API| Documentation MatrixSSL 1.1

MatrixSSL Public APl documentation

One of the primary development goals in MatrixSSL was to create a smple and small
public application programming interface for usersto integrate with their client or server
applications. The public interface and structures are contained in the matrixSsl.h header
file. The following API documentation describes the entire set of functions an
application would need to use in order to get the full benefits of secure socket
communications using MatrixSSL.

Structures

There are five structure types used in the MatrixSSL public API set. Only the members
of the ssBuf_t and sslCertinfo_t structures have been exposed to the user. The sd_t,
ssiSessionld_t and sslKeys t structures have been defined in the header file to be opaque
integer types because their members do not need to be accessed by the user.

ssIBuf_t

Definition

typedef struct {
unsigned char * buf;
unsigned char * start;
unsigned char *end;
int size;

} ssIBuf_t;

Context

Client and Server

Description

This structure is used for input and output message buffers for the set of public
APIsthat decode and encode data. The start and end pointers in the buffer may
be modified by the MatrixSSL APIsto indicate the data that was parsed or written
to the buffer.

To get an idea of how to work with these buffers, here are some examples of

buffer arithmetic:
b.end — b.start Number of bytes of valid datain the
buffer
(b.buf + b.size) —b.end Number of bytes available in the buffer.
if (b.start > b.buf) If there are unused bytes at the start of
the buffer...

Page 1 of 14 Copyright ©2002-2004 PeerSec Networks, LLC

API| Documentation MatrixSSL 1.1

Members
buf Pointer to the start of the buffer
start Pointer to the first valid byte of data
end Pointer one byte beyond the last valid
byte of data.
size Size of buffer in bytes
sslCertiInfo_t
Definition
typedef struct {
int verified;
unsigned char *serialNumber;
int serialNumberLen;
char *notBefore;
char *notAfter;
char *sigHash;
int sigHashLen;

subjectAltName_ t subjectAltName;
distinguishedName _t subject;
distinguishedName _t issuer;

} sslCertinfo_t;

typedef struct {

char *country;

char *date;

char *locality;

char *organization;

char *orgUnit;

char *commonName;
} distinguishedName t;

typedef struct {
char *dns;
char *uri;
char *emall;

} subjectAltName t;

Context
Client

Description

This structure is passed to aclient side callback routine set by the application to
perform any custom validation checks on a server certificate. The default
MatrixSSL validation check will previously have tested whether or not the client

Page 2 of 14 Copyright ©2002-2004 PeerSec Networks, LLC

API| Documentation MatrixSSL 1.1

certificate authority certificate has signed the server certificate. The application
code should call matrixSslSetCertValidator with the function that will receive the
sd Certlnfo_t information of the server certificate that was passed to the client.

Members

verified Status of the default validation check.
The value will be -1 if the validation
failed or 1 if it succeeded.

serialNumber Serial number assigned by the issuer

seriadlNumberLen Length of valid bytes in serial Number
member

notBefore Start date of certificate validity

sigHash The MD5 or SHA1 hash of the
certificate signature

sigHashLen The length of the sigHash member.
Either 16 for MD5 or 20 for SHA1.

notAfter End date of certificate validity

subjectAltName The X509v3 subjectAltName extension
often used in Web client applications for
validating the FQDN

subject The distinguished name info for the
certificate being validated

issuer The distinguished name info of the
issuer of the certificate being validated

Functions

The public API specifications follow. For sample usage, see the example code provided
in the source code distribution.

matrixSslOpen

Prototype
int matrixSslOpen();

Context
Client and Server

Description

This function performs the one-time initialization for MatrixSSL. Applications
should call this function once as part of their own initialization to load the cipher
suite and perform any operating system specific set up.

Parameters
None

Page 3 of 14 Copyright ©2002-2004 PeerSec Networks, LLC

API| Documentation MatrixSSL 1.1

Return Value
0 Success
<0 Failure

matrixSsiClose

Prototype
void matrixSslClose();

Context
Client and Server

Description
This function performs the one-time final cleanup for MatrixSSL. Applications
should call this function as part of their own final cleanup.

Parameters
None

Return Value
None

matrixSsIReadKeys

Prototype
i nt matrixSsiReadKeys(ssiKeys t **keys, char * certFile, char *privFile,
char *privPass, char *trustedCAcertFiles);

Context
Client and Server

Description

This function is called to load the certificates and private key files from disk that
are needed for server authentication. The key material isloaded into the keys
output parameter. The GNU MatrixSSL supports one-way authentication (server)
so the parameters to this function are specific to the client/server role of the
application. The certFile, privFile, and privPass parameters are server specific
and should identify the certificate and private key file for that server. The
trustedCAcertFilesis client specific and should identify the trusted root
certificates that will be used to validate the certificates received from a server.
Multiple trusted root certificates can be passed to this parameter as a semicolon
delimited list of file names. Any key file or password parameter that does not
apply to the application context should be passed in as NULL.

