
Matplotlib
Release 0.99.3

Darren Dale, Michael Droettboom, Eric Firing, John Hunter

April 13, 2011

CONTENTS

I User’s Guide 1

1 Introduction 3

2 Installing 5
2.1 OK, so you want to do it the hard way? . 5
2.2 Installing from source . 6
2.3 Build requirements . 6
2.4 Building on OSX . 7

3 Pyplot tutorial 9
3.1 Controlling line properties . 11
3.2 Working with multiple figures and axes . 13
3.3 Working with text . 14

4 Interactive navigation 17
4.1 Navigation Keyboard Shortcuts . 18

5 Customizing matplotlib 21
5.1 The matplotlibrc file . 21
5.2 Dynamic rc settings . 21

6 Using matplotlib in a python shell 29
6.1 Ipython to the rescue . 29
6.2 Other python interpreters . 30
6.3 Controlling interactive updating . 30

7 Working with text 33
7.1 Text introduction . 33
7.2 Basic text commands . 33
7.3 Text properties and layout . 34
7.4 Writing mathematical expressions . 36
7.5 Text rendering With LaTeX . 46
7.6 Annotating text . 49

8 Image tutorial 53

i

8.1 Startup commands . 53
8.2 Importing image data into Numpy arrays . 53
8.3 Plotting numpy arrays as images . 55

9 Artist tutorial 67
9.1 Customizing your objects . 69
9.2 Object containers . 71
9.3 Figure container . 71
9.4 Axes container . 73
9.5 Axis containers . 75
9.6 Tick containers . 77

10 Legend guide 79
10.1 What to be displayed . 79
10.2 Multicolumn Legend . 81
10.3 Legend location . 81
10.4 Multiple Legend . 82

11 Event handling and picking 85
11.1 Event connections . 85
11.2 Event attributes . 86
11.3 Mouse enter and leave . 90
11.4 Object picking . 91

12 Transformations Tutorial 95
12.1 Data coordinates . 95
12.2 Axes coordinates . 98
12.3 Blended transformations . 100
12.4 Using offset transforms to create a shadow effect . 101
12.5 The transformation pipeline . 103

13 Path Tutorial 105
13.1 Bézier example . 106
13.2 Compound paths . 108

14 Annotating Axes 111
14.1 Annotating with Text with Box . 111
14.2 Annotating with Arrow . 113
14.3 Using ConnectorPatch . 118
14.4 Placing Artist at the anchored location of the Axes . 119
14.5 Zoom effect between Axes . 121
14.6 Define Custom BoxStyle . 122

15 Toolkits 125
15.1 Basemap . 125
15.2 GTK Tools . 125
15.3 Excel Tools . 125
15.4 Natgrid . 125
15.5 mplot3d . 125

ii

15.6 AxesGrid . 126

16 Screenshots 127
16.1 Simple Plot . 127
16.2 Subplot demo . 128
16.3 Histograms . 128
16.4 Path demo . 129
16.5 mplot3d . 130
16.6 Ellipses . 131
16.7 Bar charts . 132
16.8 Pie charts . 133
16.9 Table demo . 134
16.10 Scatter demo . 135
16.11 Slider demo . 135
16.12 Fill demo . 136
16.13 Date demo . 137
16.14 Financial charts . 137
16.15 Basemap demo . 137
16.16 Log plots . 138
16.17 Polar plots . 138
16.18 Legends . 139
16.19 Mathtext_examples . 140
16.20 Native TeX rendering . 142
16.21 EEG demo . 142

17 What’s new in matplotlib 145
17.1 new in matplotlib-0.99 . 145
17.2 new in 0.98.4 . 148

18 License 157
18.1 License agreement for matplotlib 0.99.3 . 157

19 Credits 159

II The Matplotlib FAQ 163

20 Installation FAQ 165
20.1 Report a compilation problem . 165
20.2 matplotlib compiled fine, but nothing shows up with plot 165
20.3 Cleanly rebuild and reinstall everything . 166
20.4 Install from svn . 167
20.5 Install from git . 167
20.6 Backends . 167
20.7 OS-X questions . 169
20.8 Windows questions . 172

21 Usage 173
21.1 Matplotlib, pylab, and pyplot: how are they related? . 173

iii

22 Howto 175
22.1 Plotting: howto . 176
22.2 Contributing: howto . 183
22.3 Matplotlib in a web application server . 185
22.4 Search examples . 186

23 Troubleshooting 187
23.1 Obtaining matplotlib version . 187
23.2 matplotlib install location . 187
23.3 .matplotlib directory location . 187
23.4 Report a problem . 188
23.5 Problems with recent svn versions . 189

III The Matplotlib Developers’ Guide 191

24 Coding guide 193
24.1 Version control . 193
24.2 Style guide . 197
24.3 Documentation and docstrings . 200
24.4 Developing a new backend . 201
24.5 Licenses . 201

25 Documenting matplotlib 203
25.1 Getting started . 203
25.2 Organization of matplotlib’s documentation . 203
25.3 Formatting . 204
25.4 Figures . 206
25.5 Referring to mpl documents . 207
25.6 Internal section references . 207
25.7 Section names, etc . 208
25.8 Inheritance diagrams . 208
25.9 Emacs helpers . 209

26 Doing a matplolib release 211
26.1 Testing . 211
26.2 Branching . 211
26.3 Packaging . 211
26.4 Release candidate testing: . 212
26.5 Uploading . 212
26.6 Announcing . 213

27 Working with transformations 215
27.1 matplotlib.transforms . 215

28 Adding new scales and projections to matplotlib 235
28.1 Creating a new scale . 235
28.2 Creating a new projection . 236
28.3 API documentation . 236

iv

29 Docs outline 245
29.1 Reviewer notes . 248

IV The Matplotlib API 251

30 API Changes 253
30.1 Changes in 0.99 . 253
30.2 Changes for 0.98.x . 253
30.3 Changes for 0.98.1 . 255
30.4 Changes for 0.98.0 . 255
30.5 Changes for 0.91.2 . 260
30.6 Changes for 0.91.1 . 260
30.7 Changes for 0.91.0 . 260
30.8 Changes for 0.90.1 . 261
30.9 Changes for 0.90.0 . 262
30.10 Changes for 0.87.7 . 263
30.11 Changes for 0.86 . 265
30.12 Changes for 0.85 . 265
30.13 Changes for 0.84 . 266
30.14 Changes for 0.83 . 266
30.15 Changes for 0.82 . 267
30.16 Changes for 0.81 . 268
30.17 Changes for 0.80 . 269
30.18 Changes for 0.73 . 269
30.19 Changes for 0.72 . 269
30.20 Changes for 0.71 . 270
30.21 Changes for 0.70 . 271
30.22 Changes for 0.65.1 . 271
30.23 Changes for 0.65 . 271
30.24 Changes for 0.63 . 271
30.25 Changes for 0.61 . 272
30.26 Changes for 0.60 . 272
30.27 Changes for 0.54.3 . 272
30.28 Changes for 0.54 . 273
30.29 Changes for 0.50 . 276
30.30 Changes for 0.42 . 277
30.31 Changes for 0.40 . 278

31 matplotlib configuration 281
31.1 matplotlib . 281

32 matplotlib afm 285
32.1 matplotlib.afm . 285

33 matplotlib artists 289
33.1 matplotlib.artist . 289
33.2 matplotlib.legend . 299

v

33.3 matplotlib.lines . 301
33.4 matplotlib.patches . 309
33.5 matplotlib.text . 342

34 matplotlib axes 355
34.1 matplotlib.axes . 355

35 matplotlib axis 499
35.1 matplotlib.axis . 499

36 matplotlib cbook 507
36.1 matplotlib.cbook . 507

37 matplotlib cm 517
37.1 matplotlib.cm . 517

38 matplotlib collections 519
38.1 matplotlib.collections . 519

39 matplotlib colorbar 531
39.1 matplotlib.colorbar . 531

40 matplotlib colors 533
40.1 matplotlib.colors . 533

41 matplotlib dates 541
41.1 matplotlib.dates . 541

42 matplotlib figure 549
42.1 matplotlib.figure . 549

43 matplotlib font_manager 567
43.1 matplotlib.font_manager . 567
43.2 matplotlib.fontconfig_pattern . 572

44 matplotlib nxutils 575
44.1 matplotlib.nxutils . 575

45 matplotlib mathtext 577
45.1 matplotlib.mathtext . 579

46 matplotlib mlab 591
46.1 matplotlib.mlab . 591

47 matplotlib path 613
47.1 matplotlib.path . 613

48 matplotlib pyplot 619
48.1 matplotlib.pyplot . 619

vi

49 matplotlib spine 767
49.1 matplotlib.spine . 767

50 matplotlib ticker 771
50.1 matplotlib.ticker . 771

51 matplotlib backends 779
51.1 matplotlib.backend_bases . 779
51.2 matplotlib.backends.backend_gtkagg . 793
51.3 matplotlib.backends.backend_qt4agg . 793
51.4 matplotlib.backends.backend_wxagg . 793
51.5 matplotlib.dviread . 794
51.6 matplotlib.type1font . 797

V Glossary 799

Python Module Index 803

vii

viii

Part I

User’s Guide

1

CHAPTER

ONE

INTRODUCTION

matplotlib is a library for making 2D plots of arrays in Python. Although it has its origins in emulating
the MATLAB™ graphics commands, it is independent of MATLAB, and can be used in a Pythonic, object
oriented way. Although matplotlib is written primarily in pure Python, it makes heavy use of NumPy and
other extension code to provide good performance even for large arrays.

matplotlib is designed with the philosophy that you should be able to create simple plots with just a few
commands, or just one! If you want to see a histogram of your data, you shouldn’t need to instantiate
objects, call methods, set properties, and so on; it should just work.

For years, I used to use MATLAB exclusively for data analysis and visualization. MATLAB excels at mak-
ing nice looking plots easy. When I began working with EEG data, I found that I needed to write applications
to interact with my data, and developed and EEG analysis application in MATLAB. As the application grew
in complexity, interacting with databases, http servers, manipulating complex data structures, I began to
strain against the limitations of MATLAB as a programming language, and decided to start over in Python.
Python more than makes up for all of MATLAB’s deficiencies as a programming language, but I was having
difficulty finding a 2D plotting package (for 3D VTK more than exceeds all of my needs).

When I went searching for a Python plotting package, I had several requirements:

• Plots should look great - publication quality. One important requirement for me is that the text looks
good (antialiased, etc.)

• Postscript output for inclusion with TeX documents

• Embeddable in a graphical user interface for application development

• Code should be easy enough that I can understand it and extend it

• Making plots should be easy

Finding no package that suited me just right, I did what any self-respecting Python programmer would do:
rolled up my sleeves and dived in. Not having any real experience with computer graphics, I decided to
emulate MATLAB’s plotting capabilities because that is something MATLAB does very well. This had the
added advantage that many people have a lot of MATLAB experience, and thus they can quickly get up to
steam plotting in python. From a developer’s perspective, having a fixed user interface (the pylab interface)
has been very useful, because the guts of the code base can be redesigned without affecting user code.

The matplotlib code is conceptually divided into three parts: the pylab interface is the set of functions
provided by matplotlib.pylab which allow the user to create plots with code quite similar to MATLAB
figure generating code (Pyplot tutorial). The matplotlib frontend or matplotlib API is the set of classes that

3

http://www.python.org
http://www.mathworks.com
http://www.numpy.org
http://www.vtk.org/

Matplotlib, Release 0.99.3

do the heavy lifting, creating and managing figures, text, lines, plots and so on (Artist tutorial). This is an
abstract interface that knows nothing about output. The backends are device dependent drawing devices, aka
renderers, that transform the frontend representation to hardcopy or a display device (What is a backend?).
Example backends: PS creates PostScript® hardcopy, SVG creates Scalable Vector Graphics hardcopy,
Agg creates PNG output using the high quality Anti-Grain Geometry library that ships with matplotlib,
GTK embeds matplotlib in a Gtk+ application, GTKAgg uses the Anti-Grain renderer to create a figure and
embed it a Gtk+ application, and so on for PDF, WxWidgets, Tkinter etc.

matplotlib is used by many people in many different contexts. Some people want to automatically generate
PostScript files to send to a printer or publishers. Others deploy matplotlib on a web application server to
generate PNG output for inclusion in dynamically-generated web pages. Some use matplotlib interactively
from the Python shell in Tkinter on Windows™. My primary use is to embed matplotlib in a Gtk+ EEG
application that runs on Windows, Linux and Macintosh OS X.

4 Chapter 1. Introduction

http://http://www.adobe.com/products/postscript/
http://www.w3.org/Graphics/SVG/
http://www.antigrain.com
http://www.gtk.org/
http://www.adobe.com/products/acrobat/adobepdf.html
http://www.wxpython.org/
http://docs.python.org/lib/module-Tkinter.html

CHAPTER

TWO

INSTALLING

There are lots of different ways to install matplotlib, and the best way depends on what operating system
you are using, what you already have installed, and how you want to use it. To avoid wading through all
the details (and potential complications) on this page, the easiest thing for you to do is use one of the pre-
packaged python distributions that already provide matplotlib built in. The Enthought Python Distribution
(EPD) for Windows, OS X or Redhat is an excellent choice that “just works” out of the box. Another
excellent alternative for Windows users is Python (x, y) which tends to be updated a bit more frequently.
Both of these packages include matplotlib and pylab, and lots of other useful tools. matplotlib is also
packaged for pretty much every major linux distribution, so if you are on linux your package manager will
probably provide matplotlib prebuilt.

One single click installer and you are done.

2.1 OK, so you want to do it the hard way?

For some people, the prepackaged pythons discussed above are not an option. That’s OK, it’s usually pretty
easy to get a custom install working. You will first need to find out if you have python installed on your
machine, and if not, install it. The official python builds are available for download here, but OS X users
please read Which python for OS X?.

Once you have python up and running, you will need to install numpy. numpy provides high performance
array data structures and mathematical functions, and is a requirement for matplotlib. You can test your
progress:

>>> import numpy
>>> print numpy.__version__

matplotlib requires numpy version 1.1 or later. Although it is not a requirement to use matplotlib, we
strongly encourage you to install ipython, which is an interactive shell for python that is matplotlib aware.

Next we need to get matplotlib installed. We provide prebuilt binaries for OS X and Windows on the
matplotlib download page. Click on the latest release of the “matplotlib” package, choose your python
version (2.5 or 2.6) and your platform (macosx or win32) and you should be good to go. If you have any
problems, please check the Installation FAQ, google around a little bit, and post a question the mailing list.
If you are on debian/unbuntu linux, it suffices to do:

5

http://www.enthought.com/products/epd.php
http://www.pythonxy.com/foreword.php
http://www.python.org/download
http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103
http://ipython.scipy.org/dist
http://sourceforge.net/projects/matplotlib/files/
http://sourceforge.net/project/showfiles.php?group_id=80706

Matplotlib, Release 0.99.3

> sudo apt-get install python-matplotlib

Instructions for installing our OSX binaries are found in the FAQ Installing OSX binaries.

Once you have ipython, numpy and matplotlib installed, in ipython’s “pylab” mode you have a matlab-like
environment that automatically handles most of the configuration details for you, so you can get up and
running quickly:

johnh@flag:~> ipython -pylab
Python 2.4.5 (#4, Apr 12 2008, 09:09:16)
IPython 0.9.0 -- An enhanced Interactive Python.

Welcome to pylab, a matplotlib-based Python environment.
For more information, type ’help(pylab)’.

In [1]: x = randn(10000)

In [2]: hist(x, 100)

Note that when testing matplotlib installations from the interactive python console, there are some issues
relating to user interface toolkits and interactive settings that are discussed in Using matplotlib in a python
shell.

2.2 Installing from source

If you are interested perhaps in contributing to matplotlib development, running the latest greatest code, or
just like to build everything yourself, it is not difficult to build matplotlib from source. Grab the latest tar.gz
release file from sourceforge, or if you want to develop matplotlib or just need the latest bugfixed version,
grab the latest svn version Install from svn.

Once you have satisfied the requirements detailed below (mainly python, numpy, libpng and freetype), you
build matplotlib in the usual way:

cd matplotlib
python setup.py build
python setup.py install

We provide a setup.cfg file that lives along setup.py which you can use to customize the build process, for
example, which default backend to use, whether some of the optional libraries that matplotlib ships with are
installed, and so on. This file will be particularly useful to those packaging matplotlib.

2.3 Build requirements

These are external packages which you will need to install before installing matplotlib. Windows users
only need the first two (python and numpy) since the others are built into the matplotlib windows installers
available for download at the sourceforge site. If you are building on OSX, see Building on OSX

python 2.4 (or later but not python3) matplotlib requires python 2.4 or later (download)

6 Chapter 2. Installing

http://sourceforge.net/project/showfiles.php?group_id=80706
http://matplotlib.svn.sourceforge.net/viewvc/matplotlib/trunk/matplotlib/setup.cfg.template?view=markup
http://www.python.org/download/

Matplotlib, Release 0.99.3

numpy 1.1 (or later) array support for python (download)

libpng 1.1 (or later) library for loading and saving PNG files (download). libpng requires zlib. If you are
a windows user, you can ignore this since we build support into the matplotlib single click installer

freetype 1.4 (or later) library for reading true type font files. If you are a windows user, you can ignore this
since we build support into the matplotlib single click installer.

Optional

These are optional packages which you may want to install to use matplotlib with a user interface toolkit.
See What is a backend? for more details on the optional matplotlib backends and the capabilities they
provide

tk 8.3 or later The TCL/Tk widgets library used by the TkAgg backend

pyqt 3.1 or later The Qt3 widgets library python wrappers for the QtAgg backend

pyqt 4.0 or later The Qt4 widgets library python wrappers for the Qt4Agg backend

pygtk 2.2 or later The python wrappers for the GTK widgets library for use with the GTK or GTKAgg
backend

wxpython 2.6 or later The python wrappers for the wx widgets library for use with the WXAgg backend

wxpython 2.8 or later The python wrappers for the wx widgets library for use with the WX backend

pyfltk 1.0 or later The python wrappers of the FLTK widgets library for use with FLTKAgg

Required libraries that ship with matplotlib

agg 2.4 The antigrain C++ rendering engine. matplotlib links against the agg template source statically, so
it will not affect anything on your system outside of matplotlib.

pytz 2007g or later timezone handling for python datetime objects. By default, matplotlib will install pytz
if it isn’t already installed on your system. To override the default, use :file:‘setup.cfg to force or
prevent installation of pytz.

dateutil 1.1 or later provides extensions to python datetime handling. By default, matplotlib will install
dateutil if it isn’t already installed on your system. To override the default, use setup.cfg to force
or prevent installation of dateutil.

2.4 Building on OSX

The build situation on OSX is complicated by the various places one can get the png and freetype require-
ments from (darwinports, fink, /usr/X11R6) and the different architectures (x86, ppc, universal) and the
different OSX version (10.4 and 10.5). We recommend that you build the way we do for the OSX release:
by grabbing the tarbar or svn repository, cd-ing into the release/osx dir, and following the instruction in the
README. This directory has a Makefile which will automatically grab the zlib, png and freetype dependen-
cies from the web, build them with the right flags to make universal libraries, and then build the matplotlib
source and binary installers.

2.4. Building on OSX 7

http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103
http://www.libpng.org/pub/png/libpng.html

Matplotlib, Release 0.99.3

8 Chapter 2. Installing

CHAPTER

THREE

PYPLOT TUTORIAL

matplotlib.pyplot is a collection of command style functions that make matplotlib work like matlab.
Each pyplot function makes some change to a figure: eg, create a figure, create a plotting area in a figure,
plot some lines in a plotting area, decorate the plot with labels, etc.... matplotlib.pyplot is stateful, in
that it keeps track of the current figure and plotting area, and the plotting functions are directed to the current
axes

0.0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

3.0

so
m

e
 n

u
m

b
e
rs

You may be wondering why the x-axis ranges from 0-2 and the y-axis from 1-3. If you provide a single
list or array to the plot() command, matplotlib assumes it is a sequence of y values, and automatically
generates the x values for you. Since python ranges start with 0, the default x vector has the same length as
y but starts with 0. Hence the x data are [0,1,2].

9

Matplotlib, Release 0.99.3

plot() is a versatile command, and will take an arbitrary number of arguments. For example, to plot x
versus y, you can issue the command:

plt.plot([1,2,3,4], [1,4,9,16])

For every x, y pair of arguments, there is a optional third argument which is the format string that indicates
the color and line type of the plot. The letters and symbols of the format string are from matlab, and you
concatenate a color string with a line style string. The default format string is ‘b-‘, which is a solid blue line.
For example, to plot the above with red circles, you would issue

0 1 2 3 4 5 6
0

5

10

15

20

See the plot() documentation for a complete list of line styles and format strings. The axis() command
in the example above takes a list of [xmin, xmax, ymin, ymax] and specifies the viewport of the axes.

If matplotlib were limited to working with lists, it would be fairly useless for numeric processing. Generally,
you will use numpy arrays. In fact, all sequences are converted to numpy arrays internally. The example
below illustrates a plotting several lines with different format styles in one command using arrays.

10 Chapter 3. Pyplot tutorial

http://numpy.scipy.org

Matplotlib, Release 0.99.3

0 1 2 3 4 5
0

20

40

60

80

100

120

3.1 Controlling line properties

Lines have many attributes that you can set: linewidth, dash style, antialiased, etc; see
matplotlib.lines.Line2D. There are several ways to set line properties

• Use keyword args:

plt.plot(x, y, linewidth=2.0)

• Use the setter methods of the Line2D instance. plot returns a list of lines; eg line1, line2 =
plot(x1,y1,x2,x2). Below I have only one line so it is a list of length 1. I use tuple unpacking in
the line, = plot(x, y, ’o’) to get the first element of the list:

line, = plt.plot(x, y, ’-’)
line.set_antialiased(False) # turn off antialising

• Use the setp() command. The example below uses a Matlab-style command to set multiple proper-
ties on a list of lines. setp works transparently with a list of objects or a single object. You can either
use python keyword arguments or Matlab-style string/value pairs:

lines = plt.plot(x1, y1, x2, y2)
use keyword args
plt.setp(lines, color=’r’, linewidth=2.0)

3.1. Controlling line properties 11

Matplotlib, Release 0.99.3

or matlab style string value pairs
plt.setp(lines, ’color’, ’r’, ’linewidth’, 2.0)

Here are the available Line2D properties.

Property Value Type
alpha float
animated [True | False]
antialiased or aa [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a Transform instance, a Patch
color or c any matplotlib color
contains the hit testing function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ...]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker used in interactive line selection
pickradius the line pick selection radius
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

To get a list of settable line properties, call the setp() function with a line or lines as argument

In [69]: lines = plt.plot([1,2,3])

In [70]: plt.setp(lines)
alpha: float
animated: [True | False]
antialiased or aa: [True | False]
...snip

12 Chapter 3. Pyplot tutorial

Matplotlib, Release 0.99.3

3.2 Working with multiple figures and axes

Matlab, and pyplot, have the concept of the current figure and the current axes. All plotting commands ap-
ply to the current axes. The function gca() returns the current axes (a matplotlib.axes.Axes instance),
and gcf() returns the current figure (matplotlib.figure.Figure instance). Normally, you don’t have
to worry about this, because it is all taken care of behind the scenes. Below is a script to create two subplots.

0 1 2 3 4 5
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

0 1 2 3 4 5
1.0

0.5

0.0

0.5

1.0

The figure() command here is optional because figure(1) will be created by default, just as a
subplot(111) will be created by default if you don’t manually specify an axes. The subplot() com-
mand specifies numrows, numcols, fignum where fignum ranges from 1 to numrows*numcols. The
commas in the subplot command are optional if numrows*numcols<10. So subplot(211) is identical
to subplot(2,1,1). You can create an arbitrary number of subplots and axes. If you want to place an axes
manually, ie, not on a rectangular grid, use the axes() command, which allows you to specify the location
as axes([left, bottom, width, height]) where all values are in fractional (0 to 1) coordinates. See
pylab_examples-axes_demo for an example of placing axes manually and pylab_examples-line_styles for an
example with lots-o-subplots.

You can create multiple figures by using multiple figure() calls with an increasing figure number. Of
course, each figure can contain as many axes and subplots as your heart desires:

import matplotlib.pyplot as plt
plt.figure(1) # the first figure
plt.subplot(211) # the first subplot in the first figure
plt.plot([1,2,3])

3.2. Working with multiple figures and axes 13

Matplotlib, Release 0.99.3

plt.subplot(212) # the second subplot in the first figure
plt.plot([4,5,6])

plt.figure(2) # a second figure
plt.plot([4,5,6]) # creates a subplot(111) by default

plt.figure(1) # figure 1 current; subplot(212) still current
plt.subplot(211) # make subplot(211) in figure1 current
plt.title(’Easy as 1,2,3’) # subplot 211 title

You can clear the current figure with clf() and the current axes with cla(). If you find this statefulness,
annoying, don’t despair, this is just a thin stateful wrapper around an object oriented API, which you can
use instead (see Artist tutorial)

3.3 Working with text

The text() command can be used to add text in an arbitrary location, and the xlabel(), ylabel() and
title() are used to add text in the indicated locations (see Text introduction for a more detailed example)

40 60 80 100 120 140 160
Smarts

0.000

0.005

0.010

0.015

0.020

0.025

0.030

P
ro

b
a
b
ili

ty

µ=100, σ=15

Histogram of IQ

All of the text() commands return an matplotlib.text.Text instance. Just as with with lines above,
you can customize the properties by passing keyword arguments into the text functions or using setp():

14 Chapter 3. Pyplot tutorial

Matplotlib, Release 0.99.3

t = plt.xlabel(’my data’, fontsize=14, color=’red’)

These properties are covered in more detail in Text properties and layout.

3.3.1 Using mathematical expressions in text

matplotlib accepts TeX equation expressions in any text expression. For example to write the expression
σi = 15 in the title, you can write a TeX expression surrounded by dollar signs:

plt.title(r’$\sigma_i=15$’)

The r preceeding the title string is important – it signifies that the string is a raw string and not to treate
backslashes and python escapes. matplotlib has a built-in TeX expression parser and layout engine, and
ships its own math fonts – for details see Writing mathematical expressions. Thus you can use mathematical
text across platforms without requiring a TeX installation. For those who have LaTeX and dvipng installed,
you can also use LaTeX to format your text and incorporate the output directly into your display figures or
saved postscript – see Text rendering With LaTeX.

3.3.2 Annotating text

The uses of the basic text() command above place text at an arbitrary position on the Axes. A common use
case of text is to annotate some feature of the plot, and the annotate()method provides helper functionality
to make annotations easy. In an annotation, there are two points to consider: the location being annotated
represented by the argument xy and the location of the text xytext. Both of these arguments are (x,y)
tuples.

3.3. Working with text 15

Matplotlib, Release 0.99.3

0 1 2 3 4 5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

local max

In this basic example, both the xy (arrow tip) and xytext locations (text location) are in data coordinates.
There are a variety of other coordinate systems one can choose – see Annotating text and Annotating Axes
for details. More examples can be found in pylab_examples-annotation_demo.

16 Chapter 3. Pyplot tutorial

CHAPTER

FOUR

INTERACTIVE NAVIGATION

All figure windows come with a navigation toolbar, which can be used to navigate through the data set. Here
is a description of each of the buttons at the bottom of the toolbar

The Forward and Back buttons These are akin to the web browser forward and back buttons. They are
used to navigate back and forth between previously defined views. They have no meaning unless you
have already navigated somewhere else using the pan and zoom buttons. This is analogous to trying
to click Back on your web browser before visiting a new page –nothing happens. Home always takes
you to the first, default view of your data. For Home, Forward and Back, think web browser where
data views are web pages. Use the pan and zoom to rectangle to define new views.

The Pan/Zoom button This button has two modes: pan and zoom. Click the toolbar button to activate
panning and zooming, then put your mouse somewhere over an axes. Press the left mouse button
and hold it to pan the figure, dragging it to a new position. When you release it, the data under the
point where you pressed will be moved to the point where you released. If you press ‘x’ or ‘y’ while
panning the motion will be constrained to the x or y axis, respectively. Press the right mouse button
to zoom, dragging it to a new position. The x axis will be zoomed in proportionate to the rightward
movement and zoomed out proportionate to the leftward movement. Ditto for the yaxis and up/down
motions. The point under your mouse when you begin the zoom remains stationary, allowing you to
zoom to an arbitrary point in the figure. You can use the modifier keys ‘x’, ‘y’ or ‘CONTROL’ to
constrain the zoom to the x axes, the y axes, or aspect ratio preserve, respectively.

With polar plots, the pan and zoom functionality behaves differently. The radius axis labels can be
dragged using the left mouse button. The radius scale can be zoomed in and out using the right mouse
button.

17

Matplotlib, Release 0.99.3

The Zoom-to-rectangle button Click this toolbar button to activate this mode. Put your mouse some-
where over and axes and press the left mouse button. Drag the mouse while holding the button to
a new location and release. The axes view limits will be zoomed to the rectangle you have defined.
There is also an experimental ‘zoom out to rectangle’ in this mode with the right button, which will
place your entire axes in the region defined by the zoom out rectangle.

The Subplot-configuration button Use this tool to configure the parameters of the subplot: the left,
right, top, bottom, space between the rows and space between the columns.

The Save button Click this button to launch a file save dialog. You can save files with the following
extensions: png, ps, eps, svg and pdf.

4.1 Navigation Keyboard Shortcuts

Command Keyboard Shortcut(s)
Home/Reset h or r or home
Back c or left arrow or backspace
Forward v or right arrow
Pan/Zoom p
Zoom-to-rect o
Save s
Toggle fullscreen f
Constrain pan/zoom to x axis hold x
Constrain pan/zoom to y axis hold y
Preserve aspect ratio hold CONTROL
Toggle grid g
Toggle y axis scale (log/linear) l

If you are using matplotlib.pyplot the toolbar will be created automatically for every figure. If you are
writing your own user interface code, you can add the toolbar as a widget. The exact syntax depends on
your UI, but we have examples for every supported UI in the matplotlib/examples/user_interfaces
directory. Here is some example code for GTK:

from matplotlib.figure import Figure
from matplotlib.backends.backend_gtkagg import FigureCanvasGTKAgg as FigureCanvas
from matplotlib.backends.backend_gtkagg import NavigationToolbar2GTKAgg as NavigationToolbar

win = gtk.Window()
win.connect("destroy", lambda x: gtk.main_quit())
win.set_default_size(400,300)
win.set_title("Embedding in GTK")

18 Chapter 4. Interactive navigation

Matplotlib, Release 0.99.3

vbox = gtk.VBox()
win.add(vbox)

fig = Figure(figsize=(5,4), dpi=100)
ax = fig.add_subplot(111)
ax.plot([1,2,3])

canvas = FigureCanvas(fig) # a gtk.DrawingArea
vbox.pack_start(canvas)
toolbar = NavigationToolbar(canvas, win)
vbox.pack_start(toolbar, False, False)

win.show_all()
gtk.main()

4.1. Navigation Keyboard Shortcuts 19

Matplotlib, Release 0.99.3

20 Chapter 4. Interactive navigation

CHAPTER

FIVE

CUSTOMIZING MATPLOTLIB

5.1 The matplotlibrc file

matplotlib uses matplotlibrc configuration files to customize all kinds of properties, which we call rc
settings or rc parameters. You can control the defaults of almost every property in matplotlib: figure size
and dpi, line width, color and style, axes, axis and grid properties, text and font properties and so on.
matplotlib looks for matplotlibrc in three locations, in the following order:

1. matplotlibrc in the current working directory, usually used for specific customizations that you do
not want to apply elsewhere.

2. .matplotlib/matplotlibrc, for the user’s default customizations. See .matplotlib directory loca-
tion.

3. INSTALL/matplotlib/mpl-data/matplotlibrc, where INSTALL is some-
thing like /usr/lib/python2.5/site-packages on Linux, and maybe
C:\Python25\Lib\site-packages on Windows. Every time you install matplotlib, this file
will be overwritten, so if you want your customizations to be saved, please move this file to you
.matplotlib directory.

To display where the currently active matplotlibrc file was loaded from, one can do the following:

>>> import matplotlib
>>> matplotlib.matplotlib_fname()
’/home/foo/.matplotlib/matplotlibrc’

See below for a sample matplotlibrc file.

5.2 Dynamic rc settings

You can also dynamically change the default rc settings in a python script or interactively from the python
shell. All of the rc settings are stored in a dictionary-like variable called matplotlib.rcParams, which is
global to the matplotlib package. rcParams can be modified directly, for example:

import matplotlib as mpl
mpl.rcParams[’lines.linewidth’] = 2
mpl.rcParams[’lines.color’] = ’r’

21

Matplotlib, Release 0.99.3

Matplotlib also provides a couple of convenience functions for modifying rc settings. The
matplotlib.rc() command can be used to modify multiple settings in a single group at once, using
keyword arguments:

import matplotlib as mpl
mpl.rc(’lines’, linewidth=2, color=’r’)

There matplotlib.rcdefaults() command will restore the standard matplotlib default settings.

There is some degree of validation when setting the values of rcParams, see matplotlib.rcsetup for
details.

5.2.1 A sample matplotlibrc file

MATPLOTLIBRC FORMAT

This is a sample matplotlib configuration file - you can find a copy
of it on your system in
site-packages/matplotlib/mpl-data/matplotlibrc. If you edit it
there, please note that it will be overridden in your next install.
If you want to keep a permanent local copy that will not be
over-written, place it in HOME/.matplotlib/matplotlibrc (unix/linux
like systems) and C:\Documents and Settings\yourname\.matplotlib
(win32 systems).
#
This file is best viewed in a editor which supports python mode
syntax highlighting. Blank lines, or lines starting with a comment
symbol, are ignored, as are trailing comments. Other lines must
have the format
key : val # optional comment
#
Colors: for the color values below, you can either use - a
matplotlib color string, such as r, k, or b - an rgb tuple, such as
(1.0, 0.5, 0.0) - a hex string, such as ff00ff or #ff00ff - a scalar
grayscale intensity such as 0.75 - a legal html color name, eg red,
blue, darkslategray

CONFIGURATION BEGINS HERE

the default backend; one of GTK GTKAgg GTKCairo CocoaAgg FltkAgg
MacOSX QtAgg Qt4Agg TkAgg WX WXAgg Agg Cairo GDK PS PDF SVG Template
You can also deploy your own backend outside of matplotlib by
referring to the module name (which must be in the PYTHONPATH) as
’module://my_backend’
backend : TkAgg

if you are runing pyplot inside a GUI and your backend choice
conflicts, we will automatically try and find a compatible one for
you if backend_fallback is True
#backend_fallback: True
#interactive : False
#toolbar : toolbar2 # None | classic | toolbar2

22 Chapter 5. Customizing matplotlib

Matplotlib, Release 0.99.3

#timezone : UTC # a pytz timezone string, eg US/Central or Europe/Paris

Where your matplotlib data lives if you installed to a non-default
location. This is where the matplotlib fonts, bitmaps, etc reside
#datapath : /home/jdhunter/mpldata

LINES
See http://matplotlib.sourceforge.net/api/artist_api.html#module-matplotlib.lines for more
information on line properties.
#lines.linewidth : 1.0 # line width in points
#lines.linestyle : - # solid line
#lines.color : blue
#lines.marker : None # the default marker
#lines.markeredgewidth : 0.5 # the line width around the marker symbol
#lines.markersize : 6 # markersize, in points
#lines.dash_joinstyle : miter # miter|round|bevel
#lines.dash_capstyle : butt # butt|round|projecting
#lines.solid_joinstyle : miter # miter|round|bevel
#lines.solid_capstyle : projecting # butt|round|projecting
#lines.antialiased : True # render lines in antialised (no jaggies)

PATCHES
Patches are graphical objects that fill 2D space, like polygons or
circles. See
http://matplotlib.sourceforge.net/api/artist_api.html#module-matplotlib.patches
information on patch properties
#patch.linewidth : 1.0 # edge width in points
#patch.facecolor : blue
#patch.edgecolor : black
#patch.antialiased : True # render patches in antialised (no jaggies)

FONT
#
font properties used by text.Text. See
http://matplotlib.sourceforge.net/api/font_manager_api.html for more
information on font properties. The 6 font properties used for font
matching are given below with their default values.
#
The font.family property has five values: ’serif’ (e.g. Times),
’sans-serif’ (e.g. Helvetica), ’cursive’ (e.g. Zapf-Chancery),
’fantasy’ (e.g. Western), and ’monospace’ (e.g. Courier). Each of
these font families has a default list of font names in decreasing
order of priority associated with them.
#
The font.style property has three values: normal (or roman), italic
or oblique. The oblique style will be used for italic, if it is not
present.
#
The font.variant property has two values: normal or small-caps. For
TrueType fonts, which are scalable fonts, small-caps is equivalent
to using a font size of ’smaller’, or about 83% of the current font
size.

5.2. Dynamic rc settings 23

Matplotlib, Release 0.99.3

#
The font.weight property has effectively 13 values: normal, bold,
bolder, lighter, 100, 200, 300, ..., 900. Normal is the same as
400, and bold is 700. bolder and lighter are relative values with
respect to the current weight.
#
The font.stretch property has 11 values: ultra-condensed,
extra-condensed, condensed, semi-condensed, normal, semi-expanded,
expanded, extra-expanded, ultra-expanded, wider, and narrower. This
property is not currently implemented.
#
The font.size property is the default font size for text, given in pts.
12pt is the standard value.
#
#font.family : sans-serif
#font.style : normal
#font.variant : normal
#font.weight : medium
#font.stretch : normal
note that font.size controls default text sizes. To configure
special text sizes tick labels, axes, labels, title, etc, see the rc
settings for axes and ticks. Special text sizes can be defined
relative to font.size, using the following values: xx-small, x-small,
small, medium, large, x-large, xx-large, larger, or smaller
#font.size : 12.0
#font.serif : Bitstream Vera Serif, New Century Schoolbook, Century Schoolbook L, Utopia, ITC Bookman, Bookman, Nimbus Roman No9 L, Times New Roman, Times, Palatino, Charter, serif
#font.sans-serif : Bitstream Vera Sans, Lucida Grande, Verdana, Geneva, Lucid, Arial, Helvetica, Avant Garde, sans-serif
#font.cursive : Apple Chancery, Textile, Zapf Chancery, Sand, cursive
#font.fantasy : Comic Sans MS, Chicago, Charcoal, Impact, Western, fantasy
#font.monospace : Bitstream Vera Sans Mono, Andale Mono, Nimbus Mono L, Courier New, Courier, Fixed, Terminal, monospace

TEXT
text properties used by text.Text. See
http://matplotlib.sourceforge.net/api/artist_api.html#module-matplotlib.text for more
information on text properties

#text.color : black

LaTeX customizations. See http://www.scipy.org/Wiki/Cookbook/Matplotlib/UsingTex
#text.usetex : False # use latex for all text handling. The following fonts

are supported through the usual rc parameter settings:
new century schoolbook, bookman, times, palatino,
zapf chancery, charter, serif, sans-serif, helvetica,
avant garde, courier, monospace, computer modern roman,
computer modern sans serif, computer modern typewriter
If another font is desired which can loaded using the
LaTeX \usepackage command, please inquire at the
matplotlib mailing list

#text.latex.unicode : False # use "ucs" and "inputenc" LaTeX packages for handling
unicode strings.

#text.latex.preamble : # IMPROPER USE OF THIS FEATURE WILL LEAD TO LATEX FAILURES
AND IS THEREFORE UNSUPPORTED. PLEASE DO NOT ASK FOR HELP
IF THIS FEATURE DOES NOT DO WHAT YOU EXPECT IT TO.

24 Chapter 5. Customizing matplotlib

Matplotlib, Release 0.99.3

preamble is a comma separated list of LaTeX statements
that are included in the LaTeX document preamble.
An example:
text.latex.preamble : \usepackage{bm},\usepackage{euler}
The following packages are always loaded with usetex, so
beware of package collisions: color, geometry, graphicx,
type1cm, textcomp. Adobe Postscript (PSSNFS) font packages
may also be loaded, depending on your font settings

#text.dvipnghack : None # some versions of dvipng don’t handle alpha
channel properly. Use True to correct
and flush ~/.matplotlib/tex.cache
before testing and False to force
correction off. None will try and
guess based on your dvipng version

#text.markup : ’plain’ # Affects how text, such as titles and labels, are
interpreted by default.
’plain’: As plain, unformatted text
’tex’: As TeX-like text. Text between $’s will be
formatted as a TeX math expression.
This setting has no effect when text.usetex is True.
In that case, all text will be sent to TeX for
processing.

The following settings allow you to select the fonts in math mode.
They map from a TeX font name to a fontconfig font pattern.
These settings are only used if mathtext.fontset is ’custom’.
Note that this "custom" mode is unsupported and may go away in the
future.
#mathtext.cal : cursive
#mathtext.rm : serif
#mathtext.tt : monospace
#mathtext.it : serif:italic
#mathtext.bf : serif:bold
#mathtext.sf : sans
#mathtext.fontset : cm # Should be ’cm’ (Computer Modern), ’stix’,

’stixsans’ or ’custom’
#mathtext.fallback_to_cm : True # When True, use symbols from the Computer Modern

fonts when a symbol can not be found in one of
the custom math fonts.

#mathtext.default : it # The default font to use for math.
Can be any of the LaTeX font names, including
the special name "regular" for the same font
used in regular text.

AXES
default face and edge color, default tick sizes,
default fontsizes for ticklabels, and so on. See
http://matplotlib.sourceforge.net/api/axes_api.html#module-matplotlib.axes
#axes.hold : True # whether to clear the axes by default on
#axes.facecolor : white # axes background color

5.2. Dynamic rc settings 25

Matplotlib, Release 0.99.3

#axes.edgecolor : black # axes edge color
#axes.linewidth : 1.0 # edge linewidth
#axes.grid : False # display grid or not
#axes.titlesize : large # fontsize of the axes title
#axes.labelsize : medium # fontsize of the x any y labels
#axes.labelcolor : black
#axes.axisbelow : False # whether axis gridlines and ticks are below

the axes elements (lines, text, etc)
#axes.formatter.limits : -7, 7 # use scientific notation if log10

of the axis range is smaller than the
first or larger than the second

#axes.unicode_minus : True # use unicode for the minus symbol
rather than hypen. See http://en.wikipedia.org/wiki/Plus_sign#Plus_sign

#polaraxes.grid : True # display grid on polar axes
#axes3d.grid : True # display grid on 3d axes

TICKS
see http://matplotlib.sourceforge.net/api/axis_api.html#matplotlib.axis.Tick
#xtick.major.size : 4 # major tick size in points
#xtick.minor.size : 2 # minor tick size in points
#xtick.major.pad : 4 # distance to major tick label in points
#xtick.minor.pad : 4 # distance to the minor tick label in points
#xtick.color : k # color of the tick labels
#xtick.labelsize : medium # fontsize of the tick labels
#xtick.direction : in # direction: in or out

#ytick.major.size : 4 # major tick size in points
#ytick.minor.size : 2 # minor tick size in points
#ytick.major.pad : 4 # distance to major tick label in points
#ytick.minor.pad : 4 # distance to the minor tick label in points
#ytick.color : k # color of the tick labels
#ytick.labelsize : medium # fontsize of the tick labels
#ytick.direction : in # direction: in or out

GRIDS
#grid.color : black # grid color
#grid.linestyle : : # dotted
#grid.linewidth : 0.5 # in points

Legend
#legend.fancybox : False # if True, use a rounded box for the

legend, else a rectangle
#legend.isaxes : True
#legend.numpoints : 2 # the number of points in the legend line
#legend.fontsize : large
#legend.pad : 0.0 # deprecated; the fractional whitespace inside the legend border
#legend.borderpad : 0.5 # border whitspace in fontsize units
#legend.markerscale : 1.0 # the relative size of legend markers vs. original
the following dimensions are in axes coords
#legend.labelsep : 0.010 # the vertical space between the legend entries
#legend.handlelen : 0.05 # the length of the legend lines

26 Chapter 5. Customizing matplotlib

Matplotlib, Release 0.99.3

#legend.handletextsep : 0.02 # the space between the legend line and legend text
#legend.axespad : 0.02 # the border between the axes and legend edge
#legend.shadow : False

FIGURE
See http://matplotlib.sourceforge.net/api/figure_api.html#matplotlib.figure.Figure
#figure.figsize : 8, 6 # figure size in inches
#figure.dpi : 80 # figure dots per inch
#figure.facecolor : 0.75 # figure facecolor; 0.75 is scalar gray
#figure.edgecolor : white # figure edgecolor

The figure subplot parameters. All dimensions are fraction of the
figure width or height
#figure.subplot.left : 0.125 # the left side of the subplots of the figure
#figure.subplot.right : 0.9 # the right side of the subplots of the figure
#figure.subplot.bottom : 0.1 # the bottom of the subplots of the figure
#figure.subplot.top : 0.9 # the top of the subplots of the figure
#figure.subplot.wspace : 0.2 # the amount of width reserved for blank space between subplots
#figure.subplot.hspace : 0.2 # the amount of height reserved for white space between subplots

IMAGES
#image.aspect : equal # equal | auto | a number
#image.interpolation : bilinear # see help(imshow) for options
#image.cmap : jet # gray | jet etc...
#image.lut : 256 # the size of the colormap lookup table
#image.origin : upper # lower | upper
#image.resample : False

CONTOUR PLOTS
#contour.negative_linestyle : dashed # dashed | solid

Agg rendering
Warning: experimental, 2008/10/10
#agg.path.chunksize : 0 # 0 to disable; values in the range

10000 to 100000 can improve speed slightly
and prevent an Agg rendering failure
when plotting very large data sets,
especially if they are very gappy.
It may cause minor artifacts, though.
A value of 20000 is probably a good
starting point.

SAVING FIGURES
#path.simplify : False # When True, simplify paths by removing "invisible"

points to reduce file size and increase rendering
speed

#path.simplify_threshold : 0.1 # The threshold of similarity below which
vertices will be removed in the simplification
process

the default savefig params can be different from the display params
Eg, you may want a higher resolution, or to make the figure
background white
#savefig.dpi : 100 # figure dots per inch

5.2. Dynamic rc settings 27

Matplotlib, Release 0.99.3

#savefig.facecolor : white # figure facecolor when saving
#savefig.edgecolor : white # figure edgecolor when saving

#cairo.format : png # png, ps, pdf, svg

tk backend params
#tk.window_focus : False # Maintain shell focus for TkAgg
#tk.pythoninspect : False # tk sets PYTHONINSEPCT

ps backend params
#ps.papersize : letter # auto, letter, legal, ledger, A0-A10, B0-B10
#ps.useafm : False # use of afm fonts, results in small files
#ps.usedistiller : False # can be: None, ghostscript or xpdf

Experimental: may produce smaller files.
xpdf intended for production of publication quality files,
but requires ghostscript, xpdf and ps2eps

#ps.distiller.res : 6000 # dpi
#ps.fonttype : 3 # Output Type 3 (Type3) or Type 42 (TrueType)

pdf backend params
#pdf.compression : 6 # integer from 0 to 9

0 disables compression (good for debugging)
#pdf.fonttype : 3 # Output Type 3 (Type3) or Type 42 (TrueType)

svg backend params
#svg.image_inline : True # write raster image data directly into the svg file
#svg.image_noscale : False # suppress scaling of raster data embedded in SVG
#svg.embed_char_paths : True # embed character outlines in the SVG file

docstring params
#docstring.hardcopy = False # set this when you want to generate hardcopy docstring

Set the verbose flags. This controls how much information
matplotlib gives you at runtime and where it goes. The verbosity
levels are: silent, helpful, debug, debug-annoying. Any level is
inclusive of all the levels below it. If your setting is "debug",
you’ll get all the debug and helpful messages. When submitting
problems to the mailing-list, please set verbose to "helpful" or "debug"
and paste the output into your report.
#
The "fileo" gives the destination for any calls to verbose.report.
These objects can a filename, or a filehandle like sys.stdout.
#
You can override the rc default verbosity from the command line by
giving the flags --verbose-LEVEL where LEVEL is one of the legal
levels, eg --verbose-helpful.
#
You can access the verbose instance in your code
from matplotlib import verbose.
#verbose.level : silent # one of silent, helpful, debug, debug-annoying
#verbose.fileo : sys.stdout # a log filename, sys.stdout or sys.stderr

28 Chapter 5. Customizing matplotlib

CHAPTER

SIX

USING MATPLOTLIB IN A PYTHON
SHELL

By default, matplotlib defers drawing until the end of the script because drawing can be an expensive oper-
ation, and you may not want to update the plot every time a single property is changed, only once after all
the properties have changed.

But when working from the python shell, you usually do want to update the plot with every command, eg,
after changing the xlabel(), or the marker style of a line. While this is simple in concept, in practice it
can be tricky, because matplotlib is a graphical user interface application under the hood, and there are some
tricks to make the applications work right in a python shell.

6.1 Ipython to the rescue

Fortunately, ipython, an enhanced interactive python shell, has figured out all of these tricks, and is mat-
plotlib aware, so when you start ipython in the pylab mode.

johnh@flag:~> ipython -pylab
Python 2.4.5 (#4, Apr 12 2008, 09:09:16)
IPython 0.9.0 -- An enhanced Interactive Python.

Welcome to pylab, a matplotlib-based Python environment.
For more information, type ’help(pylab)’.

In [1]: x = randn(10000)

In [2]: hist(x, 100)

it sets everything up for you so interactive plotting works as you would expect it to. Call figure() and a
figure window pops up, call plot() and your data appears in the figure window.

Note in the example above that we did not import any matplotlib names because in pylab mode, ipython will
import them automatically. ipython also turns on interactive mode for you, which causes every pyplot com-
mand to trigger a figure update, and also provides a matplotlib aware run command to run matplotlib scripts
efficiently. ipython will turn off interactive mode during a run command, and then restore the interactive
state at the end of the run so you can continue tweaking the figure manually.

29

http://ipython.scipy.org/dist

Matplotlib, Release 0.99.3

There has been a lot of recent work to embed ipython, with pylab support, into various GUI applications, so
check on the ipython mailing list for the latest status.

6.2 Other python interpreters

If you can’t use ipython, and still want to use matplotlib/pylab from an interactive python shell, eg the plain-
ole standard python interactive interpreter, or the interpreter in your favorite IDE, you are going to need to
understand what a matplotlib backend is What is a backend?.

With the TkAgg backend, that uses the Tkinter user interface toolkit, you can use matplotlib from an arbi-
trary python shell. Just set your backend : TkAgg and interactive : True in your matplotlibrc
file (see Customizing matplotlib) and fire up python. Then:

>>> from pylab import *
>>> plot([1,2,3])
>>> xlabel(’hi mom’)

should work out of the box. Note, in batch mode, ie when making figures from scripts, interactive mode can
be slow since it redraws the figure with each command. So you may want to think carefully before making
this the default behavior.

For other user interface toolkits and their corresponding matplotlib backends, the situation is complicated by
the GUI mainloop which takes over the entire process. The solution is to run the GUI in a separate thread,
and this is the tricky part that ipython solves for all the major toolkits that matplotlib supports. There are
reports that upcoming versions of pygtk will place nicely with the standard python shell, so stay tuned.

6.3 Controlling interactive updating

The interactive property of the pyplot interface controls whether a figure canvas is drawn on every pyplot
command. If interactive is False, then the figure state is updated on every plot command, but will only be
drawn on explicit calls to draw(). When interactive is True, then every pyplot command triggers a draw.

The pyplot interface provides 4 commands that are useful for interactive control.

isinteractive() returns the interactive setting True|False

ion() turns interactive mode on

ioff() turns interactive mode off

draw() forces a figure redraw

When working with a big figure in which drawing is expensive, you may want to turn matplotlib’s interactive
setting off temporarily to avoid the performance hit:

>>> #create big-expensive-figure
>>> ioff() # turn updates off
>>> title(’now how much would you pay?’)
>>> xticklabels(fontsize=20, color=’green’)
>>> draw() # force a draw
>>> savefig(’alldone’, dpi=300)

30 Chapter 6. Using matplotlib in a python shell

http://projects.scipy.org/mailman/listinfo/ipython-user

Matplotlib, Release 0.99.3

>>> close()
>>> ion() # turn updating back on
>>> plot(rand(20), mfc=’g’, mec=’r’, ms=40, mew=4, ls=’--’, lw=3)

6.3. Controlling interactive updating 31

Matplotlib, Release 0.99.3

32 Chapter 6. Using matplotlib in a python shell

CHAPTER

SEVEN

WORKING WITH TEXT

7.1 Text introduction

matplotlib has excellent text support, including mathematical expressions, truetype support for raster and
vector outputs, newline separated text with arbitrary rotations, and unicode support. Because we embed the
fonts directly in the output documents, eg for postscript or PDF, what you see on the screen is what you get
in the hardcopy. freetype2 support produces very nice, antialiased fonts, that look good even at small raster
sizes. matplotlib includes its own matplotlib.font_manager, thanks to Paul Barrett, which implements
a cross platform, W3C compliant font finding algorithm.

You have total control over every text property (font size, font weight, text location and color, etc) with
sensible defaults set in the rc file. And significantly for those interested in mathematical or scientific fig-
ures, matplotlib implements a large number of TeX math symbols and commands, to support mathematical
expressions anywhere in your figure.

7.2 Basic text commands

The following commands are used to create text in the pyplot interface

• text() - add text at an arbitrary location to the Axes; matplotlib.axes.Axes.text() in the API.

• xlabel() - add an axis label to the x-axis; matplotlib.axes.Axes.set_xlabel() in the API.

• ylabel() - add an axis label to the y-axis; matplotlib.axes.Axes.set_ylabel() in the API.

• title() - add a title to the Axes; matplotlib.axes.Axes.set_title() in the API.

• figtext() - add text at an arbitrary location to the Figure; matplotlib.figure.Figure.text()
in the API.

• suptitle() - add a title to the Figure; matplotlib.figure.Figure.suptitle() in the API.

• annotate() - add an annotation, with optional arrow, to the Axes ;
matplotlib.axes.Axes.annotate() in the API.

All of these functions create and return a matplotlib.text.Text() instance, which can bew configured
with a variety of font and other properties. The example below shows all of these commands in action.

33

http://freetype.sourceforge.net/index2.html

Matplotlib, Release 0.99.3

0 2 4 6 8 10
xlabel

0

2

4

6

8

10

y
la

b
e
l

boxed italics text in data coords

an equation: E=mc2

unicode: Institut für Festkörperphysik

colored text in axes coords

annotate

axes title

bold figure suptitle

7.3 Text properties and layout

The matplotlib.text.Text instances have a variety of properties which can be configured via keyword
arguments to the text commands (eg title(), xlabel() and text()).

34 Chapter 7. Working with text

Matplotlib, Release 0.99.3

Property Value Type
alpha float
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key ‘pad’ which is a pad in points
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a Transform instance, a Patch
color any matplotlib color
family [‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float
multialignment [’left’ | ‘right’ | ‘center’]
name or fontname string eg, [’Sans’ | ‘Courier’ | ‘Helvetica’ ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [angle in degrees ‘vertical’ | ‘horizontal’
size or fontsize [size in points | relative size eg ‘smaller’, ‘x-large’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion
transform a matplotlib.transform transformation instance
variant [‘normal’ | ‘small-caps’]
verticalalignment or va [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]
x float
y float
zorder any number

You can layout text with the alignment arguments horizontalalignment, verticalalignment, and
multialignment. horizontalalignment controls whether the x positional argument for the text in-
dicates the left, center or right side of the text bounding box. verticalalignment controls whether
the y positional argument for the text indicates the bottom, center or top side of the text bounding box.
multialignment, for newline separated strings only, controls whether the different lines are left, center or
right justified. Here is an example which uses the text() command to show the various alignment possibil-
ities. The use of transform=ax.transAxes throughout the code indicates that the coordinates are given
relative to the axes bounding box, with 0,0 being the lower left of the axes and 1,1 the upper right.

7.3. Text properties and layout 35

Matplotlib, Release 0.99.3

left top
left bottom

right bottom
right top

center top

ri
g
h
t

ce
n
te

r
le

ft
 c

e
n
te

r

middle

ce
n
te

re
d

ro
ta

te
d

with
 n

ew
lin

es

7.4 Writing mathematical expressions

You can use a subset TeX markup in any matplotlib text string by placing it inside a pair of dollar signs ($).

Note that you do not need to have TeX installed, since matplotlib ships its own TeX expression parser, layout
engine and fonts. The layout engine is a fairly direct adaptation of the layout algorithms in Donald Knuth’s
TeX, so the quality is quite good (matplotlib also provides a usetex option for those who do want to call
out to TeX to generate their text (see Text rendering With LaTeX).

Any text element can use math text. You should use raw strings (preceed the quotes with an ’r’), and sur-
round the math text with dollar signs ($), as in TeX. Regular text and mathtext can be interleaved within the
same string. Mathtext can use the Computer Modern fonts (from (La)TeX), STIX fonts (with are designed
to blend well with Times) or a Unicode font that you provide. The mathtext font can be selected with the
customization variable mathtext.fontset (see Customizing matplotlib)

Here is a simple example:

plain text
plt.title(’alpha > beta’)

produces “alpha > beta”.

Whereas this:

36 Chapter 7. Working with text

http://www.aip.org/stixfonts/

Matplotlib, Release 0.99.3

math text
plt.title(r’$\alpha > \beta$’)

produces “α > β“.

Note: Mathtext should be placed between a pair of dollar signs ($). To make it easy to display monetary
values, e.g. “$100.00”, if a single dollar sign is present in the entire string, it will be displayed verbatim as
a dollar sign. This is a small change from regular TeX, where the dollar sign in non-math text would have
to be escaped (‘$’).

Note: While the syntax inside the pair of dollar signs ($) aims to be TeX-like, the text outside does not. In
particular, characters such as:

$ % & ~ _ ^ \ { } \(\) \[\]

have special meaning outside of math mode in TeX. Therefore, these characters will behave differently
depending on the rcParam text.usetex flag. See the usetex tutorial for more information.

7.4.1 Subscripts and superscripts

To make subscripts and superscripts, use the ’_’ and ’^’ symbols:

r’$\alpha_i > \beta_i$’

αi > βi (7.1)

Some symbols automatically put their sub/superscripts under and over the operator. For example, to write
the sum of xi from 0 to∞, you could do:

r’$\sum_{i=0}^\infty x_i$’

∞∑
i=0

xi (7.2)

7.4.2 Fractions

Fractions can be created with the \frac{}{} command:

r’$\frac{3}{4}$’

produces
3
4

(7.3)

Fractions can be arbitrarily nested:

r’$\frac{5 - \frac{1}{x}}{4}$’

7.4. Writing mathematical expressions 37

Matplotlib, Release 0.99.3

produces
5 − 1

x

4
(7.4)

Note that special care needs to be taken to place parentheses and brackets around fractions. Doing things
the obvious way produces brackets that are too small:

r’$(\frac{5 - \frac{1}{x}}{4})$’

(
5 − 1

x

4
) (7.5)

The solution is to precede the bracket with \left and \right to inform the parser that those brackets
encompass the entire object:

r’$\left(\frac{5 - \frac{1}{x}}{4}\right)$’

5 − 1
x

4

 (7.6)

7.4.3 Radicals

Radicals can be produced with the \sqrt[]{} command. For example:

r’$\sqrt{2}$’

√
2 (7.7)

Any base can (optionally) be provided inside square brackets. Note that the base must be a simple expres-
sion, and can not contain layout commands such as fractions or sub/superscripts:

r’$\sqrt[3]{x}$’

3√x (7.8)

7.4.4 Fonts

The default font is italics for mathematical symbols.

Note: This default can be changed using the mathtext.default rcParam. This is useful, for example, to
use the same font as regular non-math text for math text, by setting it to regular.

To change fonts, eg, to write “sin” in a Roman font, enclose the text in a font command:

r’$s(t) = \mathcal{A}\mathrm{sin}(2 \omega t)$’

38 Chapter 7. Working with text

Matplotlib, Release 0.99.3

s(t) = Asin(2ωt) (7.9)

More conveniently, many commonly used function names that are typeset in a Roman font have shortcuts.
So the expression above could be written as follows:

r’$s(t) = \mathcal{A}\sin(2 \omega t)$’

s(t) = A sin(2ωt) (7.10)

Here “s” and “t” are variable in italics font (default), “sin” is in Roman font, and the amplitude “A” is in
calligraphy font. Note in the example above the caligraphy A is squished into the sin. You can use a spacing
command to add a little whitespace between them:

s(t) = \mathcal{A}\/\sin(2 \omega t)

s(t) = A sin(2ωt) (7.11)

The choices available with all fonts are:

Command Result
\mathrm{Roman} Roman
\mathit{Italic} Italic
\mathtt{Typewriter} Typewriter

\mathcal{CALLIGRAPHY} CALLIGRAPHY

When using the STIX fonts, you also have the choice of:

Command Result
\mathbb{blackboard} lakoar

\mathrm{\mathbb{blackboard}} lakoar

\mathfrak{Fraktur} Fraktur

\mathsf{sansserif} sansserif
\mathrm{\mathsf{sansserif}} sansserif

There are also three global “font sets” to choose from, which are selected using the mathtext.fontset
parameter in matplotlibrc.

cm: Computer Modern (TeX)

stix: STIX (designed to blend well with Times)

stixsans: STIX sans-serif

7.4. Writing mathematical expressions 39

http://www.aip.org/stixfonts/

Matplotlib, Release 0.99.3

Additionally, you can use \mathdefault{...} or its alias \mathregular{...} to use the font used for
regular text outside of mathtext. There are a number of limitations to this approach, most notably that far
fewer symbols will be available, but it can be useful to make math expressions blend well with other text in
the plot.

Custom fonts

mathtext also provides a way to use custom fonts for math. This method is fairly tricky to use, and should
be considered an experimental feature for patient users only. By setting the rcParam mathtext.fontset
to custom, you can then set the following parameters, which control which font file to use for a particular
set of math characters.

Parameter Corresponds to
mathtext.it \mathit{} or default italic
mathtext.rm \mathrm{} Roman (upright)
mathtext.tt \mathtt{} Typewriter (monospace)
mathtext.bf \mathbf{} bold italic
mathtext.cal \mathcal{} calligraphic
mathtext.sf \mathsf{} sans-serif

Each parameter should be set to a fontconfig font descriptor (as defined in the yet-to-be-written font chapter).

The fonts used should have a Unicode mapping in order to find any non-Latin characters, such as Greek.
If you want to use a math symbol that is not contained in your custom fonts, you can set the rcParam
mathtext.fallback_to_cm to True which will cause the mathtext system to use characters from the
default Computer Modern fonts whenever a particular character can not be found in the custom font.

Note that the math glyphs specified in Unicode have evolved over time, and many fonts may not have glyphs
in the correct place for mathtext.

7.4.5 Accents

An accent command may precede any symbol to add an accent above it. There are long and short forms for
some of them.

40 Chapter 7. Working with text

Matplotlib, Release 0.99.3

Command Result
\acute a or \’a á
\bar a ā
\breve a ă
\ddot a or \"a ä
\dot a or \.a ȧ
\grave a or \‘a à
\hat a or \^a â
\tilde a or \~a ã
\vec a ~a

In addition, there are two special accents that automatically adjust to the width of the symbols below:

Command Result
\widehat{xyz} x̂yz
\widetilde{xyz} x̃yz

Care should be taken when putting accents on lower-case i’s and j’s. Note that in the following \imath is
used to avoid the extra dot over the i:

r"$\hat i\ \ \hat \imath$"

î ı̂ (7.12)

7.4.6 Symbols

You can also use a large number of the TeX symbols, as in \infty, \leftarrow, \sum, \int.

Lower-case Greek

α \alpha β \beta χ \chi δ \delta z \digamma
ε \epsilon η \eta γ \gamma ι \iota κ \kappa
λ \lambda µ \mu ν \nu ω \omega φ \phi
π \pi ψ \psi ρ \rho σ \sigma τ \tau
θ \theta υ \upsilon ε \varepsilon κ \varkappa ϕ \varphi
$ \varpi % \varrho ς \varsigma ϑ \vartheta ξ \xi
ζ \zeta

Upper-case Greek

∆ \Delta Γ \Gamma Λ \Lambda Ω \Omega Φ \Phi Π \Pi
Ψ \Psi Σ \Sigma Θ \Theta Υ \Upsilon Ξ \Xi f \mho
∇ \nabla

Hebrew

ℵ \aleph i \beth k \daleth ג \gimel

Delimiters

7.4. Writing mathematical expressions 41

Matplotlib, Release 0.99.3

/ / [[⇓ \Downarrow ⇑ \Uparrow ‖ \Vert \ \backslash
↓ \downarrow 〈 \langle d \lceil b \lfloor x \llcorner y \lrcorner
〉 \rangle e \rceil c \rfloor p \ulcorner ↑ \uparrow q \urcorner
| \vert { \{ ‖ \| } \}]] | |

Big symbols⋂
\bigcap

⋃
\bigcup

⊙
\bigodot

⊕
\bigoplus

⊗
\bigotimes⊎

\biguplus
∨
\bigvee

∧
\bigwedge

∐
\coprod

∫
\int∮

\oint
∏
\prod

∑
\sum

Standard function names

Pr \Pr arccos \arccos arcsin \arcsin arctan \arctan
arg \arg cos \cos cosh \cosh cot \cot
coth \coth csc \csc deg \deg det \det
dim \dim exp \exp gcd \gcd hom \hom
inf \inf ker \ker lg \lg lim \lim
lim inf \liminf lim sup \limsup ln \ln log \log
max \max min \min sec \sec sin \sin
sinh \sinh sup \sup tan \tan tanh \tanh

Binary operation and relation symbols

m \Bumpeq e \Cap d \Cup
+ \Doteq Z \Join b \Subset
c \Supset
 \Vdash � \Vvdash
≈ \approx u \approxeq ∗ \ast
� \asymp � \backepsilon v \backsim
w \backsimeq Z \barwedge ∵ \because
G \between © \bigcirc 5 \bigtriangledown
4 \bigtriangleup J \blacktriangleleft I \blacktriangleright
⊥ \bot ./ \bowtie � \boxdot
� \boxminus � \boxplus � \boxtimes
• \bullet l \bumpeq ∩ \cap
· \cdot ◦ \circ $ \circeq
D \coloneq � \cong ∪ \cup
2 \curlyeqprec 3 \curlyeqsucc g \curlyvee
f \curlywedge † \dag a \dashv
‡ \ddag � \diamond ÷ \div
> \divideontimes � \doteq + \doteqdot
u \dotplus [\doublebarwedge P \eqcirc
E \eqcolon h \eqsim 1 \eqslantgtr
0 \eqslantless ≡ \equiv ; \fallingdotseq

42 Chapter 7. Working with text

Matplotlib, Release 0.99.3

_ \frown ≥ \geq = \geqq
> \geqslant � \gg ≫ \ggg
� \gnapprox 	 \gneqq � \gnsim
' \gtrapprox m \gtrdot R \gtreqless
T \gtreqqless ≷ \gtrless & \gtrsim
∈ \in ᵀ \intercal h \leftthreetimes
≤ \leq 5 \leqq 6 \leqslant
/ \lessapprox l \lessdot Q \lesseqgtr
S \lesseqqgtr ≶ \lessgtr . \lesssim
� \ll ≪ \lll � \lnapprox
� \lneqq � \lnsim n \ltimes
| \mid |= \models ∓ \mp
3 \nVDash 1 \nVdash 0 \napprox
� \ncong , \ne , \neq
, \neq . \nequiv � \ngeq
≯ \ngtr 3 \ni � \nleq
≮ \nless - \nmid < \notin
∦ \nparallel ⊀ \nprec / \nsim
1 \nsubset * \nsubseteq � \nsucc
2 \nsupset + \nsupseteq 6 \ntriangleleft

5 \ntrianglelefteq 7 \ntriangleright 4 \ntrianglerighteq
2 \nvDash 0 \nvdash � \odot
	 \ominus ⊕ \oplus � \oslash
⊗ \otimes ‖ \parallel ⊥ \perp
t \pitchfork ± \pm ≺ \prec
v \precapprox 4 \preccurlyeq � \preceq
� \precnapprox � \precnsim - \precsim
∝ \propto i \rightthreetimes : \risingdotseq
o \rtimes ∼ \sim ' \simeq
/ \slash ^ \smile u \sqcap
t \sqcup @ \sqsubset @ \sqsubset
v \sqsubseteq A \sqsupset A \sqsupset
w \sqsupseteq ? \star ⊂ \subset
⊆ \subseteq j \subseteqq (\subsetneq
$ \subsetneqq � \succ w \succapprox
< \succcurlyeq � \succeq � \succnapprox
� \succnsim % \succsim ⊃ \supset
⊇ \supseteq k \supseteqq) \supsetneq
% \supsetneqq ∴ \therefore × \times
> \top / \triangleleft E \trianglelefteq

, \triangleq . \triangleright D \trianglerighteq
] \uplus � \vDash ∝ \varpropto
C \vartriangleleft B \vartriangleright ` \vdash
∨ \vee Y \veebar ∧ \wedge
o \wr

Arrow symbols

7.4. Writing mathematical expressions 43

Matplotlib, Release 0.99.3

⇓ \Downarrow ⇐ \Leftarrow
⇔ \Leftrightarrow W \Lleftarrow
⇐= \Longleftarrow ⇐⇒ \Longleftrightarrow
=⇒ \Longrightarrow � \Lsh
t \Nearrow v \Nwarrow
⇒ \Rightarrow V \Rrightarrow
� \Rsh u \Searrow
w \Swarrow ⇑ \Uparrow
m \Updownarrow 	 \circlearrowleft
� \circlearrowright x \curvearrowleft
y \curvearrowright c \dashleftarrow
d \dashrightarrow ↓ \downarrow
� \downdownarrows � \downharpoonleft
� \downharpoonright ←↩ \hookleftarrow
↪→ \hookrightarrow { \leadsto
← \leftarrow � \leftarrowtail
↽ \leftharpoondown ↼ \leftharpoonup
⇔ \leftleftarrows ↔ \leftrightarrow
� \leftrightarrows � \leftrightharpoons
! \leftrightsquigarrow f \leftsquigarrow

←− \longleftarrow ←→ \longleftrightarrow
7−→ \longmapsto −→ \longrightarrow
" \looparrowleft # \looparrowright
7→ \mapsto (\multimap
: \nLeftarrow < \nLeftrightarrow
; \nRightarrow ↗ \nearrow
8 \nleftarrow = \nleftrightarrow
9 \nrightarrow ↖ \nwarrow
→ \rightarrow � \rightarrowtail
⇁ \rightharpoondown ⇀ \rightharpoonup
� \rightleftarrows � \rightleftarrows

 \rightleftharpoons
 \rightleftharpoons
⇒ \rightrightarrows ⇒ \rightrightarrows
 \rightsquigarrow ↘ \searrow
↙ \swarrow → \to
� \twoheadleftarrow � \twoheadrightarrow
↑ \uparrow l \updownarrow
l \updownarrow � \upharpoonleft
� \upharpoonright � \upuparrows

Miscellaneous symbols

44 Chapter 7. Working with text

Matplotlib, Release 0.99.3

$ \$ Å \AA ` \Finv
a \Game = \Im ¶ \P
< \Re § \S ∠ \angle
8 \backprime F \bigstar � \blacksquare
N \blacktriangle H \blacktriangledown · · · \cdots
X \checkmark r \circledR s \circledS
♣ \clubsuit { \complement © \copyright
. . . \ddots ♦ \diamondsuit ` \ell
∅ \emptyset ð \eth ∃ \exists
[\flat ∀ \forall ~ \hbar

♥ \heartsuit } \hslash
#
\iiint!

\iint
!
\iint ı \imath

∞ \infty  \jmath . . . \ldots
] \measuredangle \ \natural ¬ \neg

@ \nexists
)
\oiiint ∂ \partial

′ \prime] \sharp ♠ \spadesuit
^ \sphericalangle \ss O \triangledown

∅ \varnothing M \vartriangle
... \vdots

℘ \wp U \yen

If a particular symbol does not have a name (as is true of many of the more obscure symbols in the STIX
fonts), Unicode characters can also be used:

ur’$\u23ce$’

7.4.7 Example

Here is an example illustrating many of these features in context.

7.4. Writing mathematical expressions 45

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0
time (s)

1.0

0.5

0.0

0.5

1.0

v
o
lt

s
(m

V
)

∞∑
i=0
xi

Asin(2ωt)

αi >βi

7.5 Text rendering With LaTeX

Matplotlib has the option to use LaTeX to manage all text layout. This option is available with the following
backends:

• Agg

• PS

• PDF

The LaTeX option is activated by setting text.usetex : True in your rc settings. Text handling with
matplotlib’s LaTeX support is slower than matplotlib’s very capable mathtext, but is more flexible, since
different LaTeX packages (font packages, math packages, etc.) can be used. The results can be striking,
especially when you take care to use the same fonts in your figures as in the main document.

Matplotlib’s LaTeX support requires a working LaTeX installation, dvipng (which may be included with
your LaTeX installation), and Ghostscript (GPL Ghostscript 8.60 or later is recommended). The executables
for these external dependencies must all be located on your PATH.

There are a couple of options to mention, which can be changed using rc settings. Here is an example
matplotlibrc file:

46 Chapter 7. Working with text

http://www.tug.org
http://sourceforge.net/projects/dvipng
http://www.cs.wisc.edu/~ghost/

Matplotlib, Release 0.99.3

font.family : serif
font.serif : Times, Palatino, New Century Schoolbook, Bookman, Computer Modern Roman
font.sans-serif : Helvetica, Avant Garde, Computer Modern Sans serif
font.cursive : Zapf Chancery
font.monospace : Courier, Computer Modern Typewriter

text.usetex : true

The first valid font in each family is the one that will be loaded. If the fonts are not specified, the Computer
Modern fonts are used by default. All of the other fonts are Adobe fonts. Times and Palatino each have their
own accompanying math fonts, while the other Adobe serif fonts make use of the Computer Modern math
fonts. See the PSNFSS documentation for more details.

To use LaTeX and select Helvetica as the default font, without editing matplotlibrc use:

from matplotlib import rc
rc(’font’,**{’family’:’sans-serif’,’sans-serif’:[’Helvetica’]})
for Palatino and other serif fonts use:
#rc(’font’,**{’family’:’serif’,’serif’:[’Palatino’]))
rc(’text’, usetex=True)

Here is the standard example, tex_demo.py:

0.0 0.2 0.4 0.6 0.8 1.0
time (s)

1.0

1.5

2.0

2.5

3.0

vo
lt

ag
e

(m
V

)

TEX is Number
∞∑

n=1

−eiπ
2n

!

Note that display math mode ($$ e=mc^2 $$) is not supported, but adding the command \displaystyle,
as in tex_demo.py, will produce the same results.

Note: Certain characters require special escaping in TeX, such as:

7.5. Text rendering With LaTeX 47

http://www.ctan.org/tex-archive/macros/latex/required/psnfss/psnfss2e.pdf

Matplotlib, Release 0.99.3

$ % & ~ _ ^ \ { } \(\) \[\]

Therefore, these characters will behave differently depending on the rcParam text.usetex flag.

7.5.1 usetex with unicode

It is also possible to use unicode strings with the LaTeX text manager, here is an example taken from
tex_unicode_demo.py:

0.0 0.2 0.4 0.6 0.8 1.0
time (s)

1.0

1.5

2.0

2.5

3.0

Ve
lo

ci
ty

(°
/s

ec
)

TEX is Number
∞∑

n=1

−eiπ
2n

!

7.5.2 Postscript options

In order to produce encapsulated postscript files that can be embedded in a new LaTeX document, the default
behavior of matplotlib is to distill the output, which removes some postscript operators used by LaTeX that
are illegal in an eps file. This step produces results which may be unacceptable to some users, because
the text is coarsely rasterized and converted to bitmaps, which are not scalable like standard postscript, and
the text is not searchable. One workaround is to to set ps.distiller.res to a higher value (perhaps
6000) in your rc settings, which will produce larger files but may look better and scale reasonably. A better
workaround, which requires Poppler or Xpdf, can be activated by changing the ps.usedistiller rc setting
to xpdf. This alternative produces postscript without rasterizing text, so it scales properly, can be edited in
Adobe Illustrator, and searched text in pdf documents.

48 Chapter 7. Working with text

http://poppler.freedesktop.org/
http://www.foolabs.com/xpdf

Matplotlib, Release 0.99.3

7.5.3 Possible hangups

• On Windows, the PATH environment variable may need to be modified to include the directories con-
taining the latex, dvipng and ghostscript executables. See environment-variables and setting-windows-
environment-variables for details.

• Using MiKTeX with Computer Modern fonts, if you get odd *Agg and PNG results, go to MiK-
TeX/Options and update your format files

• The fonts look terrible on screen. You are probably running Mac OS, and there is some funny business
with older versions of dvipng on the mac. Set text.dvipnghack : True in your matplotlibrc file.

• On Ubuntu and Gentoo, the base texlive install does not ship with the type1cm package. You may
need to install some of the extra packages to get all the goodies that come bundled with other latex
distributions.

• Some progress has been made so matplotlib uses the dvi files directly for text layout. This allows
latex to be used for text layout with the pdf and svg backends, as well as the *Agg and PS backends.
In the future, a latex installation may be the only external dependency.

7.5.4 Troubleshooting

• Try deleting your .matplotlib/tex.cache directory. If you don’t know where to find
.matplotlib, see .matplotlib directory location.

• Make sure LaTeX, dvipng and ghostscript are each working and on your PATH.

• Make sure what you are trying to do is possible in a LaTeX document, that your LaTeX syntax is valid
and that you are using raw strings if necessary to avoid unintended escape sequences.

• Most problems reported on the mailing list have been cleared up by upgrading Ghostscript. If possible,
please try upgrading to the latest release before reporting problems to the list.

• The text.latex.preamble rc setting is not officially supported. This option provides lots of flexi-
bility, and lots of ways to cause problems. Please disable this option before reporting problems to the
mailing list.

• If you still need help, please see Report a problem

7.6 Annotating text

For a more detailed introduction to annotations, see Annotating Axes.

The uses of the basic text() command above place text at an arbitrary position on the Axes. A common use
case of text is to annotate some feature of the plot, and the annotate()method provides helper functionality
to make annotations easy. In an annotation, there are two points to consider: the location being annotated
represented by the argument xy and the location of the text xytext. Both of these arguments are (x,y)
tuples.

7.6. Annotating text 49

http://www.cs.wisc.edu/~ghost/

Matplotlib, Release 0.99.3

0 1 2 3 4 5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

local max

In this example, both the xy (arrow tip) and xytext locations (text location) are in data coordinates. There
are a variety of other coordinate systems one can choose – you can specify the coordinate system of xy and
xytext with one of the following strings for xycoords and textcoords (default is ‘data’)

argument coordinate system
‘figure points’ points from the lower left corner of the figure
‘figure pixels’ pixels from the lower left corner of the figure
‘figure fraction’ 0,0 is lower left of figure and 1,1 is upper, right
‘axes points’ points from lower left corner of axes
‘axes pixels’ pixels from lower left corner of axes
‘axes fraction’ 0,1 is lower left of axes and 1,1 is upper right
‘data’ use the axes data coordinate system

For example to place the text coordinates in fractional axes coordinates, one could do:

ax.annotate(’local max’, xy=(3, 1), xycoords=’data’,
xytext=(0.8, 0.95), textcoords=’axes fraction’,
arrowprops=dict(facecolor=’black’, shrink=0.05),
horizontalalignment=’right’, verticalalignment=’top’,
)

For physical coordinate systems (points or pixels) the origin is the (bottom, left) of the figure or axes. If
the value is negative, however, the origin is from the (right, top) of the figure or axes, analogous to negative
indexing of sequences.

Optionally, you can specify arrow properties which draws an arrow from the text to the annotated point by

50 Chapter 7. Working with text

Matplotlib, Release 0.99.3

giving a dictionary of arrow properties in the optional keyword argument arrowprops.

arrowprops key description
width the width of the arrow in points
frac the fraction of the arrow length occupied by the head
headwidth the width of the base of the arrow head in points
shrink move the tip and base some percent away from the annotated point and text
**kwargs any key for matplotlib.patches.Polygon, e.g. facecolor

In the example below, the xy point is in native coordinates (xycoords defaults to ‘data’). For a polar
axes, this is in (theta, radius) space. The text in this example is placed in the fractional figure coordinate
system. matplotlib.text.Text keyword args like horizontalalignment, verticalalignment and
fontsize are passed from the ‘~matplotlib.Axes.annotate‘ to the ‘‘Text instance

0°

45°

90°

135°

180°

225°

270°

315°

0.2
0.4

0.6
0.8

1.0

a polar annotation

For more on all the wild and wonderful things you can do with annotations, including fancy arrows, see
Annotating Axes and pylab_examples-annotation_demo.

7.6. Annotating text 51

Matplotlib, Release 0.99.3

52 Chapter 7. Working with text

CHAPTER

EIGHT

IMAGE TUTORIAL

8.1 Startup commands

At the very least, you’ll need to have access to the imshow() function. There are a couple of ways to do it.
The easy way for an interactive environment:

$ipython -pylab

The imshow function is now directly accessible (it’s in your namespace). See also Pyplot tutorial.

The more expressive, easier to understand later method (use this in your scripts to make it easier for others
(including your future self) to read) is to use the matplotlib API (see Artist tutorial) where you use explicit
namespaces and control object creation, etc...

In [1]: import matplotlib.pyplot as plt
In [2]: import matplotlib.image as mpimg
In [3]: import numpy as np

Examples below will use the latter method, for clarity. In these examples, if you use the -pylab method, you
can skip the “mpimg.” and “plt.” prefixes.

8.2 Importing image data into Numpy arrays

Plotting image data is supported by the Python Image Library (PIL), . Natively, matplotlib only supports
PNG images. The commands shown below fall back on PIL if the native read fails.

The image used in this example is a PNG file, but keep that PIL requirement in mind for your own data.

Here’s the image we’re going to play with:

53

http://bytebaker.com/2008/07/30/python-namespaces/
http://www.pythonware.com/products/pil/

Matplotlib, Release 0.99.3

It’s a 24-bit RGB PNG image (8 bits for each of R, G, B). Depending on where you get your data, the other
kinds of image that you’ll most likely encounter are RGBA images, which allow for transparency, or single-
channel grayscale (luminosity) images. You can right click on it and choose “Save image as” to download
it to your computer for the rest of this tutorial.

And here we go...

In [4]: img=mpimg.imread(’stinkbug.png’)
Out[4]:
array([[[0.40784314, 0.40784314, 0.40784314],

[0.40784314, 0.40784314, 0.40784314],
[0.40784314, 0.40784314, 0.40784314],
...,
[0.42745098, 0.42745098, 0.42745098],
[0.42745098, 0.42745098, 0.42745098],
[0.42745098, 0.42745098, 0.42745098]],

[[0.41176471, 0.41176471, 0.41176471],
[0.41176471, 0.41176471, 0.41176471],
[0.41176471, 0.41176471, 0.41176471],
...,
[0.42745098, 0.42745098, 0.42745098],
[0.42745098, 0.42745098, 0.42745098],
[0.42745098, 0.42745098, 0.42745098]],

54 Chapter 8. Image tutorial

Matplotlib, Release 0.99.3

[[0.41960785, 0.41960785, 0.41960785],
[0.41568628, 0.41568628, 0.41568628],
[0.41568628, 0.41568628, 0.41568628],
...,
[0.43137255, 0.43137255, 0.43137255],
[0.43137255, 0.43137255, 0.43137255],
[0.43137255, 0.43137255, 0.43137255]],

...,
[[0.43921569, 0.43921569, 0.43921569],
[0.43529412, 0.43529412, 0.43529412],
[0.43137255, 0.43137255, 0.43137255],
...,
[0.45490196, 0.45490196, 0.45490196],
[0.4509804 , 0.4509804 , 0.4509804],
[0.4509804 , 0.4509804 , 0.4509804]],

[[0.44313726, 0.44313726, 0.44313726],
[0.44313726, 0.44313726, 0.44313726],
[0.43921569, 0.43921569, 0.43921569],
...,
[0.4509804 , 0.4509804 , 0.4509804],
[0.44705883, 0.44705883, 0.44705883],
[0.44705883, 0.44705883, 0.44705883]],

[[0.44313726, 0.44313726, 0.44313726],
[0.4509804 , 0.4509804 , 0.4509804],
[0.4509804 , 0.4509804 , 0.4509804],
...,
[0.44705883, 0.44705883, 0.44705883],
[0.44705883, 0.44705883, 0.44705883],
[0.44313726, 0.44313726, 0.44313726]]], dtype=float32)

Note the dtype there - float32. Matplotlib has rescaled the 8 bit data from each channel to floating point data
between 0.0 and 1.0. As a side note, the only datatype that PIL can work with is uint8. Matplotlib plotting
can handle float32 and uint8, but image reading/writing for any format other than PNG is limited to uint8
data. Why 8 bits? Most displays can only render 8 bits per channel worth of color gradation. Why can they
only render 8 bits/channel? Because that’s about all the human eye can see. More here (from a photography
standpoint): Luminous Landscape bit depth tutorial.

Each inner list represents a pixel. Here, with an RGB image, there are 3 values. Since it’s a black and white
image, R, G, and B are all similar. An RGBA (where A is alpha, or transparency), has 4 values per inner list,
and a simple luminance image just has one value (and is thus only a 2-D array, not a 3-D array). For RGB
and RGBA images, matplotlib supports float32 and uint8 data types. For grayscale, matplotlib supports only
float32. If your array data does not meet one of these descriptions, you need to rescale it.

8.3 Plotting numpy arrays as images

So, you have your data in a numpy array (either by importing it, or by generating it). Let’s render it. In
Matplotlib, this is performed using the imshow() function. Here we’ll grab the plot object. This object

8.3. Plotting numpy arrays as images 55

http://www.luminous-landscape.com/tutorials/bit-depth.shtml

Matplotlib, Release 0.99.3

gives you an easy way to manipulate the plot from the prompt.

In [5]: imgplot = plt.imshow(img)

0 100 200 300 400

0

50

100

150

200

250

300

350

You can also plot any numpy array - just remember that the datatype must be float32 (and range from 0.0 to
1.0) or uint8.

8.3.1 Applying pseudocolor schemes to image plots

Pseudocolor can be a useful tool for enhancing contrast and visualizing your data more easily. This is
especially useful when making presentations of your data using projectors - their contrast is typically quite
poor.

Pseudocolor is only relevant to single-channel, grayscale, luminosity images. We currently have an RGB
image. Since R, G, and B are all similar (see for yourself above or in your data), we can just pick on channel
of our data:

In [6]: lum_img = img[:,:,0]

This is array slicing. You can read more in the Numpy tutorial.

In [7]: imgplot = mpimg.imshow(lum_img)

56 Chapter 8. Image tutorial

http://www.scipy.org/Tentative_NumPy_Tutorial

Matplotlib, Release 0.99.3

0 100 200 300 400

0

50

100

150

200

250

300

350

Now, with a luminosity image, the default colormap (aka lookup table, LUT), is applied. The default is
called jet. There are plenty of others to choose from. Let’s set some others using the set_cmap() method
on our image plot object:

In [8]: imgplot.set_cmap(’hot’)

8.3. Plotting numpy arrays as images 57

Matplotlib, Release 0.99.3

0 100 200 300 400

0

50

100

150

200

250

300

350

In [9]: imgplot.set_cmap(’spectral’)

58 Chapter 8. Image tutorial

Matplotlib, Release 0.99.3

0 100 200 300 400

0

50

100

150

200

250

300

350

There are many other colormap schemes available. See the list and images of the colormaps.

8.3.2 Color scale reference

It’s helpful to have an idea of what value a color represents. We can do that by adding color bars. It’s as
easy as one line:

In [10]: plt.colorbar()

8.3. Plotting numpy arrays as images 59

http://matplotlib.sourceforge.net/examples/pylab_examples/show_colormaps.html

Matplotlib, Release 0.99.3

0 100 200 300 400

0

50

100

150

200

250

300

350

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

This adds a colorbar to your existing figure. This won’t automatically change if you change you switch to a
different colormap - you have to re-create your plot, and add in the colorbar again.

8.3.3 Examining a specific data range

Sometimes you want to enhance the contrast in your image, or expand the contrast in a particular region
while sacrificing the detail in colors that don’t vary much, or don’t matter. A good tool to find interesting
regions is the histogram. To create a histogram of our image data, we use the hist() function.

In[10]: plt.hist(lum_img.flatten(), 256, range=(0.0,1.0), fc=’k’, ec=’k’)

60 Chapter 8. Image tutorial

Matplotlib, Release 0.99.3

0.0 0.2 0.4 0.6 0.8 1.0
0

2000

4000

6000

8000

10000

Most often, the “interesting” part of the image is around the peak, and you can get extra contrast by clipping
the regions above and/or below the peak. In our histogram, it looks like there’s not much useful information
in the high end (not many white things in the image). Let’s adjust the upper limit, so that we effectively
“zoom in on” part of the histogram. We do this by calling the set_clim()method of the image plot object.

In[11]: imgplot.set_clim=(0.0,0.7)

8.3. Plotting numpy arrays as images 61

Matplotlib, Release 0.99.3

0 100 200 300 400

0
50

100
150
200
250
300
350

Before

0.1 0.3 0.5 0.7

0 100 200 300 400

0
50

100
150
200
250
300
350

After

0.1 0.3 0.5 0.7

8.3.4 Array Interpolation schemes

Interpolation calculates what the color or value of a pixel “should” be, according to different mathematical
schemes. One common place that this happens is when you resize an image. The number of pixels change,
but you want the same information. Since pixels are discrete, there’s missing space. Interpolation is how
you fill that space. This is why your images sometimes come out looking pixelated when you blow them
up. The effect is more pronounced when the difference between the original image and the expanded image
is greater. Let’s take our image and shrink it. We’re effectively discarding pixels, only keeping a select few.
Now when we plot it, that data gets blown up to the size on your screen. The old pixels aren’t there anymore,
and the computer has to draw in pixels to fill that space.

In [8]: import Image
In [9]: img = Image.open(’stinkbug.png’) # Open image as PIL image object
In [10]: rsize = img.resize((img.size[0]/10,img.size[1]/10)) # Use PIL to resize
In [11]: rsizeArr = np.asarray(rsize) # Get array back
In [12]: imgplot = mpimg.imshow(rsizeArr)

62 Chapter 8. Image tutorial

Matplotlib, Release 0.99.3

0 10 20 30 40

0

5

10

15

20

25

30

35

Here we have the default interpolation, bilinear, since we did not give imshow() any interpolation argument.

Let’s try some others:

In [10]: imgplot.set_interpolation(’nearest’)

8.3. Plotting numpy arrays as images 63

Matplotlib, Release 0.99.3

0 10 20 30 40

0

5

10

15

20

25

30

35

In [10]: imgplot.set_interpolation(’bicubic’)

64 Chapter 8. Image tutorial

Matplotlib, Release 0.99.3

0 10 20 30 40

0

5

10

15

20

25

30

35

Bicubic interpolation is often used when blowing up photos - people tend to prefer blurry over pixelated.

8.3. Plotting numpy arrays as images 65

Matplotlib, Release 0.99.3

66 Chapter 8. Image tutorial

CHAPTER

NINE

ARTIST TUTORIAL

There are three layers to the matplotlib API. The matplotlib.backend_bases.FigureCanvas is the area
onto which the figure is drawn, the matplotlib.backend_bases.Renderer is the object which knows
how to draw on the FigureCanvas, and the matplotlib.artist.Artist is the object that knows how to
use a renderer to paint onto the canvas. The FigureCanvas and Renderer handle all the details of talking
to user interface toolkits like wxPython or drawing languages like PostScript®, and the Artist handles all
the high level constructs like representing and laying out the figure, text, and lines. The typical user will
spend 95% of his time working with the Artists.

