to the value in the previous chord. The
various parts of a chord must be specified in the order given in the following table.

Duration The duration of the note. This is specified in the same manner as chord patterns. The following
note values are permitted:

Notation | Description

1 Whole note

2 Half

4 Quarter

8 Eighth

16 Sixteenth

32 Thirtysecond

64 Sixtyfourth

3 One note of an eight note triplet
0 A single MIDI tick

A duration can be modified by appending a single “.” which adds half the value to the note. For
example, “2.” would be three beats.

(1)

A duration can be modified by appending a two “.’s which add three quarters of the value to the
note. For example, “2..” would be three and one half beats.

Note lengths can be combined using “+”. For example, to make a dotted eight note use the notation
“8+167, a dotted half “2+4”, and a quarter triplet “3+3”.

It is permissible to combine notes with “dots” and “+”’s. The notation “2.4+4” would be the same as
a whole note.

47

9.1 Note Data Format Solo and Melody Tracks

(1P €C_ 9

Pitch The note in standard musical notation. The lowercase letters “a” to “g” are recognized as well as
“r”’ to specify a rest (please note the exception for Drum Solo Tracks, see page 49).

Accidental A pitch modifier consisting of a single “#” (sharp), “&” (flat) or “n” (natural). Please note that
an accidental will override the current Keysig for the current bar (just like in real musical notation).
Unlike standard musical notation the accidental will apply to similarly named notes in different
octaves.

To avoid confusion between a flat sign and a “b” we have changed the flat notation to an “&”
character.

Octave Without an octave modifier, the current octave specified by the Octave directive is used for the

pitch(es). Any number of “-” or “+” signs can be appended to a note. Each “-” drops the note by an
octave and each “+” will increase it. The base octave begins with “c” below the treble clef staff.

Volume A volume can be specified. The volume is a string like “ff”” surrounded by “<>" brackets. For
example, to set the volume of a chord to “very loud”, you could use the string <ffff> in the chord
specification (see page 66) Of course, it is probably easier to set accented beats with the Accent
directive (see page 67).

To make your note data more readable, you can include any number of space and tab characters (which
are ignored by a#m).

L
dR
(1 R

KeySig 1b

F { 4ca-; 2da-; 4f£d; }

F { 4.af; 8g#f; 4af; c+f; }
F { 4ca-; 2da-; 4fc; }

F { laf; }

Example 9.1: Solo Notation

Example 9.1 shows a few bars of “Bill Bailey” with the 4471 equivalent.
A few notes on duration:

73 If you have a note tied into a new bar in your music score you can specify a note duration which
creates a note ending past the current bar end. For example, if you have a bar with a 2 half notes,
and the second one is tied to a half note in the next bar you might want something like:

Cm { 2a; 1b; }
F { 2r; 4a; b; }

Here we use a rest in the second bar to compensate for the extended duration of the preceeding note.

48

9.2 KeySiy Solo and Melody Tracks

73 Any notes which extend into the next bar will be reported in a warning message.
73 Notes cannot start past the end of the of the current bar.

The use of default values can be a great timesaver, and lead to confusion! For example, the following all
generate four quarter note “f”’s:

Solo Riff 4f; 4f,; 4f; 4f;
Solo Riff 4f; £; £, f£;
Solo Riff 4f; 4; 4, 4;
Solo Riff 4f; ; ,; ;

Most of the timing and volume commands available in other tracks also apply to Solo and Melody tracks.
Important commands to consider include Articulate, Voice and Octave. Also note that Transpose is applied
to your note data.

9.2 KeySig

If you are including Solo or Melody tracks you should set the key signature for the song:
KeySig 2b

The argument consists of a single digit “0” to “7” followed by a “b” or “&” for flats keys or a “#” for sharp
keys.

Setting the key signature effects the notes used in Solo or Melody tracks and sets a MIDI Key Signature
event.

9.3 AutoSoloTracks

When a “{ }” expression is found in a chord line, it is assumed to be note data and is treated as a Riff. You
can have any number of “{ }” expressions in a chord line. They will be assigned to the tracks specified in
the AutoSoloTracks directive.

By default, four tracks are assigned: Solo, Solo-1, Solo-2, and Solo-3. This order can be changed:
AutoSoloTracks Melody—-Oboe Melody-Trumpet Melody-Horn

Any number of tracks can be specified in this command, but they must all be Solo or Melody tracks. You
can reissue this command at any time to change the assignments.

9.4 Drum Solo Tracks

A solo or melody track can also be used to create drum solos. The first thing to do is to set a track as a
drum solo type:

49

9.5 Mallet Solo and Melody Tracks

Solo-MyDrums DrumType

This will create a new Solo track with the name Solo-MyDrums and set its “Drum” flag. If the track
already exists and has data in it, the command will fail. The MIDI channel 10 is automatically assigned to
all tracks created in this manner. You cannot change a “drum” track back to a normal track.

These is no limit to the number of Solo or Melody tracks you can create .. .and it probably makes sense to
have several different tracks if you are creating anything beyond a simple drum pattern.

Tracks with the “drum” setting ignore Transpose and Harmony settings.

The specification for pitches is different in these tracks. Instead of standard notation pitches, you must
specify a series of drum tone names or MIDI values. If you want more than one tone to be sounded
simultaneously, create a list of tones separated by commas.

Some examples:
Solo-MyDrums Riff 4 SnareDruml; ; r ; SnareDruml;

would create a snare hit on beats 1, 2 and 4 of a bar. Note how the second hit uses the default tone set in
the first beat.

Solo-MyDrums Riff 8,38;;;;

creates 4 hits, starting on beat 1. Instead of “names” we have used MIDI values (in this case, 38 and

[1%2)

“SnareDrum1” are identical. Note how we use a “,” to separate the initial length from the first tone.
Solo-MyDrums Riff 4 SnareDruml, 53,81; r; 4 SideKick ;
creates a “chord” of 3 tones on beat 1, a rest on beat 2, and a “SideKick™ on beat 3.

Using MIDI values instead of names lets you use the full range of note values from 0 to 127. Not all will
produce valid tones on all synths.

9.5 Mallet

Some instruments (Steel-drums, banjos, marimbas, etc.) are normally played with rapidly repeating notes.
Instead of painfully inserting long lists of these notes, you can use the Mallet directive for a Solo or Melody
track. The Mallet directive accepts a number of options, each a OPTION=VALUE pair. For example:

Solo-Marimba Mallet Rate=16 Decay=-5

The following options are supported:

9.5.1 Rate

The Rate must be a valid note length (ie. 8, 16, or even 16.+8).

For example:

50

9.5 Mallet Solo and Melody Tracks

Solo-Marimba Mallet Rate=16
will set all the notes in the “Solo-Marimba” track to be sounded a series of 16th notes.
73 Note duration modifiers such as articulate are applied to each resultent note,
I Ttis guaranteed that the note will sound at least once,
73 The use of note lengths assures a consitant sound independent of the song tempo.

To disable this setting use a value of “0”.

9.5.2 Decay

You can adjust the volume (velocity) of the notes being repeated when Mallet is enabled:
Solo-Mallet Mallet Decay=-15

The argument is a percentage of the current value to add to the note each time it is struck. In this example,
assuming that the note length calls for 4 “strikes” and the initial velocity is 100, the note will be struck
with a velocity of 100, 85, 73 and 63.

Important: a positive value will cause the notes to get louder, negative values cause the notes to get softer.
Note velocities will never go below 1 or above 255.

The decay option value must be in the range -20 to 20. The default value is O (no decay).

51

Chapter 10

Chord Voicing

In music, a chord is simply defined as two more notes played simultaneously. Now, this doesn’t mean that
you can play just any two or three notes and get a chord which sounds nice—but whatever you do get will
be a chord of some type. And, to further confuse the unwary, different arrangements of the same notes
sound better (or worse) in different musical situations.

As a simple example, consider a C major chord. Built on the first, third and fifth notes of a C major scale
it can be manipulated into a variety of sounds:

~

Q) ’ 1st Inversion | _‘_

Root . Wide Position
2nd Inversion

4 =

These are all C major chords ...but they all have a different sound or color. The different forms a chord
can take are called “voicings”. Again, this manual is not intended to be a primer on musical theory—that’s
a subject way beyond our abilities, and (again) we really recommend your favorite music teacher and the
study of basic music theory if you want to understand how and why 2% creates its tracks.

The different options in this chapter effect not only the way chords are constructed, but also the way bass
lines and other tracks are formed.

There are generally two ways in a2 to take care of voicings.
1. use mm’s extensive Voicing options, most likely with the ”Optimal” voicing algorithm,
2. do everything by yourself with the commands Invert and Compress.

The commands Limit and DupRoot may be used independently for both variants.

10.1 Voicing

The Voicing command is use to set the voicing mode and several other options relating to the selected
mode. The command needs to have a Chord track specified and a series of Option=Value pairs. For
example:

52

10.1 Voicing Chord Voicing

Chord-Piano Voicing Mode=Optimal Rmove=10 Range=9

In the following sections we will cover all the options available.

10.1.1 Voicing Mode

The easiest way to deal with chord voicings is to via the Voicing Mode=XX option.

When choosing the inversion of a chord to play an accompanist will take into consideration the style of
the piece and the chord sequences. In a general sense, this is referred to as “voicing”.

A large number of the library files have been written to take advantage of the following voicing commands.
However, not all styles of music take well to the concept. And, don’t forget about the other commands
since they are useful in manipulating bass lines, as well as other chord tracks (eg. sustained strings).

afm has a variety of sophisticated, intelligent algorithms' to deal with voicing.

As a general rule you should not use the Invert and Compress commands in conjunction with the Voicing
command. If you do, you may create beautiful sounds. But, the results are more likely to be less-than-
pleasing. Use of voicing and other combinations will display various warning messages.

The main command to enable voicings is:
Chord Voicing Mode=Type

As mentioned above, this command can only be applied to Chord tracks. Also note that this effects all
bars in the sequence ... you cannot have different voicings for different bars in the sequence (attempting
to do this would make no sense).

The following MODE types are available:

Optimal A basic algorithm which automatically chooses the best sounding voicing depending on the
voicing played before. Always try this option before anything else. It might work just fine without
further work.

The idea behind this algorithm is to keep voicings in a sequence close together. A pianist leaves his
or her fingers where they are, if they still fit the next chord. Then, the notes closest to the fingers are
selected for the next chord. This way characteristic notes are emphasized.

Root This Option may for example be used to turn off Voicing within a song. Voicing Mode=Root means
nothing else than doing nothing, leaving all chords in root position.

None This is the same as the Root option.

Invert Rather than basing the inversion selection on an analysis of past chords, this method quite stupidly
tries to keep chords around the base point of “C” by inverting “G” and “A” chords upward and “D”,
“E” and “F” downward. The chords are also compressed. Certainly not an ideal algorithm, but it
can be used to add variety in a piece.

!Great thanks are due to Alain Brenzikofer who not only pressured me into including the Voicing options, but wrote a great
deal of the actual code.

53

10.1 Voicing Chord Voicing

Compressed Does the same as the stand-alone Compress command. Like Root, it is only added to be
used in some parts of a song where Voicing Mode=Optimal is used.

10.1.2 Voicing Range
To get wider or closer voicings, you may define a range for the voicings. This can be adjusted with the
Range option:

Chord—-Guitar Voicing Mode=Optimal Range=12

In most cases the default value of 12 should work just fine. But, you may want to fine tune . ..it’s all up to
you. This command only effects chords created with Mode=Optimal.

10.1.3 Voicing Center

Just minimizing the Euclidean distance between chords doesn’t do the trick as there could be runaway
progressions that let the voicings drift up or down infinitely.

When a chord is “voiced” or moved to a new position, a “‘center point” must be used as a base. By default,
the fourth degree of the scale corresponding to the chord is a reasonable choice. However, you can change
this with:

Chord-1 Voicing Center=<value>

The value in this command can be any number in the range 0 to 12. Try different values. The color of
your whole song might change.

Note that the value is the note in the scale, not a chord-note position.

This command only effects chords created with Mode=Optimal.

10.1.4 Voicing Move

To intensify a chord progression you may want to have ascending or descending movement of voicings.
This option, in conjunction with the Dir optional (see below) sets the number of bars over which a mov-
ment is done.

For the Move option to have any effect you must also set the direction to either -1 or 1. Be careful that
you don’t force the chord too high or low on the scale. Use of this command in a Repeat section can
cause unexpected results. For this reason we suggest that you include an Seq command at the beginning
of repeated sections of your songs.

In most cases the use of this command is limited to a section of a song, its use is not recommended in
groove files. You might want to do something like this in a song:

54

10.2 Compress Chord Voicing

..select groove with voicing
chords. .

Chord-Piano Voicing Move=5 Dir=1
more chords..

Chord-Piano Voicing Move=5 Dir=-1
more chords..

10.1.5 Voicing Dir

This option is used in conjunction with the Move option to set the direction (-1 or 1) of the movement.

10.1.6 Voicing Rmove

As an alternate to movement in a specified direction, random movement can add some color and variety
to your songs. The command option is quite useful (and safe to use) in groove files. The argument for this
option is a percentage value specifying the frequency to apply a move in a random direction.

For example:
Chord-3 Voicing Mode=Optimal Rmove=20

would cause a movement (randomly up or down) in 20% of the bars. As noted earlier, using explicit
movement instructions can move the chord into an undesirable range or even “off the keyboard”; how-
ever, the algorithm used in RMOVE has a sanity check to ensure that the chord center position remains,
approximately, in a two octave range.

10.2 Compress

When a#m grabs the notes for a chord, the notes are spread out from the root position. This means that
if you specify a “C13” you will have an “A” nearly 2 octaves above the root note as part of the chord.
Depending on your instrumentation, pattern, and the chord structure of your piece, notes outside of the
“normal” single octave range for a chord may sound strange.

Chord Compress 1
Forces az to put all chord notes in a single octave range.
The effects vary from track to track:
Drum, Scale, Bass, Solo/Melody and Walking: No effect.

Chord, Arpeggio and Bass: High notes in the chord are reduced by one octave (this means
that the complete range of a chord will be limited to one octave).

55

10.3 DupRoot Chord Voicing

Notes: Compress takes any value between 1 and 5 as arguments (however, some values will have no effect
as detailed above). You can specify a different Compress for each bar in a sequence. Repeated values can
be represented with a “/”’:

Chord Compress 1 / 0 /
To restore to its default (off) setting, use a “0” as the argument.

For a similar command, with different results, see the Limit command (see page 57).

10.3 DupRoot

To add a bit of fullness to chords, it is quite common of keyboard players to duplicate the root tone of a
chord into a lower (or higher) octave. This is accomplished in a2 with the command:

DupRoot -1 1 -1 1

The command determines whether or not the root tone of a chord is duplicated in another octave. By
default notes are not added. A value of -1 will add a note one octave lower than the root note, -2 will add
the tone 2 octaves lower, etc. Similarly, the value of 1 will add a note one octave higher than the root tone,
etc.