Page 4 of 14 Copyright ©2002-2004 PeerSec Networks, LLC

API| Documentation MatrixSSL 1.1

The sslKeys t output parameter from this function is used as the input parameter
when starting a new SSL session via matrixSsINewSession. The ssKeys t type
has been defined in the public matrixSdl.h file to simply be an opague integer type
since applications do not need access to any of the structure members.

Calling this function is arelatively expensive operation because of the file access
and parsing required to extract the key material. For thisreason, it istypical that
this function is only called once per set of key files for a given application. All
new sessions associated with that certificate can reuse the returned key pointer.
This function is separate from matrixSs Open because some Web servers support
virtual serversthat each have different key pairs. The user must free the key
structure using matrixSsl FreeKeys.

A buffered memory version of this function is included in the library for
environments where the certificate material is not sored on disk. That version
can be found by searching for matrixSd ReadKeysMem in the source code.

Parameters
keys Output parameter for storing the key material
certFile The filename (including path) of the certificate. Server only.
privKeyFile The filename (including path) of the private key file. Server
only.
privKeyPass The password used to encrypt the private key file if used.

Only 3DES CBC encryption is supported. Server only.

trustedCAcertFile | The filename (including path) of atrusted root certificate.
Multiple files may be passed in a semicolon delimited list.

Client only.
Return Value
0 Success. A valid key pointer will be returned in the keys
parameter for use in a subsequent call to matrixSsNewSession
<0 Failure

Page 5 of 14 Copyright ©2002-2004 PeerSec Networks, LLC

API| Documentation MatrixSSL 1.1

matrixSslFreeKeys

Prototype
void matrixSslFreeKeys(ssiKeys t *keys);

Context
Client and Server

Description
This function is called to free the key structure and elements allocated from a
previous call to matrixSs ReadKeys.

Parameters
keys A pointer to an ssKeys t value returned from a previous call
to matrixSslReadKeys
Return Value
None

matrixSsINewSession

Prototype
int matrixSsINewSession(ssl_t **ssl, sslKeys t *keys, sslSessionld_t *sesssionld,
int flags);

Context
Client and Server

Description

This function is called to start anew SSL session, or resume a previous one, with
aclient or server. The session is returned in the output parameter ssl. This
function requires a pointer to an ssKeys t value returned from a previous call to
matrixSsl ReadKeys and the flags parameter to specify whether thisis a server side
usage. MatrixSSL supports client initiated SSL sessions and the sessionid
parameter is specific to client implementations only. If the client isresuming a
prior session, this parameter will be the value returned from a call to

matrixSs GetSessionld. Otherwise, this parameter must be NULL. The client
must pass 0 as the flags parameter. A client will make a call to this function prior
to calling matrixSs EncodeClientHello.

When a server application has received notice that a client is requesting a secure
socket connection (a socket accept on a secure port), this function should be
called to initialize the new session structure. The sessionld parameter must be set
to NULL for server side implementations.

Page 6 of 14 Copyright ©2002-2004 PeerSec Networks, LLC

API| Documentation MatrixSSL 1.1

The output parameter isan sdl_t structure that will be used as input parameters to
the matrixSslDecode and matrixSs Encode family of APIs for decrypting and
encrypting messages. The sd_t type has been defined in the public matrixSdl.h
file to simply be an opague integer type since users do not need access to any of
the structure members. The user must free the sd_t structure using

matrixSsl Del eteSession.

Parameters
ssl Output. The new SSL session created by this call
keys The opaque key material pointer returned from acall to
matrixSs ReadKeys
sessionld Prior session id obtained from matrixSd GetSessionld if
client isresuming asession. NULL otherwise.
flags SSL_FLAGS SERVER for server and O for client.
Return Value
0 Success. A newly allocated session structure will be returned
in the s9 parameter for use as the input parameter on session
related decoding and encoding APIs
<0 Failure

matrixSsl|DeleteSession

Prototype
void matrixSslDeleteSession(ssl_t * session);

Context
Client and Server

Description

This function is called at the conclusion of an SSL session that was created using
matrixSsNewSession. This function will free the allocated memory associated
with the session. It should be called after the corresponding socket has been
closed.

A client wishing to reconnect later to the same server may chooseto call
matrixSs GetSessionld prior to calling this delete session function to save aside
the session id for later use with matrixSsl NewSession.