There are two types of Artists: primitives and containers. The primitives represent the standard graph-
ical objects we want to paint onto our canvas: Line2D, Rectangle, Text, AxesImage, etc., and the
containers are places to put them (Axis, Axes and Figure). The standard use is to create a Figure
instance, use the Figure to create one or more Axes or Subplot instances, and use the Axes instance
helper methods to create the primitives. In the example below, we create a Figure instance using
matplotlib.pyplot.figure(), which is a convenience method for instantiating Figure instances and
connecting them with your user interface or drawing toolkit FigureCanvas. As we will discuss below,
this is not necessary – you can work directly with PostScript, PDF Gtk+, or wxPython FigureCanvas in-
stances, instantiate your Figures directly and connect them yourselves – but since we are focusing here on
the Artist API we’ll let pyplot handle some of those details for us:

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(2,1,1) # two rows, one column, first plot

The Axes is probably the most important class in the matplotlib API, and the one you will be working with
most of the time. This is because the Axes is the plotting area into which most of the objects go, and the
Axes has many special helper methods (plot(), text(), hist(), imshow()) to create the most common
graphics primitives (Line2D, Text, Rectangle, Image, respectively). These helper methods will take your
data (eg. numpy arrays and strings) and create primitive Artist instances as needed (eg. Line2D), add
them to the relevant containers, and draw them when requested. Most of you are probably familiar with the
Subplot, which is just a special case of an Axes that lives on a regular rows by columns grid of Subplot
instances. If you want to create an Axes at an arbitrary location, simply use the add_axes() method which
takes a list of [left, bottom, width, height] values in 0-1 relative figure coordinates:

fig2 = plt.figure()
ax2 = fig2.add_axes([0.15, 0.1, 0.7, 0.3])

Continuing with our example:

67

http://www.wxpython.org

Matplotlib, Release 0.99.3

import numpy as np
t = np.arange(0.0, 1.0, 0.01)
s = np.sin(2*np.pi*t)
line, = ax.plot(t, s, color=’blue’, lw=2)

In this example, ax is the Axes instance created by the fig.add_subplot call above (remember Subplot
is just a subclass of Axes) and when you call ax.plot, it creates a Line2D instance and adds it to the
Axes.lines list. In the interactive ipython session below, you can see that the Axes.lines list is length
one and contains the same line that was returned by the line, = ax.plot... call:

In [101]: ax.lines[0]
Out[101]: <matplotlib.lines.Line2D instance at 0x19a95710>

In [102]: line
Out[102]: <matplotlib.lines.Line2D instance at 0x19a95710>

If you make subsequent calls to ax.plot (and the hold state is “on” which is the default) then additional
lines will be added to the list. You can remove lines later simply by calling the list methods; either of these
will work:

del ax.lines[0]
ax.lines.remove(line) # one or the other, not both!

The Axes also has helper methods to configure and decorate the x-axis and y-axis tick, tick labels and axis
labels:

xtext = ax.set_xlabel(’my xdata’) # returns a Text instance
ytext = ax.set_ylabel(’my xdata’)

When you call ax.set_xlabel, it passes the information on the Text instance of the XAxis. Each Axes
instance contains an XAxis and a YAxis instance, which handle the layout and drawing of the ticks, tick
labels and axis labels.

Try creating the figure below.

68 Chapter 9. Artist tutorial

http://ipython.scipy.org/

Matplotlib, Release 0.99.3

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.5

0.0

0.5

1.0

v
o
lt

s

a sine wave

4 3 2 1 0 1 2 3 4
time (s)

0
10
20
30
40
50
60

9.1 Customizing your objects

Every element in the figure is represented by a matplotlib Artist, and each has an extensive list of properties
to configure its appearance. The figure itself contains a Rectangle exactly the size of the figure, which you
can use to set the background color and transparency of the figures. Likewise, each Axes bounding box
(the standard white box with black edges in the typical matplotlib plot, has a Rectangle instance that
determines the color, transparency, and other properties of the Axes. These instances are stored as member
variables Figure.patch and Axes.patch (“Patch” is a name inherited from MATLAB™, and is a 2D
“patch” of color on the figure, eg. rectangles, circles and polygons). Every matplotlib Artist has the
following properties

9.1. Customizing your objects 69

Matplotlib, Release 0.99.3

Property Description
alpha The transparency - a scalar from 0-1
animated A boolean that is used to facilitate animated drawing
axes The axes that the Artist lives in, possibly None
clip_box The bounding box that clips the Artist
clip_on Whether clipping is enabled
clip_path The path the artist is clipped to
contains A picking function to test whether the artist contains the pick point
figure The figure instance the artist lives in, possibly None
label A text label (eg. for auto-labeling)
picker A python object that controls object picking
transform The transformation
visible A boolean whether the artist should be drawn
zorder A number which determines the drawing order

Each of the properties is accessed with an old-fashioned setter or getter (yes we know this irritates Python-
istas and we plan to support direct access via properties or traits but it hasn’t been done yet). For example,
to multiply the current alpha by a half:

a = o.get_alpha()
o.set_alpha(0.5*a)

If you want to set a number of properties at once, you can also use the setmethod with keyword arguments.
For example:

o.set(alpha=0.5, zorder=2)

If you are working interactively at the python shell, a handy way to inspect the Artist properties is to use
the matplotlib.artist.getp() function (simply getp() in pylab), which lists the properties and their
values. This works for classes derived from Artist as well, eg. Figure and Rectangle. Here are the
Figure rectangle properties mentioned above:

In [149]: matplotlib.artist.getp(fig.patch)
alpha = 1.0
animated = False
antialiased or aa = True
axes = None
clip_box = None
clip_on = False
clip_path = None
contains = None
edgecolor or ec = w
facecolor or fc = 0.75
figure = Figure(8.125x6.125)
fill = 1
hatch = None
height = 1
label =
linewidth or lw = 1.0
picker = None
transform = <Affine object at 0x134cca84>
verts = ((0, 0), (0, 1), (1, 1), (1, 0))

70 Chapter 9. Artist tutorial

Matplotlib, Release 0.99.3

visible = True
width = 1
window_extent = <Bbox object at 0x134acbcc>
x = 0
y = 0
zorder = 1

The docstrings for all of the classes also contain the Artist properties, so you can consult the interactive
“help” or the matplotlib artists for a listing of properties for a given object.

9.2 Object containers

Now that we know how to inspect and set the properties of a given object we want to configure, we need to
now how to get at that object. As mentioned in the introduction, there are two kinds of objects: primitives
and containers. The primitives are usually the things you want to configure (the font of a Text instance,
the width of a Line2D) although the containers also have some properties as well – for example the Axes
Artist is a container that contains many of the primitives in your plot, but it also has properties like the
xscale to control whether the xaxis is ‘linear’ or ‘log’. In this section we’ll review where the various
container objects store the Artists that you want to get at.

9.3 Figure container

The top level container Artist is the matplotlib.figure.Figure, and it contains everything in the
figure. The background of the figure is a Rectanglewhich is stored in Figure.patch. As you add subplots
(add_subplot()) and axes (add_axes()) to the figure these will be appended to the Figure.axes. These
are also returned by the methods that create them:

In [156]: fig = plt.figure()

In [157]: ax1 = fig.add_subplot(211)

In [158]: ax2 = fig.add_axes([0.1, 0.1, 0.7, 0.3])

In [159]: ax1
Out[159]: <matplotlib.axes.Subplot instance at 0xd54b26c>

In [160]: print fig.axes
[<matplotlib.axes.Subplot instance at 0xd54b26c>, <matplotlib.axes.Axes instance at 0xd3f0b2c>]

Because the figure maintains the concept of the “current axes” (see Figure.gca and Figure.sca) to
support the pylab/pyplot state machine, you should not insert or remove axes directly from the axes list, but
rather use the add_subplot() and add_axes() methods to insert, and the delaxes() method to delete.
You are free however, to iterate over the list of axes or index into it to get access to Axes instances you want
to customize. Here is an example which turns all the axes grids on:

for ax in fig.axes:
ax.grid(True)

9.2. Object containers 71

Matplotlib, Release 0.99.3

The figure also has its own text, lines, patches and images, which you can use to add primitives directly. The
default coordinate system for the Figure will simply be in pixels (which is not usually what you want) but
you can control this by setting the transform property of the Artist you are adding to the figure.

More useful is “figure coordinates” where (0, 0) is the bottom-left of the figure and (1, 1) is the top-right of
the figure which you can obtain by setting the Artist transform to fig.transFigure:

In [191]: fig = plt.figure()

In [192]: l1 = matplotlib.lines.Line2D([0, 1], [0, 1],
transform=fig.transFigure, figure=fig)

In [193]: l2 = matplotlib.lines.Line2D([0, 1], [1, 0],
transform=fig.transFigure, figure=fig)

In [194]: fig.lines.extend([l1, l2])

In [195]: fig.canvas.draw()

Here is a summary of the Artists the figure contains

72 Chapter 9. Artist tutorial

Matplotlib, Release 0.99.3

Figure attribute Description
axes A list of Axes instances (includes Subplot)
patch The Rectangle background
images A list of FigureImages patches - useful for raw pixel display
legends A list of Figure Legend instances (different from Axes.legends)
lines A list of Figure Line2D instances (rarely used, see Axes.lines)
patches A list of Figure patches (rarely used, see Axes.patches)
texts A list Figure Text instances

9.4 Axes container

The matplotlib.axes.Axes is the center of the matplotlib universe – it contains the vast majority of all
the Artists used in a figure with many helper methods to create and add these Artists to itself, as well
as helper methods to access and customize the Artists it contains. Like the Figure, it contains a Patch
patch which is a Rectangle for Cartesian coordinates and a Circle for polar coordinates; this patch
determines the shape, background and border of the plotting region:

ax = fig.add_subplot(111)
rect = ax.patch # a Rectangle instance
rect.set_facecolor(’green’)

When you call a plotting method, eg. the canonical plot() and pass in arrays or lists of values, the method
will create a matplotlib.lines.Line2D() instance, update the line with all the Line2D properties passed
as keyword arguments, add the line to the Axes.lines container, and returns it to you:

In [213]: x, y = np.random.rand(2, 100)

In [214]: line, = ax.plot(x, y, ’-’, color=’blue’, linewidth=2)

plot returns a list of lines because you can pass in multiple x, y pairs to plot, and we are unpacking the first
element of the length one list into the line variable. The line has been added to the Axes.lines list:

In [229]: print ax.lines
[<matplotlib.lines.Line2D instance at 0xd378b0c>]

Similarly, methods that create patches, like bar() creates a list of rectangles, will add the patches to the
Axes.patches list:

In [233]: n, bins, rectangles = ax.hist(np.random.randn(1000), 50, facecolor=’yellow’)

In [234]: rectangles
Out[234]: <a list of 50 Patch objects>

In [235]: print len(ax.patches)

You should not add objects directly to the Axes.lines or Axes.patches lists unless you know exactly
what you are doing, because the Axes needs to do a few things when it creates and adds an object. It sets the
figure and axes property of the Artist, as well as the default Axes transformation (unless a transformation is
set). It also inspects the data contained in the Artist to update the data structures controlling auto-scaling,
so that the view limits can be adjusted to contain the plotted data. You can, nonetheless, create objects

9.4. Axes container 73

Matplotlib, Release 0.99.3

yourself and add them directly to the Axes using helper methods like add_line() and add_patch().
Here is an annotated interactive session illustrating what is going on:

In [261]: fig = plt.figure()

In [262]: ax = fig.add_subplot(111)

create a rectangle instance
In [263]: rect = matplotlib.patches.Rectangle((1,1), width=5, height=12)

by default the axes instance is None
In [264]: print rect.get_axes()
None

and the transformation instance is set to the "identity transform"
In [265]: print rect.get_transform()
<Affine object at 0x13695544>

now we add the Rectangle to the Axes
In [266]: ax.add_patch(rect)

and notice that the ax.add_patch method has set the axes
instance
In [267]: print rect.get_axes()
Axes(0.125,0.1;0.775x0.8)

and the transformation has been set too
In [268]: print rect.get_transform()
<Affine object at 0x15009ca4>

the default axes transformation is ax.transData
In [269]: print ax.transData
<Affine object at 0x15009ca4>

notice that the xlimits of the Axes have not been changed
In [270]: print ax.get_xlim()
(0.0, 1.0)

but the data limits have been updated to encompass the rectangle
In [271]: print ax.dataLim.bounds
(1.0, 1.0, 5.0, 12.0)

we can manually invoke the auto-scaling machinery
In [272]: ax.autoscale_view()

and now the xlim are updated to encompass the rectangle
In [273]: print ax.get_xlim()
(1.0, 6.0)

we have to manually force a figure draw
In [274]: ax.figure.canvas.draw()

There are many, many Axes helper methods for creating primitive Artists and adding them to their respec-
tive containers. The table below summarizes a small sampling of them, the kinds of Artist they create,

74 Chapter 9. Artist tutorial

Matplotlib, Release 0.99.3

and where they store them

Helper method Artist Container
ax.annotate - text annotations Annotate ax.texts
ax.bar - bar charts Rectangle ax.patches
ax.errorbar - error bar plots Line2D and Rectangle ax.lines and ax.patches
ax.fill - shared area Polygon ax.patches
ax.hist - histograms Rectangle ax.patches
ax.imshow - image data AxesImage ax.images
ax.legend - axes legends Legend ax.legends
ax.plot - xy plots Line2D ax.lines
ax.scatter - scatter charts PolygonCollection ax.collections
ax.text - text Text ax.texts

In addition to all of these Artists, the Axes contains two important Artist containers: the XAxis and
YAxis, which handle the drawing of the ticks and labels. These are stored as instance variables xaxis and
yaxis. The XAxis and YAxis containers will be detailed below, but note that the Axes contains many
helper methods which forward calls on to the Axis instances so you often do not need to work with them
directly unless you want to. For example, you can set the font size of the XAxis ticklabels using the Axes
helper method:

for label in ax.get_xticklabels():
label.set_color(’orange’)

Below is a summary of the Artists that the Axes contains

Axes attribute Description
artists A list of Artist instances
patch Rectangle instance for Axes background
collections A list of Collection instances
images A list of AxesImage
legends A list of Legend instances
lines A list of Line2D instances
patches A list of Patch instances
texts A list of Text instances
xaxis matplotlib.axis.XAxis instance
yaxis matplotlib.axis.YAxis instance

9.5 Axis containers

The matplotlib.axis.Axis instances handle the drawing of the tick lines, the grid lines, the tick labels
and the axis label. You can configure the left and right ticks separately for the y-axis, and the upper and
lower ticks separately for the x-axis. The Axis also stores the data and view intervals used in auto-scaling,
panning and zooming, as well as the Locator and Formatter instances which control where the ticks are
placed and how they are represented as strings.

Each Axis object contains a label attribute (this is what pylab modifies in calls to xlabel() and
ylabel()) as well as a list of major and minor ticks. The ticks are XTick and YTick instances, which

9.5. Axis containers 75

Matplotlib, Release 0.99.3

contain the actual line and text primitives that render the ticks and ticklabels. Because the ticks are dynam-
ically created as needed (eg. when panning and zooming), you should access the lists of major and minor
ticks through their accessor methods get_major_ticks() and get_minor_ticks(). Although the ticks
contain all the primitives and will be covered below, the Axis methods contain accessor methods to return
the tick lines, tick labels, tick locations etc.:

In [285]: axis = ax.xaxis

In [286]: axis.get_ticklocs()
Out[286]: array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

In [287]: axis.get_ticklabels()
Out[287]: <a list of 10 Text major ticklabel objects>

note there are twice as many ticklines as labels because by
default there are tick lines at the top and bottom but only tick
labels below the xaxis; this can be customized
In [288]: axis.get_ticklines()
Out[288]: <a list of 20 Line2D ticklines objects>

by default you get the major ticks back
In [291]: axis.get_ticklines()
Out[291]: <a list of 20 Line2D ticklines objects>

but you can also ask for the minor ticks
In [292]: axis.get_ticklines(minor=True)
Out[292]: <a list of 0 Line2D ticklines objects>

Here is a summary of some of the useful accessor methods of the Axis (these have corresponding setters
where useful, such as set_major_formatter)

Accessor method Description
get_scale The scale of the axis, eg ‘log’ or ‘linear’
get_view_interval The interval instance of the axis view limits
get_data_interval The interval instance of the axis data limits
get_gridlines A list of grid lines for the Axis
get_label The axis label - a Text instance
get_ticklabels A list of Text instances - keyword minor=True|False
get_ticklines A list of Line2D instances - keyword minor=True|False
get_ticklocs A list of Tick locations - keyword minor=True|False
get_major_locator The matplotlib.ticker.Locator instance for major ticks
get_major_formatter The matplotlib.ticker.Formatter instance for major ticks
get_minor_locator The matplotlib.ticker.Locator instance for minor ticks
get_minor_formatter The matplotlib.ticker.Formatter instance for minor ticks
get_major_ticks A list of Tick instances for major ticks
get_minor_ticks A list of Tick instances for minor ticks
grid Turn the grid on or off for the major or minor ticks

Here is an example, not recommended for its beauty, which customizes the axes and tick properties

76 Chapter 9. Artist tutorial

Matplotlib, Release 0.99.3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

9.6 Tick containers

The matplotlib.axis.Tick is the final container object in our descent from the Figure to the Axes to
the Axis to the Tick. The Tick contains the tick and grid line instances, as well as the label instances for
the upper and lower ticks. Each of these is accessible directly as an attribute of the Tick. In addition, there
are boolean variables that determine whether the upper labels and ticks are on for the x-axis and whether the
right labels and ticks are on for the y-axis.

Tick attribute Description
tick1line Line2D instance
tick2line Line2D instance
gridline Line2D instance
label1 Text instance
label2 Text instance
gridOn boolean which determines whether to draw the tickline
tick1On boolean which determines whether to draw the 1st tickline
tick2On boolean which determines whether to draw the 2nd tickline
label1On boolean which determines whether to draw tick label
label2On boolean which determines whether to draw tick label

Here is an example which sets the formatter for the right side ticks with dollar signs and colors them green
on the right side of the yaxis

9.6. Tick containers 77

Matplotlib, Release 0.99.3

0 5 10 15 20
$0.00

$20.00

$40.00

$60.00

$80.00

$100.00

78 Chapter 9. Artist tutorial

CHAPTER

TEN

LEGEND GUIDE

Do not proceed unless you already have read legend() and matplotlib.legend.Legend!

10.1 What to be displayed

The legend command has a following call signature:

legend(*args, **kwargs)

If len(args) is 2, the first argument should be a list of artist to be labeled, and the second argument should a
list of string labels. If len(args) is 0, it automatically generate the legend from label properties of the child
artists by calling get_legend_handles_labels() method. For example, ax.legend() is equivalent to:

handles, labels = ax.get_legend_handles_labels()
ax.legend(handles, labels)

The get_legend_handles_labels() method returns a tuple of two lists, i.e., list of artists and list
of labels (python string). However, it does not return all of its child artists. It returns all artists in
ax.lines and ax.patches and some artists in ax.collection which are instance of LineCollection or
RegularPolyCollection. The label attributes (returned by get_label() method) of collected artists are
used as text labels. If label attribute is empty string or starts with “_”, that artist will be ignored.

• Note that not all kind of artists are supported by the legend. The following is the list of artists that are
currently supported.

– Line2D

– Patch

– LineCollection

– RegularPolyCollection

Unfortunately, there is no easy workaround when you need legend for an artist not in the above list
(You may use one of the supported artist as a proxy. See below), or customize it beyond what is
supported by matplotlib.legend.Legend.

79

Matplotlib, Release 0.99.3

• Remember that some pyplot commands return artist not supported by legend, e.g., fill_between()
returns PolyCollection that is not supported. Or some return multiple artists. For example, plot()
returns list of Line2D instances, and errorbar() returns a length 3 tuple of Line2D instances.

• The legend does not care about the axes that given artists belongs, i.e., the artists may belong to other
axes or even none.

10.1.1 Adjusting the Order of Legend items

When you want to customize the list of artists to be displayed in the legend, or their order of appearance.
There are a two options. First, you can keep lists of artists and labels, and explicitly use these for the first
two argument of the legend call.:

p1, = plot([1,2,3])
p2, = plot([3,2,1])
p3, = plot([2,3,1])
legend([p2, p1], ["line 2", "line 1"])

Or you may use get_legend_handles_labels() to retrieve list of artist and labels and manipulate them
before feeding them to legend call.:

ax = subplot(1,1,1)
p1, = ax.plot([1,2,3], label="line 1")
p2, = ax.plot([3,2,1], label="line 2")
p3, = ax.plot([2,3,1], label="line 3")

handles, labels = ax.get_legend_handles_labels()

reverse the order
ax.legend(handles[::-1], labels[::-1])

or sort them by labels
import operator
hl = sorted(zip(handles, labels),

key=operator.itemgetter(1))
handles2, labels2 = zip(*hl)

ax.legend(handles2, labels2)

10.1.2 Using Proxy Artist

When you want to display legend for an artist not supported by the matplotlib, you may use other supported
artist as a proxy. For example, you may creates an proxy artist without adding it to the axes (so the proxy
artist will not be drawn in the main axes) and feet it to the legend function.:

p = Rectangle((0, 0), 1, 1, fc="r")
legend([p], ["Red Rectangle"])

80 Chapter 10. Legend guide

Matplotlib, Release 0.99.3

10.2 Multicolumn Legend

By specifying the keyword argument ncol, you can have a multi-column legend. Also, mode=”expand”
horizontally expand the legend to fill the axes area. See legend_demo3.py for example.

10.3 Legend location

The location of the legend can be specified by the keyword argument loc, either by string or a integer number.

String Number
upper right 1
upper left 2
lower left 3
lower right 4
right 5
center left 6
center right 7
lower center 8
upper center 9
center 10

By default, the legend will anchor to the bbox of the axes (for legend) or the bbox of the figure (figle-
gend). You can specify your own bbox using bbox_to_anchor argument. bbox_to_anchor can be an in-
stance of BboxBase, a tuple of 4 floats (x, y, width, height of the bbox), or a tuple of 2 floats (x, y with
width=height=0). Unless bbox_transform argument is given, the coordinates (even for the bbox instance)
are considered as normalized axes coordinates.

For example, if you want your axes legend located at the figure corner (instead of the axes corner):

l = legend(bbox_to_anchor=(0, 0, 1, 1), transform=gcf().transFigure)

Also, you can place above or outer right-hand side of the axes,

10.2. Multicolumn Legend 81

http://matplotlib.sourceforge.net/examples/pylab_examples/legend_demo3.html

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

3.0
test1 test2

0.0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

3.0
test1
test2

10.4 Multiple Legend

Sometime, you want to split the legend into multiple ones.:

p1, = plot([1,2,3])
p2, = plot([3,2,1])
legend([p1], ["Test1"], loc=1)
legend([p2], ["Test2"], loc=4)

However, the above code only shows the second legend. When the legend command is called, a new legend
instance is created and old ones are removed from the axes. Thus, you need to manually add the removed
legend.

82 Chapter 10. Legend guide

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

3.0

Label 1

Label 2

10.4. Multiple Legend 83

Matplotlib, Release 0.99.3

84 Chapter 10. Legend guide

CHAPTER

ELEVEN

EVENT HANDLING AND PICKING

matplotlib works with 6 user interface toolkits (wxpython, tkinter, qt, gtk, fltk and macosx) and in order
to support features like interactive panning and zooming of figures, it is helpful to the developers to have
an API for interacting with the figure via key presses and mouse movements that is “GUI neutral” so we
don’t have to repeat a lot of code across the different user interfaces. Although the event handling API
is GUI neutral, it is based on the GTK model, which was the first user interface matplotlib supported.
The events that are triggered are also a bit richer vis-a-vis matplotlib than standard GUI events, including
information like which matplotlib.axes.Axes the event occurred in. The events also understand the
matplotlib coordinate system, and report event locations in both pixel and data coordinates.

11.1 Event connections

To receive events, you need to write a callback function and then connect your function to the event manager,
which is part of the FigureCanvasBase. Here is a simple example that prints the location of the mouse
click and which button was pressed:

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(np.random.rand(10))

def onclick(event):
print ’button=%d, x=%d, y=%d, xdata=%f, ydata=%f’%(

event.button, event.x, event.y, event.xdata, event.ydata)

cid = fig.canvas.mpl_connect(’button_press_event’, onclick)

The FigureCanvasmethod mpl_connect() returns a connection id which is simply an integer. When you
want to disconnect the callback, just call:

fig.canvas.mpl_disconnect(cid)

Here are the events that you can connect to, the class instances that are sent back to you when the event
occurs, and the event descriptions

85

Matplotlib, Release 0.99.3

Event name Class and description
‘button_press_event’ MouseEvent - mouse button is pressed
‘button_release_event’ MouseEvent - mouse button is released
‘draw_event’ DrawEvent - canvas draw
‘key_press_event’ KeyEvent - key is pressed
‘key_release_event’ KeyEvent - key is released
‘motion_notify_event’ MouseEvent - mouse motion
‘pick_event’ PickEvent - an object in the canvas is selected
‘resize_event’ ResizeEvent - figure canvas is resized
‘scroll_event’ MouseEvent - mouse scroll wheel is rolled
‘figure_enter_event’ LocationEvent - mouse enters a new figure
‘figure_leave_event’ LocationEvent - mouse leaves a figure
‘axes_enter_event’ LocationEvent - mouse enters a new axes
‘axes_leave_event’ LocationEvent - mouse leaves an axes

11.2 Event attributes

All matplotlib events inherit from the base class matplotlib.backend_bases.Event, which store the
attributes:

name the event name

canvas the FigureCanvas instance generating the event

guiEvent the GUI event that triggered the matplotlib event

The most common events that are the bread and butter of event handling are key press/release events and
mouse press/release and movement events. The KeyEvent and MouseEvent classes that handle these events
are both derived from the LocationEvent, which has the following attributes

x x position - pixels from left of canvas

y y position - pixels from bottom of canvas

inaxes the Axes instance if mouse is over axes

xdata x coord of mouse in data coords

ydata y coord of mouse in data coords

Let’s look a simple example of a canvas, where a simple line segment is created every time a mouse is
pressed:

class LineBuilder:
def __init__(self, line):

self.line = line
self.xs = list(line.get_xdata())
self.ys = list(line.get_ydata())
self.cid = line.figure.canvas.mpl_connect(’button_press_event’, self)

def __call__(self, event):
print ’click’, event
if event.inaxes!=self.line.axes: return

86 Chapter 11. Event handling and picking

Matplotlib, Release 0.99.3

self.xs.append(event.xdata)
self.ys.append(event.ydata)
self.line.set_data(self.xs, self.ys)
self.line.figure.canvas.draw()

fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_title(’click to build line segments’)
line, = ax.plot([0], [0]) # empty line
linebuilder = LineBuilder(line)

The MouseEvent that we just used is a LocationEvent, so we have access to the data and pixel coordinates
in event.x and event.xdata. In addition to the LocationEvent attributes, it has

button button pressed None, 1, 2, 3, ‘up’, ‘down’ (up and down are used for scroll events)

key the key pressed: None, any character, ‘shift’, ‘win’, or ‘control’

11.2.1 Draggable rectangle exercise

Write draggable rectangle class that is initialized with a Rectangle instance but will move its x,y location
when dragged. Hint: you will need to store the original xy location of the rectangle which is stored as
rect.xy and connect to the press, motion and release mouse events. When the mouse is pressed, check to
see if the click occurs over your rectangle (see matplotlib.patches.Rectangle.contains()) and if it
does, store the rectangle xy and the location of the mouse click in data coords. In the motion event callback,
compute the deltax and deltay of the mouse movement, and add those deltas to the origin of the rectangle
you stored. The redraw the figure. On the button release event, just reset all the button press data you stored
as None.

Here is the solution:

import numpy as np
import matplotlib.pyplot as plt

class DraggableRectangle:
def __init__(self, rect):

self.rect = rect
self.press = None

def connect(self):
’connect to all the events we need’
self.cidpress = self.rect.figure.canvas.mpl_connect(

’button_press_event’, self.on_press)
self.cidrelease = self.rect.figure.canvas.mpl_connect(

’button_release_event’, self.on_release)
self.cidmotion = self.rect.figure.canvas.mpl_connect(

’motion_notify_event’, self.on_motion)

def on_press(self, event):
’on button press we will see if the mouse is over us and store some data’
if event.inaxes != self.rect.axes: return

11.2. Event attributes 87

Matplotlib, Release 0.99.3

contains, attrd = self.rect.contains(event)
if not contains: return
print ’event contains’, self.rect.xy
x0, y0 = self.rect.xy
self.press = x0, y0, event.xdata, event.ydata

def on_motion(self, event):
’on motion we will move the rect if the mouse is over us’
if self.press is None: return
if event.inaxes != self.rect.axes: return
x0, y0, xpress, ypress = self.press
dx = event.xdata - xpress
dy = event.ydata - ypress
#print ’x0=%f, xpress=%f, event.xdata=%f, dx=%f, x0+dx=%f’%(x0, xpress, event.xdata, dx, x0+dx)
self.rect.set_x(x0+dx)
self.rect.set_y(y0+dy)

self.rect.figure.canvas.draw()

def on_release(self, event):
’on release we reset the press data’
self.press = None
self.rect.figure.canvas.draw()

def disconnect(self):
’disconnect all the stored connection ids’
self.rect.figure.canvas.mpl_disconnect(self.cidpress)
self.rect.figure.canvas.mpl_disconnect(self.cidrelease)
self.rect.figure.canvas.mpl_disconnect(self.cidmotion)

fig = plt.figure()
ax = fig.add_subplot(111)
rects = ax.bar(range(10), 20*np.random.rand(10))
drs = []
for rect in rects:

dr = DraggableRectangle(rect)
dr.connect()
drs.append(dr)

plt.show()

Extra credit: use the animation blit techniques discussed in the animations recipe to make the animated
drawing faster and smoother.

Extra credit solution:

draggable rectangle with the animation blit techniques; see
http://www.scipy.org/Cookbook/Matplotlib/Animations
import numpy as np
import matplotlib.pyplot as plt

class DraggableRectangle:
lock = None # only one can be animated at a time

88 Chapter 11. Event handling and picking

http://www.scipy.org/Cookbook/Matplotlib/Animations

Matplotlib, Release 0.99.3

def __init__(self, rect):
self.rect = rect
self.press = None
self.background = None

def connect(self):
’connect to all the events we need’
self.cidpress = self.rect.figure.canvas.mpl_connect(

’button_press_event’, self.on_press)
self.cidrelease = self.rect.figure.canvas.mpl_connect(

’button_release_event’, self.on_release)
self.cidmotion = self.rect.figure.canvas.mpl_connect(

’motion_notify_event’, self.on_motion)

def on_press(self, event):
’on button press we will see if the mouse is over us and store some data’
if event.inaxes != self.rect.axes: return
if DraggableRectangle.lock is not None: return
contains, attrd = self.rect.contains(event)
if not contains: return
print ’event contains’, self.rect.xy
x0, y0 = self.rect.xy
self.press = x0, y0, event.xdata, event.ydata
DraggableRectangle.lock = self

draw everything but the selected rectangle and store the pixel buffer
canvas = self.rect.figure.canvas
axes = self.rect.axes
self.rect.set_animated(True)
canvas.draw()
self.background = canvas.copy_from_bbox(self.rect.axes.bbox)

now redraw just the rectangle
axes.draw_artist(self.rect)

and blit just the redrawn area
canvas.blit(axes.bbox)

def on_motion(self, event):
’on motion we will move the rect if the mouse is over us’
if DraggableRectangle.lock is not self:

return
if event.inaxes != self.rect.axes: return
x0, y0, xpress, ypress = self.press
dx = event.xdata - xpress
dy = event.ydata - ypress
self.rect.set_x(x0+dx)
self.rect.set_y(y0+dy)

canvas = self.rect.figure.canvas
axes = self.rect.axes
restore the background region
canvas.restore_region(self.background)

11.2. Event attributes 89

Matplotlib, Release 0.99.3

redraw just the current rectangle
axes.draw_artist(self.rect)

blit just the redrawn area
canvas.blit(axes.bbox)

def on_release(self, event):
’on release we reset the press data’
if DraggableRectangle.lock is not self:

return

self.press = None
DraggableRectangle.lock = None

turn off the rect animation property and reset the background
self.rect.set_animated(False)
self.background = None

redraw the full figure
self.rect.figure.canvas.draw()

def disconnect(self):
’disconnect all the stored connection ids’
self.rect.figure.canvas.mpl_disconnect(self.cidpress)
self.rect.figure.canvas.mpl_disconnect(self.cidrelease)
self.rect.figure.canvas.mpl_disconnect(self.cidmotion)

fig = plt.figure()
ax = fig.add_subplot(111)
rects = ax.bar(range(10), 20*np.random.rand(10))
drs = []
for rect in rects:

dr = DraggableRectangle(rect)
dr.connect()
drs.append(dr)

plt.show()

11.3 Mouse enter and leave

If you want to be notified when the mouse enters or leaves a figure or axes, you can connect to the figure/axes
enter/leave events. Here is a simple example that changes the colors of the axes and figure background that
the mouse is over:

"""
Illustrate the figure and axes enter and leave events by changing the
frame colors on enter and leave
"""
import matplotlib.pyplot as plt

90 Chapter 11. Event handling and picking

Matplotlib, Release 0.99.3

def enter_axes(event):
print ’enter_axes’, event.inaxes
event.inaxes.patch.set_facecolor(’yellow’)
event.canvas.draw()

def leave_axes(event):
print ’leave_axes’, event.inaxes
event.inaxes.patch.set_facecolor(’white’)
event.canvas.draw()

def enter_figure(event):
print ’enter_figure’, event.canvas.figure
event.canvas.figure.patch.set_facecolor(’red’)
event.canvas.draw()

def leave_figure(event):
print ’leave_figure’, event.canvas.figure
event.canvas.figure.patch.set_facecolor(’grey’)
event.canvas.draw()

fig1 = plt.figure()
fig1.suptitle(’mouse hover over figure or axes to trigger events’)
ax1 = fig1.add_subplot(211)
ax2 = fig1.add_subplot(212)

fig1.canvas.mpl_connect(’figure_enter_event’, enter_figure)
fig1.canvas.mpl_connect(’figure_leave_event’, leave_figure)
fig1.canvas.mpl_connect(’axes_enter_event’, enter_axes)
fig1.canvas.mpl_connect(’axes_leave_event’, leave_axes)

fig2 = plt.figure()
fig2.suptitle(’mouse hover over figure or axes to trigger events’)
ax1 = fig2.add_subplot(211)
ax2 = fig2.add_subplot(212)

fig2.canvas.mpl_connect(’figure_enter_event’, enter_figure)
fig2.canvas.mpl_connect(’figure_leave_event’, leave_figure)
fig2.canvas.mpl_connect(’axes_enter_event’, enter_axes)
fig2.canvas.mpl_connect(’axes_leave_event’, leave_axes)

plt.show()

11.4 Object picking

You can enable picking by setting the picker property of an Artist (eg a matplotlib Line2D, Text, Patch,
Polygon, AxesImage, etc...)

There are a variety of meanings of the picker property:

None picking is disabled for this artist (default)

boolean if True then picking will be enabled and the artist will fire a pick event if the mouse

11.4. Object picking 91

Matplotlib, Release 0.99.3

event is over the artist

float if picker is a number it is interpreted as an epsilon tolerance in points and the the artist
will fire off an event if its data is within epsilon of the mouse event. For some artists like
lines and patch collections, the artist may provide additional data to the pick event that is
generated, eg the indices of the data within epsilon of the pick event.

function if picker is callable, it is a user supplied function which determines whether the
artist is hit by the mouse event. The signature is hit, props = picker(artist,
mouseevent) to determine the hit test. If the mouse event is over the artist, return
hit=True and props is a dictionary of properties you want added to the PickEvent at-
tributes

After you have enabled an artist for picking by setting the picker property, you need to connect to the figure
canvas pick_event to get pick callbacks on mouse press events. Eg:

def pick_handler(event):
mouseevent = event.mouseevent
artist = event.artist
now do something with this...

The PickEvent which is passed to your callback is always fired with two attributes:

mouseevent the mouse event that generate the pick event. The mouse event in turn has at-
tributes like x and y (the coords in display space, eg pixels from left, bottom) and xdata,
ydata (the coords in data space). Additionally, you can get information about which but-
tons were pressed, which keys were pressed, which Axes the mouse is over, etc. See
matplotlib.backend_bases.MouseEvent for details.

artist the Artist that generated the pick event.

Additionally, certain artists like Line2D and PatchCollection may attach additional meta data like the
indices into the data that meet the picker criteria (eg all the points in the line that are within the specified
epsilon tolerance)

11.4.1 Simple picking example

In the example below, we set the line picker property to a scalar, so it represents a tolerance in points (72
points per inch). The onpick callback function will be called when the pick event it within the tolerance
distance from the line, and has the indices of the data vertices that are within the pick distance tolerance.
Our onpick callback function simply prints the data that are under the pick location. Different matplotlib
Artists can attach different data to the PickEvent. For example, Line2D attaches the ind property, which are
the indices into the line data under the pick point. See pick() for details on the PickEvent properties of
the line. Here is the code:

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_title(’click on points’)

92 Chapter 11. Event handling and picking

Matplotlib, Release 0.99.3

line, = ax.plot(np.random.rand(100), ’o’, picker=5) # 5 points tolerance

def onpick(event):
thisline = event.artist
xdata = thisline.get_xdata()
ydata = thisline.get_ydata()
ind = event.ind
print ’onpick points:’, zip(xdata[ind], ydata[ind])

fig.canvas.mpl_connect(’pick_event’, onpick)

plt.show()

11.4.2 Picking exercise

Create a data set of 100 arrays of 1000 Gaussian random numbers and compute the sample mean and
standard deviation of each of them (hint: numpy arrays have a mean and std method) and make a xy marker
plot of the 100 means vs the 100 standard deviations. Connect the line created by the plot command to the
pick event, and plot the original time series of the data that generated the clicked on points. If more than one
point is within the tolerance of the clicked on point, you can use multiple subplots to plot the multiple time
series.

Exercise solution:

"""
compute the mean and stddev of 100 data sets and plot mean vs stddev.
When you click on one of the mu, sigma points, plot the raw data from
the dataset that generated the mean and stddev
"""
import numpy as np
import matplotlib.pyplot as plt

X = np.random.rand(100, 1000)
xs = np.mean(X, axis=1)
ys = np.std(X, axis=1)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_title(’click on point to plot time series’)
line, = ax.plot(xs, ys, ’o’, picker=5) # 5 points tolerance

def onpick(event):

if event.artist!=line: return True

N = len(event.ind)
if not N: return True

figi = plt.figure()

11.4. Object picking 93

Matplotlib, Release 0.99.3

for subplotnum, dataind in enumerate(event.ind):
ax = figi.add_subplot(N,1,subplotnum+1)
ax.plot(X[dataind])
ax.text(0.05, 0.9, ’mu=%1.3f\nsigma=%1.3f’%(xs[dataind], ys[dataind]),

transform=ax.transAxes, va=’top’)
ax.set_ylim(-0.5, 1.5)

figi.show()
return True

fig.canvas.mpl_connect(’pick_event’, onpick)

plt.show()

94 Chapter 11. Event handling and picking

CHAPTER

TWELVE

TRANSFORMATIONS TUTORIAL

Like any graphics packages, matplotlib is built on top of a transformation framework to easily move between
coordinate systems, the userland data coordinate system, the axes coordinate system, the figure coordinate
system, and the display coordinate system. In 95% of your plotting, you won’t need to think about this,
as it happens under the hood, but as you push the limits of custom figure generation, it helps to have an
understanding of these objects so you can reuse the existing transformations matplotlib makes available
to you, or create your own (see matplotlib.transforms). The table below summarizes the existing
coordinate systems, the transformation object you should use to work in that coordinate system, and the
description of that system. In the Transformation Object column, ax is a Axes instance, and fig is a
Figure instance.

Coor-
dinate

Transfor-
mation
Object

Description

data ax.transData The userland data coordinate system, controlled by the xlim and ylim
axes ax.transAxes The coordinate system of the Axes; (0,0) is bottom left of the axes, and (1,1)

is top right of the axes
figure fig.transFigureThe coordinate system of the Figure; (0,0) is bottom left of the figure, and

(1,1) is top right of the figure
dis-
play

None This is the pixel coordinate system of the display; (0,0) is the bottom left of
the display, and (width, height) is the top right of the display in pixels

All of the transformation objects in the table above take inputs in their coordinate system, and transform
the input to the display coordinate system. That is why the display coordinate system has None for the
Transformation Object column – it already is in display coordinates. The transformations also know how to
invert themselves, to go from display back to the native coordinate system. This is particularly useful when
processing events from the user interface, which typically occur in display space, and you want to know
where the mouse click or key-press occurred in your data coordinate system.

12.1 Data coordinates

Let’s start with the most commonly used coordinate, the data coordinate system. Whenever you add data to
the axes, matplotlib updates the datalimits, most commonly updated with the set_xlim() and set_ylim()
methods. For example, in the figure below, the data limits stretch from 0 to 10 on the x-axis, and -1 to 1 on
the y-axis.

95

Matplotlib, Release 0.99.3

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(0, 10, 0.005)
y = np.exp(-x/2.) * np.sin(2*np.pi*x)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(x, y)
ax.set_xlim(0, 10)
ax.set_ylim(-1, 1)

plt.show()

0 2 4 6 8 10
1.0

0.5

0.0

0.5

1.0

You can use the ax.transData instance to transform from your data to your display coordinate system,
either a single point or a sequence of points as shown below:

In [14]: type(ax.transData)
Out[14]: <class ’ matplotlib.transforms.CompositeGenericTransform’>

In [15]: ax.transData.transform((5, 0))
Out[15]: array([335.175, 247.])

In [16]: ax.transData.transform([(5, 0), (1,2)])
Out[16]:
array([[335.175, 247.],

96 Chapter 12. Transformations Tutorial

Matplotlib, Release 0.99.3

[132.435, 642.2]])

You can use the inverted() method to create a transform which will take you from display to data coordi-
nates:

In [41]: inv = ax.transData.inverted()

In [42]: type(inv)
Out[42]: <class ’ matplotlib.transforms.CompositeGenericTransform’>

In [43]: inv.transform((335.175, 247.))
Out[43]: array([5., 0.])

If your are typing along with this tutorial, the exact values of the display coordinates may differ if you have
a different window size or dpi setting. Likewise, in the figure below, the display labeled points are probably
not the same as in the ipython session because the documentation figure size defaults are different.

0 2 4 6 8 10
1.0

0.5

0.0

0.5

1.0

data = (5.0, 0.0)

display = (225.5, 180.0)

Note: If you run the source code in the example above in a GUI backend, you may also find that the
two arrows for the data and display annotations do not point to exactly the same point. This is because
the display point was computed before the figure was displayed, and the GUI backend may slightly resize
the figure when it is created. The effect is more pronounced if you resize the figure yourself. This is one
good reason why you rarely want to work in display space, but you can connect to the ’on_draw’ Event to
update figure coordinates on figure draws; see Event handling and picking.

When you change the x or y limits of your axes, the data limits are updated so the transformation yields a

12.1. Data coordinates 97

Matplotlib, Release 0.99.3

new display point. Note that when we just change the ylim, only the y-display coordinate is altered, and
when we change the xlim too, both are altered. More on this later when we talk about the Bbox.

In [54]: ax.transData.transform((5, 0))
Out[54]: array([335.175, 247.])

In [55]: ax.set_ylim(-1,2)
Out[55]: (-1, 2)

In [56]: ax.transData.transform((5, 0))
Out[56]: array([335.175 , 181.13333333])

In [57]: ax.set_xlim(10,20)
Out[57]: (10, 20)

In [58]: ax.transData.transform((5, 0))
Out[58]: array([-171.675 , 181.13333333])

12.2 Axes coordinates

After the data coordinate system, axes is probably the second most useful coordinate system. Here the point
(0,0) is the bottom left of your axes or subplot, (0.5, 0.5) is the center, and (1.0, 1.0) is the top right. You can
also refer to points outside the range, so (-0.1, 1.1) is to the left and above your axes. This coordinate system
is extremely useful when placing text in your axes, because you often want a text bubble in a fixed, location,
eg. the upper left of the axes pane, and have that location remain fixed when you pan or zoom. Here is a
simple example that creates four panels and labels them ‘A’, ‘B’, ‘C’, ‘D’ as you often see in journals.

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
for i, label in enumerate((’A’, ’B’, ’C’, ’D’)):

ax = fig.add_subplot(2,2,i+1)
ax.text(0.05, 0.95, label, transform=ax.transAxes,
fontsize=16, fontweight=’bold’, va=’top’)

plt.show()

98 Chapter 12. Transformations Tutorial

Matplotlib, Release 0.99.3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
A

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
B

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
C

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
D

You can also make lines or patches in the axes coordinate system, but this is less useful in my experience
than using ax.transAxes for placing text. Nonetheless, here is a silly example which plots some random
dots in data space, and overlays a semi-transparent Circle centered in the middle of the axes with a radius
one quarter of the axes – if your axes does not preserve aspect ratio (see set_aspect()), this will look like
an ellipse. Use the pan/zoom tool to move around, or manually change the data xlim and ylim, and you
will see the data move, but the circle will remain fixed because it is not in data coordinates and will always
remain at the center of the axes.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
fig = plt.figure()
ax = fig.add_subplot(111)
x, y = 10*np.random.rand(2, 1000)
ax.plot(x, y, ’go’) # plot some data in data coordinates

circ = patches.Circle((0.5, 0.5), 0.25, transform=ax.transAxes,
facecolor=’yellow’, alpha=0.5)

ax.add_patch(circ)

plt.show()

12.2. Axes coordinates 99

Matplotlib, Release 0.99.3

0 2 4 6 8 10
0

2

4

6

8

10

12.3 Blended transformations

Drawing in blended coordinate spaces which mix axes with data coordinates is extremely useful, for ex-
ample to create a horizontal span which highlights some region of the y-data but spans across the x-axis
regardless of the data limits, pan or zoom level, etc. In fact these blended lines and spans are so useful, we
have built in functions to make them easy to plot (see axhline(), axvline(), axhspan(), axvspan())
but for didactic purposes we will implement the horizontal span here using a blended transformation. This
trick only works for separable transformations, like you see in normal Cartesian coordinate systems, but not
on inseparable transformations like the PolarTransform.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.transforms as transforms

fig = plt.figure()
ax = fig.add_subplot(111)

x = np.random.randn(1000)

ax.hist(x, 30)
ax.set_title(r’$\sigma=1 \/ \dots \/ \sigma=2$’, fontsize=16)

100 Chapter 12. Transformations Tutorial

Matplotlib, Release 0.99.3

the x coords of this transformation are data, and the
y coord are axes
trans = transforms.blended_transform_factory(

ax.transData, ax.transAxes)

highlight the 1..2 stddev region with a span.
We want x to be in data coordinates and y to
span from 0..1 in axes coords
rect = patches.Rectangle((1,0), width=1, height=1,

transform=trans, color=’yellow’,
alpha=0.5)

ax.add_patch(rect)

plt.show()

4 3 2 1 0 1 2 3 4
0

10

20

30

40

50

60

70

80

90
σ=1 σ=2

12.4 Using offset transforms to create a shadow effect

One use of transformations is to create a new transformation that is offset from another annotation, eg to
place one object shifted a bit relative to another object. Typically you want the shift to be in some physical
dimension, like points or inches rather than in data coordinates, so that the shift effect is constant at different
zoom levels and dpi settings.

12.4. Using offset transforms to create a shadow effect 101

Matplotlib, Release 0.99.3

One use for an offset is to create a shadow effect, where you draw one object identical to the first just to the
right of it, and just below it, adjusting the zorder to make sure the shadow is drawn first and then the object
it is shadowing above it. The transforms module has a helper transformation ScaledTranslation. It is
instantiated with:

trans = ScaledTranslation(xt, yt, scale_trans)

where xt and yt are the translation offsets, and scale_trans is a transformation which scales xt and yt at trans-
formation time before applying the offsets. A typical use case is to use the figure fig.dpi_scale_trans
transformation for the scale_trans argument, to first scale xt and yt specified in points to display space before
doing the final offset. The dpi and inches offset is a common-enough use case that we have a special helper
function to create it in matplotlib.transforms.offset_copy(), which returns a new transform with
an added offset. But in the example below, we’ll create the offset transform ourselves. Note the use of the
plus operator in:

offset = transforms.ScaledTranslation(dx, dy,
fig.dpi_scale_trans)

shadow_transform = ax.transData + offset

showing that can chain transformations using the addition operator. This code says: first apply the data
transformation ax.transData and then translate the data by dx and dy points.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.transforms as transforms

fig = plt.figure()
ax = fig.add_subplot(111)

make a simple sine wave
x = np.arange(0., 2., 0.01)
y = np.sin(2*np.pi*x)
line, = ax.plot(x, y, lw=3, color=’blue’)

shift the object over 2 points, and down 2 points
dx, dy = 2/72., -2/72.
offset = transforms.ScaledTranslation(dx, dy,
fig.dpi_scale_trans)

shadow_transform = ax.transData + offset

now plot the same data with our offset transform;
use the zorder to make sure we are below the line
ax.plot(x, y, lw=3, color=’gray’,
transform=shadow_transform,
zorder=0.5*line.get_zorder())

ax.set_title(’creating a shadow effect with an offset transform’)
plt.show()

102 Chapter 12. Transformations Tutorial

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0
creating a shadow effect with an offset transform

12.5 The transformation pipeline

The ax.transData transform we have been working with in this tutorial is a composite of three different
transformations that comprise the transformation pipeline from data -> display coordinates. Michael Droet-
tboom implemented the transformations framework, taking care to provide a clean API that segregated the
nonlinear projections and scales that happen in polar and logarithmic plots, from the linear affine transfor-
mations that happen when you pan and zoom. There is an efficiency here, because you can pan and zoom in
your axes which affects the affine transformation, but you may not need to compute the potentially expensive
nonlinear scales or projections on simple navigation events. It is also possible to multiply affine transfor-
mation matrices together, and then apply them to coordinates in one step. This is not true of all possible
transformations.

Here is how the ax.transData instance is defined in the basic separable axis Axes class:

self.transData = self.transScale + (self.transLimits + self.transAxes)

We’ve been introduced to the transAxes instance above in Axes coordinates, which maps the (0,0), (1,1)
corners of the axes or subplot bounding box to display space, so let’s look at these other two pieces.

self.transLimits is the transformation that takes you from data to axes coordinates; i.e., it maps your
view xlim and ylim to the unit space of the axes (and transAxes then takes that unit space to display space).
We can see this in action here

12.5. The transformation pipeline 103

Matplotlib, Release 0.99.3

In [80]: ax = subplot(111)

In [81]: ax.set_xlim(0, 10)
Out[81]: (0, 10)

In [82]: ax.set_ylim(-1,1)
Out[82]: (-1, 1)

In [84]: ax.transLimits.transform((0,-1))
Out[84]: array([0., 0.])

In [85]: ax.transLimits.transform((10,-1))
Out[85]: array([1., 0.])

In [86]: ax.transLimits.transform((10,1))
Out[86]: array([1., 1.])

In [87]: ax.transLimits.transform((5,0))
Out[87]: array([0.5, 0.5])

and we can use this same inverted transformation to go from the unit axes coordinates back to data coordi-
nates.

In [90]: inv.transform((0.25, 0.25))
Out[90]: array([2.5, -0.5])

The final piece is the self.transScale attribute, which is responsible for the optional non-linear scaling
of the data, eg. for logarithmic axes. When an Axes is initially setup, this is just set to the identity trans-
form, since the basic matplotlib axes has linear scale, but when you call a logarithmic scaling function like
semilogx() or explicitly set the scale to logarithmic with set_xscale(), then the ax.transScale at-
tribute is set to handle the nonlinear projection. The scales transforms are properties of the respective xaxis
and yaxis Axis instances. For example, when you call ax.set_xscale(’log’), the xaxis updates its
scale to a matplotlib.scale.LogScale instance.

For non-separable axes the PolarAxes, there is one more piece to consider, the projection transformation.
The transData matplotlib.projections.polar.PolarAxes is similar to that for the typical separable
matplotlib Axes, with one additional piece transProjection:

self.transData = self.transScale + self.transProjection + \
(self.transProjectionAffine + self.transAxes)

transProjection handles the projection from the space, eg. latitude and longitude for map data, or
radius and theta for polar data, to a separable Cartesian coordinate system. There are several projection
examples in the matplotlib.projections package, and the best way to learn more is to open the source
for those packages and see how to make your own, since matplotlib supports extensible axes and projections.
Michael Droettboom has provided a nice tutorial example of creating a hammer projection axes; see api-
custom_projection_example.

104 Chapter 12. Transformations Tutorial

CHAPTER

THIRTEEN

PATH TUTORIAL

The object underlying all of the matplotlib.patch objects is the Path, which supports the standard set of
moveto, lineto, curveto commands to draw simple and compound outlines consisting of line segments and
splines. The Path is instantiated with a (N,2) array of (x,y) vertices, and a N-length array of path codes. For
example to draw the unit rectangle from (0,0) to (1,1), we could use this code

import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches

verts = [
(0., 0.), # left, bottom
(0., 1.), # left, top
(1., 1.), # right, top
(1., 0.), # right, bottom
(0., 0.), # ignored
]

codes = [Path.MOVETO,
Path.LINETO,
Path.LINETO,
Path.LINETO,
Path.CLOSEPOLY,
]

path = Path(verts, codes)

fig = plt.figure()
ax = fig.add_subplot(111)
patch = patches.PathPatch(path, facecolor=’orange’, lw=2)
ax.add_patch(patch)
ax.set_xlim(-2,2)
ax.set_ylim(-2,2)
plt.show()

105

Matplotlib, Release 0.99.3

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

The following path codes are recognized

Code Vertices Description
STOP 1 (ignored) A marker for the end of the entire path (currently not required and

ignored)
MOVETO 1 Pick up the pen and move to the given vertex.
LINETO 1 Draw a line from the current position to the given vertex.
CURVE3 2 (1 control point, 1

endpoint)
Draw a quadratic Bézier curve from the current position, with the
given control point, to the given end point.

CURVE4 3 (2 control points,
1 endpoint)

Draw a cubic Bézier curve from the current position, with the given
control points, to the given end point.

CLOSEPOLY1 (point itself is
ignored)

Draw a line segment to the start point of the current polyline.

13.1 Bézier example

Some of the path components require multiple vertices to specify them: for example CURVE 3 is a bézier
curve with one control point and one end point, and CURVE4 has three vertices for the two control points
and the end point. The example below shows a CURVE4 Bézier spline – the bézier curve will be contained
in the convex hull of the start point, the two control points, and the end point

106 Chapter 13. Path Tutorial

http://en.wikipedia.org/wiki/B%C3%A9zier_curve

Matplotlib, Release 0.99.3

import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches

verts = [
(0., 0.), # P0
(0.2, 1.), # P1
(1., 0.8), # P2
(0.8, 0.), # P3
]

codes = [Path.MOVETO,
Path.CURVE4,
Path.CURVE4,
Path.CURVE4,
]

path = Path(verts, codes)

fig = plt.figure()
ax = fig.add_subplot(111)
patch = patches.PathPatch(path, facecolor=’none’, lw=2)
ax.add_patch(patch)

xs, ys = zip(*verts)
ax.plot(xs, ys, ’x--’, lw=2, color=’black’, ms=10)

ax.text(-0.05, -0.05, ’P0’)
ax.text(0.15, 1.05, ’P1’)
ax.text(1.05, 0.85, ’P2’)
ax.text(0.85, -0.05, ’P3’)

ax.set_xlim(-0.1, 1.1)
ax.set_ylim(-0.1, 1.1)
plt.show()

13.1. Bézier example 107

Matplotlib, Release 0.99.3

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

P0

P1

P2

P3

13.2 Compound paths

All of the simple patch primitives in matplotlib, Rectangle, Circle, Polygon, etc, are implemented with
simple path. Plotting functions like hist() and bar(), which create a number of primitives, eg a bunch of
Rectangles, can usually be implemented more efficiently using a compound path. The reason bar creates
a list of rectangles and not a compound path is largely historical: the Path code is comparatively new and
bar predates it. While we could change it now, it would break old code, so here we will cover how to create
compound paths, replacing the functionality in bar, in case you need to do so in your own code for efficiency
reasons, eg you are creating an animated bar plot.

We will make the histogram chart by creating a series of rectangles for each histogram bar: the rectangle
width is the bin width and the rectangle height is the number of datapoints in that bin. First we’ll create
some random normally distributed data and compute the histogram. Because numpy returns the bin edges
and not centers, the length of bins is 1 greater than the length of n in the example below:

histogram our data with numpy
data = np.random.randn(1000)
n, bins = np.histogram(data, 100)

We’ll now extract the corners of the rectangles. Each of the left, bottom, etc, arrays below is len(n),
where n is the array of counts for each histogram bar:

108 Chapter 13. Path Tutorial

Matplotlib, Release 0.99.3

get the corners of the rectangles for the histogram
left = np.array(bins[:-1])
right = np.array(bins[1:])
bottom = np.zeros(len(left))
top = bottom + n

Now we have to construct our compound path, which will consist of a series of MOVETO, LINETO and
CLOSEPOLY for each rectangle. For each rectangle, we need 5 vertices: 1 for the MOVETO, 3 for the LINETO,
and 1 for the CLOSEPOLY. As indicated in the table above, the vertex for the closepoly is ignored but we still
need it to keep the codes aligned with the vertices:

nverts = nrects*(1+3+1)
verts = np.zeros((nverts, 2))
codes = np.ones(nverts, int) * path.Path.LINETO
codes[0::5] = path.Path.MOVETO
codes[4::5] = path.Path.CLOSEPOLY
verts[0::5,0] = left
verts[0::5,1] = bottom
verts[1::5,0] = left
verts[1::5,1] = top
verts[2::5,0] = right
verts[2::5,1] = top
verts[3::5,0] = right
verts[3::5,1] = bottom

All that remains is to create the path, attach it to a PathPatch, and add it to our axes:

barpath = path.Path(verts, codes)
patch = patches.PathPatch(barpath, facecolor=’green’,
edgecolor=’yellow’, alpha=0.5)

ax.add_patch(patch)

Here is the result

13.2. Compound paths 109

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
0

5

10

15

20

25

30

110 Chapter 13. Path Tutorial

CHAPTER

FOURTEEN

ANNOTATING AXES

Do not proceed unless you already have read text() and annotate()!

14.1 Annotating with Text with Box

Let’s start with a simple example.

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

Sample A

Sample B

Dire
ct

io
n

111

Matplotlib, Release 0.99.3

The text() function in the pyplot module (or text method of the Axes class) takes bbox keyword argument,
and when given, a box around the text is drawn.

bbox_props = dict(boxstyle="rarrow,pad=0.3", fc="cyan", ec="b", lw=2)
t = ax.text(0, 0, "Direction", ha="center", va="center", rotation=45,

size=15,
bbox=bbox_props)

The patch object associated with the text can be accessed by:

bb = t.get_bbox_patch()

The return value is an instance of FancyBboxPatch and the patch properties like facecolor, edgewidth, etc.
can be accessed and modified as usual. To change the shape of the box, use set_boxstyle method.

bb.set_boxstyle("rarrow", pad=0.6)

The arguments are the name of the box style with its attributes as keyword arguments. Currently, following
box styles are implemented.

Class Name Attrs
LArrow larrow pad=0.3
RArrow rarrow pad=0.3
Round round pad=0.3,rounding_size=None
Round4 round4 pad=0.3,rounding_size=None
Roundtooth roundtooth pad=0.3,tooth_size=None
Sawtooth sawtooth pad=0.3,tooth_size=None
Square square pad=0.3

112 Chapter 14. Annotating Axes

Matplotlib, Release 0.99.3

square

sawtooth

roundtooth

rarrow

larrow

round4

round

Note that the attributes arguments can be specified within the style name with separating comma (this form
can be used as “boxstyle” value of bbox argument when initializing the text instance)

bb.set_boxstyle("rarrow,pad=0.6")

14.2 Annotating with Arrow

The annotate() function in the pyplot module (or annotate method of the Axes class) is used to draw an
arrow connecting two points on the plot.

ax.annotate("Annotation",
xy=(x1, y1), xycoords=’data’,
xytext=(x2, y2), textcoords=’offset points’,
)

This annotates a point at xy in the given coordinate (xycoords) with the text at xytext given in
textcoords. Often, the annotated point is specified in the data coordinate and the annotating text in offset
points. See annotate() for available coordinate systems.

An arrow connecting two point (xy & xytext) can be optionally drawn by specifying the arrowprops
argument. To draw only an arrow, use empty string as the first argument.

14.2. Annotating with Arrow 113

Matplotlib, Release 0.99.3

ax.annotate("",
xy=(0.2, 0.2), xycoords=’data’,
xytext=(0.8, 0.8), textcoords=’data’,
arrowprops=dict(arrowstyle="->",

connectionstyle="arc3"),
)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

The arrow drawing takes a few steps.

1. a connecting path between two points are created. This is controlled by connectionstyle key value.

2. If patch object is given (patchA & patchB), the path is clipped to avoid the patch.

3. The path is further shrunk by given amount of pixels (shirnkA & shrinkB)

4. The path is transmuted to arrow patch, which is controlled by the arrowstyle key value.

connect clip shrink mutate

The creation of the connecting path between two points is controlled by connectionstyle key and fol-
lowing styles are available.

114 Chapter 14. Annotating Axes

Matplotlib, Release 0.99.3

Name Attrs
angle angleA=90,angleB=0,rad=0.0
angle3 angleA=90,angleB=0
arc angleA=0,angleB=0,armA=None,armB=None,rad=0.0
arc3 rad=0.0
bar armA=0.0,armB=0.0,fraction=0.3,angle=None

Note that “3” in angle3 and arc3 is meant to indicate that the resulting path is a quadratic spline segment
(three control points). As will be discussed below, some arrow style option only can be used when the
connecting path is a quadratic spline.

The behavior of each connection style is (limitedly) demonstrated in the example below. (Warning : The
behavior of the bar style is currently not well defined, it may be changed in the future).

angle3,
angleA=90,
angleB=0

arc3,rad=0. angle,
angleA=-90,
angleB=180,
rad=0

arc,
angleA=-90,
angleB=0,
armA=30,
armB=30,
rad=0

bar,
fraction=0.3

angle3,
angleA=0,
angleB=90

arc3,rad=0.3 angle,
angleA=-90,
angleB=180,
rad=5

arc,
angleA=-90,
angleB=0,
armA=30,
armB=30,
rad=5

bar,
fraction=-0.3

arc3,rad=-0.3 angle,
angleA=-90,
angleB=10,
rad=0

arc,
angleA=-90,
angleB=0,
armA=0,
armB=40,
rad=0

bar,
angle=180,
fraction=-0.2

The connecting path (after clipping and shrinking) is then mutated to an arrow patch, according to the given
arrowstyle.

14.2. Annotating with Arrow 115

Matplotlib, Release 0.99.3

Name Attrs
- None
-> head_length=0.4,head_width=0.2
-[widthB=1.0,lengthB=0.2,angleB=None
-|> head_length=0.4,head_width=0.2
<- head_length=0.4,head_width=0.2
<-> head_length=0.4,head_width=0.2
<|- head_length=0.4,head_width=0.2
<|-|> head_length=0.4,head_width=0.2
fancy head_length=0.4,head_width=0.4,tail_width=0.4
simple head_length=0.5,head_width=0.5,tail_width=0.2
wedge tail_width=0.3,shrink_factor=0.5

-

->

-[

-|>

<-

<->

<|-

<|-|>

fancy

simple

wedge

Some arrowstyles only work with connection style that generates a quadratic-spline segment. They are
fancy, simple, and wedge. For these arrow styles, you must use “angle3” or “arc3” connection style.

If the annotation string is given, the patchA is set to the bbox patch of the text by default.

116 Chapter 14. Annotating Axes

Matplotlib, Release 0.99.3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Test

As in the text command, a box around the text can be drawn using the bbox argument.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Test

By default, the starting point is set to the center of the text extent. This can be adjusted with relpos key
value. The values are normalized to the extent of the text. For example, (0,0) means lower-left corner and
(1,1) means top-right.

14.2. Annotating with Arrow 117

Matplotlib, Release 0.99.3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

TestTest

14.3 Using ConnectorPatch

The ConnectorPatch is like an annotation without a text. While the annotate function is recommended in
most of situation, the ConnectorPatch is useful when you want to connect points in different axes.

from matplotlib.patches import ConnectionPatch
xy = (0.2, 0.2)
con = ConnectionPatch(xyA=xy, xyB=xy, coordsA="data", coordsB="data",

axesA=ax1, axesB=ax2)
ax2.add_artist(con)

The above code connects point xy in data coordinate of ax1 to point xy int data coordinate of ax2. Here is
a simple example.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

118 Chapter 14. Annotating Axes

Matplotlib, Release 0.99.3

While the ConnectorPatch instance can be added to any axes, but you may want it to be added to the axes in
the latter (?) of the axes drawing order to prevent overlap (?) by other axes.

14.4 Placing Artist at the anchored location of the Axes

There are class of artist that can be placed at the anchored location of the Axes. A common example is
the legend. This type of artists can be created by using the OffsetBox class. A few predefined classes are
available in mpl_toolkits.axes_grid.anchored_artists.

from mpl_toolkits.axes_grid.anchored_artists import AnchoredText
at = AnchoredText("Figure 1a",

prop=dict(size=8), frameon=True,
loc=2,
)

at.patch.set_boxstyle("round,pad=0.,rounding_size=0.2")
ax.add_artist(at)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 1a

The loc keyword has same meaning as in the legend command.

A simple application is when the size of the artist (or collection of artists) is known in pixel size during the
time of creation. For example, If you want to draw a circle with fixed size of 20 pixel x 20 pixel (radius =

10 pixel), you can utilize AnchoredDrawingArea. The instance is created with a size of the drawing area
(in pixel). And user can add arbitrary artist to the drawing area. Note that the extents of the artists that are
added to the drawing area has nothing to do with the placement of the drawing area itself. The initial size
only matters.

from mpl_toolkits.axes_grid.anchored_artists import AnchoredDrawingArea

ada = AnchoredDrawingArea(20, 20, 0, 0,
loc=1, pad=0., frameon=False)

p1 = Circle((10, 10), 10)
ada.drawing_area.add_artist(p1)

14.4. Placing Artist at the anchored location of the Axes 119

Matplotlib, Release 0.99.3

p2 = Circle((30, 10), 5, fc="r")
ada.drawing_area.add_artist(p2)

The artists that are added to the drawing area should not have transform set (they will be overridden) and
the dimension of those artists are interpreted as a pixel coordinate, i.e., the radius of the circles in above
example are 10 pixel and 5 pixel, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Sometimes, you want to your artists scale with data coordinate (or other coordinate than canvas pixel).
You can use AnchoredAuxTransformBox class. This is similar to AnchoredDrawingArea except that the
extent of the artist is determined during the drawing time respecting the specified transform.

from mpl_toolkits.axes_grid.anchored_artists import AnchoredAuxTransformBox

box = AnchoredAuxTransformBox(ax.transData, loc=2)
el = Ellipse((0,0), width=0.1, height=0.4, angle=30) # in data coordinates!
box.drawing_area.add_artist(el)

The ellipse in the above example will have width and height corresponds to 0.1 and 0.4 in data coordinate
and will be automatically scaled when the view limits of the axes change.

120 Chapter 14. Annotating Axes

Matplotlib, Release 0.99.3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

As in the legend, the bbox_to_anchor argument can be set. Using the HPacker and VPacker, you can have
an arrangement(?) of artist as in the legend (as a matter of fact, this is how the legend is created).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
 Test :

Note that unlike the legend, the bbox_transform is set to IdentityTransform by default.

14.4.1 Advanced Topics

14.5 Zoom effect between Axes

mpl_toolkits.axes_grid.inset_locator defines some patch classes useful for interconnect two axes. Under-
standing the code requires some knowledge of how mpl’s transform works. But, utilizing it will be straight
forward.

14.5. Zoom effect between Axes 121

Matplotlib, Release 0.99.3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

2.0 2.2 2.4 2.6 2.8 3.0
0.0

0.2

0.4

0.6

0.8

1.0

14.6 Define Custom BoxStyle

You can use a custom box style. The value for the boxstyle can be a callable object in following forms.:

def __call__(self, x0, y0, width, height, mutation_size,
aspect_ratio=1.):

"""
Given the location and size of the box, return the path of
the box around it.

- *x0*, *y0*, *width*, *height* : location and size of the box
- *mutation_size* : a reference scale for the mutation.
- *aspect_ratio* : aspect-ration for the mutation.

"""
path = ...
return path

Here is a complete example.

122 Chapter 14. Annotating Axes

Matplotlib, Release 0.99.3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Test

However, it is recommended that you derive from the matplotlib.patches.BoxStyle._Base as demonstrated
below.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Test

Similarly, you can define custom ConnectionStyle and custom ArrowStyle. See the source code of
lib/matplotlib/patches.py and check how each style class is defined.

14.6. Define Custom BoxStyle 123

Matplotlib, Release 0.99.3

124 Chapter 14. Annotating Axes

CHAPTER

FIFTEEN

TOOLKITS

Toolkits are collections of application-specific functions that extend matplotlib.

15.1 Basemap

Plots data on map projections, with continental and political boundaries, see basemap docs.

15.2 GTK Tools

mpl_toolkits.gtktools provides some utilities for working with GTK. This toolkit ships with matplotlib, but
requires pygtk.

15.3 Excel Tools

mpl_toolkits.exceltools provides some utilities for working with Excel. This toolkit ships with matplotlib,
but requires pyExcelerator

15.4 Natgrid

mpl_toolkits.natgrid is an interface to natgrid C library for gridding irregularly spaced data. This requires a
separate installation of the natgrid toolkit from the sourceforge download page.

15.5 mplot3d

mpl_toolkits.mplot3d provides some basic 3D plotting (scatter, surf, line, mesh) tools. Not the fastest or
feature complete 3D library out there, but ships with matplotlib and thus may be a lighter weight solution
for some use cases.

See toolkit_mplot3d-index for more documentation and examples.

125

http://matplotlib.sf.net/basemap/doc/html
http://www.pygtk.org/
http://sourceforge.net/projects/pyexcelerator
http://sourceforge.net/project/showfiles.php?group_id=80706&package_id=142792

Matplotlib, Release 0.99.3

15.6 AxesGrid

The matplotlib AxesGrid toolkit is a collection of helper classes to ease displaying multiple images in
matplotlib. The AxesGrid toolkit is distributed with matplotlib source.

See toolkit_axesgrid-index for documentations.

126 Chapter 15. Toolkits

CHAPTER

SIXTEEN

SCREENSHOTS

Here you will find a host of example figures with the code that generated them

16.1 Simple Plot

The most basic plot(), with text labels

0.0 0.5 1.0 1.5 2.0
time (s)

1.0

0.5

0.0

0.5

1.0

v
o
lt

a
g
e
 (

m
V

)

About as simple as it gets, folks

127

Matplotlib, Release 0.99.3

16.2 Subplot demo

Multiple regular axes (numrows by numcolumns) are created with the subplot() command.

0 1 2 3 4 5
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

D
a
m

p
e
d
 o

sc
ill

a
ti

o
n

A tale of 2 subplots

0.0 0.5 1.0 1.5 2.0
time (s)

1.0

0.5

0.0

0.5

1.0

U
n
d
a
m

p
e
d

16.3 Histograms

The hist() command automatically generates histograms and will return the bin counts or probabilities

128 Chapter 16. Screenshots

Matplotlib, Release 0.99.3

40 60 80 100 120 140 160
Smarts

0.000

0.005

0.010

0.015

0.020

0.025

0.030

P
ro

b
a
b
ili

ty

Histogram of IQ : µ=100, σ=15

16.4 Path demo

You can add aribitrary paths in matplotlib as of release 0.98. See the matplotlib.path.

16.4. Path demo 129

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3 4
3

2

1

0

1

2

3

4
spline paths

16.5 mplot3d

The mplot3d toolkit (see toolkit_mplot3d-tutorial and mplot3d-examples-index) has support for simple 3d
graphs including surface, wireframe, scatter, and bar charts (added in matlpotlib-0.99). Thanks to John
Porter, Jonathon Taylor and Reinier Heeres for the mplot3d toolkit. The toolkit is included with all standard
matplotlib installs.

130 Chapter 16. Screenshots

Matplotlib, Release 0.99.3

4
2

0
2

4
4

2
0

2
4

0.5

0.0

0.5

16.6 Ellipses

In support of the Phoenix mission to Mars, which used matplotlib in ground tracking of the spacecraft,
Michael Droettboom built on work by Charlie Moad to provide an extremely accurate 8-spline approxi-
mation to elliptical arcs (see Arc) in the viewport. This provides a scale free, accurate graph of the arc
regardless of zoom level

16.6. Ellipses 131

http://www.jpl.nasa.gov/news/phoenix/main.php

Matplotlib, Release 0.99.3

0 2 4 6 8 10
0

2

4

6

8

10

16.7 Bar charts

The bar() command takes error bars as an optional argument. You can also use up and down bars, stacked
bars, candlestick bars, etc, ... See bar_stacked.py for another example. You can make horizontal bar charts
with the barh() command.

132 Chapter 16. Screenshots

Matplotlib, Release 0.99.3

G1 G2 G3 G4 G5
0

5

10

15

20

25

30

35

40
S
co

re
s

20

35

30

35

27
25

32
34

20

25

Scores by group and gender

Men
Women

16.8 Pie charts

The pie() command uses a matlab(TM) compatible syntax to produce pie charts. Optional features include
auto-labeling the percentage of area, exploding one or more wedges out from the center of the pie, and a
shadow effect. Take a close look at the attached code that produced this figure; nine lines of code.

16.8. Pie charts 133

Matplotlib, Release 0.99.3

Frogs

15.0%

Hogs

30.0%

Dogs

45.0%

Logs

10.0%

Raining Hogs and Dogs

16.9 Table demo

The table() command will place a text table on the axes

134 Chapter 16. Screenshots

Matplotlib, Release 0.99.3

Freeze Wind Flood Quake Hail
100 year 431.5 1049.4 799.6 2149.8 917.9
50 year 292.2 717.8 456.4 1368.5 865.6
20 year 213.8 636.0 305.7 1175.2 796.0
10 year 124.6 555.4 153.2 677.2 192.5
5 year 66.4 174.3 75.1 577.9 32.0

0

500

1000

1500

2000

Lo
ss

 $
1

0
0

0
's

Loss by Disaster

16.10 Scatter demo

The scatter() command makes a scatter plot with (optional) size and color arguments. This example plots
changes in Google stock price from one day to the next with the sizes coding trading volume and the colors
coding price change in day i. Here the alpha attribute is used to make semitransparent circle markers with
the Agg backend (see What is a backend?)

Exception occurred rendering plot.

16.11 Slider demo

Matplotlib has basic GUI widgets that are independent of the graphical user interface you are using, allow-
ing you to write cross GUI figures and widgets. See matplotlib.widgets and the widget examples <exam-
ples/widgets>

16.10. Scatter demo 135

Matplotlib, Release 0.99.3

0.0 0.2 0.4 0.6 0.8 1.0
10

5

0

5

10

Freq 3.00
Amp 5.00

Reset

red
blue
green

16.12 Fill demo

The fill() command lets you plot filled polygons. Thanks to Andrew Straw for providing this function

136 Chapter 16. Screenshots

Matplotlib, Release 0.99.3

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

16.13 Date demo

You can plot date data with major and minor ticks and custom tick formatters for both the major and minor
ticks; see matplotlib.ticker and matplotlib.dates for details and usage.

Exception occurred rendering plot.

16.14 Financial charts

You can make much more sophisticated financial plots. This example emulates one of the ChartDirector
financial plots. Some of the data in the plot, are real financial data, some are random traces that I used since
the goal was to illustrate plotting techniques, not market analysis!

Exception occurred rendering plot.

16.15 Basemap demo

Jeff Whitaker provided this example showing how to efficiently plot a collection of lines over a colormap
image using the Basemap . Many map projections are handled via the proj4 library: cylindrical equidistant,

16.13. Date demo 137

http://www.advsofteng.com/gallery_finance.html

Matplotlib, Release 0.99.3

mercator, lambert conformal conic, lambert azimuthal equal area, albers equal area conic and stereographic.
See the tutorial entry on the wiki.

Exception occurred rendering plot.

16.16 Log plots

The semilogx(), semilogy() and loglog() functions generate log scaling on the respective axes. The
lower subplot uses a base10 log on the xaxis and a base 4 log on the yaxis. Thanks to Andrew Straw, Darren
Dale and Gregory Lielens for contributions to the log scaling infrastructure.

0 5 10 15 20
10-2

10-1

100
semilogy

10-2 10-1 100 101 102
1.0

0.5

0.0

0.5

1.0
semilogx

2-72-62-52-42-32-22-1202122232425100

101

102
loglog base 4 on x

10-1 100 101 102 10310-1
100
101
102
103
104
105

Errorbars go negative

16.17 Polar plots

The polar() command generates polar plots.

138 Chapter 16. Screenshots

http://www.scipy.org/wikis/topical_software/Maps

Matplotlib, Release 0.99.3

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

1.5
2.0

And there was much rejoicing!

16.18 Legends

The legend() command automatically generates figure legends, with Matlab compatible legend placement
commands. Thanks to Charles Twardy for input on the legend command

16.18. Legends 139

Matplotlib, Release 0.99.3

Model complexity --->

M
e
ss

a
g
e
 l
e
n
g
th

 -
--

>
Minimum Message Length

Model length

Data length

Total message length

16.19 Mathtext_examples

A sampling of the many TeX expressions now supported by matplotlib’s internal mathtext engine. The
mathtext module provides TeX style mathematical expressions using freetype2 and the BaKoMa computer
modern or STIX fonts. See the matplotlib.mathtext module for additional. matplotlib mathtext is
an independent implementation, and does not required TeX or any external packages installed on your
computer. See the tutorial at Writing mathematical expressions.

140 Chapter 16. Screenshots

http://freetype.sourceforge.net/index2.html
http://www.stixfonts.org

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

a+b+ +ṡ+

x y

$100.00 α_

$100.00
y

xy

x+y x=y x<y x :y x,y x@y

100%y x ∗y x/yx$y

x←y x∀y x−y

xxxXx

x x x x x xx y

{
braces

}
[⌊

5
(3)

4

y
)]

(x)

sin(x)

x2

x2

x 2
y

x 2
y
∞∏

i=αi+1

x=
x+

5

2

y+3

8

dz/dt=γx2 +sin(2πy+φ)

Foo: α j
i+1 =sin(2πfj ti)e

−5ti/τ

R
∞∏

i=αi+1

aisin(2πfxi)

Variable i is good

∆j
i

∆j
i+1

öéèÔı̆ñ~q

i

arccos((xi))

γ=
x=

6

8

y δ

limsup
x→∞∮ ∞

0

f′

x2 888

y

3
√

X2

Y
=5

5

√
x

2π2∏
∞

3
√
x =5

X
X

Y

W
3β
δ1ρ1σ2

=U
3β
δ1ρ1

+ 1

8π2

∫ α2

α2

dα ′2

[
U

2β
δ1ρ1
−α ′2 U 1β

ρ1σ2

U 0β
ρ1σ2

]

H=

∫
dτ
(
εE2 +µH2

)

âbcd̃ef

Γ∆ΘΛΞΠΣΥΦΨΩ

αβγδεζηθιλµνξπ ρστυφχψ

16.19. Mathtext_examples 141

Matplotlib, Release 0.99.3

16.20 Native TeX rendering

Although matplotlib’s internal math rendering engine is quite powerful, sometimes you need TeX, and
matplotlib supports external TeX rendering of strings with the usetex option.

0.0 0.2 0.4 0.6 0.8 1.0
time (s)

1.0

1.5

2.0

2.5

3.0

vo
lt

ag
e

(m
V

)

TEX is Number
∞∑

n=1

−eiπ
2n

!

16.21 EEG demo

You can embed matplotlib into pygtk, wxpython, Tk, FLTK or Qt applications. Here is a screenshot of an eeg
viewer called pbrain which is part of the NeuroImaging in Python suite NIPY. Pbrain is written in pygtk us-
ing matplotlib. The lower axes uses specgram() to plot the spectrogram of one of the EEG channels. For an
example of how to use the navigation toolbar in your applications, see user_interfaces-embedding_in_gtk2.
If you want to use matplotlib in a wx application, see user_interfaces-embedding_in_wx2. If you want to
work with glade, see user_interfaces-mpl_with_glade.

142 Chapter 16. Screenshots

http://neuroimaging.scipy.org
http://glade.gnome.org

Matplotlib, Release 0.99.3

16.21. EEG demo 143

Matplotlib, Release 0.99.3

144 Chapter 16. Screenshots

CHAPTER

SEVENTEEN

WHAT’S NEW IN MATPLOTLIB

This page just covers the highlights – for the full story, see the CHANGELOG

17.1 new in matplotlib-0.99

17.1.1 New documentation

Jae-Joon Lee has written two new guides Legend guide and Annotating Axes. Michael Sarahan has written
Image tutorial. John Hunter has written two new tutorials on working with paths and transformations: Path
Tutorial and Transformations Tutorial.

17.1.2 mplot3d

Reinier Heeres has ported John Porter’s mplot3d over to the new matplotlib transformations framework, and
it is now available as a toolkit mpl_toolkits.mplot3d (which now comes standard with all mpl installs). See
mplot3d-examples-index and toolkit_mplot3d-tutorial

145

http://matplotlib.sourceforge.net/_static/CHANGELOG

Matplotlib, Release 0.99.3

4
2

0
2

4
4

2
0

2
4

0.5

0.0

0.5

17.1.3 axes grid toolkit

Jae-Joon Lee has added a new toolkit to ease displaying multiple images in matplotlib, as well as some
support for curvilinear grids to support the world coordinate system. The toolkit is included standard with
all new mpl installs. See axes_grid-examples-index and axes_grid_users-guide-index.

146 Chapter 17. What’s new in matplotlib

Matplotlib, Release 0.99.3

2

4

6

8

10

0 2 4 6 8

17.1.4 Axis spine placement

Andrew Straw has added the ability to place “axis spines” – the lines that denote the data limits – in various
arbitrary locations. No longer are your axis lines constrained to be a simple rectangle around the figure –
you can turn on or off left, bottom, right and top, as well as “detach” the spine to offset it away from the
data. See pylab_examples-spine_placement_demo and matplotlib.spines.Spine.

17.1. new in matplotlib-0.99 147

Matplotlib, Release 0.99.3

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

0 1 2 3 4 5 6 7

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

0 1 2 3 4 5 6 7

17.2 new in 0.98.4

It’s been four months since the last matplotlib release, and there are a lot of new features and bug-fixes.

Thanks to Charlie Moad for testing and preparing the source release, including binaries for OS X and
Windows for python 2.4 and 2.5 (2.6 and 3.0 will not be available until numpy is available on those re-
leases). Thanks to the many developers who contributed to this release, with contributions from Jae-Joon
Lee, Michael Droettboom, Ryan May, Eric Firing, Manuel Metz, Jouni K. Seppaenen, Jeff Whitaker, Darren
Dale, David Kaplan, Michiel de Hoon and many others who submitted patches

17.2.1 Legend enhancements

Jae-Joon has rewritten the legend class, and added support for multiple columns and rows, as well as fancy
box drawing. See legend() and matplotlib.legend.Legend.

148 Chapter 17. What’s new in matplotlib

Matplotlib, Release 0.99.3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

n=1
n=2

n=3
n=4

17.2.2 Fancy annotations and arrows

Jae-Joon has added lot’s of support to annotations for drawing fancy boxes and connectors in annotations.
See annotate() and BoxStyle, ArrowStyle, and ConnectionStyle.

17.2. new in 0.98.4 149

Matplotlib, Release 0.99.3

square

sawtooth

roundtooth

rarrow

larrow

round4

round

-|>

<-

<->

<|-

<|-|>

fancy

simple

wedge

17.2.3 Native OS X backend

Michiel de Hoon has provided a native Mac OSX backend that is almost completely implemented in C. The
backend can therefore use Quartz directly and, depending on the application, can be orders of magnitude
faster than the existing backends. In addition, no third-party libraries are needed other than Python and
NumPy. The backend is interactive from the usual terminal application on Mac using regular Python. It
hasn’t been tested with ipython yet, but in principle it should to work there as well. Set ‘backend : macosx’
in your matplotlibrc file, or run your script with:

> python myfile.py -dmacosx

17.2.4 psd amplitude scaling

Ryan May did a lot of work to rationalize the amplitude scaling of psd() and friends. See pylab_examples-
psd_demo2. and pylab_examples-psd_demo3. The changes should increase MATLAB™ compatabililty and

150 Chapter 17. What’s new in matplotlib

http://www.mathworks.com

Matplotlib, Release 0.99.3

increase scaling options.

17.2.5 Fill between

Added a fill_between() function to make it easier to do shaded region plots in the presence of masked
data. You can pass an x array and a ylower and yupper array to fill betweem, and an optional where argument
which is a logical mask where you want to do the filling.

0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5
fill between where

17.2.6 Lots more

Here are the 0.98.4 notes from the CHANGELOG:

Added mdehoon’s native macosx backend from sf patch 2179017 - JDH

Removed the prints in the set_*style commands. Return the list of
pprinted strings instead - JDH

Some of the changes Michael made to improve the output of the
property tables in the rest docs broke of made difficult to use
some of the interactive doc helpers, eg setp and getp. Having all
the rest markup in the ipython shell also confused the docstrings.
I added a new rc param docstring.harcopy, to format the docstrings
differently for hardcopy and other use. Ther ArtistInspector

17.2. new in 0.98.4 151

Matplotlib, Release 0.99.3

could use a little refactoring now since there is duplication of
effort between the rest out put and the non-rest output - JDH

Updated spectral methods (psd, csd, etc.) to scale one-sided
densities by a factor of 2 and, optionally, scale all densities by
the sampling frequency. This gives better MatLab
compatibility. -RM

Fixed alignment of ticks in colorbars. -MGD

drop the deprecated "new" keyword of np.histogram() for numpy 1.2
or later. -JJL

Fixed a bug in svg backend that new_figure_manager() ignores
keywords arguments such as figsize, etc. -JJL

Fixed a bug that the handlelength of the new legend class set too
short when numpoints=1 -JJL

Added support for data with units (e.g. dates) to
Axes.fill_between. -RM

Added fancybox keyword to legend. Also applied some changes for
better look, including baseline adjustment of the multiline texts
so that it is center aligned. -JJL

The transmuter classes in the patches.py are reorganized as
subclasses of the Style classes. A few more box and arrow styles
are added. -JJL

Fixed a bug in the new legend class that didn’t allowed a tuple of
coordinate vlaues as loc. -JJL

Improve checks for external dependencies, using subprocess
(instead of deprecated popen*) and distutils (for version
checking) - DSD

Reimplementaion of the legend which supports baseline alignement,
multi-column, and expand mode. - JJL

Fixed histogram autoscaling bug when bins or range are given
explicitly (fixes Debian bug 503148) - MM

Added rcParam axes.unicode_minus which allows plain hypen for
minus when False - JDH

Added scatterpoints support in Legend. patch by Erik Tollerud -
JJL

Fix crash in log ticking. - MGD

Added static helper method BrokenHBarCollection.span_where and
Axes/pyplot method fill_between. See

152 Chapter 17. What’s new in matplotlib

Matplotlib, Release 0.99.3

examples/pylab/fill_between.py - JDH

Add x_isdata and y_isdata attributes to Artist instances, and use
them to determine whether either or both coordinates are used when
updating dataLim. This is used to fix autoscaling problems that
had been triggered by axhline, axhspan, axvline, axvspan. - EF

Update the psd(), csd(), cohere(), and specgram() methods of Axes
and the csd() cohere(), and specgram() functions in mlab to be in
sync with the changes to psd(). In fact, under the hood, these
all call the same core to do computations. - RM

Add ’pad_to’ and ’sides’ parameters to mlab.psd() to allow
controlling of zero padding and returning of negative frequency
components, respecitively. These are added in a way that does not
change the API. - RM

Fix handling of c kwarg by scatter; generalize is_string_like to
accept numpy and numpy.ma string array scalars. - RM and EF

Fix a possible EINTR problem in dviread, which might help when
saving pdf files from the qt backend. - JKS

Fix bug with zoom to rectangle and twin axes - MGD

Added Jae Joon’s fancy arrow, box and annotation enhancements --
see examples/pylab_examples/annotation_demo2.py

Autoscaling is now supported with shared axes - EF

Fixed exception in dviread that happened with Minion - JKS

set_xlim, ylim now return a copy of the viewlim array to avoid
modify inplace surprises

Added image thumbnail generating function
matplotlib.image.thumbnail. See examples/misc/image_thumbnail.py
- JDH

Applied scatleg patch based on ideas and work by Erik Tollerud and
Jae-Joon Lee. - MM

Fixed bug in pdf backend: if you pass a file object for output
instead of a filename, e.g. in a wep app, we now flush the object
at the end. - JKS

Add path simplification support to paths with gaps. - EF

Fix problem with AFM files that don’t specify the font’s full name
or family name. - JKS

Added ’scilimits’ kwarg to Axes.ticklabel_format() method, for
easy access to the set_powerlimits method of the major

17.2. new in 0.98.4 153

Matplotlib, Release 0.99.3

ScalarFormatter. - EF

Experimental new kwarg borderpad to replace pad in legend, based
on suggestion by Jae-Joon Lee. - EF

Allow spy to ignore zero values in sparse arrays, based on patch
by Tony Yu. Also fixed plot to handle empty data arrays, and
fixed handling of markers in figlegend. - EF

Introduce drawstyles for lines. Transparently split linestyles
like ’steps--’ into drawstyle ’steps’ and linestyle ’--’. Legends
always use drawstyle ’default’. - MM

Fixed quiver and quiverkey bugs (failure to scale properly when
resizing) and added additional methods for determining the arrow
angles - EF

Fix polar interpolation to handle negative values of theta - MGD

Reorganized cbook and mlab methods related to numerical
calculations that have little to do with the goals of those two
modules into a separate module numerical_methods.py Also, added
ability to select points and stop point selection with keyboard in
ginput and manual contour labeling code. Finally, fixed contour
labeling bug. - DMK

Fix backtick in Postscript output. - MGD

[2089958] Path simplification for vector output backends
Leverage the simplification code exposed through path_to_polygons
to simplify certain well-behaved paths in the vector backends
(PDF, PS and SVG). "path.simplify" must be set to True in
matplotlibrc for this to work. - MGD

Add "filled" kwarg to Path.intersects_path and
Path.intersects_bbox. - MGD

Changed full arrows slightly to avoid an xpdf rendering problem
reported by Friedrich Hagedorn. - JKS

Fix conversion of quadratic to cubic Bezier curves in PDF and PS
backends. Patch by Jae-Joon Lee. - JKS

Added 5-point star marker to plot command q- EF

Fix hatching in PS backend - MGD

Fix log with base 2 - MGD

Added support for bilinear interpolation in
NonUniformImage; patch by Gregory Lielens. - EF

Added support for multiple histograms with data of

154 Chapter 17. What’s new in matplotlib

Matplotlib, Release 0.99.3

different length - MM

Fix step plots with log scale - MGD

Fix masked arrays with markers in non-Agg backends - MGD

Fix clip_on kwarg so it actually works correctly - MGD

Fix locale problems in SVG backend - MGD

fix quiver so masked values are not plotted - JSW

improve interactive pan/zoom in qt4 backend on windows - DSD

Fix more bugs in NaN/inf handling. In particular, path
simplification (which does not handle NaNs or infs) will be turned
off automatically when infs or NaNs are present. Also masked
arrays are now converted to arrays with NaNs for consistent
handling of masks and NaNs - MGD and EF

17.2. new in 0.98.4 155

Matplotlib, Release 0.99.3

156 Chapter 17. What’s new in matplotlib

CHAPTER

EIGHTEEN

LICENSE

Matplotlib only uses BSD compatible code, and its license is based on the PSF license. See the Open
Source Initiative licenses page for details on individual licenses. Non-BSD compatible licenses (eg LGPL)
are acceptable in matplotlib Toolkits. For a discussion of the motivations behind the licencing choice, see
Licenses.

18.1 License agreement for matplotlib 0.99.3

1. This LICENSE AGREEMENT is between John D. Hunter (“JDH”), and the Individual or Organization
(“Licensee”) accessing and otherwise using matplotlib software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, JDH hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use matplotlib 0.99.3 alone or in any derivative version, provided,
however, that JDH’s License Agreement and JDH’s notice of copyright, i.e., “Copyright (c) 2002-2009 John
D. Hunter; All Rights Reserved” are retained in matplotlib 0.99.3 alone or in any derivative version prepared
by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates matplotlib 0.99.3 or any
part thereof, and wants to make the derivative work available to others as provided herein, then Licensee
hereby agrees to include in any such work a brief summary of the changes made to matplotlib 0.99.3.