Only the values -9 to 9 are permitted.
Different values can be used in each bar of the sequence.
The option is reset to O after all Sequence or SeqClear commands.

The DupRoot command is only valid in Chord tracks. A similar command is Duplicate (see page 93).

10.4 Invert

By default 247 uses chords in the root position. By example, the notes of a C major chord are C, E and G.
Chords can be inverted (something musicians do all the time). Sticking with our C major chord, the first
inversion shifts the root note up an octave and the chord becomes E, G and C. The second inversion is G,
Cand E.

i extends the concept of inversion a bit by permitting the shift to be to the left or right, and the number
of shifts is not limited. So, you could shift a chord up several octaves by using large invert values.?

Inversions apply to each bar of a sequence. So, the following is a good example:

SeqgSize 4
Chord-1 Sequence STR1

2We’ve used the term “shift” here, but that’s not quite what am does. The order of the notes in the internal buffer stays the
same, just the octave for the notes is changed. So, if the chord notes are “C E G with the MIDI values “0, 4, 7 an invert of 1
would change the notes to “C2 E G” and the MIDI values to “12, 4, 7”.

56

10.5 Limit Chord Voicing

Chord-1l Invert 0 1 0 1

Here we set the sequence pattern size to 4 bars and set the pattern for each bar in the Chord-1 track to
“STR1”. Without the next line, this would result in a rather boring, repeating pattern. But, the Invert
command forces the chord to be in the root position for the first bar, the first inversion for the second, etc.

You can use a negative Invert value:
Chord-1 Invert -1
In this case the C major chord becomes G, C and E.

Note that using fewer Invert arguments than the current sequence size is permitted. 442 simply expands
the number of arguments to the current sequence size. You may use a “/” for a repeated value.

A Sequence or ClearSeq command resets Invert to 0.
Invert can be used in any track context, however, it does not effect Drum or Walk tracks.
Let’s see what happens with a Bass track that’s been inverted. First off the pattern and sequence definitions:

Bass define X1 0 4 0 60; 25 4 2 60; 50 4 0 60; 75 4 2 60
Bass Sequence X1
Bass Invert 0 1 0 1

The define says to play quarter notes on each beat. On beats 1 and 3 we play the root (0 is the first note in
the chord); on beats 2 and 4 we play the fifth (2 is the 2nd note in the chord and is the fifth of the scale).
If you are expecting different notes to be played on the second and fourth bars you’ll be (somewhat)
disappointed. No matter what inversion is used the first note of the chord remains the root—only the
octave of the note will be changed.

Frankly, Arpeggios sound a bit odd with inversions.

If you use a large value for Invert you can force the notes out of the normal MIDI range. In this case the
lowest or highest possible MIDI note value will be used.

10.5 Limit

If you use “jazz” chords in your piece, some people might not like the results. To some folks, chords like
11th, 13th, and variations have a dissonant sound. And, sometimes they are in a chart, but don’t really
make sense. The Limit command can be used to set the number of notes of a chord used.

For example:
Chord Limit 4

will limit any chords used in the Chord track to the first 4 notes of a chord. So, if you have a C11 chord
which is C, E, G, Bb, D, and F, the chord will be truncated to C, E, G and Bb.

This command only applies to Bass, Chord and Arpeggio tracks. It can be set for other tracks, but the
setting will have no effect.

57

10.6 Range Chord Voicing

Notes: Limit takes any value between 0 and 8 as an argument. The “0” argument will disable the com-
mand. This command applies to all chords in the sequence—only one value can be given in the command.

To restore to its default (off) setting, use a “0” as the argument.

For a similar command, with different results, see the Compress command (see page 55).

10.6 Range

For Arpeggio and Scale tracks you can specify the number of octave used. The effects of the Range
command is slightly different between the two.

Scale: Scale tracks, by default, create three octave scales. The Range value will modify this to the number
of octaves specified. For example:

Scale Range 1
will force the scales to one octave. A value of 4 would create 4 octave scales, etc.

Arpeggio: Normally, arpeggios use a single octave (really, they use whatever notes are in the chord, which
might exceed the octave). Using the Range command we specify the number of octaves to use. The values
of “0” and 1" have the same effect.

58

Chapter 11

Tempo and Timing

2% has a rich set of commands to adjust and vary the timing of your song.

11.1 Tempo

The tempo of a piece is set in Beats per Minute with the “Tempo” directive.
Tempo 120

sets the tempo to 120 beats/minute. You can also use the tempo command to increase or decrease the

current rate by including a leading “+”, “-” or “*” in the rate. For example (assuming the current rate is

120):
Tempo + 10
will increase the current rate to 130 beats/minute.

The tempo can be changed series of beats, much like a rit. or acc. in real music. Assuming that we are in
4, the current tempo is 120, and there are 4 beats in a bar, the command:

Tempo 100 1

will cause 4 tempo entries to be placed in the current bar (in the MIDI meta track). The start of the bar
will be 115, the 2nd beat will be at 110, the 3rd at 105 and the last at 100.

99 9% 9

You can also vary an existing rate using a “+”, ”-” or “*”” in the rate.
You can vary the tempo over more than one bar. For example:
Tempo + 20 5.5

tells a#m to increase the tempo by 20 beats per minute and to step the increase over the next five and a half
bars. Assuming a start tempo of 100 and 4 beats/bar, the meta track will have a tempo settings of 101,
102, 103 ... 120. This will occur over 22 beats (5.5 bars * 4 beats) of music.

Using the multiplier is handy if you are switching to “double time”:
Tempo * 2

and to return:

59

11.2 Time Tempo and Timing

Temp * .5

Note that for “+7,”-” or “*” the sign must be separated from the tempo value by at least one space. The
value for Tempo can be any value, but will be converted to integer for the final setting.

11.2 Time

wm doesn’t really understand time signatures. It just cares about the number of beats in a bar. So, if you
have a piece in § time you would use:

Time 4
For 3 use:
Time 3
For § you’d probably want either “2” or “6”.

Changing the time also cancels all existing sequences. So, after a time directive you’ll need to set up your
sequences or load a new groove!.

11.3 TimeSig

Even though afm doesn’t really use Time Signatures, some MIDI programs do recognize and use them.
So, here’s a command which will let you insert a Time Signature in your MIDI output:

TimeSig NN DD

The NN parameter is the time signature numerator (the number of beats per bar). In 3 you would set this
to “397‘
The DD parameter is the time signature denominator (the length of the note getting a single beat). In }

you would set this to “4”.

The NN value must be an integer in the range of 1 to 126. The DD value must be one of 1, 2, 4, 8, 16, 32
or 64.

ama assumes that all songs are in § and places that MIDI event at offset 0 in the Meta track.

11.4 BeatAdjust

Internally, a#m tracks its position in a song according to beats. For example, in a § piece the beat position
is incremented by 4 after each bar is processed. For the most part, this works fine; however, there are some
conditions when it would be nice to manually adjust the beat position:

I'The time value is saved/restored with grooves so setting a time is redundant in this case.

60

11.4 BeatAdjust Tempo and Timing

73 You may want to insert some extra (silent) beats at the end of bar to simulate a pause,
4 You may want to delete some beats to handle a “short” bar.

Let us deal with both instances in turn. In example 11.1 we simulate a pause at the end of bar 10. One
problem with this logic is that the inserted beat will be silent, but certain notes (percussive things like
piano) often will continue to sound (this is related to the decay of the note, not that ##7 has not turned off
the note). Frankly, we’ve not been able to get this to work too well ... which is why the fermata (see page
62) was added.

Time 4

1Cm/ / /

10 Am / C /
BeatAdjust 1

Example 11.1: Adding Extra Beats

In example 11.2 we handle the problem of the “short bar”. In this example, the sheet music has the
majority of the song in § time, but bar 4 is in . We could handle this by setting the Time setting to 2 and
creating some different patterns. Forcing silence on the last 2 beats and backing up the counter is a bit
easier.

1Cm/ / /

4 Am / z!' /
BeatAdjust -2

Example 11.2: Short Bar Adjustment

Note that the adjustment factor can be a partial beat. For example:
BeatAdjust .5

will insert half of a beat between the current bars.

61

11.5 Fermata Tempo and Timing

11.5 Fermata

A “fermata” or “pause” in written music tells the musician to hold a note for a longer period than the
notation would otherwise indicate. In standard music notation it is represented by a “+” above a note.

To indicate all this in 2= we use a command like:
Fermata 1 1 200
Note that there are three parts to the command:

1. The beat offset from the current point in the score to apply the “pause”. The offset can be positive or
negative and is calculated from the current bar. Positive numbers will apply to the next bar; negative
to the previous. For offsets into the next bar you use offsets starting at “0”; for offsets into the
previous bar an offset of “-1” represents the last beat in that bar.

For example, if you were in § time and wanted the quarter note at the end of the next bar to be
paused, you would use an offset of 3. The same effect can be achieved by putting the Fermata
command after the bar and using an offset of -1.

2. The duration of the pause in beats. For example, if you have a quarter note to pause your duration
would be 1, a half note (or 2 quarter notes) would be 2.

3. The adjustment. This represented as a percentage of the current value. For example, to force a note
to be held for twice the normal time you would use 200 (two-hundred percent). You can use a value
smaller than 100 to force a shorter note, but this is seldom done.

Example 11.3 shows how you can place a Fermata before or after the effected bar.

The second example, 11.4, shows the first four bars of a popular torch song. The problem with the piece is
that we want the first beat of bar four to be paused, and then we want to switch the accompaniment in the
middle of the bar. We have split the fourth bar with the first beat on one line and the balance on a second.
The “z!”s are used to “fill in” the 4 beats skipped by the BeatAdjust.

The following conditions will generate warning messages:
J1 A beat offset greater than one bar,
71 A duration greater than one bar,
41 An adjustment value less than 100.

This command works by adjusting the global tempo in the MIDI meta track at the point of the fermata. In
most cases you can put more than one Fermata command in the same bar, but they should be in beat order
(no checks are done). If the Fermata command has a negative position argument, special code is invoked
to remove any note-on events in the duration specified, after the start of the beat.> This means that extra
rhythm notes will not be sounded—probably what you expect a held note to sound like.

Technically speaking, a¢= determines an interval starting 5% of a beat after the start of the fermata to a point 5% of a beat
before the end. Any MIDI Note-On events in this range (in all tracks) are deleted.

62

11.6 Cut Tempo and Timing

V AN 3 P []
J

M Equivalent
Fermata 3 1 200
C

Gm7

Alternate

C

Fermata -1 1 200
Gm7

Example 11.3: Fermata

C C#dim

G7

C / C#dim

G7 z!

Fermata -4 1 200
Cut -3
BeatAdjust -3.5
Groove EasySwing
z! G7 C7

Example 11.4: Fermata with Cut

11.6 Cut

This command was born of the need to simulate a “cut” or, more correctly, a “caesura”. This is indicated
in music by two parallel lines put at the top of a staff indicating the end of a musical thought. The symbol

63

11.6 Cut Tempo and Timing

is also referred to as “railroad tracks”.

The idea is to stop the music on all tracks, pause briefly, and resume.>

. provides the cut command to help deal with this situation. We have found it to be useful in other
situations. But, before we describe the command in detail, a diversion: just how is a note or chord
sustained in a MIDI file?

Let us assume that a 4471 input file (and the associated library) files dictates that some notes are to be
played from beat 2 to beat 4 in an arbitrary bar. What a#m does is:

71 determine the position in the piece as a midi offset to the current bar,

J3 calculate the start and end times for the notes,

73 adjust the times (if necessary) based on adjustable features such as strum, articulate, rtime, etc.,
JJ insert the required MIDI “note on” and “note off” commands at the appropriate point in the track.

You may think that a given note starts on beat 2 and ends (using articulate 100) right on beat 3—but you
would most likely be wrong. So, if you want the note or chord to be “cut”, what point do you use to
instruct a1 correctly? Unfortunately, the simple answer is “it depends”. Again, our answers will consist
of some examples.

In this first case we wish to stop the track in the middle of the last bar. The simplest answer is:

l1cC

6c /2t /

Unfortunately, this will “almost” work. But, any chords which are longer than one or two beats may
continue to sound. This, often, gives a “dirty” sound to the end of the piece. The simple solution is to add
to the end of the piece:

Cut -2

Depending on the rhythm you might have to fiddle a bit with the cut value. But, the example here puts a
“all notes off”” message in all the active tracks at the start of beat 3. The exact same result can be achieved
by placing:

Cut 3
before the final bar.

In our second example we want a tiny bit of silence between bars 4 and 5. This might be the end of an
introduction. The following bit should work:

l1cC
2 G
3G
4 C

3The answer to the music theory question of whether the “pause” takes time from the current beat or is treated as a “fermata”
is not clear—but as far as a1 is concerned the command has no effect on timing.

64

11.6 Cut Tempo and Timing

Cut
BeatAdjust .2
5 G

In this case the “all notes off™ is placed at the end of bar 4 and two-tenths of a beat is inserted at the same
location. Bar 5 continues the track.

Our final example show how you might combine cut with fermata. In this case the sheet music shows a
caesura after the first quarter note and fermatas over the quarter notes on beats 2, 3 and 4.

1 C C#dim

2 G7

3 C / C#dim
Fermata 1 3 120
Cut 1.9

Cut 2.9

Cut 3.9

4 G7 / Cc71/

5 Fé6

A few tutorial notes on the above:
43 The command
Fermata 1 3 120

applies a slow-down in tempo to the second beat for the following bar (an offset of 1), for 3 beats.
These 3 beats will be played 20% slower than the set tempo.

43 The three cut commands insert MIDI “all notes off” in all the active tracks just before beats 2, 3 and
4.

Finally, the proper syntax for the command:
[Voice] Cut [Offset]
If the voice is omitted, MIDI “all notes off” will be inserted into each active track.

If the offset is omitted, the current bar position will be used. This the same as using an offset value of 0.

65

Chapter 12

Volume and Dynamics

M s very versatile when it comes to the volumes or dynamics used in your song.
Each generated note goes though 4 volume adjustments:

1. The initial volume is set in the pattern definition, see chapter 4,

2. the initial volume is adjusted with the track volume,

3. this volume is further adjusted with the master volume,

4. if certain notes are to be accented, the volume is further adjusted,

5. and, finally, if the random volume is set, this is applied,

For the most part 2% uses conventional musical score notation for volumes. Internally, the dynamic name
is converted to a percentage value. The note volume is adjusted by the percentage.

The following table shows the available volume settings and the adjustment values.

Symbolic Name | Ratio Adjustment
off 0
pppp 20
ppp 30
pp 45
p 55
mp 75
mf 90
f 100
ff 110
fff 120
ffff 150

The setting Off is useful for generating fades at the end of a piece. For example:

Volume ff
Decresc Off 5
G/ Gm/ * 5

will cause the last 5 bars of your music to fade from a “ff” to silence.