Parameters
session The sd_t session pointer returned from the call to
matrixSsNewSession
Return Value
None

Page 7 of 14 Copyright ©2002-2004 PeerSec Networks, LLC

API| Documentation MatrixSSL 1.1

matrixSslDecode

Prototype

int matrixSslDecode(ssl_t *session, ssIBuf_t *in, ssIBuf_t *out,
unsigned char *error, unsigned char *alertLevel,
unsigned char *alertDescription);

Context
Client and Server

Description

Thisisapowerful function used to decode all messages received from a peer,
including handshake and alert messages. The input parameters include the sdl_t
session from the previous call to matrixSsINewSession and an ssiBuf_t input
buffer containing the message received from the client or server. Thisfunction is
typically called in aloop during the handshake process. The return value
indicates the type of message received and the out buffer parameter may contain
an encoded message to send to the other side or a decoded message for the
application to process. Thein buffer may have its start pointer moved forward to
indicate the bytes that were successfully decoded. The out buffer end pointer may
be modified to reflect the output data written to the buffer.

Parameters

session The sd_t session structure associated with this instance.
Created by the call to matrixSd NewSession

in The sdBuf_t buffer containing the input message from the
other side of the client/server communication channel

out The output buffer after returned to the application

error On SSL_ERROR conditions, this output parameter specifies
the error description associated with the error

alertLevel On SSL_ALERT conditions, this output parameter specifies
the alert level associated with the client alert message

alertDescription | On SSL_ALERT conditions, this output parameter specifies
the alert description associated with the client alert message

Return Value

SSL_SUCCESS A handshake message was successfully decoded and
handled. No additional action is required for this
message. matrixSslDecode can be called again
immediately if more datais expected. Thisreturn
code gives visibility into the handshake process and
can be used in conjunction with

matrixSsl Handshakel sComplete to determine when
the handshake is complete and application data can
be sent.

SSL_SEND_RESPONSE | Thisvalue indicates the input message was part of the
SSLv3 internal protocol and areply is expected. The

Page 8 of 14 Copyright ©2002-2004 PeerSec Networks, LLC

API| Documentation

MatrixSSL 1.1

application should send the data in the out buffer to
the other side and then call matrixSd Decode again to
see if any more message data needs to be decoded.

SSL_ERROR

This value indicates there has been an error while
attempting to decode the data or that a bad message
was sent. The application should attempt to send the
contents of out buffer, if any (likely an error aert) to
the other side as areply and then close the
communication layer (i.e. close the socket).

SSL_ALERT

This value indicates the message was an alert sent
from the other side and the application should close
the communication layer (i.e. close the socket).

SSL_PARTIAL

This value indicates that the input buffer was an
incomplete message or record. The application must
retrieve more data from the communications layer
(socket) and call matrixSslDecode again when more
datais available.

SSL_FULL

This value indicates the output buffer was too small
to hold the output message. The application should
grow the output buffer and call matrixSs Decode
again with the same input buffer. The maximum size
of the buffer output buffer will never exceed 16K per
the SSLv3 standard.

SSL_PROCESS_DATA

This value indicates that the message is application
specific data that does not require a response from the
server. This message is an implicit indication that
SSLv3 handshaking is complete. The decoded data
has been written to the output buffer for application
consumption.

Page 9 of 14

Copyright ©2002-2004 PeerSec Networks, LLC

API| Documentation MatrixSSL 1.1

matrixSslEncode

Prototype
int matrixSslEncode(ssl_t * session, unsigned char *in, int inLen, ssiBuf_t *out);

Context
Client and Server

Description

This function is used by the application to generate encrypted messages to be sent
to the other side of the client/server communication channel. Only application
level messages should be generated with this API. Handshake messages are
generated internally as part of matrixSdDecode. It isthe responsibility of the
application to actually transmit the generated output buffer to the other side.

Parameters
session The sd_t session identifier for this
session.
in The plain-text message buffer to encrypt
inLen The length of valid datain the input
buffer to encrypt
out The encrypted message to be passed to
the other side
Return Value
>=0 Success. The value isthe length of the
encrypted data
SSL_ERROR Error. The connection should be closed,
and session deleted.
SSL_FULL The output buffer is not big enough to
hold the encrypted data. Grow the
buffer and retry.

matrixSslEncodeClosureAlert

Prototype
int matrixSslEncodeClosureAlert(ssl_t *session, ssiBuf_t * out);

Context
Client and Server

Description

An optional function call made before closing the communication channel with a
peer. Thisfunction alerts the peer that the connection is about to close. Some
implementations simply close the connection without an alert, but per spec, this
message should be sent first.