4. JDH is making matplotlib 0.99.3 available to Licensee on an “AS IS” basis. JDH MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, JDH MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
MATPLOTLIB 0.99.3 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. JDH SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF MATPLOTLIB 0.99.3
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING MATPLOTLIB 0.99.3, OR ANY DERIVA-
TIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

157

http://www.python.org/psf/license
http://www.opensource.org/licenses

Matplotlib, Release 0.99.3

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between JDH and Licensee. This License Agreement does not grant permission to use JDH
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using matplotlib 0.99.3, Licensee agrees to be bound by the terms
and conditions of this License Agreement.

158 Chapter 18. License

CHAPTER

NINETEEN

CREDITS

matplotlib was written by John Hunter and is now developed and maintained by a number of active devel-
opers.

Special thanks to those who have made valuable contributions (roughly in order of first contribution by date)

Jeremy O’Donoghue wrote the wx backend

Andrew Straw provided much of the log scaling architecture, the fill command, PIL support for
imshow, and provided many examples. He also wrote the support for dropped axis spines and the
buildbot unit testing infrastructure which triggers the JPL/James Evans platform specific builds and
regression test image comparisons from svn matplotlib across platforms on svn commits.

Charles Twardy provided the impetus code for the legend class and has made countless bug reports and
suggestions for improvement.

Gary Ruben made many enhancements to errorbar to support x and y errorbar plots, and added a number
of new marker types to plot.

John Gill wrote the table class and examples, helped with support for auto-legend placement, and added
support for legending scatter plots.

David Moore wrote the paint backend (no longer used)

Todd Miller supported by STSCI contributed the TkAgg backend and the numerix module, which allows
matplotlib to work with either numeric or numarray. He also ported image support to the postscript
backend, with much pain and suffering.

Paul Barrett supported by STSCI overhauled font management to provide an improved, free-standing,
platform independent font manager with a WC3 compliant font finder and cache mechanism and
ported truetype and mathtext to PS.

Perry Greenfield supported by STSCI overhauled and modernized the goals and priorities page, imple-
mented an improved colormap framework, and has provided many suggestions and a lot of insight to
the overall design and organization of matplotlib.

Jared Wahlstrand wrote the initial SVG backend.

Steve Chaplin served as the GTK maintainer and wrote the Cairo and GTKCairo backends.

Jim Benson provided the patch to handle vertical mathttext.

159

http://www.ohloh.net/projects/matplotlib/contributors
http://mpl-buildbot.code.astraw.com/
http://www.stsci.edu
http://www.stsci.edu
http://www.stsci.edu

Matplotlib, Release 0.99.3

Gregory Lielens provided the FltkAgg backend and several patches for the frontend, including contribu-
tions to toolbar2, and support for log ticking with alternate bases and major and minor log ticking.

Darren Dale

did the work to do mathtext exponential labeling for log plots, added improved support for scalar
formatting, and did the lions share of the psfrag LaTeX support for postscript. He has made
substantial contributions to extending and maintaining the PS and Qt backends, and wrote the
site.cfg and matplotlib.conf build and runtime configuration support. He setup the infrastructure
for the sphinx documentation that powers the mpl docs.

Paul Mcguire provided the pyparsing module on which mathtext relies, and made a number of optimiza-
tions to the matplotlib mathtext grammar.

Fernando Perez has provided numerous bug reports and patches for cleaning up backend imports and ex-
panding pylab functionality, and provided matplotlib support in the pylab mode for ipython. He also
provided the matshow() command, and wrote TConfig, which is the basis for the experimental traited
mpl configuration.

Andrew Dalke of Dalke Scientific Software contributed the strftime formatting code to handle years earlier
than 1900.

Jochen Voss served as PS backend maintainer and has contributed several bugfixes.

Nadia Dencheva

supported by STSCI provided the contouring and contour labeling code.

Baptiste Carvello provided the key ideas in a patch for proper shared axes support that underlies ganged
plots and multiscale plots.

Jeffrey Whitaker at NOAA wrote the Basemap tookit

Sigve Tjoraand, Ted Drain, James Evans and colleagues at the JPL collaborated on the QtAgg backend
and sponsored development of a number of features including custom unit types, datetime support,
scale free ellipses, broken bar plots and more. The JPL team wrote the unit testing image comparison
infrastructure for regression test image comparisons.

James Amundson did the initial work porting the qt backend to qt4

Eric Firing has contributed significantly to contouring, masked array, pcolor, image and quiver support,
in addition to ongoing support and enhancements in performance, design and code quality in most
aspects of matplotlib.

Daishi Harada added support for “Dashed Text”. See dashpointlabel.py and TextWithDash.

Nicolas Young added support for byte images to imshow, which are more efficient in CPU and memory,
and added support for irregularly sampled images.

The brainvisa Orsay team and Fernando Perez added Qt support to ipython in pylab mode.

Charlie Moad contributed work to matplotlib’s Cocoa support and has done a lot of work on the OSX and
win32 binary releases.

Jouni K. Seppaenen wrote the PDF backend and contributed numerous fixes to the code, to tex sup-
port and to the get_sample_data handler

160 Chapter 19. Credits

http://www.ctan.org/tex-archive/help/Catalogue/entries/psfrag.html?action=/tex-archive/macros/latex/contrib/supported/psfrag
http://ipython.scipy.org
http://www.dalkescientific.com/
http://www.stsci.edu
http://www.boulder.noaa.gov
http://www.jpl.nasa.gov
http://matplotlib.svn.sourceforge.net/viewvc/matplotlib/trunk/matplotlib/test
http://brainvisa.info
http://ipython.scipy.org

Matplotlib, Release 0.99.3

Paul Kienzle improved the picking infrastruture for interactive plots, and with Alex Mont contributed fast
rendering code for quadrilateral meshes.

Michael Droettboom supported by STSCI wrote the enhanced mathtext support, implementing Knuth’s
box layout algorithms, saving to file-like objects across backends, and is responsible for numerous
bug-fixes, much better font and unicode support, and feature and performance enhancements across
the matplotlib code base. He also rewrote the transformation infrastructure to support custom projec-
tions and scales.

John Porter, Jonathon Taylor and Reinier Heeres John Porter wrote the mplot3d module for basic 3D
plotting in matplotlib, and Jonathon Taylor and Reinier Heeres ported it to the refactored transform
trunk.

Jae-Joon Lee implemented fancy arrows and boxes, rewrote the legend support to handle multiple
columns and fancy text boxes, wrote the axes grid toolkit, and has made numerous contributions
to the code and documentation

161

http://www.stsci.edu

Matplotlib, Release 0.99.3

162 Chapter 19. Credits

Part II

The Matplotlib FAQ

163

CHAPTER

TWENTY

INSTALLATION FAQ

Contents

• Installation FAQ
– Report a compilation problem
– matplotlib compiled fine, but nothing shows up with plot
– Cleanly rebuild and reinstall everything

* Easy Install

* Windows installer

* Source install
– Install from svn
– Install from git
– Backends

* What is a backend?

* Compile matplotlib with PyGTK-2.4
– OS-X questions

* Which python for OS X?

* Installing OSX binaries

* easy_install from egg

* Building and installing from source on OSX with EPD
– Windows questions

* Binary installers for windows

20.1 Report a compilation problem

See Report a problem.

20.2 matplotlib compiled fine, but nothing shows up with plot

The first thing to try is a clean install and see if that helps. If not, the best way to test your install is
by running a script, rather than working interactively from a python shell or an integrated development
environment such as IDLE which add additional complexities. Open up a UNIX shell or a DOS command

165

Matplotlib, Release 0.99.3

prompt and cd into a directory containing a minimal example in a file. Something like simple_plot.py,
or for example:

from pylab import *
plot([1,2,3])
show()

and run it with:

python simple_plot.py --verbose-helpful

This will give you additional information about which backends matplotlib is loading, version information,
and more. At this point you might want to make sure you understand matplotlib’s configuration process,
governed by the matplotlibrc configuration file which contains instructions within and the concept of the
matplotlib backend.

If you are still having trouble, see Report a problem.

20.3 Cleanly rebuild and reinstall everything

The steps depend on your platform and installation method.

20.3.1 Easy Install

1. Delete the caches from your .matplotlib configuration directory.

2. Run:

easy_install -m PackageName

3. Delete any .egg files or directories from your installation directory.

20.3.2 Windows installer

1. Delete the caches from your .matplotlib configuration directory.

2. Use Start→ Control Panel to start the Add and Remove Software utility.

20.3.3 Source install

Unfortunately:

python setup.py clean

does not properly clean the build directory, and does nothing to the install directory. To cleanly rebuild:

1. Delete the caches from your .matplotlib configuration directory.

2. Delete the build directory in the source tree

166 Chapter 20. Installation FAQ

Matplotlib, Release 0.99.3

3. Delete any matplotlib directories or eggs from your installation directory <locating-matplotlib-
install>

20.4 Install from svn

Checking out the main source:

svn co https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/trunk/matplotlib matplotlib

and build and install as usual with:

> cd matplotlib
> python setup.py install

If you want to be able to follow the development branch as it changes just replace the last step with (Make
sure you have setuptools installed):

> python setupegg.py develop

This creates links in the right places and installs the command line script to the appropriate places. Then, if
you want to update your matplotlib at any time, just do:

> svn update

When you run svn update, if the output shows that only Python files have been updated, you are all set. If C
files have changed, you need to run the python setupegg develop command again to compile them.

There is more information on using Subversion in the developer docs.

20.5 Install from git

See Using git.

20.6 Backends

20.6.1 What is a backend?

A lot of documentation on the website and in the mailing lists refers to the “backend” and many new
users are confused by this term. matplotlib targets many different use cases and output formats. Some
people use matplotlib interactively from the python shell and have plotting windows pop up when they type
commands. Some people embed matplotlib into graphical user interfaces like wxpython or pygtk to build
rich applications. Others use matplotlib in batch scripts to generate postscript images from some numerical
simulations, and still others in web application servers to dynamically serve up graphs.

To support all of these use cases, matplotlib can target different outputs, and each of these capabililities is
called a backend; the “frontend” is the user facing code, ie the plotting code, whereas the “backend” does
all the dirty work behind the scenes to make the figure. There are two types of backends: user interface

20.4. Install from svn 167

Matplotlib, Release 0.99.3

backends (for use in pygtk, wxpython, tkinter, qt, macosx, or fltk) and hardcopy backends to make image
files (PNG, SVG, PDF, PS).

There are a two primary ways to configure your backend. One is to set the backend parameter in you
matplotlibrc file (see Customizing matplotlib):

backend : WXAgg # use wxpython with antigrain (agg) rendering

The other is to use the matplotlib use() directive:

import matplotlib
matplotlib.use(’PS’) # generate postscript output by default

If you use the use directive, this must be done before importing matplotlib.pyplot or
matplotlib.pylab.

If you are unsure what to do, and just want to get cranking, just set your backend to TkAgg. This will do
the right thing for 95% of the users. It gives you the option of running your scripts in batch or working
interactively from the python shell, with the least amount of hassles, and is smart enough to do the right
thing when you ask for postscript, or pdf, or other image formats.

If however, you want to write graphical user interfaces, or a web application server (Matplotlib in a web
application server), or need a better understanding of what is going on, read on. To make things a little
more customizable for graphical user interfaces, matplotlib separates the concept of the renderer (the thing
that actually does the drawing) from the canvas (the place where the drawing goes). The canonical renderer
for user interfaces is Agg which uses the antigrain C++ library to make a raster (pixel) image of the figure.
All of the user interfaces can be used with agg rendering, eg WXAgg, GTKAgg, QTAgg, TkAgg, CocoaAgg. In
addition, some of the user interfaces support other rendering engines. For example, with GTK, you can also
select GDK rendering (backend GTK) or Cairo rendering (backend GTKCairo).

For the rendering engines, one can also distinguish between vector or raster renderers. Vector graphics
languages issue drawing commands like “draw a line from this point to this point” and hence are scale free,
and raster backends generate a pixel represenation of the line whose accuracy depends on a DPI setting.

Here is a summary of the matplotlib renderers (there is an eponymous backed for each):

Renderer Filetypes Description
AGG png raster graphics – high quality images using the Anti-Grain Geometry engine
PS ps eps vector graphics – Postscript output
PDF pdf vector graphics – Portable Document Format
SVG svg vector graphics – Scalable Vector Graphics
Cairo png ps pdf svg ... vector graphics – Cairo graphics
GDK png jpg tiff ... raster graphics – the Gimp Drawing Kit

And here are the user interfaces and renderer combinations supported:

168 Chapter 20. Installation FAQ

http://antigrain.html
http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikipedia.org/wiki/Raster_graphics
http://www.antigrain.com/
http://en.wikipedia.org/wiki/PostScript
http://en.wikipedia.org/wiki/Portable_Document_Format
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Cairo_(graphics)
http://en.wikipedia.org/wiki/GDK

Matplotlib, Release 0.99.3

Backend Description
GTKAgg Agg rendering to a GTK canvas (requires PyGTK)
GTK GDK rendering to a GTK canvas (not recommended) (requires PyGTK)
GTKCairo Cairo rendering to a GTK Canvas (requires PyGTK)
WXAgg Agg rendering to to a wxWidgets canvas (requires wxPython)
WX Native wxWidgets drawing to a wxWidgets Canvas (not recommended) (requires wxPython)
TkAgg Agg rendering to a Tk canvas (requires TkInter)
QtAgg Agg rendering to a Qt canvas (requires PyQt)
Qt4Agg Agg rendering to a Qt4 canvas (requires PyQt4)
FLTKAgg Agg rendering to a FLTK canvas (requires pyFLTK)
macosx Cocoa rendering in OSX windows

20.6.2 Compile matplotlib with PyGTK-2.4

There is a bug in PyGTK-2.4. You need to edit pygobject.h to add the G_BEGIN_DECLS and G_END_DECLS
macros, and rename typename parameter to typename_:

- const char *typename,
+ const char *typename_,

20.7 OS-X questions

20.7.1 Which python for OS X?

Apple ships with its own python, many users have had trouble with it so there are alternatives. If it is feasible
for you, we recommend the enthought python distribution EPD for OS X (which comes with matplotlib and
much more) or the MacPython or the official OS X version from python.org.

20.7.2 Installing OSX binaries

If you want to install matplotlib from one of the binary installers we build, you have two choices: a
dmg installer, which is a typical Installer.app, or an binary OSX egg, which you can install via setuptools
easy_install.

The mkpg installer will have a “dmg” extension, and will have a name like
matplotlib-0.99.0-py2.5-macosx10.5.dmg depending on the python, matplotlib, and OSX
versions. Save this file and double click it, which will open up a folder with a file in it that
has the mpkg extension. Double click this to run the Installer.app, which will prompt you
for a password if you need system wide installation privileges, and install to a directory like
/Library/Frameworks/Python.framework/Versions/2.5/lib/python2.5/site-packages,
again depedending on your python version. This directory should be in your python path, so you can test
your installation with:

> python -c ’import matplotlib; print matplotlib.__version__, matplotlib.__file__’

If you get an error like:

20.7. OS-X questions 169

http://www.pygtk.org
http://www.pygtk.org
http://www.pygtk.org
http://www.wxpython.org/
http://www.wxpython.org/
http://wiki.python.org/moin/TkInter
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://pyfltk.sourceforge.net
http://bugzilla.gnome.org/show_bug.cgi?id=155304
http://www.enthought.com/products/epd.php
http://wiki.python.org/moin/MacPython/Leopard
http://www.python.org/download/

Matplotlib, Release 0.99.3

Traceback (most recent call last):
File "<string>", line 1, in <module>

ImportError: No module named matplotlib

then you will need to set your PYTHONPATH, eg:

export PYTHONPATH=/Library/Frameworks/Python.framework/Versions/2.5/lib/python2.5/site-packages:$PYTHONPATH

See also environment-variables.

If you are upgrading your matplotlib using the dmg installer over an Enthought Python Distribution, you
may get an error like “You must use a framework install of python”. EPD puts their python in a directory
like :file://Library/Frameworks/Python.framework/Versions/4.3.0where 4.3.0 is an EPD version
number. The mpl installer needs the python version number, so you need to create a symlink pointing your
python version to the EPS version before installing matplotlib. For example, for python veersion 2.5 and
EPD version 4.3.0:

> cd /Library/Frameworks/Python.framework/Versions
> ln -s 4.3.0 2.5

20.7.3 easy_install from egg

You can also us the eggs we build for OSX (see the installation instructions for easy_install if you do not
have it on your system already). You can try:

> easy_install matplotlib

which should grab the latest egg from the sourceforge site, but the naming conventions for OSX eggs appear
to be broken (see below) so there is no guarantee the right egg will be found. We recommend you download
the latest egg from our download site directly to your harddrive, and manually install it with

> easy_install –install-dir=~/dev/lib/python2.5/site-packages/ matplotlib-0.99.0.rc1-py2.5-
macosx-10.5-i386.egg

Some users have reported problems with the egg for 0.98 from the matplotlib download site, with
easy_install, getting an error:

> easy_install ./matplotlib-0.98.0-py2.5-macosx-10.3-fat.egg
Processing matplotlib-0.98.0-py2.5-macosx-10.3-fat.egg
removing ’/Library/Python/2.5/site-packages/matplotlib-0.98.0-py2.5-
...snip...
Reading http://matplotlib.sourceforge.net
Reading http://cheeseshop.python.org/pypi/matplotlib/0.91.3
No local packages or download links found for matplotlib==0.98.0
error: Could not find suitable distribution for
Requirement.parse(’matplotlib==0.98.0’)

If you rename matplotlib-0.98.0-py2.5-macosx-10.3-fat.egg to
matplotlib-0.98.0-py2.5.egg, easy_install will install it from the disk. Many Mac OS X
eggs with cruft at the end of the filename, which prevents their installation through easy_install. Renaming
is all it takes to install them; still, it’s annoying.

170 Chapter 20. Installation FAQ

http://pypi.python.org/pypi/setuptools#cygwin-mac-os-x-linux-other
http://sourceforge.net/projects/matplotlib/files/

Matplotlib, Release 0.99.3

20.7.4 Building and installing from source on OSX with EPD

If you have the EPD installed (Which python for OS X?), it might turn out to be rather tricky to install a
new version of matplotlib from source on the Mac OS 10.5 . Here’s a procedure that seems to work, at least
sometimes:

0. Remove the ~/.matplotlib folder (“rm -rf ~/.matplotlib”).

1. Edit the file (make a backup before you start, just in case):
/Library/Frameworks/Python.framework/Versions/Current/lib/python2.5/config/Makefile,
removing all occurrences of the string -arch ppc, changing the line MACOSX_DEPLOYMENT_TARGET=10.3
to MACOSX_DEPLOYMENT_TARGET=10.5 and changing the occurrences of MacOSX10.4u.sdk into
MacOSX10.5.sdk

2. In /Library/Frameworks/Python.framework/Versions/Current/lib/pythonX.Y/site-packages/easy-install.pth,
(where X.Y is the version of Python you are building against) Comment out the line containing the
name of the directory in which the previous version of MPL was installed (Looks something like
./matplotlib-0.98.5.2n2-py2.5-macosx-10.3-fat.egg).

3. Save the following as a shell script , for example ./install-matplotlib-epd-osx.sh

NAME=matplotlib
VERSION=0_99
PREFIX=$HOME
#branch="release"
branch="trunk"
if [$branch = "trunk"]
then
echo getting the trunk
svn co https://matplotlib.svn.sourceforge.net/svnroot/$NAME/trunk/$NAME $NAME
cd $NAME

fi
if [$branch = "release"]
then
echo getting the maintenance branch
svn co https://matplotlib.svn.sf.net/svnroot/matplotlib/branches/v${VERSION}_maint $NAME$VERSION
cd $NAME$VERSION

fi
export CFLAGS="-Os -arch i386"
export LDFLAGS="-Os -arch i386"
export PKG_CONFIG_PATH="/usr/x11/lib/pkgconfig"
export ARCHFLAGS="-arch i386"
python setup.py build
python setup.py install #--prefix=$PREFIX #Use this if you don’t want it installed into your default location
cd ..

Run this script (for example sh ./install-matplotlib-epd-osx.sh) in the directory in which you
want the source code to be placed, or simply type the commands in the terminal command line. This script
sets some local variable (CFLAGS, LDFLAGS, PKG_CONFIG_PATH, ARCHFLAGS), removes previous
installations, checks out the source from svn, builds and installs it. The backend seems to be set to MacOSX.

20.7. OS-X questions 171

Matplotlib, Release 0.99.3

20.8 Windows questions

20.8.1 Binary installers for windows

If you have already installed python, you can use one of the matplotlib binary installers for windows – you
can get these from the sourceforge download site. Choose the files that match your version of python (eg
py2.5 if you installed Python 2.5) which have the exe extension. If you haven’t already installed python,
you can get the official version from the python web site. There are also two packaged distributions of
python that come preloaded with matplotlib and many other tools like ipython, numpy, scipy, vtk and user
interface toolkits. These packages are quite large because they come with so much, but you get everything
with a single click installer.

• the enthought python distribution EPD

• python (x, y)

172 Chapter 20. Installation FAQ

http://sourceforge.net/project/platformdownload.php?group_id=80706
http://python.org/download/
http://www.enthought.com/products/epd.php
http://www.pythonxy.com/foreword.php

CHAPTER

TWENTYONE

USAGE

Contents

• Usage
– Matplotlib, pylab, and pyplot: how are they related?

21.1 Matplotlib, pylab, and pyplot: how are they related?

Matplotlib is the whole package; pylab is a module in matplotlib that gets installed alongside matplotlib;
and matplotlib.pyplot is a module in matplotlib.

Pyplot provides a Matlab-style state-machine interface to the underlying object-oriented plotting library in
matplotlib.

Pylab combines the pyplot functionality (for plotting) with the numpy functionality (for mathematics and for
working with arrays) in a single namespace, making that namespace (or environment) even more Matlab-
like. This is what you get if you use the ipython shell with the -pylab option, which imports everything from
pylab and makes plotting fully interactive.

We have been gradually converting the matplotlib examples from pure Matlab-style, using “from pylab
import *”, to a preferred style in which pyplot is used for some convenience functions, either pyplot or the
object-oriented style is used for the remainder of the plotting code, and numpy is used explicitly for numeric
array operations.

In this preferred style, the imports at the top are:

import matplotlib.pyplot as plt
import numpy as np

Then one calls, for example, np.arange, np.zeros, np.pi, plt.figure, plt.plot, plt.show, etc.

Example, pure Matlab-style:

from pylab import *
x = arange(0, 10, 0.2)
y = sin(x)

173

Matplotlib, Release 0.99.3

plot(x, y)
show()

Now in preferred style, but still using pyplot interface:

import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0, 10, 0.2)
y = np.sin(x)
plt.plot(x, y)
plt.show()

And using pyplot convenience functions, but object-orientation for the rest:

import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0, 10, 0.2)
y = np.sin(x)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(x, y)
plt.show()

So, why do all the extra typing required as one moves away from the pure matlab-style? For very simple
things like this example, the only advantage is educational: the wordier styles are more explicit, more clear
as to where things come from and what is going on. For more complicated applications, the explicitness and
clarity become increasingly valuable, and the richer and more complete object-oriented interface will likely
make the program easier to write and maintain.

174 Chapter 21. Usage

CHAPTER

TWENTYTWO

HOWTO

Contents

• Howto
– Plotting: howto

* Find all objects in figure of a certain type

* Save transparent figures

* Move the edge of an axes to make room for tick labels

* Automatically make room for tick labels

* Configure the tick linewidths

* Align my ylabels across multiple subplots

* Skip dates where there is no data

* Test whether a point is inside a polygon

* Control the depth of plot elements

* Make the aspect ratio for plots equal

* Make a movie

* Multiple y-axis scales

* Generate images without having a window popup

* Use show()
– Contributing: howto

* Submit a patch

* Contribute to matplotlib documentation
– Matplotlib in a web application server

* matplotlib with apache

* matplotlib with django

* matplotlib with zope

* Clickable images for HTML
– Search examples

175

Matplotlib, Release 0.99.3

22.1 Plotting: howto

22.1.1 Find all objects in figure of a certain type

Every matplotlib artist (see Artist tutorial) has a method called findobj() that can be used to recursively
search the artist for any artists it may contain that meet some criteria (eg match all Line2D instances or
match some arbitrary filter function). For example, the following snippet finds every object in the figure
which has a set_color property and makes the object blue:

def myfunc(x):
return hasattr(x, ’set_color’)

for o in fig.findobj(myfunc):
o.set_color(’blue’)

You can also filter on class instances:

import matplotlib.text as text
for o in fig.findobj(text.Text):

o.set_fontstyle(’italic’)

22.1.2 Save transparent figures

The savefig() command has a keyword argument transparent which, if True, will make the figure and
axes backgrounds transparent when saving, but will not affect the displayed image on the screen. If you
need finer grained control, eg you do not want full transparency or you to affect the screen displayed version
as well, you can set the alpha properties directly. The figure has a matplotlib.patches.Rectangle
instance called patch and the axes has a Rectangle instance called patch. You can set any property on them
directly (facecolor, edgecolor, linewidth, linestyle, alpha). Eg:

fig = plt.figure()
fig.patch.set_alpha(0.5)
ax = fig.add_subplot(111)
ax.patch.set_alpha(0.5)

If you need all the figure elements to be transparent, there is currently no global alpha setting, but you can
set the alpha channel on individual elements, eg:

ax.plot(x, y, alpha=0.5)
ax.set_xlabel(’volts’, alpha=0.5)

22.1.3 Move the edge of an axes to make room for tick labels

For subplots, you can control the default spacing on the left, right, bottom, and top as
well as the horizontal and vertical spacing between multiple rows and columns using the
matplotlib.figure.Figure.subplots_adjust() method (in pyplot it is subplots_adjust()). For
example, to move the bottom of the subplots up to make room for some rotated x tick labels:

176 Chapter 22. Howto

Matplotlib, Release 0.99.3

fig = plt.figure()
fig.subplots_adjust(bottom=0.2)
ax = fig.add_subplot(111)

You can control the defaults for these parameters in your matplotlibrc file; see Customizing matplotlib.
For example, to make the above setting permanent, you would set:

figure.subplot.bottom : 0.2 # the bottom of the subplots of the figure

The other parameters you can configure are, with their defaults

left = 0.125 the left side of the subplots of the figure

right = 0.9 the right side of the subplots of the figure

bottom = 0.1 the bottom of the subplots of the figure

top = 0.9 the top of the subplots of the figure

wspace = 0.2 the amount of width reserved for blank space between subplots

hspace = 0.2 the amount of height reserved for white space between subplots

If you want additional control, you can create an Axes using the axes() command (or equivalently the figure
matplotlib.figure.Figure.add_axes() method), which allows you to specify the location explicitly:

ax = fig.add_axes([left, bottom, width, height])

where all values are in fractional (0 to 1) coordinates. See axes_demo.py for an example of placing axes
manually.

22.1.4 Automatically make room for tick labels

In most use cases, it is enough to simpy change the subplots adjust parameters as described in Move the
edge of an axes to make room for tick labels. But in some cases, you don’t know ahead of time what your
tick labels will be, or how large they will be (data and labels outside your control may be being fed into
your graphing application), and you may need to automatically adjust your subplot parameters based on the
size of the tick labels. Any matplotlib.text.Text instance can report its extent in window coordinates
(a negative x coordinate is outside the window), but there is a rub.

The matplotlib.backend_bases.RendererBase instance, which is used to calculate the text size, is
not known until the figure is drawn (matplotlib.figure.Figure.draw()). After the window is drawn
and the text instance knows its renderer, you can call matplotlib.text.Text.get_window_extent().
One way to solve this chicken and egg problem is to wait until the figure is draw by con-
necting (matplotlib.backend_bases.FigureCanvasBase.mpl_connect()) to the “on_draw” signal
(DrawEvent) and get the window extent there, and then do something with it, eg move the left of the canvas
over; see Event handling and picking.

Here is that gets a bounding box in relative figure coordinates (0..1) of each of the labels and uses it to move
the left of the subplots over so that the tick labels fit in the figure

22.1. Plotting: howto 177

http://matplotlib.sf.net/examples/axes_demo.py

Matplotlib, Release 0.99.3

0 1 2 3 4 5 6 7 8 9

really, really, really

long

labels

22.1.5 Configure the tick linewidths

In matplotlib, the ticks are markers. All Line2D objects support a line (solid, dashed, etc) and a marker
(circle, square, tick). The tick linewidth is controlled by the “markeredgewidth” property:

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(range(10))

for line in ax.get_xticklines() + ax.get_yticklines():
line.set_markersize(10)

plt.show()

The other properties that control the tick marker, and all markers, are markerfacecolor,
markeredgecolor, markeredgewidth, markersize. For more information on configuring ticks, see
Axis containers and Tick containers.

22.1.6 Align my ylabels across multiple subplots

If you have multiple subplots over one another, and the y data have different scales, you can often get ylabels
that do not align vertically across the multiple subplots, which can be unattractive. By default, matplotlib

178 Chapter 22. Howto

Matplotlib, Release 0.99.3

positions the x location of the ylabel so that it does not overlap any of the y ticks. You can override this
default behavior by specifying the coordinates of the label. The example below shows the default behavior
in the left subplots, and the manual setting in the right subplots.

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

m
is

a
lig

n
e
d
 1

ylabels not aligned

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

m
is

a
lig

n
e
d
 2

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

a
lig

n
e
d
 1

ylabels aligned

0 1 2 3 4 5 6 7 8 9
0.5

0.6

0.7

0.8

0.9

1.0
a
lig

n
e
d
 2

22.1.7 Skip dates where there is no data

When plotting time series, eg financial time series, one often wants to leave out days on which there is no
data, eg weekends. By passing in dates on the x-xaxis, you get large horizontal gaps on periods when there
is not data. The solution is to pass in some proxy x-data, eg evenly sampled indicies, and then use a custom
formatter to format these as dates. The example below shows how to use an ‘index formatter’ to achieve the
desired plot:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import matplotlib.ticker as ticker

r = mlab.csv2rec(’../data/aapl.csv’)
r.sort()
r = r[-30:] # get the last 30 days

N = len(r)
ind = np.arange(N) # the evenly spaced plot indices

22.1. Plotting: howto 179

Matplotlib, Release 0.99.3

def format_date(x, pos=None):
thisind = np.clip(int(x+0.5), 0, N-1)
return r.date[thisind].strftime(’%Y-%m-%d’)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(ind, r.adj_close, ’o-’)
ax.xaxis.set_major_formatter(ticker.FuncFormatter(format_date))
fig.autofmt_xdate()

plt.show()

22.1.8 Test whether a point is inside a polygon

The matplotlib.nxutils provides two high performance methods: for a single point use pnpoly() and
for an array of points use points_inside_poly(). For a discussion of the implementation see pnpoly.

In [25]: import numpy as np

In [26]: import matplotlib.nxutils as nx

In [27]: verts = np.array([[0,0], [0, 1], [1, 1], [1,0]], float)

In [28]: nx.pnpoly(0.5, 0.5, verts)
Out[28]: 1

In [29]: nx.pnpoly(0.5, 1.5, verts)
Out[29]: 0

In [30]: points = np.random.rand(10,2)*2

In [31]: points
Out[31]:
array([[1.03597426, 0.61029911],

[1.94061056, 0.65233947],
[1.08593748, 1.16010789],
[0.9255139 , 1.79098751],
[1.54564936, 1.15604046],
[1.71514397, 1.26147554],
[1.19133536, 0.56787764],
[0.40939549, 0.35190339],
[1.8944715 , 0.61785408],
[0.03128518, 0.48144145]])

In [32]: nx.points_inside_poly(points, verts)
Out[32]: array([False, False, False, False, False, False, False, True, False, True], dtype=bool)

180 Chapter 22. Howto

http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html

Matplotlib, Release 0.99.3

22.1.9 Control the depth of plot elements

Within an axes, the order that the various lines, markers, text, collections, etc appear is determined by
the matplotlib.artist.Artist.set_zorder() property. The default order is patches, lines, text, with
collections of lines and collections of patches appearing at the same level as regular lines and patches,
respectively:

line, = ax.plot(x, y, zorder=10)

You can also use the Axes property matplotlib.axes.Axes.set_axisbelow() to control whether the
grid lines are placed above or below your other plot elements.

22.1.10 Make the aspect ratio for plots equal

The Axes property matplotlib.axes.Axes.set_aspect() controls the aspect ratio of the axes. You can
set it to be ‘auto’, ‘equal’, or some ratio which controls the ratio:

ax = fig.add_subplot(111, aspect=’equal’)

22.1.11 Make a movie

If you want to take an animated plot and turn it into a movie, the best approach is to save a series of image
files (eg PNG) and use an external tool to convert them to a movie. You can use mencoder, which is part of
the mplayer suite for this:

#fps (frames per second) controls the play speed
mencoder ’mf://*.png’ -mf type=png:fps=10 -ovc \\
lavc -lavcopts vcodec=wmv2 -oac copy -o animation.avi

The swiss army knife of image tools, ImageMagick’s convert works for this as well.

Here is a simple example script that saves some PNGs, makes them into a movie, and then cleans up:

import os, sys
import matplotlib.pyplot as plt

files = []
fig = plt.figure(figsize=(5,5))
ax = fig.add_subplot(111)
for i in range(50): # 50 frames

ax.cla()
ax.imshow(rand(5,5), interpolation=’nearest’)
fname = ’_tmp%03d.png’%i
print ’Saving frame’, fname
fig.savefig(fname)
files.append(fname)

print ’Making movie animation.mpg - this make take a while’
os.system("mencoder ’mf://_tmp*.png’ -mf type=png:fps=10 \\
-ovc lavc -lavcopts vcodec=wmv2 -oac copy -o animation.mpg")

22.1. Plotting: howto 181

http://www.mplayerhq.hu/DOCS/HTML/en/mencoder.html
http://www.mplayerhq.hu
http://www.imagemagick.org/script/convert.php

Matplotlib, Release 0.99.3

22.1.12 Multiple y-axis scales

A frequent request is to have two scales for the left and right y-axis, which is possible using twinx() (more
than two scales are not currently supported, though it is on the wish list). This works pretty well, though
there are some quirks when you are trying to interactively pan and zoom, since both scales do not get the
signals.

The approach twinx() (and its sister twiny()) uses is to use 2 different axes, turning the axes rectangular
frame off on the 2nd axes to keep it from obscuring the first, and manually setting the tick locs and labels
as desired. You can use separate matplotlib.ticker formatters and locators as desired since the two axes are
independent:

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
ax1 = fig.add_subplot(111)
t = np.arange(0.01, 10.0, 0.01)
s1 = np.exp(t)
ax1.plot(t, s1, ’b-’)
ax1.set_xlabel(’time (s)’)
ax1.set_ylabel(’exp’)

ax2 = ax1.twinx()
s2 = np.sin(2*np.pi*t)
ax2.plot(t, s2, ’r.’)
ax2.set_ylabel(’sin’)
plt.show()

22.1.13 Generate images without having a window popup

The easiest way to do this is use an image backend (see What is a backend?) such as Agg (for PNGs), PDF,
SVG or PS. In your figure generating script, just place call matplotlib.use() directive before importing
pylab or pyplot:

import matplotlib
matplotlib.use(’Agg’)
import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.savefig(’myfig’)

See Also:

Matplotlib in a web application server For information about running matplotlib inside of a web application.

22.1.14 Use show()

The user interface backends need to start the GUI mainloop, and this is what show() does. It tells matplotlib
to raise all of the figure windows and start the mainloop. Because the mainloop is blocking, you should only
call this once per script, at the end. If you are using matplotlib to generate images only and do not want a

182 Chapter 22. Howto

Matplotlib, Release 0.99.3

user interface window, you do not need to call show (see Generate images without having a window popup
and What is a backend?).

Because it is expensive to draw, matplotlib does not want to redrawing the figure many times in a script such
as the following:

plot([1,2,3]) # draw here ?
xlabel(’time’) # and here ?
ylabel(’volts’) # and here ?
title(’a simple plot’) # and here ?
show()

It is possible to force matplotlib to draw after every command, which is what you usually want when working
interactively at the python console (see Using matplotlib in a python shell), but in a script you want to defer
all drawing until the script has executed. This is especially important for complex figures that take some
time to draw. show() is designed to tell matplotlib that you’re all done issuing commands and you want to
draw the figure now.

Note: show() should be called at most once per script and it should be the last line of your script. At that
point, the GUI takes control of the interpreter. If you want to force a figure draw, use draw() instead.

Many users are frustrated by show because they want it to be a blocking call that raises the figure, pauses the
script until the figure is closed, and then allows the script to continue running until the next figure is created
and the next show is made. Something like this:

WARNING : illustrating how NOT to use show
for i in range(10):

make figure i
show()

This is not what show does and unfortunately, because doing blocking calls across user interfaces can be
tricky, is currently unsupported, though we have made some progress towards supporting blocking events.

22.2 Contributing: howto

22.2.1 Submit a patch

First obtain a copy of matplotlib svn (see Install from svn) and make your changes to the matplotlib source
code or documentation and apply a svn diff. If it is feasible, do your diff from the top level directory, the one
that contains setup.py. Eg,:

> cd /path/to/matplotlib/source
> svn diff > mypatch.diff

and then post your patch to the matplotlib-devel mailing list. If you do not get a response within 24 hours,
post your patch to the sourceforge patch tracker, and follow up on the mailing list with a link to the source-
forge patch submissions. If you still do not hear anything within a week (this shouldn’t happen!), send us a
kind and gentle reminder on the mailing list.

If you have made lots of local changes and do not want to a diff against the entire tree, but rather against
a single directory or file, that is fine, but we do prefer svn diffs against the top level (where setup.py lives)

22.2. Contributing: howto 183

http://sourceforge.net/mail/?group_id=80706
http://sourceforge.net/tracker2/?atid=560722&group_id=80706&func=browse

Matplotlib, Release 0.99.3

since it is nice to have a consistent way to apply them.

If you are posting a patch to fix a code bug, please explain your patch in words – what was broken before
and how you fixed it. Also, even if your patch is particularly simple, just a few lines or a single function
replacement, we encourage people to submit svn diffs against HEAD or the branch they are patching. It just
makes life simpler for us, since we (fortunately) get a lot of contributions, and want to receive them in a stan-
dard format. If possible, for any non-trivial change, please include a complete, free-standing example that
the developers can run unmodified which shows the undesired behavior pre-patch and the desired behavior
post-patch, with a clear verbal description of what to look for. The original developer may have written the
function you are working on years ago, and may no longer be with the project, so it is quite possible you are
the world expert on the code you are patching and we want to hear as much detail as you can offer.

When emailing your patch and examples, feel free to paste any code into the text of the message, indeed we
encourage it, but also attach the patches and examples since many email clients screw up the formatting of
plain text, and we spend lots of needless time trying to reformat the code to make it usable.

You should check out the guide to developing matplotlib to make sure your patch abides by our coding
conventions The Matplotlib Developers’ Guide.

22.2.2 Contribute to matplotlib documentation

matplotlib is a big library, which is used in many ways, and the documentation we have only scratches the
surface of everything it can do. So far, the place most people have learned all these features are through
studying the examples (Search examples), which is a recommended and great way to learn, but it would
be nice to have more official narrative documentation guiding people through all the dark corners. This is
where you come in.

There is a good chance you know more about matplotlib usage in some areas, the stuff you do every day,
than many of the core developers who write most of the documentation. Just pulled your hair out compiling
matplotlib for windows? Write a FAQ or a section for the Installing page. Are you a digital signal processing
wizard? Write a tutorial on the signal analysis plotting functions like xcorr(), psd() and specgram().
Do you use matplotlib with django or other popular web application servers? Write a FAQ or tutorial and
we’ll find a place for it in the User’s Guide. Bundle matplotlib in a py2exe app? ... I think you get the idea.

matplotlib is documented using the sphinx extensions to restructured text ReST. sphinx is a extensible
python framework for documentation projects which generates HTML and PDF, and is pretty easy to write;
you can see the source for this document or any page on this site by clicking on Show Source link at the end
of the page in the sidebar (or here for this document).

The sphinx website is a good resource for learning sphinx, but we have put together a cheat-sheet at Docu-
menting matplotlib which shows you how to get started, and outlines the matplotlib conventions and exten-
sions, eg for including plots directly from external code in your documents.

Once your documentation contributions are working (and hopefully tested by actually building the docs) you
can submit them as a patch against svn. See Install from svn and Submit a patch. Looking for something to
do? Search for TODO.

184 Chapter 22. Howto

http://www.djangoproject.com/
http://www.py2exe.org/
http://sphinx.pocoo.org/index.html
http://docutils.sourceforge.net/rst.html

Matplotlib, Release 0.99.3

22.3 Matplotlib in a web application server

Many users report initial problems trying to use maptlotlib in web application servers, because by default
matplotlib ships configured to work with a graphical user interface which may require an X11 connection.
Since many barebones application servers do not have X11 enabled, you may get errors if you don’t config-
ure matplotlib for use in these environments. Most importantly, you need to decide what kinds of images
you want to generate (PNG, PDF, SVG) and configure the appropriate default backend. For 99% of users,
this will be the Agg backend, which uses the C++ antigrain rendering engine to make nice PNGs. The Agg
backend is also configured to recognize requests to generate other output formats (PDF, PS, EPS, SVG).
The easiest way to configure matplotlib to use Agg is to call:

do this before importing pylab or pyplot
import matplotlib
matplotlib.use(’Agg’)
import matplotlib.pyplot as plt

For more on configuring your backend, see What is a backend?.

Alternatively, you can avoid pylab/pyplot altogeher, which will give you a little more control, by calling the
API directly as shown in agg_oo.py .

You can either generate hardcopy on the filesystem by calling savefig:

do this before importing pylab or pyplot
import matplotlib
matplotlib.use(’Agg’)
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot([1,2,3])
fig.savefig(’test.png’)

or by saving to a file handle:

import sys
fig.savefig(sys.stdout)

Here is an example using the Python Imaging Library PIL. First the figure is saved to a StringIO objectm
which is then fed to PIL for further processing:

import StringIO, Image
imgdata = StringIO.StringIO()
fig.savefig(imgdata, format=’png’)
imgdata.seek(0) # rewind the data
im = Image.open(imgdata)

22.3.1 matplotlib with apache

TODO; see Contribute to matplotlib documentation.

22.3. Matplotlib in a web application server 185

http://antigrain.com
http://matplotlib.sf.net/examples/api/agg_oo.py

Matplotlib, Release 0.99.3

22.3.2 matplotlib with django

TODO; see Contribute to matplotlib documentation.

22.3.3 matplotlib with zope

TODO; see Contribute to matplotlib documentation.

22.3.4 Clickable images for HTML

Andrew Dalke of Dalke Scientific has written a nice article on how to make html click maps with matplotlib
agg PNGs. We would also like to add this functionality to SVG and add a SWF backend to support these
kind of images. If you are interested in contributing to these efforts that would be great.

22.4 Search examples

The nearly 300 code examples-index included with the matplotlib source distribution are full-text searchable
from the search page, but sometimes when you search, you get a lot of results from the The Matplotlib API
or other documentation that you may not be interested in if you just want to find a complete, free-standing,
working piece of example code. To facilitate example searches, we have tagged every code example page
with the keyword codex for code example which shouldn’t appear anywhere else on this site except in the
FAQ and in every example. So if you want to search for an example that uses an ellipse, search for codex
ellipse.

186 Chapter 22. Howto

http://www.dalkescientific.com
http://www.dalkescientific.com/writings/diary/archive/2005/04/24/interactive_html.html

CHAPTER

TWENTYTHREE

TROUBLESHOOTING

Contents

• Troubleshooting
– Obtaining matplotlib version
– matplotlib install location
– .matplotlib directory location
– Report a problem
– Problems with recent svn versions

23.1 Obtaining matplotlib version

To find out your matplotlib version number, import it and print the __version__ attribute:

>>> import matplotlib
>>> matplotlib.__version__
’0.98.0’

23.2 matplotlib install location

You can find what directory matplotlib is installed in by importing it and printing the __file__ attribute:

>>> import matplotlib
>>> matplotlib.__file__
’/home/jdhunter/dev/lib64/python2.5/site-packages/matplotlib/__init__.pyc’

23.3 .matplotlib directory location

Each user has a .matplotlib/ directory which may contain a matplotlibrc file and vari-
ous caches to improve matplotlib’s performance. To locate your .matplotlib/ directory, use
matplotlib.get_configdir():

187

Matplotlib, Release 0.99.3

>>> import matplotlib as mpl
>>> mpl.get_configdir()
’/home/darren/.matplotlib’

On unix like systems, this directory is generally located in your HOME directory. On windows, it is in your
documents and settings directory by default:

>>> import matplotlib
>>> mpl.get_configdir()

’C:\\Documents and Settings\\jdhunter\\.matplotlib’

If you would like to use a different configuration directory, you can do so by specifying the location in your
MPLCONFIGDIR environment variable – see setting-linux-osx-environment-variables.

23.4 Report a problem

If you are having a problem with matplotlib, search the mailing lists first: there’s a good chance someone
else has already run into your problem.

If not, please provide the following information in your e-mail to the mailing list:

• your operating system; on Linux/UNIX post the output of uname -a

• matplotlib version:

python -c ‘import matplotlib; print matplotlib.__version__‘

• where you obtained matplotlib (e.g. your Linux distribution’s packages or the matplotlib Sourceforge
site, or the enthought python distribution EPD.

• any customizations to your matplotlibrc file (see Customizing matplotlib).

• if the problem is reproducible, please try to provide a minimal, standalone Python script that demon-
strates the problem. This is the critical step. If you can’t post a piece of code that we can run and
reproduce your error, the chances of getting help are significantly diminished. Very often, the mere
act of trying to minimize your code to the smallest bit that produces the error will help you find a bug
in your code that is causing the problem.

• you can get very helpful debugging output from matlotlib by running your script with a
verbose-helpful or --verbose-debug flags and posting the verbose output the lists:

> python simple_plot.py --verbose-helpful > output.txt

If you compiled matplotlib yourself, please also provide

• any changes you have made to setup.py or setupext.py

• the output of:

rm -rf build
python setup.py build

188 Chapter 23. Troubleshooting

http://lists.sourceforge.net/mailman/listinfo/matplotlib-users
http://www.enthought.com/products/epd.php

Matplotlib, Release 0.99.3

The beginning of the build output contains lots of details about your platform that are useful for the
matplotlib developers to diagnose your problem.

• your compiler version – eg, gcc --version

Including this information in your first e-mail to the mailing list will save a lot of time.

You will likely get a faster response writing to the mailing list than filing a bug in the bug tracker. Most
developers check the bug tracker only periodically. If your problem has been determined to be a bug and
can not be quickly solved, you may be asked to file a bug in the tracker so the issue doesn’t get lost.

23.5 Problems with recent svn versions

First make sure you have a clean build and install (see Cleanly rebuild and reinstall everything), get the
latest svn update, install it and run a simple test script in debug mode:

rm -rf build
rm -rf /path/to/site-packages/matplotlib*
svn up
python setup.py install > build.out
python examples/pylab_examples/simple_plot.py --verbose-debug > run.out

and post build.out and run.out to the matplotlib-devel mailing list (please do not post svn problems to
the users list).

Of course, you will want to clearly describe your problem, what you are expecting and what you are getting,
but often a clean build and install will help. See also Report a problem.

23.5. Problems with recent svn versions 189

http://lists.sourceforge.net/mailman/listinfo/matplotlib-devel
http://lists.sourceforge.net/mailman/listinfo/matplotlib-users

Matplotlib, Release 0.99.3

190 Chapter 23. Troubleshooting

Part III

The Matplotlib Developers’ Guide

191

CHAPTER

TWENTYFOUR

CODING GUIDE

24.1 Version control

24.1.1 svn checkouts

Checking out everything in the trunk (matplotlib and toolkits):

svn co https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/trunk \
matplotlib --username=youruser --password=yourpass

Checking out the main source:

svn co https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/trunk/\
matplotlib mpl --username=youruser --password=yourpass

Branch checkouts, eg the release branch:

svn co https://matplotlib.svn.sf.net/svnroot/matplotlib/branches/v0_99_maint mpl99

24.1.2 Committing changes

When committing changes to matplotlib, there are a few things to bear in mind.

• if your changes are non-trivial, please make an entry in the CHANGELOG

• if you change the API, please document it in doc/api/api_changes.rst, and consider posting to
matplotlib-devel

• Are your changes python2.4 compatible? We still support 2.4, so avoid features new to 2.5

• Can you pass examples/tests/backend_driver.py? This is our poor man’s unit test.

• Can you add a test to unit/nose_tests.py to test your changes?

• If you have altered extension code, do you pass unit/memleak_hawaii.py?

• if you have added new files or directories, or reorganized existing ones, are the new files included in
the match patterns in MANIFEST.in. This file determines what goes into the source distribution of the
mpl build.

193

http://lists.sourceforge.net/mailman/listinfo/matplotlib-devel

Matplotlib, Release 0.99.3

• Keep the release branch (eg 0.90 and trunk in sync where it makes sense. If there is a bug on both that
needs fixing, use svnmerge.py to keep them in sync. See Using svnmerge below.

24.1.3 Using svnmerge

svnmerge is useful for making bugfixes to a maintenance branch, and then bringing those changes into the
trunk.

The basic procedure is:

• install svnmerge.py in your PATH:

> wget http://svn.apache.org/repos/asf/subversion/trunk/contrib/\
client-side/svnmerge/svnmerge.py

• get a svn checkout of the branch you’ll be making bugfixes to and the trunk (see above)

• Create and commit the bugfix on the branch.

• Then make sure you svn upped on the trunk and have no local modifications, and then from your
checkout of the svn trunk do:

svnmerge.py merge -S BRANCHNAME

Where BRANCHNAME is the name of the branch to merge from, e.g. v0_99_maint.

If you wish to merge only specific revisions (in an unusual situation), do:

> svnmerge.py merge -rNNN1-NNN2

where the NNN are the revision numbers. Ranges are also acceptable.

The merge may have found some conflicts (code that must be manually resolved). Correct those
conflicts, build matplotlib and test your choices. If you have resolved any conflicts, you can let svn
clean up the conflict files for you:

> svn -R resolved .

svnmerge.py automatically creates a file containing the commit messages, so you are ready to make
the commit:

> svn commit -F svnmerge-commit-message.txt

Setting up svnmerge

Note: The following applies only to release managers when there is a new release. Most developers will
not have to concern themselves with this.

• Creating a new branch from the trunk (if the release version is 0.98.5 at revision 6573):

> svn copy \
https://matplotlib.svn.sf.net/svnroot/matplotlib/trunk/matplotlib@6573 \
https://matplotlib.svn.sf.net/svnroot/matplotlib/branches/v0_98_5_maint \
-m "Creating maintenance branch for 0.98.5"

194 Chapter 24. Coding guide

http://www.orcaware.com/svn/wiki/Svnmerge.py

Matplotlib, Release 0.99.3

• You can add a new branch for the trunk to “track” using “svnmerge.py init”, e.g., from a working copy
of the trunk:

> svnmerge.py init https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/branches/v0_98_5_maint
property ’svnmerge-integrated’ set on ’.’

After doing a “svn commit” on this, this merge tracking is available to everyone, so there’s no need
for anyone else to do the “svnmerge init”.

• Tracking can later be removed with the “svnmerge.py uninit” command, e.g.:

> svnmerge.py -S v0_9_5_maint uninit

24.1.4 Using git

Some matplotlib developers are experimenting with using git on top of the subversion repository. Developers
are not required to use git, as subversion will remain the canonical central repository for the foreseeable
future.

Cloning the git mirror

There is an experimental matplotlib github mirror of the subversion repository. To make a local clone of it
in the directory mpl.git, enter the following commands:

This will create your copy in the mpl.git directory
git clone git://github.com/astraw/matplotlib.git mpl.git
cd mpl.git
git config --add remote.origin.fetch +refs/remotes/*:refs/remotes/*
git fetch
git svn init --branches=branches --trunk=trunk/matplotlib --tags=tags https://matplotlib.svn.sourceforge.net/svnroot/matplotlib

Now just get the latest svn revisions from the SourceForge SVN repository
git svn fetch -r 6800:HEAD

To install from this cloned repository, use the commands in the svn installation section:

> cd mpl.git
> python setup.py install

Using git

The following is a suggested workflow for git/git-svn.

Start with a virgin tree in sync with the svn trunk on the git branch “master”:

git checkout master
git svn rebase

24.1. Version control 195

http://github.com/astraw/matplotlib

Matplotlib, Release 0.99.3

To create a new, local branch called “whizbang-branch”:

git checkout -b whizbang-branch

Do make commits to the local branch:

hack on a bunch of files
git add bunch of files
git commit -m "modified a bunch of files"
repeat this as necessary

Now, go back to the master branch and append the history of your branch to the master branch, which will
end up as the svn trunk:

git checkout master
git svn rebase # Ensure we have most recent svn
git rebase whizbang-branch # Append whizbang changes to master branch
git svn dcommit -n # Check that this will apply to svn
git svn dcommit # Actually apply to svn

Finally, you may want to continue working on your whizbang-branch, so rebase it to the new master:

git checkout whizbang-branch
git rebase master

If you get the dreaded “Unable to determine upstream SVN information from working tree history” error
when running “git svn rebase”, try creating a new git branch based on subversion trunk and cherry pick your
patches onto that:

git checkout -b work remotes/trunk # create a new "work" branch
git cherry-pick <commit> # where <commit> will get applied to new branch

Working on a maintenance branch from git

The matplotlib maintenance branches are also available through git. (Note that the git svn init line in the
instructions above was updated to make this possible. If you created your git mirror without a --branches
option, you will need to perform all of the steps again in a new directory).

You can see which branches are available with:

git branch -a

To switch your working copy to the 0.98.5 maintenance branch:

git checkout v0_98_5_maint

Then you probably want to (as above) create a new local branch based on that branch:

git checkout -b whizbang-branch

When you git svn dcommit from a maintenance branch, it will commit to that branch, not to the trunk.

196 Chapter 24. Coding guide

Matplotlib, Release 0.99.3

While it should theoretically be possible to perform merges from a git maintenance branch to a git trunk
and then commit those changes back to the SVN trunk, I have yet to find the magic incantation to make that
work. However, svnmerge as described above can be used and in fact works quite well.

A note about git write access

The matplotlib developers need to figure out if there should be write access to the git repository. This im-
plies using the personal URL (git@github.com:astraw/matplotlib.git) rather than the public URL
(git://github.com/astraw/matplotlib.git) for the repository. However, doing so may make life
complicated in the sense that then there are two writeable matplotlib repositories, which must be synced to
prevent divergence. This is probably not an insurmountable problem, but it is a problem that the developers
should reach a consensus about. Watch this space...

24.2 Style guide

24.2.1 Importing and name spaces

For numpy, use:

import numpy as np
a = np.array([1,2,3])

For masked arrays, use:

import numpy.ma as ma

For matplotlib main module, use:

import matplotlib as mpl
mpl.rcParams[’xtick.major.pad’] = 6

For matplotlib modules (or any other modules), use:

import matplotlib.cbook as cbook

if cbook.iterable(z):
pass

We prefer this over the equivalent from matplotlib import cbook because the latter is ambiguous as
to whether cbook is a module or a function. The former makes it explicit that you are importing a module
or package. There are some modules with names that match commonly used local variable names, eg
matplotlib.lines or matplotlib.colors. To avoid the clash, use the prefix ‘m’ with the import
some.thing as mthing syntax, eg:

import matplotlib.lines as mlines
import matplotlib.transforms as transforms # OK
import matplotlib.transforms as mtransforms # OK, if you want to disambiguate
import matplotlib.transforms as mtrans # OK, if you want to abbreviate

24.2. Style guide 197

http://www.numpy.org

Matplotlib, Release 0.99.3

24.2.2 Naming, spacing, and formatting conventions

In general, we want to hew as closely as possible to the standard coding guidelines for python written by
Guido in PEP 0008, though we do not do this throughout.

• functions and class methods: lower or lower_underscore_separated

• attributes and variables: lower or lowerUpper

• classes: Upper or MixedCase

Prefer the shortest names that are still readable.

Configure your editor to use spaces, not hard tabs. The standard indentation unit is always four spaces; if
there is a file with tabs or a different number of spaces it is a bug – please fix it. To detect and fix these and
other whitespace errors (see below), use reindent.py as a command-line script. Unless you are sure your
editor always does the right thing, please use reindent.py before checking changes into svn.

Keep docstrings uniformly indented as in the example below, with nothing to the left of the triple quotes.
The matplotlib.cbook.dedent() function is needed to remove excess indentation only if something
will be interpolated into the docstring, again as in the example below.

Limit line length to 80 characters. If a logical line needs to be longer, use parentheses to break it; do not use
an escaped newline. It may be preferable to use a temporary variable to replace a single long line with two
shorter and more readable lines.

Please do not commit lines with trailing white space, as it causes noise in svn diffs. Tell your editor to strip
whitespace from line ends when saving a file. If you are an emacs user, the following in your .emacs will
cause emacs to strip trailing white space upon saving for python, C and C++:

; and similarly for c++-mode-hook and c-mode-hook
(add-hook ’python-mode-hook

(lambda ()
(add-hook ’write-file-functions ’delete-trailing-whitespace)))

for older versions of emacs (emacs<22) you need to do:

(add-hook ’python-mode-hook
(lambda ()
(add-hook ’local-write-file-hooks ’delete-trailing-whitespace)))

24.2.3 Keyword argument processing

Matplotlib makes extensive use of **kwargs for pass-through customizations from one function to another.
A typical example is in matplotlib.pylab.text(). The definition of the pylab text function is a simple
pass-through to matplotlib.axes.Axes.text():

in pylab.py
def text(*args, **kwargs):

ret = gca().text(*args, **kwargs)
draw_if_interactive()
return ret

198 Chapter 24. Coding guide

http://www.python.org/dev/peps/pep-0008
http://svn.python.org/projects/doctools/trunk/utils/reindent.py

Matplotlib, Release 0.99.3

text() in simplified form looks like this, i.e., it just passes all args and kwargs on to
matplotlib.text.Text.__init__():

in axes.py
def text(self, x, y, s, fontdict=None, withdash=False, **kwargs):

t = Text(x=x, y=y, text=s, **kwargs)

and __init__() (again with liberties for illustration) just passes them on to the
matplotlib.artist.Artist.update() method:

in text.py
def __init__(self, x=0, y=0, text=’’, **kwargs):

Artist.__init__(self)
self.update(kwargs)

update does the work looking for methods named like set_property if property is a keyword argument.
I.e., no one looks at the keywords, they just get passed through the API to the artist constructor which looks
for suitably named methods and calls them with the value.

As a general rule, the use of **kwargs should be reserved for pass-through keyword arguments, as in the
example above. If all the keyword args are to be used in the function, and not passed on, use the key/value
keyword args in the function definition rather than the **kwargs idiom.

In some cases, you may want to consume some keys in the local function, and let others pass through. You
can pop the ones to be used locally and pass on the rest. For example, in plot(), scalex and scaley are
local arguments and the rest are passed on as Line2D() keyword arguments:

in axes.py
def plot(self, *args, **kwargs):

scalex = kwargs.pop(’scalex’, True)
scaley = kwargs.pop(’scaley’, True)
if not self._hold: self.cla()
lines = []
for line in self._get_lines(*args, **kwargs):

self.add_line(line)
lines.append(line)

Note: there is a use case when kwargs are meant to be used locally in the function (not passed on), but
you still need the **kwargs idiom. That is when you want to use *args to allow variable numbers of non-
keyword args. In this case, python will not allow you to use named keyword args after the *args usage, so
you will be forced to use **kwargs. An example is matplotlib.contour.ContourLabeler.clabel():

in contour.py
def clabel(self, *args, **kwargs):

fontsize = kwargs.get(’fontsize’, None)
inline = kwargs.get(’inline’, 1)
self.fmt = kwargs.get(’fmt’, ’%1.3f’)
colors = kwargs.get(’colors’, None)
if len(args) == 0:

levels = self.levels
indices = range(len(self.levels))

elif len(args) == 1:
...etc...

24.2. Style guide 199

Matplotlib, Release 0.99.3

24.3 Documentation and docstrings

Matplotlib uses artist introspection of docstrings to support properties. All properties that you want to
support through setp and getp should have a set_property and get_property method in the Artist
class. Yes, this is not ideal given python properties or enthought traits, but it is a historical legacy for now.
The setter methods use the docstring with the ACCEPTS token to indicate the type of argument the method
accepts. Eg. in matplotlib.lines.Line2D:

in lines.py
def set_linestyle(self, linestyle):

"""
Set the linestyle of the line

ACCEPTS: [’-’ | ’--’ | ’-.’ | ’:’ | ’steps’ | ’None’ | ’ ’ | ’’]
"""

Since matplotlib uses a lot of pass-through kwargs, eg. in every function that creates a line (plot(),
semilogx(), semilogy(), etc...), it can be difficult for the new user to know which kwargs are supported.
Matplotlib uses a docstring interpolation scheme to support documentation of every function that takes a
**kwargs. The requirements are:

1. single point of configuration so changes to the properties don’t require multiple docstring edits.

2. as automated as possible so that as properties change, the docs are updated automagically.

The functions matplotlib.artist.kwdocd and matplotlib.artist.kwdoc() to facilitate this. They
combine python string interpolation in the docstring with the matplotlib artist introspection facility that
underlies setp and getp. The kwdocd is a single dictionary that maps class name to a docstring of kwargs.
Here is an example from matplotlib.lines:

in lines.py
artist.kwdocd[’Line2D’] = artist.kwdoc(Line2D)

Then in any function accepting Line2D pass-through kwargs, eg. matplotlib.axes.Axes.plot():

in axes.py
def plot(self, *args, **kwargs):

"""
Some stuff omitted

The kwargs are Line2D properties:
%(Line2D)s

kwargs scalex and scaley, if defined, are passed on
to autoscale_view to determine whether the x and y axes are
autoscaled; default True. See Axes.autoscale_view for more
information
"""
pass

plot.__doc__ = cbook.dedent(plot.__doc__) % artist.kwdocd

Note there is a problem for Artist __init__ methods, eg. matplotlib.patches.Patch.__init__(),
which supports Patch kwargs, since the artist inspector cannot work until the class is fully defined

200 Chapter 24. Coding guide

Matplotlib, Release 0.99.3

and we can’t modify the Patch.__init__.__doc__ docstring outside the class definition. There are
some some manual hacks in this case, violating the “single entry point” requirement above – see the
artist.kwdocd[’Patch’] setting in matplotlib.patches.

24.4 Developing a new backend

If you are working on a custom backend, the backend setting in matplotlibrc (Customizing matplotlib)
supports an external backend via the module directive. if my_backend.py is a matplotlib backend in your
PYTHONPATH, you can set use it on one of several ways

• in matplotlibrc:

backend : module://my_backend

• with the use directive is your script:

import matplotlib
matplotlib.use(’module://my_backend’)

• from the command shell with the -d flag:

> python simple_plot.py -d module://my_backend

24.5 Licenses

Matplotlib only uses BSD compatible code. If you bring in code from another project make sure it has a
PSF, BSD, MIT or compatible license (see the Open Source Initiative licenses page for details on individual
licenses). If it doesn’t, you may consider contacting the author and asking them to relicense it. GPL and
LGPL code are not acceptable in the main code base, though we are considering an alternative way of
distributing L/GPL code through an separate channel, possibly a toolkit. If you include code, make sure you
include a copy of that code’s license in the license directory if the code’s license requires you to distribute
the license with it. Non-BSD compatible licenses are acceptable in matplotlib toolkits (eg basemap), but
make sure you clearly state the licenses you are using.

24.5.1 Why BSD compatible?

The two dominant license variants in the wild are GPL-style and BSD-style. There are countless other
licenses that place specific restrictions on code reuse, but there is an important difference to be considered
in the GPL and BSD variants. The best known and perhaps most widely used license is the GPL, which
in addition to granting you full rights to the source code including redistribution, carries with it an extra
obligation. If you use GPL code in your own code, or link with it, your product must be released under a
GPL compatible license. I.e., you are required to give the source code to other people and give them the
right to redistribute it as well. Many of the most famous and widely used open source projects are released
under the GPL, including linux, gcc, emacs and sage.

The second major class are the BSD-style licenses (which includes MIT and the python PSF license). These
basically allow you to do whatever you want with the code: ignore it, include it in your own open source

24.4. Developing a new backend 201

http://www.opensource.org/licenses

Matplotlib, Release 0.99.3

project, include it in your proprietary product, sell it, whatever. python itself is released under a BSD
compatible license, in the sense that, quoting from the PSF license page:

There is no GPL-like "copyleft" restriction. Distributing
binary-only versions of Python, modified or not, is allowed. There
is no requirement to release any of your source code. You can also
write extension modules for Python and provide them only in binary
form.

Famous projects released under a BSD-style license in the permissive sense of the last paragraph are the
BSD operating system, python and TeX.

There are several reasons why early matplotlib developers selected a BSD compatible license. matplotlib
is a python extension, and we choose a license that was based on the python license (BSD compatible).
Also, we wanted to attract as many users and developers as possible, and many software companies will
not use GPL code in software they plan to distribute, even those that are highly committed to open source
development, such as enthought, out of legitimate concern that use of the GPL will “infect” their code base
by its viral nature. In effect, they want to retain the right to release some proprietary code. Companies and
institutions who use matplotlib often make significant contributions, because they have the resources to get
a job done, even a boring one. Two of the matplotlib backends (FLTK and WX) were contributed by private
companies. The final reason behind the licensing choice is compatibility with the other python extensions
for scientific computing: ipython, numpy, scipy, the enthought tool suite and python itself are all distributed
under BSD compatible licenses.

202 Chapter 24. Coding guide

http://enthought.com

CHAPTER

TWENTYFIVE

DOCUMENTING MATPLOTLIB

25.1 Getting started

The documentation for matplotlib is generated from ReStructured Text using the Sphinx documentation
generation tool. Sphinx-0.5 or later is required. You might still run into problems, so most developers work
from the sphinx source repository (Mercurial based) because it is a rapidly evolving project:

hg clone http://bitbucket.org/birkenfeld/sphinx/
cd sphinx
python setup.py install

The documentation sources are found in the doc/ directory in the trunk. To build the users guide in html
format, cd into doc/ and do:

python make.py html

or:

./make.py html

you can also pass a latex flag to make.py to build a pdf, or pass no arguments to build everything.

The output produced by Sphinx can be configured by editing the conf.py file located in the doc/.

25.2 Organization of matplotlib’s documentation

The actual ReStructured Text files are kept in doc/users, doc/devel, doc/api and doc/faq. The main
entry point is doc/index.rst, which pulls in the index.rst file for the users guide, developers guide,
api reference, and faqs. The documentation suite is built as a single document in order to make the most
effective use of cross referencing, we want to make navigating the Matplotlib documentation as easy as
possible.

Additional files can be added to the various guides by including their base file name (the .rst extension is
not necessary) in the table of contents. It is also possible to include other documents through the use of an
include statement, such as:

203

http://sphinx.pocoo.org/

Matplotlib, Release 0.99.3

.. include:: ../../TODO

25.3 Formatting

The Sphinx website contains plenty of documentation concerning ReST markup and working with Sphinx
in general. Here are a few additional things to keep in mind:

• Please familiarize yourself with the Sphinx directives for inline markup. Matplotlib’s documentation
makes heavy use of cross-referencing and other semantic markup. For example, when referring to
external files, use the :file: directive.

• Function arguments and keywords should be referred to using the emphasis role. This will keep
matplotlib’s documentation consistant with Python’s documentation:

Here is a description of *argument*

Please do not use the default role:

Please do not describe ‘argument‘ like this.

nor the literal role:

Please do not describe ‘‘argument‘‘ like this.

• Sphinx does not support tables with column- or row-spanning cells for latex output. Such tables can
not be used when documenting matplotlib.

• Mathematical expressions can be rendered as png images in html, and in the usual way by latex. For
example:

:math:‘\sin(x_n^2)‘ yields: sin(x2
n), and:

.. math::

\int_{-\infty}^{\infty}\frac{e^{i\phi}}{1+x^2\frac{e^{i\phi}}{1+x^2}}

yields: ∫ ∞
−∞

eiφ

1 + x2 eiφ

1+x2

(25.1)

• Interactive IPython sessions can be illustrated in the documentation using the following directive:

.. sourcecode:: ipython

In [69]: lines = plot([1,2,3])

which would yield:

In [69]: lines = plot([1,2,3])

204 Chapter 25. Documenting matplotlib

http://sphinx.pocoo.org/contents.html
http://sphinx.pocoo.org/markup/inline.html

Matplotlib, Release 0.99.3

• Footnotes 1 can be added using [#]_, followed later by:

.. rubric:: Footnotes

.. [#]

• Use the note and warning directives, sparingly, to draw attention to important comments:

.. note::
Here is a note

yields:

Note: here is a note

also:

Warning: here is a warning

• Use the deprecated directive when appropriate:

.. deprecated:: 0.98
This feature is obsolete, use something else.

yields: Deprecated since version 0.98: This feature is obsolete, use something else.

• Use the versionadded and versionchanged directives, which have similar syntax to the deprecated
role:

.. versionadded:: 0.98
The transforms have been completely revamped.

New in version 0.98: The transforms have been completely revamped.

• Use the seealso directive, for example:

.. seealso::

Using ReST :ref:‘emacs-helpers‘:
One example

A bit about :ref:‘referring-to-mpl-docs‘:
One more

yields:

See Also:

Using ResT Emacs helpers: One example

A bit about Referring to mpl documents: One more

• Please keep the Glossary in mind when writing documentation. You can create a references to a term
in the glossary with the :term: role.

1 For example.

25.3. Formatting 205

Matplotlib, Release 0.99.3

• The autodoc extension will handle index entries for the API, but additional entries in the index need
to be explicitly added.

25.3.1 Docstrings

In addition to the aforementioned formatting suggestions:

• Please limit the text width of docstrings to 70 characters.

• Keyword arguments should be described using a definition list.

Note: matplotlib makes extensive use of keyword arguments as pass-through arguments, there are a
many cases where a table is used in place of a definition list for autogenerated sections of docstrings.

25.4 Figures

25.4.1 Dynamically generated figures

Figures can be automatically generated from scripts and included in the docs. It is not necessary to explicitly
save the figure in the script, this will be done automatically at build time to ensure that the code that is
included runs and produces the advertised figure. Several figures will be saved with the same basename as
the filename when the documentation is generated (low and high res PNGs, a PDF). Matplotlib includes a
Sphinx extension (sphinxext/plot_directive.py) for generating the images from the python script and
including either a png copy for html or a pdf for latex:

.. plot:: pyplots/pyplot_simple.py
:include-source:

If the script produces multiple figures (through multiple calls to pyplot.figure()), each will be given a
numbered file name and included.

The path should be relative to the doc directory. Any plots specific to the documentation should be added to
the doc/pyplots directory and committed to SVN. Plots from the examples directory may be referenced
through the symlink mpl_examples in the doc directory. eg.:

.. plot:: mpl_examples/pylab_examples/simple_plot.py

The :scale: directive rescales the image to some percentage of the original size, though we don’t recom-
mend using this in most cases since it is probably better to choose the correct figure size and dpi in mpl
and let it handle the scaling. :include-source: will present the contents of the file, marked up as source
code.

25.4.2 Static figures

Any figures that rely on optional system configurations need to be handled a little differently. These figures
are not to be generated during the documentation build, in order to keep the prerequisites to the documen-
tation effort as low as possible. Please run the doc/pyplots/make.py script when adding such figures,
and commit the script and the images to svn. Please also add a line to the README in doc/pyplots for any

206 Chapter 25. Documenting matplotlib

http://sphinx.pocoo.org/markup/para.html#index-generating-markup

Matplotlib, Release 0.99.3

additional requirements necessary to generate a new figure. Once these steps have been taken, these figures
can be included in the usual way:

.. plot:: pyplots/tex_unicode_demo.py
:include-source:

25.4.3 Examples

The source of the files in the examples directory are automatically included in the HTML docs. An image
is generated and included for all examples in the api and pylab_examples directories. To exclude the
example from having an image rendered, insert the following special comment anywhere in the script:

-*- noplot -*-

25.5 Referring to mpl documents

In the documentation, you may want to include to a document in the matplotlib src, e.g. a license file or an
image file from mpl-data, refer to it via a relative path from the document where the rst file resides, eg, in
users/navigation_toolbar.rst, we refer to the image icons with:

.. image:: ../../lib/matplotlib/mpl-data/images/subplots.png

In the users subdirectory, if I want to refer to a file in the mpl-data directory, I use the symlink directory. For
example, from customizing.rst:

.. literalinclude:: ../../lib/matplotlib/mpl-data/matplotlibrc

On exception to this is when referring to the examples dir. Relative paths are extremely confusing in the
sphinx plot extensions, so without getting into the dirty details, it is easier to simply include a symlink to the
files at the top doc level directory. This way, API documents like matplotlib.pyplot.plot() can refer
to the examples in a known location.

In the top level doc directory we have symlinks pointing to the mpl examples:

home:~/mpl/doc> ls -l mpl_*
mpl_examples -> ../examples

So we can include plots from the examples dir using the symlink:

.. plot:: mpl_examples/pylab_examples/simple_plot.py

We used to use a symlink for mpl-data too, but the distro becomes very large on platforms that do not
support links (eg the font files are duplicated and large)

25.6 Internal section references

To maximize internal consistency in section labeling and references, use hypen separated, descriptive labels
for section references, eg:

25.5. Referring to mpl documents 207

Matplotlib, Release 0.99.3

.. _howto-webapp:

and refer to it using the standard reference syntax:

See :ref:‘howto-webapp‘

Keep in mind that we may want to reorganize the contents later, so let’s avoid top level names in references
like user or devel or faq unless necesssary, because for example the FAQ “what is a backend?” could
later become part of the users guide, so the label:

.. _what-is-a-backend

is better than:

.. _faq-backend

In addition, since underscores are widely used by Sphinx itself, let’s prefer hyphens to separate words.

25.7 Section names, etc

For everything but top level chapters, please use Upper lower for section titles, eg Possible hangups
rather than Possible Hangups

25.8 Inheritance diagrams

Class inheritance diagrams can be generated with the inheritance-diagram directive. To use it, you
provide the directive with a number of class or module names (separated by whitespace). If a module name
is provided, all classes in that module will be used. All of the ancestors of these classes will be included in
the inheritance diagram.

A single option is available: parts controls how many of parts in the path to the class are shown. For
example, if parts == 1, the class matplotlib.patches.Patch is shown as Patch. If parts == 2, it is
shown as patches.Patch. If parts == 0, the full path is shown.

Example:

.. inheritance-diagram:: matplotlib.patches matplotlib.lines matplotlib.text
:parts: 2

208 Chapter 25. Documenting matplotlib

Matplotlib, Release 0.99.3

patches.RegularPolygon patches.CirclePolygon

patches.Patch

patches.FancyArrowPatch

patches.Ellipse

patches.Wedge

patches.FancyBboxPatch

patches.Arrow

patches.Polygon

patches.YAArrow

patches.Rectangle

patches.PathPatch

patches.Shadow

text.TextWithDashtext.Text

text.Annotation

patches.ConnectionPatch

patches.BoxStyle

patches._Style patches.ArrowStyle

patches.ConnectionStyle

patches.Arc

patches.Circle

artist.Artist

lines.Line2D

patches.FancyArrow

lines.VertexSelector

25.9 Emacs helpers

There is an emacs mode rst.el which automates many important ReST tasks like building and updateing
table-of-contents, and promoting or demoting section headings. Here is the basic .emacs configuration:

(require ’rst)
(setq auto-mode-alist

(append ’(("\\.txt$" . rst-mode)
("\\.rst$" . rst-mode)
("\\.rest$" . rst-mode)) auto-mode-alist))

Some helpful functions:

C-c TAB - rst-toc-insert

Insert table of contents at point

C-c C-u - rst-toc-update

Update the table of contents at point

25.9. Emacs helpers 209

http://docutils.sourceforge.net/tools/editors/emacs/rst.el

Matplotlib, Release 0.99.3

C-c C-l rst-shift-region-left

Shift region to the left

C-c C-r rst-shift-region-right

Shift region to the right

210 Chapter 25. Documenting matplotlib

CHAPTER

TWENTYSIX

DOING A MATPLOLIB RELEASE

A guide for developers who are doing a matplotlib release

• Edit __init__.py and bump the version number

When doing a release

26.1 Testing

• Make sure examples/tests/backend_driver.py runs without errors and check the output of the
PNG, PDF, PS and SVG backends

• Run unit/memleak_hawaii3.py and make sure there are no memory leaks

• Run unit/nose_tests.py and make sure all the unit tests are passing

• try some GUI examples, eg simple_plot.py with GTKAgg, TkAgg, etc...

• remove font cache and tex cache from .matplotlib and test with and without cache on some exam-
ple script

26.2 Branching

Once all the tests are passing and you are ready to do a release, you need to create a release branch and
configure svn-merge to use it; Michael Droettboom should probably handle this step, but if he is not available
see instructions at Setting up svnmerge. On the bracnh, do any additional testing you want to do, and then
build binaries and source distributions for testing as release candidates.

26.3 Packaging

• Make sure the MANIFEST.in us up to date and remove MANIFEST so it will be rebuilt by MANI-
FEST.in

• run svn-clean from in the mpl svn directory before building the sdist

• unpack the sdist and make sure you can build from that directory

211

http://svn.collab.net/repos/svn/trunk/contrib/client-side/svn-clean

Matplotlib, Release 0.99.3

• Use setup.cfg to set the default backends. For windows and OSX, the default backend should be
TkAgg. You should also turn on or off any platform specific build options you need. Importantly,
you also need to make sure that you delete the build dir after any changes to file:setup.cfg before
rebuilding since cruft in the build dir can get carried along.

• on windows, unix2dos the rc file

• We have a Makefile for the OS X builds in the mpl source dir release/osx, so use this to prepare
the OS X releases.

• We have a Makefile for the win32 mingw builds in the mpl source dir release/win32
which you can use this to prepare the windows releases, but this is currently bro-
ken for python2.6 as described at http://www.nabble.com/binary-installers-for-python2.6–libpng-
segfault%2C-MSVCR90.DLL-and-%09mingw-td23971661.html

26.4 Release candidate testing:

Post the release candidates to http://matplotlib.sf.net/release-candidates and post a message to matplotlib-
users and devel requesting testing. To post to the server, you can do:

> scp somefile.tgz jdh2358,matplotlib@shell.sf.net:/home/groups/m/ma/matplotlib/htdocs/release-candidates/

replacing ‘jdh2358’ with your sourceforge login.

Any changes to fix bugs in the release candidate should be fixed in the release branch and merged into the
trunk with svn-merge; see Using svnmerge. When the release candidate is signed off on, build the final sdist,
binaries and eggs, and upload them to the sourceforge release area.

26.5 Uploading

• Post the win32 and OS-X binaries for testing and make a request on matplotlib-devel for testing.
Pester us if we don’t respond

• ftp the source and binaries to the anonymous FTP site:

mpl> svn-clean
mpl> python setup.py sdist
mpl> cd dist/
dist> sftp jdh2358@frs.sourceforge.net
Connecting to frs.sourceforge.net...
sftp> cd uploads
sftp> ls
sftp> lls
matplotlib-0.98.2.tar.gz
sftp> put matplotlib-0.98.2.tar.gz
Uploading matplotlib-0.98.2.tar.gz to /incoming/j/jd/jdh2358/uploads/matplotlib-0.98.2.tar.gz

• go https://sourceforge.net/project/admin/editpackages.php?group_id=80706 and do a file release.
Click on the “Admin” tab to log in as an admin, and then the “File Releases” tab. Go to the bot-
tom and click “add release” and enter the package name but not the version number in the “Package

212 Chapter 26. Doing a matplolib release

http://www.nabble.com/binary-installers-for-python2.6--libpng-segfault%2C-MSVCR90.DLL-and-%09mingw-td23971661.html
http://www.nabble.com/binary-installers-for-python2.6--libpng-segfault%2C-MSVCR90.DLL-and-%09mingw-td23971661.html
http://matplotlib.sf.net/release-candidates
https://sourceforge.net/project/admin/editpackages.php?group_id=80706

Matplotlib, Release 0.99.3

Name” box. You will then be prompted for the “New release name” at which point you can add the
version number, eg somepackage-0.1 and click “Create this release”.

You will then be taken to a fairly self explanatory page where you can enter the Change notes, the
release notes, and select which packages from the incoming ftp archive you want to include in this
release. For each binary, you will need to select the platform and file type, and when you are done
you click on the “notify users who are monitoring this package link”

26.6 Announcing

Announce the release on matplotlib-announce, matplotlib-users and matplotlib-devel. Include a summary
of highlights from the CHANGELOG and/or post the whole CHANGELOG since the last release.

26.6. Announcing 213

Matplotlib, Release 0.99.3

214 Chapter 26. Doing a matplolib release

CHAPTER

TWENTYSEVEN

WORKING WITH TRANSFORMATIONS

Bbox

BboxBase TransformedBbox

AffineBase Affine2DBase

Transform TransformWrapper

CompositeGenericTransform

BlendedGenericTransform

TransformNode

TransformedPath

ScaledTranslation

BboxTransform

BboxTransformFrom

BlendedAffine2D

BboxTransformTo

IdentityTransform

Affine2D

CompositeAffine2D

Path

27.1 matplotlib.transforms

matplotlib includes a framework for arbitrary geometric transformations that is used determine the final
position of all elements drawn on the canvas.

Transforms are composed into trees of TransformNode objects whose actual value depends on their chil-
dren. When the contents of children change, their parents are automatically invalidated. The next time
an invalidated transform is accessed, it is recomputed to reflect those changes. This invalidation/caching
approach prevents unnecessary recomputations of transforms, and contributes to better interactive perfor-
mance.

For example, here is a graph of the transform tree used to plot data to the graph:

215

Matplotlib, Release 0.99.3

The framework can be used for both affine and non-affine transformations. However, for speed, we want
use the backend renderers to perform affine transformations whenever possible. Therefore, it is possible to
perform just the affine or non-affine part of a transformation on a set of data. The affine is always assumed
to occur after the non-affine. For any transform:

full transform == non-affine part + affine part

The backends are not expected to handle non-affine transformations themselves.

216 Chapter 27. Working with transformations

Matplotlib, Release 0.99.3

class matplotlib.transforms.TransformNode
Bases: object

TransformNode is the base class for anything that participates in the transform tree and needs to
invalidate its parents or be invalidated. This includes classes that are not really transforms, such as
bounding boxes, since some transforms depend on bounding boxes to compute their values.

Creates a new TransformNode.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy()
might normally be used.

invalidate()
Invalidate this TransformNode and all of its ancestors. Should be called any time the transform
changes.

set_children(*children)
Set the children of the transform, to let the invalidation system know which transforms can
invalidate this transform. Should be called from the constructor of any transforms that depend
on other transforms.

class matplotlib.transforms.BboxBase
Bases: matplotlib.transforms.TransformNode

This is the base class of all bounding boxes, and provides read-only access to its data. A mutable
bounding box is provided by the Bbox class.

The canonical representation is as two points, with no restrictions on their ordering. Convenience
properties are provided to get the left, bottom, right and top edges and width and height, but these are
not stored explicity.

Creates a new TransformNode.

anchored(c, container=None)
Return a copy of the Bbox, shifted to position c within a container.

c: may be either:

•a sequence (cx, cy) where cx and cy range from 0 to 1, where 0 is left or bottom and 1 is
right or top

•a string: - ‘C’ for centered - ‘S’ for bottom-center - ‘SE’ for bottom-left - ‘E’ for left - etc.

Optional argument container is the box within which the Bbox is positioned; it defaults to the
initial Bbox.

bounds
(property) Returns (x0, y0, width, height).

contains(x, y)
Returns True if (x, y) is a coordinate inside the bounding box or on its edge.

containsx(x)
Returns True if x is between or equal to x0 and x1.

27.1. matplotlib.transforms 217

Matplotlib, Release 0.99.3

containsy(y)
Returns True if y is between or equal to y0 and y1.

corners()
Return an array of points which are the four corners of this rectangle. For example, if this Bbox
is defined by the points (a, b) and (c, d), corners() returns (a, b), (a, d), (c, b) and (c, d).

count_contains(vertices)
Count the number of vertices contained in the Bbox.

vertices is a Nx2 Numpy array.

count_overlaps(bboxes)
Count the number of bounding boxes that overlap this one.

bboxes is a sequence of BboxBase objects

expanded(sw, sh)
Return a new Bbox which is this Bbox expanded around its center by the given factors sw and
sh.

extents
(property) Returns (x0, y0, x1, y1).

frozen()
TransformNode is the base class for anything that participates in the transform tree and needs to
invalidate its parents or be invalidated. This includes classes that are not really transforms, such
as bounding boxes, since some transforms depend on bounding boxes to compute their values.

fully_contains(x, y)
Returns True if (x, y) is a coordinate inside the bounding box, but not on its edge.

fully_containsx(x)
Returns True if x is between but not equal to x0 and x1.

fully_containsy(y)
Returns True if y is between but not equal to y0 and y1.

fully_overlaps(other)
Returns True if this bounding box overlaps with the given bounding box other, but not on its
edge alone.

height
(property) The height of the bounding box. It may be negative if y1 < y0.

intervalx
(property) intervalx is the pair of x coordinates that define the bounding box. It is not guar-
anteed to be sorted from left to right.

intervaly
(property) intervaly is the pair of y coordinates that define the bounding box. It is not guar-
anteed to be sorted from bottom to top.

inverse_transformed(transform)
Return a new Bbox object, statically transformed by the inverse of the given transform.

218 Chapter 27. Working with transformations

Matplotlib, Release 0.99.3

is_unit()
Returns True if the Bbox is the unit bounding box from (0, 0) to (1, 1).

max
(property) max is the top-right corner of the bounding box.

min
(property) min is the bottom-left corner of the bounding box.

overlaps(other)
Returns True if this bounding box overlaps with the given bounding box other.

p0
(property) p0 is the first pair of (x, y) coordinates that define the bounding box. It is not guaran-
teed to be the bottom-left corner. For that, use min.

p1
(property) p1 is the second pair of (x, y) coordinates that define the bounding box. It is not
guaranteed to be the top-right corner. For that, use max.

padded(p)
Return a new Bbox that is padded on all four sides by the given value.

rotated(radians)
Return a new bounding box that bounds a rotated version of this bounding box by the given
radians. The new bounding box is still aligned with the axes, of course.

shrunk(mx, my)
Return a copy of the Bbox, shrunk by the factor mx in the x direction and the factor my in the y
direction. The lower left corner of the box remains unchanged. Normally mx and my will be less
than 1, but this is not enforced.

shrunk_to_aspect(box_aspect, container=None, fig_aspect=1.0)
Return a copy of the Bbox, shrunk so that it is as large as it can be while having the desired
aspect ratio, box_aspect. If the box coordinates are relative—that is, fractions of a larger box
such as a figure—then the physical aspect ratio of that figure is specified with fig_aspect, so that
box_aspect can also be given as a ratio of the absolute dimensions, not the relative dimensions.

size
(property) The width and height of the bounding box. May be negative, in the same way as
width and height.

splitx(*args)
e.g., bbox.splitx(f1, f2, ...)

Returns a list of new Bbox objects formed by splitting the original one with vertical lines at
fractional positions f1, f2, ...

splity(*args)
e.g., bbox.splitx(f1, f2, ...)

Returns a list of new Bbox objects formed by splitting the original one with horizontal lines at
fractional positions f1, f2, ...

27.1. matplotlib.transforms 219

Matplotlib, Release 0.99.3

transformed(transform)
Return a new Bbox object, statically transformed by the given transform.

translated(tx, ty)
Return a copy of the Bbox, statically translated by tx and ty.

static union(bboxes)
Return a Bbox that contains all of the given bboxes.

width
(property) The width of the bounding box. It may be negative if x1 < x0.

x0
(property) x0 is the first of the pair of x coordinates that define the bounding box. x0 is not
guaranteed to be less than x1. If you require that, use xmin.

x1
(property) x1 is the second of the pair of x coordinates that define the bounding box. x1 is not
guaranteed to be greater than x0. If you require that, use xmax.

xmax
(property) xmax is the right edge of the bounding box.

xmin
(property) xmin is the left edge of the bounding box.

y0
(property) y0 is the first of the pair of y coordinates that define the bounding box. y0 is not
guaranteed to be less than y1. If you require that, use ymin.

y1
(property) y1 is the second of the pair of y coordinates that define the bounding box. y1 is not
guaranteed to be greater than y0. If you require that, use ymax.

ymax
(property) ymax is the top edge of the bounding box.

ymin
(property) ymin is the bottom edge of the bounding box.

class matplotlib.transforms.Bbox(points)
Bases: matplotlib.transforms.BboxBase

A mutable bounding box.

points: a 2x2 numpy array of the form [[x0, y0], [x1, y1]]

If you need to create a Bbox object from another form of data, consider the static methods unit(),
from_bounds() and from_extents().

static from_bounds(x0, y0, width, height)
(staticmethod) Create a new Bbox from x0, y0, width and height.

width and height may be negative.

static from_extents(*args)
(staticmethod) Create a new Bbox from left, bottom, right and top.

220 Chapter 27. Working with transformations

Matplotlib, Release 0.99.3

The y-axis increases upwards.

get_points()
Get the points of the bounding box directly as a numpy array of the form: [[x0, y0], [x1, y1]].

ignore(value)
Set whether the existing bounds of the box should be ignored by subsequent calls to
update_from_data() or update_from_data_xy().

value:

•When True, subsequent calls to update_from_data() will ignore the existing bounds of
the Bbox.

•When False, subsequent calls to update_from_data() will include the existing bounds of
the Bbox.

set(other)
Set this bounding box from the “frozen” bounds of another Bbox.

set_points(points)
Set the points of the bounding box directly from a numpy array of the form: [[x0, y0], [x1, y1]].
No error checking is performed, as this method is mainly for internal use.

static unit()
(staticmethod) Create a new unit Bbox from (0, 0) to (1, 1).

update_from_data(x, y, ignore=None)
Update the bounds of the Bbox based on the passed in data. After updating, the bounds will have
positive width and height; x0 and y0 will be the minimal values.

x: a numpy array of x-values

y: a numpy array of y-values

ignore:

• when True, ignore the existing bounds of the Bbox.

• when False, include the existing bounds of the Bbox.

• when None, use the last value passed to ignore().

update_from_data_xy(xy, ignore=None, updatex=True, updatey=True)
Update the bounds of the Bbox based on the passed in data. After updating, the bounds will have
positive width and height; x0 and y0 will be the minimal values.

xy: a numpy array of 2D points

ignore:

• when True, ignore the existing bounds of the Bbox.

• when False, include the existing bounds of the Bbox.

• when None, use the last value passed to ignore().

27.1. matplotlib.transforms 221

Matplotlib, Release 0.99.3

updatex: when True, update the x values

updatey: when True, update the y values

update_from_path(path, ignore=None, updatex=True, updatey=True)
Update the bounds of the Bbox based on the passed in data. After updating, the bounds will have
positive width and height; x0 and y0 will be the minimal values.

path: a Path instance

ignore:

• when True, ignore the existing bounds of the Bbox.

• when False, include the existing bounds of the Bbox.

• when None, use the last value passed to ignore().

updatex: when True, update the x values

updatey: when True, update the y values

class matplotlib.transforms.TransformedBbox(bbox, transform)
Bases: matplotlib.transforms.BboxBase

A Bbox that is automatically transformed by a given transform. When either the child bounding box
or transform changes, the bounds of this bbox will update accordingly.

bbox: a child Bbox

transform: a 2D Transform

get_points()
Get the points of the bounding box directly as a numpy array of the form: [[x0, y0], [x1, y1]].

class matplotlib.transforms.Transform
Bases: matplotlib.transforms.TransformNode

The base class of all TransformNode instances that actually perform a transformation.

All non-affine transformations should be subclasses of this class. New affine transformations should
be subclasses of Affine2D.