66

12.1 Accent Volume and Dynamics

The initial volume (or velocity) is set in the pattern definition (see chapter 4). The following commands
set the master volume, track volume and random volume adjustments.

In addition to the volumes (velocities) generated by a#z1 your MIDI device can also change the mix be-
tween channels. See the discussion for Channel Volume (prefchannelvol).

12.1 Accent

“Real” musicians, in an almost automatic manner, emphasize notes on certain beats. In popular Western
music written in § time this is usually beats one and three. This emphasis sets the pulse or beat in a piece.

In a#m1 you can set the volumes in a pattern so that this emphasis is done. For example, when setting a
walking bass line pattern you could use a pattern definition like:

Define Walk W1234 1 4 100; 2 4 70; 3 4 80; 4 4 70
Howeyver, it is much easier to use a definition which has all the volumes the same:
Define Walk W1234 1 1 90 * 4
and use the Accent command to increase or decrease the volume of notes on certain beats:
Walk Accent 1 20 2 -10 4 -10

The above command will increase the volume for walking bass notes on beat 1 by 20%, and decrease the
volumes of notes on beats 2 and 4 by 10%.

You can use this command for all tracks.

When specifying the accents, you must have matching pairs of data. The first item in the pair is the beat
(which can be fractional), the second is the volume adjustment. This is a percentage of the current note
volume that is added (or subtracted) to the volume. Adjustment factors must be in the range -100 to 100.

The Accents apply to all bars in a track. You cannot set different accents for different bars. If you need
to do this it’s a simple matter to create duplicate tracks (which can even share the same MIDI channel).
For example, you might want even bars to have beats 1 and 3 accented and odd bars to have only beat 1
accented. An abbreviated attempt might look like:

Begin Chord-1
Sequence C1234 z
Voice Pianol
Accent 1 20 3 30

End

Begin Chord-2
Sequence z C1234
Voice Pianol
ChShare Chord-1
Accent 1 20

End

67

12.2 AdjustVolume Volume and Dynamics

12.2 AdjustVolume

The ratios used to adjust the volume can be changed from the above table. For example, to change the
percentage used for the “mf” setting:

AdjustVolume MF 95
If you want to adjust a number of settings:

Begin AdjustVolume
PP 47

ppp 50
End

All values must be positive integers. Any value over 180 will be reported as a warning.

You might want to do these adjustment in your MMArc file(s).

12.3 Volume

The volume for a track, or all tracks, is given the “Volume” command. Volumes can be specified much
like standard sheet music with the conventional dynamic names. These volumes can be applied to a track
or to the entire song. For example:

Arpeggiol Volume p

sets the volume for Arpeggiol track to something approximating piano.
Volume £

sets the master volume to forte.

In most cases the volume for a track will be set with the sequence definition; the master volume is used in
the music file to adjust the overall feel of the piece.

12.4 Cresc and Decresc

If you wish to adjust over a series of bars use the Cresc or Decresc commands. These commands are only
valid in the master context; they can not be applied to individual tracks.

For all practical purposes, the two commands are equivalent, expect for the warning. If the new volume in
less than the current volume in a Cresc a warning will be displayed; the converse applies to a Decresc.

The command requires two arguments. The first is the new volume, the second is the number of bars to
adjust it over.

For example:

68

12.5 RVolume Volume and Dynamics

Cresc fff 5
will gradually vary the master volume from its current setting to a triple forte over the next 5 bars.
Similarly:
Decresc mp 2
will decrease the master volume to mezzo piano over the next 2 bars.
A SeqClear command will reset all track volumes to the default mf (ie. no adjustment).
When using Volume for a specific track, you can use a different value for each bar in a sequence:
Drum Volume mp ff / ppp

A “/” can be used to repeat values.

12.5 RVolume

Not even the best musician can play each note at the same volume. Nor would he or she want to—the result
would be quite unmusical. The note volumes can be randomly adjusted with the Rvolume command.

The command can be applied to a specific track or (if you’re brave) to all tracks.! Examples:

Chord RVolume 10
RVolume 5

The RVolume argument is a percentage value by which a volume is adjusted. A setting of O disables the
adjustment for a track (this is the default).

When set, the note velocity (after the track and master volume adjustments) is randomized up or down by
the value. Again, using the above example, let us assume that a note in the current pattern gets a MIDI
velocity of 88. The random factor of 10 will adjust this by 10% up or down—the new value can be from
78 to 98.

The idea behind this is to give the track a more human sounding effect. You can use large values, but it’s
not recommended. Usually, values in the 5 to 10 range work well. You might want slightly larger values
for drum tracks. Using a value greater than 30 will generate a warning message.

Notes:
73 No generated value will be out of the valid MIDI velocity range.

73 You may use RVolume without a leading track name. In this case it will effect all the tracks (prob-
ably not recommended).

73 When using RVolume for a specific track, you can use a different value for each bar in a sequence:

Scale RVolume 10 0 / 20

IThe best use of using RVolume for all tracks is with a “0” argument to (temporarily) disable the setting for all tracks.

69

12.6 Saving and Restoring Volumes Volume and Dynamics

J3 A “/” can be used to repeat values.

12.6 Saving and Restoring Volumes

Dynamics can get quite complicated, especially when you are adjusting the volumes of a track inside
a repeat or other complicated sections of music. In this section we will attempt to give some general
guidelines and hints.

For the most part, the supplied groove files will have balanced volumes between the different instruments.
In a future version of afm1 a volumeAdjust command will let you fine tune differences between your synth
and the standards in the library. This will be done before verison 1.0.

Remember that Grooves save all the current volume settings. This includes the master setting as well
as individual track settings. So, if you are using the mythical groove “Wonderful” and think that the
Chord-Piano volume should be louder in a particular song it’s easy to do something like:

Groove Wonderful
Chord-Piano Volume ff
DefGroove Wonderful

Now, when you call this groove the new volume will be used. Note that you’ll have to do this for each
variation of the groove that you use in the song.

In most songs you will not need to do major changes. But, it is nice to use the same volume each time
though a section. In most cases you’ll want to do a explict setting at the start of a section. For example:

Repeat
Volume mf

Cresc ff 5
EndRepeat
Another useful technique is the use of the $_LastVolume macro. For example:
Volume pp
Cresc £ 5

$ LastVolume // restores to pp

70

Chapter 13

Repeats

Mm attempts to be as comfortable to use as standard sheet music. This includes repeats and endings.

More complex structures like D.S., Coda, etc. are not directly supported. But, they are easily simulated
with by using some simple variables, conditionals and gotos. See chapter 14 for details. Often as not, it
may be easier to use your editor to cut, paste and duplicate.

9]

A section of music to be repeated is indicated with a “Repeat” and “Repeatend” or “EndRepeat”". In

addition, you can have “RepeatEndings”.

n Am C D7 Dm G7 A
A B —————| S——] E————
4 i i = . i il
oJ
Repeat
1 Am
2 Cc
RepeatEnding 2
3 D7
RepeatEnding
4 D7 / Dm
RepeatEnd
5 G7
6 A

Example 13.1: Repeats

In example 13.1 a#m produces music with bars:

1,2,3,
1,2,3,

I'The reason for both “EndRepeat” and “RepeatEnd” is that we have both “IfEnd” and “EndIf”.

71

Repeats

1,2, 4,
1,2,5,6

This works just like standard sheet music. Note that RepeatEnding can take an optional argument indi-
cating the number of times to use the ending.

M processes repeats by reading the input file and creating duplicates of the repeated material. This means
that a directive in the repeated material would be processed multiple times. Unless you know what you
are doing, directives should not be inserted in repeat sections. Be especially careful if you define a pattern
inside a repeat. Using “Tempo” with a “+” or “-”” will be problematic as well.

Repeats can be nested to any level.

There must be one “RepeatEnd” or “EndRepeat” for every “Repeat”. Any number of “RepeatEnding”s
can be included before the “RepeatEnd”.

72

Chapter 14

Variables, Conditionals and Jumps

To make the processing of your music easier, M7 supports a very primitive set for variable manipulations
along with some conditional testing and the oft-frowned-upon goto command.

14.1 Variables

i lets you set a variable, much like in other programming languages and to do some basic manipulations
on them. Variables are most likely to be used for two reasons:

41 For use in setting up conditional segments of your file,
7 As a shortcut to entering complex chord sequences.
To begin, the following list shows the available commands to set and manipulate variables:

Set VariableName String

Mset VariableName ... MsetEnd
UnSet VariableName

ShowVars

Inc Variablename [value]

Dec Variablename [value]
Vexpand ON/Off

All variable names are case-insensitive. Any characters can be used in a variable name. The only excep-

(134l

tions are that a variable name cannot start with a “$” or a “_” (an underscore—this is reserved for internal
variables, see below).

Variables are set and manipulated by using their names. Variables are expanded when their name is
prefaced by a space followed by single “$” sign. For example:

Set Silly Am / Bm /
1 $Silly

The first line creates the variable “Silly”; the second creates a bar of music with the chords “Am/Bm /.

Note that the “$” must be the first item on a line or follow a space character. For example, the following
will NOT work:

73

14.1 Variables Variables, Conditionals and Jumps

Set Silly 4a;b;c;d;
1 Am {$Silly}

However:
1 am { $silly}
will work fine.

Following are details on all the available variable commands:

14.1.1 Set [string]

Set or create a variable. You can skip the String if you do want to assign an empty string to the variable.
A valid example is:

Set PassCount 1

14.1.2 Mset [lines] MsetEnd/EndMset

This command is quite similar to Sez, but Mset expects multiple lines. An example:

MSet LongVar
1 Cm
2 Gm
3 G7
MsetEnd

It is quite possible to set a variable to hold an entire section of music (perhaps a chorus) and insert this via
macro expansion at various places in your file.

Each Mset must be terminated by a EndMset or MsetEnd command (on its own separate line).

14.1.3 UnSet VariableName

Removes the variable. This can be useful if you have conditional tests which simply rely on a certain
variable being “defined”.

14.1.4 ShowVars

Displays the names of the defined variables and their contents. Mainly used for debugging. The display
will preface each variable name with a “$”. Note that internal ##m variable are also displayed with this
command.

74

14.1 Variables Variables, Conditionals and Jumps

14.1.5 Inc and Dec

These commands increment or decrement a variable. If no argument is given, a value of 1 is used; other-
wise, the value specified is used. The value can be an integer or a floating point number.

A short example:

Set PassCount 1
Set Foobar 4
Showvars

Inc FooBar 4
Inc PassCount
ShowVars

This command is quite useful for creating conditional tests for proper handling of codas or groove changes
in repeats.

14.1.6 VExpand On or Off

Normally variable expansion is enabled. These two options will turn expansion on or off. Why would you
want to do this? Well, here’s a simple example:

Set LeftC Am Em

Set RightC G /

VExpand Off

Set Full $LeftC $RightC
VExpand On

In this case the actual contents of the variable “Full” is “$LeftC $RightC”. If the Off/On option lines had
not been used, the contents would be “Am Em G /”. You can easily verify this with the ShowVars option.

When a#m processes a file it expands variables in a recursive manner. This means that, in the above
example, the line:

1 $Full

will be changed to:
1 Am Em G /

However, if later in the file, you change the definition of one of the variables ... for example:
Set LeftC Am /

the same line will now be “1 Am/ G /.

Most of afm’s internal commands can be redefined with variables. However, we really don’t think you
should use this feature. It’s been left for two reasons: it might be useful, and, it’s hard to disable.

However, not all commands can be redefined. The following is short list of things which will work (but,
again, we’re not suggesting you do this):

75

14.2 Predefined Variables Variables, Conditionals and Jumps

Set Rate Tempo 120
SRate

Set R Repeat

SR

But, the following will not work:

Set B Begin
Set E End
$B Arpeggio Define
SE
This fails since the Begin/End constructs are expanded before variable expansion. However:

Set A Define Arpeggio
Begin $a ... End

is quite alright.

Even though you can use a variable to substitute for the Repeat or If directives, using one for Repeat-
End/EndRepeat, RepeatEnding. Label or IfEnd/EndIf will fail.

Variable expansion should usually not be a concern. In most normal files, a#m will expand variables as
they are encountered. However, when reading the data in a Repeat, If or Mset section the expansion
function is skipped—but, when the lines are processed, after being stored in an internal queue, variables
are expanded.

14.2 Predefined Variables

For your convenience a2 tracks a number of internal settings and saves their values in variables you can
access just like you would a user defined variable. All of these “internal” variables are prefaced with a
single underscore. For example, the current tempo is saved in the variable "TEMPO; this can be accessed
in your script with the notation $_ TEMPO.

_Groove Name of the currently selected groove. May be empty if no groove has been selected.
_LastGroove Name of the groove selected before the currently selected groove.
_SeqSize Current SeqSize setting.

_Tempo Current Tempo. Note that if you have used the optional bar count in setting the tempo this will
be the target tempo.

_Time The current 7ime (beats per bar) setting.
_Transpose Current Transpose setting.

_Volume Current global volume setting.

76

14.3 Conditionals Variables, Conditionals and Jumps

_LastVolume Previously set global volume setting.
_Debug Current debug settings.
_LastDebug Debug settings prior to last Debug command. This setting can be used to restore settings, ie:

Debug Warnings=off
stuff generating annoying warnings
Debug $_LastDebug

14.3 Conditionals

The most important reason we created variables in a7 was to use them in conditionals. In a7 a condi-
tional consists of a line starting with an If directive, a test, a series of lines to process (depending upon the
result of the test), and a closing EndlIf or IfEnd" directive. An optional Else statement may be included.

The first set of tests are unary (they take no arguments):
Def VariableName Returns true if the variable has been defined.
Ndef VariableName Returns true if the variable has not been defined.

In the above tests you must supply the name of a variable—don’t make the mistake of including a “$”
which will invoke expansion and result in something you were not expecting.

A simple example:

If Def InCoda
5 Cm
6 /

Endif

The other tests are binary (they take two arguments):

LT Strl Str2 Returns true if Strl is less than Str2. (Please see the discussion below on how the tests are
done.)

LE Str1 Str2 Returns true if str/ is less than or equal to Str2.
EQ Str1 Str2 Returns true if str/ is equal to Str2.

NE Strl Str2 Returns true if str/ is not equal to Str2.

GT Str1 Str2 Returns true if str/ is greater than Str2.

GE Strl Str2 Returns true if str/ is greater than or equal to Str2.

In the above tests you have several choices in specifying Str/ and Str2. At some point, when a7 does the
actual comparison, two strings or numeric values are expected. So, you really could do:

'We probably suffer from mild dyslexia and can’t remember if the command is IFEND or ENDIF, so both are permitted.
Use whichever is more comfortable for you.

77

14.3 Conditionals Variables, Conditionals and Jumps

If EQ abc ABC

and get a “true” result. The reason that “abc” equals “ABC” is that all the comparisons in 2471 are case-
insensitive.

