[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

14. Logaritmos


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

14.1 Definiciones para Logaritmos

Variable opcional: %e_to_numlog

Valor por defecto: false

Si %e_to_numlog vale true, r es un número racional y x una expresión, %e^(r*log(x)) se reduce a x^r . Téngase en cuenta que la instrucción radcan también hace este tipo de transformaciones, así como otras más complicadas. La instrucción logcontract "contrae" expresiones que contienen algún log.

Función: li [s] (z)

Representa la función polilogarítmica de orden s y argumento z, definida por la serie infinita

 
                                 inf
                                 ====   k
                                 \     z
                        Li (z) =  >    --
                          s      /      s
                                 ====  k
                                 k = 1

li [1] es - log (1 - z). li [2] y li [3] son las funciones di- y trilogaritmo, respectivamente.

Cuando el orden es 1, el polilogaritmo se simplifica a - log (1 - z), el cual a su vez se reduce a un valor numérico si z es un número real o complejo en coma flotante o si está presente el término numer.

Cuando el orden es 2 ó 3, el polilogaritmo se reduce a un valor numérico si z es un número real en coma flotante o si está presente el término numer.

Ejemplos:

 
(%i1) assume (x > 0);
(%o1)                        [x > 0]
(%i2) integrate ((log (1 - t)) / t, t, 0, x);
(%o2)                       - li (x)
                                2
(%i3) li [2] (7);
(%o3)                        li (7)
                               2
(%i4) li [2] (7), numer;
(%o4)        1.24827317833392 - 6.113257021832577 %i
(%i5) li [3] (7);
(%o5)                        li (7)
                               3
(%i6) li [2] (7), numer;
(%o6)        1.24827317833392 - 6.113257021832577 %i
(%i7) L : makelist (i / 4.0, i, 0, 8);
(%o7)   [0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0]
(%i8) map (lambda ([x], li [2] (x)), L);
(%o8) [0, .2676526384986274, .5822405249432515, 
.9784693966661848, 1.64493407, 2.190177004178597
 - .7010261407036192 %i, 2.374395264042415
 - 1.273806203464065 %i, 2.448686757245154
 - 1.758084846201883 %i, 2.467401098097648
 - 2.177586087815347 %i]
(%i9) map (lambda ([x], li [3] (x)), L);
(%o9) [0, .2584613953442624, 0.537213192678042, 
.8444258046482203, 1.2020569, 1.642866878950322
 - .07821473130035025 %i, 2.060877505514697
 - .2582419849982037 %i, 2.433418896388322
 - .4919260182322965 %i, 2.762071904015935
 - .7546938285978846 %i]
Función: log (x)

Representa el logaritmo natural (en base e) de x.

Maxima no tiene definida una función para el logaritmo de base 10 u otras bases. El usuario puede hacer uso de la definición log10(x) := log(x) / log(10).

La simplificación y evaluación de logaritmos se controla cciertas variables globales:

logexpand - hace que log(a^b) se convierta en b*log(a). Si toma el valor all, log(a*b) también se reducirá a log(a)+log(b). Si toma el valor super, entonces log(a/b) también se reducirá a log(a)-log(b), siendo a/b racional y a#1, (la expresión log(1/b), para b entero, se simplifica siempre). Si toma el valor false, se desactivarán todas estas simplificaciones.

logsimp - si vale false, entonces no se transforma %e a potencias que contengan logaritmos.

lognumer - si vale true, entonces los argumentos de log que sean números decimales negativos en coma flotante se convertirán siempre a su valor absoluto antes de aplicar log. Si numer vale también true, entonces los argumentos enteros negativos de log también se convertirán en su valor absoluto.

lognegint - si vale true se aplica la regla log(-n) -> log(n)+%i*%pi siendo n un entero positivo.

%e_to_numlog - si vale true, r es un número racional y x una expresión, %e^(r*log(x)) se reduce a x^r . Téngase en cuenta que la instrucción radcan también hace este tipo de transformaciones, así como otras más complicadas. La instrucción logcontract "contrae" expresiones que contienen algún log.

Variable opcional: logabs

Valor por defecto: false

Cuando se calculan integrales indefinidas en las que se generan logaritmos, como en integrate(1/x,x), el resultado se devuelve de la forma log(abs(...)) si logabs vale true, o de la forma log(...) si logabs vale false. En la integración definida se hace la asignación logabs:true, ya que aquí es normalmente necesario evaluar la integral indefinida en los extremos del intervalo de integración.

Variable opcional: logarc

Valor por defecto: false

Si logarc vale true hará que las funciones circulares e hiperbólicas inversas se conviertan a la forma logarítmica. La instrucción logarc(exp) hará esta conversión sólo en la expresión exp sin cambiar el valor de la variable global ni tener que volver a evaluar la expresión con ev.

Variable opcional: logconcoeffp

Valor por defecto: false

Controla qué coeficientes se contraen cuando se utiliza logcontract. Se le puede asignar el nombre de una función de predicado de un argumento; por ejemplo, si se quiere introducir raíces cuadradas, se puede hacer logconcoeffp:'logconfun$ logconfun(m):=featurep(m,integer) or ratnump(m)$ . Entonces logcontract(1/2*log(x)); devolverá log(sqrt(x)).

Función: logcontract (expr)

Analiza la expresión expr recursivamente, transformando subexpresiones de la forma a1*log(b1) + a2*log(b2) + c en log(ratsimp(b1^a1 * b2^a2)) + c

 
(%i1) 2*(a*log(x) + 2*a*log(y))$
(%i2) logcontract(%);
                                 2  4
(%o2)                     a log(x  y )

Si se hace declare(n,integer); entonces logcontract(2*a*n*log(x)); da a*log(x^(2*n)). Los coeficientes que se contraen de esta manera son aquellos que como el 2 y el n satisfacen featurep(coeff,integer). El usuario puede controlar qué coeficientes se contraen asignándole a la variable global logconcoeffp el nombre de una función de predicado de un argumento; por ejemplo, si se quiere introducir raíces cuadradas, se puede hacer logconcoeffp:'logconfun$ logconfun(m):=featurep(m,integer) or ratnump(m)$ . Entonces logcontract(1/2*log(x)); devolverá log(sqrt(x)).

Variable opcional: logexpand

Valor por defecto: true

Si logexpand vale true hace que log(a^b) se convierta en b*log(a). Si toma el valor all, log(a*b) también se reducirá a log(a)+log(b). Si toma el valor super, entonces log(a/b) también se reducirá a log(a)-log(b), siendo a/b racional y a#1, (la expresión log(1/b), para b entero, se simplifica siempre). Si toma el valor false, se desactivarán todas estas simplificaciones.

Variable opcional: lognegint

Valor por defecto: false

Si lognegint vale true se aplica la regla log(-n) -> log(n)+%i*%pi siendo n un entero positivo.

Variable opcional: lognumer

Valor por defecto: false

Si lognumer vale true, entonces los argumentos de log que sean números decimales negativos en coma flotante se convertirán siempre a su valor absoluto antes de aplicar log. Si numer vale también true, entonces los argumentos enteros negativos de log también se convertirán en su valor absoluto.

Variable opcional: logsimp

Valor por defecto: true

Si logsimp vale false, entonces no se transforma %e a potencias que contengan logaritmos.

Función: plog (x)

Representa la rama principal del logaritmo natural complejo con -%pi < carg(x) <= +%pi .


[ << ] [ >> ]           [Top] [Contents] [Index] [ ? ]

This document was generated by root on octubre, 3 2006 using texi2html 1.76.