Subclasses of this class should override the following members (at minimum):

•input_dims

•output_dims

•transform()

•is_separable

•has_inverse

•inverted() (if has_inverse() can return True)

If the transform needs to do something non-standard with mathplotlib.path.Path objects, such
as adding curves where there were once line segments, it should override:

•transform_path()

222 Chapter 27. Working with transformations

Matplotlib, Release 0.99.3

Creates a new TransformNode.

get_affine()
Get the affine part of this transform.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform(values)
Performs the transformation on the given array of values.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine(values)
Performs only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_angles(angles, pts, radians=False, pushoff=1e-05)
Performs transformation on a set of angles anchored at specific locations.

The angles must be a column vector (i.e., numpy array).

The pts must be a two-column numpy array of x,y positions (angle transforms currently only
work in 2D). This array must have the same number of rows as angles.

radians indicates whether or not input angles are given in radians (True) or degrees (False;
the default).

pushoff is the distance to move away from pts for determining transformed angles (see dis-
cussion of method below).

The transformed angles are returned in an array with the same size as angles.

The generic version of this method uses a very generic algorithm that transforms pts, as well as
locations very close to pts, to find the angle in the transformed system.

transform_non_affine(values)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

27.1. matplotlib.transforms 223

Matplotlib, Release 0.99.3

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_path(path)
Returns a transformed copy of path.

path: a Path instance.

In some cases, this transform may insert curves into the path that began as line segments.

transform_path_affine(path)
Returns a copy of path, transformed only by the affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_path_non_affine(path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_point(point)
A convenience function that returns the transformed copy of a single point.

The point is given as a sequence of length input_dims. The transformed point is returned as a
sequence of length output_dims.

class matplotlib.transforms.TransformWrapper(child)
Bases: matplotlib.transforms.Transform

A helper class that holds a single child transform and acts equivalently to it.

This is useful if a node of the transform tree must be replaced at run time with a transform of a different
type. This class allows that replacement to correctly trigger invalidation.

Note that TransformWrapper instances must have the same input and output dimensions during their
entire lifetime, so the child transform may only be replaced with another child transform of the same
dimensions.

child: A class:Transform instance. This child may later be replaced with set().

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy()
might normally be used.

set(child)
Replace the current child of this transform with another one.

The new child must have the same number of input and output dimensions as the current child.

class matplotlib.transforms.AffineBase
Bases: matplotlib.transforms.Transform

The base class of all affine transformations of any number of dimensions.

224 Chapter 27. Working with transformations

Matplotlib, Release 0.99.3

get_affine()
Get the affine part of this transform.

get_matrix()
Get the underlying transformation matrix as a numpy array.

transform_non_affine(points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_path_affine(path)
Returns a copy of path, transformed only by the affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_path_non_affine(path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

class matplotlib.transforms.Affine2DBase
Bases: matplotlib.transforms.AffineBase

The base class of all 2D affine transformations.

2D affine transformations are performed using a 3x3 numpy array:

a c e
b d f
0 0 1

This class provides the read-only interface. For a mutable 2D affine transformation, use Affine2D.

Subclasses of this class will generally only need to override a constructor and get_matrix() that
generates a custom 3x3 matrix.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy()
might normally be used.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

27.1. matplotlib.transforms 225

Matplotlib, Release 0.99.3

x === self.inverted().transform(self.transform(x))

static matrix_from_values(a, b, c, d, e, f)
(staticmethod) Create a new transformation matrix as a 3x3 numpy array of the form:

a c e
b d f
0 0 1

to_values()
Return the values of the matrix as a sequence (a,b,c,d,e,f)

transform(points)
Performs only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine(points)
Performs only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_point(point)
A convenience function that returns the transformed copy of a single point.

The point is given as a sequence of length input_dims. The transformed point is returned as a
sequence of length output_dims.

class matplotlib.transforms.Affine2D(matrix=None)
Bases: matplotlib.transforms.Affine2DBase

A mutable 2D affine transformation.

Initialize an Affine transform from a 3x3 numpy float array:

a c e
b d f
0 0 1

If matrix is None, initialize with the identity transform.

clear()
Reset the underlying matrix to the identity transform.

static from_values(a, b, c, d, e, f)
(staticmethod) Create a new Affine2D instance from the given values:

226 Chapter 27. Working with transformations

Matplotlib, Release 0.99.3

a c e
b d f
0 0 1

get_matrix()
Get the underlying transformation matrix as a 3x3 numpy array:

a c e
b d f
0 0 1

static identity()
(staticmethod) Return a new Affine2D object that is the identity transform.

Unless this transform will be mutated later on, consider using the faster IdentityTransform
class instead.

rotate(theta)
Add a rotation (in radians) to this transform in place.

Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg(),
translate() and scale().

rotate_around(x, y, theta)
Add a rotation (in radians) around the point (x, y) in place.

Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg(),
translate() and scale().

rotate_deg(degrees)
Add a rotation (in degrees) to this transform in place.

Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg(),
translate() and scale().

rotate_deg_around(x, y, degrees)
Add a rotation (in degrees) around the point (x, y) in place.

Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg(),
translate() and scale().

scale(sx, sy=None)
Adds a scale in place.

If sy is None, the same scale is applied in both the x- and y-directions.

Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg(),
translate() and scale().

set(other)
Set this transformation from the frozen copy of another Affine2DBase object.

set_matrix(mtx)
Set the underlying transformation matrix from a 3x3 numpy array:

27.1. matplotlib.transforms 227

Matplotlib, Release 0.99.3

a c e
b d f
0 0 1

translate(tx, ty)
Adds a translation in place.

Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg(),
translate() and scale().

class matplotlib.transforms.IdentityTransform
Bases: matplotlib.transforms.Affine2DBase

A special class that does on thing, the identity transform, in a fast way.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy()
might normally be used.

get_affine()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

get_matrix()
Get the underlying transformation matrix as a numpy array.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform(points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine(points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

228 Chapter 27. Working with transformations

Matplotlib, Release 0.99.3

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_non_affine(points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_path(path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_path_affine(path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_path_non_affine(path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

class matplotlib.transforms.BlendedGenericTransform(x_transform, y_transform)
Bases: matplotlib.transforms.Transform

A “blended” transform uses one transform for the x-direction, and another transform for the y-
direction.

This “generic” version can handle any given child transform in the x- and y-directions.

Create a new “blended” transform using x_transform to transform the x-axis and y_transform to trans-
form the y-axis.

You will generally not call this constructor directly but use the blended_transform_factory()
function instead, which can determine automatically which kind of blended transform to create.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy()
might normally be used.

get_affine()
Get the affine part of this transform.

27.1. matplotlib.transforms 229

Matplotlib, Release 0.99.3

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform(points)
Performs the transformation on the given array of values.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine(points)
Performs only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_non_affine(points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

class matplotlib.transforms.BlendedAffine2D(x_transform, y_transform)
Bases: matplotlib.transforms.Affine2DBase

A “blended” transform uses one transform for the x-direction, and another transform for the y-
direction.

This version is an optimization for the case where both child transforms are of type Affine2DBase.

Create a new “blended” transform using x_transform to transform the x-axis and y_transform to trans-
form the y-axis.

Both x_transform and y_transform must be 2D affine transforms.

You will generally not call this constructor directly but use the blended_transform_factory()
function instead, which can determine automatically which kind of blended transform to create.

get_matrix()
Get the underlying transformation matrix as a numpy array.

matplotlib.transforms.blended_transform_factory(x_transform, y_transform)
Create a new “blended” transform using x_transform to transform the x-axis and y_transform to trans-
form the y-axis.

230 Chapter 27. Working with transformations

Matplotlib, Release 0.99.3

A faster version of the blended transform is returned for the case where both child transforms are
affine.

class matplotlib.transforms.CompositeGenericTransform(a, b)
Bases: matplotlib.transforms.Transform

A composite transform formed by applying transform a then transform b.

This “generic” version can handle any two arbitrary transformations.

Create a new composite transform that is the result of applying transform a then transform b.

You will generally not call this constructor directly but use the composite_transform_factory()
function instead, which can automatically choose the best kind of composite transform instance to
create.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy()
might normally be used.

get_affine()
Get the affine part of this transform.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform(points)
Performs the transformation on the given array of values.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine(points)
Performs only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_non_affine(points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

27.1. matplotlib.transforms 231

Matplotlib, Release 0.99.3

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_path(path)
Returns a transformed copy of path.

path: a Path instance.

In some cases, this transform may insert curves into the path that began as line segments.

transform_path_affine(path)
Returns a copy of path, transformed only by the affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_path_non_affine(path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

class matplotlib.transforms.CompositeAffine2D(a, b)
Bases: matplotlib.transforms.Affine2DBase

A composite transform formed by applying transform a then transform b.

This version is an optimization that handles the case where both a and b are 2D affines.

Create a new composite transform that is the result of applying transform a then transform b.

Both a and b must be instances of Affine2DBase.

You will generally not call this constructor directly but use the composite_transform_factory()
function instead, which can automatically choose the best kind of composite transform instance to
create.

get_matrix()
Get the underlying transformation matrix as a numpy array.

matplotlib.transforms.composite_transform_factory(a, b)
Create a new composite transform that is the result of applying transform a then transform b.

Shortcut versions of the blended transform are provided for the case where both child transforms are
affine, or one or the other is the identity transform.

Composite transforms may also be created using the ‘+’ operator, e.g.:

c = a + b

class matplotlib.transforms.BboxTransform(boxin, boxout)
Bases: matplotlib.transforms.Affine2DBase

BboxTransform linearly transforms points from one Bbox to another Bbox.

Create a new BboxTransform that linearly transforms points from boxin to boxout.

232 Chapter 27. Working with transformations

Matplotlib, Release 0.99.3

get_matrix()
Get the underlying transformation matrix as a numpy array.

class matplotlib.transforms.BboxTransformTo(boxout)
Bases: matplotlib.transforms.Affine2DBase

BboxTransformTo is a transformation that linearly transforms points from the unit bounding box to
a given Bbox.

Create a new BboxTransformTo that linearly transforms points from the unit bounding box to boxout.

get_matrix()
Get the underlying transformation matrix as a numpy array.

class matplotlib.transforms.BboxTransformFrom(boxin)
Bases: matplotlib.transforms.Affine2DBase

BboxTransformFrom linearly transforms points from a given Bbox to the unit bounding box.

get_matrix()
Get the underlying transformation matrix as a numpy array.

class matplotlib.transforms.ScaledTranslation(xt, yt, scale_trans)
Bases: matplotlib.transforms.Affine2DBase

A transformation that translates by xt and yt, after xt and yt have been transformad by the given
transform scale_trans.

get_matrix()
Get the underlying transformation matrix as a numpy array.

class matplotlib.transforms.TransformedPath(path, transform)
Bases: matplotlib.transforms.TransformNode

A TransformedPath caches a non-affine transformed copy of the Path. This cached copy is auto-
matically updated when the non-affine part of the transform changes.

Create a new TransformedPath from the given Path and Transform.

get_fully_transformed_path()
Return a fully-transformed copy of the child path.

get_transformed_path_and_affine()
Return a copy of the child path, with the non-affine part of the transform already applied, along
with the affine part of the path necessary to complete the transformation.

get_transformed_points_and_affine()
Return a copy of the child path, with the non-affine part of the transform already applied,
along with the affine part of the path necessary to complete the transformation. Unlike
get_transformed_path_and_affine(), no interpolation will be performed.

matplotlib.transforms.nonsingular(vmin, vmax, expander=0.001, tiny=1e-15, increas-
ing=True)

Ensure the endpoints of a range are finite and not too close together.

“too close” means the interval is smaller than ‘tiny’ times the maximum absolute value.

27.1. matplotlib.transforms 233

Matplotlib, Release 0.99.3

If they are too close, each will be moved by the ‘expander’. If ‘increasing’ is True and vmin > vmax,
they will be swapped, regardless of whether they are too close.

If either is inf or -inf or nan, return - expander, expander.

234 Chapter 27. Working with transformations

CHAPTER

TWENTYEIGHT

ADDING NEW SCALES AND
PROJECTIONS TO MATPLOTLIB

Matplotlib supports the addition of custom procedures that transform the data before it is displayed.

There is an important distinction between two kinds of transformations. Separable transformations, working
on a single dimension, are called “scales”, and non-separable transformations, that handle data in two or
more dimensions at a time, are called “projections”.

From the user’s perspective, the scale of a plot can be set with set_xscale() and set_xscale(). Pro-
jections can be chosen using the projection keyword argument to the plot() or subplot() functions,
e.g.:

plot(x, y, projection="custom")

This document is intended for developers and advanced users who need to create new scales and projections
for matplotlib. The necessary code for scales and projections can be included anywhere: directly within a
plot script, in third-party code, or in the matplotlib source tree itself.

28.1 Creating a new scale

Adding a new scale consists of defining a subclass of matplotlib.scale.ScaleBase, that includes the
following elements:

• A transformation from data coordinates into display coordinates.

• An inverse of that transformation. This is used, for example, to convert mouse positions from screen
space back into data space.

• A function to limit the range of the axis to acceptable values (limit_range_for_scale()). A log
scale, for instance, would prevent the range from including values less than or equal to zero.

• Locators (major and minor) that determine where to place ticks in the plot, and optionally, how to
adjust the limits of the plot to some “good” values. Unlike limit_range_for_scale(), which is
always enforced, the range setting here is only used when automatically setting the range of the plot.

• Formatters (major and minor) that specify how the tick labels should be drawn.

235

Matplotlib, Release 0.99.3

Once the class is defined, it must be registered with matplotlib so that the user can select it.

A full-fledged and heavily annotated example is in examples/api/custom_scale_example.py. There
are also some classes in matplotlib.scale that may be used as starting points.

28.2 Creating a new projection

Adding a new projection consists of defining a subclass of matplotlib.axes.Axes, that includes the
following elements:

• A transformation from data coordinates into display coordinates.

• An inverse of that transformation. This is used, for example, to convert mouse positions from screen
space back into data space.

• Transformations for the gridlines, ticks and ticklabels. Custom projections will often need to place
these elements in special locations, and matplotlib has a facility to help with doing so.

• Setting up default values (overriding cla()), since the defaults for a rectilinear axes may not be
appropriate.

• Defining the shape of the axes, for example, an elliptical axes, that will be used to draw the background
of the plot and for clipping any data elements.

• Defining custom locators and formatters for the projection. For example, in a geographic projection,
it may be more convenient to display the grid in degrees, even if the data is in radians.

• Set up interactive panning and zooming. This is left as an “advanced” feature left to the reader, but
there is an example of this for polar plots in matplotlib.projections.polar.

• Any additional methods for additional convenience or features.

Once the class is defined, it must be registered with matplotlib so that the user can select it.

A full-fledged and heavily annotated example is in examples/api/custom_projection_example.py.
The polar plot functionality in matplotlib.projections.polar may also be of interest.

28.3 API documentation

28.3.1 matplotlib.scale

class matplotlib.scale.LinearScale(axis, **kwargs)
Bases: matplotlib.scale.ScaleBase

The default linear scale.

get_transform()
The transform for linear scaling is just the IdentityTransform.

set_default_locators_and_formatters(axis)
Set the locators and formatters to reasonable defaults for linear scaling.

236 Chapter 28. Adding new scales and projections to matplotlib

Matplotlib, Release 0.99.3

class matplotlib.scale.LogScale(axis, **kwargs)
Bases: matplotlib.scale.ScaleBase

A standard logarithmic scale. Care is taken so non-positive values are not plotted.

For computational efficiency (to push as much as possible to Numpy C code in the common cases),
this scale provides different transforms depending on the base of the logarithm:

•base 10 (Log10Transform)

•base 2 (Log2Transform)

•base e (NaturalLogTransform)

•arbitrary base (LogTransform)

basex/basey: The base of the logarithm

nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be masked as invalid, or clipped
to a very small positive number

subsx/subsy: Where to place the subticks between each major tick. Should be a sequence of integers.
For example, in a log10 scale: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

get_transform()
Return a Transform instance appropriate for the given logarithm base.

limit_range_for_scale(vmin, vmax, minpos)
Limit the domain to positive values.

set_default_locators_and_formatters(axis)
Set the locators and formatters to specialized versions for log scaling.

class matplotlib.scale.ScaleBase
Bases: object

The base class for all scales.

Scales are separable transformations, working on a single dimension.

Any subclasses will want to override:

•name

•get_transform()

And optionally:

• set_default_locators_and_formatters()

• limit_range_for_scale()

get_transform()
Return the Transform object associated with this scale.

28.3. API documentation 237

Matplotlib, Release 0.99.3

limit_range_for_scale(vmin, vmax, minpos)
Returns the range vmin, vmax, possibly limited to the domain supported by this scale.

minpos should be the minimum positive value in the data. This is used by log scales to de-
termine a minimum value.

set_default_locators_and_formatters(axis)
Set the Locator and Formatter objects on the given axis to match this scale.

class matplotlib.scale.SymmetricalLogScale(axis, **kwargs)
Bases: matplotlib.scale.ScaleBase

The symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the
origin.

Since the values close to zero tend toward infinity, there is a need to have a range around zero that is
linear. The parameter linthresh allows the user to specify the size of this range (-linthresh, linthresh).

basex/basey: The base of the logarithm

linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to avoid having the plot go to
infinity around zero).

subsx/subsy: Where to place the subticks between each major tick. Should be a sequence of integers.
For example, in a log10 scale: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

get_transform()
Return a SymmetricalLogTransform instance.

set_default_locators_and_formatters(axis)
Set the locators and formatters to specialized versions for symmetrical log scaling.

matplotlib.scale.get_scale_docs()
Helper function for generating docstrings related to scales.

matplotlib.scale.register_scale(scale_class)
Register a new kind of scale.

scale_class must be a subclass of ScaleBase.

matplotlib.scale.scale_factory(scale, axis, **kwargs)
Return a scale class by name.

ACCEPTS: [linear | log | symlog]

28.3.2 matplotlib.projections

class matplotlib.projections.ProjectionRegistry
Bases: object

Manages the set of projections available to the system.

get_projection_class(name)
Get a projection class from its name.

238 Chapter 28. Adding new scales and projections to matplotlib

Matplotlib, Release 0.99.3

get_projection_names()
Get a list of the names of all projections currently registered.

register(*projections)
Register a new set of projection(s).

matplotlib.projections.get_projection_class(projection=None)
Get a projection class from its name.

If projection is None, a standard rectilinear projection is returned.

matplotlib.projections.get_projection_names()
Get a list of acceptable projection names.

matplotlib.projections.projection_factory(projection, figure, rect, **kwargs)
Get a new projection instance.

projection is a projection name.

figure is a figure to add the axes to.

rect is a Bbox object specifying the location of the axes within the figure.

Any other kwargs are passed along to the specific projection constructor being used.

matplotlib.projections.polar

class matplotlib.projections.polar.PolarAxes(*args, **kwargs)
Bases: matplotlib.axes.Axes

A polar graph projection, where the input dimensions are theta, r.

Theta starts pointing east and goes anti-clockwise.

class InvertedPolarTransform
Bases: matplotlib.transforms.Transform

The inverse of the polar transform, mapping Cartesian coordinate space x and y back to theta
and r.

Creates a new TransformNode.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not
cause a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform(xy)
Performs the transformation on the given array of values.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N
x output_dims).

28.3. API documentation 239

Matplotlib, Release 0.99.3

class PolarAxes.PolarAffine(scale_transform, limits)
Bases: matplotlib.transforms.Affine2DBase

The affine part of the polar projection. Scales the output so that maximum radius rests on the
edge of the axes circle.

limits is the view limit of the data. The only part of its bounds that is used is ymax (for the radius
maximum). The theta range is always fixed to (0, 2pi).

get_matrix()
Get the underlying transformation matrix as a numpy array.

class PolarAxes.PolarTransform
Bases: matplotlib.transforms.Transform

The base polar transform. This handles projection theta and r into Cartesian coordinate space x
and y, but does not perform the ultimate affine transformation into the correct position.

Creates a new TransformNode.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not
cause a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform(tr)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In
affine transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N
x output_dims).

transform_non_affine(tr)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In
affine transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N
x output_dims).

transform_path(path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

240 Chapter 28. Adding new scales and projections to matplotlib

Matplotlib, Release 0.99.3

transform_path_non_affine(path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

class PolarAxes.RadialLocator(base)
Bases: matplotlib.ticker.Locator

Used to locate radius ticks.

Ensures that all ticks are strictly positive. For all other tasks, it delegates to the base Locator
(which may be different depending on the scale of the r-axis.

class PolarAxes.ThetaFormatter
Bases: matplotlib.ticker.Formatter

Used to format the theta tick labels. Converts the native unit of radians into degrees and adds a
degree symbol.

PolarAxes.can_zoom()
Return True if this axes support the zoom box

PolarAxes.format_coord(theta, r)
Return a format string formatting the coordinate using Unicode characters.

PolarAxes.get_data_ratio()
Return the aspect ratio of the data itself. For a polar plot, this should always be 1.0

PolarAxes.set_rgrids(radii, labels=None, angle=None, rpad=None, fmt=None,
**kwargs)

Set the radial locations and labels of the r grids.

The labels will appear at radial distances radii at the given angle in degrees.

labels, if not None, is a len(radii) list of strings of the labels to use at each radius.

If labels is None, the built-in formatter will be used.

rpad is a fraction of the max of radii which will pad each of the radial labels in the radial
direction.

Return value is a list of tuples (line, label), where line is Line2D instances and the label is Text
instances.

kwargs are optional text properties for the labels:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance

Continued on next page

28.3. API documentation 241

Matplotlib, Release 0.99.3

Table 28.1 – continued from previous page
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

ACCEPTS: sequence of floats

PolarAxes.set_rscale(value, **kwargs)
call signature:

set_yscale(value)

Set the scaling of the y-axis: ‘linear’ | ‘log’ | ‘symlog’

ACCEPTS: [’linear’ | ‘log’ | ‘symlog’]

Different kwargs are accepted, depending on the scale: ‘linear’

‘log’

242 Chapter 28. Adding new scales and projections to matplotlib

Matplotlib, Release 0.99.3

basex/basey: The base of the logarithm

nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be
masked as invalid, or clipped to a very small positive number

subsx/subsy: Where to place the subticks between each major tick. Should be
a sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4,
5, 6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

‘symlog’

basex/basey: The base of the logarithm

linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to
avoid having the plot go to infinity around zero).

subsx/subsy: Where to place the subticks between each major tick. Should be
a sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4,
5, 6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

PolarAxes.set_rticks(ticks, minor=False)
Set the y ticks with list of ticks

ACCEPTS: sequence of floats

Keyword arguments:

minor: [False | True] Sets the minor ticks if True

PolarAxes.set_thetagrids(angles, labels=None, frac=None, fmt=None, **kwargs)
Set the angles at which to place the theta grids (these gridlines are equal along the theta dimen-
sion). angles is in degrees.

labels, if not None, is a len(angles) list of strings of the labels to use at each angle.

If labels is None, the labels will be fmt % angle

frac is the fraction of the polar axes radius at which to place the label (1 is the edge). Eg. 1.05 is
outside the axes and 0.95 is inside the axes.

Return value is a list of tuples (line, label), where line is Line2D instances and the label is Text
instances.

kwargs are optional text properties for the labels:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance

Continued on next page

28.3. API documentation 243

Matplotlib, Release 0.99.3

Table 28.2 – continued from previous page
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

ACCEPTS: sequence of floats

244 Chapter 28. Adding new scales and projections to matplotlib

CHAPTER

TWENTYNINE

DOCS OUTLINE

Proposed chapters for the docs, who has responsibility for them, and who reviews them. The “unit” doesn’t
have to be a full chapter (though in some cases it will be), it may be a chapter or a section in a chapter.

User’s guide unit Author Status Reviewer
plotting 2-D arrays Eric has author Perry ? Darren
colormapping Eric has author ?
quiver plots Eric has author ?
histograms Manuel ? no author Erik Tollerud ?
bar / errorbar ? no author ?
x-y plots ? no author Darren
time series plots ? no author ?
date plots John has author ?
working with data John has author Darren
custom ticking ? no author ?
masked data Eric has author ?
patches ? no author ?
legends ? no author ?
animation John has author ?
collections ? no author ?
text - mathtext Michael accepted John
text - usetex Darren accepted John
text - annotations John submitted ?
fonts et al Michael ? no author Darren
pyplot tut John submitted Eric
configuration Darren submitted ?
win32 install Charlie ? no author Darren
os x install Charlie ? no author ?
linux install Darren has author ?
artist api John submitted ?
event handling John submitted ?
navigation John submitted ?
interactive usage ? no author ?
widgets ? no author ?
ui - gtk ? no author ?

Continued on next page

245

Matplotlib, Release 0.99.3

Table 29.1 – continued from previous page
ui - wx ? no author ?
ui - tk ? no author ?
ui - qt Darren has author ?
backend - pdf Jouni ? no author ?
backend - ps Darren has author ?
backend - svg ? no author ?
backend - agg ? no author ?
backend - cairo ? no author ?

Here is the ouline for the dev guide, much less fleshed out

Developer’s guide unit Author Status Reviewer
the renderer John has author Michael ?
the canvas John has author ?
the artist John has author ?
transforms Michael submitted John
documenting mpl Darren submitted John, Eric, Mike?
coding guide John complete Eric
and_much_more ? ? ?

We also have some work to do converting docstrings to ReST for the API Reference. Please be sure to
follow the few guidelines described in Formatting. Once it is converted, please include the module in the
API documentation and update the status in the table to “converted”. Once docstring conversion is complete
and all the modules are available in the docs, we can figure out how best to organize the API Reference and
continue from there.

Module Author Status
backend_agg needs conversion
backend_cairo needs conversion
backend_cocoa needs conversion
backend_emf needs conversion
backend_fltkagg needs conversion
backend_gdk needs conversion
backend_gtk needs conversion
backend_gtkagg needs conversion
backend_gtkcairo needs conversion
backend_mixed needs conversion
backend_pdf needs conversion
backend_ps Darren needs conversion
backend_qt Darren needs conversion
backend_qtagg Darren needs conversion
backend_qt4 Darren needs conversion
backend_qt4agg Darren needs conversion
backend_svg needs conversion
backend_template needs conversion
backend_tkagg needs conversion

backend_wx needs conversion
Continued on next page

246 Chapter 29. Docs outline

Matplotlib, Release 0.99.3

Table 29.2 – continued from previous page
backend_wxagg needs conversion
backends/tkagg needs conversion
config/checkdep Darren needs conversion
config/cutils Darren needs conversion
config/mplconfig Darren needs conversion
config/mpltraits Darren needs conversion
config/rcparams Darren needs conversion
config/rcsetup Darren needs conversion
config/tconfig Darren needs conversion
config/verbose Darren needs conversion
projections/__init__ Mike converted
projections/geo Mike converted (not included–experimental)
projections/polar Mike converted
afm converted
artist converted
axes converted
axis converted
backend_bases converted
cbook converted
cm converted
collections converted
colorbar converted
colors converted
contour needs conversion
dates Darren needs conversion
dviread Darren needs conversion
figure Darren needs conversion
finance Darren needs conversion
font_manager Mike converted
fontconfig_pattern Mike converted
image needs conversion
legend needs conversion
lines Mike & ??? converted
mathtext Mike converted
mlab John/Mike converted
mpl N/A
patches Mike converted
path Mike converted
pylab N/A
pyplot converted
quiver needs conversion
rcsetup needs conversion
scale Mike converted
table needs conversion
texmanager Darren needs conversion
text Mike converted

Continued on next page

247

Matplotlib, Release 0.99.3

Table 29.2 – continued from previous page
ticker John converted
transforms Mike converted
type1font needs conversion
units needs conversion
widgets needs conversion

And we might want to do a similar table for the FAQ, but that may also be overkill...

If you agree to author a unit, remove the question mark by your name (or add your name if there is no
candidate), and change the status to “has author”. Once you have completed draft and checked it in, you can
change the status to “submitted” and try to find a reviewer if you don’t have one. The reviewer should read
your chapter, test it for correctness (eg try your examples) and change the status to “complete” when done.

You are free to lift and convert as much material from the web site or the existing latex user’s guide as you
see fit. The more the better.

The UI chapters should give an example or two of using mpl with your GUI and any relevant info, such as
version, installation, config, etc... The backend chapters should cover backend specific configuration (eg PS
only options), what features are missing, etc...

Please feel free to add units, volunteer to review or author a chapter, etc...

It is probably easiest to be an editor. Once you have signed up to be an editor, if you have an author pester
the author for a submission every so often. If you don’t have an author, find one, and then pester them!
Your only two responsibilities are getting your author to produce and checking their work, so don’t be shy.
You do not need to be an expert in the subject you are editing – you should know something about it and be
willing to read, test, give feedback and pester!

29.1 Reviewer notes

If you want to make notes for the authorwhen you have reviewed a submission, you can put them here. As
the author cleans them up or addresses them, they should be removed.

29.1.1 mathtext user’s guide– reviewed by JDH

This looks good (see Writing mathematical expressions) – there are a few minor things to close the book on
this chapter:

1. The main thing to wrap this up is getting the mathtext module ported over to rest and included in
the API so the links from the user’s guide tutorial work.

• There’s nothing in the mathtext module that I really consider a “public” API (i.e. that would be
useful to people just doing plots). If mathtext.py were to be documented, I would put it in the
developer’s docs. Maybe I should just take the link in the user’s guide out. - MGD

2. This section might also benefit from a little more detail on the customizations that are possible (eg an
example fleshing out the rc options a little bit). Admittedly, this is pretty clear from readin ghte rc file,
but it might be helpful to a newbie.

248 Chapter 29. Docs outline

Matplotlib, Release 0.99.3

• The only rcParam that is currently useful is mathtext.fontset, which is documented here. The
others only apply when mathtext.fontset == ‘custom’, which I’d like to declare “unsupported”.
It’s really hard to get a good set of math fonts working that way, though it might be useful in
a bind when someone has to use a specific wacky font for mathtext and only needs basics, like
sub/superscripts. - MGD

3. There is still a TODO in the file to include a complete list of symbols

• Done. It’s pretty extensive, thanks to STIX... - MGD

29.1. Reviewer notes 249

Matplotlib, Release 0.99.3

250 Chapter 29. Docs outline

Part IV

The Matplotlib API

251

CHAPTER

THIRTY

API CHANGES

This chapter is a log of changes to matplotlib that affect the outward-facing API. If updating matplotlib
breaks your scripts, this list may help describe what changes may be necessary in your code.

• You can now print several figures to one pdf file. See the docstrings of the class
matplotlib.backends.backend_pdf.PdfPages for more information.

• Removed configobj and enthought.traits packages, which are only required by the experimental traited
config and are somewhat out of date. If needed, install them independently.

30.1 Changes in 0.99

• pylab no longer provides a load and save function. These are available in matplotlib.mlab, or you can
use numpy.loadtxt and numpy.savetxt for text files, or np.save and np.load for binary numpy arrays.

• User-generated colormaps can now be added to the set recognized by matplotlib.cm.get_cmap().
Colormaps can be made the default and applied to the current image using
matplotlib.pyplot.set_cmap().

• changed use_mrecords default to False in mlab.csv2rec since this is partially broken

• Axes instances no longer have a “frame” attribute. Instead, use the new “spines” attribute. Spines is a
dictionary where the keys are the names of the spines (e.g. ‘left’,’right’ and so on) and the values are
the artists that draw the spines. For normal (rectilinear) axes, these artists are Line2D instances. For
other axes (such as polar axes), these artists may be Patch instances.

• Polar plots no longer accept a resolution kwarg. Instead, each Path must specify its own number of
interpolation steps. This is unlikely to be a user-visible change – if interpolation of data is required,
that should be done before passing it to matplotlib.

30.2 Changes for 0.98.x

• psd(), csd(), and cohere() will now automatically wrap negative frequency components to the begin-
ning of the returned arrays. This is much more sensible behavior and makes them consistent with
specgram(). The previous behavior was more of an oversight than a design decision.

253

http://www.voidspace.org.uk/python/configobj.html
http://code.enthought.com/projects/traits

Matplotlib, Release 0.99.3

• Added new keyword parameters nonposx, nonposy to matplotlib.axes.Axes methods that set log
scale parameters. The default is still to mask out non-positive values, but the kwargs accept ‘clip’,
which causes non-positive values to be replaced with a very small positive value.

• Added new matplotlib.pyplot.fignum_exists() and matplotlib.pyplot.get_fignums();
they merely expose information that had been hidden in matplotlib._pylab_helpers.

• Deprecated numerix package.

• Added new matplotlib.image.imsave() and exposed it to the matplotlib.pyplot interface.

• Remove support for pyExcelerator in exceltools – use xlwt instead

• Changed the defaults of acorr and xcorr to use usevlines=True, maxlags=10 and normed=True since
these are the best defaults

• Following keyword parameters for matplotlib.label.Label are now deprecated and new set of
parameters are introduced. The new parameters are given as a fraction of the font-size. Also, scat-
teryoffsets, fancybox and columnspacing are added as keyword parameters.

Deprecated New
pad borderpad
labelsep labelspacing
handlelen handlelength
handlestextsep handletextpad
axespad borderaxespad

• Removed the configobj and experimental traits rc support

• Modified matplotlib.mlab.psd(), matplotlib.mlab.csd(), matplotlib.mlab.cohere(),
and matplotlib.mlab.specgram() to scale one-sided densities by a factor of 2. Also, option-
ally scale the densities by the sampling frequency, which gives true values of densities that can be
integrated by the returned frequency values. This also gives better MatLab compatibility. The cor-
responding matplotlib.axes.Axes methods and matplotlib.pyplot functions were updated as
well.

• Font lookup now uses a nearest-neighbor approach rather than an exact match. Some fonts may be
different in plots, but should be closer to what was requested.

• matplotlib.axes.Axes.set_xlim(), matplotlib.axes.Axes.set_ylim() now return a copy
of the viewlim array to avoid modify-in-place surprises.

• matplotlib.afm.AFM.get_fullname() and matplotlib.afm.AFM.get_familyname() no
longer raise an exception if the AFM file does not specify these optional attributes, but returns a
guess based on the required FontName attribute.

• Changed precision kwarg in matplotlib.pyplot.spy(); default is 0, and the string value ‘present’
is used for sparse arrays only to show filled locations.

• matplotlib.collections.EllipseCollection added.

• Added angles kwarg to matplotlib.pyplot.quiver() for more flexible specification of the ar-
row angles.

• Deprecated (raise NotImplementedError) all the mlab2 functions from matplotlib.mlab out of con-
cern that some of them were not clean room implementations.

254 Chapter 30. API Changes

Matplotlib, Release 0.99.3

• Methods matplotlib.collections.Collection.get_offsets() and
matplotlib.collections.Collection.set_offsets() added to Collection base class.

• matplotlib.figure.Figure.figurePatch renamed matplotlib.figure.Figure.patch;
matplotlib.axes.Axes.axesPatch renamed matplotlib.axes.Axes.patch;
matplotlib.axes.Axes.axesFrame renamed matplotlib.axes.Axes.frame.
matplotlib.axes.Axes.get_frame(), which returns matplotlib.axes.Axes.patch, is
deprecated.

• Changes in the matplotlib.contour.ContourLabeler attributes
(matplotlib.pyplot.clabel() function) so that they all have a form like .labelAttribute.
The three attributes that are most likely to be used by end users, .cl, .cl_xy and .cl_cvalues
have been maintained for the moment (in addition to their renamed versions), but they are deprecated
and will eventually be removed.

• Moved several functions in matplotlib.mlab and matplotlib.cbook into a separate module
matplotlib.numerical_methods because they were unrelated to the initial purpose of mlab or
cbook and appeared more coherent elsewhere.

30.3 Changes for 0.98.1

• Removed broken matplotlib.axes3d support and replaced it with a non-implemented error point-
ing to 0.91.x

30.4 Changes for 0.98.0

• matplotlib.image.imread() now no longer always returns RGBA data—if the image is lumi-
nance or RGB, it will return a MxN or MxNx3 array if possible. Also uint8 is no longer always forced
to float.

• Rewrote the matplotlib.cm.ScalarMappable callback infrastructure to use
matplotlib.cbook.CallbackRegistry rather than custom callback handling. Any users of
matplotlib.cm.ScalarMappable.add_observer() of the ScalarMappable should use the
matplotlib.cm.ScalarMappable.callbacks CallbackRegistry instead.

• New axes function and Axes method provide control over the plot
color cycle: matplotlib.axes.set_default_color_cycle() and
matplotlib.axes.Axes.set_color_cycle().

• matplotlib now requires Python 2.4, so matplotlib.cbook will no longer provide set,
enumerate(), reversed() or izip() compatibility functions.

• In Numpy 1.0, bins are specified by the left edges only. The axes method
matplotlib.axes.Axes.hist() now uses future Numpy 1.3 semantics for histograms. Pro-
viding binedges, the last value gives the upper-right edge now, which was implicitly set to +infinity
in Numpy 1.0. This also means that the last bin doesn’t contain upper outliers any more by default.

• New axes method and pyplot function, hexbin(), is an alternative to scatter() for large datasets.
It makes something like a pcolor() of a 2-D histogram, but uses hexagonal bins.

30.3. Changes for 0.98.1 255

Matplotlib, Release 0.99.3

• New kwarg, symmetric, in matplotlib.ticker.MaxNLocator allows one require an axis to be
centered around zero.

• Toolkits must now be imported from mpl_toolkits (not matplotlib.toolkits)

30.4.1 Notes about the transforms refactoring

A major new feature of the 0.98 series is a more flexible and extensible transformation infrastructure, written
in Python/Numpy rather than a custom C extension.

The primary goal of this refactoring was to make it easier to extend matplotlib to support new kinds of
projections. This is mostly an internal improvement, and the possible user-visible changes it allows are yet
to come.

See matplotlib.transforms for a description of the design of the new transformation framework.

For efficiency, many of these functions return views into Numpy arrays. This means that if you hold on to a
reference to them, their contents may change. If you want to store a snapshot of their current values, use the
Numpy array method copy().

The view intervals are now stored only in one place – in the matplotlib.axes.Axes instance, not in the
locator instances as well. This means locators must get their limits from their matplotlib.axis.Axis,
which in turn looks up its limits from the Axes. If a locator is used temporarily and not assigned to an
Axis or Axes, (e.g. in matplotlib.contour), a dummy axis must be created to store its bounds. Call
matplotlib.ticker.Locator.create_dummy_axis() to do so.

The functionality of Pbox has been merged with Bbox. Its methods now all return copies rather than modi-
fying in place.

The following lists many of the simple changes necessary to update code from the old transformation frame-
work to the new one. In particular, methods that return a copy are named with a verb in the past tense,
whereas methods that alter an object in place are named with a verb in the present tense.

256 Chapter 30. API Changes

Matplotlib, Release 0.99.3

matplotlib.transforms

Old method New method
Bbox.get_bounds() transforms.Bbox.bounds
Bbox.width() transforms.Bbox.width
Bbox.height() transforms.Bbox.height
Bbox.intervalx().get_bounds()transforms.Bbox.intervalx
Bbox.intervalx().set_bounds()[Bbox.intervalx is now a property.]
Bbox.intervaly().get_bounds()transforms.Bbox.intervaly
Bbox.intervaly().set_bounds()[Bbox.intervaly is now a property.]
Bbox.xmin() transforms.Bbox.x0 or transforms.Bbox.xmin 1

Bbox.ymin() transforms.Bbox.y0 or transforms.Bbox.ymin 1

Bbox.xmax() transforms.Bbox.x1 or transforms.Bbox.xmax 1

Bbox.ymax() transforms.Bbox.y1 or transforms.Bbox.ymax 1

Bbox.overlaps(bboxes)Bbox.count_overlaps(bboxes)
bbox_all(bboxes) Bbox.union(bboxes) [transforms.Bbox.union() is a staticmethod.]
lbwh_to_bbox(l, b,
w, h)

Bbox.from_bounds(x0, y0, w, h) [transforms.Bbox.from_bounds() is a
staticmethod.]

in-
verse_transform_bbox(trans,
bbox)

Bbox.inverse_transformed(trans)

Inter-
val.contains_open(v)

interval_contains_open(tuple, v)

Interval.contains(v) interval_contains(tuple, v)
iden-
tity_transform()

matplotlib.transforms.IdentityTransform

blend_xy_sep_transform(xtrans,
ytrans)

blended_transform_factory(xtrans, ytrans)

scale_transform(xs,
ys)

Affine2D().scale(xs[, ys])

get_bbox_transform(boxin,
boxout)

BboxTransform(boxin, boxout) or BboxTransformFrom(boxin) or
BboxTransformTo(boxout)

Trans-
form.seq_xy_tup(points)

Transform.transform(points)

Trans-
form.inverse_xy_tup(points)

Transform.inverted().transform(points)

1The Bbox is bound by the points (x0, y0) to (x1, y1) and there is no defined order to these points, that is, x0 is not necessarily
the left edge of the box. To get the left edge of the Bbox, use the read-only property xmin.

30.4. Changes for 0.98.0 257

Matplotlib, Release 0.99.3

matplotlib.axes

Old method New method
Axes.get_position()matplotlib.axes.Axes.get_position() 2

Axes.set_position()matplotlib.axes.Axes.set_position() 3

Axes.toggle_log_lineary()matplotlib.axes.Axes.set_yscale() 4

Subplot class removed.

The Polar class has moved to matplotlib.projections.polar.

matplotlib.artist

Old method New method
Artist.set_clip_path(path)Artist.set_clip_path(path, transform) 5

matplotlib.collections

Old
method

New method

linestyle linestyles 6

matplotlib.colors

Old method New method
ColorConver-
tor.to_rgba_list(c)

ColorConvertor.to_rgba_array(c)
[matplotlib.colors.ColorConvertor.to_rgba_array() returns an Nx4
Numpy array of RGBA color quadruples.]

matplotlib.contour

Old method New method
Con-
tour._segments

matplotlib.contour.Contour.get_paths‘() [Returns a list of
matplotlib.path.Path instances.]

2matplotlib.axes.Axes.get_position() used to return a list of points, now it returns a matplotlib.transforms.Bbox
instance.

3matplotlib.axes.Axes.set_position() now accepts either four scalars or a matplotlib.transforms.Bbox instance.
4Since the recfactoring allows for more than two scale types (‘log’ or ‘linear’), it no longer makes sense to have a toggle.

Axes.toggle_log_lineary() has been removed.
5matplotlib.artist.Artist.set_clip_path() now accepts a matplotlib.path.Path instance and a

matplotlib.transforms.Transform that will be applied to the path immediately before clipping.
6Linestyles are now treated like all other collection attributes, i.e. a single value or multiple values may be provided.

258 Chapter 30. API Changes

Matplotlib, Release 0.99.3

matplotlib.figure

Old method New method
Figure.dpi.get() / Figure.dpi.set() matplotlib.figure.Figure.dpi (a property)

matplotlib.patches

Old method New method
Patch.get_verts() matplotlib.patches.Patch.get_path() [Returns a matplotlib.path.Path

instance]

matplotlib.backend_bases

Old method New method
GraphicsCon-
text.set_clip_rectangle(tuple)

GraphicsContext.set_clip_rectangle(bbox)

GraphicsCon-
text.get_clip_path()

GraphicsContext.get_clip_path() 7

GraphicsCon-
text.set_clip_path()

GraphicsContext.set_clip_path() 8

RendererBase

New methods:

• draw_path(self, gc, path, transform, rgbFace)

• draw_markers(self, gc, marker_path, marker_trans, path, trans, rgbFace)
<matplotlib.backend_bases.RendererBase.draw_markers()

• draw_path_collection(self, master_transform, cliprect, clippath,
clippath_trans, paths, all_transforms, offsets, offsetTrans, facecolors,
edgecolors, linewidths, linestyles, antialiaseds) [optional]

Changed methods:

• draw_image(self, x, y, im, bbox) is now draw_image(self, x, y, im, bbox, clippath,
clippath_trans)

Removed methods:

• draw_arc

• draw_line_collection
7matplotlib.backend_bases.GraphicsContext.get_clip_path() returns a tuple of the form (path, affine_transform),

where path is a matplotlib.path.Path instance and affine_transform is a matplotlib.transforms.Affine2D instance.
8matplotlib.backend_bases.GraphicsContext.set_clip_path() now only accepts a

matplotlib.transforms.TransformedPath instance.

30.4. Changes for 0.98.0 259

Matplotlib, Release 0.99.3

• draw_line

• draw_lines

• draw_point

• draw_quad_mesh

• draw_poly_collection

• draw_polygon

• draw_rectangle

• draw_regpoly_collection

30.5 Changes for 0.91.2

• For csv2rec(), checkrows=0 is the new default indicating all rows will be checked for type inference

• A warning is issued when an image is drawn on log-scaled axes, since it will not log-scale the image
data.

• Moved rec2gtk() to matplotlib.toolkits.gtktools

• Moved rec2excel() to matplotlib.toolkits.exceltools

• Removed, dead/experimental ExampleInfo, Namespace and Importer code from
matplotlib.__init__

30.6 Changes for 0.91.1

30.7 Changes for 0.91.0

• Changed cbook.is_file_like() to cbook.is_writable_file_like() and corrected behavior.

• Added ax kwarg to pyplot.colorbar() and Figure.colorbar() so that one can specify the axes
object from which space for the colorbar is to be taken, if one does not want to make the colorbar axes
manually.

• Changed cbook.reversed() so it yields a tuple rather than a (index, tuple). This agrees with the
python reversed builtin, and cbook only defines reversed if python doesnt provide the builtin.

• Made skiprows=1 the default on csv2rec()

• The gd and paint backends have been deleted.

• The errorbar method and function now accept additional kwargs so that upper and lower limits can be
indicated by capping the bar with a caret instead of a straight line segment.

• The matplotlib.dviread file now has a parser for files like psfonts.map and pdftex.map, to map
TeX font names to external files.

260 Chapter 30. API Changes

Matplotlib, Release 0.99.3

• The file matplotlib.type1font contains a new class for Type 1 fonts. Currently it simply reads
pfa and pfb format files and stores the data in a way that is suitable for embedding in pdf files. In the
future the class might actually parse the font to allow e.g. subsetting.

• matplotlib.FT2Font now supports FT_Attach_File(). In practice this can be used to read an
afm file in addition to a pfa/pfb file, to get metrics and kerning information for a Type 1 font.

• The AFM class now supports querying CapHeight and stem widths. The get_name_char method now
has an isord kwarg like get_width_char.

• Changed pcolor() default to shading=’flat’; but as noted now in the docstring, it is preferable to
simply use the edgecolor kwarg.

• The mathtext font commands (\cal, \rm, \it, \tt) now behave as TeX does: they are in effect
until the next font change command or the end of the grouping. Therefore uses of \cal{R}
should be changed to ${\cal R}$. Alternatively, you may use the new LaTeX-style font com-
mands (\mathcal, \mathrm, \mathit, \mathtt) which do affect the following group, eg.
\mathcal{R}.

• Text creation commands have a new default linespacing and a new linespacing kwarg, which is a
multiple of the maximum vertical extent of a line of ordinary text. The default is 1.2; linespacing=2
would be like ordinary double spacing, for example.

• Changed default kwarg in matplotlib.colors.Normalize.__init__‘() to clip=False; clip-
ping silently defeats the purpose of the special over, under, and bad values in the colormap, thereby
leading to unexpected behavior. The new default should reduce such surprises.

• Made the emit property of set_xlim() and set_ylim() True by default; removed the Axes custom
callback handling into a ‘callbacks’ attribute which is a CallbackRegistry instance. This now
supports the ‘xlim_changed’ and ‘ylim_changed’ Axes events.

30.8 Changes for 0.90.1

The file dviread.py has a (very limited and fragile) dvi reader
for usetex support. The API might change in the future so don’t
depend on it yet.

Removed deprecated support for a float value as a gray-scale;
now it must be a string, like ’0.5’. Added alpha kwarg to
ColorConverter.to_rgba_list.

New method set_bounds(vmin, vmax) for formatters, locators sets
the viewInterval and dataInterval from floats.

Removed deprecated colorbar_classic.

Line2D.get_xdata and get_ydata valid_only=False kwarg is replaced
by orig=True. When True, it returns the original data, otherwise
the processed data (masked, converted)

Some modifications to the units interface.
units.ConversionInterface.tickers renamed to

30.8. Changes for 0.90.1 261

Matplotlib, Release 0.99.3

units.ConversionInterface.axisinfo and it now returns a
units.AxisInfo object rather than a tuple. This will make it
easier to add axis info functionality (eg I added a default label
on this iteration) w/o having to change the tuple length and hence
the API of the client code everytime new functionality is added.
Also, units.ConversionInterface.convert_to_value is now simply
named units.ConversionInterface.convert.

Axes.errorbar uses Axes.vlines and Axes.hlines to draw its error
limits int he vertical and horizontal direction. As you’ll see
in the changes below, these funcs now return a LineCollection
rather than a list of lines. The new return signature for
errorbar is ylins, caplines, errorcollections where
errorcollections is a xerrcollection, yerrcollection

Axes.vlines and Axes.hlines now create and returns a LineCollection, not a list
of lines. This is much faster. The kwarg signature has changed,
so consult the docs

MaxNLocator accepts a new Boolean kwarg (’integer’) to force
ticks to integer locations.

Commands that pass an argument to the Text constructor or to
Text.set_text() now accept any object that can be converted
with ’%s’. This affects xlabel(), title(), etc.

Barh now takes a **kwargs dict instead of most of the old
arguments. This helps ensure that bar and barh are kept in sync,
but as a side effect you can no longer pass e.g. color as a
positional argument.

ft2font.get_charmap() now returns a dict that maps character codes
to glyph indices (until now it was reversed)

Moved data files into lib/matplotlib so that setuptools’ develop
mode works. Re-organized the mpl-data layout so that this source
structure is maintained in the installation. (I.e. the ’fonts’ and
’images’ sub-directories are maintained in site-packages.).
Suggest removing site-packages/matplotlib/mpl-data and
~/.matplotlib/ttffont.cache before installing

30.9 Changes for 0.90.0

All artists now implement a "pick" method which users should not
call. Rather, set the "picker" property of any artist you want to
pick on (the epsilon distance in points for a hit test) and
register with the "pick_event" callback. See
examples/pick_event_demo.py for details

Bar, barh, and hist have "log" binary kwarg: log=True
sets the ordinate to a log scale.

262 Chapter 30. API Changes

Matplotlib, Release 0.99.3

Boxplot can handle a list of vectors instead of just
an array, so vectors can have different lengths.

Plot can handle 2-D x and/or y; it plots the columns.

Added linewidth kwarg to bar and barh.

Made the default Artist._transform None (rather than invoking
identity_transform for each artist only to have it overridden
later). Use artist.get_transform() rather than artist._transform,
even in derived classes, so that the default transform will be
created lazily as needed

New LogNorm subclass of Normalize added to colors.py.
All Normalize subclasses have new inverse() method, and
the __call__() method has a new clip kwarg.

Changed class names in colors.py to match convention:
normalize -> Normalize, no_norm -> NoNorm. Old names
are still available for now.

Removed obsolete pcolor_classic command and method.

Removed lineprops and markerprops from the Annotation code and
replaced them with an arrow configurable with kwarg arrowprops.
See examples/annotation_demo.py - JDH

30.10 Changes for 0.87.7

Completely reworked the annotations API because I found the old
API cumbersome. The new design is much more legible and easy to
read. See matplotlib.text.Annotation and
examples/annotation_demo.py

markeredgecolor and markerfacecolor cannot be configured in
matplotlibrc any more. Instead, markers are generally colored
automatically based on the color of the line, unless marker colors
are explicitely set as kwargs - NN

Changed default comment character for load to ’#’ - JDH

math_parse_s_ft2font_svg from mathtext.py & mathtext2.py now returns
width, height, svg_elements. svg_elements is an instance of Bunch (
cmbook.py) and has the attributes svg_glyphs and svg_lines, which are both
lists.

Renderer.draw_arc now takes an additional parameter, rotation.
It specifies to draw the artist rotated in degrees anti-
clockwise. It was added for rotated ellipses.

30.10. Changes for 0.87.7 263

Matplotlib, Release 0.99.3

Renamed Figure.set_figsize_inches to Figure.set_size_inches to
better match the get method, Figure.get_size_inches.

Removed the copy_bbox_transform from transforms.py; added
shallowcopy methods to all transforms. All transforms already
had deepcopy methods.

FigureManager.resize(width, height): resize the window
specified in pixels

barh: x and y args have been renamed to width and bottom
respectively, and their order has been swapped to maintain
a (position, value) order.

bar and barh: now accept kwarg ’edgecolor’.

bar and barh: The left, height, width and bottom args can
now all be scalars or sequences; see docstring.

barh: now defaults to edge aligned instead of center
aligned bars

bar, barh and hist: Added a keyword arg ’align’ that
controls between edge or center bar alignment.

Collections: PolyCollection and LineCollection now accept
vertices or segments either in the original form [(x,y),
(x,y), ...] or as a 2D numerix array, with X as the first column
and Y as the second. Contour and quiver output the numerix
form. The transforms methods Bbox.update() and
Transformation.seq_xy_tups() now accept either form.

Collections: LineCollection is now a ScalarMappable like
PolyCollection, etc.

Specifying a grayscale color as a float is deprecated; use
a string instead, e.g., 0.75 -> ’0.75’.

Collections: initializers now accept any mpl color arg, or
sequence of such args; previously only a sequence of rgba
tuples was accepted.

Colorbar: completely new version and api; see docstring. The
original version is still accessible as colorbar_classic, but
is deprecated.

Contourf: "extend" kwarg replaces "clip_ends"; see docstring.
Masked array support added to pcolormesh.

Modified aspect-ratio handling:
Removed aspect kwarg from imshow
Axes methods:

set_aspect(self, aspect, adjustable=None, anchor=None)

264 Chapter 30. API Changes

Matplotlib, Release 0.99.3

set_adjustable(self, adjustable)
set_anchor(self, anchor)

Pylab interface:
axis(’image’)

Backend developers: ft2font’s load_char now takes a flags
argument, which you can OR together from the LOAD_XXX
constants.

30.11 Changes for 0.86

Matplotlib data is installed into the matplotlib module.
This is similar to package_data. This should get rid of
having to check for many possibilities in _get_data_path().
The MATPLOTLIBDATA env key is still checked first to allow
for flexibility.

1) Separated the color table data from cm.py out into
a new file, _cm.py, to make it easier to find the actual
code in cm.py and to add new colormaps. Everything
from _cm.py is imported by cm.py, so the split should be
transparent.
2) Enabled automatic generation of a colormap from
a list of colors in contour; see modified
examples/contour_demo.py.
3) Support for imshow of a masked array, with the
ability to specify colors (or no color at all) for
masked regions, and for regions that are above or
below the normally mapped region. See
examples/image_masked.py.
4) In support of the above, added two new classes,
ListedColormap, and no_norm, to colors.py, and modified
the Colormap class to include common functionality. Added
a clip kwarg to the normalize class.

30.12 Changes for 0.85

Made xtick and ytick separate props in rc

made pos=None the default for tick formatters rather than 0 to
indicate "not supplied"

Removed "feature" of minor ticks which prevents them from
overlapping major ticks. Often you want major and minor ticks at
the same place, and can offset the major ticks with the pad. This
could be made configurable

Changed the internal structure of contour.py to a more OO style.

30.11. Changes for 0.86 265

Matplotlib, Release 0.99.3

Calls to contour or contourf in axes.py or pylab.py now return
a ContourSet object which contains references to the
LineCollections or PolyCollections created by the call,
as well as the configuration variables that were used.
The ContourSet object is a "mappable" if a colormap was used.

Added a clip_ends kwarg to contourf. From the docstring:
* clip_ends = True
If False, the limits for color scaling are set to the
minimum and maximum contour levels.
True (default) clips the scaling limits. Example:
if the contour boundaries are V = [-100, 2, 1, 0, 1, 2, 100],
then the scaling limits will be [-100, 100] if clip_ends
is False, and [-3, 3] if clip_ends is True.

Added kwargs linewidths, antialiased, and nchunk to contourf. These
are experimental; see the docstring.

Changed Figure.colorbar():
kw argument order changed;
if mappable arg is a non-filled ContourSet, colorbar() shows

lines instead hof polygons.
if mappable arg is a filled ContourSet with clip_ends=True,

the endpoints are not labelled, so as to give the
correct impression of open-endedness.

Changed LineCollection.get_linewidths to get_linewidth, for
consistency.

30.13 Changes for 0.84

Unified argument handling between hlines and vlines. Both now
take optionally a fmt argument (as in plot) and a keyword args
that can be passed onto Line2D.

Removed all references to "data clipping" in rc and lines.py since
these were not used and not optimized. I’m sure they’ll be
resurrected later with a better implementation when needed.

’set’ removed - no more deprecation warnings. Use ’setp’ instead.

Backend developers: Added flipud method to image and removed it
from to_str. Removed origin kwarg from backend.draw_image.
origin is handled entirely by the frontend now.

30.14 Changes for 0.83

- Made HOME/.matplotlib the new config dir where the matplotlibrc
file, the ttf.cache, and the tex.cache live. The new default

266 Chapter 30. API Changes

Matplotlib, Release 0.99.3

filenames in .matplotlib have no leading dot and are not hidden.
Eg, the new names are matplotlibrc, tex.cache, and ttffont.cache.
This is how ipython does it so it must be right.

If old files are found, a warning is issued and they are moved to
the new location.

- backends/__init__.py no longer imports new_figure_manager,
draw_if_interactive and show from the default backend, but puts
these imports into a call to pylab_setup. Also, the Toolbar is no
longer imported from WX/WXAgg. New usage:

from backends import pylab_setup
new_figure_manager, draw_if_interactive, show = pylab_setup()

- Moved Figure.get_width_height() to FigureCanvasBase. It now
returns int instead of float.

30.15 Changes for 0.82

- toolbar import change in GTKAgg, GTKCairo and WXAgg

- Added subplot config tool to GTK* backends -- note you must now
import the NavigationToolbar2 from your backend of choice rather
than from backend_gtk because it needs to know about the backend
specific canvas -- see examples/embedding_in_gtk2.py. Ditto for
wx backend -- see examples/embedding_in_wxagg.py

- hist bin change

Sean Richards notes there was a problem in the way we created
the binning for histogram, which made the last bin
underrepresented. From his post:

I see that hist uses the linspace function to create the bins
and then uses searchsorted to put the values in their correct
bin. Thats all good but I am confused over the use of linspace
for the bin creation. I wouldn’t have thought that it does
what is needed, to quote the docstring it creates a "Linear
spaced array from min to max". For it to work correctly
shouldn’t the values in the bins array be the same bound for
each bin? (i.e. each value should be the lower bound of a
bin). To provide the correct bins for hist would it not be
something like

def bins(xmin, xmax, N):
if N==1: return xmax
dx = (xmax-xmin)/N # instead of N-1
return xmin + dx*arange(N)

30.15. Changes for 0.82 267

Matplotlib, Release 0.99.3

This suggestion is implemented in 0.81. My test script with these
changes does not reveal any bias in the binning

from matplotlib.numerix.mlab import randn, rand, zeros, Float
from matplotlib.mlab import hist, mean

Nbins = 50
Ntests = 200
results = zeros((Ntests,Nbins), typecode=Float)
for i in range(Ntests):

print ’computing’, i
x = rand(10000)
n, bins = hist(x, Nbins)
results[i] = n

print mean(results)

30.16 Changes for 0.81

- pylab and artist "set" functions renamed to setp to avoid clash
with python2.4 built-in set. Current version will issue a
deprecation warning which will be removed in future versions

- imshow interpolation arguments changes for advanced interpolation
schemes. See help imshow, particularly the interpolation,
filternorm and filterrad kwargs

- Support for masked arrays has been added to the plot command and
to the Line2D object. Only the valid points are plotted. A
"valid_only" kwarg was added to the get_xdata() and get_ydata()
methods of Line2D; by default it is False, so that the original
data arrays are returned. Setting it to True returns the plottable
points.

- contour changes:

Masked arrays: contour and contourf now accept masked arrays as
the variable to be contoured. Masking works correctly for
contour, but a bug remains to be fixed before it will work for
contourf. The "badmask" kwarg has been removed from both
functions.

Level argument changes:

Old version: a list of levels as one of the positional
arguments specified the lower bound of each filled region; the
upper bound of the last region was taken as a very large
number. Hence, it was not possible to specify that z values
between 0 and 1, for example, be filled, and that values
outside that range remain unfilled.

268 Chapter 30. API Changes

Matplotlib, Release 0.99.3

New version: a list of N levels is taken as specifying the
boundaries of N-1 z ranges. Now the user has more control over
what is colored and what is not. Repeated calls to contourf
(with different colormaps or color specifications, for example)
can be used to color different ranges of z. Values of z
outside an expected range are left uncolored.

Example:
Old: contourf(z, [0, 1, 2]) would yield 3 regions: 0-1, 1-2, and >2.
New: it would yield 2 regions: 0-1, 1-2. If the same 3 regions were
desired, the equivalent list of levels would be [0, 1, 2,
1e38].

30.17 Changes for 0.80

- xlim/ylim/axis always return the new limits regardless of
arguments. They now take kwargs which allow you to selectively
change the upper or lower limits while leaving unnamed limits
unchanged. See help(xlim) for example

30.18 Changes for 0.73

- Removed deprecated ColormapJet and friends

- Removed all error handling from the verbose object

- figure num of zero is now allowed

30.19 Changes for 0.72

- Line2D, Text, and Patch copy_properties renamed update_from and
moved into artist base class

- LineCollecitons.color renamed to LineCollections.set_color for
consistency with set/get introspection mechanism,

- pylab figure now defaults to num=None, which creates a new figure
with a guaranteed unique number

- contour method syntax changed - now it is matlab compatible

unchanged: contour(Z)
old: contour(Z, x=Y, y=Y)
new: contour(X, Y, Z)

see http://matplotlib.sf.net/matplotlib.pylab.html#-contour

30.17. Changes for 0.80 269

Matplotlib, Release 0.99.3

- Increased the default resolution for save command.

- Renamed the base attribute of the ticker classes to _base to avoid conflict
with the base method. Sitt for subs

- subs=none now does autosubbing in the tick locator.

- New subplots that overlap old will delete the old axes. If you
do not want this behavior, use fig.add_subplot or the axes
command

30.20 Changes for 0.71

Significant numerix namespace changes, introduced to resolve
namespace clashes between python built-ins and mlab names.
Refactored numerix to maintain separate modules, rather than
folding all these names into a single namespace. See the following
mailing list threads for more information and background

http://sourceforge.net/mailarchive/forum.php?thread_id=6398890&forum_id=36187
http://sourceforge.net/mailarchive/forum.php?thread_id=6323208&forum_id=36187

OLD usage

from matplotlib.numerix import array, mean, fft

NEW usage

from matplotlib.numerix import array
from matplotlib.numerix.mlab import mean
from matplotlib.numerix.fft import fft

numerix dir structure mirrors numarray (though it is an incomplete
implementation)

numerix
numerix/mlab
numerix/linear_algebra
numerix/fft
numerix/random_array

but of course you can use ’numerix : Numeric’ and still get the
symbols.

pylab still imports most of the symbols from Numerix, MLab, fft,
etc, but is more cautious. For names that clash with python names
(min, max, sum), pylab keeps the builtins and provides the numeric
versions with an a* prefix, eg (amin, amax, asum)

270 Chapter 30. API Changes

Matplotlib, Release 0.99.3

30.21 Changes for 0.70

MplEvent factored into a base class Event and derived classes
MouseEvent and KeyEvent

Removed definct set_measurement in wx toolbar

30.22 Changes for 0.65.1

removed add_axes and add_subplot from backend_bases. Use
figure.add_axes and add_subplot instead. The figure now manages the
current axes with gca and sca for get and set current axe. If you
have code you are porting which called, eg, figmanager.add_axes, you
can now simply do figmanager.canvas.figure.add_axes.

30.23 Changes for 0.65

mpl_connect and mpl_disconnect in the matlab interface renamed to
connect and disconnect

Did away with the text methods for angle since they were ambiguous.
fontangle could mean fontstyle (obligue, etc) or the rotation of the
text. Use style and rotation instead.

30.24 Changes for 0.63

Dates are now represented internally as float days since 0001-01-01,
UTC.

All date tickers and formatters are now in matplotlib.dates, rather
than matplotlib.tickers

converters have been abolished from all functions and classes.
num2date and date2num are now the converter functions for all date
plots

Most of the date tick locators have a different meaning in their
constructors. In the prior implementation, the first argument was a
base and multiples of the base were ticked. Eg

HourLocator(5) # old: tick every 5 minutes

In the new implementation, the explicit points you want to tick are
provided as a number or sequence

30.21. Changes for 0.70 271

Matplotlib, Release 0.99.3

HourLocator(range(0,5,61)) # new: tick every 5 minutes

This gives much greater flexibility. I have tried to make the
default constructors (no args) behave similarly, where possible.

Note that YearLocator still works under the base/multiple scheme.
The difference between the YearLocator and the other locators is
that years are not recurrent.

Financial functions:

matplotlib.finance.quotes_historical_yahoo(ticker, date1, date2)

date1, date2 are now datetime instances. Return value is a list
of quotes where the quote time is a float - days since gregorian
start, as returned by date2num

See examples/finance_demo.py for example usage of new API

30.25 Changes for 0.61

canvas.connect is now deprecated for event handling. use
mpl_connect and mpl_disconnect instead. The callback signature is
func(event) rather than func(widget, evet)

30.26 Changes for 0.60

ColormapJet and Grayscale are deprecated. For backwards
compatibility, they can be obtained either by doing

from matplotlib.cm import ColormapJet

or

from matplotlib.matlab import *

They are replaced by cm.jet and cm.grey

30.27 Changes for 0.54.3

removed the set_default_font / get_default_font scheme from the
font_manager to unify customization of font defaults with the rest of
the rc scheme. See examples/font_properties_demo.py and help(rc) in
matplotlib.matlab.

272 Chapter 30. API Changes

Matplotlib, Release 0.99.3

30.28 Changes for 0.54

30.28.1 matlab interface

dpi

Several of the backends used a PIXELS_PER_INCH hack that I added to try and make images render
consistently across backends. This just complicated matters. So you may find that some font sizes and line
widths appear different than before. Apologies for the inconvenience. You should set the dpi to an accurate
value for your screen to get true sizes.

pcolor and scatter

There are two changes to the matlab interface API, both involving the patch drawing commands. For ef-
ficiency, pcolor and scatter have been rewritten to use polygon collections, which are a new set of objects
from matplotlib.collections designed to enable efficient handling of large collections of objects. These new
collections make it possible to build large scatter plots or pcolor plots with no loops at the python level,
and are significantly faster than their predecessors. The original pcolor and scatter functions are retained as
pcolor_classic and scatter_classic.

The return value from pcolor is a PolyCollection. Most of the propertes that are available on rectangles or
other patches are also available on PolyCollections, eg you can say:

c = scatter(blah, blah)
c.set_linewidth(1.0)
c.set_facecolor(’r’)
c.set_alpha(0.5)

or:

c = scatter(blah, blah)
set(c, ’linewidth’, 1.0, ’facecolor’, ’r’, ’alpha’, 0.5)

Because the collection is a single object, you no longer need to loop over the return value of scatter or pcolor
to set properties for the entire list.

If you want the different elements of a collection to vary on a property, eg to have different line widths, see
matplotlib.collections for a discussion on how to set the properties as a sequence.

For scatter, the size argument is now in points^2 (the area of the symbol in points) as in matlab and is not in
data coords as before. Using sizes in data coords caused several problems. So you will need to adjust your
size arguments accordingly or use scatter_classic.

mathtext spacing

For reasons not clear to me (and which I’ll eventually fix) spacing no longer works in font groups. However,
I added three new spacing commands which compensate for this ‘’ (regular space), ‘/’ (small space) and
‘hspace{frac}’ where frac is a fraction of fontsize in points. You will need to quote spaces in font strings,
is:

30.28. Changes for 0.54 273

Matplotlib, Release 0.99.3

title(r’$\rm{Histogram\ of\ IQ:}\ \mu=100,\ \sigma=15$’)

30.28.2 Object interface - Application programmers

Autoscaling

The x and y axis instances no longer have autoscale view. These are handled by
axes.autoscale_view

Axes creation

You should not instantiate your own Axes any more using the OO API. Rather, create a Figure
as before and in place of:

f = Figure(figsize=(5,4), dpi=100)
a = Subplot(f, 111)
f.add_axis(a)

use:

f = Figure(figsize=(5,4), dpi=100)
a = f.add_subplot(111)

That is, add_axis no longer exists and is replaced by:

add_axes(rect, axisbg=defaultcolor, frameon=True)
add_subplot(num, axisbg=defaultcolor, frameon=True)

Artist methods

If you define your own Artists, you need to rename the _draw method to draw

Bounding boxes

matplotlib.transforms.Bound2D is replaced by matplotlib.transforms.Bbox. If you want to
construct a bbox from left, bottom, width, height (the signature for Bound2D), use mat-
plotlib.transforms.lbwh_to_bbox, as in

bbox = clickBBox = lbwh_to_bbox(left, bottom, width, height)

The Bbox has a different API than the Bound2D. Eg, if you want to get the width and height of
the bbox

OLD:: width = fig.bbox.x.interval() height = fig.bbox.y.interval()

New:: width = fig.bbox.width() height = fig.bbox.height()

274 Chapter 30. API Changes

Matplotlib, Release 0.99.3

Object constructors

You no longer pass the bbox, dpi, or transforms to the various Artist constructors. The old way
or creating lines and rectangles was cumbersome because you had to pass so many attributes to
the Line2D and Rectangle classes not related directly to the gemoetry and properties of the ob-
ject. Now default values are added to the object when you call axes.add_line or axes.add_patch,
so they are hidden from the user.

If you want to define a custom transformation on these objects, call o.set_transform(trans)
where trans is a Transformation instance.

In prior versions of you wanted to add a custom line in data coords, you would have to do

l = Line2D(dpi, bbox, x, y, color = color, transx = transx, transy = transy,)

now all you need is

l = Line2D(x, y, color=color)

and the axes will set the transformation for you (unless you have set your own already, in which
case it will eave it unchanged)

Transformations

The entire transformation architecture has been rewritten. Previously the x and y transforma-
tions where stored in the xaxis and yaxis insstances. The problem with this approach is it only
allows for separable transforms (where the x and y transformations don’t depend on one an-
other). But for cases like polar, they do. Now transformations operate on x,y together. There is
a new base class matplotlib.transforms.Transformation and two concrete implemetations, mat-
plotlib.transforms.SeparableTransformation and matplotlib.transforms.Affine. The Separable-
Transformation is constructed with the bounding box of the input (this determines the rectangu-
lar coordinate system of the input, ie the x and y view limits), the bounding box of the display,
and possibily nonlinear transformations of x and y. The 2 most frequently used transforma-
tions, data cordinates -> display and axes coordinates -> display are available as ax.transData
and ax.transAxes. See alignment_demo.py which uses axes coords.

Also, the transformations should be much faster now, for two reasons

• they are written entirely in extension code

• because they operate on x and y together, they can do the entire transformation in one
loop. Earlier I did something along the lines of:

xt = sx*func(x) + tx
yt = sy*func(y) + ty

Although this was done in numerix, it still involves 6 length(x) for-loops (the multiply,
add, and function evaluation each for x and y). Now all of that is done in a single pass.

If you are using transformations and bounding boxes to get the cursor position in data coor-
dinates, the method calls are a little different now. See the updated examples/coords_demo.py
which shows you how to do this.

30.28. Changes for 0.54 275

Matplotlib, Release 0.99.3

Likewise, if you are using the artist bounding boxes to pick items on the canvas with the
GUI, the bbox methods are somewhat different. You will need to see the updated exam-
ples/object_picker.py.

See unit/transforms_unit.py for many examples using the new transformations.

30.29 Changes for 0.50

* refactored Figure class so it is no longer backend dependent.
FigureCanvasBackend takes over the backend specific duties of the
Figure. matplotlib.backend_bases.FigureBase moved to
matplotlib.figure.Figure.

* backends must implement FigureCanvasBackend (the thing that
controls the figure and handles the events if any) and
FigureManagerBackend (wraps the canvas and the window for matlab
interface). FigureCanvasBase implements a backend switching
mechanism

* Figure is now an Artist (like everything else in the figure) and
is totally backend independent

* GDFONTPATH renamed to TTFPATH

* backend faceColor argument changed to rgbFace

* colormap stuff moved to colors.py

* arg_to_rgb in backend_bases moved to class ColorConverter in
colors.py

* GD users must upgrade to gd-2.0.22 and gdmodule-0.52 since new gd
features (clipping, antialiased lines) are now used.

* Renderer must implement points_to_pixels

Migrating code:

Matlab interface:

The only API change for those using the matlab interface is in how
you call figure redraws for dynamically updating figures. In the
old API, you did

fig.draw()

In the new API, you do

manager = get_current_fig_manager()
manager.canvas.draw()

See the examples system_monitor.py, dynamic_demo.py, and anim.py

276 Chapter 30. API Changes

Matplotlib, Release 0.99.3

API

There is one important API change for application developers.
Figure instances used subclass GUI widgets that enabled them to be
placed directly into figures. Eg, FigureGTK subclassed
gtk.DrawingArea. Now the Figure class is independent of the
backend, and FigureCanvas takes over the functionality formerly
handled by Figure. In order to include figures into your apps,
you now need to do, for example

gtk example
fig = Figure(figsize=(5,4), dpi=100)
canvas = FigureCanvasGTK(fig) # a gtk.DrawingArea
canvas.show()
vbox.pack_start(canvas)

If you use the NavigationToolbar, this in now intialized with a
FigureCanvas, not a Figure. The examples embedding_in_gtk.py,
embedding_in_gtk2.py, and mpl_with_glade.py all reflect the new
API so use these as a guide.

All prior calls to

figure.draw() and
figure.print_figure(args)

should now be

canvas.draw() and
canvas.print_figure(args)

Apologies for the inconvenience. This refactorization brings
significant more freedom in developing matplotlib and should bring
better plotting capabilities, so I hope the inconvenience is worth
it.

30.30 Changes for 0.42

* Refactoring AxisText to be backend independent. Text drawing and
get_window_extent functionality will be moved to the Renderer.

* backend_bases.AxisTextBase is now text.Text module

* All the erase and reset functionality removed frmo AxisText - not
needed with double buffered drawing. Ditto with state change.
Text instances have a get_prop_tup method that returns a hashable
tuple of text properties which you can use to see if text props
have changed, eg by caching a font or layout instance in a dict
with the prop tup as a key -- see RendererGTK.get_pango_layout in
backend_gtk for an example.

30.30. Changes for 0.42 277

Matplotlib, Release 0.99.3

* Text._get_xy_display renamed Text.get_xy_display

* Artist set_renderer and wash_brushes methods removed

* Moved Legend class from matplotlib.axes into matplotlib.legend

* Moved Tick, XTick, YTick, Axis, XAxis, YAxis from matplotlib.axes
to matplotlib.axis

* moved process_text_args to matplotlib.text

* After getting Text handled in a backend independent fashion, the
import process is much cleaner since there are no longer cyclic
dependencies

* matplotlib.matlab._get_current_fig_manager renamed to
matplotlib.matlab.get_current_fig_manager to allow user access to
the GUI window attribute, eg figManager.window for GTK and
figManager.frame for wx

30.31 Changes for 0.40

- Artist
* __init__ takes a DPI instance and a Bound2D instance which is
the bounding box of the artist in display coords

* get_window_extent returns a Bound2D instance
* set_size is removed; replaced by bbox and dpi
* the clip_gc method is removed. Artists now clip themselves with
their box

* added _clipOn boolean attribute. If True, gc clip to bbox.

- AxisTextBase
* Initialized with a transx, transy which are Transform instances
* set_drawing_area removed
* get_left_right and get_top_bottom are replaced by get_window_extent

- Line2D Patches now take transx, transy
* Initialized with a transx, transy which are Transform instances

- Patches
* Initialized with a transx, transy which are Transform instances

- FigureBase attributes dpi is a DPI intance rather than scalar and
new attribute bbox is a Bound2D in display coords, and I got rid
of the left, width, height, etc... attributes. These are now
accessible as, for example, bbox.x.min is left, bbox.x.interval()
is width, bbox.y.max is top, etc...

- GcfBase attribute pagesize renamed to figsize

278 Chapter 30. API Changes

Matplotlib, Release 0.99.3

- Axes
* removed figbg attribute
* added fig instance to __init__
* resizing is handled by figure call to resize.

- Subplot
* added fig instance to __init__

- Renderer methods for patches now take gcEdge and gcFace instances.
gcFace=None takes the place of filled=False

- True and False symbols provided by cbook in a python2.3 compatible
way

- new module transforms supplies Bound1D, Bound2D and Transform
instances and more

- Changes to the matlab helpers API

* _matlab_helpers.GcfBase is renamed by Gcf. Backends no longer
need to derive from this class. Instead, they provide a factory
function new_figure_manager(num, figsize, dpi). The destroy
method of the GcfDerived from the backends is moved to the derived
FigureManager.

* FigureManagerBase moved to backend_bases

* Gcf.get_all_figwins renamed to Gcf.get_all_fig_managers

Jeremy:

Make sure to self._reset = False in AxisTextWX._set_font. This was
something missing in my backend code.

30.31. Changes for 0.40 279

Matplotlib, Release 0.99.3

280 Chapter 30. API Changes

CHAPTER

THIRTYONE

MATPLOTLIB CONFIGURATION

31.1 matplotlib

This is an object-orient plotting library.

A procedural interface is provided by the companion pylab module, which may be imported directly, e.g:

from pylab import *

or using ipython:

ipython -pylab

For the most part, direct use of the object-oriented library is encouraged when programming rather than
working interactively. The exceptions are the pylab commands figure(), subplot(), show(), and
savefig(), which can greatly simplify scripting.

Modules include:

matplotlib.axes defines the Axes class. Most pylab commands are wrappers for Axes
methods. The axes module is the highest level of OO access to the library.

matplotlib.figure defines the Figure class.

matplotlib.artist defines the Artist base class for all classes that draw things.

matplotlib.lines defines the Line2D class for drawing lines and markers

matplotlib.patches defines classes for drawing polygons

matplotlib.text defines the Text, TextWithDash, and Annotate classes

matplotlib.image defines the AxesImage and FigureImage classes

matplotlib.collections classes for efficient drawing of groups of lines or polygons

matplotlib.colors classes for interpreting color specifications and for making colormaps

matplotlib.cm colormaps and the ScalarMappable mixin class for providing color map-
ping functionality to other classes

matplotlib.ticker classes for calculating tick mark locations and for formatting tick labels

281

Matplotlib, Release 0.99.3

matplotlib.backends a subpackage with modules for various gui libraries and output for-
mats

The base matplotlib namespace includes:

rcParams a global dictionary of default configuration settings. It is initialized by code which
may be overridded by a matplotlibrc file.

rc() a function for setting groups of rcParams values

use() a function for setting the matplotlib backend. If used, this function must be called
immediately after importing matplotlib for the first time. In particular, it must be called
before importing pylab (if pylab is imported).

matplotlib is written by John D. Hunter (jdh2358 at gmail.com) and a host of others.

matplotlib.rc(group, **kwargs)
Set the current rc params. Group is the grouping for the rc, eg. for lines.linewidth the group
is lines, for axes.facecolor, the group is axes, and so on. Group may also be a list or tuple of
group names, eg. (xtick, ytick). kwargs is a dictionary attribute name/value pairs, eg:

rc(’lines’, linewidth=2, color=’r’)

sets the current rc params and is equivalent to:

rcParams[’lines.linewidth’] = 2
rcParams[’lines.color’] = ’r’

The following aliases are available to save typing for interactive users:

Alias Property
‘lw’ ‘linewidth’
‘ls’ ‘linestyle’
‘c’ ‘color’
‘fc’ ‘facecolor’
‘ec’ ‘edgecolor’
‘mew’ ‘markeredgewidth’
‘aa’ ‘antialiased’

Thus you could abbreviate the above rc command as:

rc(’lines’, lw=2, c=’r’)

Note you can use python’s kwargs dictionary facility to store dictionaries of default parameters. Eg,
you can customize the font rc as follows:

font = {’family’ : ’monospace’,
’weight’ : ’bold’,
’size’ : ’larger’}

rc(’font’, **font) # pass in the font dict as kwargs

This enables you to easily switch between several configurations. Use rcdefaults() to restore the
default rc params after changes.

282 Chapter 31. matplotlib configuration

Matplotlib, Release 0.99.3

matplotlib.rcdefaults()
Restore the default rc params - the ones that were created at matplotlib load time.

matplotlib.use(arg, warn=True)
Set the matplotlib backend to one of the known backends.

The argument is case-insensitive. For the Cairo backend, the argument can have an extension to
indicate the type of output. Example:

use(‘cairo.pdf’)

will specify a default of pdf output generated by Cairo.

Note: this function must be called before importing pylab for the first time; or, if you are not using
pylab, it must be called before importing matplotlib.backends. If warn is True, a warning is issued
if you try and callthis after pylab or pyplot have been loaded. In certain black magic use cases, eg
pyplot.switch_backends, we are doing the reloading necessary to make the backend switch work (in
some cases, eg pure image backends) so one can set warn=False to supporess the warnings

31.1. matplotlib 283

Matplotlib, Release 0.99.3

284 Chapter 31. matplotlib configuration

CHAPTER

THIRTYTWO

MATPLOTLIB AFM

32.1 matplotlib.afm

This is a python interface to Adobe Font Metrics Files. Although a number of other python implementations
exist (and may be more complete than mine) I decided not to go with them because either they were either

1. copyrighted or used a non-BSD compatible license

2. had too many dependencies and I wanted a free standing lib

3. Did more than I needed and it was easier to write my own than figure out how to just get what I needed
from theirs

It is pretty easy to use, and requires only built-in python libs:

>>> from afm import AFM
>>> fh = file(’ptmr8a.afm’)
>>> afm = AFM(fh)
>>> afm.string_width_height(’What the heck?’)
(6220.0, 683)
>>> afm.get_fontname()
’Times-Roman’
>>> afm.get_kern_dist(’A’, ’f’)
0
>>> afm.get_kern_dist(’A’, ’y’)
-92.0
>>> afm.get_bbox_char(’!’)
[130, -9, 238, 676]
>>> afm.get_bbox_font()
[-168, -218, 1000, 898]

AUTHOR: John D. Hunter <jdh2358@gmail.com>

class matplotlib.afm.AFM(fh)
Parse the AFM file in file object fh

get_angle()
Return the fontangle as float

get_bbox_char(c, isord=False)

285

mailto:jdh2358@gmail.com

Matplotlib, Release 0.99.3

get_capheight()
Return the cap height as float

get_familyname()
Return the font family name, eg, ‘Times’

get_fontname()
Return the font name, eg, ‘Times-Roman’

get_fullname()
Return the font full name, eg, ‘Times-Roman’

get_height_char(c, isord=False)
Get the height of character c from the bounding box. This is the ink height (space is 0)

get_horizontal_stem_width()
Return the standard horizontal stem width as float, or None if not specified in AFM file.

get_kern_dist(c1, c2)
Return the kerning pair distance (possibly 0) for chars c1 and c2

get_kern_dist_from_name(name1, name2)
Return the kerning pair distance (possibly 0) for chars name1 and name2

get_name_char(c, isord=False)
Get the name of the character, ie, ‘;’ is ‘semicolon’

get_str_bbox(s)
Return the string bounding box

get_str_bbox_and_descent(s)
Return the string bounding box

get_underline_thickness()
Return the underline thickness as float

get_vertical_stem_width()
Return the standard vertical stem width as float, or None if not specified in AFM file.

get_weight()
Return the font weight, eg, ‘Bold’ or ‘Roman’

get_width_char(c, isord=False)
Get the width of the character from the character metric WX field

get_width_from_char_name(name)
Get the width of the character from a type1 character name

get_xheight()
Return the xheight as float

string_width_height(s)
Return the string width (including kerning) and string height as a (w, h) tuple.

matplotlib.afm.parse_afm(fh)
Parse the Adobe Font Metics file in file handle fh. Return value is a (dhead, dcmet-
rics, dkernpairs, dcomposite) tuple where dhead is a _parse_header() dict, dcmetrics is a

286 Chapter 32. matplotlib afm

Matplotlib, Release 0.99.3

_parse_composites() dict, dkernpairs is a _parse_kern_pairs() dict (possibly {}), and dcom-
posite is a _parse_composites() dict (possibly {})

32.1. matplotlib.afm 287

Matplotlib, Release 0.99.3

288 Chapter 32. matplotlib afm

CHAPTER

THIRTYTHREE

MATPLOTLIB ARTISTS

patches.RegularPolygon patches.CirclePolygon

patches.Patch

patches.FancyArrowPatch

patches.Ellipse

patches.Wedge

patches.FancyBboxPatch

patches.Arrow

patches.Polygon

patches.YAArrow

patches.Rectangle

patches.PathPatch

patches.Shadow

text.TextWithDashtext.Text

text.Annotation

patches.ConnectionPatch

patches.BoxStyle

patches._Style patches.ArrowStyle

patches.ConnectionStyle

patches.Arc

patches.Circle

artist.Artist

lines.Line2D

patches.FancyArrow

lines.VertexSelector

33.1 matplotlib.artist

class matplotlib.artist.Artist
Bases: object

Abstract base class for someone who renders into a FigureCanvas.

289

Matplotlib, Release 0.99.3

add_callback(func)
Adds a callback function that will be called whenever one of the Artist‘s properties changes.

Returns an id that is useful for removing the callback with remove_callback() later.

contains(mouseevent)
Test whether the artist contains the mouse event.

Returns the truth value and a dictionary of artist specific details of selection, such as which
points are contained in the pick radius. See individual artists for details.

convert_xunits(x)
For artists in an axes, if the xaxis has units support, convert x using xaxis unit type

convert_yunits(y)
For artists in an axes, if the yaxis has units support, convert y using yaxis unit type

draw(renderer, *args, **kwargs)
Derived classes drawing method

findobj(match=None)

pyplot signature: findobj(o=gcf(), match=None)

Recursively find all :class:matplotlib.artist.Artist instances contained in self.

match can be

•None: return all objects contained in artist (including artist)

•function with signature boolean = match(artist) used to filter matches

•class instance: eg Line2D. Only return artists of class type

290 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Model complexity --->

0

5

10

15

20

M
e
ss

a
g
e
 l
e
n
g
th

 -
--

>

Minimum Message Length

Model length
Data length
Total message length

get_alpha()
Return the alpha value used for blending - not supported on all backends

get_animated()
Return the artist’s animated state

get_axes()
Return the Axes instance the artist resides in, or None

get_children()
Return a list of the child Artist‘s this :class:‘Artist contains.

get_clip_box()
Return artist clipbox

get_clip_on()
Return whether artist uses clipping

get_clip_path()
Return artist clip path

get_contains()
Return the _contains test used by the artist, or None for default.

get_figure()
Return the Figure instance the artist belongs to.

33.1. matplotlib.artist 291

Matplotlib, Release 0.99.3

get_gid()
Returns the group id

get_label()
Get the label used for this artist in the legend.

get_picker()
Return the picker object used by this artist

get_rasterized()

get_snap()
Returns the snap setting which may be:

•True: snap vertices to the nearest pixel center

•False: leave vertices as-is

•None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel
center

Only supported by the Agg backends.

get_transform()
Return the Transform instance used by this artist.

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_url()
Returns the url

get_visible()
Return the artist’s visiblity

get_zorder()
Return the Artist‘s zorder.

have_units()
Return True if units are set on the x or y axes

hitlist(event)
List the children of the artist which contain the mouse event event.

is_figure_set()
Returns True if the artist is assigned to a Figure.

is_transform_set()
Returns True if Artist has a transform explicitly set.

pchanged()
Fire an event when property changed, calling all of the registered callbacks.

pick(mouseevent)
call signature:

292 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

pick(mouseevent)

each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set

pickable()
Return True if Artist is pickable.

properties()
return a dictionary mapping property name -> value for all Artist props

remove()
Remove the artist from the figure if possible. The effect will not be visible un-
til the figure is redrawn, e.g., with matplotlib.axes.Axes.draw_idle(). Call
matplotlib.axes.Axes.relim() to update the axes limits if desired.

Note: relim() will not see collections even if the collection was added to axes with autolim =

True.

Note: there is no support for removing the artist’s legend entry.

remove_callback(oid)
Remove a callback based on its id.

See Also:

add_callback() For adding callbacks

set(**kwargs)
A tkstyle set command, pass kwargs to set properties

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

ACCEPTS: float (0.0 transparent through 1.0 opaque)

set_animated(b)
Set the artist’s animation state.

ACCEPTS: [True | False]

set_axes(axes)
Set the Axes instance in which the artist resides, if any.

ACCEPTS: an Axes instance

set_clip_box(clipbox)
Set the artist’s clip Bbox.

ACCEPTS: a matplotlib.transforms.Bbox instance

set_clip_on(b)
Set whether artist uses clipping.

ACCEPTS: [True | False]

33.1. matplotlib.artist 293

Matplotlib, Release 0.99.3

set_clip_path(path, transform=None)
Set the artist’s clip path, which may be:

•a Patch (or subclass) instance

•a Path instance, in which case an optional Transform instance may be provided, which
will be applied to the path before using it for clipping.

•None, to remove the clipping path

For efficiency, if the path happens to be an axis-aligned rectangle, this method will set the clip-
ping box to the corresponding rectangle and set the clipping path to None.

ACCEPTS: [(Path, Transform) | Patch | None]

set_contains(picker)
Replace the contains test used by this artist. The new picker should be a callable function which
determines whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

If the mouse event is over the artist, return hit = True and props is a dictionary of properties you
want returned with the contains test.

ACCEPTS: a callable function

set_figure(fig)
Set the Figure instance the artist belongs to.

ACCEPTS: a matplotlib.figure.Figure instance

set_gid(gid)
Sets the (group) id for the artist

ACCEPTS: an id string

set_label(s)
Set the label to s for auto legend.

ACCEPTS: any string

set_lod(on)
Set Level of Detail on or off. If on, the artists may examine things like the pixel width of the
axes and draw a subset of their contents accordingly

ACCEPTS: [True | False]

set_picker(picker)
Set the epsilon for picking used by this artist

picker can be one of the following:

•None: picking is disabled for this artist (default)

•A boolean: if True then picking will be enabled and the artist will fire a pick event if the
mouse event is over the artist

294 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

•A float: if picker is a number it is interpreted as an epsilon tolerance in points and the artist
will fire off an event if it’s data is within epsilon of the mouse event. For some artists like
lines and patch collections, the artist may provide additional data to the pick event that is
generated, e.g. the indices of the data within epsilon of the pick event

•A function: if picker is callable, it is a user supplied function which determines whether the
artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

to determine the hit test. if the mouse event is over the artist, return hit=True and props is a
dictionary of properties you want added to the PickEvent attributes.

ACCEPTS: [None|float|boolean|callable]

set_rasterized(rasterized)
Force rasterized (bitmap) drawing in vector backend output.

Defaults to None, which implies the backend’s default behavior

ACCEPTS: [True | False | None]

set_snap(snap)
Sets the snap setting which may be:

•True: snap vertices to the nearest pixel center

•False: leave vertices as-is

•None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel
center

Only supported by the Agg backends.

set_transform(t)
Set the Transform instance used by this artist.

ACCEPTS: Transform instance

set_url(url)
Sets the url for the artist

ACCEPTS: a url string

set_visible(b)
Set the artist’s visiblity.

ACCEPTS: [True | False]

set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

ACCEPTS: any number

update(props)
Update the properties of this Artist from the dictionary prop.

33.1. matplotlib.artist 295

Matplotlib, Release 0.99.3

update_from(other)
Copy properties from other to self.

class matplotlib.artist.ArtistInspector(o)
A helper class to inspect an Artist and return information about it’s settable properties and their
current values.

Initialize the artist inspector with an Artist or sequence of Artists. If a sequence is used, we
assume it is a homogeneous sequence (all Artists are of the same type) and it is your responsibility
to make sure this is so.

aliased_name(s)
return ‘PROPNAME or alias’ if s has an alias, else return PROPNAME.