You can also compare a variable to a string:

If GT $foo abc

29 ¢ 29

will evaluate to “true” if the contents of the variable “foo” evaluates to something “greater than” “abc”.
But, there is a bit of a “gotcha’ here. If you have set “foo” to a two word string, then a#m will choke on
the command. In the following example:

Set Foo A B
If GT $Foo abc

the comparison is passed the line:
If GT A B abc

and a7 seeing three arguments generates an error. If you want the comparison done on a variable which
might be more than one word, use the “$$” syntax. This delays the expansion of the variable until the If
directive is entered. So:

If $$foo abc
would generate a comparison between “A B” and “ABC”.
Delayed expansion can be applied to either variable. It only works in an If directive.

Strings and numeric values can be confusing in comparisons. For example, if you have the strings “22”
and 7’3" and compare them as strings, “3” is greater than “22”; however, if you compare them as values
then 3 is less than 22.

The rule in a#m is quite simple: If either string in a comparison is a numeric value, both strings are
converted to values. Otherwise they are compared as strings. 2

This lets you do consistent comparisons in situations like:
Set Count 1
If LE $$Count 4
IfEnd
Note that in the above example we could have used “$Count”, but you should probably always use the
“$$” in tests.
Much like other programming languages, an optional Else condition may be used:

If Def Coda
Groove Rhumbal

2An attempt is made to convert each string to a float. If conversion of both strings is successful, the comparison is made
between two floats, otherwise two strings are used.

78

14.4 Goto Variables, Conditionals and Jumps

Else
Groove Rhumba
Endif

The Else statement(s) are processed only if the test for the If test is false.
Nesting of Ifs is permitted:

If ndef Foo
Print Foo has been defined.

Else
If def bar
Print bar has been defined. Cool.
Else
Print no bar...go thristy.
Endif
Endif

works just fine. We’ve used indentation in our examples to clearly show the nesting and conditions. We
suggest you do the same.

144 Goto

The Goto command redirects the execution order of you script to the point at which a Label has been
defined. There are really two parts to this:

1. A command defining a label, and,
2. The Goto command.
A label is set with the Label directive:
Label Pointl

The string defining the label can be any sequence of characters. Labels are case-insensitive. You can not
set two points in your file to the same label.

To cause execution to jump to a labeled point:
Goto Pointl
This causes an immediate jump. Any remaining lines in a repeat or conditional segment are discarded.

am does not check to see if you are jumping into a repeat or conditional section of code—but doing so
will usually cause an error. Jumping out of these sections is usually safe.

For an example of how to use some simple labels to simulate a “DS al Coda” examine the file “lullaby-of-
Broadway” in the sample songs directory.

79

Chapter 15

Low Level MIDI Commands

The commands discussed in this chapter directly effect your MIDI output devices.

Not all MIDI devices are equal. Many of the effects in this chapter may be ignored by your devices. Sorry,
but that’s just the way MIDI is.

15.1 Channel

As noted in the Tracks and Channels chapter (see page 14), a#= assigns MIDI channels dynamically as
it creates tracks. In most cases this works fine; however, you can if you wish force the assignment of a
specific MIDI channel to a track with the Channel command.

You cannot assign a channel number to a track if it already defined (well, see the section ChShare, below,
for the inevitable exception), nor can you change the channel assignments for any of the Drum tracks.

Let us assume that you want the Bass track assigned to MIDI channel 8. Simply use:
Bass Channel 8

Caution: If the selected channel is already in use an error will be generated. Due to the way a7 allocates
tracks, if you really need to manually assign track we recommend that you do this in a MMArc file.

You can disable a channel at any time by using a channel number of 0:
Arpeggio-1 Channel 0

will disable the Arpeggio-1 channel, freeing it for use by other tracks. A warning message is generated.
Disabling a track without a valid channel is fine. When you set a channel to O the track is also disabled.
You can restart the track with the On command (see page 96).

You don’t need to have a valid MIDI channel assigned to a track to do things like: Pan, Portamento,
ChannelVolume or even the assignment of any music to a track. MIDI data is created in tracks and then
sent out to the MIDI buffers. Channel assignment is checked and allocated at this point, and an error will
be generated if no channels are available.

It’s quite acceptable to do channel reassignments in the middle of a song. Just assign channel O to the
unneeded track first.

MIDI channel settings are not saved in Grooves.

80

15.2 ChannelPref Low Level MIDI Commands

g inserts a MIDI “track name” meta event when the channel buffers are first assigned at a MIDI offset
of 0. If the MIDI channel is reassigned, a new “track name” is inserted at the current song offset.

A more general method is to use ChannelPref detailed below.

15.2 ChannelPref

If you prefer to have certain tracks assigned to certain channels you can use the ChannelPref command to
create a custom set of preferences. By default, 4471 assigns channels starting at 16 and working down to
1 (with the expection of drum tracks which are all assigned channel 10). If, for example, you would like
the Bass track to be on channel 9, sustained bass on channel 3, and Arpeggio on channel 5, you can have
a command like:

ChannelPref Bass=9 Arpeggio=5 Bass—-Sus=3
Most likely this will be in your mmarc file.

You can use multiple command lines, or have multiple assignments on a single line. Just make sure that
each item consists of a trackname, an “=" and a channel number in the range 1 to 16.

15.3 ChShare

o s fairly conservative in its use of MIDI tracks. “Out of the box” it demands a separate MIDI channel
for each of its tracks, but only as they are actually used. In most cases, this works just fine.

However, there are times when you might need more tracks than the available MIDI channels or you may
want to free up some channels for other programs.

If you have different tracks with the same voicing, it’s quite simple. For example, you might have an
arpeggio and scale track:

Arpeggio Sequence Al6 z
Arpeggio Voice Pianol
Scale Sequence z S8
Scale Voice Pianol

In this example, am will use different MIDI channels for the Arpeggio and the Scale. Now, if you force
channel sharing:

Scale ChShare Arpeggio
both tracks will use the same MIDI channel.

This is really foolproof in the above example, especially since the same voice is being used for both. Now,
what if we wanted to use a different voice for the tracks?

81

154 MIDI Low Level MIDI Commands

Arpeggio Sequence Al6 z
Arpeggio Voice Pianol Strings
Scale Sequence z S8

Scale ChShare Arpeggio

You might think that this would work, but it doesn’t. a7 ignores voice changes for bars which don’t have
a sequence, so it will set “Pianol” for the first bar, then “Strings” for the second (so far, so good). But,
when it does the third bar (an Arpeggio) it will not know that the voice has been changed to “Strings” by
the Scale track.

So, the general rule for track channel sharing is to use only one voice.
One more example which doesn’t work:

Arpeggio Sequence A8
Scale Sequence S4
Arpeggio Voice Pianol
Scale Voice Pianol
Scale ChShare Arpeggio

In this example we have an active scale and arpeggio sequence in each bar. Since both use the same voice,
you may think that it will work just fine ...but it may not. The problem here is that 671 will generate
MIDI on and off events which may overlap each other. One or the other will be truncated. If you are using
a different octave, it will work much better. It may sound okay, but you should probably find a better way
to do this.

When a ChShare directive is parsed the “shared” channel is first checked to ensure that it has been assigned.
If not currently assigned, the assignment is first done. What this means is that you are subverting a7°’s
normal dynamic channel allocation scheme. This may cause is a depletion of avaiable channels.

Please note that we’ve never found it really necessary to use the ChShare command, so it might have
more problems than outlined here. But, to do some testing we do use the command to share Bass and Walk
channels in a few groove files.

This command will always display a warning message.

For another, simpler, way of reassigning MIDI tracks and letting 272 do most of the work for you, refer to
the Delete command (see page 93).

15.4 MIDI

The complete set of MIDI commands is not limitless—but from this end it seems that adding commands
to suit every possible configuration is never-ending. So, in an attempt to satisfy everyone, we’ve added a
command which will place any arbitray MIDI stream in your tracks. In most cases this will be a MIDI
“Sysex” or “Meta” event.

The data can be placed in the meta track or a specific voicing track.

82

15.5 MidiFile Low Level MIDI Commands

For example, you might want to start a song off with a MIDI reset:
MIDI OxFO 0x05 O0x7e O0x7f 0x09 0x01 Oxf7

The values passed to the MIDI command are normal integers; however, they must all be in the range of
0x00 to Oxff. In most cases it is easiest to use hexadecimal numbers by using the “Ox” prefix. But, you
can use plain decimal integers if you prefer.

In the above example:
0xFO Designates a SYSEX message
0x05 The length of the message
Ox7e ...The actual message
Another example places the key signature of F major (1 flat) in the meta track:
MIDI Oxff 0x59 0x02 Oxff 0x00
Some cautions:
J1 a6 makes no attempt to verify the validity of the data!
JJ The “Length” field must be manually calculated.

J1 Malformed sequences can create unplayable MIDI files. In extreme situations, these might even
damange your synth. You are on your own with this command . .. be careful.

JJ The Midi directive always places data in the Meta track at the current time offset into the file. This
should not be a problem.

Cautions aside, an include file which the author uses has been included in the main distribution as includes/
init.mma. You might want to have the command:

MMAstart init
in your mmarc file. The file is pretty well commented and it sets a synth up to something reasonably sane.

If you need a brief delay after a raw MIDI command, it is possible to insert a silent beat with the BeatAdjust
command (see page 60). See the file includes/reset.mma for an example.

15.5 MidiFile

This option controls some fine points of the generated MIDI file. The command is issued with a series of
paramaters in the form “MODE=VALUE”. You can have mulitple settings in a single MidiFile command.

w1 can generate two types of SMF (Standard MIDI Files):

0. This file contains only one track into which the data for all the different channel tracks has been
merged. A number of syths which accept SMF (Casio, Yamaha and others) only accept type O files.

83

15.6 MIDISeq Low Level MIDI Commands

1. This file has the data for each MIDI channel in its own track. This is the default file generated by
M.

You can set the filetype in an RC file (or, for that matter, in any file processed by a472) with the command:
MidiFile SMF=0

or
MidiFile SMF=1

You can also set it on the command line with the -M option. Using the command line option will override
the MidiSMF command if it is in a RC file.

By default 4471 uses “running status” when generating MIDI files. This can be disabled with the command:
MidiFile Running=0

or enabled (but this is the default) with:
MidiFile Running=1

Files generated without running status will be about 20 to 30% larger than their compressed counterparts.
They may be useful for use with braindead sequencers and in debugging generated code. There is no
command line equivalent for this option.

15.6 MIDISeq

It is possible to associate a set of MIDI controller messages with certain beats in a sequence. For example,
you might want to have the Modulation Wheel set for the first beats in a bar, but not for the third. The
following example shows how:

Segsize 4

Begin Bass-2

Voice NylonGuitar

Octave 4

Sequence { 1 4 1 90; 2 4 3 90; 3 45 90; 4 4 1+ 90}
MIDIDef WheelStuff 1 1 O0x7f ; 2 1 0x50; 3 10
MidiSeq WheelStuff

Articulate 90

End

C x 4

The MidiSeq command is specific to a track and is saved as part of the Groove definition. This lets style
file writers use enhanced MIDI features to dress up their sounds.

The command has the following syntax:

TrackName MidiSeq <Beat> <Controller> <Datum> [; ...]

84

15.6 MIDISeq Low Level MIDI Commands

where:

Beat is the Beat in the bar. This can be an integer (1,2, etc.) or a floating point value (1.2, 2.25, etc.). It
must be 1 or greater and less than the end of bar (in § it must be less than 5).

Controller A valid MIDI controller. This can be a value in the range 0x00 to Ox7f or a symbolic name.
See see page 125 for a list of defined names.

Datum All controller messages use a single byte “parameter” in the range 0x00 to Ox7f.

You can enter the values in either standard decimal notation or in hexadecimal with the prefixed “0x”. In
most cases, your code will be clearer if you use values like “Ox7f” rather than the equivalent “127”.

The MIDI sequences specified can take several forms:
1. A simple series like:
MIDISeq 1 ReleaseTime 50; 3 ReleaseTime 0
in this case the commands are applied to beats 1 and 3 in each bar of the sequence.
2. As a set of names predefined in an MIDIDef command:

MIDIdef Rell 1 ReleaseTime 50; 3 ReleaseTime 0
MIDIdef Rel2 2 ReleaseTime 50; 4 ReleaseTime 0
MIDISeq Rell Rel2

Here, the commands defined in “Rell” are applied to the first bar in the sequence, “Rel2” to the
second. And, if there are more bars in the sequence than definitions in the line, the series will be
repeated for each bar.

3. Asetof series enclosed in { } braces. Each braced series is applied to a different bar in the sequence.
The example above could have been does as:

MIDISeq { 1 ReleaseTime 50; 3 ReleaseTime 0 } \
{ 2 ReleaseTime 50; 4 ReleaseTime 0 }

4. Finally, you can combine the above into different combinations. For example:

MIDIDef Rell 1 ReleaseTime 50
MIDIDef Rel2 2 ReleaseTime 50
MIDISeq { Rell; 3 ReleaseTime 0 } { Rel2; 4 ReleaseTime 0 }

You can have specify different messages for different beats (or different messages/controllers for the same

73]

beat) by listing them on the same MidiSeq line separated by “;”s.

If you need to repeat a sequence for a measure in a sequence you can use the special notation “/” to force

the use of the previous line. The special symbol “z” or ”’-” can be used to disable a bar (or number of bars).

For example:
Bass-Dumb MIDISeq 1 ReleaseTime 20 z / FOOBAR

would set the “ReleaseTime” sequence for the first bar of the sequence, no MIDISeq events for the second
and third, and the contents of “FOOBAR” for the fourth.

85

15.7 MID [Voice Low Level MIDI Commands
To disable the sending of messages just use a single “-:

Bass-2 MidiSeq - // disable controllers

15.7 MIDIVoice

Similar to the MIDISeq command discussed in the previous section, the MIDIVoice command is used to
insert MIDI controller messages into your files. Instead of sending the data for each bar as MIDISeq does,
this command just sends the listed control events at the start of a track and then, if needed, at the start of
each bar.

Again, a short example. Let us assume that you want to use the “Release Time” controller to sustain notes
in a bass line:

Segsize 4
Begin Bass-2
Voice NylonGuitar
MidiVoice 1 ReleaseTime 50
Octave 4
Sequence { 1 4 1 90; 2 4 3 90; 3 45 90; 4 4 1+ 90}
Articulate 60
End
C x 4
should give an interesting effect.
The syntax for the command is:

Track MIDIVoice <beat> <controller> <Datum> [; ...]

This syntax is identical to that discussed in the section for MIDISeq, above. The >beat<value is required
for the command, but it is ignored. Future versions of 4472 may use this value.