Page 10 of 14 Copyright ©2002-2004 PeerSec Networks, LLC

API| Documentation MatrixSSL 1.1

Parameters
session | The sd _t session identifier for this session
out The output alert closure message to be passed along to the client.
Return Value
0 Success
SSL_FULL The output buffer is not big enough to
hold the encrypted data. Grow the
buffer and retry.
SSL_ERROR Failure
matrixSsIEncodeClientHello
Prototype
int matrixSslEncodeClientHello(ssl_t * session, ssIBuf_t * out,
unsigned short cipherSuite);
Context
Client
Description

This function builds the initial CLIENT_HELL O message to be passed to a server
to begin SSL communications. This function is called once by the client before
entering into the matrixSslDecode handshake loop.

The cipher Suite parameter can be used to force the client to send a single cipher
to the server rather than the entire set of supported ciphers. Set this valueto O to
send the entire cipher suite list. Otherwise the value is the two byte value of the
cipher suite specified in the standards. The supported values can be found in
matrixlnternal .h.

Parameters
session The sd_t session identifier for this session
out The output alert closure message to be passed along to the client.
cipherSuite | The two byte cipher suite identifier
Return Value
0 Success
SSL_FULL The output buffer is not big enough to
hold the encrypted data. Grow the
buffer and retry.
SSL_ERROR Failure

Page 11 of 14 Copyright ©2002-2004 PeerSec Networks, LLC

API| Documentation MatrixSSL 1.1

matrixSsIHandshakelsComplete

Prototype
int matrixSslHandshakel sComplete(ssl_t * session);

Context
Client and Server

Description

This function returns whether or not the handshake portion of the session is
complete. This API can be used to test when it is OK to send the first application
datarecord on an SSL connection.

Parameters
| session | The s9_t session identifier for this session

Return Value
1 Handshake is complete
0 Handshake is NOT complete

matrixSslGetSessionld

Prototype
int matrixSslGetSessionld(ssl_t *session, sslSessionld _t **sessionld);

Context
Client

Description

This function is used by a client application to extract the session id from an
existing session for use in a subsequent call to matrixSslNewSession wishing to
resume a session. A resumed session is much faster to negotiate because the
public key encryption process does not need to be performed and two handshake
messages are avoided. The sessionld return parameter of this function isvalid
even after matrixSd DeleteSession has been called on the current session. This
function should only be called by aclient SSL session after the handshake is
complete (session id is established).

The sdSessionld_t structure has been defined in the public header as an opague
integer type since the contents of the structure do not need to be accessed by the
application. The session id must be freed with a call to matrixSslFreeSessionld.

Parameters
session | Thesd_t session identifier for this session
sessionld | Output. The returned session id for the given SSL session

Page 12 of 14 Copyright ©2002-2004 PeerSec Networks, LLC

API| Documentation MatrixSSL 1.1

Return Value
0 Success. An allocated session id isreturned in
sessionld
<0 Failure (sessionld unavailable)

matrixSslFreeSessionld

Prototype
void matrixSslFreeSessionl d(sslSessionld_t * sessionld);

Context
Client

Description
This function is used by aclient application to free a session id returned from a
previous call to matrixSd GetSessionld..

Parameters
| sessionld | The sdSession_t identifier

Return Value
None

matrixSsl|SetCertValidator

Prototype
void matrixSslSetCertValidator(ssl_t * session,
int (*certValidator)(sslCertInfo_t*, void *arg), void *arg);

Context
Client

Description

This function is used by client applications to register a callback routine that will
be invoked during the certificate validation process. This optional registration
will enable the application to perform custom validation checks or to pass
certificate information on to end users wishing to manually validate certificates.

The registered function must have the following prototype:
int appCertValidator(sslCertInfo_t * certinfo, void *arg);
The certinfo parameter is the incoming sslCertlnfo_t structure containing

information about the certificate. This certificate information is read-only from
the perspective of the validating callback function. The structure members are

Page 13 of 14 Copyright ©2002-2004 PeerSec Networks, LLC

API| Documentation MatrixSSL 1.1

available in the Structures section in this document and in the matrixSs.h public
header file.

The verified member of certinfo will indicate whether or not the certificate passed
the default MatrixSSL validation checks. A typical callback implementation
might be to check the value of the verified member and pass the certificate
information along to the user if it had not passed the default validation checks.

The arg parameter is a user specific argument that was specified inthe arg
parameter to the matrixSsl SetCertValidator routine. This argument can be used to
give session context to the callback if needed.

The callback function should return avalue >= 0 if the custom validation check is
successful and the certificate is determined to be acceptable. The callback
function must return a negative value if the validation checks fails for any reason.
The negative return code will be passed back to the MatrixSSL library and the
handshake process will terminate.

Parameters
session The sd_t session identifier for this session
certValidator | The function callback that will be invoked to validate the
certificate
arg I mplementation specific data that will be received by the
callback. Useto give session context if needed, NULL
otherwise.
Return Value
None

Page 14 of 14 Copyright ©2002-2004 PeerSec Networks, LLC