E.g. for the line markerfacecolor property, which has an alias, return ‘markerfacecolor or mfc’
and for the transform property, which does not, return ‘transform’

aliased_name_rest(s, target)
return ‘PROPNAME or alias’ if s has an alias, else return PROPNAME formatted for ReST

E.g. for the line markerfacecolor property, which has an alias, return ‘markerfacecolor or mfc’
and for the transform property, which does not, return ‘transform’

findobj(match=None)
Recursively find all matplotlib.artist.Artist instances contained in self.

If match is not None, it can be

•function with signature boolean = match(artist)

•class instance: eg Line2D

used to filter matches.

get_aliases()
Get a dict mapping fullname -> alias for each alias in the ArtistInspector.

Eg., for lines:

{’markerfacecolor’: ’mfc’,
’linewidth’ : ’lw’,
}

get_setters()
Get the attribute strings with setters for object. Eg., for a line, return [’markerfacecolor’,
’linewidth’,].

get_valid_values(attr)
Get the legal arguments for the setter associated with attr.

This is done by querying the docstring of the function set_attr for a line that begins with AC-
CEPTS:

Eg., for a line linestyle, return [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ‘None’]

is_alias(o)
Return True if method object o is an alias for another function.

296 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

pprint_getters()
Return the getters and actual values as list of strings.

pprint_setters(prop=None, leadingspace=2)
If prop is None, return a list of strings of all settable properies and their valid values.

If prop is not None, it is a valid property name and that property will be returned as a string of
property : valid values.

pprint_setters_rest(prop=None, leadingspace=2)
If prop is None, return a list of strings of all settable properies and their valid values. Format the
output for ReST

If prop is not None, it is a valid property name and that property will be returned as a string of
property : valid values.

properties()
return a dictionary mapping property name -> value

matplotlib.artist.allow_rasterization(draw)
Decorator for Artist.draw method. Provides routines that run before and after the draw call. The
before and after functions are useful for changing artist-dependant renderer attributes or making other
setup function calls, such as starting and flushing a mixed-mode renderer.

matplotlib.artist.get(o, property=None)
Return the value of handle property. property is an optional string for the property you want to return

Example usage:

getp(o) # get all the object properties
getp(o, ’linestyle’) # get the linestyle property

o is a Artist instance, eg Line2D or an instance of a Axes or matplotlib.text.Text. If the
property is ‘somename’, this function returns

o.get_somename()

getp() can be used to query all the gettable properties with getp(o). Many properties have aliases
for shorter typing, e.g. ‘lw’ is an alias for ‘linewidth’. In the output, aliases and full property names
will be listed as:

property or alias = value

e.g.:

linewidth or lw = 2

matplotlib.artist.getp(o, property=None)
Return the value of handle property. property is an optional string for the property you want to return

Example usage:

getp(o) # get all the object properties
getp(o, ’linestyle’) # get the linestyle property

o is a Artist instance, eg Line2D or an instance of a Axes or matplotlib.text.Text. If the
property is ‘somename’, this function returns

33.1. matplotlib.artist 297

Matplotlib, Release 0.99.3

o.get_somename()

getp() can be used to query all the gettable properties with getp(o). Many properties have aliases
for shorter typing, e.g. ‘lw’ is an alias for ‘linewidth’. In the output, aliases and full property names
will be listed as:

property or alias = value

e.g.:

linewidth or lw = 2

matplotlib.artist.kwdoc(a)

matplotlib.artist.setp(h, *args, **kwargs)
matplotlib supports the use of setp() (“set property”) and getp() to set and get object properties,
as well as to do introspection on the object. For example, to set the linestyle of a line to be dashed,
you can do:

>>> line, = plot([1,2,3])
>>> setp(line, linestyle=’--’)

If you want to know the valid types of arguments, you can provide the name of the property you want
to set without a value:

>>> setp(line, ’linestyle’)
linestyle: [’-’ | ’--’ | ’-.’ | ’:’ | ’steps’ | ’None’]

If you want to see all the properties that can be set, and their possible values, you can do:

>>> setp(line)
... long output listing omitted

setp() operates on a single instance or a list of instances. If you are in query mode introspecting the
possible values, only the first instance in the sequence is used. When actually setting values, all the
instances will be set. E.g., suppose you have a list of two lines, the following will make both lines
thicker and red:

>>> x = arange(0,1.0,0.01)
>>> y1 = sin(2*pi*x)
>>> y2 = sin(4*pi*x)
>>> lines = plot(x, y1, x, y2)
>>> setp(lines, linewidth=2, color=’r’)

setp() works with the matlab(TM) style string/value pairs or with python kwargs. For example, the
following are equivalent:

>>> setp(lines, ’linewidth’, 2, ’color’, r’) # matlab style

>>> setp(lines, linewidth=2, color=’r’) # python style

298 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

33.2 matplotlib.legend

Place a legend on the axes at location loc. Labels are a sequence of strings and loc can be a string or an
integer specifying the legend location

The location codes are

‘best’ : 0, (only implemented for axis legends) ‘upper right’ : 1, ‘upper left’ : 2, ‘lower left’ : 3,
‘lower right’ : 4, ‘right’ : 5, ‘center left’ : 6, ‘center right’ : 7, ‘lower center’ : 8, ‘upper center’
: 9, ‘center’ : 10,

Return value is a sequence of text, line instances that make up the legend

class matplotlib.legend.Legend(parent, handles, labels, loc=None, numpoints=None,
markerscale=None, scatterpoints=3, scatteryoffsets=None,
prop=None, pad=None, labelsep=None, handlelen=None,
handletextsep=None, axespad=None, borderpad=None, la-
belspacing=None, handlelength=None, handletextpad=None,
borderaxespad=None, columnspacing=None, ncol=1,
mode=None, fancybox=None, shadow=None, title=None,
bbox_to_anchor=None, bbox_transform=None)

Bases: matplotlib.artist.Artist

Place a legend on the axes at location loc. Labels are a sequence of strings and loc can be a string or
an integer specifying the legend location

The location codes are:

’best’ : 0, (only implemented for axis legends)
’upper right’ : 1,
’upper left’ : 2,
’lower left’ : 3,
’lower right’ : 4,
’right’ : 5,
’center left’ : 6,
’center right’ : 7,
’lower center’ : 8,
’upper center’ : 9,
’center’ : 10,

loc can be a tuple of the noramilzed coordinate values with respect its parent.

Return value is a sequence of text, line instances that make up the legend

•parent : the artist that contains the legend

•handles : a list of artists (lines, patches) to add to the legend

•labels : a list of strings to label the legend

Optional keyword arguments:

33.2. matplotlib.legend 299

Matplotlib, Release 0.99.3

Keyword Description
loc a location code
prop the font property
markerscale the relative size of legend markers vs. original
numpoints the number of points in the legend for line
scatterpoints the number of points in the legend for scatter plot
scatteryoffsets a list of yoffsets for scatter symbols in legend
fancybox if True, draw a frame with a round fancybox. If None, use rc
shadow if True, draw a shadow behind legend
ncol number of columns
borderpad the fractional whitespace inside the legend border
labelspacing the vertical space between the legend entries
handlelength the length of the legend handles
handletextpad the pad between the legend handle and text
borderaxespad the pad between the axes and legend border
columnspacing the spacing between columns
title the legend title
bbox_to_anchor the bbox that the legend will be anchored.
bbox_transform the transform for the bbox. transAxes if None.

The dimensions of pad and spacing are given as a fraction of the _fontsize. Values from rcParams will
be used if None.

Users can specify any arbitrary location for the legend using the bbox_to_anchor keyword argument.
bbox_to_anchor can be an instance of BboxBase(or its derivatives) or a tuple of 2 or 4 floats. See
set_bbox_to_anchor() for more detail.

The legend location can be specified by setting loc with a tuple of 2 floats, which is interpreted as the
lower-left corner of the legend in the normalized axes coordinate.

draw(artist, renderer, *args, **kwargs)
Draw everything that belongs to the legend

draw_frame(b)
b is a boolean. Set draw frame to b

get_bbox_to_anchor()
return the bbox that the legend will be anchored

get_children()
return a list of child artists

get_frame()
return the Rectangle instance used to frame the legend

get_lines()
return a list of lines.Line2D instances in the legend

get_patches()
return a list of patch instances in the legend

get_texts()
return a list of text.Text instance in the legend

300 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

get_title()
return Text instance for the legend title

get_window_extent()
return a extent of the the legend

set_bbox_to_anchor(bbox, transform=None)
set the bbox that the legend will be anchored.

bbox can be a BboxBase instance, a tuple of [left, bottom, width, height] in the given transform
(normalized axes coordinate if None), or a tuple of [left, bottom] where the width and height
will be assumed to be zero.

set_title(title)
set the legend title

33.3 matplotlib.lines

This module contains all the 2D line class which can draw with a variety of line styles, markers and colors.

class matplotlib.lines.Line2D(xdata, ydata, linewidth=None, linestyle=None, color=None,
marker=None, markersize=None, markeredgewidth=None,
markeredgecolor=None, markerfacecolor=None, fill-
style=’full’, antialiased=None, dash_capstyle=None,
solid_capstyle=None, dash_joinstyle=None,
solid_joinstyle=None, pickradius=5, drawstyle=None, markev-
ery=None, **kwargs)

Bases: matplotlib.artist.Artist

A line - the line can have both a solid linestyle connecting all the vertices, and a marker at each vertex.
Additionally, the drawing of the solid line is influenced by the drawstyle, eg one can create “stepped”
lines in various styles.

Create a Line2D instance with x and y data in sequences xdata, ydata.

The kwargs are Line2D properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points

Continued on next page

33.3. matplotlib.lines 301

Matplotlib, Release 0.99.3

Table 33.1 – continued from previous page
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See set_linestyle() for a decription of the line styles, set_marker() for a description of the
markers, and set_drawstyle() for a description of the draw styles.

contains(mouseevent)
Test whether the mouse event occurred on the line. The pick radius determines the preci-
sion of the location test (usually within five points of the value). Use get_pickradius()
or set_pickradius() to view or modify it.

Returns True if any values are within the radius along with {’ind’: pointlist}, where
pointlist is the set of points within the radius.

TODO: sort returned indices by distance

draw(artist, renderer, *args, **kwargs)

get_aa()
alias for get_antialiased

get_antialiased()

302 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

get_c()
alias for get_color

get_color()

get_dash_capstyle()
Get the cap style for dashed linestyles

get_dash_joinstyle()
Get the join style for dashed linestyles

get_data(orig=True)
Return the xdata, ydata.

If orig is True, return the original data

get_drawstyle()

get_fillstyle()
return the marker fillstyle

get_linestyle()

get_linewidth()

get_ls()
alias for get_linestyle

get_lw()
alias for get_linewidth

get_marker()

get_markeredgecolor()

get_markeredgewidth()

get_markerfacecolor()

get_markersize()

get_markevery()
return the markevery setting

get_mec()
alias for get_markeredgecolor

get_mew()
alias for get_markeredgewidth

get_mfc()
alias for get_markerfacecolor

get_ms()
alias for get_markersize

get_path()
Return the Path object associated with this line.

33.3. matplotlib.lines 303

Matplotlib, Release 0.99.3

get_pickradius()
return the pick radius used for containment tests

get_solid_capstyle()
Get the cap style for solid linestyles

get_solid_joinstyle()
Get the join style for solid linestyles

get_window_extent(renderer)

get_xdata(orig=True)
Return the xdata.

If orig is True, return the original data, else the processed data.

get_xydata()
Return the xy data as a Nx2 numpy array.

get_ydata(orig=True)
Return the ydata.

If orig is True, return the original data, else the processed data.

is_dashed()
return True if line is dashstyle

recache()

set_aa(val)
alias for set_antialiased

set_antialiased(b)
True if line should be drawin with antialiased rendering

ACCEPTS: [True | False]

set_axes(ax)
Set the Axes instance in which the artist resides, if any.

ACCEPTS: an Axes instance

set_c(val)
alias for set_color

set_color(color)
Set the color of the line

ACCEPTS: any matplotlib color

set_dash_capstyle(s)
Set the cap style for dashed linestyles

ACCEPTS: [’butt’ | ‘round’ | ‘projecting’]

set_dash_joinstyle(s)
Set the join style for dashed linestyles ACCEPTS: [’miter’ | ‘round’ | ‘bevel’]

304 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

set_dashes(seq)
Set the dash sequence, sequence of dashes with on off ink in points. If seq is empty or if seq =

(None, None), the linestyle will be set to solid.

ACCEPTS: sequence of on/off ink in points

set_data(*args)
Set the x and y data

ACCEPTS: 2D array

set_drawstyle(drawstyle)
Set the drawstyle of the plot

‘default’ connects the points with lines. The steps variants produce step-plots. ‘steps’ is equiva-
lent to ‘steps-pre’ and is maintained for backward-compatibility.

ACCEPTS: [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]

set_fillstyle(fs)
Set the marker fill style; ‘full’ means fill the whole marker. The other options are for half filled
markers

ACCEPTS: [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]

set_linestyle(linestyle)
Set the linestyle of the line (also accepts drawstyles)

linestyle description
‘-‘ solid
‘–‘ dashed
‘-.’ dash_dot
‘:’ dotted
‘None’ draw nothing
‘ ‘ draw nothing
‘’ draw nothing

‘steps’ is equivalent to ‘steps-pre’ and is maintained for backward-compatibility.

See Also:

set_drawstyle() To set the drawing style (stepping) of the plot.

ACCEPTS: [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a
linestyle, e.g. ‘steps–‘.

set_linewidth(w)
Set the line width in points

ACCEPTS: float value in points

set_ls(val)
alias for set_linestyle

set_lw(val)
alias for set_linewidth

33.3. matplotlib.lines 305

Matplotlib, Release 0.99.3

set_marker(marker)
Set the line marker

marker description
‘.’ point
‘,’ pixel
‘o’ circle
‘v’ triangle_down
‘^’ triangle_up
‘<’ triangle_left
‘>’ triangle_right
‘1’ tri_down
‘2’ tri_up
‘3’ tri_left
‘4’ tri_right
‘s’ square
‘p’ pentagon
‘*’ star
‘h’ hexagon1
‘H’ hexagon2
‘+’ plus
‘x’ x
‘D’ diamond
‘d’ thin_diamond
‘|’ vline
‘_’ hline
TICKLEFT tickleft
TICKRIGHT tickright
TICKUP tickup
TICKDOWN tickdown
CARETLEFT caretleft
CARETRIGHT caretright
CARETUP caretup
CARETDOWN caretdown
‘None’ nothing
‘ ‘ nothing
‘’ nothing

ACCEPTS: [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ ‘<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’
‘h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’
TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT
‘None’ | ’ ’ | ’‘]

set_markeredgecolor(ec)
Set the marker edge color

ACCEPTS: any matplotlib color

306 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

set_markeredgewidth(ew)
Set the marker edge width in points

ACCEPTS: float value in points

set_markerfacecolor(fc)
Set the marker face color

ACCEPTS: any matplotlib color

set_markersize(sz)
Set the marker size in points

ACCEPTS: float

set_markevery(every)
Set the markevery property to subsample the plot when using markers. Eg if markevery=5,
every 5-th marker will be plotted. every can be

None Every point will be plotted

an integer N Every N-th marker will be plotted starting with marker 0

A length-2 tuple of integers every=(start, N) will start at point start and plot every N-th marker

ACCEPTS: None | integer | (startind, stride)

set_mec(val)
alias for set_markeredgecolor

set_mew(val)
alias for set_markeredgewidth

set_mfc(val)
alias for set_markerfacecolor

set_ms(val)
alias for set_markersize

set_picker(p)
Sets the event picker details for the line.

ACCEPTS: float distance in points or callable pick function fn(artist, event)

set_pickradius(d)
Sets the pick radius used for containment tests

ACCEPTS: float distance in points

set_solid_capstyle(s)
Set the cap style for solid linestyles

ACCEPTS: [’butt’ | ‘round’ | ‘projecting’]

set_solid_joinstyle(s)
Set the join style for solid linestyles ACCEPTS: [’miter’ | ‘round’ | ‘bevel’]

33.3. matplotlib.lines 307

Matplotlib, Release 0.99.3

set_transform(t)
set the Transformation instance used by this artist

ACCEPTS: a matplotlib.transforms.Transform instance

set_xdata(x)
Set the data np.array for x

ACCEPTS: 1D array

set_ydata(y)
Set the data np.array for y

ACCEPTS: 1D array

update_from(other)
copy properties from other to self

class matplotlib.lines.VertexSelector(line)
Manage the callbacks to maintain a list of selected vertices for matplotlib.lines.Line2D. Derived
classes should override process_selected() to do something with the picks.

Here is an example which highlights the selected verts with red circles:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as lines

class HighlightSelected(lines.VertexSelector):
def __init__(self, line, fmt=’ro’, **kwargs):

lines.VertexSelector.__init__(self, line)
self.markers, = self.axes.plot([], [], fmt, **kwargs)

def process_selected(self, ind, xs, ys):
self.markers.set_data(xs, ys)
self.canvas.draw()

fig = plt.figure()
ax = fig.add_subplot(111)
x, y = np.random.rand(2, 30)
line, = ax.plot(x, y, ’bs-’, picker=5)

selector = HighlightSelected(line)
plt.show()

Initialize the class with a matplotlib.lines.Line2D instance. The line should already be added to
some matplotlib.axes.Axes instance and should have the picker property set.

onpick(event)
When the line is picked, update the set of selected indicies.

process_selected(ind, xs, ys)
Default “do nothing” implementation of the process_selected() method.

ind are the indices of the selected vertices. xs and ys are the coordinates of the selected vertices.

308 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

matplotlib.lines.segment_hits(cx, cy, x, y, radius)
Determine if any line segments are within radius of a point. Returns the list of line segments that are
within that radius.

matplotlib.lines.unmasked_index_ranges(mask, compressed=True)

33.4 matplotlib.patches

class matplotlib.patches.Arc(xy, width, height, angle=0.0, theta1=0.0, theta2=360.0,
**kwargs)

Bases: matplotlib.patches.Ellipse

An elliptical arc. Because it performs various optimizations, it can not be filled.

The arc must be used in an Axes instance—it can not be added directly to a Figure—because it is
optimized to only render the segments that are inside the axes bounding box with high resolution.

The following args are supported:

xy center of ellipse

width length of horizontal axis

height length of vertical axis

angle rotation in degrees (anti-clockwise)

theta1 starting angle of the arc in degrees

theta2 ending angle of the arc in degrees

If theta1 and theta2 are not provided, the arc will form a complete ellipse.

Valid kwargs are:

33.4. matplotlib.patches 309

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

draw(artist, renderer, *args, **kwargs)
Ellipses are normally drawn using an approximation that uses eight cubic bezier splines. The
error of this approximation is 1.89818e-6, according to this unverified source:

Lancaster, Don. Approximating a Circle or an Ellipse Using Four Bezier Cubic
Splines.

http://www.tinaja.com/glib/ellipse4.pdf

There is a use case where very large ellipses must be drawn with very high accuracy, and it is
too expensive to render the entire ellipse with enough segments (either splines or line segments).
Therefore, in the case where either radius of the ellipse is large enough that the error of the spline
approximation will be visible (greater than one pixel offset from the ideal), a different technique
is used.

In that case, only the visible parts of the ellipse are drawn, with each visible arc using a fixed
number of spline segments (8). The algorithm proceeds as follows:

1.The points where the ellipse intersects the axes bounding box are located. (This is done
be performing an inverse transformation on the axes bbox such that it is relative to the
unit circle – this makes the intersection calculation much easier than doing rotated ellipse
intersection directly).

310 Chapter 33. matplotlib artists

http://www.tinaja.com/glib/ellipse4.pdf

Matplotlib, Release 0.99.3

This uses the “line intersecting a circle” algorithm from:

Vince, John. Geometry for Computer Graphics: Formulae, Examples & Proofs.
London: Springer-Verlag, 2005.

2.The angles of each of the intersection points are calculated.

3.Proceeding counterclockwise starting in the positive x-direction, each of the visible arc-
segments between the pairs of vertices are drawn using the bezier arc approximation tech-
nique implemented in matplotlib.path.Path.arc().

class matplotlib.patches.Arrow(x, y, dx, dy, width=1.0, **kwargs)
Bases: matplotlib.patches.Patch

An arrow patch.

Draws an arrow, starting at (x, y), direction and length given by (dx, dy) the width of the arrow is
scaled by width.

Valid kwargs are:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

get_patch_transform()

get_path()

33.4. matplotlib.patches 311

Matplotlib, Release 0.99.3

class matplotlib.patches.ArrowStyle
Bases: matplotlib.patches._Style

ArrowStyle is a container class which defines several arrowstyle classes, which is used to create an
arrow path along a given path. These are mainly used with FancyArrowPatch.

A arrowstyle object can be either created as:

ArrowStyle.Fancy(head_length=.4, head_width=.4, tail_width=.4)

or:

ArrowStyle("Fancy", head_length=.4, head_width=.4, tail_width=.4)

or:

ArrowStyle("Fancy, head_length=.4, head_width=.4, tail_width=.4")

The following classes are defined

Class Name Attrs
Curve - None
CurveB -> head_length=0.4,head_width=0.2
BracketB -[widthB=1.0,lengthB=0.2,angleB=None
CurveFilledB -|> head_length=0.4,head_width=0.2
CurveA <- head_length=0.4,head_width=0.2
CurveAB <-> head_length=0.4,head_width=0.2
CurveFilledA <|- head_length=0.4,head_width=0.2
CurveFilledAB <|-|> head_length=0.4,head_width=0.2
Fancy fancy head_length=0.4,head_width=0.4,tail_width=0.4
Simple simple head_length=0.5,head_width=0.5,tail_width=0.2
Wedge wedge tail_width=0.3,shrink_factor=0.5

An instance of any arrow style class is an callable object, whose call signature is:

__call__(self, path, mutation_size, linewidth, aspect_ratio=1.)

and it returns a tuple of a Path instance and a boolean value. path is a Path instance along witch the
arrow will be drawn. mutation_size and aspect_ratio has a same meaning as in BoxStyle. linewidth
is a line width to be stroked. This is meant to be used to correct the location of the head so that it does
not overshoot the destination point, but not all classes support it.

312 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

-

->

-[

-|>

<-

<->

<|-

<|-|>

fancy

simple

wedge

class BracketB(widthB=1.0, lengthB=0.2, angleB=None)
Bases: matplotlib.patches._Bracket

An arrow with a bracket([) at its end.

widthB width of the bracket

lengthB length of the bracket

angleB angle between the bracket and the line

class ArrowStyle.Curve
Bases: matplotlib.patches._Curve

A simple curve without any arrow head.

class ArrowStyle.CurveA(head_length=0.4, head_width=0.2)
Bases: matplotlib.patches._Curve

An arrow with a head at its begin point.

head_length length of the arrow head

head_width width of the arrow head

class ArrowStyle.CurveAB(head_length=0.4, head_width=0.2)
Bases: matplotlib.patches._Curve

An arrow with heads both at the begin and the end point.

33.4. matplotlib.patches 313

Matplotlib, Release 0.99.3

head_length length of the arrow head

head_width width of the arrow head

class ArrowStyle.CurveB(head_length=0.4, head_width=0.2)
Bases: matplotlib.patches._Curve

An arrow with a head at its end point.

head_length length of the arrow head

head_width width of the arrow head

class ArrowStyle.CurveFilledA(head_length=0.4, head_width=0.2)
Bases: matplotlib.patches._Curve

An arrow with filled triangle head at the begin.

head_length length of the arrow head

head_width width of the arrow head

class ArrowStyle.CurveFilledAB(head_length=0.4, head_width=0.2)
Bases: matplotlib.patches._Curve

An arrow with filled triangle heads both at the begin and the end point.

head_length length of the arrow head

head_width width of the arrow head

class ArrowStyle.CurveFilledB(head_length=0.4, head_width=0.2)
Bases: matplotlib.patches._Curve

An arrow with filled triangle head at the end.

head_length length of the arrow head

head_width width of the arrow head

class ArrowStyle.Fancy(head_length=0.4, head_width=0.4, tail_width=0.4)
Bases: matplotlib.patches._Base

A fancy arrow. Only works with a quadratic bezier curve.

head_length length of the arrow head

head_with width of the arrow head

tail_width width of the arrow tail

transmute(path, mutation_size, linewidth)

class ArrowStyle.Simple(head_length=0.5, head_width=0.5, tail_width=0.2)
Bases: matplotlib.patches._Base

A simple arrow. Only works with a quadratic bezier curve.

head_length length of the arrow head

head_with width of the arrow head

314 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

tail_width width of the arrow tail

transmute(path, mutation_size, linewidth)

class ArrowStyle.Wedge(tail_width=0.3, shrink_factor=0.5)
Bases: matplotlib.patches._Base

Wedge(?) shape. Only wokrs with a quadratic bezier curve. The begin point has a
width of the tail_width and the end point has a width of 0. At the middle, the width is
shrink_factor*tail_width.

tail_width width of the tail

shrink_factor fraction of the arrow width at the middle point

transmute(path, mutation_size, linewidth)

class matplotlib.patches.BoxStyle
Bases: matplotlib.patches._Style

BoxStyle is a container class which defines several boxstyle classes, which are used for
FancyBoxPatch.

A style object can be created as:

BoxStyle.Round(pad=0.2)

or:

BoxStyle("Round", pad=0.2)

or:

BoxStyle("Round, pad=0.2")

Following boxstyle classes are defined.

Class Name Attrs
LArrow larrow pad=0.3
RArrow rarrow pad=0.3
Round round pad=0.3,rounding_size=None
Round4 round4 pad=0.3,rounding_size=None
Roundtooth roundtooth pad=0.3,tooth_size=None
Sawtooth sawtooth pad=0.3,tooth_size=None
Square square pad=0.3

An instance of any boxstyle class is an callable object, whose call signature is:

__call__(self, x0, y0, width, height, mutation_size, aspect_ratio=1.)

and returns a Path instance. x0, y0, width and height specify the location and size of the box to be
drawn. mutation_scale determines the overall size of the mutation (by which I mean the transforma-
tion of the rectangle to the fancy box). mutation_aspect determines the aspect-ratio of the mutation.

33.4. matplotlib.patches 315

Matplotlib, Release 0.99.3

square

sawtooth

roundtooth

rarrow

larrow

round4

round

class LArrow(pad=0.3)
Bases: matplotlib.patches._Base

(left) Arrow Box

transmute(x0, y0, width, height, mutation_size)

class BoxStyle.RArrow(pad=0.3)
Bases: matplotlib.patches.LArrow

(right) Arrow Box

transmute(x0, y0, width, height, mutation_size)

class BoxStyle.Round(pad=0.3, rounding_size=None)
Bases: matplotlib.patches._Base

A box with round corners.

pad amount of padding

rounding_size rounding radius of corners. pad if None

transmute(x0, y0, width, height, mutation_size)

316 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

class BoxStyle.Round4(pad=0.3, rounding_size=None)
Bases: matplotlib.patches._Base

Another box with round edges.

pad amount of padding

rounding_size rounding size of edges. pad if None

transmute(x0, y0, width, height, mutation_size)

class BoxStyle.Roundtooth(pad=0.3, tooth_size=None)
Bases: matplotlib.patches.Sawtooth

A roundtooth(?) box.

pad amount of padding

tooth_size size of the sawtooth. pad* if None

transmute(x0, y0, width, height, mutation_size)

class BoxStyle.Sawtooth(pad=0.3, tooth_size=None)
Bases: matplotlib.patches._Base

A sawtooth box.

pad amount of padding

tooth_size size of the sawtooth. pad* if None

transmute(x0, y0, width, height, mutation_size)

class BoxStyle.Square(pad=0.3)
Bases: matplotlib.patches._Base

A simple square box.

pad amount of padding

transmute(x0, y0, width, height, mutation_size)

class matplotlib.patches.Circle(xy, radius=5, **kwargs)
Bases: matplotlib.patches.Ellipse

A circle patch.

Create true circle at center xy = (x, y) with given radius. Unlike CirclePolygonwhich is a polygonal
approximation, this uses Bézier splines and is much closer to a scale-free circle.

Valid kwargs are:

33.4. matplotlib.patches 317

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

get_radius()
return the radius of the circle

radius
return the radius of the circle

set_radius(radius)
Set the radius of the circle

ACCEPTS: float

class matplotlib.patches.CirclePolygon(xy, radius=5, resolution=20, **kwargs)
Bases: matplotlib.patches.RegularPolygon

A polygon-approximation of a circle patch.

Create a circle at xy = (x, y) with given radius. This circle is approximated by a regular polygon with
resolution sides. For a smoother circle drawn with splines, see Circle.

Valid kwargs are:

318 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

class matplotlib.patches.ConnectionPatch(xyA, xyB, coordsA, coordsB=None, ax-
esA=None, axesB=None, arrowstyle=’-‘, ar-
row_transmuter=None, connectionstyle=’arc3’,
connector=None, patchA=None, patchB=None,
shrinkA=0.0, shrinkB=0.0, mutation_scale=10.0,
mutation_aspect=None, clip_on=False,
**kwargs)

Bases: matplotlib.patches.FancyArrowPatch

A ConnectionPatch class is to make connecting lines between two points (possibly in different
axes).

Connect point xyA in coordsA with point xyB in coordsB

Valid keys are

33.4. matplotlib.patches 319

Matplotlib, Release 0.99.3

Key Description
arrowstyle the arrow style
connectionstyle the connection style
relpos default is (0.5, 0.5)
patchA default is bounding box of the text
patchB default is None
shrinkA default is 2 points
shrinkB default is 2 points
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for matplotlib.patches.PathPatch

coordsA and coordsB are strings that indicate the coordinates of xyA and xyB.

Prop-
erty

Description

‘figure
points’

points from the lower left corner of the figure

‘figure
pixels’

pixels from the lower left corner of the figure

‘figure
frac-
tion’

0,0 is lower left of figure and 1,1 is upper, right

‘axes
points’

points from lower left corner of axes

‘axes
pixels’

pixels from lower left corner of axes

‘axes
frac-
tion’

0,1 is lower left of axes and 1,1 is upper right

‘data’ use the coordinate system of the object being annotated (default)
‘offset
points’

Specify an offset (in points) from the xy value

‘polar’ you can specify theta, r for the annotation, even in cartesian plots. Note that if you are
using a polar axes, you do not need to specify polar for the coordinate system since
that is the native “data” coordinate system.

draw(renderer)
Draw.

get_annotation_clip()
Return annotation_clip attribute. See set_annotation_clip() for the meaning of return val-
ues.

get_path_in_displaycoord()
Return the mutated path of the arrow in the display coord

set_annotation_clip(b)
set annotation_clip attribute.

•True : the annotation will only be drawn when self.xy is inside the axes.

320 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

•False : the annotation will always be drawn regardless of its position.

•None : the self.xy will be checked only if xycoords is “data”

class matplotlib.patches.ConnectionStyle
Bases: matplotlib.patches._Style

ConnectionStyle is a container class which defines several connectionstyle classes, which is used
to create a path between two points. These are mainly used with FancyArrowPatch.

A connectionstyle object can be either created as:

ConnectionStyle.Arc3(rad=0.2)

or:

ConnectionStyle("Arc3", rad=0.2)

or:

ConnectionStyle("Arc3, rad=0.2")

The following classes are defined

Class Name Attrs
Angle angle angleA=90,angleB=0,rad=0.0
Angle3 angle3 angleA=90,angleB=0
Arc arc angleA=0,angleB=0,armA=None,armB=None,rad=0.0
Arc3 arc3 rad=0.0
Bar bar armA=0.0,armB=0.0,fraction=0.3,angle=None

An instance of any connection style class is an callable object, whose call signature is:

__call__(self, posA, posB, patchA=None, patchB=None, shrinkA=2., shrinkB=2.)

and it returns a Path instance. posA and posB are tuples of x,y coordinates of the two points to be
connected. patchA (or patchB) is given, the returned path is clipped so that it start (or end) from the
boundary of the patch. The path is further shrunk by shrinkA (or shrinkB) which is given in points.

class Angle(angleA=90, angleB=0, rad=0.0)
Bases: matplotlib.patches._Base

Creates a picewise continuous quadratic bezier path between two points. The path has a one
passing-through point placed at the intersecting point of two lines which crosses the start (or
end) point and has a angle of angleA (or angleB). The connecting edges are rounded with rad.

angleA starting angle of the path

angleB ending angle of the path

rad rounding radius of the edge

connect(posA, posB)

class ConnectionStyle.Angle3(angleA=90, angleB=0)
Bases: matplotlib.patches._Base

33.4. matplotlib.patches 321

Matplotlib, Release 0.99.3

Creates a simple quadratic bezier curve between two points. The middle control points is placed
at the intersecting point of two lines which crosses the start (or end) point and has a angle of
angleA (or angleB).

angleA starting angle of the path

angleB ending angle of the path

connect(posA, posB)

class ConnectionStyle.Arc(angleA=0, angleB=0, armA=None, armB=None, rad=0.0)
Bases: matplotlib.patches._Base

Creates a picewise continuous quadratic bezier path between two points. The path can have two
passing-through points, a point placed at the distance of armA and angle of angleA from point
A, another point with respect to point B. The edges are rounded with rad.

angleA : starting angle of the path

angleB : ending angle of the path

armA : length of the starting arm

armB : length of the ending arm

rad : rounding radius of the edges

connect(posA, posB)

class ConnectionStyle.Arc3(rad=0.0)
Bases: matplotlib.patches._Base

Creates a simple quadratic bezier curve between two points. The curve is created so that the
middle contol points (C1) is located at the same distance from the start (C0) and end points(C2)
and the distance of the C1 to the line connecting C0-C2 is rad times the distance of C0-C2.

rad curvature of the curve.

connect(posA, posB)

class ConnectionStyle.Bar(armA=0.0, armB=0.0, fraction=0.3, angle=None)
Bases: matplotlib.patches._Base

A line with angle between A and B with armA and armB. One of the arm is extend so that they
are connected in a right angle. The length of armA is determined by (armA + fraction x AB
distance). Same for armB.

armA : minimum length of armA armB : minimum length of armB fraction : a fraction of
the distance between two points that will be added to armA and armB. angle : anlge of the
connecting line (if None, parallel to A and B)

connect(posA, posB)

class matplotlib.patches.Ellipse(xy, width, height, angle=0.0, **kwargs)
Bases: matplotlib.patches.Patch

A scale-free ellipse.

xy center of ellipse

322 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

width length of horizontal axis

height length of vertical axis

angle rotation in degrees (anti-clockwise)

Valid kwargs are:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

contains(ev)

get_patch_transform()

get_path()
Return the vertices of the rectangle

class matplotlib.patches.FancyArrow(x, y, dx, dy, width=0.001, length_includes_head=False,
head_width=None, head_length=None, shape=’full’,
overhang=0, head_starts_at_zero=False, **kwargs)

Bases: matplotlib.patches.Polygon

Like Arrow, but lets you set head width and head height independently.

Constructor arguments

length_includes_head: True if head is counted in calculating the length.

33.4. matplotlib.patches 323

Matplotlib, Release 0.99.3

shape: [’full’, ‘left’, ‘right’]

overhang: distance that the arrow is swept back (0 overhang means triangular shape).

head_starts_at_zero: If True, the head starts being drawn at coordinate 0 instead of ending
at coordinate 0.

Valid kwargs are:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

class matplotlib.patches.FancyArrowPatch(posA=None, posB=None, path=None, ar-
rowstyle=’simple’, arrow_transmuter=None,
connectionstyle=’arc3’, connector=None,
patchA=None, patchB=None, shrinkA=2.0,
shrinkB=2.0, mutation_scale=1.0, muta-
tion_aspect=None, **kwargs)

Bases: matplotlib.patches.Patch

A fancy arrow patch. It draws an arrow using the :class:ArrowStyle.

If posA and posB is given, a path connecting two point are created according to the connectionstyle.
The path will be clipped with patchA and patchB and further shirnked by shrinkA and shrinkB. An
arrow is drawn along this resulting path using the arrowstyle parameter. If path provided, an arrow is
drawn along this path and patchA, patchB, shrinkA, and shrinkB are ignored.

324 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

The connectionstyle describes how posA and posB are connected. It can be an instance of the Con-
nectionStyle class (matplotlib.patches.ConnectionStlye) or a string of the connectionstyle name, with
optional comma-separated attributes. The following connection styles are available.

Class Name Attrs
Angle angle angleA=90,angleB=0,rad=0.0
Angle3 angle3 angleA=90,angleB=0
Arc arc angleA=0,angleB=0,armA=None,armB=None,rad=0.0
Arc3 arc3 rad=0.0
Bar bar armA=0.0,armB=0.0,fraction=0.3,angle=None

The arrowstyle describes how the fancy arrow will be drawn. It can be string of the available ar-
rowstyle names, with optional comma-separated attributes, or one of the ArrowStyle instance. The
optional attributes are meant to be scaled with the mutation_scale. The following arrow styles are
available.

Class Name Attrs
Curve - None
CurveB -> head_length=0.4,head_width=0.2
BracketB -[widthB=1.0,lengthB=0.2,angleB=None
CurveFilledB -|> head_length=0.4,head_width=0.2
CurveA <- head_length=0.4,head_width=0.2
CurveAB <-> head_length=0.4,head_width=0.2
CurveFilledA <|- head_length=0.4,head_width=0.2
CurveFilledAB <|-|> head_length=0.4,head_width=0.2
Fancy fancy head_length=0.4,head_width=0.4,tail_width=0.4
Simple simple head_length=0.5,head_width=0.5,tail_width=0.2
Wedge wedge tail_width=0.3,shrink_factor=0.5

mutation_scale [a value with which attributes of arrowstyle] (e.g., head_length) will be scaled. de-
fault=1.

mutation_aspect [The height of the rectangle will be] squeezed by this value before the mutation and
the mutated box will be stretched by the inverse of it. default=None.

Valid kwargs are:

33.4. matplotlib.patches 325

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

draw(renderer)

get_arrowstyle()
Return the arrowstyle object

get_connectionstyle()
Return the ConnectionStyle instance

get_mutation_aspect()
Return the aspect ratio of the bbox mutation.

get_mutation_scale()
Return the mutation scale.

get_path()
return the path of the arrow in the data coordinate. Use get_path_in_displaycoord() medthod to
retrieve the arrow path in the disaply coord.

get_path_in_displaycoord()
Return the mutated path of the arrow in the display coord

set_arrowstyle(arrowstyle=None, **kw)
Set the arrow style.

326 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

arrowstyle can be a string with arrowstyle name with optional comma-separated attributes.
Alternatively, the attrs can be provided as keywords.

set_arrowstyle(“Fancy,head_length=0.2”) set_arrowstyle(“fancy”, head_length=0.2)

Old attrs simply are forgotten.

Without argument (or with arrowstyle=None), return available box styles as a list of strings.

set_connectionstyle(connectionstyle, **kw)
Set the connection style.

connectionstyle can be a string with connectionstyle name with optional comma-separated
attributes. Alternatively, the attrs can be probided as keywords.

set_connectionstyle(“arc,angleA=0,armA=30,rad=10”) set_connectionstyle(“arc”, an-
gleA=0,armA=30,rad=10)

Old attrs simply are forgotten.

Without argument (or with connectionstyle=None), return available styles as a list of strings.

set_mutation_aspect(aspect)
Set the aspect ratio of the bbox mutation.

ACCEPTS: float

set_mutation_scale(scale)
Set the mutation scale.

ACCEPTS: float

set_patchA(patchA)
set the begin patch.

set_patchB(patchB)
set the begin patch

set_positions(posA, posB)
set the begin end end positions of the connecting path. Use current vlaue if None.

class matplotlib.patches.FancyBboxPatch(xy, width, height, boxstyle=’round’,
bbox_transmuter=None, mutation_scale=1.0,
mutation_aspect=None, **kwargs)

Bases: matplotlib.patches.Patch

Draw a fancy box around a rectangle with lower left at xy*=(*x, y) with specified width and height.

FancyBboxPatch class is similar to Rectangle class, but it draws a fancy box around the rectangle.
The transformation of the rectangle box to the fancy box is delegated to the BoxTransmuterBase
and its derived classes.

xy = lower left corner

width, height

boxstyle determines what kind of fancy box will be drawn. It can be a string of the style name with a
comma separated attribute, or an instance of BoxStyle. Following box styles are available.

33.4. matplotlib.patches 327

Matplotlib, Release 0.99.3

Class Name Attrs
LArrow larrow pad=0.3
RArrow rarrow pad=0.3
Round round pad=0.3,rounding_size=None
Round4 round4 pad=0.3,rounding_size=None
Roundtooth roundtooth pad=0.3,tooth_size=None
Sawtooth sawtooth pad=0.3,tooth_size=None
Square square pad=0.3

mutation_scale : a value with which attributes of boxstyle (e.g., pad) will be scaled. default=1.

mutation_aspect : The height of the rectangle will be squeezed by this value before the mutation and
the mutated box will be stretched by the inverse of it. default=None.

Valid kwargs are:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

get_bbox()

get_boxstyle()
Return the boxstyle object

get_height()
Return the height of the rectangle

328 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

get_mutation_aspect()
Return the aspect ratio of the bbox mutation.

get_mutation_scale()
Return the mutation scale.

get_path()
Return the mutated path of the rectangle

get_width()
Return the width of the rectangle

get_x()
Return the left coord of the rectangle

get_y()
Return the bottom coord of the rectangle

set_bounds(*args)
Set the bounds of the rectangle: l,b,w,h

ACCEPTS: (left, bottom, width, height)

set_boxstyle(boxstyle=None, **kw)
Set the box style.

boxstyle can be a string with boxstyle name with optional comma-separated attributes. Alterna-
tively, the attrs can be provided as keywords:

set_boxstyle("round,pad=0.2")
set_boxstyle("round", pad=0.2)

Old attrs simply are forgotten.

Without argument (or with boxstyle = None), it returns available box styles.

ACCEPTS: [

Class Name Attrs
LArrow larrow pad=0.3
RArrow rarrow pad=0.3
Round round pad=0.3,rounding_size=None
Round4 round4 pad=0.3,rounding_size=None
Roundtooth roundtooth pad=0.3,tooth_size=None
Sawtooth sawtooth pad=0.3,tooth_size=None
Square square pad=0.3

]

set_height(h)
Set the width rectangle

ACCEPTS: float

set_mutation_aspect(aspect)
Set the aspect ratio of the bbox mutation.

33.4. matplotlib.patches 329

Matplotlib, Release 0.99.3

ACCEPTS: float

set_mutation_scale(scale)
Set the mutation scale.

ACCEPTS: float

set_width(w)
Set the width rectangle

ACCEPTS: float

set_x(x)
Set the left coord of the rectangle

ACCEPTS: float

set_y(y)
Set the bottom coord of the rectangle

ACCEPTS: float

class matplotlib.patches.Patch(edgecolor=None, facecolor=None, linewidth=None,
linestyle=None, antialiased=None, hatch=None, fill=True,
**kwargs)

Bases: matplotlib.artist.Artist

A patch is a 2D thingy with a face color and an edge color.

If any of edgecolor, facecolor, linewidth, or antialiased are None, they default to their rc params
setting.

The following kwarg properties are supported

330 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

contains(mouseevent)
Test whether the mouse event occurred in the patch.

Returns T/F, {}

contains_point(point)
Returns True if the given point is inside the path (transformed with its transform attribute).

draw(artist, renderer, *args, **kwargs)
Draw the Patch to the given renderer.

get_aa()
Returns True if the Patch is to be drawn with antialiasing.

get_antialiased()
Returns True if the Patch is to be drawn with antialiasing.

get_data_transform()

get_ec()
Return the edge color of the Patch.

get_edgecolor()
Return the edge color of the Patch.

33.4. matplotlib.patches 331

Matplotlib, Release 0.99.3

get_extents()
Return a Bbox object defining the axis-aligned extents of the Patch.

get_facecolor()
Return the face color of the Patch.

get_fc()
Return the face color of the Patch.

get_fill()
return whether fill is set

get_hatch()
Return the current hatching pattern

get_linestyle()
Return the linestyle. Will be one of [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

get_linewidth()
Return the line width in points.

get_ls()
Return the linestyle. Will be one of [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

get_lw()
Return the line width in points.

get_patch_transform()

get_path()
Return the path of this patch

get_transform()
Return the Transform applied to the Patch.

get_verts()
Return a copy of the vertices used in this patch

If the patch contains Bézier curves, the curves will be interpolated by line segments. To access
the curves as curves, use get_path().

get_window_extent(renderer=None)

set_aa(aa)
alias for set_antialiased

set_antialiased(aa)
Set whether to use antialiased rendering

ACCEPTS: [True | False] or None for default

set_color(c)
Set both the edgecolor and the facecolor.

ACCEPTS: matplotlib color spec

See Also:

332 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

set_facecolor(), set_edgecolor() For setting the edge or face color individually.

set_ec(color)
alias for set_edgecolor

set_edgecolor(color)
Set the patch edge color

ACCEPTS: mpl color spec, or None for default, or ‘none’ for no color

set_facecolor(color)
Set the patch face color

ACCEPTS: mpl color spec, or None for default, or ‘none’ for no color

set_fc(color)
alias for set_facecolor

set_fill(b)
Set whether to fill the patch

ACCEPTS: [True | False]

set_hatch(hatch)
Set the hatching pattern

hatch can be one of:

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars

Letters can be combined, in which case all the specified hatchings are done. If same letter
repeats, it increases the density of hatching of that pattern.

Hatching is supported in the PostScript, PDF, SVG and Agg backends only.

ACCEPTS: [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]

set_linestyle(ls)
Set the patch linestyle

ACCEPTS: [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

set_linewidth(w)
Set the patch linewidth in points

ACCEPTS: float or None for default

33.4. matplotlib.patches 333

Matplotlib, Release 0.99.3

set_ls(ls)
alias for set_linestyle

set_lw(lw)
alias for set_linewidth

update_from(other)
Updates this Patch from the properties of other.

class matplotlib.patches.PathPatch(path, **kwargs)
Bases: matplotlib.patches.Patch

A general polycurve path patch.

path is a matplotlib.path.Path object.

Valid kwargs are:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

See Also:

Patch For additional kwargs

get_path()

334 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

class matplotlib.patches.Polygon(xy, closed=True, **kwargs)
Bases: matplotlib.patches.Patch

A general polygon patch.

xy is a numpy array with shape Nx2.

If closed is True, the polygon will be closed so the starting and ending points are the same.

Valid kwargs are:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

See Also:

Patch For additional kwargs

get_closed()

get_path()

get_xy()

set_closed(closed)

set_xy(vertices)

33.4. matplotlib.patches 335

Matplotlib, Release 0.99.3

xy
Set/get the vertices of the polygon. This property is provided for backward compatibility with
matplotlib 0.91.x only. New code should use get_xy() and set_xy() instead.

class matplotlib.patches.Rectangle(xy, width, height, **kwargs)
Bases: matplotlib.patches.Patch

Draw a rectangle with lower left at xy = (x, y) with specified width and height.

fill is a boolean indicating whether to fill the rectangle

Valid kwargs are:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

contains(mouseevent)

get_bbox()

get_height()
Return the height of the rectangle

get_patch_transform()

get_path()
Return the vertices of the rectangle

336 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

get_width()
Return the width of the rectangle

get_x()
Return the left coord of the rectangle

get_xy()
Return the left and bottom coords of the rectangle

get_y()
Return the bottom coord of the rectangle

set_bounds(*args)
Set the bounds of the rectangle: l,b,w,h

ACCEPTS: (left, bottom, width, height)

set_height(h)
Set the width rectangle

ACCEPTS: float

set_width(w)
Set the width rectangle

ACCEPTS: float

set_x(x)
Set the left coord of the rectangle

ACCEPTS: float

set_xy(xy)
Set the left and bottom coords of the rectangle

ACCEPTS: 2-item sequence

set_y(y)
Set the bottom coord of the rectangle

ACCEPTS: float

xy
Return the left and bottom coords of the rectangle

class matplotlib.patches.RegularPolygon(xy, numVertices, radius=5, orientation=0,
**kwargs)

Bases: matplotlib.patches.Patch

A regular polygon patch.

Constructor arguments:

xy A length 2 tuple (x, y) of the center.

numVertices the number of vertices.

radius The distance from the center to each of the vertices.

33.4. matplotlib.patches 337

Matplotlib, Release 0.99.3

orientation rotates the polygon (in radians).

Valid kwargs are:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

get_patch_transform()

get_path()

numvertices

orientation

radius

xy

class matplotlib.patches.Shadow(patch, ox, oy, props=None, **kwargs)
Bases: matplotlib.patches.Patch

Create a shadow of the given patch offset by ox, oy. props, if not None, is a patch property update
dictionary. If None, the shadow will have have the same color as the face, but darkened.

kwargs are

338 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

draw(renderer)

get_patch_transform()

get_path()

class matplotlib.patches.Wedge(center, r, theta1, theta2, width=None, **kwargs)
Bases: matplotlib.patches.Patch

Wedge shaped patch.

Draw a wedge centered at x, y center with radius r that sweeps theta1 to theta2 (in degrees). If width
is given, then a partial wedge is drawn from inner radius r - width to outer radius r.

Valid kwargs are:

33.4. matplotlib.patches 339

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

get_path()

class matplotlib.patches.YAArrow(figure, xytip, xybase, width=4, frac=0.1, headwidth=12,
**kwargs)

Bases: matplotlib.patches.Patch

Yet another arrow class.

This is an arrow that is defined in display space and has a tip at x1, y1 and a base at x2, y2.

Constructor arguments:

xytip (x, y) location of arrow tip

xybase (x, y) location the arrow base mid point

figure The Figure instance (fig.dpi)

width The width of the arrow in points

frac The fraction of the arrow length occupied by the head

headwidth The width of the base of the arrow head in points

Valid kwargs are:

340 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

get_patch_transform()

get_path()

getpoints(x1, y1, x2, y2, k)
For line segment defined by (x1, y1) and (x2, y2) return the points on the line that is perpendicular
to the line and intersects (x2, y2) and the distance from (x2, y2) of the returned points is k.

matplotlib.patches.bbox_artist(artist, renderer, props=None, fill=True)
This is a debug function to draw a rectangle around the bounding box returned by
get_window_extent() of an artist, to test whether the artist is returning the correct bbox.

props is a dict of rectangle props with the additional property ‘pad’ that sets the padding around the
bbox in points.

matplotlib.patches.draw_bbox(bbox, renderer, color=’k’, trans=None)
This is a debug function to draw a rectangle around the bounding box returned by
get_window_extent() of an artist, to test whether the artist is returning the correct bbox.

33.4. matplotlib.patches 341

Matplotlib, Release 0.99.3

33.5 matplotlib.text

Classes for including text in a figure.

class matplotlib.text.Annotation(s, xy, xytext=None, xycoords=’data’, textcoords=None, ar-
rowprops=None, **kwargs)

Bases: matplotlib.text.Text

A Text class to make annotating things in the figure, such as Figure, Axes, Rectangle, etc., easier.

Annotate the x, y point xy with text s at x, y location xytext. (If xytext = None, defaults to xy, and if
textcoords = None, defaults to xycoords).

arrowprops, if not None, is a dictionary of line properties (see matplotlib.lines.Line2D) for the
arrow that connects annotation to the point.

If the dictionary has a key arrowstyle, a FancyArrowPatch instance is created with the given dictionary
and is drawn. Otherwise, a YAArow patch instance is created and drawn. Valid keys for YAArow are

Key Description
width the width of the arrow in points
frac the fraction of the arrow length occupied by the head
head-
width

the width of the base of the arrow head in points

shrink oftentimes it is convenient to have the arrowtip and base a bit away from the text and
point being annotated. If d is the distance between the text and annotated point, shrink
will shorten the arrow so the tip and base are shink percent of the distance d away from
the endpoints. ie, shrink=0.05 is 5%

? any key for matplotlib.patches.polygon

Valid keys for FancyArrowPatch are

Key Description
arrowstyle the arrow style
connectionstyle the connection style
relpos default is (0.5, 0.5)
patchA default is bounding box of the text
patchB default is None
shrinkA default is 2 points
shrinkB default is 2 points
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for matplotlib.patches.PathPatch

xycoords and textcoords are strings that indicate the coordinates of xy and xytext.

342 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

Prop-
erty

Description

‘figure
points’

points from the lower left corner of the figure

‘figure
pixels’

pixels from the lower left corner of the figure

‘figure
frac-
tion’

0,0 is lower left of figure and 1,1 is upper, right

‘axes
points’

points from lower left corner of axes

‘axes
pixels’

pixels from lower left corner of axes

‘axes
frac-
tion’

0,1 is lower left of axes and 1,1 is upper right

‘data’ use the coordinate system of the object being annotated (default)
‘offset
points’

Specify an offset (in points) from the xy value

‘polar’ you can specify theta, r for the annotation, even in cartesian plots. Note that if you are
using a polar axes, you do not need to specify polar for the coordinate system since
that is the native “data” coordinate system.

If a ‘points’ or ‘pixels’ option is specified, values will be added to the bottom-left and if negative,
values will be subtracted from the top-right. Eg:

10 points to the right of the left border of the axes and
5 points below the top border
xy=(10,-5), xycoords=’axes points’

The annotation_clip attribute contols the visibility of the annotation when it goes outside the axes
area. If True, the annotation will only be drawn when the xy is inside the axes. If False, the annotation
will always be drawn regardless of its position. The default is None, which behave as True only if
xycoords is”data”.

Additional kwargs are Text properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]

Continued on next page

33.5. matplotlib.text 343

Matplotlib, Release 0.99.3

Table 33.3 – continued from previous page
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

contains(event)

draw(renderer)
Draw the Annotation object to the given renderer.

get_annotation_clip()
Return annotation_clip attribute. See set_annotation_clip() for the meaning of return val-
ues.

set_annotation_clip(b)
set annotation_clip attribute.

•True : the annotation will only be drawn when self.xy is inside the axes.

•False : the annotation will always be drawn regardless of its position.

•None : the self.xy will be checked only if xycoords is “data”

set_figure(fig)

344 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

update_positions(renderer)
Update the pixel positions of the annotated point and the text.

class matplotlib.text.Text(x=0, y=0, text=’‘, color=None, verticalalignment=’bottom’,
horizontalalignment=’left’, multialignment=None, font-
properties=None, rotation=None, linespacing=None, rota-
tion_mode=None, **kwargs)

Bases: matplotlib.artist.Artist

Handle storing and drawing of text in window or data coordinates.

Create a Text instance at x, y with string text.

Valid kwargs are

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]

Continued on next page

33.5. matplotlib.text 345

Matplotlib, Release 0.99.3

Table 33.4 – continued from previous page
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

contains(mouseevent)
Test whether the mouse event occurred in the patch.

In the case of text, a hit is true anywhere in the axis-aligned bounding-box containing the text.

Returns True or False.

draw(renderer)
Draws the Text object to the given renderer.

get_bbox_patch()
Return the bbox Patch object. Returns None if the the FancyBboxPatch is not made.

get_color()
Return the color of the text

get_family()
Return the list of font families used for font lookup

get_font_properties()
alias for get_fontproperties

get_fontfamily()
alias for get_family

get_fontname()
alias for get_name

get_fontproperties()
Return the FontProperties object

get_fontsize()
alias for get_size

get_fontstretch()
alias for get_stretch

get_fontstyle()
alias for get_style

get_fontvariant()
alias for get_variant

get_fontweight()
alias for get_weight

346 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

get_ha()
alias for get_horizontalalignment

get_horizontalalignment()
Return the horizontal alignment as string. Will be one of ‘left’, ‘center’ or ‘right’.

get_name()
Return the font name as string

get_position()
Return the position of the text as a tuple (x, y)

get_prop_tup()
Return a hashable tuple of properties.

Not intended to be human readable, but useful for backends who want to cache derived informa-
tion about text (eg layouts) and need to know if the text has changed.

get_rotation()
return the text angle as float in degrees

get_rotation_mode()
get text rotation mode

get_size()
Return the font size as integer

get_stretch()
Get the font stretch as a string or number

get_style()
Return the font style as string

get_text()
Get the text as string

get_va()
alias for getverticalalignment()

get_variant()
Return the font variant as a string

get_verticalalignment()
Return the vertical alignment as string. Will be one of ‘top’, ‘center’, ‘bottom’ or ‘baseline’.

get_weight()
Get the font weight as string or number

get_window_extent(renderer=None, dpi=None)
Return a Bbox object bounding the text, in display units.

In addition to being used internally, this is useful for specifying clickable regions in a png file
on a web page.

renderer defaults to the _renderer attribute of the text object. This is not assigned until the first
execution of draw(), so you must use this kwarg if you want to call get_window_extent()

33.5. matplotlib.text 347

Matplotlib, Release 0.99.3

prior to the first draw(). For getting web page regions, it is simpler to call the method after
saving the figure.

dpi defaults to self.figure.dpi; the renderer dpi is irrelevant. For the web application, if figure.dpi
is not the value used when saving the figure, then the value that was used must be specified as
the dpi argument.

is_math_text(s)
Returns True if the given string s contains any mathtext.

set_backgroundcolor(color)
Set the background color of the text by updating the bbox.

See Also:

set_bbox() To change the position of the bounding box.

ACCEPTS: any matplotlib color

set_bbox(rectprops)
Draw a bounding box around self. rectprops are any settable properties for a rectangle, eg
facecolor=’red’, alpha=0.5.

t.set_bbox(dict(facecolor=’red’, alpha=0.5))

If rectprops has “boxstyle” key. A FancyBboxPatch is initialized with rectprops and will be
drawn. The mutation scale of the FancyBboxPath is set to the fontsize.

ACCEPTS: rectangle prop dict

set_color(color)
Set the foreground color of the text

ACCEPTS: any matplotlib color

set_family(fontname)
Set the font family. May be either a single string, or a list of strings in decreasing priority. Each
string may be either a real font name or a generic font class name. If the latter, the specific font
names will be looked up in the matplotlibrc file.

ACCEPTS: [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]

set_font_properties(fp)
alias for set_fontproperties

set_fontname(fontname)
alias for set_family

set_fontproperties(fp)
Set the font properties that control the text. fp must be a
matplotlib.font_manager.FontProperties object.

ACCEPTS: a matplotlib.font_manager.FontProperties instance

set_fontsize(fontsize)
alias for set_size

348 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

set_fontstretch(stretch)
alias for set_stretch

set_fontstyle(fontstyle)
alias for set_style

set_fontvariant(variant)
alias for set_variant

set_fontweight(weight)
alias for set_weight

set_ha(align)
alias for set_horizontalalignment

set_horizontalalignment(align)
Set the horizontal alignment to one of

ACCEPTS: [‘center’ | ‘right’ | ‘left’]

set_linespacing(spacing)
Set the line spacing as a multiple of the font size. Default is 1.2.

ACCEPTS: float (multiple of font size)

set_ma(align)
alias for set_verticalalignment

set_multialignment(align)
Set the alignment for multiple lines layout. The layout of the bounding box of all the lines is
determined bu the horizontalalignment and verticalalignment properties, but the multiline text
within that box can be

ACCEPTS: [’left’ | ‘right’ | ‘center’]

set_name(fontname)
alias for set_family

set_position(xy)
Set the (x, y) position of the text

ACCEPTS: (x,y)

set_rotation(s)
Set the rotation of the text

ACCEPTS: [angle in degrees | ‘vertical’ | ‘horizontal’]

set_rotation_mode(m)
set text rotation mode. If “anchor”, the un-rotated text will first aligned according to their ha and
va, and then will be rotated with the alignement reference point as a origin. If None (default),
the text will be rotated first then will be aligned.

set_size(fontsize)
Set the font size. May be either a size string, relative to the default font size, or an absolute font
size in points.

33.5. matplotlib.text 349

Matplotlib, Release 0.99.3

ACCEPTS: [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ |

‘xx-large’]

set_stretch(stretch)
Set the font stretch (horizontal condensation or expansion).

ACCEPTS: [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘con-
densed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-
expanded’]

set_style(fontstyle)
Set the font style.

ACCEPTS: [‘normal’ | ‘italic’ | ‘oblique’]

set_text(s)
Set the text string s

It may contain newlines (\n) or math in LaTeX syntax.

ACCEPTS: string or anything printable with ‘%s’ conversion.

set_va(align)
alias for set_verticalalignment

set_variant(variant)
Set the font variant, either ‘normal’ or ‘small-caps’.

ACCEPTS: [‘normal’ | ‘small-caps’]

set_verticalalignment(align)
Set the vertical alignment

ACCEPTS: [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]

set_weight(weight)
Set the font weight.

ACCEPTS: [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’
| ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]

set_x(x)
Set the x position of the text

ACCEPTS: float

set_y(y)
Set the y position of the text

ACCEPTS: float

update_bbox_position_size(renderer)
Update the location and the size of the bbox. This method should be used when the position and
size of the bbox needs to be updated before actually drawing the bbox.

update_from(other)
Copy properties from other to self

350 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

class matplotlib.text.TextWithDash(x=0, y=0, text=’‘, color=None, verticalalign-
ment=’center’, horizontalalignment=’center’, multi-
alignment=None, fontproperties=None, rotation=None,
linespacing=None, dashlength=0.0, dashdirection=0,
dashrotation=None, dashpad=3, dashpush=0)

Bases: matplotlib.text.Text

This is basically a Text with a dash (drawn with a Line2D) before/after it. It is intended to be a
drop-in replacement for Text, and should behave identically to it when dashlength = 0.0.

The dash always comes between the point specified by set_position() and the text. When a dash
exists, the text alignment arguments (horizontalalignment, verticalalignment) are ignored.

dashlength is the length of the dash in canvas units. (default = 0.0).

dashdirection is one of 0 or 1, where 0 draws the dash after the text and 1 before. (default = 0).

dashrotation specifies the rotation of the dash, and should generally stay None. In this case
get_dashrotation() returns get_rotation(). (I.e., the dash takes its rotation from the text’s
rotation). Because the text center is projected onto the dash, major deviations in the rotation cause
what may be considered visually unappealing results. (default = None)

dashpad is a padding length to add (or subtract) space between the text and the dash, in canvas units.
(default = 3)

dashpush “pushes” the dash and text away from the point specified by set_position() by the
amount in canvas units. (default = 0)

Note: The alignment of the two objects is based on the bounding box of the Text, as obtained
by get_window_extent(). This, in turn, appears to depend on the font metrics as given by the
rendering backend. Hence the quality of the “centering” of the label text with respect to the dash
varies depending on the backend used.

Note: I’m not sure that I got the get_window_extent() right, or whether that’s sufficient for
providing the object bounding box.

draw(renderer)
Draw the TextWithDash object to the given renderer.

get_dashdirection()
Get the direction dash. 1 is before the text and 0 is after.

get_dashlength()
Get the length of the dash.

get_dashpad()
Get the extra spacing between the dash and the text, in canvas units.

get_dashpush()
Get the extra spacing between the dash and the specified text position, in canvas units.

get_dashrotation()
Get the rotation of the dash in degrees.

get_figure()
return the figure instance the artist belongs to

33.5. matplotlib.text 351

Matplotlib, Release 0.99.3

get_position()
Return the position of the text as a tuple (x, y)

get_prop_tup()
Return a hashable tuple of properties.

Not intended to be human readable, but useful for backends who want to cache derived informa-
tion about text (eg layouts) and need to know if the text has changed.

get_window_extent(renderer=None)
Return a Bbox object bounding the text, in display units.

In addition to being used internally, this is useful for specifying clickable regions in a png file
on a web page.

renderer defaults to the _renderer attribute of the text object. This is not assigned until the first
execution of draw(), so you must use this kwarg if you want to call get_window_extent()
prior to the first draw(). For getting web page regions, it is simpler to call the method after
saving the figure.

set_dashdirection(dd)
Set the direction of the dash following the text. 1 is before the text and 0 is after. The default is
0, which is what you’d want for the typical case of ticks below and on the left of the figure.

ACCEPTS: int (1 is before, 0 is after)

set_dashlength(dl)
Set the length of the dash.

ACCEPTS: float (canvas units)

set_dashpad(dp)
Set the “pad” of the TextWithDash, which is the extra spacing between the dash and the text, in
canvas units.

ACCEPTS: float (canvas units)

set_dashpush(dp)
Set the “push” of the TextWithDash, which is the extra spacing between the beginning of the
dash and the specified position.

ACCEPTS: float (canvas units)

set_dashrotation(dr)
Set the rotation of the dash, in degrees

ACCEPTS: float (degrees)

set_figure(fig)
Set the figure instance the artist belong to.

ACCEPTS: a matplotlib.figure.Figure instance

set_position(xy)
Set the (x, y) position of the TextWithDash.

ACCEPTS: (x, y)

352 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

set_transform(t)
Set the matplotlib.transforms.Transform instance used by this artist.

ACCEPTS: a matplotlib.transforms.Transform instance

set_x(x)
Set the x position of the TextWithDash.

ACCEPTS: float

set_y(y)
Set the y position of the TextWithDash.

ACCEPTS: float

update_coords(renderer)
Computes the actual x, y coordinates for text based on the input x, y and the dashlength. Since
the rotation is with respect to the actual canvas’s coordinates we need to map back and forth.

matplotlib.text.get_rotation(rotation)
Return the text angle as float.

rotation may be ‘horizontal’, ‘vertical’, or a numeric value in degrees.

33.5. matplotlib.text 353

Matplotlib, Release 0.99.3

354 Chapter 33. matplotlib artists

CHAPTER

THIRTYFOUR

MATPLOTLIB AXES

34.1 matplotlib.axes

class matplotlib.axes.Axes(fig, rect, axisbg=None, frameon=True, sharex=None, sharey=None,
label=’‘, xscale=None, yscale=None, **kwargs)

Bases: matplotlib.artist.Artist

The Axes contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets
the coordinate system.

The Axes instance supports callbacks through a callbacks attribute which is a CallbackRegistry
instance. The events you can connect to are ‘xlim_changed’ and ‘ylim_changed’ and the callback will
be called with func(ax) where ax is the Axes instance.

acorr(x, **kwargs)
call signature:

acorr(x, normed=True, detrend=mlab.detrend_none, usevlines=True,
maxlags=10, **kwargs)

Plot the autocorrelation of x. If normed = True, normalize the data by the autocorrelation at 0-th
lag. x is detrended by the detrend callable (default no normalization).

Data are plotted as plot(lags, c, **kwargs)

Return value is a tuple (lags, c, line) where:

•lags are a length 2*maxlags+1 lag vector

•c is the 2*maxlags+1 auto correlation vector

•line is a Line2D instance returned by plot()

The default linestyle is None and the default marker is ’o’, though these can be overridden with
keyword args. The cross correlation is performed with numpy.correlate() with mode = 2.

If usevlines is True, vlines() rather than plot() is used to draw vertical lines from the origin
to the acorr. Otherwise, the plot style is determined by the kwargs, which are Line2D properties.

maxlags is a positive integer detailing the number of lags to show. The default value of None
will return all 2imeslen(x) − 1 lags.

355

Matplotlib, Release 0.99.3

The return value is a tuple (lags, c, linecol, b) where

•linecol is the LineCollection

•b is the x-axis.

See Also:

plot() or vlines()

For documentation on valid kwargs.

Example:

xcorr() above, and acorr() below.

Example:

60 40 20 0 20 40 60
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20
0.25

60 40 20 0 20 40 60
0.2

0.0

0.2

0.4

0.6

0.8

1.0

add_artist(a)
Add any Artist to the axes.

Returns the artist.

add_collection(collection, autolim=True)
Add a Collection instance to the axes.

Returns the collection.

356 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

add_line(line)
Add a Line2D to the list of plot lines

Returns the line.

add_patch(p)
Add a Patch p to the list of axes patches; the clipbox will be set to the Axes clipping box. If the
transform is not set, it will be set to transData.

Returns the patch.

add_table(tab)
Add a Table instance to the list of axes tables

Returns the table.

annotate(*args, **kwargs)
call signature:

annotate(s, xy, xytext=None, xycoords=’data’,
textcoords=’data’, arrowprops=None, **kwargs)

Keyword arguments:

Annotate the x, y point xy with text s at x, y location xytext. (If xytext = None, defaults to xy, and
if textcoords = None, defaults to xycoords).

arrowprops, if not None, is a dictionary of line properties (see matplotlib.lines.Line2D)
for the arrow that connects annotation to the point.

If the dictionary has a key arrowstyle, a FancyArrowPatch instance is created with the given
dictionary and is drawn. Otherwise, a YAArow patch instance is created and drawn. Valid keys
for YAArow are

Key Description
width the width of the arrow in points
frac the fraction of the arrow length occupied by the head
head-
width

the width of the base of the arrow head in points

shrink oftentimes it is convenient to have the arrowtip and base a bit away from the text
and point being annotated. If d is the distance between the text and annotated point,
shrink will shorten the arrow so the tip and base are shink percent of the distance d
away from the endpoints. ie, shrink=0.05 is 5%

? any key for matplotlib.patches.polygon

Valid keys for FancyArrowPatch are

34.1. matplotlib.axes 357

Matplotlib, Release 0.99.3

Key Description
arrowstyle the arrow style
connectionstyle the connection style
relpos default is (0.5, 0.5)
patchA default is bounding box of the text
patchB default is None
shrinkA default is 2 points
shrinkB default is 2 points
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for matplotlib.patches.PathPatch

xycoords and textcoords are strings that indicate the coordinates of xy and xytext.

Prop-
erty

Description

‘figure
points’

points from the lower left corner of the figure

‘figure
pixels’

pixels from the lower left corner of the figure

‘figure
frac-
tion’

0,0 is lower left of figure and 1,1 is upper, right

‘axes
points’

points from lower left corner of axes

‘axes
pixels’

pixels from lower left corner of axes

‘axes
frac-
tion’

0,1 is lower left of axes and 1,1 is upper right

‘data’ use the coordinate system of the object being annotated (default)
‘offset
points’

Specify an offset (in points) from the xy value

‘polar’ you can specify theta, r for the annotation, even in cartesian plots. Note that if
you are using a polar axes, you do not need to specify polar for the coordinate
system since that is the native “data” coordinate system.

If a ‘points’ or ‘pixels’ option is specified, values will be added to the bottom-left and if negative,
values will be subtracted from the top-right. Eg:

10 points to the right of the left border of the axes and
5 points below the top border
xy=(10,-5), xycoords=’axes points’

The annotation_clip attribute contols the visibility of the annotation when it goes outside the
axes area. If True, the annotation will only be drawn when the xy is inside the axes. If False, the
annotation will always be drawn regardless of its position. The default is None, which behave
as True only if xycoords is”data”.

Additional kwargs are Text properties:

358 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

34.1. matplotlib.axes 359

Matplotlib, Release 0.99.3

1 0 1 2 3 4 5
4

3

2

1

0

1

2

3

arrowstyle

arc3

arc

arc

angle

angle3

angle

angle

angle

1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

−>

fancy simple

wedge

wedge

wedge

apply_aspect(position=None)
Use _aspect() and _adjustable() to modify the axes box or the view limits.

arrow(x, y, dx, dy, **kwargs)

360 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

call signature:

arrow(x, y, dx, dy, **kwargs)

Draws arrow on specified axis from (x, y) to (x + dx, y + dy).

Optional kwargs control the arrow properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

34.1. matplotlib.axes 361

Matplotlib, Release 0.99.3

A3 T3

G3 C3

r
AC

r
GT

r
AG

r
CA

r
CG

r
GC

r
AT

r
GA

r
CT

r
TG r

TC

r
TA

autoscale_view(tight=False, scalex=True, scaley=True)
autoscale the view limits using the data limits. You can selectively autoscale only a single axis,
eg, the xaxis by setting scaley to False. The autoscaling preserves any axis direction reversal
that has already been done.

axhline(y=0, xmin=0, xmax=1, **kwargs)
call signature:

axhline(y=0, xmin=0, xmax=1, **kwargs)

Axis Horizontal Line

Draw a horizontal line at y from xmin to xmax. With the default values of xmin = 0 and xmax
= 1, this line will always span the horizontal extent of the axes, regardless of the xlim settings,
even if you change them, eg. with the set_xlim() command. That is, the horizontal extent is
in axes coords: 0=left, 0.5=middle, 1.0=right but the y location is in data coordinates.

Return value is the Line2D instance. kwargs are the same as kwargs to plot, and can be used to
control the line properties. Eg.,

•draw a thick red hline at y = 0 that spans the xrange

>>> axhline(linewidth=4, color=’r’)

•draw a default hline at y = 1 that spans the xrange

>>> axhline(y=1)

362 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

•draw a default hline at y = .5 that spans the the middle half of the xrange

>>> axhline(y=.5, xmin=0.25, xmax=0.75)

Valid kwargs are Line2D properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

34.1. matplotlib.axes 363

Matplotlib, Release 0.99.3

See Also:

axhspan() for example plot and source code

axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs)
call signature:

axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs)

Axis Horizontal Span.

y coords are in data units and x coords are in axes (relative 0-1) units.

Draw a horizontal span (rectangle) from ymin to ymax. With the default values of xmin = 0 and
xmax = 1, this always spans the xrange, regardless of the xlim settings, even if you change them,
eg. with the set_xlim() command. That is, the horizontal extent is in axes coords: 0=left,
0.5=middle, 1.0=right but the y location is in data coordinates.

Return value is a matplotlib.patches.Polygon instance.

Examples:

•draw a gray rectangle from y = 0.25-0.75 that spans the horizontal extent of the axes

>>> axhspan(0.25, 0.75, facecolor=’0.5’, alpha=0.5)

Valid kwargs are Polygon properties:

364 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

34.1. matplotlib.axes 365

Matplotlib, Release 0.99.3

1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

axis(*v, **kwargs)
Convenience method for manipulating the x and y view limits and the aspect ratio of the plot.

kwargs are passed on to set_xlim() and set_ylim()

axvline(x=0, ymin=0, ymax=1, **kwargs)
call signature:

axvline(x=0, ymin=0, ymax=1, **kwargs)

Axis Vertical Line

Draw a vertical line at x from ymin to ymax. With the default values of ymin = 0 and ymax =

1, this line will always span the vertical extent of the axes, regardless of the ylim settings, even
if you change them, eg. with the set_ylim() command. That is, the vertical extent is in axes
coords: 0=bottom, 0.5=middle, 1.0=top but the x location is in data coordinates.

Return value is the Line2D instance. kwargs are the same as kwargs to plot, and can be used to
control the line properties. Eg.,

•draw a thick red vline at x = 0 that spans the yrange

>>> axvline(linewidth=4, color=’r’)

•draw a default vline at x = 1 that spans the yrange

366 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

>>> axvline(x=1)

•draw a default vline at x = .5 that spans the the middle half of the yrange

>>> axvline(x=.5, ymin=0.25, ymax=0.75)

Valid kwargs are Line2D properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array

Continued on next page

34.1. matplotlib.axes 367

Matplotlib, Release 0.99.3

Table 34.3 – continued from previous page
ydata 1D array
zorder any number

See Also:

axhspan() for example plot and source code

axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs)
call signature:

axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs)

Axis Vertical Span.

x coords are in data units and y coords are in axes (relative 0-1) units.

Draw a vertical span (rectangle) from xmin to xmax. With the default values of ymin = 0 and
ymax = 1, this always spans the yrange, regardless of the ylim settings, even if you change them,
eg. with the set_ylim() command. That is, the vertical extent is in axes coords: 0=bottom,
0.5=middle, 1.0=top but the y location is in data coordinates.

Return value is the matplotlib.patches.Polygon instance.

Examples:

•draw a vertical green translucent rectangle from x=1.25 to 1.55 that spans the yrange of the
axes

>>> axvspan(1.25, 1.55, facecolor=’g’, alpha=0.5)

Valid kwargs are Polygon properties:

368 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

See Also:

axhspan() for example plot and source code

bar(left, height, width=0.8, bottom=None, color=None, edgecolor=None, linewidth=None,
yerr=None, xerr=None, ecolor=None, capsize=3, align=’edge’, orientation=’vertical’,
log=False, **kwargs)
call signature:

bar(left, height, width=0.8, bottom=0,
color=None, edgecolor=None, linewidth=None,
yerr=None, xerr=None, ecolor=None, capsize=3,
align=’edge’, orientation=’vertical’, log=False)

Make a bar plot with rectangles bounded by:

left, left + width, bottom, bottom + height (left, right, bottom and top edges)

left, height, width, and bottom can be either scalars or sequences

Return value is a list of matplotlib.patches.Rectangle instances.

Required arguments:

34.1. matplotlib.axes 369

Matplotlib, Release 0.99.3

Argument Description
left the x coordinates of the left sides of the bars
height the heights of the bars

Optional keyword arguments:

Key-
word

Description

width the widths of the bars
bottom the y coordinates of the bottom edges of the bars
color the colors of the bars
edge-
color

the colors of the bar edges

linewidth width of bar edges; None means use default linewidth; 0 means don’t
draw edges.

xerr if not None, will be used to generate errorbars on the bar chart
yerr if not None, will be used to generate errorbars on the bar chart
ecolor specifies the color of any errorbar
capsize (default 3) determines the length in points of the error bar caps
align ‘edge’ (default) | ‘center’
orienta-
tion

‘vertical’ | ‘horizontal’

log [False|True] False (default) leaves the orientation axis as-is; True sets
it to log scale

For vertical bars, align = ‘edge’ aligns bars by their left edges in left, while align = ‘center’
interprets these values as the x coordinates of the bar centers. For horizontal bars, align = ‘edge’
aligns bars by their bottom edges in bottom, while align = ‘center’ interprets these values as the
y coordinates of the bar centers.

The optional arguments color, edgecolor, linewidth, xerr, and yerr can be either scalars or se-
quences of length equal to the number of bars. This enables you to use bar as the basis for
stacked bar charts, or candlestick plots.

Other optional kwargs:

370 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example: A stacked bar chart.

34.1. matplotlib.axes 371

Matplotlib, Release 0.99.3

G1 G2 G3 G4 G5
0

10

20

30

40

50

60

70

80

S
co

re
s

Scores by group and gender

Men
Women

barbs(*args, **kw)
Plot a 2-D field of barbs.

call signatures:

barb(U, V, **kw)
barb(U, V, C, **kw)
barb(X, Y, U, V, **kw)
barb(X, Y, U, V, C, **kw)

Arguments:

X, Y: The x and y coordinates of the barb locations (default is head of barb; see pivot
kwarg)

U, V: give the x and y components of the barb shaft

C: an optional array used to map colors to the barbs

All arguments may be 1-D or 2-D arrays or sequences. If X and Y are absent, they will be
generated as a uniform grid. If U and V are 2-D arrays but X and Y are 1-D, and if len(X)
and len(Y) match the column and row dimensions of U, then X and Y will be expanded with
numpy.meshgrid().

U, V, C may be masked arrays, but masked X, Y are not supported at present.

Keyword arguments:

372 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

length: Length of the barb in points; the other parts of the barb are scaled against this.
Default is 9

pivot: [‘tip’ | ‘middle’] The part of the arrow that is at the grid point; the arrow ro-
tates about this point, hence the name pivot. Default is ‘tip’

barbcolor: [color | color sequence] Specifies the color all parts of the barb except
any flags. This parameter is analagous to the edgecolor parameter for polygons,
which can be used instead. However this parameter will override facecolor.

flagcolor: [color | color sequence] Specifies the color of any flags on the barb. This
parameter is analagous to the facecolor parameter for polygons, which can be used
instead. However this parameter will override facecolor. If this is not set (and C
has not either) then flagcolor will be set to match barbcolor so that the barb has a
uniform color. If C has been set, flagcolor has no effect.

sizes: A dictionary of coefficients specifying the ratio of a given feature to the length
of the barb. Only those values one wishes to override need to be included. These
features include:

• ‘spacing’ - space between features (flags, full/half barbs)

• ‘height’ - height (distance from shaft to top) of a flag or full barb

• ‘width’ - width of a flag, twice the width of a full barb

• ‘emptybarb’ - radius of the circle used for low magnitudes

fill_empty: A flag on whether the empty barbs (circles) that are drawn should be filled
with the flag color. If they are not filled, they will be drawn such that no color is
applied to the center. Default is False

rounding: A flag to indicate whether the vector magnitude should be rounded when
allocating barb components. If True, the magnitude is rounded to the nearest mul-
tiple of the half-barb increment. If False, the magnitude is simply truncated to the
next lowest multiple. Default is True

barb_increments: A dictionary of increments specifying values to associate with dif-
ferent parts of the barb. Only those values one wishes to override need to be
included.

• ‘half’ - half barbs (Default is 5)

• ‘full’ - full barbs (Default is 10)

• ‘flag’ - flags (default is 50)

flip_barb: Either a single boolean flag or an array of booleans. Single boolean indi-
cates whether the lines and flags should point opposite to normal for all barbs. An
array (which should be the same size as the other data arrays) indicates whether to
flip for each individual barb. Normal behavior is for the barbs and lines to point
right (comes from wind barbs having these features point towards low pressure in
the Northern Hemisphere.) Default is False

Barbs are traditionally used in meteorology as a way to plot the speed and direction of wind ob-
servations, but can technically be used to plot any two dimensional vector quantity. As opposed

34.1. matplotlib.axes 373

Matplotlib, Release 0.99.3

to arrows, which give vector magnitude by the length of the arrow, the barbs give more quanti-
tative information about the vector magnitude by putting slanted lines or a triangle for various
increments in magnitude, as show schematically below:

: /\ \
: / \ \
: / \ \ \
: / \ \ \
: ------------------------------

The largest increment is given by a triangle (or “flag”). After those come full lines (barbs).
The smallest increment is a half line. There is only, of course, ever at most 1 half line. If the
magnitude is small and only needs a single half-line and no full lines or triangles, the half-line
is offset from the end of the barb so that it can be easily distinguished from barbs with a single
full line. The magnitude for the barb shown above would nominally be 65, using the standard
increments of 50, 10, and 5.

linewidths and edgecolors can be used to customize the barb. Additional PolyCollection
keyword arguments:

Property Description
alpha float
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance

Continued on next page

374 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

Table 34.4 – continued from previous page
url a url string
urls unknown
visible [True | False]
zorder any number

Example:

6 4 2 0 2 4 6
6

4

2

0

2

4

6

4 3 2 1 0 1 2
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

6 4 2 0 2 4 6
6

4

2

0

2

4

6

4 3 2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

34.1. matplotlib.axes 375

Matplotlib, Release 0.99.3

4 3 2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

barh(bottom, width, height=0.8, left=None, **kwargs)
call signature:

barh(bottom, width, height=0.8, left=0, **kwargs)

Make a horizontal bar plot with rectangles bounded by:

left, left + width, bottom, bottom + height (left, right, bottom and top edges)

bottom, width, height, and left can be either scalars or sequences

Return value is a list of matplotlib.patches.Rectangle instances.

Required arguments:

Argument Description
bottom the vertical positions of the bottom edges of the bars
width the lengths of the bars

Optional keyword arguments:

376 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

Key-
word

Description

height the heights (thicknesses) of the bars
left the x coordinates of the left edges of the bars
color the colors of the bars
edge-
color

the colors of the bar edges

linewidth width of bar edges; None means use default linewidth; 0 means don’t
draw edges.

xerr if not None, will be used to generate errorbars on the bar chart
yerr if not None, will be used to generate errorbars on the bar chart
ecolor specifies the color of any errorbar
capsize (default 3) determines the length in points of the error bar caps
align ‘edge’ (default) | ‘center’
log [False|True] False (default) leaves the horizontal axis as-is; True sets it

to log scale

Setting align = ‘edge’ aligns bars by their bottom edges in bottom, while align = ‘center’ inter-
prets these values as the y coordinates of the bar centers.

The optional arguments color, edgecolor, linewidth, xerr, and yerr can be either scalars or se-
quences of length equal to the number of bars. This enables you to use barh as the basis for
stacked bar charts, or candlestick plots.

other optional kwargs:

34.1. matplotlib.axes 377

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

boxplot(x, notch=0, sym=’b+’, vert=1, whis=1.5, positions=None, widths=None)
call signature:

boxplot(x, notch=0, sym=’+’, vert=1, whis=1.5,
positions=None, widths=None)

Make a box and whisker plot for each column of x or each vector in sequence x. The box
extends from the lower to upper quartile values of the data, with a line at the median. The
whiskers extend from the box to show the range of the data. Flier points are those past the end
of the whiskers.

•notch = 0 (default) produces a rectangular box plot.

•notch = 1 will produce a notched box plot

sym (default ‘b+’) is the default symbol for flier points. Enter an empty string (‘’) if you don’t
want to show fliers.

•vert = 1 (default) makes the boxes vertical.

•vert = 0 makes horizontal boxes. This seems goofy, but that’s how Matlab did it.

whis (default 1.5) defines the length of the whiskers as a function of the inner quartile range.
They extend to the most extreme data point within (whis*(75%-25%)) data range.

378 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

positions (default 1,2,...,n) sets the horizontal positions of the boxes. The ticks and limits are
automatically set to match the positions.

widths is either a scalar or a vector and sets the width of each box. The default is 0.5, or
0.15*(distance between extreme positions) if that is smaller.

x is an array or a sequence of vectors.

Returns a dictionary mapping each component of the boxplot to a list of the
matplotlib.lines.Line2D instances created.

Example:

1
100

50

0

50

100

150

200

34.1. matplotlib.axes 379

Matplotlib, Release 0.99.3

1
100

50

0

50

100

150

200

380 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

1
100

50

0

50

100

150

200

34.1. matplotlib.axes 381

Matplotlib, Release 0.99.3

1
50

0

50

100

150

382 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

100 50 0 50 100 150 200

1

34.1. matplotlib.axes 383

Matplotlib, Release 0.99.3

100 50 0 50 100 150 200

1

384 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

1 2 3
100

50

0

50

100

150

200

broken_barh(xranges, yrange, **kwargs)
call signature:

broken_barh(self, xranges, yrange, **kwargs)

A collection of horizontal bars spanning yrange with a sequence of xranges.

Required arguments:

Argument Description
xranges sequence of (xmin, xwidth)
yrange sequence of (ymin, ywidth)

kwargs are matplotlib.collections.BrokenBarHCollection properties:

Property Description
alpha float
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]

Continued on next page

34.1. matplotlib.axes 385

Matplotlib, Release 0.99.3

Table 34.5 – continued from previous page
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

these can either be a single argument, ie:

facecolors = ’black’

or a sequence of arguments for the various bars, ie:

facecolors = (’black’, ’red’, ’green’)

Example:

386 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

0 50 100 150 200
seconds since start

Bill

Jim

race interrupted

can_zoom()
Return True if this axes support the zoom box

cla()
Clear the current axes

clabel(CS, *args, **kwargs)
call signature:

clabel(cs, **kwargs)

adds labels to line contours in cs, where cs is a ContourSet object returned by contour.

clabel(cs, v, **kwargs)

only labels contours listed in v.

Optional keyword arguments:

fontsize: See http://matplotlib.sf.net/fonts.html

colors:

• if None, the color of each label matches the color of the corresponding contour

• if one string color, e.g. colors = ‘r’ or colors = ‘red’, all labels will be plotted in
this color

34.1. matplotlib.axes 387

http://matplotlib.sf.net/fonts.html

Matplotlib, Release 0.99.3

• if a tuple of matplotlib color args (string, float, rgb, etc), different labels will be
plotted in different colors in the order specified

inline: controls whether the underlying contour is removed or not. Default is True.

inline_spacing: space in pixels to leave on each side of label when placing inline.
Defaults to 5. This spacing will be exact for labels at locations where the contour
is straight, less so for labels on curved contours.

fmt: a format string for the label. Default is ‘%1.3f’ Alternatively, this can be a dic-
tionary matching contour levels with arbitrary strings to use for each contour level
(i.e., fmt[level]=string)

manual: if True, contour labels will be placed manually using mouse clicks. Click the
first button near a contour to add a label, click the second button (or potentially
both mouse buttons at once) to finish adding labels. The third button can be used
to remove the last label added, but only if labels are not inline. Alternatively, the
keyboard can be used to select label locations (enter to end label placement, delete
or backspace act like the third mouse button, and any other key will select a label
location).

rightside_up: if True (default), label rotations will always be plus or minus 90 degrees
from level.

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.500 1.000

1.500

Simplest default with labels

388 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours dashed

34.1. matplotlib.axes 389

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours solid

390 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Crazy lines

34.1. matplotlib.axes 391

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.0

-0.6

-0
.2

0.2 0.6

1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.40.0 0.4 0.8 1.2 1.6

clear()
clear the axes

cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x921317c>,
window=<function window_hanning at 0x9213064>, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)

call signature:

cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend = mlab.detrend_none,
window = mlab.window_hanning, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)

cohere() the coherence between x and y. Coherence is the normalized cross spectral density:

Cxy =
|Pxy|

2

PxxPyy
(34.1)

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be
even; a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in matlab, where the detrend parameter is a

392 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

vector, in matplotlib is it a function. The pylabmodule defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function
as well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(),
scipy.signal(), scipy.signal.get_window(), etc. The default is
window_hanning(). If a function is passed as the argument, it must take a data
segment as an argument and return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value
is 0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the min-
imum distance between resolvable peaks), this can give more points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to re-
turn. Default gives the default behavior, which returns one-sided for real data and
both for complex data. ‘onesided’ forces the return of a one-sided PSD, while
‘twosided’ forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be
scaled by the scaling frequency, which gives density in units of Hz^-1. This al-
lows for integration over the returned frequency values. The default is True for
MatLab compatibility.

Fc: integer The center frequency of x (defaults to 0), which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered
and downsampled to baseband.

The return value is a tuple (Cxy, f), where f are the frequencies of the coherence vector.

kwargs are applied to the lines.

References:

•Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley &
Sons (1986)

kwargs control the Line2D properties of the coherence plot:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance

Continued on next page

34.1. matplotlib.axes 393

Matplotlib, Release 0.99.3

Table 34.6 – continued from previous page
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

394 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

0 1 2 3 4 5
time

0.08
0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08

s1
 a

n
d
 s

2

0 10 20 30 40 50
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

co
h
e
re

n
ce

connect(s, func)
Register observers to be notified when certain events occur. Register with callback functions
with the following signatures. The function has the following signature:

func(ax) # where ax is the instance making the callback.

The following events can be connected to:

‘xlim_changed’,’ylim_changed’

The connection id is is returned - you can use this with disconnect to disconnect from the axes
event

contains(mouseevent)
Test whether the mouse event occured in the axes.

Returns T/F, {}

contains_point(point)
Returns True if the point (tuple of x,y) is inside the axes (the area defined by the its patch). A
pixel coordinate is required.

contour(*args, **kwargs)
contour() and contourf() draw contour lines and filled contours, respectively. Except as
noted, function signatures and return values are the same for both versions.

contourf() differs from the Matlab (TM) version in that it does not draw the polygon edges,

34.1. matplotlib.axes 395

Matplotlib, Release 0.99.3

because the contouring engine yields simply connected regions with branch cuts. To draw the
edges, add line contours with calls to contour().

call signatures:

contour(Z)

make a contour plot of an array Z. The level values are chosen automatically.

contour(X,Y,Z)

X, Y specify the (x, y) coordinates of the surface

contour(Z,N)
contour(X,Y,Z,N)

contour N automatically-chosen levels.

contour(Z,V)
contour(X,Y,Z,V)

draw contour lines at the values specified in sequence V

contourf(..., V)

fill the (len(V)-1) regions between the values in V

contour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

X, Y, and Z must be arrays with the same dimensions.

Z may be a masked array, but filled contouring may not handle internal masked regions correctly.

C = contour(...) returns a ContourSet object.

Optional keyword arguments:

colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will
be used.

If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.

If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be
plotted in different colors in the order specified.

alpha: float The alpha blending value

cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and
colors is None, a default Colormap is used.

norm: [None | Normalize] A matplotlib.colors.Normalize instance for scal-
ing data values to colors. If norm is None and colors is None, the default linear
scaling is used.

396 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will cor-
respond to the lower left corner, location (0,0). If ‘image’, the rc value for
image.origin will be used.

This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]

If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries.
In this case, the position of Z[0,0] is the center of the pixel, not a corner.
If origin is None, then (x0, y0) is the position of Z[0,0], and (x1, y1) is the
position of Z[-1,-1].

This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default
MaxNLocator is used. The locator is used to determine the contour levels
if they are not given explicitly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour lev-
els are automatically added to one or both ends of the range so that
all data are included. These added ranges are then mapped to the
special colormap values which default to the ends of the colormap
range, but can be set via matplotlib.cm.Colormap.set_under() and
matplotlib.cm.Colormap.set_over() methods.

contour-only keyword arguments:

linewidths: [None | number | tuple of numbers] If linewidths is None, the default
width in lines.linewidth in matplotlibrc is used.