By default 24z assumes that the MIDIVoice data is to be used only for the first bar in the sequence. But,
it’s possible to have a different sequence for each bar in the sequence (just like you can have a different
Voice for each bar). In this case, group the different data groups with {} brackets:

Bass—1 MIDIVoice {1 ReleaseTime 50} {1 ReleaseTime 20}
This list is stored with other Groove data, so is ideal for inclusion in a style file.
If you want to disable this command after it has been issued you can use the form:
Track MIDIVoice - // disable

Some technical notes:

86

158 MIDIClear Low Level MIDI Commands

43 Since a common use of the command is to select the “Bank” for a voice 2= sends the controller
data specified by the MIDIVoice setting before sending the MIDI Program Change event needed to
switch the voice.

J1 a#m tracks the events sent for each bar and will not duplicate sequences.

73 Be cautious in using this command to switch voice banks. If you don’t switch the voice bank back
to a sane value you’ll be playing the wrong instruments!

15.8 MIDIClear

As noted earlier in this manual you should be very careful in programming MIDI sequences into your song
and/or library files. Doing damage to a synthesizer is probably a remote possibility ...but leaving it in a
unexpected mode is likely. For this reason we have included the MIDIClear command as a companion to
the MIDIVoice and MIDISeq commands.

Each time a MIDI track (not necessary the same as a a1 track) is ended or a new Groove is started, a check
is done to see if any MIDI data has been inserted in the track with a MIDIVoice or MIDISeq command. If
it has, a further check is done to see if there is an “undo” sequence defined via a MIDIClear command.
That data is then sent; or, if data has not be defined for the track, a warning message is displayed.

The MIDIClear command uses the same syntax as MIDIVoice and MIDISeq; however, you can not specify
different sequence for different bars in the sequence:

Bass—-Funky MIDIClear 1 Modulation 0; 1 ReleaseTime 0

As in MIDIVoice and MIDISeq you can include sequences defined in a MIDIDef. The <beat>offsets are
required, but ignored.

15.9 Pan

In MIDI-speak “pan” is the same as “balance” on a stereo. By adjusting the Pan for a track you can direct
the output to the left, right or both speakers. Example:

Bass Pan 4

This command is only available in track mode. The data generated is not sent into the MIDI stream until
musical data is created for the relevant MIDI channel.

The value specified must be in the range O to 127, and must be an integer.

Pan is not saved or restored by Groove commands, nor is it effected by SeqClear. A Pan is inserted
directly into the MIDI track at the point at which it is encountered in the music file. This means that the
effect of Pan will be in use until another Pan is encountered.

87

15.10 Portamento Low Level MIDI Commands

Pan can be used in MIDI compositions to emulate the sound of an orchestra. By assigning different values
to different groups of instruments, you can get the feeling of strings, horns, etc. all placed in the “correct”
position on the stage.

We use Pan for much cruder purposes. When creating accompaniment tracks for our jazz group. We set
all the bass tracks (Bass, Walk, Bass-1, etc) to a Pan 0. Now, when practicing at home we can have a
“full band”; and the bass player can practice without the generated bass lines simply by turning off the left
speaker.

Because your MIDI keyboard most likely does not do a reset between tunes, you should probably undo
any Pan effects at the end of your file. Example:

Include swing
Groove Swing
Bass Pan 0
Walk Pan O
1¢cC

2 C

123 C

Bass Pan 64
Walk Pan 64

15.10 Portamento

This sets the MIDI portamento (in case you’re new to all this, portamento is like glissando between notes—
wonderful, if you like trombones! To enable portamento:

Arpeggio Portamento 30
The parameter can be any value between 1 and 127. To turn the sliding off:
Arpeggio Portamento 0

This command will work with any track (including drum tracks). However, the results may be somewhat
“interesting” or “disappointing”, and many MIDI devices don’t support portamento at all. So, be cautious.
The data generated is not sent into the MIDI stream until musical data is created for the relevant MIDI
channel.

15.11 ChannelVolume

MIDI devices equipped with mixer settings can make use of the “Channel” or “Master” volume settings. !

"'We discovered this on our keyboard after many frustrating hours attempting to balance the volumes in the library. Other
programs would change the keyboard settings, and not being aware of the changes, we’d end up scratching our heads.

88

15.11 ChannelVolume Low Level MIDI Commands

. doesn’t set any channel volumes without your knowledge. If you want to use a set of reasonable
defaults, look at the file includes/init .mma which sets all channels other than “1” to “100”. Channel
“1” is assumed to be a solo/keyboard track and is set to the maximum volume of “127”.

You can set all or selected ChannelVolumes:
ChannelVolume 99

will set all channels to “99”. And:
Chord ChannelVolume 55

will set only the Chord track channel. For most users, the use of this command is not recommended since
it will upset the balance of the library grooves. If you need a track softer or louder you should use the
volume setting for the track.

The data generated is not sent into the MIDI stream until musical data is created for the relevant MIDI
channel.

89

Chapter 16

Other Commands and Directives

In addition to the “Pattern”, “Sequence”, “Groove” and “Repeat” and other directives discussed earlier,
and chord data, a#m supports a number of directives which affect the flavor of your music.

The subjects presented in this chapter are ordered alphabetically.

16.1 Articulate

When a#m processes a music file, all the note lengths specified in a pattern are converted to MIDI lengths.
For example in:
Bass Define BB 1 4 0 100; 2 4 2 90; 3 4 0 80; 4 4 2 90

we define bass notes on beats 1, 2, 3 and 4. All these notes are defined as quarter notes. 447, being quite
literal about things, will make each note exactly 192 MIDI ticks long—which means that the note on beat
2 will start at the same time as the note on beat 1 ends.

2 has an articulate setting for each voice. This value is applied to shorten the note length. By default,
the setting is 90. Each generated note duration is taken to be a percentage of this setting, So, a quarter note
with a MIDI tick duration of 192 will become 172 ticks long.

If articulate is applied to a short note, you are guaranteed that the note will never be less than 1 MIDI tick
in length.

To set the value, use a line like:
Chord-1 Articulate 96
Articulate values must be greater than 0 and less than or equal to 100.

You can specify a different Articulate for each bar in a sequence. Repeated values can be represented
with a “/:

Chord Articulate 50 60 / 30

Notes: The full values for the notes are saved with the pattern definition. The articulate adjustment is
applied at runtime. The articulate setting is saved with a groove.

90

16.2 Copy Other Commands and Directives

16.2 Copy

Sometimes it is useful to duplicate the settings from one voice to another. The Copy command does just
that:

Bass—-1 Copy Bass

will copy the settings from the Bass track to the Bass-1 track.
The Copy command only works between tracks of the same type.
The following settings are copied:

41 Volume (see page 68)

43 RVolume (see page 69)

73 RSKip (see page 97)

71 RTime (see page 98)

43 Strum (see page 99)

43 Octave (see page 96)

J1 Harmony (see page 94)

71 Direction (see page 93)

41 ScaleType (see page 98)

J3 Voice or Tone (see page 101 or 24)

93 Invert (see page 56)

JJ Articulate (see page 90)

J1 Compress (see page 55)

16.3 Comment

As previously discussed, a comment in ##2 is anything following a “//” in a line. A second way of
marking a comment is with the Comment directive. This is quite useful in combination the Begin and
End directives. For example:

Begin Comment
This is a description spanning
several lines which will be
ignored by MMA.
End

You could achieve the same with:

91

16.4 Debug Other Commands and Directives

// This is a description spanning
// several lines which will be
// ignored by MMA.

or even:

Comment This is a description spanning
Comment several lines which will be
Comment ignored by MMA.

One minor difference between // and Comment is that the first is discarded when the input stream is read;
the more verbose version is discarded during line processing.

We find that Begin Comment/End is handy to delete large sections of a song we are writing on a tempo-
rary basis.

164 Debug

To enable you to find problems in your song files (and, perhaps, even find problems with a4 itself) various
debugging messages can be displayed. These are normally set from the command line (see page 11).

However, it is possible to enable various debugging messages dynamically in a song file using the Debug
directive. In a debug statement you can enable or disable any of a variety of messages. A typical directive
is:

Debug Debug=0n Expand=0ff Patterns=0On

Each section of the debug directive consists of a mode and the command word ON or Off. The two parts
must be joined by a single “="". You may use the values “0” for “Off” and “1” for “On” if desired.

The available modes with the equivalent command line switches are:

Mode Command Line Equivalent
Debug -d debugging messages
Filenames | -0 display filenames
Patterns -p pattern creation
Sequence | -s sequence creation
Runtime | -r running progress
Warnings | -w warning messages
Expand -e display expanded lines

The modes and command are case-insensitive (although the command line switches are not).

The current state of the debug flags is saved in the variable $_Debug and the state prior to a change is saved
in $_LastDebug.

92

16.5 Delete Other Commands and Directives

16.5 Delete

If you are using a track in only one part of your song, especially if it is at the start, it may be wise to free
that track’s resources when you are done with it. The Delete command does just that:

Solo Delete

If a MIDI channel has been assigned to that track, it is marked as “available” and the track is deleted. Any
data already saved in the MIDI track will be written when 27 is finished processing the song file.

16.6 Direction

In tracks using chords or scales you can change the direction in which they are applied:
Scale Direction UP
There are four direction options:

UP Plays in upward direction only
DOWN Plays in downward direction only
BOTH Plays upward and downward (default)
RANDOM Plays notes from the chord or scale randomly

This command is valid for any track, but is only used by Scale, Arpeggio and Chord tracks.

You can specify a different Direction for each bar in a sequence. Repeated values can be represented with
a G‘/,’:

Arpeggio Direction Up Down / Both
The default value for Scale and Arpeggio tracks is BOTH.

In a Walk track only Up and Down are recognized. When set the pattern will walk up or down, skipping
the random note selection. This is useful when using a walking bass line in an ending situation.

The setting is currently ignored by Bass tracks.

In a Chord track the command is only used when Strum is set. The default setting is Up; any setting
other than Down is treated as Up).

16.7 Duplicate

Judicious use of the Duplicate directive can do much to make a composition sound “fuller”. Essentially
what it does is to duplicate all the notes played to a specified octave. For example:

Begin Bass
Define B1234 0 4 0 90; 1 4 2 90; 2 4 0 90; 3 4 2 90

93

16.8 Harmony Other Commands and Directives

Sequence B1234

Octave 4

Duplicate -1
End

Creates a Bass line which plays a single note on beats 1, 2, 3 and 4 (the root and fifth of the chord). The
Duplicate directive forces the notes to be played in the specified octave and one octave below that.

Notes: Duplicate takes any value between -9 and 9 as arguments—but, if the resulting note is forced out
of the MIDI range, the note will not sound.

You can specify a different Duplicate for each bar in a sequence. Repeated values can be represented with
a 66/” :

Chord Duplicate -1 1 / 0
To restore to its normal (off) setting, use a “0” as the argument.

This command has no effect on a Drum, Solo and Melody tracks (no warnings or errors are generated).
For a similar command see DupRoot (see page 56).

16.8 Harmony

am can generate harmony notes for you ... just like hitting two or more keys on the piano! And you don’t
have to take lessons.

Automatic harmonies are available for the following track types: Bass, Walk, Apreggio, Scale, Solo and
Melody. To enable harmony notes, use a command like:

Solo Harmony 2
You can set a different harmony method for each bar in your sequence.
The following are valid harmony methods:
2 Two part harmony. The harmony note selected is lower (on the scale).
3 Three part harmony. The harmony notes selected are lower.
OPEN Two part harmony, however the gap between the two notes is larger than in “2”.
2Above The same as “2”, but the harmony note is raised an octave.
3Above The same as “3”, but both notes are raised an octave.
OpenAbove The same as “Open”, but the note is raised an octave.
All harmonies are created using the current chord.
To disable harmony use a “0” or a “-”.

Be careful in using harmonies. They can make your song sound heavy, especially with Bass notes.

94

16.9 HarmonyOnly Other Commands and Directives

Just in case you are thinking that a#7 is a wonderful musical creator when it comes to harmonies, don’t be
fooled. afm’s ideas of harmony are quite facile. It determines harmony notes by finding a note lower than
the current note being sounded in the chord. And its notion of “open” is certainly not that of traditional
music theory. But, the sound isn’t too bad.

The command has no effect on Drum or Chord tracks.

16.9 HarmonyOnly

As a added feature to the automatic harmony generation discussed in the previous section, it is possible to
set a track so that it only plays the harmony notes. For example, you might want to set up two arpeggio
tracks with one playing quarter notes on a piano and a harmony track playing half notes on a violin. The
following snippet is extracted from the song file “Cry Me A River” and sets up 2 different choir voices:

Begin Arpeggio
Sequence A4
Voice ChoirAahs
Invert 01 2 3
SeqRnd
Octave 5
RSkip 40
Volume p
Articulate 99

End

Begin Arpeggio-2
Sequence A4
Voice VoiceOohs
Octave 5
RSkip 40
Volume p
Articulate 99
HarmonyOnly Open

End

Just like the Harmony command, above, you can have different settings for each bar in your sequence.
Setting a bar (or the entire sequence) to ’ ‘- or “0” disables both the Harmony and HarmonyOnly settings.

The command has no effect on Drum or Chord tracks.

If you want to use this feature with Solo or Melody tracks you will need to duplicate the notes in your Riff
or inline notation. This will be made automatic in a future release.

95

16.10 Octave Other Commands and Directives

16.10 Octave

When a7 initializes and after the SeqClear command all track octaves are set to “4”. This will place
most chord and bass notes in the region of middle C.

You can change the octave for any voice with Octave command. For example:
Bass-1 Octave 3
Sets the notes used in the “Bass-1" track one octave lower than normal.

The octave specification can be any value from O to 10. Various combinations of Invert, Transpose and
Octave can force notes to be out of the valid MIDI range. In this case the lowest or highest available note
will be used.

You can specify a different Octave for each bar in a sequence. Repeated values can be represented with a
46/,,:

Chord Octave 4 5 / 4

16.11 Off

To disable the generation of MIDI output on a specific track:
Bass Off

This can be used anywhere in a file. Use it to override the effect of a predefined groove, if you wish. This
is simpler than resetting a voice in a groove. The only way to reset this command is with a On directive.

16.12 On

To enable the generation of MIDI output on a specific track which has been disabled with an Off directive:

Bass On

16.13 Print

The Print directive will display its argument to the screen when it is encountered. For example, if you
want to print the filename of the input file while processing, you could insert:

Print Making beautiful music for MY SONG
No control characters are supported.

This can be useful in debugging input files.

96

16.14 PrintActive Other Commands and Directives

16.14 PrintActive

The PrintActive directive will the currently active Groove and the active tracks. This can be quite useful
when writing groove files and you want to modify and existing groove.

Any parameters given are printed as single comment at the end of the header line.

This is strictly a debugging tool. No PrintActive statements should appear in finalized grooves or song
files.

16.15 RSkip

To aid in creating syncopated sounding patterns, you can use the RSKkip directive to randomly silence or
skip notes. The command takes a value in the range 0 to 99. The “0” argument disables skipping. For
example:

Begin Drum
Define D1 1 0 90
Define D8 D1 * 8
Sequence D8
Tone OpenHiHat
RSkip 40

End

In this case we have defined a drum pattern to hit short notes 8 per bar and have set up a sequence to play
this with “OpenHiHat”. The RSKip argument of “40” will cause the note to be NOT sounded (randomly)
only 40% of the time.

Using a value of “10” will cause notes to be skipped 10% for the time (they are played 90% of the time),
“90” means to skip the notes 90% of the time, etc.

You can specify a different RSkip for each bar in a sequence. Repeated values can be represented with a
CG/”:

Scale RSkip 40 90 / 40
If you use the RSKip in a chord track, the entire chord will not be silenced. The option will be applied to
the individual notes of each chord. This may or may not be what you are after. You cannot use this option

to generate entire chords randomly. For this effect you need to create several chord patterns and select
them with SeqRnd.

You can use RSkip without a track argument. This is useful when used with an argument of “0” to (tem-
porarily) disable the setting for all tracks.

97

16.16 RTime Other Commands and Directives

16.16 RTime

One of the biggest problem with computer generated drum and rhythm tracks is that, unlike real musicians,
the beats are precise and “on the beat”. The RTime directive attempts to solve this.

The command can be applied to all tracksfootnote:The best use of using RTime for all tracks is with a “0”
argument to (temporarily) disable the setting for all tracks.

RTime 5
or a specified one:
Drum4 Rtime 4

The value passed to the RTime directive are the number of MIDI ticks with which to vary the start time of
the notes. For example, if you specify “5” the start times will vary from -5 to +5 ticks) on each note for
the specified track. There are 192 MIDI ticks in each quarter note.

Any value from O to 100 can be used; however values in the range 0 to 10 are most commonly used.
Exercise caution in using large values!

You can specify a different RTime for each bar in a sequence. Repeated values can be represented with a
CG/”:

Chord RTime 4 10 / 4

16.17 ScaleType

This option is only used by Scale tracks. It can be set for other tracks, but the setting is not used.
By default, the ScaleType is set to Auto. The settings permissible are:

MAIJOR Forces use of a major scale
MINOR] Forces use of a natural minor scale
CHROMATIC Forces use of a chromatic scale
AUTO Uses major or minor scale depending on chord (default)

16.18 Seq

If your sequence, or groove, has more than one pattern (ie. you have set SeqSize to a value other than 1),
you can use this directive to force a particular pattern point to be used. The directive:

Seq

resets the sequence counter to 1. This means that the next bar will use the first pattern in the current
sequence. You can force a specific pattern point by using an optional value after the directive. For example:

Seq 8

98

16.19 Strum Other Commands and Directives

forces the use of pattern point 8 for the next bar. This can be quite useful if you have a multibar sequence
and, perhaps, the eight bar is variation which you want used every eight bars, but also for a transition bar,
or the final bar. Just put a seq 8 at those points. You might also want to put a seq at the start of sections to
force the restart of the count.

This command will also disable the effects of SeqRnd. One difference between SeqNoRnd and Seq is
that the current sequence point is set with the latter; with SeqNoRnd it is left at a random point.

Note: Using a value greater than the current SeqSize is not permitted.

This is a very useful command! For example, look at the four bar introduction of the song “Exactly Like
You™:

Groove BossanovaEnd
seq 3

1cC

seq 2

2 Am7

seq 1

3 Dm7

seq 3

4 G7 / G7#5

Here we have used the four bar ending groove to create an interesting introduction.

16.19 Strum

By default a#m plays all the notes in a chord at the same time. To make the chord more like something a
guitar or banjo might play, use the Strum directive. For example:

Chord-1 Strum 5
sets the strumming factor to 5 for track Chord-1.

Setting the Strum in any track other than a Chord track will generate a warning message and the command
will be ignored.

The strum factor is specified in MIDI ticks. Usually values around 10 to 15 work just fine. The valid range
for Strum is 0 to 100.

You can specify a different Strum for each bar in a sequence. Repeated values can be represented with a
6‘/”:

Chord Strum 20 5 / 10

Note: When chords have both a strum and invert applied, the order of the notes played will not necessarily
be root, third, etc. The notes are sorted into ascending order, so for a C major scale with and invert of 1
the notes played would be “E G C”. That is, unless the Direction (see page 93) has been set to “DOWN”
in which case the order would be reversed (but the notes would be the same).

99

16.20 Transpose Other Commands and Directives

16.20 Transpose

You can change the key of a piece with the “Transpose” command. For example, if you have a piece
notated in the key of “C” and you want it played back in the key of “D”:

Transpose 2

will raise the playback by 2 semi-tones. Since I play tenor saxophone, I quite often do:
Transpose -2

which puts the MIDI keyboard into the same key as my horn.

You can use any value between -12 and 12. All tracks (with the logical exception of the drum tracks) are
effected by this command.

16.21 Unify

The Unify command is used to force multiple notes of the same voice and pitch to be combined into a
single, long, tone. This is very useful when creating a sustained voice track. For example, consider the
following which might be used in real groove file:

Begin Bass-Sus
Sequence 1 11 90 4
Articulate 100
Unify On
Voice TremoloStrings

End

Without the Unify On command the strings would be sounded (or hit) four times during each bar; with it
enabled the four hits are combined into one long tone. This tone can span several bars if the note(s) remain
the same.

The use of this command depends on a number of items:

JJ The Voice being used. It makes sense to use enable the setting if using a sustained tone like “Strings”;
it probably doesn’t make sense if using a tone like “Pianol”.

41 For tones to be combined you will need to have Articulate set to a value of 100. Otherwise the on/off
events will have small gaps in them which will cancel the effects of Unify.

JJ Ensure that Rtime is not set for Unify tracks since the start times may cause gaps.

J3 If your pattern or sequence has different volumes in different beats (or bars) the effect of a Unify
will be to igore volumes other than the first. Only the first Note On and the last Note Off events will
appear in the MIDI file.

You can specify a different Unify for each bar in a sequence. Repeated values can be represented with a
6‘/”:

100

16.22 Voice Other Commands and Directives

Chord Unify On / / Off
But, we’re not sure why you’d want to.

Valid arguments are “On” or “1” to enable; “Off” or “0” to disable.

16.22 Voice

The MIDI instrument or voice used for a track is set with:
Chord-2 Voice Pianol

Voices apply only to the specified track. The actual instrument can be specified via the MIDI instrument
number, or with the symbolic name. See the tables in the MIDI voicing section (see page 120) for lists of
the recognized names.

You can create interesting effects by varying the voice used with drum tracks. By default “Voice 0 is
used. However, you can change the drum voices. Our library files do not change the voices since this
appears to be highly dependent on the MIDI synth you are using.

You can specify a different Voice for each bar in a sequence. Repeated values can be represented with a
6‘/”:

Chord Voice Pianol / / Piano2

16.23 VoiceTr

In previous section we saw how to set a voice for a track by using its standard MIDI name. The VoiceTr
command sets up a translation table that can be used in two different situations:

41 It permits creation of your own names for voices (perhaps for a foreign language),
JJ It lets you override or change voices used in standard library files.

VoiceTr works by setting up a simple translation table of “name” and “alias” pairs. Whenever a## encoun-
ters a voice name in a track command it first attempts to translate this name though the alias table.

To set a translation (or series of translations):
VoiceTr Pianol=Clavinet Hmmm=18

Note that you additional VoiceTr commands will add entries to the existing table. To clear the table use
the command with no arguments:

VoiceTr // Empty table
Assuming the first command, the following will occur:

Chord-Main Voice Hmmm

101

16.23 VoiceIr Other Commands and Directives

The Voice for the Chord-Main track will be set to “18” or “Organ3”.
Chord-2 Voice Pianol
The Voice for the Chord-2 track will be set to “Clavinet”.

If your synth does not follow standard GM-MIDI voice naming conventions you can create a translation
table which can be included in all your 4472 song files via an RC file. But, do note that the resulting files
will not play properly on a synth conforming to the GM-MIDI specification.

Following is an abbreviated and untested example for using an obsolete and unnamed synth:

VoiceTr Pianol=3 \
Piano2=4 \
Piano3=5 \
oo\
Strings=55 \

Notes: the translation is only done one time and no verification is done when the table is created.

102

Chapter 17

Begin/End Blocks

Entering a series of directives for a specific track can get quite tedious. To make the creation of library
files a bit easier, you can create a block. For example, the following:

Drum Define X 0 2 100; 50 2 90
Drum Define Y 0 2 100
Drum Sequence X Y

Can be replaced with:

Drum Begin
Define X 0 2 100; 50 2 90
Define Y 0 2 100 End
Drum Sequence X Y

Or, even more simply, with:

Drum Begin Define
X 0 2 100; 50 2 90
Y 0 2 100

End

If you examine some of the library files you will see that we use this shortcut a lot.

17.1 Begin

The Begin command requires any number of arguments. Valid examples include:

Begin Drum
Begin Chord2
Begin Walk Define

Once a Begin block has been entered, all subsequent lines have the words from the Begin command
prepended to each line of data. There is not much magic here—Begin/End is really just some syntactic
sugar.

103

17.2 End Begin/End Blocks

17.2 End

To finish off a Begin block, use a single End on a line by itself.

Defining musical data, repeats, or other Begins inside a block (other than COMMENT blocks) will not
work.

Nesting is permitted. Eg:

Scale Begin
Begin Define

stuff
End

Sequence stuff
End

A Begin must be competed with a End before the end of a file, otherwise an error will be generated. The
Use and Include commands are not permitted inside a block.

104

Chapter 18

Documentation Strings

We’ve mentioned a few times already the importance of clearly documenting your files and library files.
For the most part, you can use comments in your files; but in library files we suggest you use the Doc
directive.

In addition to the commands listed in this chapter, you should also note the DefGroove section (see page
33).

For some real-life examples of how to document your library files, look at any of the library files supplied
with this distribution.

18.1 Doc

A Doc command is pretty simple:
Doc This is a documentation string!

In most cases, Docs are treated as Comments. However, if the -Dx! option is given on the command line,
Docs are processed and printed to standard output.

For producing the a¢71 Standard Library Reference a trivial Python program is used to collate the output
generated with a command like:

mma -Dx -w /usr/local/lib/mma/swing

Note, we added the ’-w’ option to suppress the printing of warning messages.

18.2 Author

As part of the documentation package, there is a Author command:
Author Bob van der Poel

Currently Author lines are processed and the data is saved, but never used. It may be used in a future
library documentation procedures, so you should use it in any library files your write.

I'See the command summary (see page 11).

105

Chapter 19

Paths, Files and Libraries

This chapter covers a7 filenames, extensions and a variety of commands and/or directives which effect
the way in which files are read and processed.

But, first a few comments on the location of the a2 Python modules.

The Python language (which was used to write #m1) has a very useful feature: it can include other files
and refer to functions and data defined in these files. A large number of these files or modules are included
in every Python distribution. The program a1 consists of a short “main” program and several “module”
files. Without these additional modules 24z will not work.

The only sticky problem in a program intended for a wider audience is where to place these modules.
We’ve decided that they should be in one of three locations:

JJ /usr/local/share/mma/modules
JJ /usr/share/mma/modules
JJ . /modules

If, when initializing itself, 247 cannot find one of the above directories, it will terminate with an error
message.

19.1 File Extensions

For most files the use of a the filename extension “.mma” is optional. However, we suggest that most files
(with the exceptions listed below) have the extension present. It makes it much easier to identify a2 song
and library files and to do selective processing on these files.

In processing an input song file 4472 can encounter several different types of input files. For all files, the
initial search is done by adding the filename extension “.mma” to filename (unless it is already present),
then a search for the file as given is done.

For files included with the Use directive, the directory set with setLibPath is first checked, followed by the
current directory.

For files included with the Include directive, the directory set with setIncPath is first checked, followed by
the current directory.

Following is a summary of the different files supported:

106

19.2 Eof Paths, Files and Libraries

Song Files The input file specified on the command line should always be named with the “.mma” exten-
sion. When afm searches for the file it will automatically add the extension if the file name specified
does not exist and doesn’t have the extension.

Library Files Library files really should all be named with the extension. ##7 will find non-extension
names when used in a Use or Include directive. However, it will not process these files when creating
indexes with the “-g” command line option—these index files are used by the Groove commands to
automatically find and include libraries.

RC Files As noted in the RC-File discussion (see page 111) a#= will automatically include a variety of
“RC” files. You can use the extension on these files, but common usage suggests that these files are
probably better without.

MMAstart and MMAend 471 will automatically include a file at the beginning or end of processing
(see page 111). Typically these files are named MMAstart and MMAend. Common usage is to not
use the extension if the file is in the current directory; use the file if it is in an “includes” directory.

One further point to remember is that filenames specified on the command line are subject to wildcard
expansion via the shell you are using.

19.2 Eof

Normally, a file is processed until its end. However, you can short-circuit this behavior with the Eof
directive. If a#m finds a line starting with EOF no further processing will be done on that file ... it’s just
as if the real end of file was encountered. Anything on the same line, after the Eof is also discarded.

You may find this handy if you want to test process only a part of a file, or if you making large edits to a
library file. It is often used to quit when using the Label and Goto directives to simulate constructs like
D.C. al Coda, etc.

19.3 LibPath

The search for library files can be set with the LibPath variable. To set LibPath:
SetLibPath PATH
You can have only one path in the SetLibPath directive.
When afm starts up it sets the library path to the first valid directory in the list:
43 /usr/local/share/mma/lib
7] /usr/share/mma/lib
3 ./1ib

107

19.4 OutPath Paths, Files and Libraries

The last choice lets you run a#m directly from the distribution directory.
You are free to change this to any other location in a RCFile (see page 111).

The LibPath is used by the routine which auto-loads grooves from the library, and the Use directive. The
-g command line option is used to maintain the library database (see page 12).

You can include a leading “~/” in the path. In this case the path will be expanded to a complete pathname.

19.4 OutPath

MIDI file generation is to an automatically generated filename (see page 11). If the OutPath variable is
set, that value will be prepended to the output filename. To set the value:

SetOutPath PATH

Just make sure that “PATH” is a simple pathname with no spaces in it. The variable is case sensitive
(assuming that your operating system supports case sensitive filenames). This is a common directive in a
RC file (see page 111). By default, it has no value.

You can disable the OutPath variable by not using an argument in the SetOutPath directive.

The PATH used in this command is processed though the Python os.path.expanduser() library routine, so
it is permissible to include a leading *“ in the name (which expands, on Unix and Linux systems, to the
name of the user’s home directory).

(124

If the name set by this command begins with a “.”, “/” or “\” it is prepended to the complete filename
specified on the command line. For example, if you have the input filename test .mma and the output path
is 7 /mids—the output file will be /home /bob/mids/test .mid.

If the name doesn’t start with the special characters noted in the preceeding paragraph the contents of
the path will be inserted before the filename portion of the input filename. Again, an example: the input
filename is mma/rock/crying and the output path is “midi”—the output file will be mma/rock/midi/
crying.mid.