If a number, all levels will be plotted with this linewidth.

If a tuple, different levels will be plotted with different linewidths in the order
specified

linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] If linestyles is None, the
‘solid’ is used.

linestyles can also be an iterable of the above strings specifying a set of linestyles
to be used. If this iterable is shorter than the number of contour levels it will be
repeated as necessary.

If contour is using a monochrome colormap and the contour level is less than 0,
then the linestyle specified in contour.negative_linestyle in matplotlibrc
will be used.

contourf-only keyword arguments:

antialiased: [True | False] enable antialiasing

nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer
to divide the domain into subdomains of roughly nchunk by nchunk points. This

34.1. matplotlib.axes 397

Matplotlib, Release 0.99.3

may never actually be advantageous, so this option may be removed. Chunking
introduces artifacts at the chunk boundaries unless antialiased is False.

Example:

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.500 1.000

1.500

Simplest default with labels

398 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours dashed

34.1. matplotlib.axes 399

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours solid

400 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Crazy lines

34.1. matplotlib.axes 401

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.0

-0.6

-0
.2

0.2 0.6

1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.40.0 0.4 0.8 1.2 1.6

contourf(*args, **kwargs)
contour() and contourf() draw contour lines and filled contours, respectively. Except as
noted, function signatures and return values are the same for both versions.

contourf() differs from the Matlab (TM) version in that it does not draw the polygon edges,
because the contouring engine yields simply connected regions with branch cuts. To draw the
edges, add line contours with calls to contour().

call signatures:

contour(Z)

make a contour plot of an array Z. The level values are chosen automatically.

contour(X,Y,Z)

X, Y specify the (x, y) coordinates of the surface

contour(Z,N)
contour(X,Y,Z,N)

contour N automatically-chosen levels.

contour(Z,V)
contour(X,Y,Z,V)

draw contour lines at the values specified in sequence V

402 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

contourf(..., V)

fill the (len(V)-1) regions between the values in V

contour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

X, Y, and Z must be arrays with the same dimensions.

Z may be a masked array, but filled contouring may not handle internal masked regions correctly.

C = contour(...) returns a ContourSet object.

Optional keyword arguments:

colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will
be used.

If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.

If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be
plotted in different colors in the order specified.

alpha: float The alpha blending value

cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and
colors is None, a default Colormap is used.

norm: [None | Normalize] A matplotlib.colors.Normalize instance for scal-
ing data values to colors. If norm is None and colors is None, the default linear
scaling is used.

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will cor-
respond to the lower left corner, location (0,0). If ‘image’, the rc value for
image.origin will be used.

This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]

If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries.
In this case, the position of Z[0,0] is the center of the pixel, not a corner.
If origin is None, then (x0, y0) is the position of Z[0,0], and (x1, y1) is the
position of Z[-1,-1].

This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default
MaxNLocator is used. The locator is used to determine the contour levels
if they are not given explicitly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour lev-
els are automatically added to one or both ends of the range so that
all data are included. These added ranges are then mapped to the

34.1. matplotlib.axes 403

Matplotlib, Release 0.99.3

special colormap values which default to the ends of the colormap
range, but can be set via matplotlib.cm.Colormap.set_under() and
matplotlib.cm.Colormap.set_over() methods.

contour-only keyword arguments:

linewidths: [None | number | tuple of numbers] If linewidths is None, the default
width in lines.linewidth in matplotlibrc is used.

If a number, all levels will be plotted with this linewidth.

If a tuple, different levels will be plotted with different linewidths in the order
specified

linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] If linestyles is None, the
‘solid’ is used.

linestyles can also be an iterable of the above strings specifying a set of linestyles
to be used. If this iterable is shorter than the number of contour levels it will be
repeated as necessary.

If contour is using a monochrome colormap and the contour level is less than 0,
then the linestyle specified in contour.negative_linestyle in matplotlibrc
will be used.

contourf-only keyword arguments:

antialiased: [True | False] enable antialiasing

nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer
to divide the domain into subdomains of roughly nchunk by nchunk points. This
may never actually be advantageous, so this option may be removed. Chunking
introduces artifacts at the chunk boundaries unless antialiased is False.

Example:

404 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.500 1.000

1.500

Simplest default with labels

34.1. matplotlib.axes 405

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours dashed

406 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours solid

34.1. matplotlib.axes 407

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Crazy lines

408 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.0

-0.6

-0
.2

0.2 0.6

1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.40.0 0.4 0.8 1.2 1.6

csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x921317c>,
window=<function window_hanning at 0x9213064>, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)
call signature:

csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)

The cross spectral density Pxy by Welch’s average periodogram method. The vectors x and y
are divided into NFFT length segments. Each segment is detrended by function detrend and
windowed by function window. The product of the direct FFTs of x and y are averaged over
each segment to compute Pxy, with a scaling to correct for power loss due to windowing.

Returns the tuple (Pxy, freqs). P is the cross spectrum (complex valued), and 10 log10 |Pxy| is
plotted.

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be
even; a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in matlab, where the detrend parameter is a

34.1. matplotlib.axes 409

Matplotlib, Release 0.99.3

vector, in matplotlib is it a function. The pylabmodule defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function
as well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(),
scipy.signal(), scipy.signal.get_window(), etc. The default is
window_hanning(). If a function is passed as the argument, it must take a data
segment as an argument and return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value
is 0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the min-
imum distance between resolvable peaks), this can give more points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to re-
turn. Default gives the default behavior, which returns one-sided for real data and
both for complex data. ‘onesided’ forces the return of a one-sided PSD, while
‘twosided’ forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be
scaled by the scaling frequency, which gives density in units of Hz^-1. This al-
lows for integration over the returned frequency values. The default is True for
MatLab compatibility.

Fc: integer The center frequency of x (defaults to 0), which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered
and downsampled to baseband.

References: Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John
Wiley & Sons (1986)

kwargs control the Line2D properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function

Continued on next page

410 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

Table 34.7 – continued from previous page
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

34.1. matplotlib.axes 411

Matplotlib, Release 0.99.3

0 1 2 3 4 5
time

0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08

s1
 a

n
d
 s

2

0 10 20 30 40 50
Frequency

80

70

60

50

40

C
S
D

 (
d
b
)

disconnect(cid)
disconnect from the Axes event.

drag_pan(button, key, x, y)
Called when the mouse moves during a pan operation.

button is the mouse button number:

•1: LEFT

•2: MIDDLE

•3: RIGHT

key is a “shift” key

x, y are the mouse coordinates in display coords.

Note: Intended to be overridden by new projection types.

draw(artist, renderer, *args, **kwargs)
Draw everything (plot lines, axes, labels)

draw_artist(a)
This method can only be used after an initial draw which caches the renderer. It is used to
efficiently update Axes data (axis ticks, labels, etc are not updated)

412 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

end_pan()
Called when a pan operation completes (when the mouse button is up.)

Note: Intended to be overridden by new projection types.

errorbar(x, y, yerr=None, xerr=None, fmt=’-‘, ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False,
**kwargs)

call signature:

errorbar(x, y, yerr=None, xerr=None,
fmt=’-’, ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False)

Plot x versus y with error deltas in yerr and xerr. Vertical errorbars are plotted if yerr is not
None. Horizontal errorbars are plotted if xerr is not None.

x, y, xerr, and yerr can all be scalars, which plots a single error bar at x, y.

Optional keyword arguments:

xerr/yerr: [scalar | N, Nx1, or 2xN array-like] If a scalar number, len(N) array-like
object, or an Nx1 array-like object, errorbars are drawn +/- value.

If a rank-1, 2xN numpy array, errorbars are drawn at -row1 and +row2

fmt: ‘-‘ The plot format symbol for y. If fmt is None, just plot the errorbars with no
line symbols. This can be useful for creating a bar plot with errorbars.

ecolor: [None | mpl color] a matplotlib color arg which gives the color the errorbar
lines; if None, use the marker color.

elinewidth: scalar the linewidth of the errorbar lines. If None, use the linewidth.

capsize: scalar the size of the error bar caps in points

barsabove: [True | False] if True, will plot the errorbars above the plot symbols. De-
fault is below.

lolims/uplims/xlolims/xuplims: [False | True] These arguments can be used to indi-
cate that a value gives only upper/lower limits. In that case a caret symbol is used
to indicate this. lims-arguments may be of the same type as xerr and yerr.

All other keyword arguments are passed on to the plot command for the markers, so you can add
additional key=value pairs to control the errorbar markers. For example, this code makes big
red squares with thick green edges:

x,y,yerr = rand(3,10)
errorbar(x, y, yerr, marker=’s’,

mfc=’red’, mec=’green’, ms=20, mew=4)

where mfc, mec, ms and mew are aliases for the longer property names, markerfacecolor, mark-
eredgecolor, markersize and markeredgewith.

valid kwargs for the marker properties are

34.1. matplotlib.axes 413

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Return value is a length 3 tuple. The first element is the Line2D instance for the y symbol lines.
The second element is a list of error bar cap lines, the third element is a list of LineCollection
instances for the horizontal and vertical error ranges.

414 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

Example:

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

34.1. matplotlib.axes 415

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.2

0.4

0.6

0.8

1.0

416 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

34.1. matplotlib.axes 417

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

418 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

34.1. matplotlib.axes 419

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

420 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

34.1. matplotlib.axes 421

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

422 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Distance (m)

0.0

0.2

0.4

0.6

0.8

1.0

H
e
ig

h
t

(m
)

Mean and standard error as a function of distance

34.1. matplotlib.axes 423

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
100

101

fill(*args, **kwargs)
call signature:

fill(*args, **kwargs)

Plot filled polygons. args is a variable length argument, allowing for multiple x, y pairs with an
optional color format string; see plot() for details on the argument parsing. For example, to
plot a polygon with vertices at x, y in blue.:

ax.fill(x,y, ’b’)

An arbitrary number of x, y, color groups can be specified:

ax.fill(x1, y1, ’g’, x2, y2, ’r’)

Return value is a list of Patch instances that were added.

The same color strings that plot() supports are supported by the fill format string.

If you would like to fill below a curve, eg. shade a region between 0 and y along x, use
fill_between()

The closed kwarg will close the polygon when True (default).

kwargs control the Polygon properties:

424 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

34.1. matplotlib.axes 425

Matplotlib, Release 0.99.3

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

fill_between(x, y1, y2=0, where=None, **kwargs)
call signature:

fill_between(x, y1, y2=0, where=None, **kwargs)

Create a PolyCollection filling the regions between y1 and y2 where where==True

x an N length np array of the x data

y1 an N length scalar or np array of the y data

y2 an N length scalar or np array of the y data

where if None, default to fill between everywhere. If not None, it is a a N length numpy boolean
array and the fill will only happen over the regions where where==True

kwargs keyword args passed on to the PolyCollection

kwargs control the Polygon properties:

Property Description
alpha float
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance

Continued on next page

426 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

Table 34.9 – continued from previous page
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

34.1. matplotlib.axes 427

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

b
e
tw

e
e
n
 y

1
 a

n
d
 0

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

b
e
tw

e
e
n
 y

1
 a

n
d
 1

0.0 0.5 1.0 1.5 2.0
x

1.5
1.0
0.5
0.0
0.5
1.0
1.5

b
e
tw

e
e
n
 y

1
 a

n
d
 y

2

428 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5
fill between where

0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5
Now regions with y2>1 are masked

34.1. matplotlib.axes 429

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

See Also:

fill_betweenx() for filling between two sets of x-values

fill_betweenx(y, x1, x2=0, where=None, **kwargs)
call signature:

fill_between(y, x1, x2=0, where=None, **kwargs)

Create a PolyCollection filling the regions between x1 and x2 where where==True

y an N length np array of the y data

x1 an N length scalar or np array of the x data

x2 an N length scalar or np array of the x data

where if None, default to fill between everywhere. If not None, it is a a N length numpy boolean
array and the fill will only happen over the regions where where==True

kwargs keyword args passed on to the PolyCollection

kwargs control the Polygon properties:

%(PolyCollection)s

430 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

b
e
tw

e
e
n
 y

1
 a

n
d
 0

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

b
e
tw

e
e
n
 y

1
 a

n
d
 1

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.5
0.0
0.5
1.0
1.5
2.0

b
e
tw

e
e
n
 y

1
 a

n
d
 y

2

34.1. matplotlib.axes 431

Matplotlib, Release 0.99.3

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

2.0
fill between where

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

2.0
Now regions with y2 > 1 are masked

See Also:

fill_between() for filling between two sets of y-values

format_coord(x, y)
return a format string formatting the x, y coord

format_xdata(x)
Return x string formatted. This function will use the attribute self.fmt_xdata if it is callable, else
will fall back on the xaxis major formatter

format_ydata(y)
Return y string formatted. This function will use the fmt_ydata attribute if it is callable, else
will fall back on the yaxis major formatter

frame

get_adjustable()

get_anchor()

get_aspect()

get_autoscale_on()
Get whether autoscaling is applied for both axes on plot commands

432 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

get_autoscalex_on()
Get whether autoscaling for the x-axis is applied on plot commands

get_autoscaley_on()
Get whether autoscaling for the y-axis is applied on plot commands

get_axes_locator()
return axes_locator

get_axis_bgcolor()
Return the axis background color

get_axisbelow()
Get whether axis below is true or not

get_child_artists()
Return a list of artists the axes contains. Deprecated since version 0.98.

get_children()
return a list of child artists

get_cursor_props()
return the cursor propertiess as a (linewidth, color) tuple, where linewidth is a float and color is
an RGBA tuple

get_data_ratio()
Returns the aspect ratio of the raw data.

This method is intended to be overridden by new projection types.

get_data_ratio_log()
Returns the aspect ratio of the raw data in log scale. Will be used when both axis scales are in
log.

get_frame()
Return the axes Rectangle frame

get_frame_on()
Get whether the axes rectangle patch is drawn

get_images()
return a list of Axes images contained by the Axes

get_legend()
Return the legend.Legend instance, or None if no legend is defined

get_legend_handles_labels()
return handles and labels for legend

ax.legend() is equivalent to

h, l = ax.get_legend_handles_labels()
ax.legend(h, l)

get_lines()
Return a list of lines contained by the Axes

34.1. matplotlib.axes 433

Matplotlib, Release 0.99.3

get_navigate()
Get whether the axes responds to navigation commands

get_navigate_mode()
Get the navigation toolbar button status: ‘PAN’, ‘ZOOM’, or None

get_position(original=False)
Return the a copy of the axes rectangle as a Bbox

get_rasterization_zorder()
Get zorder value below which artists will be rasterized

get_renderer_cache()

get_shared_x_axes()
Return a copy of the shared axes Grouper object for x axes

get_shared_y_axes()
Return a copy of the shared axes Grouper object for y axes

get_tightbbox(renderer)
return the tight bounding box of the axes. The dimension of the Bbox in canvas coordinate.

get_title()
Get the title text string.

get_window_extent(*args, **kwargs)
get the axes bounding box in display space; args and kwargs are empty

get_xaxis()
Return the XAxis instance

get_xaxis_text1_transform(pad_points)
Get the transformation used for drawing x-axis labels, which will add the given amount of
padding (in points) between the axes and the label. The x-direction is in data coordinates and
the y-direction is in axis coordinates. Returns a 3-tuple of the form:

(transform, valign, halign)

where valign and halign are requested alignments for the text.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden
by new kinds of projections that may need to place axis elements in different locations.

get_xaxis_text2_transform(pad_points)
Get the transformation used for drawing the secondary x-axis labels, which will add the given
amount of padding (in points) between the axes and the label. The x-direction is in data coordi-
nates and the y-direction is in axis coordinates. Returns a 3-tuple of the form:

(transform, valign, halign)

where valign and halign are requested alignments for the text.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden
by new kinds of projections that may need to place axis elements in different locations.

434 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

get_xaxis_transform(which=’grid’)
Get the transformation used for drawing x-axis labels, ticks and gridlines. The x-direction is in
data coordinates and the y-direction is in axis coordinates.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden
by new kinds of projections that may need to place axis elements in different locations.

get_xbound()
Returns the x-axis numerical bounds where:

lowerBound < upperBound

get_xgridlines()
Get the x grid lines as a list of Line2D instances

get_xlabel()
Get the xlabel text string.

get_xlim()
Get the x-axis range [xmin, xmax]

get_xmajorticklabels()
Get the xtick labels as a list of Text instances

get_xminorticklabels()
Get the xtick labels as a list of Text instances

get_xscale()

get_xticklabels(minor=False)
Get the xtick labels as a list of Text instances

get_xticklines()
Get the xtick lines as a list of Line2D instances

get_xticks(minor=False)
Return the x ticks as a list of locations

get_yaxis()
Return the YAxis instance

get_yaxis_text1_transform(pad_points)
Get the transformation used for drawing y-axis labels, which will add the given amount of
padding (in points) between the axes and the label. The x-direction is in axis coordinates and
the y-direction is in data coordinates. Returns a 3-tuple of the form:

(transform, valign, halign)

where valign and halign are requested alignments for the text.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden
by new kinds of projections that may need to place axis elements in different locations.

get_yaxis_text2_transform(pad_points)
Get the transformation used for drawing the secondary y-axis labels, which will add the given

34.1. matplotlib.axes 435

Matplotlib, Release 0.99.3

amount of padding (in points) between the axes and the label. The x-direction is in axis coordi-
nates and the y-direction is in data coordinates. Returns a 3-tuple of the form:

(transform, valign, halign)

where valign and halign are requested alignments for the text.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden
by new kinds of projections that may need to place axis elements in different locations.

get_yaxis_transform(which=’grid’)
Get the transformation used for drawing y-axis labels, ticks and gridlines. The x-direction is in
axis coordinates and the y-direction is in data coordinates.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden
by new kinds of projections that may need to place axis elements in different locations.

get_ybound()
Return y-axis numerical bounds in the form of lowerBound < upperBound

get_ygridlines()
Get the y grid lines as a list of Line2D instances

get_ylabel()
Get the ylabel text string.

get_ylim()
Get the y-axis range [ymin, ymax]

get_ymajorticklabels()
Get the xtick labels as a list of Text instances

get_yminorticklabels()
Get the xtick labels as a list of Text instances

get_yscale()

get_yticklabels(minor=False)
Get the xtick labels as a list of Text instances

get_yticklines()
Get the ytick lines as a list of Line2D instances

get_yticks(minor=False)
Return the y ticks as a list of locations

grid(b=None, **kwargs)
call signature:

grid(self, b=None, **kwargs)

Set the axes grids on or off; b is a boolean

If b is None and len(kwargs)==0, toggle the grid state. If kwargs are supplied, it is assumed
that you want a grid and b is thus set to True

kawrgs are used to set the grid line properties, eg:

436 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

ax.grid(color=’r’, linestyle=’-’, linewidth=2)

Valid Line2D kwargs are

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

34.1. matplotlib.axes 437

Matplotlib, Release 0.99.3

has_data()
Return True if any artists have been added to axes.

This should not be used to determine whether the dataLim need to be updated, and may not
actually be useful for anything.

hexbin(x, y, C=None, gridsize=100, bins=None, xscale=’linear’, yscale=’linear’, ex-
tent=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0,
linewidths=None, edgecolors=’none’, reduce_C_function=<function mean at
0x8ad38ec>, mincnt=None, marginals=False, **kwargs)

call signature:

hexbin(x, y, C = None, gridsize = 100, bins = None,
xscale = ’linear’, yscale = ’linear’,
cmap=None, norm=None, vmin=None, vmax=None,
alpha=1.0, linewidths=None, edgecolors=’none’
reduce_C_function = np.mean, mincnt=None, marginals=True
**kwargs)

Make a hexagonal binning plot of x versus y, where x, y are 1-D sequences of the same length,
N. If C is None (the default), this is a histogram of the number of occurences of the observations
at (x[i],y[i]).

If C is specified, it specifies values at the coordinate (x[i],y[i]). These values are accumulated
for each hexagonal bin and then reduced according to reduce_C_function, which defaults to
numpy’s mean function (np.mean). (If C is specified, it must also be a 1-D sequence of the same
length as x and y.)

x, y and/or C may be masked arrays, in which case only unmasked points will be plotted.

Optional keyword arguments:

gridsize: [100 | integer] The number of hexagons in the x-direction, default is 100.
The corresponding number of hexagons in the y-direction is chosen such that the
hexagons are approximately regular. Alternatively, gridsize can be a tuple with two
elements specifying the number of hexagons in the x-direction and the y-direction.

bins: [None | ‘log’ | integer | sequence] If None, no binning is applied; the color of
each hexagon directly corresponds to its count value.

If ‘log’, use a logarithmic scale for the color map. Internally, log10(i + 1) is used
to determine the hexagon color.

If an integer, divide the counts in the specified number of bins, and color the
hexagons accordingly.

If a sequence of values, the values of the lower bound of the bins to be used.

xscale: [‘linear’ | ‘log’] Use a linear or log10 scale on the horizontal axis.

scale: [‘linear’ | ‘log’] Use a linear or log10 scale on the vertical axis.

mincnt: None | a positive integer If not None, only display cells with more than
mincnt number of points in the cell

438 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

marginals: True|False if marginals is True, plot the marginal density as colormapped
rectagles along the bottom of the x-axis and left of the y-axis

extent: [None | scalars (left, right, bottom, top)] The limits of the bins. The default
assigns the limits based on gridsize, x, y, xscale and yscale.

Other keyword arguments controlling color mapping and normalization arguments:

cmap: [None | Colormap] a matplotlib.cm.Colormap instance. If None, de-
faults to rc image.cmap.

norm: [None | Normalize] matplotlib.colors.Normalize instance is used to
scale luminance data to 0,1.

vmin/vmax: scalar vmin and vmax are used in conjunction with norm to normalize
luminance data. If either are None, the min and max of the color array C is used.
Note if you pass a norm instance, your settings for vmin and vmax will be ignored.

alpha: scalar the alpha value for the patches

linewidths: [None | scalar] If None, defaults to rc lines.linewidth. Note that this is
a tuple, and if you set the linewidths argument you must set it as a sequence of
floats, as required by RegularPolyCollection.

Other keyword arguments controlling the Collection properties:

edgecolors: [None | mpl color | color sequence] If ‘none’, draws the edges in the
same color as the fill color. This is the default, as it avoids unsightly unpainted
pixels between the hexagons.

If None, draws the outlines in the default color.

If a matplotlib color arg or sequence of rgba tuples, draws the outlines in the spec-
ified color.

Here are the standard descriptions of all the Collection kwargs:

Property Description
alpha float
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples

Continued on next page

34.1. matplotlib.axes 439

Matplotlib, Release 0.99.3

Table 34.11 – continued from previous page
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

The return value is a PolyCollection instance; use get_array() on this PolyCollection
to get the counts in each hexagon.. If marginals is True, horizontal bar and vertical bar (both
PolyCollections) will be attached to the return collection as attributes hbar and vbar

Example:

440 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

4 3 2 10 1 2 3 4

10

0

10

20

Hexagon binning

0

20

40

60

80

100

120

140

co
u
n
ts

4 3 2 10 1 2 3 4

10

0

10

20

With a log color scale

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

lo
g
1
0

(N
)

hist(x, bins=10, range=None, normed=False, weights=None, cumulative=False, bot-
tom=None, histtype=’bar’, align=’mid’, orientation=’vertical’, rwidth=None,
log=False, **kwargs)

call signature:

hist(x, bins=10, range=None, normed=False, cumulative=False,
bottom=None, histtype=’bar’, align=’mid’,
orientation=’vertical’, rwidth=None, log=False, **kwargs)

Compute and draw the histogram of x. The return value is a tuple (n, bins, patches) or ([n0, n1,
...], bins, [patches0, patches1,...]) if the input contains multiple data.

Keyword arguments:

bins: Either an integer number of bins or a sequence giving the bins. x are the data
to be binned. x can be an array, a 2D array with multiple data in its columns, or
a list of arrays with data of different length. Note, if bins is an integer input argu-
ment=numbins, bins + 1 bin edges will be returned, compatible with the semantics
of numpy.histogram() with the new = True argument. Unequally spaced bins
are supported if bins is a sequence.

range: The lower and upper range of the bins. Lower and upper outliers are ignored. If
not provided, range is (x.min(), x.max()). Range has no effect if bins is a sequence.

If bins is a sequence or range is specified, autoscaling is set off (autoscale_on is
set to False) and the xaxis limits are set to encompass the full specified bin range.

34.1. matplotlib.axes 441

Matplotlib, Release 0.99.3

normed: If True, the first element of the return tuple will be the counts normalized
to form a probability density, i.e., n/(len(x)*dbin). In a probability density,
the integral of the histogram should be 1; you can verify that with a trapezoidal
integration of the probability density function:

pdf, bins, patches = ax.hist(...)
print np.sum(pdf * np.diff(bins))

weights An array of weights, of the same shape as x. Each value in x only contributes
its associated weight towards the bin count (instead of 1). If normed is True, the
weights are normalized, so that the integral of the density over the range remains
1.

cumulative: If True, then a histogram is computed where each bin gives the counts
in that bin plus all bins for smaller values. The last bin gives the total number of
datapoints. If normed is also True then the histogram is normalized such that the
last bin equals 1. If cumulative evaluates to less than 0 (e.g. -1), the direction of
accumulation is reversed. In this case, if normed is also True, then the histogram
is normalized such that the first bin equals 1.

histtype: [‘bar’ | ‘barstacked’ | ‘step’ | ‘stepfilled’] The type of histogram to draw.

• ‘bar’ is a traditional bar-type histogram. If multiple data are given the bars are
aranged side by side.

• ‘barstacked’ is a bar-type histogram where multiple data are stacked on top of
each other.

• ‘step’ generates a lineplot that is by default unfilled.

• ‘stepfilled’ generates a lineplot that is by default filled.

align: [’left’ | ‘mid’ | ‘right’] Controls how the histogram is plotted.

• ‘left’: bars are centered on the left bin edges.

• ‘mid’: bars are centered between the bin edges.

• ‘right’: bars are centered on the right bin edges.

orientation: [‘horizontal’ | ‘vertical’] If ‘horizontal’, barh() will be used for bar-
type histograms and the bottom kwarg will be the left edges.

rwidth: The relative width of the bars as a fraction of the bin width. If None, automat-
ically compute the width. Ignored if histtype = ‘step’ or ‘stepfilled’.

log: If True, the histogram axis will be set to a log scale. If log is True and x is a 1D
array, empty bins will be filtered out and only the non-empty (n, bins, patches) will
be returned.

kwargs are used to update the properties of the hist Rectangle instances:

442 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

You can use labels for your histogram, and only the first Rectangle gets the label (the others
get the magic string ‘_nolegend_’. This will make the histograms work in the intuitive way for
bar charts:

ax.hist(10+2*np.random.randn(1000), label=’men’)
ax.hist(12+3*np.random.randn(1000), label=’women’, alpha=0.5)
ax.legend()

label can also be a sequence of strings. If multiple data is provided in x, the labels are asigned
sequentially to the histograms.

Example:

34.1. matplotlib.axes 443

Matplotlib, Release 0.99.3

40 60 80 100 120 140 160
Smarts

0.000

0.005

0.010

0.015

0.020

0.025

0.030

P
ro

b
a
b
ili

ty

Histogram of IQ : µ=100, σ=15

hlines(y, xmin, xmax, colors=’k’, linestyles=’solid’, label=’‘, **kwargs)
call signature:

hlines(y, xmin, xmax, colors=’k’, linestyles=’solid’, **kwargs)

Plot horizontal lines at each y from xmin to xmax.

Returns the LineCollection that was added.

Required arguments:

y: a 1-D numpy array or iterable.

xmin and xmax: can be scalars or len(x) numpy arrays. If they are scalars, then the
respective values are constant, else the widths of the lines are determined by xmin
and xmax.

Optional keyword arguments:

colors: a line collections color argument, either a single color or a len(y) list of colors

linestyles: [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

Example:

444 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (s)

0

1

2

3

4

5
Comparison of model with data

hold(b=None)
call signature:

hold(b=None)

Set the hold state. If hold is None (default), toggle the hold state. Else set the hold state to
boolean value b.

Examples:

•toggle hold: >>> hold()

•turn hold on: >>> hold(True)

•turn hold off >>> hold(False)

When hold is True, subsequent plot commands will be added to the current axes. When hold is
False, the current axes and figure will be cleared on the next plot command

imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=1.0,
vmin=None, vmax=None, origin=None, extent=None, shape=None, filternorm=1,
filterrad=4.0, imlim=None, resample=None, url=None, **kwargs)

call signature:

imshow(X, cmap=None, norm=None, aspect=None, interpolation=None,
alpha=1.0, vmin=None, vmax=None, origin=None, extent=None,
**kwargs)

34.1. matplotlib.axes 445

Matplotlib, Release 0.99.3

Display the image in X to current axes. X may be a float array, a uint8 array or a PIL image. If
X is an array, X can have the following shapes:

•MxN – luminance (grayscale, float array only)

•MxNx3 – RGB (float or uint8 array)

•MxNx4 – RGBA (float or uint8 array)

The value for each component of MxNx3 and MxNx4 float arrays should be in the range 0.0 to
1.0; MxN float arrays may be normalised.

An matplotlib.image.AxesImage instance is returned.

Keyword arguments:

cmap: [None | Colormap] A matplotlib.cm.Colormap instance, eg. cm.jet. If
None, default to rc image.cmap value.

cmap is ignored when X has RGB(A) information

aspect: [None | ‘auto’ | ‘equal’ | scalar] If ‘auto’, changes the image aspect ratio to
match that of the axes

If ‘equal’, and extent is None, changes the axes aspect ratio to match that of the
image. If extent is not None, the axes aspect ratio is changed to match that of the
extent.

If None, default to rc image.aspect value.

interpolation:

Acceptable values are None, ‘nearest’, ‘bilinear’, ‘bicubic’, ‘spline16’,
‘spline36’, ‘hanning’, ‘hamming’, ‘hermite’, ‘kaiser’, ‘quadric’, ‘catrom’,
‘gaussian’, ‘bessel’, ‘mitchell’, ‘sinc’, ‘lanczos’,

If interpolation is None, default to rc image.interpolation. See also the
filternorm and filterrad parameters

norm: [None | Normalize] An matplotlib.colors.Normalize instance; if
None, default is normalization(). This scales luminance -> 0-1

norm is only used for an MxN float array.

vmin/vmax: [None | scalar] Used to scale a luminance image to 0-1. If either is
None, the min and max of the luminance values will be used. Note if norm is not
None, the settings for vmin and vmax will be ignored.

alpha: scalar The alpha blending value, between 0 (transparent) and 1 (opaque)

origin: [None | ‘upper’ | ‘lower’] Place the [0,0] index of the array in the upper left
or lower left corner of the axes. If None, default to rc image.origin.

extent: [None | scalars (left, right, bottom, top)] Data limits for the axes. The de-
fault assigns zero-based row, column indices to the x, y centers of the pixels.

shape: [None | scalars (columns, rows)] For raw buffer images

446 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

filternorm: A parameter for the antigrain image resize filter. From the antigrain doc-
umentation, if filternorm = 1, the filter normalizes integer values and corrects the
rounding errors. It doesn’t do anything with the source floating point values, it
corrects only integers according to the rule of 1.0 which means that any sum of
pixel weights must be equal to 1.0. So, the filter function must produce a graph of
the proper shape.

filterrad: The filter radius for filters that have a radius parameter, i.e. when interpola-
tion is one of: ‘sinc’, ‘lanczos’ or ‘blackman’

Additional kwargs are Artist properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
contains a callable function
figure a matplotlib.figure.Figure instance
gid an id string
label any string
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

34.1. matplotlib.axes 447

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

in_axes(mouseevent)
return True if the given mouseevent (in display coords) is in the Axes

invert_xaxis()
Invert the x-axis.

invert_yaxis()
Invert the y-axis.

ishold()
return the HOLD status of the axes

legend(*args, **kwargs)
call signature:

legend(*args, **kwargs)

Place a legend on the current axes at location loc. Labels are a sequence of strings and loc can
be a string or an integer specifying the legend location.

To make a legend with existing lines:

legend()

legend() by itself will try and build a legend using the label property of the
lines/patches/collections. You can set the label of a line by doing:

448 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

plot(x, y, label=’my data’)

or:

line.set_label(’my data’).

If label is set to ‘_nolegend_’, the item will not be shown in legend.

To automatically generate the legend from labels:

legend((’label1’, ’label2’, ’label3’))

To make a legend for a list of lines and labels:

legend((line1, line2, line3), (’label1’, ’label2’, ’label3’))

To make a legend at a given location, using a location argument:

legend((’label1’, ’label2’, ’label3’), loc=’upper left’)

or:

legend((line1, line2, line3), (’label1’, ’label2’, ’label3’), loc=2)

The location codes are

Location String Location Code
‘best’ 0
‘upper right’ 1
‘upper left’ 2
‘lower left’ 3
‘lower right’ 4
‘right’ 5
‘center left’ 6
‘center right’ 7
‘lower center’ 8
‘upper center’ 9
‘center’ 10

Users can specify any arbitrary location for the legend using the bbox_to_anchor keyword ar-
gument. bbox_to_anchor can be an instance of BboxBase(or its derivatives) or a tuple of 2 or 4
floats. For example,

loc = ‘upper right’, bbox_to_anchor = (0.5, 0.5)

will place the legend so that the upper right corner of the legend at the center of the axes.

The legend location can be specified in other coordinate, by using the bbox_transform keyword.

The loc itslef can be a 2-tuple giving x,y of the lower-left corner of the legend in axes coords
(bbox_to_anchor is ignored).

Keyword arguments:

34.1. matplotlib.axes 449

Matplotlib, Release 0.99.3

prop: [None | FontProperties | dict] A matplotlib.font_manager.FontProperties
instance. If prop is a dictionary, a new instance will be created with prop. If None,
use rc settings.

numpoints: integer The number of points in the legend for line

scatterpoints: integer The number of points in the legend for scatter plot

scatteroffsets: list of floats a list of yoffsets for scatter symbols in legend

markerscale: [None | scalar] The relative size of legend markers vs. original. If
None, use rc settings.

fancybox: [None | False | True] if True, draw a frame with a round fancybox. If
None, use rc

shadow: [None | False | True] If True, draw a shadow behind legend. If None, use
rc settings.

ncol [integer] number of columns. default is 1

mode [[“expand” | None]] if mode is “expand”, the legend will be horizontally ex-
panded to fill the axes area (or bbox_to_anchor)

bbox_to_anchor [an instance of BboxBase or a tuple of 2 or 4 floats] the bbox that the
legend will be anchored.

bbox_transform [[an instance of Transform | None]] the transform for the bbox.
transAxes if None.

title [string] the legend title

Padding and spacing between various elements use following keywords parameters. The dimen-
sions of these values are given as a fraction of the fontsize. Values from rcParams will be used
if None.

Keyword Description
borderpad the fractional whitespace inside the legend border
labelspacing the vertical space between the legend entries
handlelength the length of the legend handles
handletextpad the pad between the legend handle and text
borderaxespad the pad between the axes and legend border
columnspacing the spacing between columns

Example:

450 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

Model complexity --->

M
e
ss

a
g
e
 l
e
n
g
th

 -
--

>

Minimum Message Length

Model length

Data length

Total message length

Also see Legend guide.

loglog(*args, **kwargs)
call signature:

loglog(*args, **kwargs)

Make a plot with log scaling on the x and y axis.

loglog() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_xscale() / matplotlib.axes.Axes.set_yscale().

Notable keyword arguments:

basex/basey: scalar > 1 base of the x/y logarithm

subsx/subsy: [None | sequence] the location of the minor x/y ticks;
None defaults to autosubs, which depend on the number of
decades in the plot; see matplotlib.axes.Axes.set_xscale() /

matplotlib.axes.Axes.set_yscale() for details

nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be masked as
invalid, or clipped to a very small positive number

The remaining valid kwargs are Line2D properties:

34.1. matplotlib.axes 451

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

452 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

0 5 10 15 20
10-2

10-1

100
semilogy

10-2 10-1 100 101 102
1.0

0.5

0.0

0.5

1.0
semilogx

2-72-62-52-42-32-22-1202122232425100

101

102
loglog base 4 on x

10-1 100 101 102 10310-1
100
101
102
103
104
105

Errorbars go negative

matshow(Z, **kwargs)
Plot a matrix or array as an image.

The matrix will be shown the way it would be printed, with the first row at the top. Row and
column numbering is zero-based.

Argument: Z anything that can be interpreted as a 2-D array

kwargs all are passed to imshow(). matshow() sets defaults for extent, origin, interpolation,
and aspect; use care in overriding the extent and origin kwargs, because they interact. (Also, if
you want to change them, you probably should be using imshow directly in your own version of
matshow.)

Returns: an matplotlib.image.AxesImage instance.

minorticks_off()
Remove minor ticks from the axes.

minorticks_on()
Add autoscaling minor ticks to the axes.

pcolor(*args, **kwargs)
call signatures:

pcolor(C, **kwargs)
pcolor(X, Y, C, **kwargs)

34.1. matplotlib.axes 453

Matplotlib, Release 0.99.3

Create a pseudocolor plot of a 2-D array.

C is the array of color values.

X and Y, if given, specify the (x, y) coordinates of the colored quadrilaterals; the quadrilateral
for C[i,j] has corners at:

(X[i, j], Y[i, j]),
(X[i, j+1], Y[i, j+1]),
(X[i+1, j], Y[i+1, j]),
(X[i+1, j+1], Y[i+1, j+1]).

Ideally the dimensions of X and Y should be one greater than those of C; if the dimensions are
the same, then the last row and column of C will be ignored.

Note that the the column index corresponds to the x-coordinate, and the row index corresponds
to y; for details, see the Grid Orientation section below.

If either or both of X and Y are 1-D arrays or column vectors, they will be expanded as needed
into the appropriate 2-D arrays, making a rectangular grid.

X, Y and C may be masked arrays. If either C[i, j], or one of the vertices surrounding C[i,j] (X
or Y at [i, j], [i+1, j], [i, j+1],[i+1, j+1]) is masked, nothing is plotted.

Keyword arguments:

cmap: [None | Colormap] A matplotlib.cm.Colormap instance. If None, use rc
settings.

norm: [None | Normalize] An matplotlib.colors.Normalize instance is used
to scale luminance data to 0,1. If None, defaults to normalize().

vmin/vmax: [None | scalar] vmin and vmax are used in conjunction with norm to
normalize luminance data. If either are None, the min and max of the color array
C is used. If you pass a norm instance, vmin and vmax will be ignored.

shading: [‘flat’ | ‘faceted’] If ‘faceted’, a black grid is drawn around each rectangle;
if ‘flat’, edges are not drawn. Default is ‘flat’, contrary to Matlab(TM).

This kwarg is deprecated; please use ‘edgecolors’ instead:

• shading=’flat’ – edgecolors=’None’

• shading=’faceted – edgecolors=’k’

edgecolors: [None | ‘None’ | color | color sequence] If None, the rc setting is used
by default.

If ‘None’, edges will not be visible.

An mpl color or sequence of colors will set the edge color

alpha: 0 <= scalar <= 1 the alpha blending value

Return value is a matplotlib.collection.Collection instance. The grid orientation fol-
lows the Matlab(TM) convention: an array C with shape (nrows, ncolumns) is plotted with the
column number as X and the row number as Y, increasing up; hence it is plotted the way the
array would be printed, except that the Y axis is reversed. That is, C is taken as C*(*y, x).

454 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

Similarly for meshgrid():

x = np.arange(5)
y = np.arange(3)
X, Y = meshgrid(x,y)

is equivalent to:

X = array([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]])

Y = array([[0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [2, 2, 2, 2, 2]])

so if you have:

C = rand(len(x), len(y))

then you need:

pcolor(X, Y, C.T)

or:

pcolor(C.T)

Matlab pcolor() always discards the last row and column of C, but matplotlib displays the last
row and column if X and Y are not specified, or if X and Y have one more row and column than
C.

kwargs can be used to control the PolyCollection properties:

Property Description
alpha float
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]

Continued on next page

34.1. matplotlib.axes 455

Matplotlib, Release 0.99.3

Table 34.13 – continued from previous page
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

pcolorfast(*args, **kwargs)
pseudocolor plot of a 2-D array

Experimental; this is a version of pcolor that does not draw lines, that provides the fastest possi-
ble rendering with the Agg backend, and that can handle any quadrilateral grid.

Call signatures:

pcolor(C, **kwargs)
pcolor(xr, yr, C, **kwargs)
pcolor(x, y, C, **kwargs)
pcolor(X, Y, C, **kwargs)

C is the 2D array of color values corresponding to quadrilateral cells. Let (nr, nc) be its shape.
C may be a masked array.

pcolor(C, **kwargs) is equivalent to pcolor([0,nc], [0,nr], C, **kwargs)

xr, yr specify the ranges of x and y corresponding to the rectangular region bounding C. If:

xr = [x0, x1]

and:

yr = [y0,y1]

then x goes from x0 to x1 as the second index of C goes from 0 to nc, etc. (x0, y0) is the
outermost corner of cell (0,0), and (x1, y1) is the outermost corner of cell (nr-1, nc-1). All cells
are rectangles of the same size. This is the fastest version.

x, y are 1D arrays of length nc +1 and nr +1, respectively, giving the x and y boundaries of the
cells. Hence the cells are rectangular but the grid may be nonuniform. The speed is intermediate.
(The grid is checked, and if found to be uniform the fast version is used.)

X and Y are 2D arrays with shape (nr +1, nc +1) that specify the (x,y) coordinates of the
corners of the colored quadrilaterals; the quadrilateral for C[i,j] has corners at (X[i,j],Y[i,j]),

456 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

(X[i,j+1],Y[i,j+1]), (X[i+1,j],Y[i+1,j]), (X[i+1,j+1],Y[i+1,j+1]). The cells need not be rect-
angular. This is the most general, but the slowest to render. It may produce faster and more
compact output using ps, pdf, and svg backends, however.

Note that the the column index corresponds to the x-coordinate, and the row index corresponds
to y; for details, see the “Grid Orientation” section below.

Optional keyword arguments:

cmap: [None | Colormap] A cm Colormap instance from cm. If None, use rc set-
tings.

norm: [None | Normalize] An mcolors.Normalize instance is used to scale lumi-
nance data to 0,1. If None, defaults to normalize()

vmin/vmax: [None | scalar] vmin and vmax are used in conjunction with norm to
normalize luminance data. If either are None, the min and max of the color array
C is used. If you pass a norm instance, vmin and vmax will be None.

alpha: 0 <= scalar <= 1 the alpha blending value

Return value is an image if a regular or rectangular grid is specified, and a QuadMesh collection
in the general quadrilateral case.

pcolormesh(*args, **kwargs)
call signatures:

pcolormesh(C)
pcolormesh(X, Y, C)
pcolormesh(C, **kwargs)

C may be a masked array, but X and Y may not. Masked array support is implemented via cmap
and norm; in contrast, pcolor() simply does not draw quadrilaterals with masked colors or
vertices.

Keyword arguments:

cmap: [None | Colormap] A matplotlib.cm.Colormap instance. If None, use rc
settings.

norm: [None | Normalize] A matplotlib.colors.Normalize instance is used to
scale luminance data to 0,1. If None, defaults to normalize().

vmin/vmax: [None | scalar] vmin and vmax are used in conjunction with norm to
normalize luminance data. If either are None, the min and max of the color array
C is used. If you pass a norm instance, vmin and vmax will be ignored.

shading: [‘flat’ | ‘faceted’] If ‘faceted’, a black grid is drawn around each rectangle;
if ‘flat’, edges are not drawn. Default is ‘flat’, contrary to Matlab(TM).

This kwarg is deprecated; please use ‘edgecolors’ instead:

• shading=’flat’ – edgecolors=’None’

• shading=’faceted – edgecolors=’k’

34.1. matplotlib.axes 457

Matplotlib, Release 0.99.3

edgecolors: [None | ‘None’ | color | color sequence] If None, the rc setting is used
by default.

If ‘None’, edges will not be visible.

An mpl color or sequence of colors will set the edge color

alpha: 0 <= scalar <= 1 the alpha blending value

Return value is a matplotlib.collection.QuadMesh object.

kwargs can be used to control the matplotlib.collections.QuadMesh properties:

Property Description
alpha float
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

See Also:

458 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

pcolor() For an explanation of the grid orientation and the expansion of 1-D X and/or Y to
2-D arrays.

pick(*args)
call signature:

pick(mouseevent)

each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set

pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6,
shadow=False, labeldistance=1.1)
call signature:

pie(x, explode=None, labels=None,
colors=(’b’, ’g’, ’r’, ’c’, ’m’, ’y’, ’k’, ’w’),
autopct=None, pctdistance=0.6, labeldistance=1.1, shadow=False)

Make a pie chart of array x. The fractional area of each wedge is given by x/sum(x). If sum(x)
<= 1, then the values of x give the fractional area directly and the array will not be normalized.

Keyword arguments:

explode: [None | len(x) sequence] If not None, is a len(x) array which specifies the
fraction of the radius with which to offset each wedge.

colors: [None | color sequence] A sequence of matplotlib color args through which
the pie chart will cycle.

labels: [None | len(x) sequence of strings] A sequence of strings providing the la-
bels for each wedge

autopct: [None | format string | format function] If not None, is a string or func-
tion used to label the wedges with their numeric value. The label will be placed
inside the wedge. If it is a format string, the label will be fmt%pct. If it is a
function, it will be called.

pctdistance: scalar The ratio between the center of each pie slice and the start of the
text generated by autopct. Ignored if autopct is None; default is 0.6.

labeldistance: scalar The radial distance at which the pie labels are drawn

shadow: [False | True] Draw a shadow beneath the pie.

The pie chart will probably look best if the figure and axes are square. Eg.:

figure(figsize=(8,8))
ax = axes([0.1, 0.1, 0.8, 0.8])

Return value: If autopct is None, return the tuple (patches, texts):

• patches is a sequence of matplotlib.patches.Wedge instances

• texts is a list of the label matplotlib.text.Text instances.

34.1. matplotlib.axes 459

Matplotlib, Release 0.99.3

If autopct is not None, return the tuple (patches, texts, autotexts), where patches and texts
are as above, and autotexts is a list of Text instances for the numeric labels.

plot(*args, **kwargs)
Plot lines and/or markers to the Axes. args is a variable length argument, allowing for multiple
x, y pairs with an optional format string. For example, each of the following is legal:

plot(x, y) # plot x and y using default line style and color
plot(x, y, ’bo’) # plot x and y using blue circle markers
plot(y) # plot y using x as index array 0..N-1
plot(y, ’r+’) # ditto, but with red plusses

If x and/or y is 2-dimensional, then the corresponding columns will be plotted.

An arbitrary number of x, y, fmt groups can be specified, as in:

a.plot(x1, y1, ’g^’, x2, y2, ’g-’)

Return value is a list of lines that were added.

The following format string characters are accepted to control the line style or marker:

character description
’-’ solid line style
’--’ dashed line style
’-.’ dash-dot line style
’:’ dotted line style
’.’ point marker
’,’ pixel marker
’o’ circle marker
’v’ triangle_down marker
’^’ triangle_up marker
’<’ triangle_left marker
’>’ triangle_right marker
’1’ tri_down marker
’2’ tri_up marker
’3’ tri_left marker
’4’ tri_right marker
’s’ square marker
’p’ pentagon marker
’*’ star marker
’h’ hexagon1 marker
’H’ hexagon2 marker
’+’ plus marker
’x’ x marker
’D’ diamond marker
’d’ thin_diamond marker
’|’ vline marker
’_’ hline marker

The following color abbreviations are supported:

460 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

character color
‘b’ blue
‘g’ green
‘r’ red
‘c’ cyan
‘m’ magenta
‘y’ yellow
‘k’ black
‘w’ white

In addition, you can specify colors in many weird and wonderful ways, including full names
(’green’), hex strings (’#008000’), RGB or RGBA tuples ((0,1,0,1)) or grayscale intensi-
ties as a string (’0.8’). Of these, the string specifications can be used in place of a fmt group,
but the tuple forms can be used only as kwargs.

Line styles and colors are combined in a single format string, as in ’bo’ for blue circles.

The kwargs can be used to set line properties (any property that has a set_* method). You can
use this to set a line label (for auto legends), linewidth, anitialising, marker face color, etc. Here
is an example:

plot([1,2,3], [1,2,3], ’go-’, label=’line 1’, linewidth=2)
plot([1,2,3], [1,4,9], ’rs’, label=’line 2’)
axis([0, 4, 0, 10])
legend()

If you make multiple lines with one plot command, the kwargs apply to all those lines, e.g.:

plot(x1, y1, x2, y2, antialised=False)

Neither line will be antialiased.

You do not need to use format strings, which are just abbreviations. All of the line properties
can be controlled by keyword arguments. For example, you can set the color, marker, linestyle,
and markercolor with:

plot(x, y, color=’green’, linestyle=’dashed’, marker=’o’,
markerfacecolor=’blue’, markersize=12). See
:class:‘~matplotlib.lines.Line2D‘ for details.

The kwargs are Line2D properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color

Continued on next page

34.1. matplotlib.axes 461

Matplotlib, Release 0.99.3

Table 34.15 – continued from previous page
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

kwargs scalex and scaley, if defined, are passed on to autoscale_view() to determine whether
the x and y axes are autoscaled; the default is True.

plot_date(x, y, fmt=’bo’, tz=None, xdate=True, ydate=False, **kwargs)
call signature:

plot_date(x, y, fmt=’bo’, tz=None, xdate=True, ydate=False, **kwargs)

Similar to the plot() command, except the x or y (or both) data is considered to be dates, and
the axis is labeled accordingly.

x and/or y can be a sequence of dates represented as float days since 0001-01-01 UTC.

Keyword arguments:

462 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

fmt: string The plot format string.

tz: [None | timezone string] The time zone to use in labeling dates. If None, defaults
to rc value.

xdate: [True | False] If True, the x-axis will be labeled with dates.

ydate: [False | True] If True, the y-axis will be labeled with dates.

Note if you are using custom date tickers and formatters, it may be necessary to set
the formatters/locators after the call to plot_date() since plot_date() will set the de-
fault tick locator to matplotlib.dates.AutoDateLocator (if the tick locator is not al-
ready set to a matplotlib.dates.DateLocator instance) and the default tick formatter
to matplotlib.dates.AutoDateFormatter (if the tick formatter is not already set to a
matplotlib.dates.DateFormatter instance).

Valid kwargs are Line2D properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]

Continued on next page

34.1. matplotlib.axes 463

Matplotlib, Release 0.99.3

Table 34.16 – continued from previous page
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See Also:

dates for helper functions

date2num(), num2date() and drange()

for help on creating the required floating point dates.

psd(x, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x921317c>,
window=<function window_hanning at 0x9213064>, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)
call signature:

psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)

The power spectral density by Welch’s average periodogram method. The vector x is divided
into NFFT length segments. Each segment is detrended by function detrend and windowed by
function window. noverlap gives the length of the overlap between segments. The |fft(i)|2 of
each segment i are averaged to compute Pxx, with a scaling to correct for power loss due to
windowing. Fs is the sampling frequency.

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be
even; a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in matlab, where the detrend parameter is a
vector, in matplotlib is it a function. The pylabmodule defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function
as well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),

464 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

numpy.blackman(), numpy.hamming(), numpy.bartlett(),
scipy.signal(), scipy.signal.get_window(), etc. The default is
window_hanning(). If a function is passed as the argument, it must take a data
segment as an argument and return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value
is 0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the min-
imum distance between resolvable peaks), this can give more points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to re-
turn. Default gives the default behavior, which returns one-sided for real data and
both for complex data. ‘onesided’ forces the return of a one-sided PSD, while
‘twosided’ forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be
scaled by the scaling frequency, which gives density in units of Hz^-1. This al-
lows for integration over the returned frequency values. The default is True for
MatLab compatibility.

Fc: integer The center frequency of x (defaults to 0), which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered
and downsampled to baseband.

Returns the tuple (Pxx, freqs).

For plotting, the power is plotted as 10 log10(Pxx) for decibels, though Pxx itself is returned.

References: Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John
Wiley & Sons (1986)

kwargs control the Line2D properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points

Continued on next page

34.1. matplotlib.axes 465

Matplotlib, Release 0.99.3

Table 34.17 – continued from previous page
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

466 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

0 2 4 6 8 10
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

0 10 20 30 40 50
Frequency

90
80
70
60
50
40
30
20
10

P
o
w

e
r

S
p
e
ct

ra
l
D

e
n
si

ty
 (

d
B

/H
z)

quiver(*args, **kw)
Plot a 2-D field of arrows.

call signatures:

quiver(U, V, **kw)
quiver(U, V, C, **kw)
quiver(X, Y, U, V, **kw)
quiver(X, Y, U, V, C, **kw)

Arguments:

X, Y:

The x and y coordinates of the arrow locations (default is tail of arrow; see
pivot kwarg)

U, V:

give the x and y components of the arrow vectors

C: an optional array used to map colors to the arrows

All arguments may be 1-D or 2-D arrays or sequences. If X and Y are absent, they will be
generated as a uniform grid. If U and V are 2-D arrays but X and Y are 1-D, and if len(X)

34.1. matplotlib.axes 467

Matplotlib, Release 0.99.3

and len(Y) match the column and row dimensions of U, then X and Y will be expanded with
numpy.meshgrid().

U, V, C may be masked arrays, but masked X, Y are not supported at present.

Keyword arguments:

units: [’width’ | ‘height’ | ‘dots’ | ‘inches’ | ‘x’ | ‘y’]

arrow units; the arrow dimensions except for length are in multiples of this
unit.

• ‘width’ or ‘height’: the width or height of the axes

• ‘dots’ or ‘inches’: pixels or inches, based on the figure dpi

• ‘x’ or ‘y’: X or Y data units

The arrows scale differently depending on the units. For ‘x’ or ‘y’, the arrows
get larger as one zooms in; for other units, the arrow size is independent of
the zoom state. For ‘width or ‘height’, the arrow size increases with the width
and height of the axes, respectively, when the the window is resized; for ‘dots’
or ‘inches’, resizing does not change the arrows.

angles: [’uv’ | ‘xy’ | array] With the default ‘uv’, the arrow aspect ratio is 1, so
that if U*==*V the angle of the arrow on the plot is 45 degrees CCW from
the x-axis. With ‘xy’, the arrow points from (x,y) to (x+u, y+v). Alternatively,
arbitrary angles may be specified as an array of values in degrees, CCW from
the x-axis.

scale: [None | float] data units per arrow unit, e.g. m/s per plot width; a smaller scale
parameter makes the arrow longer. If None, a simple autoscaling algorithm is used,
based on the average vector length and the number of vectors.

width: shaft width in arrow units; default depends on choice of units, above, and num-
ber of vectors; a typical starting value is about 0.005 times the width of the plot.

headwidth: scalar head width as multiple of shaft width, default is 3

headlength: scalar head length as multiple of shaft width, default is 5

headaxislength: scalar head length at shaft intersection, default is 4.5

minshaft: scalar length below which arrow scales, in units of head length. Do not set
this to less than 1, or small arrows will look terrible! Default is 1

minlength: scalar minimum length as a multiple of shaft width; if an arrow length is
less than this, plot a dot (hexagon) of this diameter instead. Default is 1.

pivot: [‘tail’ | ‘middle’ | ‘tip’] The part of the arrow that is at the grid point; the
arrow rotates about this point, hence the name pivot.

color: [color | color sequence] This is a synonym for the PolyCollection face-
color kwarg. If C has been set, color has no effect.

468 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

The defaults give a slightly swept-back arrow; to make the head a triangle, make headax-
islength the same as headlength. To make the arrow more pointed, reduce headwidth or increase
headlength and headaxislength. To make the head smaller relative to the shaft, scale down all
the head parameters. You will probably do best to leave minshaft alone.

linewidths and edgecolors can be used to customize the arrow outlines. Additional
PolyCollection keyword arguments:

Property Description
alpha float
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

quiverkey(*args, **kw)
Add a key to a quiver plot.

call signature:

34.1. matplotlib.axes 469

Matplotlib, Release 0.99.3

quiverkey(Q, X, Y, U, label, **kw)

Arguments:

Q: The Quiver instance returned by a call to quiver.

X, Y: The location of the key; additional explanation follows.

U: The length of the key

label: a string with the length and units of the key

Keyword arguments:

coordinates = [‘axes’ | ‘figure’ | ‘data’ | ‘inches’] Coordinate system and units for
X, Y: ‘axes’ and ‘figure’ are normalized coordinate systems with 0,0 in the lower
left and 1,1 in the upper right; ‘data’ are the axes data coordinates (used for the
locations of the vectors in the quiver plot itself); ‘inches’ is position in the figure
in inches, with 0,0 at the lower left corner.

color: overrides face and edge colors from Q.

labelpos = [‘N’ | ‘S’ | ‘E’ | ‘W’] Position the label above, below, to the right, to the
left of the arrow, respectively.

labelsep: Distance in inches between the arrow and the label. Default is 0.1

labelcolor: defaults to default Text color.

fontproperties: A dictionary with keyword arguments accepted by the
FontProperties initializer: family, style, variant, size, weight

Any additional keyword arguments are used to override vector properties taken from Q.

The positioning of the key depends on X, Y, coordinates, and labelpos. If labelpos is ‘N’ or ‘S’,
X, Y give the position of the middle of the key arrow. If labelpos is ‘E’, X, Y positions the head,
and if labelpos is ‘W’, X, Y positions the tail; in either of these two cases, X, Y is somewhere in
the middle of the arrow+label key object.

redraw_in_frame()
This method can only be used after an initial draw which caches the renderer. It is used to
efficiently update Axes data (axis ticks, labels, etc are not updated)

relim()
recompute the data limits based on current artists

reset_position()
Make the original position the active position

scatter(x, y, s=20, c=’b’, marker=’o’, cmap=None, norm=None, vmin=None, vmax=None,
alpha=1.0, linewidths=None, faceted=True, verts=None, **kwargs)

call signatures:

scatter(x, y, s=20, c=’b’, marker=’o’, cmap=None, norm=None,
vmin=None, vmax=None, alpha=1.0, linewidths=None,
verts=None, **kwargs)

470 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

Make a scatter plot of x versus y, where x, y are converted to 1-D sequences which must be of
the same length, N.

Keyword arguments:

s: size in points^2. It is a scalar or an array of the same length as x and y.

c: a color. c can be a single color format string, or a sequence of color specifications of
length N, or a sequence of N numbers to be mapped to colors using the cmap and
norm specified via kwargs (see below). Note that c should not be a single numeric
RGB or RGBA sequence because that is indistinguishable from an array of values
to be colormapped. c can be a 2-D array in which the rows are RGB or RGBA,
however.

marker: can be one of:

Value Description
‘s’ square
‘o’ circle
‘^’ triangle up
‘>’ triangle right
‘v’ triangle down
‘<’ triangle left
‘d’ diamond
‘p’ pentagram
‘h’ hexagon
‘8’ octagon
‘+’ plus
‘x’ cross

The marker can also be a tuple (numsides, style, angle), which will create a custom,
regular symbol.

numsides: the number of sides

style: the style of the regular symbol:

Value Description
0 a regular polygon
1 a star-like symbol
2 an asterisk
3 a circle (numsides and angle is ignored)

angle: the angle of rotation of the symbol

Finally, marker can be (verts, 0): verts is a sequence of (x, y) vertices for a custom
scatter symbol. Alternatively, use the kwarg combination marker = None, verts =

verts.

Any or all of x, y, s, and c may be masked arrays, in which case all masks will be combined and
only unmasked points will be plotted.

Other keyword arguments: the color mapping and normalization arguments will be used only if
c is an array of floats.

34.1. matplotlib.axes 471

Matplotlib, Release 0.99.3

cmap: [None | Colormap] A matplotlib.colors.Colormap instance or regis-
tered name. If None, defaults to rc image.cmap. cmap is only used if c is an
array of floats.

norm: [None | Normalize] A matplotlib.colors.Normalize instance is used to
scale luminance data to 0, 1. If None, use the default normalize(). norm is only
used if c is an array of floats.

vmin/vmax: vmin and vmax are used in conjunction with norm to normalize luminance
data. If either are None, the min and max of the color array C is used. Note if you
pass a norm instance, your settings for vmin and vmax will be ignored.

alpha: 0 <= scalar <= 1 The alpha value for the patches

linewidths: [None | scalar | sequence] If None, defaults to (lines.linewidth,). Note
that this is a tuple, and if you set the linewidths argument you must set it as a
sequence of floats, as required by RegularPolyCollection.

Optional kwargs control the Collection properties; in particular:

edgecolors: ‘none’ to plot faces with no outlines

facecolors: ‘none’ to plot unfilled outlines

Here are the standard descriptions of all the Collection kwargs:

Property Description
alpha float
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]

Continued on next page

472 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

Table 34.19 – continued from previous page
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

A Collection instance is returned.

semilogx(*args, **kwargs)
call signature:

semilogx(*args, **kwargs)

Make a plot with log scaling on the x axis.

semilogx() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_xscale().

Notable keyword arguments:

basex: scalar > 1 base of the x logarithm

subsx: [None | sequence] The location of the minor xticks; None defaults to auto-
subs, which depend on the number of decades in the plot; see set_xscale() for
details.

nonposx: [’mask’ | ‘clip’] non-positive values in x can be masked as invalid, or
clipped to a very small positive number

The remaining valid kwargs are Line2D properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array

Continued on next page

34.1. matplotlib.axes 473

Matplotlib, Release 0.99.3

Table 34.20 – continued from previous page
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See Also:

loglog() For example code and figure

semilogy(*args, **kwargs)
call signature:

semilogy(*args, **kwargs)

Make a plot with log scaling on the y axis.

semilogy() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_yscale().

Notable keyword arguments:

basey: scalar > 1 Base of the y logarithm

subsy: [None | sequence] The location of the minor yticks; None defaults to auto-
subs, which depend on the number of decades in the plot; see set_yscale() for

474 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

details.

nonposy: [’mask’ | ‘clip’] non-positive values in y can be masked as invalid, or
clipped to a very small positive number

The remaining valid kwargs are Line2D properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

34.1. matplotlib.axes 475

Matplotlib, Release 0.99.3

See Also:

loglog() For example code and figure

set_adjustable(adjustable)
ACCEPTS: [‘box’ | ‘datalim’]

set_anchor(anchor)
anchor

value description
‘C’ Center
‘SW’ bottom left
‘S’ bottom
‘SE’ bottom right
‘E’ right
‘NE’ top right
‘N’ top
‘NW’ top left
‘W’ left

set_aspect(aspect, adjustable=None, anchor=None)
aspect

value description
‘auto’ automatic; fill position rectangle with data
‘nor-
mal’

same as ‘auto’; deprecated

‘equal’ same scaling from data to plot units for x and y
num a circle will be stretched such that the height is num times the width.

aspect=1 is the same as aspect=’equal’.

adjustable

value description
‘box’ change physical size of axes
‘datalim’ change xlim or ylim

anchor

value description
‘C’ centered
‘SW’ lower left corner
‘S’ middle of bottom edge
‘SE’ lower right corner
etc.

set_autoscale_on(b)
Set whether autoscaling is applied on plot commands

accepts: [True | False]

476 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

set_autoscalex_on(b)
Set whether autoscaling for the x-axis is applied on plot commands

accepts: [True | False]

set_autoscaley_on(b)
Set whether autoscaling for the y-axis is applied on plot commands

accepts: [True | False]

set_axes_locator(locator)
set axes_locator

ACCEPT [a callable object which takes an axes instance and renderer and] returns a bbox.

set_axis_bgcolor(color)
set the axes background color

ACCEPTS: any matplotlib color - see colors()

set_axis_off()
turn off the axis

set_axis_on()
turn on the axis

set_axisbelow(b)
Set whether the axis ticks and gridlines are above or below most artists

ACCEPTS: [True | False]

set_color_cycle(clist)
Set the color cycle for any future plot commands on this Axes.

clist is a list of mpl color specifiers.

set_cursor_props(*args)
Set the cursor property as:

ax.set_cursor_props(linewidth, color)

or:

ax.set_cursor_props((linewidth, color))

ACCEPTS: a (float, color) tuple

set_figure(fig)
Set the class:~matplotlib.axes.Axes figure

accepts a class:~matplotlib.figure.Figure instance

set_frame_on(b)
Set whether the axes rectangle patch is drawn

ACCEPTS: [True | False]

34.1. matplotlib.axes 477

Matplotlib, Release 0.99.3

set_navigate(b)
Set whether the axes responds to navigation toolbar commands

ACCEPTS: [True | False]

set_navigate_mode(b)
Set the navigation toolbar button status;

Warning: this is not a user-API function.

set_position(pos, which=’both’)
Set the axes position with:

pos = [left, bottom, width, height]

in relative 0,1 coords, or pos can be a Bbox

There are two position variables: one which is ultimately used, but which may be modified by
apply_aspect(), and a second which is the starting point for apply_aspect().

Optional keyword arguments: which

value description
‘active’ to change the first
‘original’ to change the second
‘both’ to change both

set_rasterization_zorder(z)
Set zorder value below which artists will be rasterized

set_title(label, fontdict=None, **kwargs)
call signature:

set_title(label, fontdict=None, **kwargs):

Set the title for the axes.

kwargs are Text properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance

Continued on next page

478 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

Table 34.22 – continued from previous page
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

ACCEPTS: str

See Also:

text() for information on how override and the optional args work

set_xbound(lower=None, upper=None)
Set the lower and upper numerical bounds of the x-axis. This method will honor axes inversion
regardless of parameter order.

set_xlabel(xlabel, fontdict=None, labelpad=None, **kwargs)
call signature:

set_xlabel(xlabel, fontdict=None, labelpad=None, **kwargs)

Set the label for the xaxis.

labelpad is the spacing in points between the label and the x-axis

Valid kwargs are Text properties:

34.1. matplotlib.axes 479

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

ACCEPTS: str

See Also:

text() for information on how override and the optional args work

480 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

set_xlim(xmin=None, xmax=None, emit=True, **kwargs)
call signature:

set_xlim(self, *args, **kwargs)

Set the limits for the xaxis

Returns the current xlimits as a length 2 tuple: [xmin, xmax]

Examples:

set_xlim((valmin, valmax))
set_xlim(valmin, valmax)
set_xlim(xmin=1) # xmax unchanged
set_xlim(xmax=1) # xmin unchanged

Keyword arguments:

ymin: scalar the min of the ylim

ymax: scalar the max of the ylim

emit: [True | False] notify observers of lim change

ACCEPTS: len(2) sequence of floats

set_xscale(value, **kwargs)
call signature:

set_xscale(value)

Set the scaling of the x-axis: ‘linear’ | ‘log’ | ‘symlog’

ACCEPTS: [’linear’ | ‘log’ | ‘symlog’]

Different kwargs are accepted, depending on the scale: ‘linear’

‘log’

basex/basey: The base of the logarithm

nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be
masked as invalid, or clipped to a very small positive number

subsx/subsy: Where to place the subticks between each major tick. Should be
a sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4,
5, 6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

‘symlog’

basex/basey: The base of the logarithm

linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to
avoid having the plot go to infinity around zero).

34.1. matplotlib.axes 481

Matplotlib, Release 0.99.3

subsx/subsy: Where to place the subticks between each major tick. Should be
a sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4,
5, 6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

set_xticklabels(labels, fontdict=None, minor=False, **kwargs)
call signature:

set_xticklabels(labels, fontdict=None, minor=False, **kwargs)

Set the xtick labels with list of strings labels. Return a list of axis text instances.

kwargs set the Text properties. Valid properties are

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]

Continued on next page

482 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

Table 34.24 – continued from previous page
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

ACCEPTS: sequence of strings

set_xticks(ticks, minor=False)
Set the x ticks with list of ticks

ACCEPTS: sequence of floats

set_ybound(lower=None, upper=None)
Set the lower and upper numerical bounds of the y-axis. This method will honor axes inversion
regardless of parameter order.

set_ylabel(ylabel, fontdict=None, labelpad=None, **kwargs)
call signature:

set_ylabel(ylabel, fontdict=None, labelpad=None, **kwargs)

Set the label for the yaxis

labelpad is the spacing in points between the label and the y-axis

Valid kwargs are Text properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]

Continued on next page

34.1. matplotlib.axes 483

Matplotlib, Release 0.99.3

Table 34.25 – continued from previous page
multialignment [’left’ | ‘right’ | ‘center’]
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

ACCEPTS: str

See Also:

text() for information on how override and the optional args work

set_ylim(ymin=None, ymax=None, emit=True, **kwargs)
call signature:

set_ylim(self, *args, **kwargs):

Set the limits for the yaxis; v = [ymin, ymax]:

set_ylim((valmin, valmax))
set_ylim(valmin, valmax)
set_ylim(ymin=1) # ymax unchanged
set_ylim(ymax=1) # ymin unchanged

Keyword arguments:

ymin: scalar the min of the ylim

ymax: scalar the max of the ylim

emit: [True | False] notify observers of lim change

Returns the current ylimits as a length 2 tuple

484 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

ACCEPTS: len(2) sequence of floats

set_yscale(value, **kwargs)
call signature:

set_yscale(value)

Set the scaling of the y-axis: ‘linear’ | ‘log’ | ‘symlog’

ACCEPTS: [’linear’ | ‘log’ | ‘symlog’]

Different kwargs are accepted, depending on the scale: ‘linear’

‘log’

basex/basey: The base of the logarithm

nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be
masked as invalid, or clipped to a very small positive number

subsx/subsy: Where to place the subticks between each major tick. Should be
a sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4,
5, 6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

‘symlog’

basex/basey: The base of the logarithm

linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to
avoid having the plot go to infinity around zero).

subsx/subsy: Where to place the subticks between each major tick. Should be
a sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4,
5, 6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

set_yticklabels(labels, fontdict=None, minor=False, **kwargs)
call signature:

set_yticklabels(labels, fontdict=None, minor=False, **kwargs)

Set the ytick labels with list of strings labels. Return a list of Text instances.

kwargs set Text properties for the labels. Valid properties are

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance

Continued on next page

34.1. matplotlib.axes 485

Matplotlib, Release 0.99.3

Table 34.26 – continued from previous page
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

ACCEPTS: sequence of strings

set_yticks(ticks, minor=False)
Set the y ticks with list of ticks

ACCEPTS: sequence of floats

Keyword arguments:

minor: [False | True] Sets the minor ticks if True

specgram(x, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x921317c>, win-
dow=<function window_hanning at 0x9213064>, noverlap=128, cmap=None, xex-
tent=None, pad_to=None, sides=’default’, scale_by_freq=None, **kwargs)

486 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

call signature:

specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=128,
cmap=None, xextent=None, pad_to=None, sides=’default’,
scale_by_freq=None, **kwargs)

Compute a spectrogram of data in x. Data are split into NFFT length segments and the PSD of
each section is computed. The windowing function window is applied to each segment, and the
amount of overlap of each segment is specified with noverlap.

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be
even; a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in matlab, where the detrend parameter is a
vector, in matplotlib is it a function. The pylabmodule defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function
as well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(),
scipy.signal(), scipy.signal.get_window(), etc. The default is
window_hanning(). If a function is passed as the argument, it must take a data
segment as an argument and return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value
is 0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the min-
imum distance between resolvable peaks), this can give more points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to re-
turn. Default gives the default behavior, which returns one-sided for real data and
both for complex data. ‘onesided’ forces the return of a one-sided PSD, while
‘twosided’ forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be
scaled by the scaling frequency, which gives density in units of Hz^-1. This al-
lows for integration over the returned frequency values. The default is True for
MatLab compatibility.

Fc: integer The center frequency of x (defaults to 0), which offsets the y extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered

34.1. matplotlib.axes 487

Matplotlib, Release 0.99.3

and downsampled to baseband.

cmap: A matplotlib.cm.Colormap instance; if None use default determined by rc

xextent: The image extent along the x-axis. xextent = (xmin,xmax) The default is
(0,max(bins)), where bins is the return value from mlab.specgram()

kwargs:

Additional kwargs are passed on to imshow which makes the specgram image

Return value is (Pxx, freqs, bins, im):

•bins are the time points the spectrogram is calculated over

•freqs is an array of frequencies

•Pxx is a len(times) x len(freqs) array of power

•im is a matplotlib.image.AxesImage instance

Note: If x is real (i.e. non-complex), only the positive spectrum is shown. If x is complex, both
positive and negative parts of the spectrum are shown. This can be overridden using the sides
keyword argument.

Example:

0 5 10 15
3

2

1

0

1

2

3

0 5 10 15
0

200

400

600

800

1000

spy(Z, precision=0, marker=None, markersize=None, aspect=’equal’, **kwargs)
call signature:

488 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

spy(Z, precision=0, marker=None, markersize=None,
aspect=’equal’, **kwargs)

spy(Z) plots the sparsity pattern of the 2-D array Z.

If precision is 0, any non-zero value will be plotted; else, values of |Z| > precision will be
plotted.

For scipy.sparse.spmatrix instances, there is a special case: if precision is ‘present’, any
value present in the array will be plotted, even if it is identically zero.

The array will be plotted as it would be printed, with the first index (row) increasing down and
the second index (column) increasing to the right.

By default aspect is ‘equal’, so that each array element occupies a square space; set the aspect
kwarg to ‘auto’ to allow the plot to fill the plot box, or to any scalar number to specify the aspect
ratio of an array element directly.

Two plotting styles are available: image or marker. Both are available for full arrays, but only
the marker style works for scipy.sparse.spmatrix instances.

If marker and markersize are None, an image will be returned and any remaining kwargs are
passed to imshow(); else, a Line2D object will be returned with the value of marker determining
the marker type, and any remaining kwargs passed to the plot() method.

If marker and markersize are None, useful kwargs include:

•cmap

•alpha

See Also:

imshow() For image options.

For controlling colors, e.g. cyan background and red marks, use:

cmap = mcolors.ListedColormap([’c’,’r’])

If marker or markersize is not None, useful kwargs include:

•marker

•markersize

•color

Useful values for marker include:

•‘s’ square (default)

•‘o’ circle

•‘.’ point

•‘,’ pixel

See Also:

34.1. matplotlib.axes 489

Matplotlib, Release 0.99.3

plot() For plotting options

start_pan(x, y, button)
Called when a pan operation has started.

x, y are the mouse coordinates in display coords. button is the mouse button number:

•1: LEFT

•2: MIDDLE

•3: RIGHT

Note: Intended to be overridden by new projection types.

stem(x, y, linefmt=’b-‘, markerfmt=’bo’, basefmt=’r-‘)
call signature:

stem(x, y, linefmt=’b-’, markerfmt=’bo’, basefmt=’r-’)

A stem plot plots vertical lines (using linefmt) at each x location from the baseline to y, and
places a marker there using markerfmt. A horizontal line at 0 is is plotted using basefmt.

Return value is a tuple (markerline, stemlines, baseline).

See Also:

this document for details

examples/pylab_examples/stem_plot.py for a demo

step(x, y, *args, **kwargs)
call signature:

step(x, y, *args, **kwargs)

Make a step plot. Additional keyword args to step() are the same as those for plot().

x and y must be 1-D sequences, and it is assumed, but not checked, that x is uniformly increasing.

Keyword arguments:

where: [‘pre’ | ‘post’ | ‘mid’] If ‘pre’, the interval from x[i] to x[i+1] has level y[i+1]

If ‘post’, that interval has level y[i]

If ‘mid’, the jumps in y occur half-way between the x-values.

table(**kwargs)
call signature:

table(cellText=None, cellColours=None,
cellLoc=’right’, colWidths=None,
rowLabels=None, rowColours=None, rowLoc=’left’,
colLabels=None, colColours=None, colLoc=’center’,
loc=’bottom’, bbox=None):

490 Chapter 34. matplotlib axes

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/stem.html

Matplotlib, Release 0.99.3

Add a table to the current axes. Returns a matplotlib.table.Table instance. For finer
grained control over tables, use the Table class and add it to the axes with add_table().

Thanks to John Gill for providing the class and table.

kwargs control the Table properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
contains a callable function
figure a matplotlib.figure.Figure instance
fontsize a float in points
gid an id string
label any string
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

text(x, y, s, fontdict=None, withdash=False, **kwargs)
call signature:

text(x, y, s, fontdict=None, **kwargs)

Add text in string s to axis at location x, y, data coordinates.

Keyword arguments:

fontdict: A dictionary to override the default text properties. If fontdict is None, the
defaults are determined by your rc parameters.

withdash: [False | True] Creates a TextWithDash instance instead of a Text in-
stance.

Individual keyword arguments can be used to override any given parameter:

text(x, y, s, fontsize=12)

The default transform specifies that text is in data coords, alternatively, you can specify text in
axis coords (0,0 is lower-left and 1,1 is upper-right). The example below places text in the center
of the axes:

text(0.5, 0.5,’matplotlib’,
horizontalalignment=’center’,

34.1. matplotlib.axes 491

Matplotlib, Release 0.99.3

verticalalignment=’center’,
transform = ax.transAxes)

You can put a rectangular box around the text instance (eg. to set a background color) by using
the keyword bbox. bbox is a dictionary of matplotlib.patches.Rectangle properties. For
example:

text(x, y, s, bbox=dict(facecolor=’red’, alpha=0.5))

Valid kwargs are matplotlib.text.Text properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float

Continued on next page

492 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

Table 34.27 – continued from previous page
y float
zorder any number

ticklabel_format(**kwargs)
Convenience method for manipulating the ScalarFormatter used by default for linear axes.

Optional keyword arguments:

Key-
word

Description

style [‘sci’ (or ‘scientific’) | ‘plain’] plain turns off scientific notation
scilim-
its

(m, n), pair of integers; if style is ‘sci’, scientific notation will be used for
numbers outside the range 10‘-m‘:sup: to 10‘n‘:sup:. Use (0,0) to include
all numbers.

axis [‘x’ | ‘y’ | ‘both’]

Only the major ticks are affected. If the method is called when the ScalarFormatter is not the
Formatter being used, an AttributeError will be raised.

twinx()
call signature:

ax = twinx()

create a twin of Axes for generating a plot with a sharex x-axis but independent y axis. The
y-axis of self will have ticks on left and the returned axes will have ticks on the right

twiny()
call signature:

ax = twiny()

create a twin of Axes for generating a plot with a shared y-axis but independent x axis. The
x-axis of self will have ticks on bottom and the returned axes will have ticks on the top

update_datalim(xys, updatex=True, updatey=True)
Update the data lim bbox with seq of xy tups or equiv. 2-D array

update_datalim_bounds(bounds)
Update the datalim to include the given Bbox bounds

update_datalim_numerix(x, y)
Update the data lim bbox with seq of xy tups

vlines(x, ymin, ymax, colors=’k’, linestyles=’solid’, label=’‘, **kwargs)
call signature:

vlines(x, ymin, ymax, color=’k’, linestyles=’solid’)

34.1. matplotlib.axes 493

Matplotlib, Release 0.99.3

Plot vertical lines at each x from ymin to ymax. ymin or ymax can be scalars or len(x) numpy
arrays. If they are scalars, then the respective values are constant, else the heights of the lines
are determined by ymin and ymax.

colors a line collections color args, either a single color or a len(x) list of colors

linestyles

one of [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

Returns the matplotlib.collections.LineCollection that was added.

kwargs are LineCollection properties:

Property Description
alpha float
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
segments unknown
snap unknown
transform Transform instance
url a url string
urls unknown
verts unknown
visible [True | False]
zorder any number

494 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

xaxis_date(tz=None)
Sets up x-axis ticks and labels that treat the x data as dates.

tz is the time zone to use in labeling dates. Defaults to rc value.

xaxis_inverted()
Returns True if the x-axis is inverted.

xcorr(x, y, normed=True, detrend=<function detrend_none at 0x921317c>, usevlines=True,
maxlags=10, **kwargs)

call signature:

def xcorr(self, x, y, normed=True, detrend=mlab.detrend_none,
usevlines=True, maxlags=10, **kwargs):

Plot the cross correlation between x and y. If normed = True, normalize the data by the cross
correlation at 0-th lag. x and y are detrended by the detrend callable (default no normalization).
x and y must be equal length.

Data are plotted as plot(lags, c, **kwargs)

Return value is a tuple (lags, c, line) where:

•lags are a length 2*maxlags+1 lag vector

•c is the 2*maxlags+1 auto correlation vector

•line is a Line2D instance returned by plot().

The default linestyle is None and the default marker is ‘o’, though these can be overridden with
keyword args. The cross correlation is performed with numpy.correlate() with mode = 2.

If usevlines is True:

vlines() rather than plot() is used to draw vertical lines from the origin to the xcorr.
Otherwise the plotstyle is determined by the kwargs, which are Line2D properties.

The return value is a tuple (lags, c, linecol, b) where linecol is the
matplotlib.collections.LineCollection instance and b is the x-axis.

maxlags is a positive integer detailing the number of lags to show. The default value of None
will return all (2*len(x)-1) lags.

Example:

xcorr() above, and acorr() below.

Example:

34.1. matplotlib.axes 495

Matplotlib, Release 0.99.3

60 40 20 0 20 40 60
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20
0.25

60 40 20 0 20 40 60
0.2

0.0

0.2

0.4

0.6

0.8

1.0

yaxis_date(tz=None)
Sets up y-axis ticks and labels that treat the y data as dates.

tz is the time zone to use in labeling dates. Defaults to rc value.

yaxis_inverted()
Returns True if the y-axis is inverted.

matplotlib.axes.Subplot
alias of AxesSubplot

class matplotlib.axes.SubplotBase(fig, *args, **kwargs)
Base class for subplots, which are Axes instances with additional methods to facilitate generating and
manipulating a set of Axes within a figure.

fig is a matplotlib.figure.Figure instance.

args is the tuple (numRows, numCols, plotNum), where the array of subplots in the figure has dimen-
sions numRows, numCols, and where plotNum is the number of the subplot being created. plotNum
starts at 1 in the upper left corner and increases to the right.

If numRows <= numCols <= plotNum < 10, args can be the decimal integer numRows * 100 +

numCols * 10 + plotNum.

change_geometry(numrows, numcols, num)
change subplot geometry, eg. from 1,1,1 to 2,2,3

496 Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

get_geometry()
get the subplot geometry, eg 2,2,3

is_first_col()

is_first_row()

is_last_col()

is_last_row()

label_outer()
set the visible property on ticklabels so xticklabels are visible only if the subplot is in the last
row and yticklabels are visible only if the subplot is in the first column

update_params()
update the subplot position from fig.subplotpars

matplotlib.axes.set_default_color_cycle(clist)
Change the default cycle of colors that will be used by the plot command. This must be called before
creating the Axes to which it will apply; it will apply to all future axes.

clist is a sequence of mpl color specifiers

matplotlib.axes.subplot_class_factory(axes_class=None)

34.1. matplotlib.axes 497

Matplotlib, Release 0.99.3

498 Chapter 34. matplotlib axes

CHAPTER

THIRTYFIVE

MATPLOTLIB AXIS

35.1 matplotlib.axis

Classes for the ticks and x and y axis

class matplotlib.axis.Axis(axes, pickradius=15)
Bases: matplotlib.artist.Artist

Public attributes

•axes.transData - transform data coords to display coords

•axes.transAxes - transform axis coords to display coords

•labelpad - number of points between the axis and its label

Init the axis with the parent Axes instance

cla()
clear the current axis

convert_units(x)

draw(artist, renderer, *args, **kwargs)
Draw the axis lines, grid lines, tick lines and labels

get_children()

get_data_interval()
return the Interval instance for this axis data limits

get_gridlines()
Return the grid lines as a list of Line2D instance

get_label()
Return the axis label as a Text instance

get_label_text()
Get the text of the label

get_major_formatter()
Get the formatter of the major ticker

499

Matplotlib, Release 0.99.3

get_major_locator()
Get the locator of the major ticker

get_major_ticks(numticks=None)
get the tick instances; grow as necessary

get_majorticklabels()
Return a list of Text instances for the major ticklabels

get_majorticklines()
Return the major tick lines as a list of Line2D instances

get_majorticklocs()
Get the major tick locations in data coordinates as a numpy array

get_minor_formatter()
Get the formatter of the minor ticker

get_minor_locator()
Get the locator of the minor ticker

get_minor_ticks(numticks=None)
get the minor tick instances; grow as necessary

get_minorticklabels()
Return a list of Text instances for the minor ticklabels

get_minorticklines()
Return the minor tick lines as a list of Line2D instances

get_minorticklocs()
Get the minor tick locations in data coordinates as a numpy array

get_offset_text()
Return the axis offsetText as a Text instance

get_pickradius()
Return the depth of the axis used by the picker

get_scale()

get_ticklabel_extents(renderer)
Get the extents of the tick labels on either side of the axes.

get_ticklabels(minor=False)
Return a list of Text instances for ticklabels

get_ticklines(minor=False)
Return the tick lines as a list of Line2D instances

get_ticklocs(minor=False)
Get the tick locations in data coordinates as a numpy array

get_transform()

get_units()
return the units for axis

500 Chapter 35. matplotlib axis

Matplotlib, Release 0.99.3

get_view_interval()
return the Interval instance for this axis view limits

grid(b=None, which=’major’, **kwargs)
Set the axis grid on or off; b is a boolean. Use which = ‘major’ | ‘minor’ to set the grid for major
or minor ticks.

If b is None and len(kwargs)==0, toggle the grid state. If kwargs are supplied, it is assumed you
want the grid on and b will be set to True.

kwargs are used to set the line properties of the grids, eg,

xax.grid(color=’r’, linestyle=’-‘, linewidth=2)

have_units()

iter_ticks()
Iterate through all of the major and minor ticks.

limit_range_for_scale(vmin, vmax)

pan(numsteps)
Pan numsteps (can be positive or negative)

set_clip_path(clippath, transform=None)

set_data_interval()
Set the axis data limits

set_label_coords(x, y, transform=None)
Set the coordinates of the label. By default, the x coordinate of the y label is determined by the
tick label bounding boxes, but this can lead to poor alignment of multiple ylabels if there are
multiple axes. Ditto for the y coodinate of the x label.

You can also specify the coordinate system of the label with the transform. If None, the default
coordinate system will be the axes coordinate system (0,0) is (left,bottom), (0.5, 0.5) is middle,
etc

set_label_text(label, fontdict=None, **kwargs)
Sets the text value of the axis label

ACCEPTS: A string value for the label

set_major_formatter(formatter)
Set the formatter of the major ticker

ACCEPTS: A Formatter instance

set_major_locator(locator)
Set the locator of the major ticker

ACCEPTS: a Locator instance

set_minor_formatter(formatter)
Set the formatter of the minor ticker

ACCEPTS: A Formatter instance

35.1. matplotlib.axis 501

Matplotlib, Release 0.99.3

set_minor_locator(locator)
Set the locator of the minor ticker

ACCEPTS: a Locator instance

set_pickradius(pickradius)
Set the depth of the axis used by the picker

ACCEPTS: a distance in points

set_scale(value, **kwargs)

set_ticklabels(ticklabels, *args, **kwargs)
Set the text values of the tick labels. Return a list of Text instances. Use kwarg minor=True to
select minor ticks.

ACCEPTS: sequence of strings

set_ticks(ticks, minor=False)
Set the locations of the tick marks from sequence ticks

ACCEPTS: sequence of floats

set_units(u)
set the units for axis

ACCEPTS: a units tag

set_view_interval(vmin, vmax, ignore=False)

update_units(data)
introspect data for units converter and update the axis.converter instance if necessary. Return
True is data is registered for unit conversion

zoom(direction)
Zoom in/out on axis; if direction is >0 zoom in, else zoom out

class matplotlib.axis.Tick(axes, loc, label, size=None, gridOn=None, tick1On=True,
tick2On=True, label1On=True, label2On=False, major=True)

Bases: matplotlib.artist.Artist

Abstract base class for the axis ticks, grid lines and labels

1 refers to the bottom of the plot for xticks and the left for yticks 2 refers to the top of the plot for
xticks and the right for yticks

Publicly accessible attributes:

tick1line a Line2D instance

tick2line a Line2D instance

gridline a Line2D instance

label1 a Text instance

label2 a Text instance

gridOn a boolean which determines whether to draw the tickline

502 Chapter 35. matplotlib axis

Matplotlib, Release 0.99.3

tick1On a boolean which determines whether to draw the 1st tickline

tick2On a boolean which determines whether to draw the 2nd tickline

label1On a boolean which determines whether to draw tick label

label2On a boolean which determines whether to draw tick label

bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords
size is the tick size in relative, axes coords

contains(mouseevent)
Test whether the mouse event occured in the Tick marks.

This function always returns false. It is more useful to test if the axis as a whole contains the
mouse rather than the set of tick marks.

draw(artist, renderer, *args, **kwargs)

get_children()

get_loc()
Return the tick location (data coords) as a scalar

get_pad()
Get the value of the tick label pad in points

get_pad_pixels()

get_view_interval()
return the view Interval instance for the axis this tick is ticking

set_clip_path(clippath, transform=None)
Set the artist’s clip path, which may be:

•a Patch (or subclass) instance

•a Path instance, in which case an optional Transform instance may be provided, which
will be applied to the path before using it for clipping.

•None, to remove the clipping path

For efficiency, if the path happens to be an axis-aligned rectangle, this method will set the clip-
ping box to the corresponding rectangle and set the clipping path to None.

ACCEPTS: [(Path, Transform) | Patch | None]

set_label(s)
Set the text of ticklabel

ACCEPTS: str

set_label1(s)
Set the text of ticklabel

ACCEPTS: str

set_label2(s)
Set the text of ticklabel2

35.1. matplotlib.axis 503

Matplotlib, Release 0.99.3

ACCEPTS: str

set_pad(val)
Set the tick label pad in points

ACCEPTS: float

set_view_interval(vmin, vmax, ignore=False)

class matplotlib.axis.Ticker

class matplotlib.axis.XAxis(axes, pickradius=15)
Bases: matplotlib.axis.Axis

Init the axis with the parent Axes instance

contains(mouseevent)
Test whether the mouse event occured in the x axis.

get_data_interval()
return the Interval instance for this axis data limits

get_label_position()
Return the label position (top or bottom)

get_minpos()

get_text_heights(renderer)
Returns the amount of space one should reserve for text above and below the axes. Returns a
tuple (above, below)

get_ticks_position()
Return the ticks position (top, bottom, default or unknown)

get_view_interval()
return the Interval instance for this axis view limits

set_data_interval(vmin, vmax, ignore=False)
return the Interval instance for this axis data limits

set_label_position(position)
Set the label position (top or bottom)

ACCEPTS: [‘top’ | ‘bottom’]

set_ticks_position(position)
Set the ticks position (top, bottom, both, default or none) both sets the ticks to appear on both
positions, but does not change the tick labels. default resets the tick positions to the default:
ticks on both positions, labels at bottom. none can be used if you don’t want any ticks.

ACCEPTS: [‘top’ | ‘bottom’ | ‘both’ | ‘default’ | ‘none’]

set_view_interval(vmin, vmax, ignore=False)

tick_bottom()
use ticks only on bottom

504 Chapter 35. matplotlib axis

Matplotlib, Release 0.99.3

tick_top()
use ticks only on top

class matplotlib.axis.XTick(axes, loc, label, size=None, gridOn=None, tick1On=True,
tick2On=True, label1On=True, label2On=False, major=True)

Bases: matplotlib.axis.Tick

Contains all the Artists needed to make an x tick - the tick line, the label text and the grid line

bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords
size is the tick size in relative, axes coords

get_data_interval()
return the Interval instance for this axis data limits

get_minpos()

get_view_interval()
return the Interval instance for this axis view limits

set_view_interval(vmin, vmax, ignore=False)

update_position(loc)
Set the location of tick in data coords with scalar loc

class matplotlib.axis.YAxis(axes, pickradius=15)
Bases: matplotlib.axis.Axis

Init the axis with the parent Axes instance

contains(mouseevent)
Test whether the mouse event occurred in the y axis.