19.5 Include

Other files with sequence, pattern or music data can be included at any point in your input file. There is
no limit to the level of includes.

Include Filename

A search for the file is done in the IncPath directory (see below) and the current directory. The “.mma”
filename extension is optional.

The use of this command should be quite rare in user files. We use it extensively in our library files to
include standard patterns.

108

19.6 IncPath Paths, Files and Libraries

19.6 IncPath

The search for include files can be set with the IncPath variable. To set IncPath:
SetIncPath PATH
You can have only one path in the SetIncPath directive.
When a2 initializes it sets the include path to first found directory in:
41 /usr/local/share/mma/includes
J1 /usr/share/mma/includes
J1 ./includes
The last location lets you run a2 from the distribution directory.

If this value is not appropriate for your system, you are free to change it in a RC File. You can include a
leading “~/” in the path. In this case the path will be expanded to a complete pathname.

19.7 Use

Similar to Include, but a bit more useful. The Use command is used to include library files and their
predefined grooves.

Compared to Include, Use has important features:
J1 The search for the file is done in the paths specified by the LibPath variable,

73 The current state of the program is saved before the library file is read and restored when the opera-
tion is complete.

Let’s examine each feature in a bit more detail.
When a Use directive is issued, eg:
use stdlib/swing

am first attempts to locate the file “stdlib/swing” in the directory specified by LibPath or the current
directory. As mentioned above, 471 automatically added the “.mma” extension to the file and checks for
the non-extension filename if that can’t be found.

If things aren’t working out quite right, check to see if the filename is correct. Problems you can encounter
include:

71 Search order: you might be expecting the file in the current directory to be used, but the same
filename exists in the LibPath, in which case that file is used.

43 Not using extensions: Remember that files with the extension added are first checked.

109

19.8 MmaStart Paths, Files and Libraries

JJ Case: The filename is case sensitive. The files “Swing” and “swing” are not the same. Since most
things in 4471 are case insensitive, this can be an easy mistake to make.

JJ The file is in a subdirectory of the LibPath. In a standard distribution the actual library files are in
/usr/local/share/mma/lib/stdlib, but the libpath is set to /usr/local/share/mma/lib. In
this case you must name the file to be used as stdlib/rhumba not rhumba.

As mentioned above, the current state of the compiler is saved during a Use. a#71 accomplishes this by
issuing a slightly modified DefGroove and Groove command before and after the reading of the file.
Please note that Include doesn’t do this. But, don’t let this feature fool you—since the effects of defining
grooves are cumulative you really should have SeqClear statements at the top of all your library files. If
you don’t you’ll end up with unwanted tracks in the grooves you are defining.

In most cases you will not need to use the Use directive in your music files. If you have properly
installed a#71 and keep the MMADIR files up-to-date by using the command:

mma —-g

grooves from library files will be automatically found and loaded. Internally, the Use directive is used, so
existing states are saved.

If you are developing new or alternate library files you will find the Use directive handy.

19.8 MmaStart

If you wish to process a certain file or files before your main input file, set the MmaStart filename in an
RCFile. For example, we have a number of files in a directory which we wish certain Pan settings. In that
directory, we have a file mmarc which contains the following command:

MmaStart setpan
The actual file setpan has the following directives:

Bass Pan 0
Bassl Pan 0
Bass2 Pan 0
Walk Pan O
Walkl Pan O
Walk2 Pan O

So, before each file in that directory is processed, the Pan for the bass and walking bass voices are set to
the left channel.

If the file specified by a MmaStart directive does not exist a warning message will be printed (this is not
an error).

Also useful is the ability to include a generic file with all the MIDI files you create. For example, we like
to have a MIDI reset at the start of our files, so we have the following in our mmarc file:

110

19.9 MmaEnd Paths, Files and Libraries

MMAstart reset
This includes the file reset .mma located in the “includes” directory (see page 109).

Because it is not uncommon to have multiple mmarec files, each with a different MMAstart directive, the
files are appended to the existing list. Each file will be processed in the order it is declared. You can have
multiple filenames on a MMAstart line.

19.9 MmaEnd

Just the opposite of MmaStart, this command specifies a file to be included at the end of a main input file.
See our comments above for more details.

To continue our example, in our mmarc file we have:
MmaEnd nopan
and in the file nopan we have:

Bass Pan 64
Bassl Pan 64
Bass2 Pan 64
Walk Pan 64
Walkl Pan 64
Walk2 Pan 64

If the file specified by a MmaEnd directive does not exist a warning message will be printed (this is not
an error).

Because it is not uncommon to have multiple mmarec files, each with a different MMAend directive, the
files are appended to the existing list. Each file will be processed in the order it is declared. You can have
multiple filenames on a MMAend line.

19.10 RC Files

When a2 starts it checks for initialization files. Only the first found file is processed.
The following files are checked (in order):

1. mmarc

2. 7/.mmarc

3. /usr/local/etc/mmarc

4

. /etc/mmarc

111

19.11 Library Files Paths, Files and Libraries

All found files will be processed.

Note that the second file is an “invisible” file due to the leading “.” in the filename.
By default, no rc files are installed.

The rc file is processed as a 471 input file. As such, it can contain anything a normal input file can,
including music commands. However, we suggest you limit the contents of your RC files to things like:

SetOutPath
SetLibPath
MMAStart
MMAEnd

A useful setup is to have your source files in one directory and MIDI files saved into a different directory.
Having the file mmarc in the directory with the source files permits setting OutPath to the MIDI path.

19.11 Library Files

Included in this distribution are a number of predefined patterns, sequences and grooves. They are in
different files in the “lib” directory.

The library files should be self-documenting. A list of standard file and the grooves they define is included
in the separate document, supplied in this distribution as “mma-lib.ps”.

112

Chapter 20

Creating ‘Effects

It’s really quite amazing how easy and effective it is to create different patterns, sequences and special
effects. As we develop the program we try lots of silly things. .. this chapter is an attempt to display and
preserve some of them.

The examples don’t show any music to apply the patterns or sequences to. We assume that if you’ve gotten
this far in the manual you’ll know that you should have something like:

1

S w N
QaaQn

as a simple test piece to apply tests to.

20.1 Overlapping Notes

We’ve mentioned earlier that you should create patterns so that notes don’t overlap. However, here’s an
interesting effect which relies on ignoring that advice:

Begin Scale
define S1 1 1+1+1+1 90
define S32 S1 * 32
Sequence S32
ScaleType
Direction Both
Voice Accordion
Octave 5

End

We define “S1” with a note length of 4 whole notes (1+1+1+1) so that when we multiply it for S32 we
end up with a pattern of 32 8th notes. Of course, the notes overlap. Running this up and down a chromatic
scale is “interesting.” You might want to play with this a bit and try changing “S1” to:

define S1 1 1 90

to see what the effect is of the notes overlapping.

113

20.2 Jungle Birds Creating ‘E ffects

20.2 Jungle Birds

Here’s another use for Scales. We decided that some jungle sounds would be perfect as an introduction to
“Yellow Bird”.

groove Rhumba

Begin Scale
define S1 1 1 90
define S32 S1 * 32
Sequence S32
ScaleType Chromatic
Direction Random
Voice BirdTweet
Octave 5 6 4 5
RVolume 30
Rtime 2 3 4 5
Volume pp PP PPP PPP

End

DefGroove BirdRumba

The above is an extract from the 2z score. The entire song is included in the “songs” directory of this
distribution.

A neat trick is to create the bird sound track and then add it to the existing Rhumba groove. Then we
define a new groove. Now we can select either the library “rhumba” or our enhanced “BirdRhumba” with
a simple Groove directive.

114

Chapter 21

Frequency Asked Questions

This chapter will serve as a container for questions asked by some enthusiastic ##2 users. It may make
some sense in the future to distribute this information as a separate file.

21.1 AABA Song Forms

How can one define parts as part "A”, part "B” ...and arrange them at the end of the file? An option to
repeat a “solo” section a number of times would be nice as well.

Using s variables and some simple looping, one might try something like:

Groove Swing endmset
// Set the music into a // Use the macros for an
// series of macros // "A, A, B, Solo * 8, A"
mset A // form
Print Section A $SA
C $SA
G $SB
endmset set Count 1
mset B label a
print Section B $solo
Dm inc COUNT
Em if le $count 8
endmset goto A
mset Solo endif
Print Solo Section $Count SA
Am / B7 Cdim

Note that the “Print” lines are used for debugging purposes. We have mixed the case of the variable names
just to illustrate the fact that “Solo” is the same as “SOLO” which is the same as “solo”.

Now, if you don’t like things that look like old BASIC program code, you could just as easily duplicate
the above with:

115

21.2 Where's the GUI? Frequency AsKed Questions

Groove Swing Dm
repeat Em
repeat Set Count 1
Print Section A Repeat
Cc Print Solo $Count
G Am
If Def count Inc Count
eof Repeatending 7

Endif Repeatend
Endrepeat Repeatend
Print Section B

The choice is up to you.

21.2 Where’s the GUI?

I really think that »m is a cool program. But, it needs a GUL Are you planning on writing one? Will you
help me if I start to write one?

Well, we appreciate the fact that you like az2. We like it too.

We’ve actually started to write a number of GUIs for a#m. But, nothing seemed to be much more useful
than the existing text interface. So, we figured that it just wasn’t worth the bother.

Now, we are not against graphical programming interfaces. We just don’t see it in this case.

But, we may well be wrong. If you think it’d be better with a GUI ... well, this is open source and you are
more than welcome to write one. If you do, we’d suggest that you make your program a front-end which
lets a user compile standard am files. If you find that more error reporting, etc. is required to interact
properly with your code, let us know and we’ll probably be quite willing to make those kind of changes.

21.3 Where’s the manual index?

We agree that this manual needs an index. We just don’t have the time to go though and do all the necessary
work. Is there a volunteer?

116

Appendix A

Symbols and Constants

This appendix is a reference to the chords that #4m recognizes and name/value tables for drum and instru-
ment names. The tables have been auto-generated by 2472 using the -D options.

A.1 Chord Names

w1 recognizes standard cord names as listed below. The names are case sensitive and must be entered in
uppercase letters as shown:

A
Af
Ab
B

By
Bb
C

Ct
Cb
D

D
Db
E

Ef

Eb
F

Fy
Fo
G

G
G

Please note that in your input files you must use a lowercase “b” to represent a b and a “#” for a f.

The following types of chords are recognized (these are case sensitive and must be in the mixed upper and
lowercase shown):

-+

11
11b9
13
6
7
7#11
T#S
THSH9
T#5b9

See “aug”.

Oth chord plus 11th.

9th chord plus flat 11th.

Dominant 7th (including 5th) plus 13th.
Major tiad with added 6th.

Dominant 7th.

See “O#11”.

7th, sharp 5.

Dominant 7th with sharp 5th and sharp 9th.

Dominant 7th with sharp 5th and flat 9th.

117

A.1 Chord Names

T#9
TH#IH#11
T+
T+5
7+9
7-5
7-9
7b5
7b5#9
7b5b9
7b9
7sus
Tsus2
Tsus4

9#11
O#S
9bS

M13
M7
M7#11
M7b5
M9
aug
aug7
aug7h9
dim
dim7

m#5
m(maj7)
m(sus9)
m+5
m+7
mll

moé6

m7
m7-5
m7b5
m?7b9
m9

Dominant 7th with sharp 9th.

Dominant 7th plus sharp 9th and sharp 11th.

See “aug7”.
See “T#5”.
See “7#9”.
See “7b5”.
See “7b9”.
7th, flat 5.

Dominant 7th with flat 5th and sharp 9th.

Dominant 7th with flat 5th and flat 9th.
Dominant 7th with flat 9th.

7th with suspended 4th, dominant 7th with 3rd raised half tone.

A sus2 with dominant 7th added.

See “sus4”.

Dominant 7th plus 9th.

Dominant 7th plus 9th and sharp 11th.
Dominant 7th plus 9th with sharp 5th.
Dominant 7th plus 9th with flat Sth.

Major triad. This is the default and is used in the absense of any other chord type

specification.
Major 7th (including 5th) plus 13th.

Major 7th.

Major 7th plus 9th and sharp 11th.
Major 7th with a flatted Sth.
Major 7th plus 9th.

Augmented triad.

An augmented chord (raised 5th) with a dominant 7th.
Augmented 7th with flat 5th and sharp 9th.
Diminished. a7 assumes a diminished 7th.

See “dim”.

Minor triad.

Major triad with augmented 5Sth.
See “mM7”.

Minor triad plus 9th (no 7th).
See “m#5”.

See “mM7”.

Oth with minor 3rd, plus 11th.
Minor 6th.

Minor 7th.

See “m7b5”.

Minor 7th, flat 5 (aka 1/2 diminished).
Minor 7th with added flat 9th.
Minor triad plus 7th and 9th.

Symbols and Constants

118

A.1 Chord Names Symbols and Constants

2 13

mM?7 Minor Triad plus Major 7th. You will also see this printed as “m(maj7)”, “m+7",
“min(maj7)” and “min#7” (which a#m accepts); as well as the afm invalid forms:
“-(A7)”, and “minf7”.

mayj7 See “M7”.

mb5 Minor triad with flat 5th.

min#7 See “mM7”.

min(maj7) See “mM7”.

sus See “sus4”.

sus2 Suspended 2nd, major triad with major 2nd above root substituted for 3rd.
sus4 Suspended 4th, major triad with 3rd raised half tone.

sus9 Dominant 7th plus 9th, omit 7th.

In modern pop charts the “M” in a major 7th chord (and other major chords) is often represented by a “A”.
When entering these chords, just replace the “A” with an “M”. For example, change “GA7” to “GM7”.

Modern pop charts sometimes use “slash” chords in the form “Am/E”. a1 is not capable of correctly
interpreting this notation. If you encounter it just leave the “slash” part off and all should work fine. See
your favorite music theory book or teacher for an explanation!

A chord name without a type is interpreted as a major chord (or triad). For example, the chord “C” is
identical to “CM”.