Returns True | False

get_data_interval()
return the Interval instance for this axis data limits

get_label_position()
Return the label position (left or right)

get_minpos()

get_text_widths(renderer)

get_ticks_position()
Return the ticks position (left, right, both or unknown)

get_view_interval()
return the Interval instance for this axis view limits

set_data_interval(vmin, vmax, ignore=False)
return the Interval instance for this axis data limits

set_label_position(position)
Set the label position (left or right)

ACCEPTS: [‘left’ | ‘right’]

35.1. matplotlib.axis 505

Matplotlib, Release 0.99.3

set_offset_position(position)

set_ticks_position(position)
Set the ticks position (left, right, both or default) both sets the ticks to appear on both positions,
but does not change the tick labels. default resets the tick positions to the default: ticks on both
positions, labels on the left.

ACCEPTS: [‘left’ | ‘right’ | ‘both’ | ‘default’ | ‘none’]

set_view_interval(vmin, vmax, ignore=False)

tick_left()
use ticks only on left

tick_right()
use ticks only on right

class matplotlib.axis.YTick(axes, loc, label, size=None, gridOn=None, tick1On=True,
tick2On=True, label1On=True, label2On=False, major=True)

Bases: matplotlib.axis.Tick

Contains all the Artists needed to make a Y tick - the tick line, the label text and the grid line

bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords
size is the tick size in relative, axes coords

get_data_interval()
return the Interval instance for this axis data limits

get_minpos()

get_view_interval()
return the Interval instance for this axis view limits

set_view_interval(vmin, vmax, ignore=False)

update_position(loc)
Set the location of tick in data coords with scalar loc

506 Chapter 35. matplotlib axis

CHAPTER

THIRTYSIX

MATPLOTLIB CBOOK

36.1 matplotlib.cbook

A collection of utility functions and classes. Many (but not all) from the Python Cookbook – hence the name
cbook

class matplotlib.cbook.Bunch(**kwds)
Often we want to just collect a bunch of stuff together, naming each item of the bunch; a dictionary’s
OK for that, but a small do- nothing class is even handier, and prettier to use. Whenever you want to
group a few variables:

>>> point = Bunch(datum=2, squared=4, coord=12)
>>> point.datum

By: Alex Martelli From: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52308

class matplotlib.cbook.CallbackRegistry(signals)
Handle registering and disconnecting for a set of signals and callbacks:

signals = ’eat’, ’drink’, ’be merry’

def oneat(x):
print ’eat’, x

def ondrink(x):
print ’drink’, x

callbacks = CallbackRegistry(signals)

ideat = callbacks.connect(’eat’, oneat)
iddrink = callbacks.connect(’drink’, ondrink)

#tmp = callbacks.connect(’drunk’, ondrink) # this will raise a ValueError

callbacks.process(’drink’, 123) # will call oneat
callbacks.process(’eat’, 456) # will call ondrink
callbacks.process(’be merry’, 456) # nothing will be called
callbacks.disconnect(ideat) # disconnect oneat
callbacks.process(’eat’, 456) # nothing will be called

507

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52308

Matplotlib, Release 0.99.3

signals is a sequence of valid signals

connect(s, func)
register func to be called when a signal s is generated func will be called

disconnect(cid)
disconnect the callback registered with callback id cid

process(s, *args, **kwargs)
process signal s. All of the functions registered to receive callbacks on s will be called with
*args and **kwargs

class matplotlib.cbook.GetRealpathAndStat

class matplotlib.cbook.Grouper(init=[])
Bases: object

This class provides a lightweight way to group arbitrary objects together into disjoint sets when a
full-blown graph data structure would be overkill.

Objects can be joined using join(), tested for connectedness using joined(), and all disjoint sets
can be retreived by using the object as an iterator.

The objects being joined must be hashable and weak-referenceable.

For example:

>>> class Foo:
... def __init__(self, s):
... self.s = s
... def __repr__(self):
... return self.s
...
>>> a, b, c, d, e, f = [Foo(x) for x in ’abcdef’]
>>> g = Grouper()
>>> g.join(a, b)
>>> g.join(b, c)
>>> g.join(d, e)
>>> list(g)
[[d, e], [a, b, c]]
>>> g.joined(a, b)
True
>>> g.joined(a, c)
True
>>> g.joined(a, d)
False

clean()
Clean dead weak references from the dictionary

get_siblings(a)
Returns all of the items joined with a, including itself.

join(a, *args)
Join given arguments into the same set. Accepts one or more arguments.

508 Chapter 36. matplotlib cbook

Matplotlib, Release 0.99.3

joined(a, b)
Returns True if a and b are members of the same set.

class matplotlib.cbook.Idle(func)
Bases: matplotlib.cbook.Scheduler

Schedule callbacks when scheduler is idle

run()

class matplotlib.cbook.MemoryMonitor(nmax=20000)

clear()

plot(i0=0, isub=1, fig=None)

report(segments=4)

xy(i0=0, isub=1)

class matplotlib.cbook.Null(*args, **kwargs)
Null objects always and reliably “do nothing.”

class matplotlib.cbook.RingBuffer(size_max)
class that implements a not-yet-full buffer

append(x)
append an element at the end of the buffer

get()
Return a list of elements from the oldest to the newest.

class matplotlib.cbook.Scheduler
Bases: threading.Thread

Base class for timeout and idle scheduling

stop()

class matplotlib.cbook.Sorter
Sort by attribute or item

Example usage:

sort = Sorter()

list = [(1, 2), (4, 8), (0, 3)]
dict = [{’a’: 3, ’b’: 4}, {’a’: 5, ’b’: 2}, {’a’: 0, ’b’: 0},

{’a’: 9, ’b’: 9}]

sort(list) # default sort
sort(list, 1) # sort by index 1
sort(dict, ’a’) # sort a list of dicts by key ’a’

byAttribute(data, attributename, inplace=1)

36.1. matplotlib.cbook 509

Matplotlib, Release 0.99.3

byItem(data, itemindex=None, inplace=1)

sort(data, itemindex=None, inplace=1)

class matplotlib.cbook.Stack(default=None)
Implement a stack where elements can be pushed on and you can move back and forth. But no pop.
Should mimic home / back / forward in a browser

back()
move the position back and return the current element

bubble(o)
raise o to the top of the stack and return o. o must be in the stack

clear()
empty the stack

empty()

forward()
move the position forward and return the current element

home()
push the first element onto the top of the stack

push(o)
push object onto stack at current position - all elements occurring later than the current position
are discarded

remove(o)
remove element o from the stack

class matplotlib.cbook.Timeout(wait, func)
Bases: matplotlib.cbook.Scheduler

Schedule recurring events with a wait time in seconds

run()

class matplotlib.cbook.Xlator
Bases: dict

All-in-one multiple-string-substitution class

Example usage:

text = "Larry Wall is the creator of Perl"
adict = {
"Larry Wall" : "Guido van Rossum",
"creator" : "Benevolent Dictator for Life",
"Perl" : "Python",
}

print multiple_replace(adict, text)

xlat = Xlator(adict)
print xlat.xlat(text)

510 Chapter 36. matplotlib cbook

Matplotlib, Release 0.99.3

xlat(text)
Translate text, returns the modified text.

matplotlib.cbook.allequal(seq)
Return True if all elements of seq compare equal. If seq is 0 or 1 length, return True

matplotlib.cbook.allpairs(x)
return all possible pairs in sequence x

Condensed by Alex Martelli from this thread on c.l.python

matplotlib.cbook.alltrue(seq)
Return True if all elements of seq evaluate to True. If seq is empty, return False.

class matplotlib.cbook.converter(missing=’Null’, missingval=None)
Base class for handling string -> python type with support for missing values

is_missing(s)

matplotlib.cbook.dedent(s)
Remove excess indentation from docstring s.

Discards any leading blank lines, then removes up to n whitespace characters from each line, where n
is the number of leading whitespace characters in the first line. It differs from textwrap.dedent in its
deletion of leading blank lines and its use of the first non-blank line to determine the indentation.

It is also faster in most cases.

matplotlib.cbook.delete_masked_points(*args)
Find all masked and/or non-finite points in a set of arguments, and return the arguments with only the
unmasked points remaining.

Arguments can be in any of 5 categories:

1.1-D masked arrays

2.1-D ndarrays

3.ndarrays with more than one dimension

4.other non-string iterables

5.anything else

The first argument must be in one of the first four categories; any argument with a length differing from
that of the first argument (and hence anything in category 5) then will be passed through unchanged.

Masks are obtained from all arguments of the correct length in categories 1, 2, and 4; a point is bad if
masked in a masked array or if it is a nan or inf. No attempt is made to extract a mask from categories
2, 3, and 4 if np.isfinite() does not yield a Boolean array.

All input arguments that are not passed unchanged are returned as ndarrays after removing the points
or rows corresponding to masks in any of the arguments.

A vastly simpler version of this function was originally written as a helper for Axes.scatter().

matplotlib.cbook.dict_delall(d, keys)
delete all of the keys from the dict d

36.1. matplotlib.cbook 511

http://groups.google.com/groups?q=all+pairs+group:*python*&hl=en&lr=&ie=UTF-8&selm=mailman.4028.1096403649.5135.python-list%40python.org&rnum=1

Matplotlib, Release 0.99.3

matplotlib.cbook.distances_along_curve(X)
This function has been moved to matplotlib.mlab – please import it from there

matplotlib.cbook.exception_to_str(s=None)

matplotlib.cbook.finddir(o, match, case=False)
return all attributes of o which match string in match. if case is True require an exact case match.

matplotlib.cbook.flatten(seq, scalarp=<function is_scalar_or_string at 0x8d424fc>)
this generator flattens nested containers such as

>>> l=((’John’, ’Hunter’), (1,23), [[[[42,(5,23)]]]])

so that

>>> for i in flatten(l): print i,
John Hunter 1 23 42 5 23

By: Composite of Holger Krekel and Luther Blissett From:
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/121294 and Recipe 1.12 in cookbook

matplotlib.cbook.get_recursive_filelist(args)
Recurs all the files and dirs in args ignoring symbolic links and return the files as a list of strings

matplotlib.cbook.get_split_ind(seq, N)
seq is a list of words. Return the index into seq such that:

len(’ ’.join(seq[:ind])<=N

matplotlib.cbook.is_closed_polygon(X)
This function has been moved to matplotlib.mlab – please import it from there

matplotlib.cbook.is_numlike(obj)
return true if obj looks like a number

matplotlib.cbook.is_scalar(obj)
return true if obj is not string like and is not iterable

matplotlib.cbook.is_scalar_or_string(val)

matplotlib.cbook.is_sequence_of_strings(obj)
Returns true if obj is iterable and contains strings

matplotlib.cbook.is_string_like(obj)
Return True if obj looks like a string

matplotlib.cbook.is_writable_file_like(obj)
return true if obj looks like a file object with a write method

matplotlib.cbook.issubclass_safe(x, klass)
return issubclass(x, klass) and return False on a TypeError

matplotlib.cbook.isvector(X)
This function has been moved to matplotlib.mlab – please import it from there

matplotlib.cbook.iterable(obj)
return true if obj is iterable

512 Chapter 36. matplotlib cbook

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/121294

Matplotlib, Release 0.99.3

matplotlib.cbook.less_simple_linear_interpolation(x, y, xi, extrap=False)
This function has been moved to matplotlib.mlab – please import it from there

matplotlib.cbook.listFiles(root, patterns=’*’, recurse=1, return_folders=0)
Recursively list files

from Parmar and Martelli in the Python Cookbook

class matplotlib.cbook.maxdict(maxsize)
Bases: dict

A dictionary with a maximum size; this doesn’t override all the relevant methods to contrain size, just
setitem, so use with caution

matplotlib.cbook.mkdirs(newdir, mode=511)
make directory newdir recursively, and set mode. Equivalent to

> mkdir -p NEWDIR
> chmod MODE NEWDIR

matplotlib.cbook.onetrue(seq)
Return True if one element of seq is True. It seq is empty, return False.

matplotlib.cbook.path_length(X)
This function has been moved to matplotlib.mlab – please import it from there

matplotlib.cbook.pieces(seq, num=2)
Break up the seq into num tuples

matplotlib.cbook.popall(seq)
empty a list

matplotlib.cbook.print_cycles(objects, outstream=<open file ‘<stdout>’, mode ‘w’ at
0x403a1078>, show_progress=False)

objects A list of objects to find cycles in. It is often useful to pass in gc.garbage to find the cycles that
are preventing some objects from being garbage collected.

outstream The stream for output.

show_progress If True, print the number of objects reached as they are found.

matplotlib.cbook.quad2cubic(q0x, q0y, q1x, q1y, q2x, q2y)
This function has been moved to matplotlib.mlab – please import it from there

matplotlib.cbook.recursive_remove(path)

matplotlib.cbook.report_memory(i=0)
return the memory consumed by process

matplotlib.cbook.reverse_dict(d)
reverse the dictionary – may lose data if values are not unique!

matplotlib.cbook.safe_masked_invalid(x)

matplotlib.cbook.safezip(*args)
make sure args are equal len before zipping

36.1. matplotlib.cbook 513

Matplotlib, Release 0.99.3

class matplotlib.cbook.silent_list(type, seq=None)
Bases: list

override repr when returning a list of matplotlib artists to prevent long, meaningless output. This is
meant to be used for a homogeneous list of a give type

matplotlib.cbook.simple_linear_interpolation(a, steps)

matplotlib.cbook.soundex(name, len=4)
soundex module conforming to Odell-Russell algorithm

matplotlib.cbook.strip_math(s)
remove latex formatting from mathtext

matplotlib.cbook.to_filehandle(fname, flag=’rU’, return_opened=False)
fname can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends
in .gz. flag is a read/write flag for file()

class matplotlib.cbook.todate(fmt=’%Y-%m-%d’, missing=’Null’, missingval=None)
Bases: matplotlib.cbook.converter

convert to a date or None

use a time.strptime() format string for conversion

class matplotlib.cbook.todatetime(fmt=’%Y-%m-%d’, missing=’Null’, missingval=None)
Bases: matplotlib.cbook.converter

convert to a datetime or None

use a time.strptime() format string for conversion

class matplotlib.cbook.tofloat(missing=’Null’, missingval=None)
Bases: matplotlib.cbook.converter

convert to a float or None

class matplotlib.cbook.toint(missing=’Null’, missingval=None)
Bases: matplotlib.cbook.converter

convert to an int or None

class matplotlib.cbook.tostr(missing=’Null’, missingval=’‘)
Bases: matplotlib.cbook.converter

convert to string or None

matplotlib.cbook.unicode_safe(s)

matplotlib.cbook.unique(x)
Return a list of unique elements of x

matplotlib.cbook.unmasked_index_ranges(mask, compressed=True)
Find index ranges where mask is False.

mask will be flattened if it is not already 1-D.

Returns Nx2 numpy.ndarray with each row the start and stop indices for slices of the compressed
numpy.ndarray corresponding to each of N uninterrupted runs of unmasked values. If optional

514 Chapter 36. matplotlib cbook

Matplotlib, Release 0.99.3

argument compressed is False, it returns the start and stop indices into the original numpy.ndarray,
not the compressed numpy.ndarray. Returns None if there are no unmasked values.

Example:

y = ma.array(np.arange(5), mask = [0,0,1,0,0])
ii = unmasked_index_ranges(ma.getmaskarray(y))
returns array [[0,2,] [2,4,]]

y.compressed()[ii[1,0]:ii[1,1]]
returns array [3,4,]

ii = unmasked_index_ranges(ma.getmaskarray(y), compressed=False)
returns array [[0, 2], [3, 5]]

y.filled()[ii[1,0]:ii[1,1]]
returns array [3,4,]

Prior to the transforms refactoring, this was used to support masked arrays in Line2D.

matplotlib.cbook.vector_lengths(X, P=2.0, axis=None)
This function has been moved to matplotlib.mlab – please import it from there

matplotlib.cbook.wrap(prefix, text, cols)
wrap text with prefix at length cols

36.1. matplotlib.cbook 515

Matplotlib, Release 0.99.3

516 Chapter 36. matplotlib cbook

CHAPTER

THIRTYSEVEN

MATPLOTLIB CM

37.1 matplotlib.cm

This module provides a large set of colormaps, functions for registering new colormaps and for getting a
colormap by name, and a mixin class for adding color mapping functionality.

class matplotlib.cm.ScalarMappable(norm=None, cmap=None)
This is a mixin class to support scalar -> RGBA mapping. Handles normalization and colormapping

norm is an instance of colors.Normalize or one of its subclasses, used to map luminance to 0-1.
cmap is a cm colormap instance, for example cm.jet

add_checker(checker)
Add an entry to a dictionary of boolean flags that are set to True when the mappable is changed.

autoscale()
Autoscale the scalar limits on the norm instance using the current array

autoscale_None()
Autoscale the scalar limits on the norm instance using the current array, changing only limits
that are None

changed()
Call this whenever the mappable is changed to notify all the callbackSM listeners to the
‘changed’ signal

check_update(checker)
If mappable has changed since the last check, return True; else return False

get_array()
Return the array

get_clim()
return the min, max of the color limits for image scaling

get_cmap()
return the colormap

set_array(A)
Set the image array from numpy array A

517

Matplotlib, Release 0.99.3

set_clim(vmin=None, vmax=None)
set the norm limits for image scaling; if vmin is a length2 sequence, interpret it as (vmin,
vmax) which is used to support setp

ACCEPTS: a length 2 sequence of floats

set_cmap(cmap)
set the colormap for luminance data

ACCEPTS: a colormap or registered colormap name

set_colorbar(im, ax)
set the colorbar image and axes associated with mappable

set_norm(norm)
set the normalization instance

to_rgba(x, alpha=1.0, bytes=False)
Return a normalized rgba array corresponding to x. If x is already an rgb array, insert alpha; if it
is already rgba, return it unchanged. If bytes is True, return rgba as 4 uint8s instead of 4 floats.

matplotlib.cm.get_cmap(name=None, lut=None)
Get a colormap instance, defaulting to rc values if name is None.

Colormaps added with register_cmap() take precedence over builtin colormaps.

If name is a colors.Colormap instance, it will be returned.

If lut is not None it must be an integer giving the number of entries desired in the lookup table, and
name must be a standard mpl colormap name with a corresponding data dictionary in datad.

matplotlib.cm.register_cmap(name=None, cmap=None, data=None, lut=None)
Add a colormap to the set recognized by get_cmap().

It can be used in two ways:

register_cmap(name=’swirly’, cmap=swirly_cmap)

register_cmap(name=’choppy’, data=choppydata, lut=128)

In the first case, cmap must be a colors.Colormap instance. The name is optional; if absent, the
name will be the name attribute of the cmap.

In the second case, the three arguments are passed to the colors.LinearSegmentedColormap ini-
tializer, and the resulting colormap is registered.

matplotlib.cm.revcmap(data)

518 Chapter 37. matplotlib cm

CHAPTER

THIRTYEIGHT

MATPLOTLIB COLLECTIONS

cm.ScalarMappable

collections.Collection

collections.RegularPolyCollection

collections.AsteriskPolygonCollection

collections.StarPolygonCollection

collections.PolyCollection

collections.QuadMesh

collections.CircleCollection

collections.PatchCollection

collections.LineCollection

collections.EllipseCollection

collections.BrokenBarHCollection

artist.Artist

38.1 matplotlib.collections

Classes for the efficient drawing of large collections of objects that share most properties, e.g. a large number
of line segments or polygons.

The classes are not meant to be as flexible as their single element counterparts (e.g. you may not be able to
select all line styles) but they are meant to be fast for common use cases (e.g. a bunch of solid line segemnts)

class matplotlib.collections.AsteriskPolygonCollection(numsides, rotation=0,
sizes=(1,), **kwargs)

Bases: matplotlib.collections.RegularPolyCollection

Draw a collection of regular asterisks with numsides points.

numsides the number of sides of the polygon

rotation the rotation of the polygon in radians

sizes gives the area of the circle circumscribing the regular polygon in points^2

519

Matplotlib, Release 0.99.3

Valid Collection keyword arguments:

• edgecolors: None

• facecolors: None

• linewidths: None

• antialiaseds: None

• offsets: None

• transOffset: transforms.IdentityTransform()

• norm: None (optional for matplotlib.cm.ScalarMappable)

• cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

Example: see examples/dynamic_collection.py for complete example:

offsets = np.random.rand(20,2)
facecolors = [cm.jet(x) for x in np.random.rand(20)]
black = (0,0,0,1)

collection = RegularPolyCollection(
numsides=5, # a pentagon
rotation=0, sizes=(50,),
facecolors = facecolors,
edgecolors = (black,),
linewidths = (1,),
offsets = offsets,
transOffset = ax.transData,
)

class matplotlib.collections.BrokenBarHCollection(xranges, yrange, **kwargs)
Bases: matplotlib.collections.PolyCollection

A collection of horizontal bars spanning yrange with a sequence of xranges.

xranges sequence of (xmin, xwidth)

yrange ymin, ywidth

Valid Collection keyword arguments:

• edgecolors: None

• facecolors: None

• linewidths: None

• antialiaseds: None

• offsets: None

520 Chapter 38. matplotlib collections

Matplotlib, Release 0.99.3

• transOffset: transforms.IdentityTransform()

• norm: None (optional for matplotlib.cm.ScalarMappable)

• cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

static span_where(x, ymin, ymax, where, **kwargs)
Create a BrokenBarHCollection to plot horizontal bars from over the regions in x where where
is True. The bars range on the y-axis from ymin to ymax

A BrokenBarHCollection is returned. kwargs are passed on to the collection.

class matplotlib.collections.CircleCollection(sizes, **kwargs)
Bases: matplotlib.collections.Collection

A collection of circles, drawn using splines.

sizes Gives the area of the circle in points^2

Valid Collection keyword arguments:

•edgecolors: None

•facecolors: None

•linewidths: None

•antialiaseds: None

•offsets: None

•transOffset: transforms.IdentityTransform()

•norm: None (optional for matplotlib.cm.ScalarMappable)

•cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

draw(renderer)

get_paths()

get_sizes()
return sizes of circles

class matplotlib.collections.Collection(edgecolors=None, facecolors=None,
linewidths=None, linestyles=’solid’, an-
tialiaseds=None, offsets=None, transOffset=None,
norm=None, cmap=None, pickradius=5.0,
urls=None, **kwargs)

Bases: matplotlib.artist.Artist, matplotlib.cm.ScalarMappable

38.1. matplotlib.collections 521

Matplotlib, Release 0.99.3

Base class for Collections. Must be subclassed to be usable.

All properties in a collection must be sequences or scalars; if scalars, they will be converted to se-
quences. The property of the ith element of the collection is:

prop[i % len(props)]

Keyword arguments and default values:

•edgecolors: None

•facecolors: None

•linewidths: None

•antialiaseds: None

•offsets: None

•transOffset: transforms.IdentityTransform()

•norm: None (optional for matplotlib.cm.ScalarMappable)

•cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets).

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

The use of ScalarMappable is optional. If the ScalarMappable matrix _A is not None (ie a call to
set_array has been made), at draw time a call to scalar mappable will be made to set the face colors.

Create a Collection

%(Collection)s

contains(mouseevent)
Test whether the mouse event occurred in the collection.

Returns True | False, dict(ind=itemlist), where every item in itemlist contains the event.

draw(artist, renderer, *args, **kwargs)

get_dashes()

get_datalim(transData)

get_edgecolor()

get_edgecolors()

get_facecolor()

get_facecolors()

get_linestyle()

get_linestyles()

get_linewidth()

522 Chapter 38. matplotlib collections

Matplotlib, Release 0.99.3

get_linewidths()

get_offsets()
Return the offsets for the collection.

get_paths()

get_pickradius()

get_transforms()

get_urls()

get_window_extent(renderer)

set_alpha(alpha)
Set the alpha tranparencies of the collection. alpha must be a float.

ACCEPTS: float

set_antialiased(aa)
Set the antialiasing state for rendering.

ACCEPTS: Boolean or sequence of booleans

set_antialiaseds(aa)
alias for set_antialiased

set_color(c)
Set both the edgecolor and the facecolor.

ACCEPTS: matplotlib color arg or sequence of rgba tuples

See Also:

set_facecolor(), set_edgecolor() For setting the edge or face color individually.

set_dashes(ls)
alias for set_linestyle

set_edgecolor(c)
Set the edgecolor(s) of the collection. c can be a matplotlib color arg (all patches have same
color), or a sequence of rgba tuples; if it is a sequence the patches will cycle through the se-
quence.

If c is ‘face’, the edge color will always be the same as the face color. If it is ‘none’, the patch
boundary will not be drawn.

ACCEPTS: matplotlib color arg or sequence of rgba tuples

set_edgecolors(c)
alias for set_edgecolor

set_facecolor(c)
Set the facecolor(s) of the collection. c can be a matplotlib color arg (all patches have same
color), or a sequence of rgba tuples; if it is a sequence the patches will cycle through the se-
quence.

38.1. matplotlib.collections 523

Matplotlib, Release 0.99.3

If c is ‘none’, the patch will not be filled.

ACCEPTS: matplotlib color arg or sequence of rgba tuples

set_facecolors(c)
alias for set_facecolor

set_linestyle(ls)
Set the linestyle(s) for the collection.

ACCEPTS: [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]

set_linestyles(ls)
alias for set_linestyle

set_linewidth(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence

ACCEPTS: float or sequence of floats

set_linewidths(lw)
alias for set_linewidth

set_lw(lw)
alias for set_linewidth

set_offsets(offsets)
Set the offsets for the collection. offsets can be a scalar or a sequence.

ACCEPTS: float or sequence of floats

set_pickradius(pickradius)

set_urls(urls)

update_from(other)
copy properties from other to self

update_scalarmappable()
If the scalar mappable array is not none, update colors from scalar data

class matplotlib.collections.EllipseCollection(widths, heights, angles, units=’points’,
**kwargs)

Bases: matplotlib.collections.Collection

A collection of ellipses, drawn using splines.

widths: sequence half-lengths of first axes (e.g., semi-major axis lengths)

heights: sequence half-lengths of second axes

angles: sequence angles of first axes, degrees CCW from the X-axis

units: [’points’ | ‘inches’ | ‘dots’ | ‘width’ | ‘height’ | ‘x’ | ‘y’] units in which majors and minors
are given; ‘width’ and ‘height’ refer to the dimensions of the axes, while ‘x’ and ‘y’ refer to
the offsets data units.

Additional kwargs inherited from the base Collection:

524 Chapter 38. matplotlib collections

Matplotlib, Release 0.99.3

Valid Collection keyword arguments:

•edgecolors: None

•facecolors: None

•linewidths: None

•antialiaseds: None

•offsets: None

•transOffset: transforms.IdentityTransform()

•norm: None (optional for matplotlib.cm.ScalarMappable)

•cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

draw(renderer)

get_paths()

set_transforms()

class matplotlib.collections.LineCollection(segments, linewidths=None, colors=None,
antialiaseds=None, linestyles=’solid’, off-
sets=None, transOffset=None, norm=None,
cmap=None, pickradius=5, **kwargs)

Bases: matplotlib.collections.Collection

All parameters must be sequences or scalars; if scalars, they will be converted to sequences. The
property of the ith line segment is:

prop[i % len(props)]

i.e., the properties cycle if the len of props is less than the number of segments.

segments a sequence of (line0, line1, line2), where:

linen = (x0, y0), (x1, y1), ... (xm, ym)

or the equivalent numpy array with two columns. Each line can be a different length.

colors must be a sequence of RGBA tuples (eg arbitrary color strings, etc, not allowed).

antialiaseds must be a sequence of ones or zeros

linestyles [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] a string or dash tuple. The dash tuple is:

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink in points.

38.1. matplotlib.collections 525

Matplotlib, Release 0.99.3

If linewidths, colors, or antialiaseds is None, they default to their rcParams setting, in sequence form.

If offsets and transOffset are not None, then offsets are transformed by transOffset and applied after
the segments have been transformed to display coordinates.

If offsets is not None but transOffset is None, then the offsets are added to the segments before any
transformation. In this case, a single offset can be specified as:

offsets=(xo,yo)

and this value will be added cumulatively to each successive segment, so as to produce a set of
successively offset curves.

norm None (optional for matplotlib.cm.ScalarMappable)

cmap None (optional for matplotlib.cm.ScalarMappable)

pickradius is the tolerance for mouse clicks picking a line. The default is 5 pt.

The use of ScalarMappable is optional. If the ScalarMappable matrix _A is not None (ie a call to
set_array() has been made), at draw time a call to scalar mappable will be made to set the colors.

color(c)
Set the color(s) of the line collection. c can be a matplotlib color arg (all patches have same
color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence

ACCEPTS: matplotlib color arg or sequence of rgba tuples

get_color()

get_colors()

get_paths()

set_color(c)
Set the color(s) of the line collection. c can be a matplotlib color arg (all patches have same
color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the se-
quence.

ACCEPTS: matplotlib color arg or sequence of rgba tuples

set_segments(segments)

set_verts(segments)

class matplotlib.collections.PatchCollection(patches, match_original=False, **kwargs)
Bases: matplotlib.collections.Collection

A generic collection of patches.

This makes it easier to assign a color map to a heterogeneous collection of patches.

This also may improve plotting speed, since PatchCollection will draw faster than a large number of
patches.

patches a sequence of Patch objects. This list may include a heterogeneous assortment of different
patch types.

526 Chapter 38. matplotlib collections

Matplotlib, Release 0.99.3

match_original If True, use the colors and linewidths of the original patches. If False, new colors may
be assigned by providing the standard collection arguments, facecolor, edgecolor, linewidths,
norm or cmap.

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

The use of ScalarMappable is optional. If the ScalarMappable matrix _A is not None (ie a call to
set_array has been made), at draw time a call to scalar mappable will be made to set the face colors.

get_paths()

class matplotlib.collections.PolyCollection(verts, sizes=None, closed=True, **kwargs)
Bases: matplotlib.collections.Collection

verts is a sequence of (verts0, verts1, ...) where verts_i is a sequence of xy tuples of vertices, or an
equivalent numpy array of shape (nv, 2).

sizes is None (default) or a sequence of floats that scale the corresponding verts_i. The scaling is
applied before the Artist master transform; if the latter is an identity transform, then the overall scaling
is such that if verts_i specify a unit square, then sizes_i is the area of that square in points^2. If
len(sizes) < nv, the additional values will be taken cyclically from the array.

closed, when True, will explicitly close the polygon.

Valid Collection keyword arguments:

•edgecolors: None

•facecolors: None

•linewidths: None

•antialiaseds: None

•offsets: None

•transOffset: transforms.IdentityTransform()

•norm: None (optional for matplotlib.cm.ScalarMappable)

•cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

draw(renderer)

get_paths()

set_verts(verts, closed=True)
This allows one to delay initialization of the vertices.

class matplotlib.collections.QuadMesh(meshWidth, meshHeight, coordinates, showedges, an-
tialiased=True)

Bases: matplotlib.collections.Collection

38.1. matplotlib.collections 527

Matplotlib, Release 0.99.3

Class for the efficient drawing of a quadrilateral mesh.

A quadrilateral mesh consists of a grid of vertices. The dimensions of this array are (meshWidth + 1,
meshHeight + 1). Each vertex in the mesh has a different set of “mesh coordinates” representing its
position in the topology of the mesh. For any values (m, n) such that 0 <= m <= meshWidth and 0 <=

n <= meshHeight, the vertices at mesh coordinates (m, n), (m, n + 1), (m + 1, n + 1), and (m + 1, n)
form one of the quadrilaterals in the mesh. There are thus (meshWidth * meshHeight) quadrilaterals
in the mesh. The mesh need not be regular and the polygons need not be convex.

A quadrilateral mesh is represented by a (2 x ((meshWidth + 1) * (meshHeight + 1))) numpy array
coordinates, where each row is the x and y coordinates of one of the vertices. To define the function
that maps from a data point to its corresponding color, use the set_cmap() method. Each of these
arrays is indexed in row-major order by the mesh coordinates of the vertex (or the mesh coordinates
of the lower left vertex, in the case of the colors).

For example, the first entry in coordinates is the coordinates of the vertex at mesh coordinates (0, 0),
then the one at (0, 1), then at (0, 2) .. (0, meshWidth), (1, 0), (1, 1), and so on.

static convert_mesh_to_paths(meshWidth, meshHeight, coordinates)
Converts a given mesh into a sequence of matplotlib.path.Path objects for easier rendering
by backends that do not directly support quadmeshes.

This function is primarily of use to backend implementers.

draw(artist, renderer, *args, **kwargs)

get_datalim(transData)

get_paths(dataTrans=None)

class matplotlib.collections.RegularPolyCollection(numsides, rotation=0, sizes=(1,),
**kwargs)

Bases: matplotlib.collections.Collection

Draw a collection of regular polygons with numsides.

numsides the number of sides of the polygon

rotation the rotation of the polygon in radians

sizes gives the area of the circle circumscribing the regular polygon in points^2

Valid Collection keyword arguments:

• edgecolors: None

• facecolors: None

• linewidths: None

• antialiaseds: None

• offsets: None

• transOffset: transforms.IdentityTransform()

• norm: None (optional for matplotlib.cm.ScalarMappable)

• cmap: None (optional for matplotlib.cm.ScalarMappable)

528 Chapter 38. matplotlib collections

Matplotlib, Release 0.99.3

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

Example: see examples/dynamic_collection.py for complete example:

offsets = np.random.rand(20,2)
facecolors = [cm.jet(x) for x in np.random.rand(20)]
black = (0,0,0,1)

collection = RegularPolyCollection(
numsides=5, # a pentagon
rotation=0, sizes=(50,),
facecolors = facecolors,
edgecolors = (black,),
linewidths = (1,),
offsets = offsets,
transOffset = ax.transData,
)

draw(artist, renderer, *args, **kwargs)

get_numsides()

get_paths()

get_rotation()

get_sizes()

class matplotlib.collections.StarPolygonCollection(numsides, rotation=0, sizes=(1,),
**kwargs)

Bases: matplotlib.collections.RegularPolyCollection

Draw a collection of regular stars with numsides points.

numsides the number of sides of the polygon

rotation the rotation of the polygon in radians

sizes gives the area of the circle circumscribing the regular polygon in points^2

Valid Collection keyword arguments:

• edgecolors: None

• facecolors: None

• linewidths: None

• antialiaseds: None

• offsets: None

• transOffset: transforms.IdentityTransform()

• norm: None (optional for matplotlib.cm.ScalarMappable)

• cmap: None (optional for matplotlib.cm.ScalarMappable)

38.1. matplotlib.collections 529

Matplotlib, Release 0.99.3

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

Example: see examples/dynamic_collection.py for complete example:

offsets = np.random.rand(20,2)
facecolors = [cm.jet(x) for x in np.random.rand(20)]
black = (0,0,0,1)

collection = RegularPolyCollection(
numsides=5, # a pentagon
rotation=0, sizes=(50,),
facecolors = facecolors,
edgecolors = (black,),
linewidths = (1,),
offsets = offsets,
transOffset = ax.transData,
)

530 Chapter 38. matplotlib collections

CHAPTER

THIRTYNINE

MATPLOTLIB COLORBAR

39.1 matplotlib.colorbar

Colorbar toolkit with two classes and a function:

ColorbarBase the base class with full colorbar drawing functionality. It can be used as-is to
make a colorbar for a given colormap; a mappable object (e.g., image) is not needed.

Colorbar the derived class for use with images or contour plots.

make_axes() a function for resizing an axes and adding a second axes suitable for a colorbar

The colorbar() method uses make_axes() and Colorbar; the colorbar() function is a thin wrapper
over colorbar().

class matplotlib.colorbar.Colorbar(ax, mappable, **kw)
Bases: matplotlib.colorbar.ColorbarBase

add_lines(CS)
Add the lines from a non-filled ContourSet to the colorbar.

update_bruteforce(mappable)
Manually change any contour line colors. This is called when the image or contour plot to which
this colorbar belongs is changed.

class matplotlib.colorbar.ColorbarBase(ax, cmap=None, norm=None, alpha=1.0,
values=None, boundaries=None, orien-
tation=’vertical’, extend=’neither’, spac-
ing=’uniform’, ticks=None, format=None,
drawedges=False, filled=True)

Bases: matplotlib.cm.ScalarMappable

Draw a colorbar in an existing axes.

This is a base class for the Colorbar class, which is the basis for the colorbar() method and pylab
function.

It is also useful by itself for showing a colormap. If the cmap kwarg is given but boundaries and
values are left as None, then the colormap will be displayed on a 0-1 scale. To show the under- and
over-value colors, specify the norm as:

531

Matplotlib, Release 0.99.3

colors.Normalize(clip=False)

To show the colors versus index instead of on the 0-1 scale, use:

norm=colors.NoNorm.

Useful attributes:

ax the Axes instance in which the colorbar is drawn

lines a LineCollection if lines were drawn, otherwise None

dividers a LineCollection if drawedges is True, otherwise None

Useful public methods are set_label() and add_lines().

add_lines(levels, colors, linewidths)
Draw lines on the colorbar.

draw_all()
Calculate any free parameters based on the current cmap and norm, and do all the drawing.

set_alpha(alpha)

set_label(label, **kw)
Label the long axis of the colorbar

matplotlib.colorbar.make_axes(parent, **kw)
Resize and reposition a parent axes, and return a child axes suitable for a colorbar:

cax, kw = make_axes(parent, **kw)

Keyword arguments may include the following (with defaults):

orientation ‘vertical’ or ‘horizontal’

Prop-
erty

Description

orienta-
tion

vertical or horizontal

fraction 0.15; fraction of original axes to use for colorbar
pad 0.05 if vertical, 0.15 if horizontal; fraction of original axes between colorbar and new

image axes
shrink 1.0; fraction by which to shrink the colorbar
aspect 20; ratio of long to short dimensions

All but the first of these are stripped from the input kw set.

Returns (cax, kw), the child axes and the reduced kw dictionary.

532 Chapter 39. matplotlib colorbar

CHAPTER

FORTY

MATPLOTLIB COLORS

40.1 matplotlib.colors

A module for converting numbers or color arguments to RGB or RGBA

RGB and RGBA are sequences of, respectively, 3 or 4 floats in the range 0-1.

This module includes functions and classes for color specification conversions, and for mapping numbers
to colors in a 1-D array of colors called a colormap. Colormapping typically involves two steps: a data
array is first mapped onto the range 0-1 using an instance of Normalize or of a subclass; then this number
in the 0-1 range is mapped to a color using an instance of a subclass of Colormap. Two are provided
here: LinearSegmentedColormap, which is used to generate all the built-in colormap instances, but is
also useful for making custom colormaps, and ListedColormap, which is used for generating a custom
colormap from a list of color specifications.

The module also provides a single instance, colorConverter, of the ColorConverter class providing meth-
ods for converting single color specifications or sequences of them to RGB or RGBA.

Commands which take color arguments can use several formats to specify the colors. For the basic builtin
colors, you can use a single letter

• b : blue

• g : green

• r : red

• c : cyan

• m : magenta

• y : yellow

• k : black

• w : white

Gray shades can be given as a string encoding a float in the 0-1 range, e.g.:

color = ’0.75’

533

Matplotlib, Release 0.99.3

For a greater range of colors, you have two options. You can specify the color using an html hex string, as
in:

color = ’#eeefff’

or you can pass an R , G , B tuple, where each of R , G , B are in the range [0,1].

Finally, legal html names for colors, like ‘red’, ‘burlywood’ and ‘chartreuse’ are supported.

class matplotlib.colors.BoundaryNorm(boundaries, ncolors, clip=False)
Bases: matplotlib.colors.Normalize

Generate a colormap index based on discrete intervals.

Unlike Normalize or LogNorm, BoundaryNormmaps values to integers instead of to the interval 0-1.

Mapping to the 0-1 interval could have been done via piece-wise linear interpolation, but using in-
tegers seems simpler, and reduces the number of conversions back and forth between integer and
floating point.

boundaries a monotonically increasing sequence

ncolors number of colors in the colormap to be used

If:

b[i] <= v < b[i+1]

then v is mapped to color j; as i varies from 0 to len(boundaries)-2, j goes from 0 to ncolors-1.

Out-of-range values are mapped to -1 if low and ncolors if high; these are converted to valid indices
by Colormap.__call__() .

inverse(value)

class matplotlib.colors.ColorConverter
Provides methods for converting color specifications to RGB or RGBA

Caching is used for more efficient conversion upon repeated calls with the same argument.

Ordinarily only the single instance instantiated in this module, colorConverter, is needed.

to_rgb(arg)
Returns an RGB tuple of three floats from 0-1.

arg can be an RGB or RGBA sequence or a string in any of several forms:

1.a letter from the set ‘rgbcmykw’

2.a hex color string, like ‘#00FFFF’

3.a standard name, like ‘aqua’

4.a float, like ‘0.4’, indicating gray on a 0-1 scale

if arg is RGBA, the A will simply be discarded.

to_rgba(arg, alpha=None)
Returns an RGBA tuple of four floats from 0-1.

534 Chapter 40. matplotlib colors

Matplotlib, Release 0.99.3

For acceptable values of arg, see to_rgb(). In addition, if arg is “none” (case-insensitive), then
(0,0,0,0) will be returned. If arg is an RGBA sequence and alpha is not None, alpha will replace
the original A.

to_rgba_array(c, alpha=None)
Returns a numpy array of RGBA tuples.

Accepts a single mpl color spec or a sequence of specs.

Special case to handle “no color”: if c is “none” (case-insensitive), then an empty array will be
returned. Same for an empty list.

class matplotlib.colors.Colormap(name, N=256)
Base class for all scalar to rgb mappings

Important methods:

•set_bad()

•set_under()

•set_over()

Public class attributes: N : number of rgb quantization levels name : name of colormap

is_gray()

set_bad(color=’k’, alpha=1.0)
Set color to be used for masked values.

set_over(color=’k’, alpha=1.0)
Set color to be used for high out-of-range values. Requires norm.clip = False

set_under(color=’k’, alpha=1.0)
Set color to be used for low out-of-range values. Requires norm.clip = False

class matplotlib.colors.LightSource(azdeg=315, altdeg=45, hsv_min_val=0,
hsv_max_val=1, hsv_min_sat=1, hsv_max_sat=0)

Bases: object

Create a light source coming from the specified azimuth and elevation. Angles are in degrees, with
the azimuth measured clockwise from north and elevation up from the zero plane of the surface. The
shade() is used to produce rgb values for a shaded relief image given a data array.

Specify the azimuth (measured clockwise from south) and altitude (measured up from the plane of
the surface) of the light source in degrees.

The color of the resulting image will be darkened by moving the (s,v) values (in hsv colorspace)
toward (hsv_min_sat, hsv_min_val) in the shaded regions, or lightened by sliding (s,v) toward
(hsv_max_sat hsv_max_val) in regions that are illuminated. The default extremes are chose so that
completely shaded points are nearly black (s = 1, v = 0) and completely illuminated points are nearly
white (s = 0, v = 1).

shade(data, cmap)
Take the input data array, convert to HSV values in the given colormap, then adjust those color

40.1. matplotlib.colors 535

Matplotlib, Release 0.99.3

values to given the impression of a shaded relief map with a specified light source. RGBA values
are returned, which can then be used to plot the shaded image with imshow.

class matplotlib.colors.LinearSegmentedColormap(name, segmentdata, N=256)
Bases: matplotlib.colors.Colormap

Colormap objects based on lookup tables using linear segments.

The lookup table is generated using linear interpolation for each primary color, with the 0-1 domain
divided into any number of segments.

Create color map from linear mapping segments

segmentdata argument is a dictionary with a red, green and blue entries. Each entry should be a list of
x, y0, y1 tuples, forming rows in a table.

Example: suppose you want red to increase from 0 to 1 over the bottom half, green to do the same
over the middle half, and blue over the top half. Then you would use:

cdict = {’red’: [(0.0, 0.0, 0.0),
(0.5, 1.0, 1.0),
(1.0, 1.0, 1.0)],

’green’: [(0.0, 0.0, 0.0),
(0.25, 0.0, 0.0),
(0.75, 1.0, 1.0),
(1.0, 1.0, 1.0)],

’blue’: [(0.0, 0.0, 0.0),
(0.5, 0.0, 0.0),
(1.0, 1.0, 1.0)]}

Each row in the table for a given color is a sequence of x, y0, y1 tuples. In each sequence, x must
increase monotonically from 0 to 1. For any input value z falling between x[i] and x[i+1], the output
value of a given color will be linearly interpolated between y1[i] and y0[i+1]:

row i: x y0 y1
/
/

row i+1: x y0 y1

Hence y0 in the first row and y1 in the last row are never used.

See Also:

LinearSegmentedColormap.from_list() Static method; factory function for generating a
smoothly-varying LinearSegmentedColormap.

makeMappingArray() For information about making a mapping array.

static from_list(name, colors, N=256)
Make a linear segmented colormap with name from a sequence of colors which evenly transi-
tions from colors[0] at val=0 to colors[-1] at val=1. N is the number of rgb quantization levels.

536 Chapter 40. matplotlib colors

Matplotlib, Release 0.99.3

class matplotlib.colors.ListedColormap(colors, name=’from_list’, N=None)
Bases: matplotlib.colors.Colormap

Colormap object generated from a list of colors.

This may be most useful when indexing directly into a colormap, but it can also be used to generate
special colormaps for ordinary mapping.

Make a colormap from a list of colors.

colors a list of matplotlib color specifications, or an equivalent Nx3 floating point array (N rgb values)

name a string to identify the colormap

N the number of entries in the map. The default is None, in which case there is one colormap entry
for each element in the list of colors. If:

N < len(colors)

the list will be truncated at N. If:

N > len(colors)

the list will be extended by repetition.

class matplotlib.colors.LogNorm(vmin=None, vmax=None, clip=False)
Bases: matplotlib.colors.Normalize

Normalize a given value to the 0-1 range on a log scale

If vmin or vmax is not given, they are taken from the input’s minimum and maximum value respec-
tively. If clip is True and the given value falls outside the range, the returned value will be 0 or 1,
whichever is closer. Returns 0 if:

vmin==vmax

Works with scalars or arrays, including masked arrays. If clip is True, masked values are set to 1;
otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and
masked colors in the colormap, so it is likely to lead to surprises; therefore the default is clip = False.

inverse(value)

class matplotlib.colors.NoNorm(vmin=None, vmax=None, clip=False)
Bases: matplotlib.colors.Normalize

Dummy replacement for Normalize, for the case where we want to use indices directly in a
ScalarMappable .

If vmin or vmax is not given, they are taken from the input’s minimum and maximum value respec-
tively. If clip is True and the given value falls outside the range, the returned value will be 0 or 1,
whichever is closer. Returns 0 if:

vmin==vmax

Works with scalars or arrays, including masked arrays. If clip is True, masked values are set to 1;
otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and

40.1. matplotlib.colors 537

Matplotlib, Release 0.99.3

masked colors in the colormap, so it is likely to lead to surprises; therefore the default is clip = False.

inverse(value)

class matplotlib.colors.Normalize(vmin=None, vmax=None, clip=False)
Normalize a given value to the 0-1 range

If vmin or vmax is not given, they are taken from the input’s minimum and maximum value respec-
tively. If clip is True and the given value falls outside the range, the returned value will be 0 or 1,
whichever is closer. Returns 0 if:

vmin==vmax

Works with scalars or arrays, including masked arrays. If clip is True, masked values are set to 1;
otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and
masked colors in the colormap, so it is likely to lead to surprises; therefore the default is clip = False.

autoscale(A)
Set vmin, vmax to min, max of A.

autoscale_None(A)
autoscale only None-valued vmin or vmax

inverse(value)

scaled()
return true if vmin and vmax set

matplotlib.colors.hex2color(s)
Take a hex string s and return the corresponding rgb 3-tuple Example: #efefef -> (0.93725, 0.93725,
0.93725)

matplotlib.colors.hsv_to_rgb(hsv)
convert hsv values in a numpy array to rgb values both input and output arrays have shape (M,N,3)

matplotlib.colors.is_color_like(c)
Return True if c can be converted to RGB

matplotlib.colors.makeMappingArray(N, data)
Create an N -element 1-d lookup table

data represented by a list of x,y0,y1 mapping correspondences. Each element in this list represents
how a value between 0 and 1 (inclusive) represented by x is mapped to a corresponding value between
0 and 1 (inclusive). The two values of y are to allow for discontinuous mapping functions (say as
might be found in a sawtooth) where y0 represents the value of y for values of x <= to that given, and
y1 is the value to be used for x > than that given). The list must start with x=0, end with x=1, and all
values of x must be in increasing order. Values between the given mapping points are determined by
simple linear interpolation.

The function returns an array “result” where result[x*(N-1)] gives the closest value for values of
x between 0 and 1.

538 Chapter 40. matplotlib colors

Matplotlib, Release 0.99.3

matplotlib.colors.no_norm
alias of NoNorm

matplotlib.colors.normalize
alias of Normalize

matplotlib.colors.rgb2hex(rgb)
Given a len 3 rgb tuple of 0-1 floats, return the hex string

matplotlib.colors.rgb_to_hsv(arr)
convert rgb values in a numpy array to hsv values input and output arrays should have shape (M,N,3)

40.1. matplotlib.colors 539

Matplotlib, Release 0.99.3

540 Chapter 40. matplotlib colors

CHAPTER

FORTYONE

MATPLOTLIB DATES

SecondLocator

RRuleLocator

MonthLocator

WeekdayLocator

DayLocator

HourLocator

MinuteLocator

ConversionInterface DateConverter

strpdate2num

DateLocator AutoDateLocator

YearLocator

Locator

AutoDateFormatter

Formatter
DateFormatter

IndexDateFormatter

TickHelper

rrulewrapper

41.1 matplotlib.dates

Matplotlib provides sophisticated date plotting capabilities, standing on the shoulders of python datetime,
the add-on modules pytz and dateutils. datetime objects are converted to floating point numbers which
represent time in days since 0001-01-01 UTC, plus 1. For example, 0001-01-01, 06:00 is 1.25, not 0.25.
The helper functions date2num(), num2date() and drange() are used to facilitate easy conversion to and
from datetime and numeric ranges.

A wide range of specific and general purpose date tick locators and formatters are provided in this module.
See matplotlib.ticker for general information on tick locators and formatters. These are described
below.

All the matplotlib date converters, tickers and formatters are timezone aware, and the default timezone is
given by the timezone parameter in your matplotlibrc file. If you leave out a tz timezone instance, the
default from your rc file will be assumed. If you want to use a custom time zone, pass a pytz.timezone
instance with the tz keyword argument to num2date(), plot_date(), and any custom date tickers or
locators you create. See pytz for information on pytz and timezone handling.

541

http://pytz.sourceforge.net

Matplotlib, Release 0.99.3

The dateutil module provides additional code to handle date ticking, making it easy to place ticks on any
kinds of dates. See examples below.

41.1.1 Date tickers

Most of the date tickers can locate single or multiple values. For example:

tick on mondays every week
loc = WeekdayLocator(byweekday=MO, tz=tz)

tick on mondays and saturdays
loc = WeekdayLocator(byweekday=(MO, SA))

In addition, most of the constructors take an interval argument:

tick on mondays every second week
loc = WeekdayLocator(byweekday=MO, interval=2)

The rrule locator allows completely general date ticking:

tick every 5th easter
rule = rrulewrapper(YEARLY, byeaster=1, interval=5)
loc = RRuleLocator(rule)

Here are all the date tickers:

• MinuteLocator: locate minutes

• HourLocator: locate hours

• DayLocator: locate specifed days of the month

• WeekdayLocator: Locate days of the week, eg MO, TU

• MonthLocator: locate months, eg 7 for july

• YearLocator: locate years that are multiples of base

• RRuleLocator: locate using a matplotlib.dates.rrulewrapper. The rrulewrapper is a sim-
ple wrapper around a dateutils.rrule (dateutil) which allow almost arbitrary date tick specifica-
tions. See rrule example.

• AutoDateLocator: On autoscale, this class picks the best MultipleDateLocator to set the view
limits and the tick locations.

41.1.2 Date formatters

Here all all the date formatters:

• AutoDateFormatter: attempts to figure out the best format to use. This is most useful when used
with the AutoDateLocator.

• DateFormatter: use strftime() format strings

542 Chapter 41. matplotlib dates

http://labix.org/python-dateutil
https://moin.conectiva.com.br/DateUtil

Matplotlib, Release 0.99.3

• IndexDateFormatter: date plots with implicit x indexing.

matplotlib.dates.date2num(d)
d is either a datetime instance or a sequence of datetimes.

Return value is a floating point number (or sequence of floats) which gives one plus the number of
days (fraction part represents hours, minutes, seconds) since 0001-01-01 00:00:00 UTC.

matplotlib.dates.num2date(x, tz=None)
x is a float value which gives one plus the number of days (fraction part represents hours, minutes,
seconds) since 0001-01-01 00:00:00 UTC.

Return value is a datetime instance in timezone tz (default to rcparams TZ value).

If x is a sequence, a sequence of datetime objects will be returned.

matplotlib.dates.drange(dstart, dend, delta)
Return a date range as float Gregorian ordinals. dstart and dend are datetime instances. delta is a
datetime.timedelta instance.

matplotlib.dates.epoch2num(e)
Convert an epoch or sequence of epochs to the new date format, that is days since 0001.

matplotlib.dates.num2epoch(d)
Convert days since 0001 to epoch. d can be a number or sequence.

matplotlib.dates.mx2num(mxdates)
Convert mx datetime instance (or sequence of mx instances) to the new date format.

class matplotlib.dates.DateFormatter(fmt, tz=None)
Bases: matplotlib.ticker.Formatter

Tick location is seconds since the epoch. Use a strftime() format string.

Python only supports datetime strftime() formatting for years greater than 1900. Thanks to
Andrew Dalke, Dalke Scientific Software who contributed the strftime() code below to include
dates earlier than this year.

fmt is an strftime() format string; tz is the tzinfo instance.

set_tzinfo(tz)

strftime(dt, fmt)

class matplotlib.dates.IndexDateFormatter(t, fmt, tz=None)
Bases: matplotlib.ticker.Formatter

Use with IndexLocator to cycle format strings by index.

t is a sequence of dates (floating point days). fmt is a strftime() format string.

class matplotlib.dates.AutoDateFormatter(locator, tz=None)
Bases: matplotlib.ticker.Formatter

This class attempts to figure out the best format to use. This is most useful when used with the
AutoDateLocator.

41.1. matplotlib.dates 543

Matplotlib, Release 0.99.3

class matplotlib.dates.DateLocator(tz=None)
Bases: matplotlib.ticker.Locator

tz is a tzinfo instance.

datalim_to_dt()

nonsingular(vmin, vmax)

set_tzinfo(tz)

viewlim_to_dt()

class matplotlib.dates.RRuleLocator(o, tz=None)
Bases: matplotlib.dates.DateLocator

autoscale()
Set the view limits to include the data range.

class matplotlib.dates.AutoDateLocator(tz=None)
Bases: matplotlib.dates.DateLocator

On autoscale, this class picks the best MultipleDateLocator to set the view limits and the tick
locations.

autoscale()
Try to choose the view limits intelligently.

get_locator(dmin, dmax)
Pick the best locator based on a distance.

refresh()
Refresh internal information based on current limits.

set_axis(axis)

class matplotlib.dates.YearLocator(base=1, month=1, day=1, tz=None)
Bases: matplotlib.dates.DateLocator

Make ticks on a given day of each year that is a multiple of base.

Examples:

Tick every year on Jan 1st
locator = YearLocator()

Tick every 5 years on July 4th
locator = YearLocator(5, month=7, day=4)

Mark years that are multiple of base on a given month and day (default jan 1).

autoscale()
Set the view limits to include the data range.

class matplotlib.dates.MonthLocator(bymonth=None, bymonthday=1, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurances of each month month, eg 1, 3, 12.

544 Chapter 41. matplotlib dates

Matplotlib, Release 0.99.3

Mark every month in bymonth; bymonth can be an int or sequence. Default is range(1,13), i.e.
every month.

interval is the interval between each iteration. For example, if interval=2, mark every second
occurance.

class matplotlib.dates.WeekdayLocator(byweekday=1, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurances of each weekday.

Mark every weekday in byweekday; byweekday can be a number or sequence.

Elements of byweekday must be one of MO, TU, WE, TH, FR, SA, SU, the constants from
dateutils.rrule.

interval specifies the number of weeks to skip. For example, interval=2 plots every second week.

class matplotlib.dates.DayLocator(bymonthday=None, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurances of each day of the month. For example, 1, 15, 30.

Mark every day in bymonthday; bymonthday can be an int or sequence.

Default is to tick every day of the month: bymonthday=range(1,32)

class matplotlib.dates.HourLocator(byhour=None, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurances of each hour.

Mark every hour in byhour; byhour can be an int or sequence. Default is to tick every hour:
byhour=range(24)

interval is the interval between each iteration. For example, if interval=2, mark every second
occurrence.

class matplotlib.dates.MinuteLocator(byminute=None, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurances of each minute.

Mark every minute in byminute; byminute can be an int or sequence. Default is to tick every minute:
byminute=range(60)

interval is the interval between each iteration. For example, if interval=2, mark every second
occurrence.

class matplotlib.dates.SecondLocator(bysecond=None, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurances of each second.

Mark every second in bysecond; bysecond can be an int or sequence. Default is to tick every second:
bysecond = range(60)

interval is the interval between each iteration. For example, if interval=2, mark every second
occurrence.

41.1. matplotlib.dates 545

Matplotlib, Release 0.99.3

class matplotlib.dates.rrule(freq, dtstart=None, interval=1, wkst=None, count=None, un-
til=None, bysetpos=None, bymonth=None, bymonthday=None,
byyearday=None, byeaster=None, byweekno=None, byweek-
day=None, byhour=None, byminute=None, bysecond=None,
cache=False)

Bases: dateutil.rrule.rrulebase

class matplotlib.dates.relativedelta(dt1=None, dt2=None, years=0, months=0, days=0,
leapdays=0, weeks=0, hours=0, minutes=0, sec-
onds=0, microseconds=0, year=None, month=None,
day=None, weekday=None, yearday=None, nlyear-
day=None, hour=None, minute=None, second=None,
microsecond=None)

The relativedelta type is based on the specification of the excelent work done by M.-A. Lemburg in
his mx.DateTime extension. However, notice that this type does NOT implement the same algorithm
as his work. Do NOT expect it to behave like mx.DateTime’s counterpart.

There’s two different ways to build a relativedelta instance. The first one is passing it two date/datetime
classes:

relativedelta(datetime1, datetime2)

And the other way is to use the following keyword arguments:

year, month, day, hour, minute, second, microsecond: Absolute information.

years, months, weeks, days, hours, minutes, seconds, microseconds: Relative infor-
mation, may be negative.

weekday: One of the weekday instances (MO, TU, etc). These instances may receive a
parameter N, specifying the Nth weekday, which could be positive or negative (like
MO(+1) or MO(-2). Not specifying it is the same as specifying +1. You can also use
an integer, where 0=MO.

leapdays: Will add given days to the date found, if year is a leap year, and the date found
is post 28 of february.

yearday, nlyearday: Set the yearday or the non-leap year day (jump leap days). These
are converted to day/month/leapdays information.

Here is the behavior of operations with relativedelta:

1.Calculate the absolute year, using the ‘year’ argument, or the original datetime year, if the argu-
ment is not present.

2.Add the relative ‘years’ argument to the absolute year.

3.Do steps 1 and 2 for month/months.

4.Calculate the absolute day, using the ‘day’ argument, or the original datetime day, if the argument
is not present. Then, subtract from the day until it fits in the year and month found after their
operations.

5.Add the relative ‘days’ argument to the absolute day. Notice that the ‘weeks’ argument is mul-
tiplied by 7 and added to ‘days’.

546 Chapter 41. matplotlib dates

Matplotlib, Release 0.99.3

6.Do steps 1 and 2 for hour/hours, minute/minutes, second/seconds, microsecond/microseconds.

7.If the ‘weekday’ argument is present, calculate the weekday, with the given (wday, nth) tuple.
wday is the index of the weekday (0-6, 0=Mon), and nth is the number of weeks to add forward
or backward, depending on its signal. Notice that if the calculated date is already Monday, for
example, using (0, 1) or (0, -1) won’t change the day.

matplotlib.dates.seconds(s)
Return seconds as days.

matplotlib.dates.minutes(m)
Return minutes as days.

matplotlib.dates.hours(h)
Return hours as days.

matplotlib.dates.weeks(w)
Return weeks as days.

41.1. matplotlib.dates 547

Matplotlib, Release 0.99.3

548 Chapter 41. matplotlib dates

CHAPTER

FORTYTWO

MATPLOTLIB FIGURE

42.1 matplotlib.figure

The figure module provides the top-level Artist, the Figure, which contains all the plot elements. The
following classes are defined

SubplotParams control the default spacing of the subplots

Figure top level container for all plot elements

class matplotlib.figure.Figure(figsize=None, dpi=None, facecolor=None, edgecolor=None,
linewidth=1.0, frameon=True, subplotpars=None)

Bases: matplotlib.artist.Artist

The Figure instance supports callbacks through a callbacks attribute which is a
matplotlib.cbook.CallbackRegistry instance. The events you can connect to are
‘dpi_changed’, and the callback will be called with func(fig) where fig is the Figure instance.

The figure patch is drawn by a the attribute

patch a matplotlib.patches.Rectangle instance

suppressComposite for multiple figure images, the figure will make composite images depending on
the renderer option_image_nocomposite function. If suppressComposite is True|False, this will
override the renderer

figsize w,h tuple in inches

dpi dots per inch

facecolor the figure patch facecolor; defaults to rc figure.facecolor

edgecolor the figure patch edge color; defaults to rc figure.edgecolor

linewidth the figure patch edge linewidth; the default linewidth of the frame

frameon if False, suppress drawing the figure frame

subplotpars a SubplotParams instance, defaults to rc

add_axes(*args, **kwargs)
Add an a axes with axes rect [left, bottom, width, height] where all quantities are in fractions of
figure width and height. kwargs are legal Axes kwargs plus projection which sets the projection

549

Matplotlib, Release 0.99.3

type of the axes. (For backward compatibility, polar=True may also be provided, which is
equivalent to projection=’polar’). Valid values for projection are: aitoff, hammer, lambert,
mollweide, polar, rectilinear. Some of these projections support additional kwargs, which may
be provided to add_axes():

rect = l,b,w,h
fig.add_axes(rect)
fig.add_axes(rect, frameon=False, axisbg=’g’)
fig.add_axes(rect, polar=True)
fig.add_axes(rect, projection=’polar’)
fig.add_axes(ax) # add an Axes instance

If the figure already has an axes with the same parameters, then it will simply make that axes
current and return it. If you do not want this behavior, eg. you want to force the creation of
a new axes, you must use a unique set of args and kwargs. The axes label attribute has been
exposed for this purpose. Eg., if you want two axes that are otherwise identical to be added to
the figure, make sure you give them unique labels:

fig.add_axes(rect, label=’axes1’)
fig.add_axes(rect, label=’axes2’)

The Axes instance will be returned.

The following kwargs are supported:

Property Description
adjustable [‘box’ | ‘datalim’]
alpha float (0.0 transparent through 1.0 opaque)
anchor unknown
animated [True | False]
aspect unknown
autoscale_on unknown
autoscalex_on unknown
autoscaley_on unknown
axes an Axes instance
axes_locator unknown
axis_bgcolor any matplotlib color - see colors()
axis_off unknown
axis_on unknown
axisbelow [True | False]
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color_cycle unknown
contains a callable function
cursor_props a (float, color) tuple
figure unknown
frame_on [True | False]
gid an id string

Continued on next page

550 Chapter 42. matplotlib figure

Matplotlib, Release 0.99.3

Table 42.1 – continued from previous page
label any string
lod [True | False]
navigate [True | False]
navigate_mode unknown
picker [None|float|boolean|callable]
position unknown
rasterization_zorder unknown
rasterized [True | False | None]
snap unknown
title str
transform Transform instance
url a url string
visible [True | False]
xbound unknown
xlabel str
xlim len(2) sequence of floats
xscale [’linear’ | ‘log’ | ‘symlog’]
xticklabels sequence of strings
xticks sequence of floats
ybound unknown
ylabel str
ylim len(2) sequence of floats
yscale [’linear’ | ‘log’ | ‘symlog’]
yticklabels sequence of strings
yticks sequence of floats
zorder any number

add_axobserver(func)
whenever the axes state change, func(self) will be called

add_subplot(*args, **kwargs)
Add a subplot. Examples:

fig.add_subplot(111) fig.add_subplot(1,1,1) # equivalent but more gen-
eral fig.add_subplot(212, axisbg=’r’) # add subplot with red background
fig.add_subplot(111, polar=True) # add a polar subplot fig.add_subplot(sub) #
add Subplot instance sub

kwargs are legal !matplotlib.axes.Axes kwargs plus projection, which chooses a projec-
tion type for the axes. (For backward compatibility, polar=True may also be provided, which
is equivalent to projection=’polar’). Valid values for projection are: aitoff, hammer, lambert,
mollweide, polar, rectilinear. Some of these projections support additional kwargs, which may
be provided to add_axes().

The Axes instance will be returned.

If the figure already has a subplot with key (args, kwargs) then it will simply make that subplot

42.1. matplotlib.figure 551

Matplotlib, Release 0.99.3

current and return it.

The following kwargs are supported:

Property Description
adjustable [‘box’ | ‘datalim’]
alpha float (0.0 transparent through 1.0 opaque)
anchor unknown
animated [True | False]
aspect unknown
autoscale_on unknown
autoscalex_on unknown
autoscaley_on unknown
axes an Axes instance
axes_locator unknown
axis_bgcolor any matplotlib color - see colors()
axis_off unknown
axis_on unknown
axisbelow [True | False]
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color_cycle unknown
contains a callable function
cursor_props a (float, color) tuple
figure unknown
frame_on [True | False]
gid an id string
label any string
lod [True | False]
navigate [True | False]
navigate_mode unknown
picker [None|float|boolean|callable]
position unknown
rasterization_zorder unknown
rasterized [True | False | None]
snap unknown
title str
transform Transform instance
url a url string
visible [True | False]
xbound unknown
xlabel str
xlim len(2) sequence of floats
xscale [’linear’ | ‘log’ | ‘symlog’]
xticklabels sequence of strings
xticks sequence of floats

Continued on next page

552 Chapter 42. matplotlib figure

Matplotlib, Release 0.99.3

Table 42.2 – continued from previous page
ybound unknown
ylabel str
ylim len(2) sequence of floats
yscale [’linear’ | ‘log’ | ‘symlog’]
yticklabels sequence of strings
yticks sequence of floats
zorder any number

autofmt_xdate(bottom=0.2, rotation=30, ha=’right’)
Date ticklabels often overlap, so it is useful to rotate them and right align them. Also, a common
use case is a number of subplots with shared xaxes where the x-axis is date data. The ticklabels
are often long, and it helps to rotate them on the bottom subplot and turn them off on other
subplots, as well as turn off xlabels.

bottom the bottom of the subplots for subplots_adjust()

rotation the rotation of the xtick labels

ha the horizontal alignment of the xticklabels

clear()
Clear the figure – synonym for fig.clf

clf()
Clear the figure

colorbar(mappable, cax=None, ax=None, **kw)

Create a colorbar for a ScalarMappable instance.

Documentation for the pylab thin wrapper:

Add a colorbar to a plot.

Function signatures for the pyplot interface; all but the first are also method signatures for the
colorbar() method:

colorbar(**kwargs)
colorbar(mappable, **kwargs)
colorbar(mappable, cax=cax, **kwargs)
colorbar(mappable, ax=ax, **kwargs)

arguments:

mappable the Image, ContourSet, etc. to which the colorbar applies; this argument
is mandatory for the colorbar() method but optional for the colorbar() func-
tion, which sets the default to the current image.

keyword arguments:

cax None | axes object into which the colorbar will be drawn

42.1. matplotlib.figure 553

Matplotlib, Release 0.99.3

ax None | parent axes object from which space for a new colorbar axes will be stolen

Additional keyword arguments are of two kinds:

axes properties:

Prop-
erty

Description

orien-
tation

vertical or horizontal

frac-
tion

0.15; fraction of original axes to use for colorbar

pad 0.05 if vertical, 0.15 if horizontal; fraction of original axes
between colorbar and new image axes

shrink 1.0; fraction by which to shrink the colorbar
aspect 20; ratio of long to short dimensions

colorbar properties:

Prop-
erty

Description

ex-
tend

[‘neither’ | ‘both’ | ‘min’ | ‘max’] If not ‘neither’, make pointed
end(s) for out-of- range values. These are set for a given colormap
using the colormap set_under and set_over methods.

spac-
ing

[‘uniform’ | ‘proportional’] Uniform spacing gives each discrete
color the same space; proportional makes the space proportional to
the data interval.

ticks [None | list of ticks | Locator object] If None, ticks are determined
automatically from the input.

for-
mat

[None | format string | Formatter object] If None, the
ScalarFormatter is used. If a format string is given, e.g. ‘%.3f’,
that is used. An alternative Formatter object may be given
instead.

drawedges[False | True] If true, draw lines at color boundaries.

The following will probably be useful only in the context of indexed colors
(that is, when the mappable has norm=NoNorm()), or other unusual circum-
stances.

Prop-
erty

Description

bound-
aries

None or a sequence

val-
ues

None or a sequence which must be of length 1 less than the
sequence of boundaries. For each region delimited by adjacent
entries in boundaries, the color mapped to the corresponding value
in values will be used.

If mappable is a ContourSet, its extend kwarg is included automatically.

Note that the shrink kwarg provides a simple way to keep a vertical colorbar, for example, from
being taller than the axes of the mappable to which the colorbar is attached; but it is a manual

554 Chapter 42. matplotlib figure

Matplotlib, Release 0.99.3

method requiring some trial and error. If the colorbar is too tall (or a horizontal colorbar is too
wide) use a smaller value of shrink.

For more precise control, you can manually specify the positions of the axes objects in which the
mappable and the colorbar are drawn. In this case, do not use any of the axes properties kwargs.

returns: Colorbar instance; see also its base class, ColorbarBase. Call the set_label()
method to label the colorbar.

contains(mouseevent)
Test whether the mouse event occurred on the figure.

Returns True,{}

delaxes(a)
remove a from the figure and update the current axes

dpi

draw(artist, renderer, *args, **kwargs)
Render the figure using matplotlib.backend_bases.RendererBase instance renderer

draw_artist(a)
draw matplotlib.artist.Artist instance a only – this is available only after the figure is
drawn

figimage(X, xo=0, yo=0, alpha=1.0, norm=None, cmap=None, vmin=None, vmax=None, ori-
gin=None)

call signatures:

figimage(X, **kwargs)

adds a non-resampled array X to the figure.

figimage(X, xo, yo)

with pixel offsets xo, yo,

X must be a float array:

•If X is MxN, assume luminance (grayscale)

•If X is MxNx3, assume RGB

•If X is MxNx4, assume RGBA

Optional keyword arguments:

42.1. matplotlib.figure 555

Matplotlib, Release 0.99.3

Key-
word

Description

xo or
yo

An integer, the x and y image offset in pixels

cmap a matplotlib.cm.ColorMap instance, eg cm.jet. If None, default to the
rc image.cmap value

norm a matplotlib.colors.Normalize instance. The default is
normalization(). This scales luminance -> 0-1

vmin|vmaxare used to scale a luminance image to 0-1. If either is None, the min and
max of the luminance values will be used. Note if you pass a norm
instance, the settings for vmin and vmax will be ignored.

al-
pha

the alpha blending value, default is 1.0

ori-
gin

[‘upper’ | ‘lower’] Indicates where the [0,0] index of the array is in the
upper left or lower left corner of the axes. Defaults to the rc image.origin
value

figimage complements the axes image (imshow()) which will be resampled to fit the current
axes. If you want a resampled image to fill the entire figure, you can define an Axes with size
[0,1,0,1].

An matplotlib.image.FigureImage instance is returned.

gca(**kwargs)

556 Chapter 42. matplotlib figure

Matplotlib, Release 0.99.3

Return the current axes, creating one if necessary

The following kwargs are supported

Property Description
adjustable [‘box’ | ‘datalim’]
alpha float (0.0 transparent through 1.0 opaque)
anchor unknown
animated [True | False]
aspect unknown
autoscale_on unknown
autoscalex_on unknown
autoscaley_on unknown
axes an Axes instance
axes_locator unknown
axis_bgcolor any matplotlib color - see colors()
axis_off unknown
axis_on unknown
axisbelow [True | False]
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color_cycle unknown
contains a callable function
cursor_props a (float, color) tuple
figure unknown
frame_on [True | False]
gid an id string
label any string
lod [True | False]
navigate [True | False]
navigate_mode unknown
picker [None|float|boolean|callable]
position unknown
rasterization_zorder unknown
rasterized [True | False | None]
snap unknown
title str
transform Transform instance
url a url string
visible [True | False]
xbound unknown
xlabel str
xlim len(2) sequence of floats
xscale [’linear’ | ‘log’ | ‘symlog’]
xticklabels sequence of strings
xticks sequence of floats

Continued on next page

42.1. matplotlib.figure 557

Matplotlib, Release 0.99.3

Table 42.3 – continued from previous page
ybound unknown
ylabel str
ylim len(2) sequence of floats
yscale [’linear’ | ‘log’ | ‘symlog’]
yticklabels sequence of strings
yticks sequence of floats
zorder any number

get_axes()

get_children()
get a list of artists contained in the figure

get_dpi()
Return the dpi as a float

get_edgecolor()
Get the edge color of the Figure rectangle

get_facecolor()
Get the face color of the Figure rectangle

get_figheight()
Return the figheight as a float

get_figwidth()
Return the figwidth as a float

get_frameon()
get the boolean indicating frameon

get_size_inches()

get_tightbbox(renderer)
Return a (tight) bounding box of the figure in inches.

It only accounts axes title, axis labels, and axis ticklabels. Needs improvement.

get_window_extent(*args, **kwargs)
get the figure bounding box in display space; kwargs are void

ginput(n=1, timeout=30, show_clicks=True, mouse_add=1, mouse_pop=3, mouse_stop=2)
call signature:

ginput(self, n=1, timeout=30, show_clicks=True,
mouse_add=1, mouse_pop=3, mouse_stop=2)

Blocking call to interact with the figure.

This will wait for n clicks from the user and return a list of the coordinates of each click.

If timeout is zero or negative, does not timeout.

558 Chapter 42. matplotlib figure

Matplotlib, Release 0.99.3

If n is zero or negative, accumulate clicks until a middle click (or potentially both mouse buttons
at once) terminates the input.

Right clicking cancels last input.

The buttons used for the various actions (adding points, removing points, terminating the in-
puts) can be overriden via the arguments mouse_add, mouse_pop and mouse_stop, that give the
associated mouse button: 1 for left, 2 for middle, 3 for right.

The keyboard can also be used to select points in case your mouse does not have one or more of
the buttons. The delete and backspace keys act like right clicking (i.e., remove last point), the
enter key terminates input and any other key (not already used by the window manager) selects
a point.

hold(b=None)
Set the hold state. If hold is None (default), toggle the hold state. Else set the hold state to
boolean value b.

Eg:

hold() # toggle hold
hold(True) # hold is on
hold(False) # hold is off

legend(handles, labels, *args, **kwargs)
Place a legend in the figure. Labels are a sequence of strings, handles is a sequence of Line2D
or Patch instances, and loc can be a string or an integer specifying the legend location

USAGE:

legend((line1, line2, line3),
(’label1’, ’label2’, ’label3’),
’upper right’)

The loc location codes are:

’best’ : 0, (currently not supported for figure legends)
’upper right’ : 1,
’upper left’ : 2,
’lower left’ : 3,
’lower right’ : 4,
’right’ : 5,
’center left’ : 6,
’center right’ : 7,
’lower center’ : 8,
’upper center’ : 9,
’center’ : 10,

loc can also be an (x,y) tuple in figure coords, which specifies the lower left of the legend box.
figure coords are (0,0) is the left, bottom of the figure and 1,1 is the right, top.

Keyword arguments:

prop: [None | FontProperties | dict] A matplotlib.font_manager.FontProperties
instance. If prop is a dictionary, a new instance will be created with prop. If None,

42.1. matplotlib.figure 559

Matplotlib, Release 0.99.3

use rc settings.

numpoints: integer The number of points in the legend line, default is 4

scatterpoints: integer The number of points in the legend line, default is 4

scatteroffsets: list of floats a list of yoffsets for scatter symbols in legend

markerscale: [None | scalar] The relative size of legend markers vs. original. If
None, use rc settings.

fancybox: [None | False | True] if True, draw a frame with a round fancybox. If
None, use rc

shadow: [None | False | True] If True, draw a shadow behind legend. If None, use
rc settings.

ncol [integer] number of columns. default is 1

mode [[“expand” | None]] if mode is “expand”, the legend will be horizontally ex-
panded to fill the axes area (or bbox_to_anchor)

title [string] the legend title

Padding and spacing between various elements use following keywords parameters. The dimen-
sions of these values are given as a fraction of the fontsize. Values from rcParams will be used
if None.

Keyword Description
borderpad the fractional whitespace inside the legend border
labelspacing the vertical space between the legend entries
handlelength the length of the legend handles
handletextpad the pad between the legend handle and text
borderaxespad the pad between the axes and legend border
columnspacing the spacing between columns

Example:

560 Chapter 42. matplotlib figure

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

Line 1
Line 2

Line 3
Line 4

savefig(*args, **kwargs)
call signature:

savefig(fname, dpi=None, facecolor=’w’, edgecolor=’w’,
orientation=’portrait’, papertype=None, format=None,
transparent=False):

Save the current figure.

The output formats available depend on the backend being used.

Arguments:

fname: A string containing a path to a filename, or a Python file-like object.

If format is None and fname is a string, the output format is deduced from the
extension of the filename.

Keyword arguments:

dpi: [None | scalar > 0] The resolution in dots per inch. If None it will default to the
value savefig.dpi in the matplotlibrc file.

facecolor, edgecolor: the colors of the figure rectangle

orientation: [‘landscape’ | ‘portrait’] not supported on all backends; currently only
on postscript output

42.1. matplotlib.figure 561

Matplotlib, Release 0.99.3

papertype: One of ‘letter’, ‘legal’, ‘executive’, ‘ledger’, ‘a0’ through ‘a10’, ‘b0’
through ‘b10’. Only supported for postscript output.

format: One of the file extensions supported by the active backend. Most backends
support png, pdf, ps, eps and svg.

transparent: If True, the figure patch and axes patches will all be transparent. This is
useful, for example, for displaying a plot on top of a colored background on a web
page. The transparency of these patches will be restored to their original values
upon exit of this function.

bbox_inches: Bbox in inches. Only the given portion of the figure is saved. If ‘tight’,
try to figure out the tight bbox of the figure.

pad_inches: Amount of padding around the figure when bbox_inches is ‘tight’.

sca(a)
Set the current axes to be a and return a

set_canvas(canvas)
Set the canvas the contains the figure

ACCEPTS: a FigureCanvas instance

set_dpi(val)
Set the dots-per-inch of the figure

ACCEPTS: float

set_edgecolor(color)
Set the edge color of the Figure rectangle

ACCEPTS: any matplotlib color - see help(colors)

set_facecolor(color)
Set the face color of the Figure rectangle

ACCEPTS: any matplotlib color - see help(colors)

set_figheight(val)
Set the height of the figure in inches

ACCEPTS: float

set_figsize_inches(*args, **kwargs)

set_figwidth(val)
Set the width of the figure in inches

ACCEPTS: float

set_frameon(b)
Set whether the figure frame (background) is displayed or invisible

ACCEPTS: boolean

set_size_inches(*args, **kwargs)
set_size_inches(w,h, forward=False)

562 Chapter 42. matplotlib figure

Matplotlib, Release 0.99.3

Set the figure size in inches

Usage:

fig.set_size_inches(w,h) # OR
fig.set_size_inches((w,h))

optional kwarg forward=True will cause the canvas size to be automatically updated; eg you can
resize the figure window from the shell

WARNING: forward=True is broken on all backends except GTK* and WX*

ACCEPTS: a w,h tuple with w,h in inches

subplots_adjust(*args, **kwargs)

fig.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None,
hspace=None)

Update the SubplotParams with kwargs (defaulting to rc where None) and update the subplot
locations

suptitle(t, **kwargs)
Add a centered title to the figure.

kwargs are matplotlib.text.Text properties. Using figure coordinates, the defaults are:

•x = 0.5 the x location of text in figure coords

•y = 0.98 the y location of the text in figure coords

•horizontalalignment = ‘center’ the horizontal alignment of the text

•verticalalignment = ‘top’ the vertical alignment of the text

A matplotlib.text.Text instance is returned.

Example:

fig.suptitle(’this is the figure title’, fontsize=12)

text(x, y, s, *args, **kwargs)
Call signature:

figtext(x, y, s, fontdict=None, **kwargs)

Add text to figure at location x, y (relative 0-1 coords). See text() for the meaning of the other
arguments.

kwargs control the Text properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color

Continued on next page

42.1. matplotlib.figure 563

Matplotlib, Release 0.99.3

Table 42.4 – continued from previous page
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

waitforbuttonpress(timeout=-1)
call signature:

waitforbuttonpress(self, timeout=-1)

Blocking call to interact with the figure.

This will return True is a key was pressed, False if a mouse button was pressed and None if
timeout was reached without either being pressed.

If timeout is negative, does not timeout.

564 Chapter 42. matplotlib figure

Matplotlib, Release 0.99.3

class matplotlib.figure.SubplotParams(left=None, bottom=None, right=None, top=None,
wspace=None, hspace=None)

A class to hold the parameters for a subplot

All dimensions are fraction of the figure width or height. All values default to their rc params

The following attributes are available

left = 0.125 the left side of the subplots of the figure

right = 0.9 the right side of the subplots of the figure

bottom = 0.1 the bottom of the subplots of the figure

top = 0.9 the top of the subplots of the figure

wspace = 0.2 the amount of width reserved for blank space between subplots

hspace = 0.2 the amount of height reserved for white space between subplots

validate make sure the params are in a legal state (left*<*right, etc)

update(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
Update the current values. If any kwarg is None, default to the current value, if set, otherwise to
rc

matplotlib.figure.figaspect(arg)
Create a figure with specified aspect ratio. If arg is a number, use that aspect ratio. If arg is an array,
figaspect will determine the width and height for a figure that would fit array preserving aspect ratio.
The figure width, height in inches are returned. Be sure to create an axes with equal with and height,
eg

Example usage:

make a figure twice as tall as it is wide
w, h = figaspect(2.)
fig = Figure(figsize=(w,h))
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.imshow(A, **kwargs)

make a figure with the proper aspect for an array
A = rand(5,3)
w, h = figaspect(A)
fig = Figure(figsize=(w,h))
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.imshow(A, **kwargs)

Thanks to Fernando Perez for this function

42.1. matplotlib.figure 565

Matplotlib, Release 0.99.3

566 Chapter 42. matplotlib figure

CHAPTER

FORTYTHREE

MATPLOTLIB FONT_MANAGER

43.1 matplotlib.font_manager

A module for finding, managing, and using fonts across platforms.

This module provides a single FontManager instance that can be shared across backends and platforms. The
findfont() function returns the best TrueType (TTF) font file in the local or system font path that matches
the specified FontProperties instance. The FontManager also handles Adobe Font Metrics (AFM) font
files for use by the PostScript backend.

The design is based on the W3C Cascading Style Sheet, Level 1 (CSS1) font specification. Future versions
may implement the Level 2 or 2.1 specifications.

Experimental support is included for using fontconfig on Unix variant platforms (Linux, OS X, Solaris). To
enable it, set the constant USE_FONTCONFIG in this file to True. Fontconfig has the advantage that it is the
standard way to look up fonts on X11 platforms, so if a font is installed, it is much more likely to be found.

class matplotlib.font_manager.FontEntry(fname=’‘, name=’‘, style=’normal’,
variant=’normal’, weight=’normal’,
stretch=’normal’, size=’medium’)

Bases: object

A class for storing Font properties. It is used when populating the font lookup dictionary.

class matplotlib.font_manager.FontManager(size=None, weight=’normal’)
On import, the FontManager singleton instance creates a list of TrueType fonts based on the font
properties: name, style, variant, weight, stretch, and size. The findfont() method does a nearest
neighbor search to find the font that most closely matches the specification. If no good enough match
is found, a default font is returned.

findfont(prop, fontext=’ttf’)
Search the font list for the font that most closely matches the FontProperties prop.

findfont() performs a nearest neighbor search. Each font is given a similarity score to the
target font properties. The first font with the highest score is returned. If no matches below a
certain threshold are found, the default font (usually Vera Sans) is returned.

The result is cached, so subsequent lookups don’t have to perform the O(n) nearest neighbor
search.

567

http://www.w3.org/TR/1998/REC-CSS2-19980512/

Matplotlib, Release 0.99.3

See the W3C Cascading Style Sheet, Level 1 documentation for a description of the font finding
algorithm.

get_default_size()
Return the default font size.

get_default_weight()
Return the default font weight.

score_family(families, family2)
Returns a match score between the list of font families in families and the font family name
family2.

An exact match anywhere in the list returns 0.0.

A match by generic font name will return 0.1.

No match will return 1.0.

score_size(size1, size2)
Returns a match score between size1 and size2.

If size2 (the size specified in the font file) is ‘scalable’, this function always returns 0.0, since
any font size can be generated.

Otherwise, the result is the absolute distance between size1 and size2, normalized so that the
usual range of font sizes (6pt - 72pt) will lie between 0.0 and 1.0.

score_stretch(stretch1, stretch2)
Returns a match score between stretch1 and stretch2.

The result is the absolute value of the difference between the CSS numeric values of stretch1
and stretch2, normalized between 0.0 and 1.0.

score_style(style1, style2)
Returns a match score between style1 and style2.

An exact match returns 0.0.

A match between ‘italic’ and ‘oblique’ returns 0.1.

No match returns 1.0.

score_variant(variant1, variant2)
Returns a match score between variant1 and variant2.

An exact match returns 0.0, otherwise 1.0.

score_weight(weight1, weight2)
Returns a match score between weight1 and weight2.

The result is the absolute value of the difference between the CSS numeric values of weight1
and weight2, normalized between 0.0 and 1.0.

set_default_size(size)
Set the default font size in points. The initial value is set by font.size in rc.

568 Chapter 43. matplotlib font_manager

http://www.w3.org/TR/1998/REC-CSS2-19980512/

Matplotlib, Release 0.99.3

set_default_weight(weight)
Set the default font weight. The initial value is ‘normal’.

update_fonts(filenames)
Update the font dictionary with new font files. Currently not implemented.

class matplotlib.font_manager.FontProperties(family=None, style=None, variant=None,
weight=None, stretch=None, size=None,
fname=None, _init=None)

Bases: object

A class for storing and manipulating font properties.

The font properties are those described in the W3C Cascading Style Sheet, Level 1 font specification.
The six properties are:

•family: A list of font names in decreasing order of priority. The items may include a generic
font family name, either ‘serif’, ‘sans-serif’, ‘cursive’, ‘fantasy’, or ‘monospace’. In that case,
the actual font to be used will be looked up from the associated rcParam in matplotlibrc.

•style: Either ‘normal’, ‘italic’ or ‘oblique’.

•variant: Either ‘normal’ or ‘small-caps’.

•stretch: A numeric value in the range 0-1000 or one of ‘ultra-condensed’, ‘extra-condensed’,
‘condensed’, ‘semi-condensed’, ‘normal’, ‘semi-expanded’, ‘expanded’, ‘extra-expanded’ or
‘ultra-expanded’

•weight: A numeric value in the range 0-1000 or one of ‘ultralight’, ‘light’, ‘normal’, ‘regu-
lar’, ‘book’, ‘medium’, ‘roman’, ‘semibold’, ‘demibold’, ‘demi’, ‘bold’, ‘heavy’, ‘extra bold’,
‘black’

•size: Either an relative value of ‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-
large’ or an absolute font size, e.g. 12

The default font property for TrueType fonts (as specified in the default matplotlibrc file) is:

sans-serif, normal, normal, normal, normal, scalable.

Alternatively, a font may be specified using an absolute path to a .ttf file, by using the fname kwarg.

The preferred usage of font sizes is to use the relative values, e.g. ‘large’, instead of absolute font
sizes, e.g. 12. This approach allows all text sizes to be made larger or smaller based on the font
manager’s default font size, i.e. by using the FontManager.set_default_size() method.

This class will also accept a fontconfig pattern, if it is the only argument provided. See the documen-
tation on fontconfig patterns. This support does not require fontconfig to be installed. We are merely
borrowing its pattern syntax for use here.

Note that matplotlib’s internal font manager and fontconfig use a different algorithm to lookup fonts,
so the results of the same pattern may be different in matplotlib than in other applications that use
fontconfig.

copy()
Return a deep copy of self

43.1. matplotlib.font_manager 569

http://www.w3.org/TR/1998/REC-CSS2-19980512/
http://www.fontconfig.org/
http://www.fontconfig.org/fontconfig-user.html

Matplotlib, Release 0.99.3

get_family()
Return a list of font names that comprise the font family.

get_file()
Return the filename of the associated font.

get_fontconfig_pattern()
Get a fontconfig pattern suitable for looking up the font as specified with fontconfig’s fc-match
utility.

See the documentation on fontconfig patterns.

This support does not require fontconfig to be installed or support for it to be enabled. We are
merely borrowing its pattern syntax for use here.

get_name()
Return the name of the font that best matches the font properties.

get_size()
Return the font size.

get_size_in_points()

get_slant()
Return the font style. Values are: ‘normal’, ‘italic’ or ‘oblique’.

get_stretch()
Return the font stretch or width. Options are: ‘ultra-condensed’, ‘extra-condensed’, ‘con-
densed’, ‘semi-condensed’, ‘normal’, ‘semi-expanded’, ‘expanded’, ‘extra-expanded’, ‘ultra-
expanded’.

get_style()
Return the font style. Values are: ‘normal’, ‘italic’ or ‘oblique’.

get_variant()
Return the font variant. Values are: ‘normal’ or ‘small-caps’.

get_weight()
Set the font weight. Options are: A numeric value in the range 0-1000 or one of ‘light’, ‘normal’,
‘regular’, ‘book’, ‘medium’, ‘roman’, ‘semibold’, ‘demibold’, ‘demi’, ‘bold’, ‘heavy’, ‘extra
bold’, ‘black’

set_family(family)
Change the font family. May be either an alias (generic name is CSS parlance), such as: ‘serif’,
‘sans-serif’, ‘cursive’, ‘fantasy’, or ‘monospace’, or a real font name.

set_file(file)
Set the filename of the fontfile to use. In this case, all other properties will be ignored.

set_fontconfig_pattern(pattern)
Set the properties by parsing a fontconfig pattern.

See the documentation on fontconfig patterns.

This support does not require fontconfig to be installed or support for it to be enabled. We are
merely borrowing its pattern syntax for use here.

570 Chapter 43. matplotlib font_manager

http://www.fontconfig.org/fontconfig-user.html
http://www.fontconfig.org/fontconfig-user.html

Matplotlib, Release 0.99.3

set_name(family)
Change the font family. May be either an alias (generic name is CSS parlance), such as: ‘serif’,
‘sans-serif’, ‘cursive’, ‘fantasy’, or ‘monospace’, or a real font name.

set_size(size)
Set the font size. Either an relative value of ‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’,
‘x-large’, ‘xx-large’ or an absolute font size, e.g. 12.

set_slant(style)
Set the font style. Values are: ‘normal’, ‘italic’ or ‘oblique’.

set_stretch(stretch)
Set the font stretch or width. Options are: ‘ultra-condensed’, ‘extra-condensed’, ‘con-
densed’, ‘semi-condensed’, ‘normal’, ‘semi-expanded’, ‘expanded’, ‘extra-expanded’ or ‘ultra-
expanded’, or a numeric value in the range 0-1000.

set_style(style)
Set the font style. Values are: ‘normal’, ‘italic’ or ‘oblique’.

set_variant(variant)
Set the font variant. Values are: ‘normal’ or ‘small-caps’.

set_weight(weight)
Set the font weight. May be either a numeric value in the range 0-1000 or one of ‘ultralight’,
‘light’, ‘normal’, ‘regular’, ‘book’, ‘medium’, ‘roman’, ‘semibold’, ‘demibold’, ‘demi’, ‘bold’,
‘heavy’, ‘extra bold’, ‘black’

matplotlib.font_manager.OSXFontDirectory()
Return the system font directories for OS X. This is done by starting at the list of hardcoded paths in
OSXFontDirectories and returning all nested directories within them.

matplotlib.font_manager.OSXInstalledFonts(directory=None, fontext=’ttf’)
Get list of font files on OS X - ignores font suffix by default.

matplotlib.font_manager.afmFontProperty(fontpath, font)
A function for populating a FontKey instance by extracting information from the AFM font file.

font is a class:AFM instance.

matplotlib.font_manager.createFontList(fontfiles, fontext=’ttf’)
A function to create a font lookup list. The default is to create a list of TrueType fonts. An AFM font
list can optionally be created.

matplotlib.font_manager.findSystemFonts(fontpaths=None, fontext=’ttf’)
Search for fonts in the specified font paths. If no paths are given, will use a standard set of system
paths, as well as the list of fonts tracked by fontconfig if fontconfig is installed and available. A list of
TrueType fonts are returned by default with AFM fonts as an option.

matplotlib.font_manager.findfont(prop, **kw)

matplotlib.font_manager.get_fontconfig_fonts(fontext=’ttf’)
Grab a list of all the fonts that are being tracked by fontconfig by making a system call to fc-list.
This is an easy way to grab all of the fonts the user wants to be made available to applications, without
needing knowing where all of them reside.