119

4.2 MIDI Voices

A.2 MIDI Voices

Symbols and Constants

When setting a voice for a track (ie Bass Voice NN), you can specify the patch to use with a symbolic
constant. Any combination of upper and lower case is permitted. The following are the names with the

equivalent voice numbers:

A.2.1 Voices, Alphabetically

SthSawWave
Accordion
AcousticBass
AgogoBells
AltoSax
Applause/Noise
Atmosphere
BagPipe
Bandoneon
Banjo
BaritoneSax
Bass&lead
Bassoon
BirdTweet
BottleBlow
BowedGlass
BrassSection
BreathNoise
Brightness
Celesta

Cello
Charang
ChifferLead
ChoirAahs
ChurchOrgan
Clarinet
Clavinet
CleanGuitar
ContraBass
Crystal
DistortonGuitar
EPiano
EchoDrops

86
21
32
113
65
126
99
109
23
105
67
87
70
123
76
92
61
121
100

42
84
83
52
19
71

27
43
98
30

102

EnglishHorn
Fantasia

Fiddle
FingeredBass
Flute
FrenchHorn
FretlessBass
Glockenspiel
Goblins
GuitarFretNoise
GuitarHarmonics
GunShot
HaloPad
Harmonica
HarpsiChord
HelicopterBlade
Honky-TonkPiano
IceRain
JazzGuitar
Kalimba

Koto

Marimba
MelodicTom1
MetalPad
MusicBox
MutedGuitar
MutedTrumpet
NylonGuitar
Oboe

Ocarina
OrchestraHit
OrchestralHarp
Organl

69
88
110
33
73
60
35

101
120
31
127
94
22

125

96
26
108
107
12
117
93
10
28
59
24
68
79
55
46
16

Organ?2
Organ3
OverDriveGuitar
PanFlute
Pianol
Piano2
Piano3
Piccolo
PickedBass
PizzicatoString
PolySynth
Recorder
ReedOrgan
ReverseCymbal
RhodesPiano
Santur
SawWave
SeaShore
Shakuhachi
Shamisen
Shanai

Sitar
SlapBass1
SlapBass2
SlowStrings
SoloVoice
SopranoSax
SoundTrack
SpaceVoice
SquareWave
StarTheme
SteelDrums
SteelGuitar

17
18

75

—_- O

72
34
45
90
74
20
119

15
81
122
77
106
111
104
36
37
49
85
64
97
91
80
103
114
25

120

4.2 MIDI Voices

Strings
SweepPad
SynCalliope
SynthBass1
SynthBass2
SynthBrass]
SynthBrass2
SynthDrum
SynthStrings1
SynthStrings?2

48
95
82
38
39
62
63
118
50
51

SynthVox 54
TaikoDrum 116
TelephoneRing 124
TenorSax 66
Timpani 47
TinkleBell 112
TremoloStrings 44
Trombone 57
Trumpet 56
Tuba 58

A.2.2 Voices, By MIDI Value

Pianol
Piano2
Piano3
Honky-TonkPiano
RhodesPiano
EPiano
HarpsiChord
Clavinet
Celesta
Glockenspiel
MusicBox
Vibraphone
Marimba
Xylophone
TubularBells
Santur
Organl
Organ2
Organ3
ChurchOrgan
ReedOrgan
Accordion
Harmonica

0 NN LNk~ O

[\ T NS T O R N0 T e e e e e i ®)
W N = O 00 dN N = W= O

Bandoneon
NylonGuitar
SteelGuitar
JazzGuitar
CleanGuitar

[\ (O I \O I \S}
~N O L b~

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

MutedGuitar
OverDriveGuitar
DistortonGuitar
GuitarHarmonics
AcousticBass
FingeredBass
PickedBass
FretlessBass
SlapBass1
SlapBass2
SynthBass|
SynthBass2
Violin

Viola

Cello
ContraBass
TremoloStrings
PizzicatoString
OrchestralHarp
Timpani

Strings
SlowStrings
SynthStrings1
SynthStrings2
ChoirAahs
VoiceOohs
SynthVox
OrchestraHit

Symbols and Constants

TubularBells 14
Vibraphone 11
Viola 41
Violin 40
VoiceOohs 53
WarmPad 89
Whistle 78
WoodBlock 115
Xylophone 13

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

Trumpet
Trombone
Tuba
MutedTrumpet
FrenchHorn
BrassSection
SynthBrass1
SynthBrass2
SopranoSax
AltoSax
TenorSax
BaritoneSax
Oboe
EnglishHorn
Bassoon
Clarinet
Piccolo
Flute
Recorder
PanFlute
BottleBlow
Shakuhachi
Whistle
Ocarina
SquareWave
SawWave
SynCalliope
ChifferLead

121

4.2 MIDI Voices

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

Charang
SoloVoice
SthSawWave
Bass&Lead
Fantasia
WarmPad
PolySynth
SpaceVoice
BowedGlass
MetalPad
HaloPad
SweepPad
IceRain
SoundTrack
Crystal

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113

Atmosphere
Brightness
Goblins
EchoDrops
StarTheme
Sitar

Banjo
Shamisen
Koto
Kalimba
BagPipe
Fiddle
Shanai
TinkleBell
AgogoBells

114
115
116
117
118
119
120
121
122
123
124
125
126
127

Symbols and Constants

SteelDrums
WoodBlock
TaikoDrum
MelodicTom1
SynthDrum
ReverseCymbal
GuitarFretNoise
BreathNoise
SeaShore
BirdTweet
TelephoneRing
HelicopterBlade
Applause/Noise
GunShot

122

A.3 Drum Notes Symbols and Constants

A.3 Drum Notes

When defining a drum tone, you can specify the patch to use with a symbolic constant. Any combination
of upper and lower case is permitted. The following are the names with the equivalent note numbers:

A.3.1 Drum Notes, Alphabetically

Cabasa 69 LongLowWhistle 72 OpenSudro 86
Castanets 84 LowAgogo 68 OpenTriangle 81
ChineseCymbal 52 LowBongo 61 PedalHiHat 44
Claves 75 LowConga 64 RideBell 53
ClosedHiHat 42 LowTimbale 66 RideCymball 51
CowBell 56 LowToml 43 RideCymbal2 59
CrashCymball 49 LowTom2 41 ScratchPull 30
CrashCymbal2 57 LowWoodBlock 77 ScratchPush 29
HandClap 39 Maracas 70 Shaker 82
HighAgogo 67 MetronomeBell 34 ShortGuiro 73
HighBongo 60 MetronomeClick 33 ShortHiWhistle 71
HighQ 27 MidToml 47 SideKick 37
HighTimbale 65 MidTom?2 45 Slap 28
HighTom1 50 MuteCuica 78 SnareDrum1 38
HighTom2 48 MuteHighConga 62 SnareDrum?2 40
HighWoodBlock 76 MuteSudro 85 SplashCymbal 55
JingleBell 83 MuteTriangle 80 SquareClick 32
KickDrum1 36 OpenCuica 79 Sticks 31
KickDrum?2 35 OpenHiHat 46 Tambourine 54
LongGuiro 74 OpenHighConga 63 VibraSlap 58

A.3.2 Drum Notes, by MIDI Value

27 HighQ 38 SnareDruml 49 CrashCymball
28 Slap 39 HandClap 50 HighToml

29 ScratchPush 40 SnareDrum?2 51 RideCymball
30 ScratchPull 41 LowTom2 52 ChineseCymbal
31 Sticks 42 ClosedHiHat 53 RideBell

32 SquareClick 43 LowToml 54 Tambourine

33 MetronomeClick 44 PedalHiHat 55 SplashCymbal
34 MetronomeBell 45 MidTom?2 56 CowBell

35 KickDrum2 46 OpenHiHat 57 CrashCymbal2
36 KickDruml 47 MidToml 58 VibraSlap

37 SideKick 48 HighTom2 59 RideCymbal2

123

A.3 Drum Notes Symbols and Constants

60 HighBongo 69 Cabasa 78 MuteCuica
61 LowBongo 70 Maracas 79 OpenCuica
62 MuteHighConga 71 ShortHiWhistle 80 MuteTriangle
63 OpenHighConga 72 LongLowWhistle 81 OpenTriangle
64 LowConga 73 ShortGuiro 82 Shaker

65 HighTimbale 74 LongGuiro 83 JingleBell

66 LowTimbale 75 Claves 84 Castanets

67 HighAgogo 76 HighWoodBlock 85 MuteSudro
68 LowAgogo 77 LowWoodBlock 86 OpenSudro

124

A.4 MIDI Controllers

A.4 MIDI Controllers

Symbols and Constants

When specifying a MIDI Controller in a MidiSeq or MidiVoice command you can use the absolute value
in (either as a decimal number or in hexadecimal by prefixing the value with a “0x”), or the symbolic
name in the following tables. The tables have been extracted from information at http://www.midi.
org/about-midi/table3.shtml. Note that all the values in these tables are in hexadecimal notation.

Complete reference for this is not a part of a#m. Please refer to a detailed text on MIDI or the manaul for

your synthesizer.

A.4.1 Controllers, Alphabetically

AllNotesOff
AllSoundsOff
AttackTime
Balance
BalanceLSB
Bank
BankL.SB
Breath
BreathLLSB
Brightness
Chorus
Ctrl102
Ctrl103
Ctrl104
Ctrl105
Ctrl106
Ctrl107
Ctrl108
Ctrl109
Ctrl110
Ctrll11
Ctrl112
Ctrl113
Ctrl114
Ctrl115
Ctrll16
Ctrl117
Ctrl118
Ctrl119
Ctrl14

7b
78
49
08
28
00
20
02
22
4a
5d
66
67
68
69
6a
6b
6¢
6d
6e
6f
70
71
72
73
74
75
76
77
Oe

Ctrl15
Ctrl20
Ctrl21
Ctrl22
Ctrl23
Ctrl24
Ctrl25
Ctrl26
Ctrl27
Ctrl28
Ctrl29
Ctrl3

Ctrl30
Ctrl31
Ctrl35
Ctrl41
Ctrl46
Ctrl47
Ctrl52
Ctrl53
Ctrl54
Ctrl55
Ctrl56
Ctrl57
Ctrl58
Ctrl59
Ctrl60
Ctrl61
Ctrl62
Ctrl63

Of

15
16
17
18
19
la
1b
1c
1d
03
le
1f
23
29
2e
2f
34
35
36
37
38
39
3a
3b
3c
3d
3e
3f

Ctrl79

Ctrl85

Ctrl86

Ctrl87

Ctrl88

Ctrl89

Ctrl9

Ctr190

Data
DataDec
Datalnc
DatalLSB
DecayTime
Detune
Effectl
Effect1LSB
Effect2
Effect2LSB
Expression
ExpressionLSB
Foot
FootLLSB
Generall
General1LSB
General2
General2LSB
General3
General3LSB
General4
General4LSB

125

A4 MIDI Controllers Symbols and Constants

General5 50 Pan Oa Resonance 47
General6 51 PanL.SB 2a Reverb 5b
General7 52 Phaser 5f SoftPedal 43
General8 53 PolyOff Te Sostenuto 42
Hold2 45 PolyOn 7t Sustain 40
Legato 44 Portamento 05 Tremolo 5c
LocalCtrl 7a Portamento 41 Variation 46
Modulation 01 PortamentoCtrl 54 VibratoDelay 4e
ModulationLSB 21 PortamentoLSB 25 VibratoDepth 4d
NonRegl.SB 62 RegParL.SB 64 VibratoRate 4c
NonRegMSB 63 RegParMSB 65 Volume 07
OmniOff Tc ReleaseTime 48 VolumeLSB 27
OmniOn 7d ResetAll 79

A.4.2 Controllers, by Value

00 Bank 19 Ctrl25 32 General3LSB
01 Modulation la Ctrl26 33 General4dLSB
02 Breath 1b Ctrl27 34 Ctrl52

03 Ctrl3 Ic Ctrl28 35 Ctrl53

04 Foot 1d Ctrl29 36 Ctrl54

05 Portamento le Ctrl30 37 Ctrl55

06 Data 1f Ctrl31 38 Ctrl56

07 Volume 20 BankLSB 39 Ctrl57

08 Balance 21 ModulationL.SB 3a Ctrl58

09 Ctrl9 22 BreathLSB 3b Ctrl59

Oa Pan 23 Ctrl35 3¢ Ctrl60

Ob Expression 24 FootLSB 3d Citrl6l

Oc Effectl 25 PortamentoLSB 3e Ctrl62

0d Effect2 26 DatalL.SB 3f Ctrl63

Oe Ctrl14 27 VolumeLSB 40 Sustain

of Ctrll5 28 BalancelLSB 41 Portamento
10 Generall 29 Ctrl41 42 Sostenuto
11 General2 2a PanLSB 43 SoftPedal
12 General3 2b Expression.SB 44 Legato

13 General4 2c¢ EffectlLSB 45 Hold2

14 Ctrl20 2d Effect2LLSB 46 Variation

15 Ctrl21 2e Ctrl46 47 Resonance
16 Ctrl22 2f Ctrld7 48 ReleaseTime
17 Ctrl23 30 GenerallLSB 49 AttackTime
18 Ctrl24 31 General2LLSB 4a Brightness

126

A.4 MIDI Controllers

4b
4c
4d
4e
4f
50
51
52
53
54
55
56
57
58
59
Sa
5b
5c

DecayTime
VibratoRate
VibratoDepth
VibratoDelay
Ctrl79
General5
General6
General7
General8
PortamentoCitrl
Ctrl85

Ctrl86

Ctrl87

Ctrl88

Ctrl89

Ctrl90
Reverb
Tremolo

5d
Se

Chorus
Detune

5f Phaser

60
61
62
63
64
65
66
67
68
69
6a
6b
6¢
6d
6e

Datalnc
DataDec
NonRegl.SB
NonRegMSB
RegParL.SB
RegParMSB
Ctrl102
Ctrl103
Ctrl104
Ctrl105
Ctrl106
Ctrl107
Ctrl108
Ctrl109
Ctrl110

6f
70
71
72
73
74
75
76
77
78
79
7Ta
7b
Tc
7d
Te
7t

Symbols and Constants

Ctrl111
Ctrl112
Ctrl113
Ctrl114
Ctrll115
Ctrll16
Ctrl117
Ctrl118
Ctrl119
AllSoundsOff
ResetAll
LocalCtrl
AllNotesOff
OmniOff
OmniOn
PolyOff
PolyOn

127

Appendix B

Command Summary

Commands Requiring a Leading Track Specification

Accent 67
Articulate 90
ChShare 81
Channel 80
Compress 55
Copy ...l 91
Debug 92
Define 18
Delete 93
Direction 93
DrumType 49
DupRoot 56
Duplicate 93

ChannelVolume 88
Cut 63
RSKkip 97
RTime 98
AdjustVolume 68
Author 105
AutoSoloTracks 49
Bar Numbers 39
Bar Repeat 40
BeatAdjust 60
Begin 103
ChannelPref 81
Comment 91
Cresc 68

HarmonyOnly
Harmony

MIDIClear

MIDIVoice

SeqNoRnd

Pan 87
Portamento 88
Range 58
Riff 36
ScaleType 98
Sequence 29
Strum 99
Tone 24
Unify 100
Voice 101
Voicing 52

Volume 68
Goto 79
IfEnd 77
If ... 77
Include 108
Inc 75
KeySig 49
Label 79
MIDI 82
MidiFile 83
MmaEnd 111

128

MmaStart 110
MsetEnd 74
Mset 74
PrintActive 97
Print 96
RepeatEnding 71
RepeatEnd 71
Repeat 71

SeqSize 32
Seq 98
SetIncPath 109
SetLibPath 107
SetOutPath 108
Set 74
ShowVars 74
Tempo 59

Command Summary

TimeSig 60
Time 60
Transpose 100
UnSet 74
Use 109
VoiceTr 101

129