43.1. matplotlib.font_manager 571

Matplotlib, Release 0.99.3

matplotlib.font_manager.get_fontext_synonyms(fontext)
Return a list of file extensions extensions that are synonyms for the given file extension fileext.

matplotlib.font_manager.is_opentype_cff_font(filename)
Returns True if the given font is a Postscript Compact Font Format Font embedded in an OpenType
wrapper. Used by the PostScript and PDF backends that can not subset these fonts.

matplotlib.font_manager.pickle_dump(data, filename)
Equivalent to pickle.dump(data, open(filename, ‘w’)) but closes the file to prevent filehandle leakage.

matplotlib.font_manager.pickle_load(filename)
Equivalent to pickle.load(open(filename, ‘r’)) but closes the file to prevent filehandle leakage.

matplotlib.font_manager.ttfFontProperty(font)
A function for populating the FontKey by extracting information from the TrueType font file.

font is a FT2Font instance.

matplotlib.font_manager.ttfdict_to_fnames(d)
flatten a ttfdict to all the filenames it contains

matplotlib.font_manager.weight_as_number(weight)
Return the weight property as a numeric value. String values are converted to their corresponding
numeric value.

matplotlib.font_manager.win32FontDirectory()
Return the user-specified font directory for Win32. This is looked up from the registry key:

\HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\Fonts

If the key is not found, $WINDIR/Fonts will be returned.

matplotlib.font_manager.win32InstalledFonts(directory=None, fontext=’ttf’)
Search for fonts in the specified font directory, or use the system directories if none given. A list of
TrueType font filenames are returned by default, or AFM fonts if fontext == ‘afm’.

matplotlib.font_manager.x11FontDirectory()
Return the system font directories for X11. This is done by starting at the list of hardcoded paths in
X11FontDirectories and returning all nested directories within them.

43.2 matplotlib.fontconfig_pattern

A module for parsing and generating fontconfig patterns.

See the fontconfig pattern specification for more information.

class matplotlib.fontconfig_pattern.FontconfigPatternParser
A simple pyparsing-based parser for fontconfig-style patterns.

See the fontconfig pattern specification for more information.

parse(pattern)
Parse the given fontconfig pattern and return a dictionary of key/value pairs useful for initializing
a font_manager.FontProperties object.

572 Chapter 43. matplotlib font_manager

http://www.fontconfig.org/fontconfig-user.html
http://www.fontconfig.org/fontconfig-user.html

Matplotlib, Release 0.99.3

matplotlib.fontconfig_pattern.family_escape()
sub(repl, string[, count = 0]) –> newstring Return the string obtained by replacing the leftmost non-
overlapping occurrences of pattern in string by the replacement repl.

matplotlib.fontconfig_pattern.family_unescape()
sub(repl, string[, count = 0]) –> newstring Return the string obtained by replacing the leftmost non-
overlapping occurrences of pattern in string by the replacement repl.

matplotlib.fontconfig_pattern.generate_fontconfig_pattern(d)
Given a dictionary of key/value pairs, generates a fontconfig pattern string.

matplotlib.fontconfig_pattern.value_escape()
sub(repl, string[, count = 0]) –> newstring Return the string obtained by replacing the leftmost non-
overlapping occurrences of pattern in string by the replacement repl.

matplotlib.fontconfig_pattern.value_unescape()
sub(repl, string[, count = 0]) –> newstring Return the string obtained by replacing the leftmost non-
overlapping occurrences of pattern in string by the replacement repl.

43.2. matplotlib.fontconfig_pattern 573

Matplotlib, Release 0.99.3

574 Chapter 43. matplotlib font_manager

CHAPTER

FORTYFOUR

MATPLOTLIB NXUTILS

44.1 matplotlib.nxutils

general purpose numerical utilities, eg for computational geometry, that are not available in numpy

575

http://numpy.scipy.org

Matplotlib, Release 0.99.3

576 Chapter 44. matplotlib nxutils

577

Matplotlib, Release 0.99.3

CHAPTER

FORTYFIVE

MATPLOTLIB MATHTEXT

Accent

Char

GlueSpec

NegFilll

Glue

Fill

SsGlue

Filll

NegFil

Fil

NegFill

StandardPsFonts

Fonts

TruetypeFonts

MathtextBackendPdf

MathtextBackend

MathtextBackendSvg

MathtextBackendPs

MathtextBackendAggRender

MathtextBackendBbox

MathtextBackendCairo

Ship

Rule

Vrule

Hrule

Box

List

Hbox

Vbox

BakomaFonts

UnicodeFonts

MathTextWarning

StixFonts StixSansFonts

SubSuperCluster

Hlist

HCentered

AutoHeightChar

VCentered

AutoWidthChar

Vlist

Node

Kern

MathtextBackendBitmapRender

Parser

MathTextParser

578 Chapter 45. matplotlib mathtext

Matplotlib, Release 0.99.3

45.1 matplotlib.mathtext

mathtext is a module for parsing a subset of the TeX math syntax and drawing them to a matplotlib
backend.

For a tutorial of its usage see Writing mathematical expressions. This document is primarily concerned with
implementation details.

The module uses pyparsing to parse the TeX expression.

The Bakoma distribution of the TeX Computer Modern fonts, and STIX fonts are supported. There is
experimental support for using arbitrary fonts, but results may vary without proper tweaking and metrics for
those fonts.

If you find TeX expressions that don’t parse or render properly, please email mdroe@stsci.edu, but please
check KNOWN ISSUES below first.

class matplotlib.mathtext.Accent(c, state)
Bases: matplotlib.mathtext.Char

The font metrics need to be dealt with differently for accents, since they are already offset correctly
from the baseline in TrueType fonts.

grow()

render(x, y)
Render the character to the canvas.

shrink()

class matplotlib.mathtext.AutoHeightChar(c, height, depth, state, always=False)
Bases: matplotlib.mathtext.Hlist

AutoHeightChar will create a character as close to the given height and depth as possible. When
using a font with multiple height versions of some characters (such as the BaKoMa fonts), the correct
glyph will be selected, otherwise this will always just return a scaled version of the glyph.

class matplotlib.mathtext.AutoWidthChar(c, width, state, always=False, char_class=<class
‘matplotlib.mathtext.Char’>)

Bases: matplotlib.mathtext.Hlist

AutoWidthChar will create a character as close to the given width as possible. When using a font
with multiple width versions of some characters (such as the BaKoMa fonts), the correct glyph will
be selected, otherwise this will always just return a scaled version of the glyph.

class matplotlib.mathtext.BakomaFonts(*args, **kwargs)
Bases: matplotlib.mathtext.TruetypeFonts

Use the Bakoma TrueType fonts for rendering.

Symbols are strewn about a number of font files, each of which has its own proprietary 8-bit encoding.

get_sized_alternatives_for_symbol(fontname, sym)

45.1. matplotlib.mathtext 579

http://pyparsing.wikispaces.com/
mailto:mdroe@stsci.edu

Matplotlib, Release 0.99.3

class matplotlib.mathtext.Box(width, height, depth)
Bases: matplotlib.mathtext.Node

Represents any node with a physical location.

grow()

render(x1, y1, x2, y2)

shrink()

class matplotlib.mathtext.Char(c, state)
Bases: matplotlib.mathtext.Node

Represents a single character. Unlike TeX, the font information and metrics are stored with each
Char to make it easier to lookup the font metrics when needed. Note that TeX boxes have a width,
height, and depth, unlike Type1 and Truetype which use a full bounding box and an advance in the
x-direction. The metrics must be converted to the TeX way, and the advance (if different from width)
must be converted into a Kern node when the Char is added to its parent Hlist.

get_kerning(next)
Return the amount of kerning between this and the given character. Called when characters are
strung together into Hlist to create Kern nodes.

grow()

is_slanted()

render(x, y)
Render the character to the canvas

shrink()

matplotlib.mathtext.Error(msg)
Helper class to raise parser errors.

matplotlib.mathtext.FT2Font()
FT2Font

matplotlib.mathtext.FT2Image()
FT2Image

class matplotlib.mathtext.Fil
Bases: matplotlib.mathtext.Glue

class matplotlib.mathtext.Fill
Bases: matplotlib.mathtext.Glue

class matplotlib.mathtext.Filll
Bases: matplotlib.mathtext.Glue

class matplotlib.mathtext.Fonts(default_font_prop, mathtext_backend)
Bases: object

An abstract base class for a system of fonts to use for mathtext.

The class must be able to take symbol keys and font file names and return the character metrics. It
also delegates to a backend class to do the actual drawing.

580 Chapter 45. matplotlib mathtext

Matplotlib, Release 0.99.3

default_font_prop: A FontProperties object to use for the default non-math font, or the base font
for Unicode (generic) font rendering.

mathtext_backend: A subclass of MathTextBackend used to delegate the actual rendering.

destroy()
Fix any cyclical references before the object is about to be destroyed.

get_kern(font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi)
Get the kerning distance for font between sym1 and sym2.

fontX: one of the TeX font names:

tt, it, rm, cal, sf, bf or default/regular (non-math)

fontclassX: TODO

symX: a symbol in raw TeX form. e.g. ‘1’, ‘x’ or ‘sigma’

fontsizeX: the fontsize in points

dpi: the current dots-per-inch

get_metrics(font, font_class, sym, fontsize, dpi)
font: one of the TeX font names:

tt, it, rm, cal, sf, bf or default/regular (non-math)

font_class: TODO

sym: a symbol in raw TeX form. e.g. ‘1’, ‘x’ or ‘sigma’

fontsize: font size in points

dpi: current dots-per-inch

Returns an object with the following attributes:

•advance: The advance distance (in points) of the glyph.

•height: The height of the glyph in points.

•width: The width of the glyph in points.

•xmin, xmax, ymin, ymax - the ink rectangle of the glyph

•iceberg - the distance from the baseline to the top of the glyph. This corresponds to TeX’s
definition of “height”.

get_results(box)
Get the data needed by the backend to render the math expression. The return value is backend-
specific.

get_sized_alternatives_for_symbol(fontname, sym)
Override if your font provides multiple sizes of the same symbol. Should return a list of symbols
matching sym in various sizes. The expression renderer will select the most appropriate size for
a given situation from this list.

45.1. matplotlib.mathtext 581

Matplotlib, Release 0.99.3

get_underline_thickness(font, fontsize, dpi)
Get the line thickness that matches the given font. Used as a base unit for drawing lines such as
in a fraction or radical.

get_used_characters()
Get the set of characters that were used in the math expression. Used by backends that need to
subset fonts so they know which glyphs to include.

get_xheight(font, fontsize, dpi)
Get the xheight for the given font and fontsize.

render_glyph(ox, oy, facename, font_class, sym, fontsize, dpi)
Draw a glyph at

•ox, oy: position

•facename: One of the TeX face names

•font_class:

•sym: TeX symbol name or single character

•fontsize: fontsize in points

•dpi: The dpi to draw at.

render_rect_filled(x1, y1, x2, y2)
Draw a filled rectangle from (x1, y1) to (x2, y2).

set_canvas_size(w, h, d)
Set the size of the buffer used to render the math expression. Only really necessary for the bitmap
backends.

class matplotlib.mathtext.Glue(glue_type, copy=False)
Bases: matplotlib.mathtext.Node

Most of the information in this object is stored in the underlying GlueSpec class, which is shared be-
tween multiple glue objects. (This is a memory optimization which probably doesn’t matter anymore,
but it’s easier to stick to what TeX does.)

grow()

shrink()

class matplotlib.mathtext.GlueSpec(width=0.0, stretch=0.0, stretch_order=0, shrink=0.0,
shrink_order=0)

Bases: object

See Glue.

copy()

classmethod factory(glue_type)

class matplotlib.mathtext.HCentered(elements)
Bases: matplotlib.mathtext.Hlist

A convenience class to create an Hlist whose contents are centered within its enclosing box.

582 Chapter 45. matplotlib mathtext

Matplotlib, Release 0.99.3

class matplotlib.mathtext.Hbox(width)
Bases: matplotlib.mathtext.Box

A box with only width (zero height and depth).

class matplotlib.mathtext.Hlist(elements, w=0.0, m=’additional’, do_kern=True)
Bases: matplotlib.mathtext.List

A horizontal list of boxes.

hpack(w=0.0, m=’additional’)
The main duty of hpack() is to compute the dimensions of the resulting boxes, and to adjust
the glue if one of those dimensions is pre-specified. The computed sizes normally enclose all of
the material inside the new box; but some items may stick out if negative glue is used, if the box
is overfull, or if a \vbox includes other boxes that have been shifted left.

•w: specifies a width

•m: is either ‘exactly’ or ‘additional’.

Thus, hpack(w, ’exactly’) produces a box whose width is exactly w, while hpack(w,
’additional’) yields a box whose width is the natural width plus w. The default values
produce a box with the natural width.

kern()
Insert Kern nodes between Char nodes to set kerning. The Char nodes themselves determine
the amount of kerning they need (in get_kerning()), and this function just creates the linked
list in the correct way.

class matplotlib.mathtext.Hrule(state)
Bases: matplotlib.mathtext.Rule

Convenience class to create a horizontal rule.

class matplotlib.mathtext.Kern(width)
Bases: matplotlib.mathtext.Node

A Kern node has a width field to specify a (normally negative) amount of spacing. This spacing
correction appears in horizontal lists between letters like A and V when the font designer said that it
looks better to move them closer together or further apart. A kern node can also appear in a vertical
list, when its width denotes additional spacing in the vertical direction.

grow()

shrink()

class matplotlib.mathtext.List(elements)
Bases: matplotlib.mathtext.Box

A list of nodes (either horizontal or vertical).

grow()

shrink()

class matplotlib.mathtext.MathTextParser(output)
Bases: object

45.1. matplotlib.mathtext 583

Matplotlib, Release 0.99.3

Create a MathTextParser for the given backend output.

get_depth(texstr, dpi=120, fontsize=14)
Returns the offset of the baseline from the bottom of the image in pixels.

texstr A valid mathtext string, eg r’IQ: $sigma_i=15$’

dpi The dots-per-inch to render the text

fontsize The font size in points

parse(s, dpi=72, prop=None)
Parse the given math expression s at the given dpi. If prop is provided, it is a FontProperties
object specifying the “default” font to use in the math expression, used for all non-math text.

The results are cached, so multiple calls to parse() with the same expression should be fast.

to_mask(texstr, dpi=120, fontsize=14)

texstr A valid mathtext string, eg r’IQ: $sigma_i=15$’

dpi The dots-per-inch to render the text

fontsize The font size in points

Returns a tuple (array, depth)

•array is an NxM uint8 alpha ubyte mask array of rasterized tex.

•depth is the offset of the baseline from the bottom of the image in pixels.

to_png(filename, texstr, color=’black’, dpi=120, fontsize=14)
Writes a tex expression to a PNG file.

Returns the offset of the baseline from the bottom of the image in pixels.

filename A writable filename or fileobject

texstr A valid mathtext string, eg r’IQ: $sigma_i=15$’

color A valid matplotlib color argument

dpi The dots-per-inch to render the text

fontsize The font size in points

Returns the offset of the baseline from the bottom of the image in pixels.

to_rgba(texstr, color=’black’, dpi=120, fontsize=14)

texstr A valid mathtext string, eg r’IQ: $sigma_i=15$’

color Any matplotlib color argument

dpi The dots-per-inch to render the text

fontsize The font size in points

Returns a tuple (array, depth)

•array is an NxM uint8 alpha ubyte mask array of rasterized tex.

584 Chapter 45. matplotlib mathtext

Matplotlib, Release 0.99.3

•depth is the offset of the baseline from the bottom of the image in pixels.

exception matplotlib.mathtext.MathTextWarning
Bases: exceptions.Warning

class matplotlib.mathtext.MathtextBackend
Bases: object

The base class for the mathtext backend-specific code. The purpose of MathtextBackend subclasses
is to interface between mathtext and a specific matplotlib graphics backend.

Subclasses need to override the following:

•render_glyph()

•render_filled_rect()

•get_results()

And optionally, if you need to use a Freetype hinting style:

•get_hinting_type()

get_hinting_type()
Get the Freetype hinting type to use with this particular backend.

get_results(box)
Return a backend-specific tuple to return to the backend after all processing is done.

render_filled_rect(x1, y1, x2, y2)
Draw a filled black rectangle from (x1, y1) to (x2, y2).

render_glyph(ox, oy, info)
Draw a glyph described by info to the reference point (ox, oy).

set_canvas_size(w, h, d)
Dimension the drawing canvas

matplotlib.mathtext.MathtextBackendAgg()

class matplotlib.mathtext.MathtextBackendAggRender
Bases: matplotlib.mathtext.MathtextBackend

Render glyphs and rectangles to an FTImage buffer, which is later transferred to the Agg image by
the Agg backend.

get_hinting_type()

get_results(box)

render_glyph(ox, oy, info)

render_rect_filled(x1, y1, x2, y2)

set_canvas_size(w, h, d)

class matplotlib.mathtext.MathtextBackendBbox(real_backend)
Bases: matplotlib.mathtext.MathtextBackend

A backend whose only purpose is to get a precise bounding box. Only required for the Agg backend.

45.1. matplotlib.mathtext 585

Matplotlib, Release 0.99.3

get_hinting_type()

get_results(box)

render_glyph(ox, oy, info)

render_rect_filled(x1, y1, x2, y2)

matplotlib.mathtext.MathtextBackendBitmap()
A backend to generate standalone mathtext images. No additional matplotlib backend is required.

class matplotlib.mathtext.MathtextBackendBitmapRender
Bases: matplotlib.mathtext.MathtextBackendAggRender

get_results(box)

class matplotlib.mathtext.MathtextBackendCairo
Bases: matplotlib.mathtext.MathtextBackend

Store information to write a mathtext rendering to the Cairo backend.

get_results(box)

render_glyph(ox, oy, info)

render_rect_filled(x1, y1, x2, y2)

class matplotlib.mathtext.MathtextBackendPdf
Bases: matplotlib.mathtext.MathtextBackend

Store information to write a mathtext rendering to the PDF backend.

get_results(box)

render_glyph(ox, oy, info)

render_rect_filled(x1, y1, x2, y2)

class matplotlib.mathtext.MathtextBackendPs
Bases: matplotlib.mathtext.MathtextBackend

Store information to write a mathtext rendering to the PostScript backend.

get_results(box)

render_glyph(ox, oy, info)

render_rect_filled(x1, y1, x2, y2)

class matplotlib.mathtext.MathtextBackendSvg
Bases: matplotlib.mathtext.MathtextBackend

Store information to write a mathtext rendering to the SVG backend.

get_results(box)

render_glyph(ox, oy, info)

render_rect_filled(x1, y1, x2, y2)

586 Chapter 45. matplotlib mathtext

Matplotlib, Release 0.99.3

class matplotlib.mathtext.NegFil
Bases: matplotlib.mathtext.Glue

class matplotlib.mathtext.NegFill
Bases: matplotlib.mathtext.Glue

class matplotlib.mathtext.NegFilll
Bases: matplotlib.mathtext.Glue

class matplotlib.mathtext.Node
Bases: object

A node in the TeX box model

get_kerning(next)

grow()
Grows one level larger. There is no limit to how big something can get.

render(x, y)

shrink()
Shrinks one level smaller. There are only three levels of sizes, after which things will no longer
get smaller.

class matplotlib.mathtext.Parser
Bases: object

This is the pyparsing-based parser for math expressions. It actually parses full strings containing math
expressions, in that raw text may also appear outside of pairs of $.

The grammar is based directly on that in TeX, though it cuts a few corners.

class State(font_output, font, font_class, fontsize, dpi)
Bases: object

Stores the state of the parser.

States are pushed and popped from a stack as necessary, and the “current” state is always at the
top of the stack.

copy()

font

Parser.accent(s, loc, toks)

Parser.auto_sized_delimiter(s, loc, toks)

Parser.char_over_chars(s, loc, toks)

Parser.clear()
Clear any state before parsing.

Parser.customspace(s, loc, toks)

Parser.end_group(s, loc, toks)

Parser.finish(s, loc, toks)

45.1. matplotlib.mathtext 587

Matplotlib, Release 0.99.3

Parser.font(s, loc, toks)

Parser.frac(s, loc, toks)

Parser.function(s, loc, toks)

Parser.get_state()
Get the current State of the parser.

Parser.group(s, loc, toks)

Parser.is_dropsub(nucleus)

Parser.is_overunder(nucleus)

Parser.is_slanted(nucleus)

Parser.math(s, loc, toks)

Parser.non_math(s, loc, toks)

Parser.parse(s, fonts_object, fontsize, dpi)
Parse expression s using the given fonts_object for output, at the given fontsize and dpi.

Returns the parse tree of Node instances.

Parser.pop_state()
Pop a State off of the stack.

Parser.push_state()
Push a new State onto the stack which is just a copy of the current state.

Parser.space(s, loc, toks)

Parser.sqrt(s, loc, toks)

Parser.start_group(s, loc, toks)

Parser.subsuperscript(s, loc, toks)

Parser.symbol(s, loc, toks)

class matplotlib.mathtext.Rule(width, height, depth, state)
Bases: matplotlib.mathtext.Box

A Rule node stands for a solid black rectangle; it has width, depth, and height fields just as in an
Hlist. However, if any of these dimensions is inf, the actual value will be determined by running the
rule up to the boundary of the innermost enclosing box. This is called a “running dimension.” The
width is never running in an Hlist; the height and depth are never running in a Vlist.

render(x, y, w, h)

class matplotlib.mathtext.Ship
Bases: object

Once the boxes have been set up, this sends them to output. Since boxes can be inside of boxes
inside of boxes, the main work of Ship is done by two mutually recursive routines, hlist_out()
and vlist_out(), which traverse the Hlist nodes and Vlist nodes inside of horizontal and vertical

588 Chapter 45. matplotlib mathtext

Matplotlib, Release 0.99.3

boxes. The global variables used in TeX to store state as it processes have become member variables
here.

static clamp(value)

hlist_out(box)

vlist_out(box)

class matplotlib.mathtext.SsGlue
Bases: matplotlib.mathtext.Glue

class matplotlib.mathtext.StandardPsFonts(default_font_prop)
Bases: matplotlib.mathtext.Fonts

Use the standard postscript fonts for rendering to backend_ps

Unlike the other font classes, BakomaFont and UnicodeFont, this one requires the Ps backend.

get_kern(font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi)

get_underline_thickness(font, fontsize, dpi)

get_xheight(font, fontsize, dpi)

class matplotlib.mathtext.StixFonts(*args, **kwargs)
Bases: matplotlib.mathtext.UnicodeFonts

A font handling class for the STIX fonts.

In addition to what UnicodeFonts provides, this class:

•supports “virtual fonts” which are complete alpha numeric character sets with different font
styles at special Unicode code points, such as “Blackboard”.

•handles sized alternative characters for the STIXSizeX fonts.

get_sized_alternatives_for_symbol(fontname, sym)

class matplotlib.mathtext.StixSansFonts(*args, **kwargs)
Bases: matplotlib.mathtext.StixFonts

A font handling class for the STIX fonts (that uses sans-serif characters by default).

class matplotlib.mathtext.SubSuperCluster
Bases: matplotlib.mathtext.Hlist

SubSuperCluster is a sort of hack to get around that fact that this code do a two-pass parse like TeX.
This lets us store enough information in the hlist itself, namely the nucleus, sub- and super-script, such
that if another script follows that needs to be attached, it can be reconfigured on the fly.

class matplotlib.mathtext.TruetypeFonts(default_font_prop, mathtext_backend)
Bases: matplotlib.mathtext.Fonts

A generic base class for all font setups that use Truetype fonts (through FT2Font).

class CachedFont(font)

TruetypeFonts.destroy()

45.1. matplotlib.mathtext 589

Matplotlib, Release 0.99.3

TruetypeFonts.get_kern(font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, font-
size2, dpi)

TruetypeFonts.get_underline_thickness(font, fontsize, dpi)

TruetypeFonts.get_xheight(font, fontsize, dpi)

class matplotlib.mathtext.UnicodeFonts(*args, **kwargs)
Bases: matplotlib.mathtext.TruetypeFonts

An abstract base class for handling Unicode fonts.

While some reasonably complete Unicode fonts (such as DejaVu) may work in some situations, the
only Unicode font I’m aware of with a complete set of math symbols is STIX.

This class will “fallback” on the Bakoma fonts when a required symbol can not be found in the font.

get_sized_alternatives_for_symbol(fontname, sym)

class matplotlib.mathtext.VCentered(elements)
Bases: matplotlib.mathtext.Hlist

A convenience class to create a Vlist whose contents are centered within its enclosing box.

class matplotlib.mathtext.Vbox(height, depth)
Bases: matplotlib.mathtext.Box

A box with only height (zero width).

class matplotlib.mathtext.Vlist(elements, h=0.0, m=’additional’)
Bases: matplotlib.mathtext.List

A vertical list of boxes.

vpack(h=0.0, m=’additional’, l=inf)
The main duty of vpack() is to compute the dimensions of the resulting boxes, and to adjust
the glue if one of those dimensions is pre-specified.

•h: specifies a height

•m: is either ‘exactly’ or ‘additional’.

•l: a maximum height

Thus, vpack(h, ’exactly’) produces a box whose height is exactly h, while vpack(h,
’additional’) yields a box whose height is the natural height plus h. The default values
produce a box with the natural width.

class matplotlib.mathtext.Vrule(state)
Bases: matplotlib.mathtext.Rule

Convenience class to create a vertical rule.

matplotlib.mathtext.get_unicode_index(symbol)
get_unicode_index(symbol) -> integer

Return the integer index (from the Unicode table) of symbol. symbol can be a single unicode character,
a TeX command (i.e. r’pi’), or a Type1 symbol name (i.e. ‘phi’).

590 Chapter 45. matplotlib mathtext

CHAPTER

FORTYSIX

MATPLOTLIB MLAB

46.1 matplotlib.mlab

Numerical python functions written for compatability with matlab(TM) commands with the same names.

46.1.1 Matlab(TM) compatible functions

cohere() Coherence (normalized cross spectral density)

csd() Cross spectral density uing Welch’s average periodogram

detrend() Remove the mean or best fit line from an array

find()

Return the indices where some condition is true; numpy.nonzero is similar but more general.

griddata()

interpolate irregularly distributed data to a regular grid.

prctile() find the percentiles of a sequence

prepca() Principal Component Analysis

psd() Power spectral density uing Welch’s average periodogram

rk4() A 4th order runge kutta integrator for 1D or ND systems

specgram() Spectrogram (power spectral density over segments of time)

46.1.2 Miscellaneous functions

Functions that don’t exist in matlab(TM), but are useful anyway:

cohere_pairs() Coherence over all pairs. This is not a matlab function, but we compute coherence a lot
in my lab, and we compute it for a lot of pairs. This function is optimized to do this efficiently by
caching the direct FFTs.

591

Matplotlib, Release 0.99.3

rk4() A 4th order Runge-Kutta ODE integrator in case you ever find yourself stranded without scipy (and
the far superior scipy.integrate tools)

contiguous_regions() return the indices of the regions spanned by some logical mask

cross_from_below() return the indices where a 1D array crosses a threshold from below

cross_from_above() return the indices where a 1D array crosses a threshold from above

46.1.3 record array helper functions

A collection of helper methods for numpyrecord arrays

See misc-examples-index

rec2txt() pretty print a record array

rec2csv() store record array in CSV file

csv2rec() import record array from CSV file with type inspection

rec_append_fields() adds field(s)/array(s) to record array

rec_drop_fields() drop fields from record array

rec_join() join two record arrays on sequence of fields

rec_groupby() summarize data by groups (similar to SQL GROUP BY)

rec_summarize() helper code to filter rec array fields into new fields

For the rec viewer functions(e rec2csv), there are a bunch of Format objects you can pass into the functions
that will do things like color negative values red, set percent formatting and scaling, etc.

Example usage:

r = csv2rec(’somefile.csv’, checkrows=0)

formatd = dict(
weight = FormatFloat(2),
change = FormatPercent(2),
cost = FormatThousands(2),
)

rec2excel(r, ’test.xls’, formatd=formatd)
rec2csv(r, ’test.csv’, formatd=formatd)
scroll = rec2gtk(r, formatd=formatd)

win = gtk.Window()
win.set_size_request(600,800)
win.add(scroll)
win.show_all()
gtk.main()

592 Chapter 46. matplotlib mlab

Matplotlib, Release 0.99.3

46.1.4 Deprecated functions

The following are deprecated; please import directly from numpy (with care–function signatures may differ):

load() load ASCII file - use numpy.loadtxt

save() save ASCII file - use numpy.savetxt

class matplotlib.mlab.FIFOBuffer(nmax)
A FIFO queue to hold incoming x, y data in a rotating buffer using numpy arrays under the hood. It is
assumed that you will call asarrays much less frequently than you add data to the queue – otherwise
another data structure will be faster.

This can be used to support plots where data is added from a real time feed and the plot object wants
to grab data from the buffer and plot it to screen less freqeuently than the incoming.

If you set the dataLim attr to BBox (eg matplotlib.Axes.dataLim), the dataLim will be updated
as new data come in.

TODO: add a grow method that will extend nmax

Note: mlab seems like the wrong place for this class.

Buffer up to nmax points.

add(x, y)
Add scalar x and y to the queue.

asarrays()
Return x and y as arrays; their length will be the len of data added or nmax.

last()
Get the last x, y or None. None if no data set.

register(func, N)
Call func every time N events are passed; func signature is func(fifo).

update_datalim_to_current()
Update the datalim in the current data in the fifo.

class matplotlib.mlab.FormatBool
Bases: matplotlib.mlab.FormatObj

fromstr(s)

toval(x)

class matplotlib.mlab.FormatDate(fmt)
Bases: matplotlib.mlab.FormatObj

fromstr(x)

toval(x)

class matplotlib.mlab.FormatDatetime(fmt=’%Y-%m-%d %H:%M:%S’)
Bases: matplotlib.mlab.FormatDate

fromstr(x)

46.1. matplotlib.mlab 593

Matplotlib, Release 0.99.3

class matplotlib.mlab.FormatFloat(precision=4, scale=1.0)
Bases: matplotlib.mlab.FormatFormatStr

fromstr(s)

toval(x)

class matplotlib.mlab.FormatFormatStr(fmt)
Bases: matplotlib.mlab.FormatObj

tostr(x)

class matplotlib.mlab.FormatInt
Bases: matplotlib.mlab.FormatObj

fromstr(s)

tostr(x)

toval(x)

class matplotlib.mlab.FormatMillions(precision=4)
Bases: matplotlib.mlab.FormatFloat

class matplotlib.mlab.FormatObj

fromstr(s)

tostr(x)

toval(x)

class matplotlib.mlab.FormatPercent(precision=4)
Bases: matplotlib.mlab.FormatFloat

class matplotlib.mlab.FormatString
Bases: matplotlib.mlab.FormatObj

tostr(x)

class matplotlib.mlab.FormatThousands(precision=4)
Bases: matplotlib.mlab.FormatFloat

matplotlib.mlab.amap(fn, *args)
amap(function, sequence[, sequence, ...]) -> array.

Works like map(), but it returns an array. This is just a convenient shorthand for
numpy.array(map(...)).

matplotlib.mlab.base_repr(number, base=2, padding=0)
Return the representation of a number in any given base.

matplotlib.mlab.binary_repr(number, max_length=1025)
Return the binary representation of the input number as a string.

This is more efficient than using base_repr() with base 2.

594 Chapter 46. matplotlib mlab

Matplotlib, Release 0.99.3

Increase the value of max_length for very large numbers. Note that on 32-bit machines, 2**1023 is
the largest integer power of 2 which can be converted to a Python float.

matplotlib.mlab.bivariate_normal(X, Y, sigmax=1.0, sigmay=1.0, mux=0.0, muy=0.0, sig-
maxy=0.0)

Bivariate Gaussian distribution for equal shape X, Y.

See bivariate normal at mathworld.

matplotlib.mlab.center_matrix(M, dim=0)
Return the matrix M with each row having zero mean and unit std.

If dim = 1 operate on columns instead of rows. (dim is opposite to the numpy axis kwarg.)

matplotlib.mlab.cohere(x, y, NFFT=256, Fs=2, detrend=<function detrend_none at
0x921317c>, window=<function window_hanning at 0x9213064>,
noverlap=0, pad_to=None, sides=’default’, scale_by_freq=None)

The coherence between x and y. Coherence is the normalized cross spectral density:

Cxy =
|Pxy|

2

PxxPyy
(46.1)

x, y Array or sequence containing the data

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be even;
a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in matlab, where the detrend parameter is a
vector, in matplotlib is it a function. The pylab module defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function as
well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(), scipy.signal(),
scipy.signal.get_window(), etc. The default is window_hanning(). If a
function is passed as the argument, it must take a data segment as an argument and
return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the minimum
distance between resolvable peaks), this can give more points in the plot, allowing for
more detail. This corresponds to the n parameter in the call to fft(). The default is
None, which sets pad_to equal to NFFT

46.1. matplotlib.mlab 595

http://mathworld.wolfram.com/BivariateNormalDistribution.html

Matplotlib, Release 0.99.3

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and both
for complex data. ‘onesided’ forces the return of a one-sided PSD, while ‘twosided’
forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled by
the scaling frequency, which gives density in units of Hz^-1. This allows for integra-
tion over the returned frequency values. The default is True for MatLab compatibility.

The return value is the tuple (Cxy, f), where f are the frequencies of the coherence vector. For cohere,
scaling the individual densities by the sampling frequency has no effect, since the factors cancel out.

See Also:

psd() and csd() For information about the methods used to compute Pxy, Pxx and Pyy.

matplotlib.mlab.cohere_pairs(X, ij, NFFT=256, Fs=2, detrend=<function detrend_none
at 0x921317c>, window=<function window_hanning
at 0x9213064>, noverlap=0, preferSpeedOverMem-
ory=True, progressCallback=<function donothing_callback at
0x92133e4>, returnPxx=False)

Call signature:

Cxy, Phase, freqs = cohere_pairs(X, ij, ...)

Compute the coherence and phase for all pairs ij, in X.

X is a numSamples * numCols array

ij is a list of tuples. Each tuple is a pair of indexes into the columns of X for which you want to
compute coherence. For example, if X has 64 columns, and you want to compute all nonredundant
pairs, define ij as:

ij = []
for i in range(64):

for j in range(i+1,64):
ij.append((i,j))

preferSpeedOverMemory is an optional bool. Defaults to true. If False, limits the caching by only
making one, rather than two, complex cache arrays. This is useful if memory becomes critical. Even
when preferSpeedOverMemory is False, cohere_pairs() will still give significant performace gains
over calling cohere() for each pair, and will use subtantially less memory than if preferSpeedOver-
Memory is True. In my tests with a 43000,64 array over all nonredundant pairs, preferSpeedOverMem-
ory = True delivered a 33% performance boost on a 1.7GHZ Athlon with 512MB RAM compared
with preferSpeedOverMemory = False. But both solutions were more than 10x faster than naively
crunching all possible pairs through cohere().

Returns:

(Cxy, Phase, freqs)

where:

596 Chapter 46. matplotlib mlab

Matplotlib, Release 0.99.3

•Cxy: dictionary of (i, j) tuples -> coherence vector for that pair. I.e., Cxy[(i,j) =
cohere(X[:,i], X[:,j]). Number of dictionary keys is len(ij).

•Phase: dictionary of phases of the cross spectral density at each frequency for each pair. Keys
are (i, j).

•freqs: vector of frequencies, equal in length to either the coherence or phase vectors for any
(i, j) key.

Eg., to make a coherence Bode plot:

subplot(211)
plot(freqs, Cxy[(12,19)])
subplot(212)
plot(freqs, Phase[(12,19)])

For a large number of pairs, cohere_pairs() can be much more efficient than just calling cohere()
for each pair, because it caches most of the intensive computations. If N is the number of pairs, this
function is O(N) for most of the heavy lifting, whereas calling cohere for each pair is O(N2). However,
because of the caching, it is also more memory intensive, making 2 additional complex arrays with
approximately the same number of elements as X.

See test/cohere_pairs_test.py in the src tree for an example script that shows that this
cohere_pairs() and cohere() give the same results for a given pair.

See Also:

psd() For information about the methods used to compute Pxy, Pxx and Pyy.

matplotlib.mlab.contiguous_regions(mask)
return a list of (ind0, ind1) such that mask[ind0:ind1].all() is True and we cover all such regions

TODO: this is a pure python implementation which probably has a much faster numpy impl

matplotlib.mlab.cross_from_above(x, threshold)
return the indices into x where x crosses some threshold from below, eg the i’s where:

x[i-1]>threshold and x[i]<=threshold

See Also:

cross_from_below() and contiguous_regions()

matplotlib.mlab.cross_from_below(x, threshold)
return the indices into x where x crosses some threshold from below, eg the i’s where:

x[i-1]<threshold and x[i]>=threshold

Example code:

import matplotlib.pyplot as plt

t = np.arange(0.0, 2.0, 0.1)
s = np.sin(2*np.pi*t)

46.1. matplotlib.mlab 597

Matplotlib, Release 0.99.3

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(t, s, ’-o’)
ax.axhline(0.5)
ax.axhline(-0.5)

ind = cross_from_below(s, 0.5)
ax.vlines(t[ind], -1, 1)

ind = cross_from_above(s, -0.5)
ax.vlines(t[ind], -1, 1)

plt.show()

See Also:

cross_from_above() and contiguous_regions()

matplotlib.mlab.csd(x, y, NFFT=256, Fs=2, detrend=<function detrend_none at 0x921317c>,
window=<function window_hanning at 0x9213064>, noverlap=0,
pad_to=None, sides=’default’, scale_by_freq=None)

The cross power spectral density by Welch’s average periodogram method. The vectors x and y are
divided into NFFT length blocks. Each block is detrended by the function detrend and windowed by
the function window. noverlap gives the length of the overlap between blocks. The product of the
direct FFTs of x and y are averaged over each segment to compute Pxy, with a scaling to correct for
power loss due to windowing.

If len(x) < NFFT or len(y) < NFFT, they will be zero padded to NFFT.

x, y Array or sequence containing the data

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be even;
a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in matlab, where the detrend parameter is a
vector, in matplotlib is it a function. The pylab module defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function as
well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(), scipy.signal(),
scipy.signal.get_window(), etc. The default is window_hanning(). If a
function is passed as the argument, it must take a data segment as an argument and
return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

598 Chapter 46. matplotlib mlab

Matplotlib, Release 0.99.3

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the minimum
distance between resolvable peaks), this can give more points in the plot, allowing for
more detail. This corresponds to the n parameter in the call to fft(). The default is
None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and both
for complex data. ‘onesided’ forces the return of a one-sided PSD, while ‘twosided’
forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled by
the scaling frequency, which gives density in units of Hz^-1. This allows for integra-
tion over the returned frequency values. The default is True for MatLab compatibility.

Returns the tuple (Pxy, freqs).

Refs: Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley & Sons
(1986)

matplotlib.mlab.csv2rec(fname, comments=’#’, skiprows=0, checkrows=0, delimiter=’,
‘, converterd=None, names=None, missing=’‘, missingd=None,
use_mrecords=False)

Load data from comma/space/tab delimited file in fname into a numpy record array and return the
record array.

If names is None, a header row is required to automatically assign the recarray names. The headers
will be lower cased, spaces will be converted to underscores, and illegal attribute name characters
removed. If names is not None, it is a sequence of names to use for the column names. In this case, it
is assumed there is no header row.

•fname: can be a filename or a file handle. Support for gzipped files is automatic, if the filename
ends in ‘.gz’

•comments: the character used to indicate the start of a comment in the file

•skiprows: is the number of rows from the top to skip

•checkrows: is the number of rows to check to validate the column data type. When set to zero
all rows are validated.

•converted: if not None, is a dictionary mapping column number or munged column name to a
converter function.

•names: if not None, is a list of header names. In this case, no header will be read from the file

•missingd is a dictionary mapping munged column names to field values which signify that the
field does not contain actual data and should be masked, e.g. ‘0000-00-00’ or ‘unused’

•missing: a string whose value signals a missing field regardless of the column it appears in

•use_mrecords: if True, return an mrecords.fromrecords record array if any of the data are missing

If no rows are found, None is returned – see examples/loadrec.py

46.1. matplotlib.mlab 599

Matplotlib, Release 0.99.3

matplotlib.mlab.csvformat_factory(format)

matplotlib.mlab.demean(x, axis=0)
Return x minus its mean along the specified axis

matplotlib.mlab.detrend(x, key=None)

matplotlib.mlab.detrend_linear(y)
Return y minus best fit line; ‘linear’ detrending

matplotlib.mlab.detrend_mean(x)
Return x minus the mean(x)

matplotlib.mlab.detrend_none(x)
Return x: no detrending

matplotlib.mlab.dist(x, y)
Return the distance between two points.

matplotlib.mlab.dist_point_to_segment(p, s0, s1)
Get the distance of a point to a segment.

p, s0, s1 are xy sequences

This algorithm from http://softsurfer.com/Archive/algorithm_0102/algorithm_0102.htm#Distance%20to%20Ray%20or%20Segment

matplotlib.mlab.distances_along_curve(X)
Computes the distance between a set of successive points in N dimensions.

Where X is an M x N array or matrix. The distances between successive rows is computed. Distance
is the standard Euclidean distance.

matplotlib.mlab.donothing_callback(*args)

matplotlib.mlab.entropy(y, bins)
Return the entropy of the data in y. ∑

pi log2(pi) (46.2)

where pi is the probability of observing y in the ith bin of bins. bins can be a number of bins or a range
of bins; see numpy.histogram().

Compare S with analytic calculation for a Gaussian:

x = mu + sigma * randn(200000)
Sanalytic = 0.5 * (1.0 + log(2*pi*sigma**2.0))

matplotlib.mlab.exp_safe(x)
Compute exponentials which safely underflow to zero.

Slow, but convenient to use. Note that numpy provides proper floating point exception handling with
access to the underlying hardware.

matplotlib.mlab.fftsurr(x, detrend=<function detrend_none at 0x921317c>, win-
dow=<function window_none at 0x921309c>)

Compute an FFT phase randomized surrogate of x.

600 Chapter 46. matplotlib mlab

http://softsurfer.com/Archive/algorithm_0102/algorithm_0102.htm#Distance%20to%20Ray%20or%20Segment

Matplotlib, Release 0.99.3

matplotlib.mlab.find(condition)
Return the indices where ravel(condition) is true

matplotlib.mlab.frange(xini, xfin=None, delta=None, **kw)
frange([start,] stop[, step, keywords]) -> array of floats

Return a numpy ndarray containing a progression of floats. Similar to numpy.arange(), but defaults
to a closed interval.

frange(x0, x1) returns [x0, x0+1, x0+2, ..., x1]; start defaults to 0, and the endpoint is
included. This behavior is different from that of range() and numpy.arange(). This is deliberate,
since frange() will probably be more useful for generating lists of points for function evaluation,
and endpoints are often desired in this use. The usual behavior of range() can be obtained by setting
the keyword closed = 0, in this case, frange() basically becomes :func:numpy.arange‘.

When step is given, it specifies the increment (or decrement). All arguments can be floating point
numbers.

frange(x0,x1,d) returns [x0,x0+d,x0+2d,...,xfin] where xfin <= x1.

frange() can also be called with the keyword npts. This sets the number of points the list should
contain (and overrides the value step might have been given). numpy.arange() doesn’t offer this
option.

Examples:

>>> frange(3)
array([0., 1., 2., 3.])
>>> frange(3,closed=0)
array([0., 1., 2.])
>>> frange(1,6,2)
array([1, 3, 5]) or 1,3,5,7, depending on floating point vagueries
>>> frange(1,6.5,npts=5)
array([1. , 2.375, 3.75 , 5.125, 6.5])

matplotlib.mlab.get_formatd(r, formatd=None)
build a formatd guaranteed to have a key for every dtype name

matplotlib.mlab.get_sparse_matrix(M, N, frac=0.1)
Return a M x N sparse matrix with frac elements randomly filled.

matplotlib.mlab.get_xyz_where(Z, Cond)
Z and Cond are M x N matrices. Z are data and Cond is a boolean matrix where some condition is
satisfied. Return value is (x, y, z) where x and y are the indices into Z and z are the values of Z at those
indices. x, y, and z are 1D arrays.

matplotlib.mlab.griddata(x, y, z, xi, yi, interp=’nn’)
zi = griddata(x,y,z,xi,yi) fits a surface of the form z = f*(*x, y) to the data in the (usually)
nonuniformly spaced vectors (x, y, z). griddata() interpolates this surface at the points specified
by (xi, yi) to produce zi. xi and yi must describe a regular grid, can be either 1D or 2D, but must be
monotonically increasing.

A masked array is returned if any grid points are outside convex hull defined by input data (no extrap-
olation is done).

46.1. matplotlib.mlab 601

Matplotlib, Release 0.99.3

If interp keyword is set to ‘nn‘ (default), uses natural neighbor interpolation based on Delaunay trian-
gulation. By default, this algorithm is provided by the matplotlib.delaunay package, written by
Robert Kern. The triangulation algorithm in this package is known to fail on some nearly pathological
cases. For this reason, a separate toolkit (mpl_tookits.natgrid) has been created that provides a
more robust algorithm fof triangulation and interpolation. This toolkit is based on the NCAR nat-
grid library, which contains code that is not redistributable under a BSD-compatible license. When
installed, this function will use the mpl_toolkits.natgrid algorithm, otherwise it will use the
built-in matplotlib.delaunay package.

If the interp keyword is set to ‘linear‘, then linear interpolation is used instead of natural neigh-
bor. In this case, the output grid is assumed to be regular with a constant grid spacing in both the
x and y directions. For regular grids with nonconstant grid spacing, you must use natural neigh-
bor interpolation. Linear interpolation is only valid if matplotlib.delaunay package is used -
mpl_tookits.natgrid only provides natural neighbor interpolation.

The natgrid matplotlib toolkit can be downloaded from http://sourceforge.net/project/showfiles.php?group_id=80706&package_id=142792

matplotlib.mlab.identity(n, rank=2, dtype=’l’, typecode=None)
Returns the identity matrix of shape (n, n, ..., n) (rank r).

For ranks higher than 2, this object is simply a multi-index Kronecker delta:

/ 1 if i0=i1=...=iR,
id[i0,i1,...,iR] = -|

\ 0 otherwise.

Optionally a dtype (or typecode) may be given (it defaults to ‘l’).

Since rank defaults to 2, this function behaves in the default case (when only n is given) like
numpy.identity(n) – but surprisingly, it is much faster.

matplotlib.mlab.inside_poly(points, verts)
points is a sequence of x, y points. verts is a sequence of x, y vertices of a polygon.

Return value is a sequence of indices into points for the points that are inside the polygon.

matplotlib.mlab.is_closed_polygon(X)
Tests whether first and last object in a sequence are the same. These are presumably coordinates on a
polygonal curve, in which case this function tests if that curve is closed.

matplotlib.mlab.ispower2(n)
Returns the log base 2 of n if n is a power of 2, zero otherwise.

Note the potential ambiguity if n == 1: 2**0 == 1, interpret accordingly.

matplotlib.mlab.isvector(X)
Like the Matlab (TM) function with the same name, returns True if the supplied numpy array or matrix
X looks like a vector, meaning it has a one non-singleton axis (i.e., it can have multiple axes, but all
must have length 1, except for one of them).

If you just want to see if the array has 1 axis, use X.ndim == 1.

matplotlib.mlab.l1norm(a)
Return the l1 norm of a, flattened out.

602 Chapter 46. matplotlib mlab

http://sourceforge.net/project/showfiles.php?group_id=80706&package_id=142792

Matplotlib, Release 0.99.3

Implemented as a separate function (not a call to norm() for speed).

matplotlib.mlab.l2norm(a)
Return the l2 norm of a, flattened out.

Implemented as a separate function (not a call to norm() for speed).

matplotlib.mlab.less_simple_linear_interpolation(x, y, xi, extrap=False)
This function provides simple (but somewhat less so than
cbook.simple_linear_interpolation()) linear interpolation.
simple_linear_interpolation() will give a list of point between a start and an end, while this
does true linear interpolation at an arbitrary set of points.

This is very inefficient linear interpolation meant to be used only for a small number of points in
relatively non-intensive use cases. For real linear interpolation, use scipy.

matplotlib.mlab.levypdf(x, gamma, alpha)
Returm the levy pdf evaluated at x for params gamma, alpha

matplotlib.mlab.liaupunov(x, fprime)
x is a very long trajectory from a map, and fprime returns the derivative of x.

This function will be removed from matplotlib.

Returns : .. math:

\lambda = \frac{1}{n}\sum \ln|f^’(x_i)|

See Also:

Lyapunov Exponent Sec 10.5 Strogatz (1994) “Nonlinear Dynamics and Chaos”. Wikipedia article
on Lyapunov Exponent.

Note: What the function here calculates may not be what you really want; caveat emptor.

It also seems that this function’s name is badly misspelled.

matplotlib.mlab.load(fname, comments=’#’, delimiter=None, converters=None, skiprows=0,
usecols=None, unpack=False, dtype=<type ‘numpy.float64’>)

Load ASCII data from fname into an array and return the array.

Deprecated: use numpy.loadtxt.

The data must be regular, same number of values in every row

fname can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends
in ‘.gz’.

matfile data is not supported; for that, use scipy.io.mio module.

Example usage:

X = load(’test.dat’) # data in two columns
t = X[:,0]
y = X[:,1]

46.1. matplotlib.mlab 603

http://en.wikipedia.org/wiki/Lyapunov_exponent
http://en.wikipedia.org/wiki/Lyapunov_exponent

Matplotlib, Release 0.99.3

Alternatively, you can do the same with “unpack”; see below:

X = load(’test.dat’) # a matrix of data
x = load(’test.dat’) # a single column of data

•comments: the character used to indicate the start of a comment in the file

•delimiter is a string-like character used to seperate values in the file. If delimiter is unspecified
or None, any whitespace string is a separator.

•converters, if not None, is a dictionary mapping column number to a function that will convert
that column to a float (or the optional dtype if specified). Eg, if column 0 is a date string:

converters = {0:datestr2num}

•skiprows is the number of rows from the top to skip.

•usecols, if not None, is a sequence of integer column indexes to extract where 0 is the first
column, eg usecols=[1,4,5] to extract just the 2nd, 5th and 6th columns

•unpack, if True, will transpose the matrix allowing you to unpack into named arguments on the
left hand side:

t,y = load(’test.dat’, unpack=True) # for two column data
x,y,z = load(’somefile.dat’, usecols=[3,5,7], unpack=True)

•dtype: the array will have this dtype. default: numpy.float_

See Also:

See examples/pylab_examples/load_converter.py in the source tree Exercises many of
these options.

matplotlib.mlab.log2(x, ln2=0.6931471805599453)
Return the log(x) in base 2.

This is a _slow_ function but which is guaranteed to return the correct integer value if the input is an
integer exact power of 2.

matplotlib.mlab.logspace(xmin, xmax, N)

matplotlib.mlab.longest_contiguous_ones(x)
Return the indices of the longest stretch of contiguous ones in x, assuming x is a vector of zeros and
ones. If there are two equally long stretches, pick the first.

matplotlib.mlab.longest_ones(x)
alias for longest_contiguous_ones

matplotlib.mlab.movavg(x, n)
Compute the len(n) moving average of x.

matplotlib.mlab.norm_flat(a, p=2)
norm(a,p=2) -> l-p norm of a.flat

604 Chapter 46. matplotlib mlab

Matplotlib, Release 0.99.3

Return the l-p norm of a, considered as a flat array. This is NOT a true matrix norm, since arrays of
arbitrary rank are always flattened.

p can be a number or the string ‘Infinity’ to get the L-infinity norm.

matplotlib.mlab.normpdf(x, *args)
Return the normal pdf evaluated at x; args provides mu, sigma

matplotlib.mlab.path_length(X)
Computes the distance travelled along a polygonal curve in N dimensions.

Where X is an M x N array or matrix. Returns an array of length M consisting of the distance along
the curve at each point (i.e., the rows of X).

matplotlib.mlab.poly_below(xmin, xs, ys)
Given a sequence of xs and ys, return the vertices of a polygon that has a horizontal base at xmin and
an upper bound at the ys. xmin is a scalar.

Intended for use with matplotlib.axes.Axes.fill(), eg:

xv, yv = poly_below(0, x, y)
ax.fill(xv, yv)

matplotlib.mlab.poly_between(x, ylower, yupper)
Given a sequence of x, ylower and yupper, return the polygon that fills the regions between them.
ylower or yupper can be scalar or iterable. If they are iterable, they must be equal in length to x.

Return value is x, y arrays for use with matplotlib.axes.Axes.fill().

matplotlib.mlab.prctile(x, p=(0.0, 25.0, 50.0, 75.0, 100.0))
Return the percentiles of x. p can either be a sequence of percentile values or a scalar. If p is a
sequence, the ith element of the return sequence is the p*(i)-th percentile of *x. If p is a scalar, the
largest value of x less than or equal to the p percentage point in the sequence is returned.

matplotlib.mlab.prctile_rank(x, p)
Return the rank for each element in x, return the rank 0..len(p). Eg if p = (25, 50, 75), the return
value will be a len(x) array with values in [0,1,2,3] where 0 indicates the value is less than the 25th
percentile, 1 indicates the value is >= the 25th and < 50th percentile, ... and 3 indicates the value is
above the 75th percentile cutoff.

p is either an array of percentiles in [0..100] or a scalar which indicates how many quantiles of data
you want ranked.

matplotlib.mlab.prepca(P, frac=0)
Compute the principal components of P. P is a (numVars, numObs) array. frac is the minimum fraction
of variance that a component must contain to be included.

Return value is a tuple of the form (Pcomponents, Trans, fracVar) where:

•Pcomponents : a (numVars, numObs) array

•Trans [the weights matrix, ie, Pcomponents = Trans *] P

•fracVar [the fraction of the variance accounted for by each] component returned

46.1. matplotlib.mlab 605

Matplotlib, Release 0.99.3

A similar function of the same name was in the Matlab (TM) R13 Neural Network Toolbox but is not
found in later versions; its successor seems to be called “processpcs”.

matplotlib.mlab.psd(x, NFFT=256, Fs=2, detrend=<function detrend_none at 0x921317c>,
window=<function window_hanning at 0x9213064>, noverlap=0,
pad_to=None, sides=’default’, scale_by_freq=None)

The power spectral density by Welch’s average periodogram method. The vector x is divided into
NFFT length blocks. Each block is detrended by the function detrend and windowed by the function
window. noverlap gives the length of the overlap between blocks. The absolute(fft(block))**2 of each
segment are averaged to compute Pxx, with a scaling to correct for power loss due to windowing.

If len(x) < NFFT, it will be zero padded to NFFT.

x Array or sequence containing the data

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be even;
a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in matlab, where the detrend parameter is a
vector, in matplotlib is it a function. The pylab module defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function as
well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(), scipy.signal(),
scipy.signal.get_window(), etc. The default is window_hanning(). If a
function is passed as the argument, it must take a data segment as an argument and
return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the minimum
distance between resolvable peaks), this can give more points in the plot, allowing for
more detail. This corresponds to the n parameter in the call to fft(). The default is
None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and both
for complex data. ‘onesided’ forces the return of a one-sided PSD, while ‘twosided’
forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled by
the scaling frequency, which gives density in units of Hz^-1. This allows for integra-
tion over the returned frequency values. The default is True for MatLab compatibility.

606 Chapter 46. matplotlib mlab

Matplotlib, Release 0.99.3

Returns the tuple (Pxx, freqs).

Refs:

Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley &
Sons (1986)

matplotlib.mlab.quad2cubic(q0x, q0y, q1x, q1y, q2x, q2y)
Converts a quadratic Bezier curve to a cubic approximation.

The inputs are the x and y coordinates of the three control points of a quadratic curve, and the output
is a tuple of x and y coordinates of the four control points of the cubic curve.

matplotlib.mlab.rec2csv(r, fname, delimiter=’, ‘, formatd=None, missing=’‘, missingd=None,
withheader=True)

Save the data from numpy recarray r into a comma-/space-/tab-delimited file. The record array dtype
names will be used for column headers.

fname: can be a filename or a file handle. Support for gzipped files is automatic, if the filename
ends in ‘.gz’

withheader: if withheader is False, do not write the attribute names in the first row

See Also:

csv2rec() For information about missing and missingd, which can be used to fill in masked values
into your CSV file.

matplotlib.mlab.rec2txt(r, header=None, padding=3, precision=3, fields=None)
Returns a textual representation of a record array.

r: numpy recarray

header: list of column headers

padding: space between each column

precision: number of decimal places to use for floats. Set to an integer to apply to all floats. Set to
a list of integers to apply precision individually. Precision for non-floats is simply ignored.

fields : if not None, a list of field names to print. fields can be a list of strings like [’field1’, ‘field2’]
or a single comma separated string like ‘field1,field2’

Example:

precision=[0,2,3]

Output:

ID Price Return
ABC 12.54 0.234
XYZ 6.32 -0.076

matplotlib.mlab.rec_append_fields(rec, names, arrs, dtypes=None)
Return a new record array with field names populated with data from arrays in arrs. If appending a
single field, then names, arrs and dtypes do not have to be lists. They can just be the values themselves.

46.1. matplotlib.mlab 607

Matplotlib, Release 0.99.3

matplotlib.mlab.rec_drop_fields(rec, names)
Return a new numpy record array with fields in names dropped.

matplotlib.mlab.rec_groupby(r, groupby, stats)
r is a numpy record array

groupby is a sequence of record array attribute names that together form the grouping key. eg (‘date’,
‘productcode’)

stats is a sequence of (attr, func, outname) tuples which will call x = func(attr) and assign x to
the record array output with attribute outname. For example:

stats = ((’sales’, len, ’numsales’), (’sales’, np.mean, ’avgsale’))

Return record array has dtype names for each attribute name in the the groupby argument, with the
associated group values, and for each outname name in the stats argument, with the associated stat
summary output.

matplotlib.mlab.rec_join(key, r1, r2, jointype=’inner’, defaults=None, r1postfix=‘1’,
r2postfix=‘2’)

Join record arrays r1 and r2 on key; key is a tuple of field names – if key is a string it is assumed to be
a single attribute name. If r1 and r2 have equal values on all the keys in the key tuple, then their fields
will be merged into a new record array containing the intersection of the fields of r1 and r2.

r1 (also r2) must not have any duplicate keys.

The jointype keyword can be ‘inner’, ‘outer’, ‘leftouter’. To do a rightouter join just reverse r1 and
r2.

The defaults keyword is a dictionary filled with {column_name:default_value} pairs.

The keywords r1postfix and r2postfix are postfixed to column names (other than keys) that are both in
r1 and r2.

matplotlib.mlab.rec_keep_fields(rec, names)
Return a new numpy record array with only fields listed in names

matplotlib.mlab.rec_summarize(r, summaryfuncs)
r is a numpy record array

summaryfuncs is a list of (attr, func, outname) tuples which will apply func to the the array r*[attr]
and assign the output to a new attribute name *outname. The returned record array is identical to r,
with extra arrays for each element in summaryfuncs.

matplotlib.mlab.rk4(derivs, y0, t)
Integrate 1D or ND system of ODEs using 4-th order Runge-Kutta. This is a toy implementa-
tion which may be useful if you find yourself stranded on a system w/o scipy. Otherwise use
scipy.integrate().

y0 initial state vector

t sample times

derivs returns the derivative of the system and has the signature dy = derivs(yi, ti)

Example 1

608 Chapter 46. matplotlib mlab

Matplotlib, Release 0.99.3

2D system

def derivs6(x,t):
d1 = x[0] + 2*x[1]
d2 = -3*x[0] + 4*x[1]
return (d1, d2)

dt = 0.0005
t = arange(0.0, 2.0, dt)
y0 = (1,2)
yout = rk4(derivs6, y0, t)

Example 2:

1D system
alpha = 2
def derivs(x,t):

return -alpha*x + exp(-t)

y0 = 1
yout = rk4(derivs, y0, t)

If you have access to scipy, you should probably be using the scipy.integrate tools rather than this
function.

matplotlib.mlab.rms_flat(a)
Return the root mean square of all the elements of a, flattened out.

matplotlib.mlab.safe_isinf(x)
numpy.isinf() for arbitrary types

matplotlib.mlab.safe_isnan(x)
numpy.isnan() for arbitrary types

matplotlib.mlab.save(fname, X, fmt=’%.18e’, delimiter=’ ‘)
Save the data in X to file fname using fmt string to convert the data to strings.

Deprecated. Use numpy.savetxt.

fname can be a filename or a file handle. If the filename ends in ‘.gz’, the file is automatically saved
in compressed gzip format. The load() function understands gzipped files transparently.

Example usage:

save(’test.out’, X) # X is an array
save(’test1.out’, (x,y,z)) # x,y,z equal sized 1D arrays
save(’test2.out’, x) # x is 1D
save(’test3.out’, x, fmt=’%1.4e’) # use exponential notation

delimiter is used to separate the fields, eg. delimiter ‘,’ for comma-separated values.

matplotlib.mlab.segments_intersect(s1, s2)
Return True if s1 and s2 intersect. s1 and s2 are defined as:

s1: (x1, y1), (x2, y2)
s2: (x3, y3), (x4, y4)

46.1. matplotlib.mlab 609

Matplotlib, Release 0.99.3

matplotlib.mlab.slopes(x, y)
slopes() calculates the slope y‘(x)

The slope is estimated using the slope obtained from that of a parabola through any three consecutive
points.

This method should be superior to that described in the appendix of A CONSISTENTLY WELL
BEHAVED METHOD OF INTERPOLATION by Russel W. Stineman (Creative Computing July
1980) in at least one aspect:

Circles for interpolation demand a known aspect ratio between x- and y-values. For many
functions, however, the abscissa are given in different dimensions, so an aspect ratio is
completely arbitrary.

The parabola method gives very similar results to the circle method for most regular cases but behaves
much better in special cases.

Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Nor-
bert.Nemec at physik.uni-regensburg.de

(inspired by a original implementation by Halldor Bjornsson, Icelandic Meteorological Office, March
2006 halldor at vedur.is)

matplotlib.mlab.specgram(x, NFFT=256, Fs=2, detrend=<function detrend_none
at 0x921317c>, window=<function window_hanning at
0x9213064>, noverlap=128, pad_to=None, sides=’default’,
scale_by_freq=None)

Compute a spectrogram of data in x. Data are split into NFFT length segements and the PSD of each
section is computed. The windowing function window is applied to each segment, and the amount of
overlap of each segment is specified with noverlap.

If x is real (i.e. non-complex) only the spectrum of the positive frequencie is returned. If x is complex
then the complete spectrum is returned.

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be even;
a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in matlab, where the detrend parameter is a
vector, in matplotlib is it a function. The pylab module defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function as
well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(), scipy.signal(),
scipy.signal.get_window(), etc. The default is window_hanning(). If a
function is passed as the argument, it must take a data segment as an argument and
return the windowed version of the segment.

610 Chapter 46. matplotlib mlab

Matplotlib, Release 0.99.3

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the minimum
distance between resolvable peaks), this can give more points in the plot, allowing for
more detail. This corresponds to the n parameter in the call to fft(). The default is
None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and both
for complex data. ‘onesided’ forces the return of a one-sided PSD, while ‘twosided’
forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled by
the scaling frequency, which gives density in units of Hz^-1. This allows for integra-
tion over the returned frequency values. The default is True for MatLab compatibility.

Returns a tuple (Pxx, freqs, t):

•Pxx: 2-D array, columns are the periodograms of successive segments

•freqs: 1-D array of frequencies corresponding to the rows in Pxx

•t: 1-D array of times corresponding to midpoints of segments.

See Also:

psd() psd() differs in the default overlap; in returning the mean of the segment periodograms; and
in not returning times.

matplotlib.mlab.stineman_interp(xi, x, y, yp=None)
Given data vectors x and y, the slope vector yp and a new abscissa vector xi, the function
stineman_interp() uses Stineman interpolation to calculate a vector yi corresponding to xi.

Here’s an example that generates a coarse sine curve, then interpolates over a finer abscissa:

x = linspace(0,2*pi,20); y = sin(x); yp = cos(x)
xi = linspace(0,2*pi,40);
yi = stineman_interp(xi,x,y,yp);
plot(x,y,’o’,xi,yi)

The interpolation method is described in the article A CONSISTENTLY WELL BEHAVED
METHOD OF INTERPOLATION by Russell W. Stineman. The article appeared in the July 1980
issue of Creative Computing with a note from the editor stating that while they were:

not an academic journal but once in a while something serious and original comes in adding
that this was “apparently a real solution” to a well known problem.

For yp = None, the routine automatically determines the slopes using the slopes() routine.

x is assumed to be sorted in increasing order.

46.1. matplotlib.mlab 611

Matplotlib, Release 0.99.3

For values xi[j] < x[0] or xi[j] > x[-1], the routine tries an extrapolation. The relevance of
the data obtained from this, of course, is questionable...

Original implementation by Halldor Bjornsson, Icelandic Meteorolocial Office, March 2006 halldor
at vedur.is

Completely reworked and optimized for Python by Norbert Nemec, Institute of Theoretical Physics,
University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de

matplotlib.mlab.vector_lengths(X, P=2.0, axis=None)
Finds the length of a set of vectors in n dimensions. This is like the numpy.norm() function for
vectors, but has the ability to work over a particular axis of the supplied array or matrix.

Computes (sum((x_i)^P))^(1/P) for each {x_i} being the elements of X along the given axis. If
axis is None, compute over all elements of X.

matplotlib.mlab.window_hanning(x)
return x times the hanning window of len(x)

matplotlib.mlab.window_none(x)
No window function; simply return x

612 Chapter 46. matplotlib mlab

CHAPTER

FORTYSEVEN

MATPLOTLIB PATH

47.1 matplotlib.path

Contains a class for managing paths (polylines).

class matplotlib.path.Path(vertices, codes=None, _interpolation_steps=1)
Bases: object

Path represents a series of possibly disconnected, possibly closed, line and curve segments.

The underlying storage is made up of two parallel numpy arrays:

• vertices: an Nx2 float array of vertices

• codes: an N-length uint8 array of vertex types

These two arrays always have the same length in the first dimension. For example, to represent a
cubic curve, you must provide three vertices as well as three codes CURVE3.

The code types are:

•STOP [1 vertex (ignored)] A marker for the end of the entire path (currently not required and
ignored)

•MOVETO [1 vertex] Pick up the pen and move to the given vertex.

•LINETO [1 vertex] Draw a line from the current position to the given vertex.

•CURVE3 [1 control point, 1 endpoint] Draw a quadratic Bezier curve from the current position,
with the given control point, to the given end point.

•CURVE4 [2 control points, 1 endpoint] Draw a cubic Bezier curve from the current position, with
the given control points, to the given end point.

•CLOSEPOLY [1 vertex (ignored)] Draw a line segment to the start point of the current polyline.

Users of Path objects should not access the vertices and codes arrays directly. Instead, they should use
iter_segments() to get the vertex/code pairs. This is important, since many Path objects, as an op-
timization, do not store a codes at all, but have a default one provided for them by iter_segments().

Note also that the vertices and codes arrays should be treated as immutable – there are a number of
optimizations and assumptions made up front in the constructor that will not change when the data
changes.

613

Matplotlib, Release 0.99.3

Create a new path with the given vertices and codes.

vertices is an Nx2 numpy float array, masked array or Python sequence.

codes is an N-length numpy array or Python sequence of type matplotlib.path.Path.code_type.

These two arrays must have the same length in the first dimension.

If codes is None, vertices will be treated as a series of line segments.

If vertices contains masked values, they will be converted to NaNs which are then handled correctly
by the Agg PathIterator and other consumers of path data, such as iter_segments().

interpolation_steps is used as a hint to certain projections, such as Polar, that this path should be
linearly interpolated immediately before drawing. This attribute is primarily an implementation detail
and is not intended for public use.

classmethod arc(theta1, theta2, n=None, is_wedge=False)
(staticmethod) Returns an arc on the unit circle from angle theta1 to angle theta2 (in degrees).

If n is provided, it is the number of spline segments to make. If n is not provided, the number of
spline segments is determined based on the delta between theta1 and theta2.

Masionobe, L. 2003. Drawing an elliptical arc using polylines, quadratic or cubic
Bezier curves.

code_type
alias of uint8

contains_path(path, transform=None)
Returns True if this path completely contains the given path.

If transform is not None, the path will be transformed before performing the test.

contains_point(point, transform=None)
Returns True if the path contains the given point.

If transform is not None, the path will be transformed before performing the test.

get_extents(transform=None)
Returns the extents (xmin, ymin, xmax, ymax) of the path.

Unlike computing the extents on the vertices alone, this algorithm will take into account the
curves and deal with control points appropriately.

classmethod hatch(hatchpattern, density=6)
Given a hatch specifier, hatchpattern, generates a Path that can be used in a repeated hatching
pattern. density is the number of lines per unit square.

interpolated(steps)
Returns a new path resampled to length N x steps. Does not currently handle interpolating
curves.

intersects_bbox(bbox, filled=True)
Returns True if this path intersects a given Bbox.

filled, when True, treats the path as if it was filled. That is, if one path completely encloses the
other, intersects_path() will return True.

614 Chapter 47. matplotlib path

http://www.spaceroots.org/documents/ellipse/index.html
http://www.spaceroots.org/documents/ellipse/index.html

Matplotlib, Release 0.99.3

intersects_path(other, filled=True)
Returns True if this path intersects another given path.

filled, when True, treats the paths as if they were filled. That is, if one path completely encloses
the other, intersects_path() will return True.

iter_segments(transform=None, remove_nans=True, clip=None, quantize=False, sim-
plify=None, curves=True)

Iterates over all of the curve segments in the path. Each iteration returns a 2-tuple (vertices,
code), where vertices is a sequence of 1 - 3 coordinate pairs, and code is one of the Path codes.

Additionally, this method can provide a number of standard cleanups and conversions to the
path.

transform: if not None, the given affine transformation will be applied to the path.

remove_nans: if True, will remove all NaNs from the path and insert MOVETO commands
to skip over them.

clip: if not None, must be a four-tuple (x1, y1, x2, y2) defining a rectangle in which to clip
the path.

quantize: if None, auto-quantize. If True, force quantize, and if False, don’t quantize.

simplify: if True, perform simplification, to remove vertices that do not affect the appearance
of the path. If False, perform no simplification. If None, use the should_simplify member
variable.

curves: If True, curve segments will be returned as curve segments. If False, all curves will
be converted to line segments.

classmethod make_compound_path(*args)
(staticmethod) Make a compound path from a list of Path objects. Only polygons (not curves)
are supported.

classmethod make_compound_path_from_polys(XY)
(static method) Make a compound path object to draw a number of polygons with equal numbers
of sides XY is a (numpolys x numsides x 2) numpy array of vertices. Return object is a Path

47.1. matplotlib.path 615

Matplotlib, Release 0.99.3

2 1 0 1 2 3
0

10

20

30

40

50

to_polygons(transform=None, width=0, height=0)
Convert this path to a list of polygons. Each polygon is an Nx2 array of vertices. In other words,
each polygon has no MOVETO instructions or curves. This is useful for displaying in backends
that do not support compound paths or Bezier curves, such as GDK.

If width and height are both non-zero then the lines will be simplified so that vertices outside of
(0, 0), (width, height) will be clipped.

transformed(transform)
Return a transformed copy of the path.

See Also:

matplotlib.transforms.TransformedPath A specialized path class that will cache the
transformed result and automatically update when the transform changes.

classmethod unit_circle()
(staticmethod) Returns a Path of the unit circle. The circle is approximated using cubic Bezier
curves. This uses 8 splines around the circle using the approach presented here:

Lancaster, Don. Approximating a Circle or an Ellipse Using Four Bezier Cubic
Splines.

classmethod unit_rectangle()
(staticmethod) Returns a Path of the unit rectangle from (0, 0) to (1, 1).

616 Chapter 47. matplotlib path

http://www.tinaja.com/glib/ellipse4.pdf
http://www.tinaja.com/glib/ellipse4.pdf

Matplotlib, Release 0.99.3

classmethod unit_regular_asterisk(numVertices)
(staticmethod) Returns a Path for a unit regular asterisk with the given numVertices and radius
of 1.0, centered at (0, 0).

classmethod unit_regular_polygon(numVertices)
(staticmethod) Returns a Path for a unit regular polygon with the given numVertices and radius
of 1.0, centered at (0, 0).

classmethod unit_regular_star(numVertices, innerCircle=0.5)
(staticmethod) Returns a Path for a unit regular star with the given numVertices and radius of
1.0, centered at (0, 0).

classmethod wedge(theta1, theta2, n=None)
(staticmethod) Returns a wedge of the unit circle from angle theta1 to angle theta2 (in degrees).

If n is provided, it is the number of spline segments to make. If n is not provided, the number of
spline segments is determined based on the delta between theta1 and theta2.

matplotlib.path.cleanup_path()
cleanup_path(path, trans, remove_nans, clip, quantize, simplify, curves)

matplotlib.path.convert_path_to_polygons()
convert_path_to_polygons(path, trans, width, height)

matplotlib.path.get_path_collection_extents(*args)
Given a sequence of Path objects, returns the bounding box that encapsulates all of them.

matplotlib.path.get_path_extents()
get_path_extents(path, trans)

matplotlib.path.path_in_path()
path_in_path(a, atrans, b, btrans)

matplotlib.path.path_intersects_path()
path_intersects_path(p1, p2)

matplotlib.path.point_in_path()
point_in_path(x, y, path, trans)

matplotlib.path.point_in_path_collection()
point_in_path_collection(x, y, r, trans, paths, transforms, offsets, offsetTrans, filled)

47.1. matplotlib.path 617

Matplotlib, Release 0.99.3

618 Chapter 47. matplotlib path

CHAPTER

FORTYEIGHT

MATPLOTLIB PYPLOT

48.1 matplotlib.pyplot

matplotlib.pyplot.acorr(x, hold=None, **kwargs)
call signature:

acorr(x, normed=True, detrend=mlab.detrend_none, usevlines=True,
maxlags=10, **kwargs)

Plot the autocorrelation of x. If normed = True, normalize the data by the autocorrelation at 0-th lag.
x is detrended by the detrend callable (default no normalization).

Data are plotted as plot(lags, c, **kwargs)

Return value is a tuple (lags, c, line) where:

•lags are a length 2*maxlags+1 lag vector

•c is the 2*maxlags+1 auto correlation vector

•line is a Line2D instance returned by plot()

The default linestyle is None and the default marker is ’o’, though these can be overridden with
keyword args. The cross correlation is performed with numpy.correlate() with mode = 2.

If usevlines is True, vlines() rather than plot() is used to draw vertical lines from the origin to the
acorr. Otherwise, the plot style is determined by the kwargs, which are Line2D properties.

maxlags is a positive integer detailing the number of lags to show. The default value of None will
return all 2imeslen(x) − 1 lags.

The return value is a tuple (lags, c, linecol, b) where

•linecol is the LineCollection

•b is the x-axis.

See Also:

plot() or vlines()

For documentation on valid kwargs.

619

Matplotlib, Release 0.99.3

Example:

xcorr() above, and acorr() below.

Example:

60 40 20 0 20 40 60
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20
0.25

60 40 20 0 20 40 60
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.annotate(*args, **kwargs)
call signature:

annotate(s, xy, xytext=None, xycoords=’data’,
textcoords=’data’, arrowprops=None, **kwargs)

Keyword arguments:

Annotate the x, y point xy with text s at x, y location xytext. (If xytext = None, defaults to xy, and if
textcoords = None, defaults to xycoords).

arrowprops, if not None, is a dictionary of line properties (see matplotlib.lines.Line2D) for the
arrow that connects annotation to the point.

If the dictionary has a key arrowstyle, a FancyArrowPatch instance is created with the given dictionary
and is drawn. Otherwise, a YAArow patch instance is created and drawn. Valid keys for YAArow are

620 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

Key Description
width the width of the arrow in points
frac the fraction of the arrow length occupied by the head
head-
width

the width of the base of the arrow head in points

shrink oftentimes it is convenient to have the arrowtip and base a bit away from the text and
point being annotated. If d is the distance between the text and annotated point, shrink
will shorten the arrow so the tip and base are shink percent of the distance d away from
the endpoints. ie, shrink=0.05 is 5%

? any key for matplotlib.patches.polygon

Valid keys for FancyArrowPatch are

Key Description
arrowstyle the arrow style
connectionstyle the connection style
relpos default is (0.5, 0.5)
patchA default is bounding box of the text
patchB default is None
shrinkA default is 2 points
shrinkB default is 2 points
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for matplotlib.patches.PathPatch

xycoords and textcoords are strings that indicate the coordinates of xy and xytext.

Prop-
erty

Description

‘figure
points’

points from the lower left corner of the figure

‘figure
pixels’

pixels from the lower left corner of the figure

‘figure
frac-
tion’

0,0 is lower left of figure and 1,1 is upper, right

‘axes
points’

points from lower left corner of axes

‘axes
pixels’

pixels from lower left corner of axes

‘axes
frac-
tion’

0,1 is lower left of axes and 1,1 is upper right

‘data’ use the coordinate system of the object being annotated (default)
‘offset
points’

Specify an offset (in points) from the xy value

‘polar’ you can specify theta, r for the annotation, even in cartesian plots. Note that if you are
using a polar axes, you do not need to specify polar for the coordinate system since
that is the native “data” coordinate system.

48.1. matplotlib.pyplot 621

Matplotlib, Release 0.99.3

If a ‘points’ or ‘pixels’ option is specified, values will be added to the bottom-left and if negative,
values will be subtracted from the top-right. Eg:

10 points to the right of the left border of the axes and
5 points below the top border
xy=(10,-5), xycoords=’axes points’

The annotation_clip attribute contols the visibility of the annotation when it goes outside the axes
area. If True, the annotation will only be drawn when the xy is inside the axes. If False, the annotation
will always be drawn regardless of its position. The default is None, which behave as True only if
xycoords is”data”.

Additional kwargs are Text properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]

Continued on next page

622 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

Table 48.1 – continued from previous page
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

1 0 1 2 3 4 5
4

3

2

1

0

1

2

3

arrowstyle

arc3

arc

arc

angle

angle3

angle

angle

angle

48.1. matplotlib.pyplot 623

Matplotlib, Release 0.99.3

1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

−>

fancy simple

wedge

wedge

wedge

matplotlib.pyplot.arrow(x, y, dx, dy, hold=None, **kwargs)
call signature:

arrow(x, y, dx, dy, **kwargs)

Draws arrow on specified axis from (x, y) to (x + dx, y + dy).

Optional kwargs control the arrow properties:

624 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

48.1. matplotlib.pyplot 625

Matplotlib, Release 0.99.3

A3 T3

G3 C3

r
AC

r
GT

r
AG

r
CA

r
CG

r
GC

r
AT

r
GA

r
CT

r
TG r

TC

r
TA

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.autumn()
set the default colormap to autumn and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.axes(*args, **kwargs)
Add an axes at position rect specified by:

•axes() by itself creates a default full subplot(111) window axis.

•axes(rect, axisbg=’w’) where rect = [left, bottom, width, height] in normalized (0, 1)
units. axisbg is the background color for the axis, default white.

•axes(h) where h is an axes instance makes h the current axis. An Axes instance is returned.

kwarg Accepts Desctiption
axisbg color the axes background color
frameon [True|False] display the frame?
sharex otherax current axes shares xaxis attribute with otherax
sharey otherax current axes shares yaxis attribute with otherax
polar [True|False] use a polar axes?

Examples:

•examples/pylab_examples/axes_demo.py places custom axes.

•examples/pylab_examples/shared_axis_demo.py uses sharex and sharey.

matplotlib.pyplot.axhline(y=0, xmin=0, xmax=1, hold=None, **kwargs)
call signature:

626 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

axhline(y=0, xmin=0, xmax=1, **kwargs)

Axis Horizontal Line

Draw a horizontal line at y from xmin to xmax. With the default values of xmin = 0 and xmax = 1,
this line will always span the horizontal extent of the axes, regardless of the xlim settings, even if you
change them, eg. with the set_xlim() command. That is, the horizontal extent is in axes coords:
0=left, 0.5=middle, 1.0=right but the y location is in data coordinates.

Return value is the Line2D instance. kwargs are the same as kwargs to plot, and can be used to control
the line properties. Eg.,

•draw a thick red hline at y = 0 that spans the xrange

>>> axhline(linewidth=4, color=’r’)

•draw a default hline at y = 1 that spans the xrange

>>> axhline(y=1)

•draw a default hline at y = .5 that spans the the middle half of the xrange

>>> axhline(y=.5, xmin=0.25, xmax=0.75)

Valid kwargs are Line2D properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color

Continued on next page

48.1. matplotlib.pyplot 627

Matplotlib, Release 0.99.3

Table 48.2 – continued from previous page
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See Also:

axhspan() for example plot and source code

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.axhspan(ymin, ymax, xmin=0, xmax=1, hold=None, **kwargs)
call signature:

axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs)

Axis Horizontal Span.

y coords are in data units and x coords are in axes (relative 0-1) units.

Draw a horizontal span (rectangle) from ymin to ymax. With the default values of xmin = 0 and
xmax = 1, this always spans the xrange, regardless of the xlim settings, even if you change them, eg.
with the set_xlim() command. That is, the horizontal extent is in axes coords: 0=left, 0.5=middle,
1.0=right but the y location is in data coordinates.

Return value is a matplotlib.patches.Polygon instance.

Examples:

•draw a gray rectangle from y = 0.25-0.75 that spans the horizontal extent of the axes

>>> axhspan(0.25, 0.75, facecolor=’0.5’, alpha=0.5)

Valid kwargs are Polygon properties:

628 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

48.1. matplotlib.pyplot 629

Matplotlib, Release 0.99.3

1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.axis(*v, **kwargs)
Set/Get the axis properties:

>>> axis()

returns the current axes limits [xmin, xmax, ymin, ymax].

>>> axis(v)

sets the min and max of the x and y axes, with v = [xmin, xmax, ymin, ymax].

>>> axis(’off’)

turns off the axis lines and labels.

>>> axis(’equal’)

changes limits of x or y axis so that equal increments of x and y have the same length; a circle is
circular.

>>> axis(’scaled’)

achieves the same result by changing the dimensions of the plot box instead of the axis data limits.

630 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

>>> axis(’tight’)

changes x and y axis limits such that all data is shown. If all data is already shown, it will move it
to the center of the figure without modifying (xmax - xmin) or (ymax - ymin). Note this is slightly
different than in matlab.

>>> axis(’image’)

is ‘scaled’ with the axis limits equal to the data limits.

>>> axis(’auto’)

and

>>> axis(’normal’)

are deprecated. They restore default behavior; axis limits are automatically scaled to make the data fit
comfortably within the plot box.

if len(*v)==0, you can pass in xmin, xmax, ymin, ymax as kwargs selectively to alter just those limits
without changing the others.

The xmin, xmax, ymin, ymax tuple is returned

See Also:

xlim(), ylim() For setting the x- and y-limits individually.

matplotlib.pyplot.axvline(x=0, ymin=0, ymax=1, hold=None, **kwargs)
call signature:

axvline(x=0, ymin=0, ymax=1, **kwargs)

Axis Vertical Line

Draw a vertical line at x from ymin to ymax. With the default values of ymin = 0 and ymax = 1, this
line will always span the vertical extent of the axes, regardless of the ylim settings, even if you change
them, eg. with the set_ylim() command. That is, the vertical extent is in axes coords: 0=bottom,
0.5=middle, 1.0=top but the x location is in data coordinates.

Return value is the Line2D instance. kwargs are the same as kwargs to plot, and can be used to control
the line properties. Eg.,

•draw a thick red vline at x = 0 that spans the yrange

>>> axvline(linewidth=4, color=’r’)

•draw a default vline at x = 1 that spans the yrange

>>> axvline(x=1)

•draw a default vline at x = .5 that spans the the middle half of the yrange

48.1. matplotlib.pyplot 631

Matplotlib, Release 0.99.3

>>> axvline(x=.5, ymin=0.25, ymax=0.75)

Valid kwargs are Line2D properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See Also:

632 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

axhspan() for example plot and source code

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.axvspan(xmin, xmax, ymin=0, ymax=1, hold=None, **kwargs)
call signature:

axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs)

Axis Vertical Span.

x coords are in data units and y coords are in axes (relative 0-1) units.

Draw a vertical span (rectangle) from xmin to xmax. With the default values of ymin = 0 and ymax =

1, this always spans the yrange, regardless of the ylim settings, even if you change them, eg. with the
set_ylim() command. That is, the vertical extent is in axes coords: 0=bottom, 0.5=middle, 1.0=top
but the y location is in data coordinates.

Return value is the matplotlib.patches.Polygon instance.

Examples:

•draw a vertical green translucent rectangle from x=1.25 to 1.55 that spans the yrange of the axes

>>> axvspan(1.25, 1.55, facecolor=’g’, alpha=0.5)

Valid kwargs are Polygon properties:

48.1. matplotlib.pyplot 633

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

See Also:

axhspan() for example plot and source code

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.bar(left, height, width=0.8, bottom=None, color=None, edgecolor=None,
linewidth=None, yerr=None, xerr=None, ecolor=None, capsize=3,
align=’edge’, orientation=’vertical’, log=False, hold=None, **kwargs)

call signature:

bar(left, height, width=0.8, bottom=0,
color=None, edgecolor=None, linewidth=None,
yerr=None, xerr=None, ecolor=None, capsize=3,
align=’edge’, orientation=’vertical’, log=False)

Make a bar plot with rectangles bounded by:

left, left + width, bottom, bottom + height (left, right, bottom and top edges)

left, height, width, and bottom can be either scalars or sequences

Return value is a list of matplotlib.patches.Rectangle instances.

634 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

Required arguments:

Argument Description
left the x coordinates of the left sides of the bars
height the heights of the bars

Optional keyword arguments:

Key-
word

Description

width the widths of the bars
bottom the y coordinates of the bottom edges of the bars
color the colors of the bars
edge-
color

the colors of the bar edges

linewidth width of bar edges; None means use default linewidth; 0 means don’t
draw edges.

xerr if not None, will be used to generate errorbars on the bar chart
yerr if not None, will be used to generate errorbars on the bar chart
ecolor specifies the color of any errorbar
capsize (default 3) determines the length in points of the error bar caps
align ‘edge’ (default) | ‘center’
orienta-
tion

‘vertical’ | ‘horizontal’

log [False|True] False (default) leaves the orientation axis as-is; True sets it to
log scale

For vertical bars, align = ‘edge’ aligns bars by their left edges in left, while align = ‘center’ interprets
these values as the x coordinates of the bar centers. For horizontal bars, align = ‘edge’ aligns bars by
their bottom edges in bottom, while align = ‘center’ interprets these values as the y coordinates of the
bar centers.

The optional arguments color, edgecolor, linewidth, xerr, and yerr can be either scalars or sequences
of length equal to the number of bars. This enables you to use bar as the basis for stacked bar charts,
or candlestick plots.

Other optional kwargs:

48.1. matplotlib.pyplot 635

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example: A stacked bar chart.

636 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

G1 G2 G3 G4 G5
0

10

20

30

40

50

60

70

80
S
co

re
s

Scores by group and gender

Men
Women

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.barbs(*args, **kw)
Plot a 2-D field of barbs.

call signatures:

barb(U, V, **kw)
barb(U, V, C, **kw)
barb(X, Y, U, V, **kw)
barb(X, Y, U, V, C, **kw)

Arguments:

X, Y: The x and y coordinates of the barb locations (default is head of barb; see pivot
kwarg)

U, V: give the x and y components of the barb shaft

C: an optional array used to map colors to the barbs

All arguments may be 1-D or 2-D arrays or sequences. If X and Y are absent, they will be generated
as a uniform grid. If U and V are 2-D arrays but X and Y are 1-D, and if len(X) and len(Y) match the
column and row dimensions of U, then X and Y will be expanded with numpy.meshgrid().

U, V, C may be masked arrays, but masked X, Y are not supported at present.

Keyword arguments:

48.1. matplotlib.pyplot 637

Matplotlib, Release 0.99.3

length: Length of the barb in points; the other parts of the barb are scaled against this.
Default is 9

pivot: [‘tip’ | ‘middle’] The part of the arrow that is at the grid point; the arrow rotates
about this point, hence the name pivot. Default is ‘tip’

barbcolor: [color | color sequence] Specifies the color all parts of the barb except any
flags. This parameter is analagous to the edgecolor parameter for polygons, which
can be used instead. However this parameter will override facecolor.

flagcolor: [color | color sequence] Specifies the color of any flags on the barb. This
parameter is analagous to the facecolor parameter for polygons, which can be used
instead. However this parameter will override facecolor. If this is not set (and C has
not either) then flagcolor will be set to match barbcolor so that the barb has a uniform
color. If C has been set, flagcolor has no effect.

sizes: A dictionary of coefficients specifying the ratio of a given feature to the length of
the barb. Only those values one wishes to override need to be included. These features
include:

• ‘spacing’ - space between features (flags, full/half barbs)

• ‘height’ - height (distance from shaft to top) of a flag or full barb

• ‘width’ - width of a flag, twice the width of a full barb

• ‘emptybarb’ - radius of the circle used for low magnitudes

fill_empty: A flag on whether the empty barbs (circles) that are drawn should be filled with
the flag color. If they are not filled, they will be drawn such that no color is applied to
the center. Default is False

rounding: A flag to indicate whether the vector magnitude should be rounded when allo-
cating barb components. If True, the magnitude is rounded to the nearest multiple of
the half-barb increment. If False, the magnitude is simply truncated to the next lowest
multiple. Default is True

barb_increments: A dictionary of increments specifying values to associate with different
parts of the barb. Only those values one wishes to override need to be included.

• ‘half’ - half barbs (Default is 5)

• ‘full’ - full barbs (Default is 10)

• ‘flag’ - flags (default is 50)

flip_barb: Either a single boolean flag or an array of booleans. Single boolean indicates
whether the lines and flags should point opposite to normal for all barbs. An array
(which should be the same size as the other data arrays) indicates whether to flip for
each individual barb. Normal behavior is for the barbs and lines to point right (comes
from wind barbs having these features point towards low pressure in the Northern
Hemisphere.) Default is False

Barbs are traditionally used in meteorology as a way to plot the speed and direction of wind observa-
tions, but can technically be used to plot any two dimensional vector quantity. As opposed to arrows,
which give vector magnitude by the length of the arrow, the barbs give more quantitative information

638 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

about the vector magnitude by putting slanted lines or a triangle for various increments in magnitude,
as show schematically below:

: /\ \
: / \ \
: / \ \ \
: / \ \ \
: ------------------------------

The largest increment is given by a triangle (or “flag”). After those come full lines (barbs). The
smallest increment is a half line. There is only, of course, ever at most 1 half line. If the magnitude
is small and only needs a single half-line and no full lines or triangles, the half-line is offset from the
end of the barb so that it can be easily distinguished from barbs with a single full line. The magnitude
for the barb shown above would nominally be 65, using the standard increments of 50, 10, and 5.

linewidths and edgecolors can be used to customize the barb. Additional PolyCollection keyword
arguments:

Property Description
alpha float
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown

Continued on next page

48.1. matplotlib.pyplot 639

Matplotlib, Release 0.99.3

Table 48.4 – continued from previous page
visible [True | False]
zorder any number

Example:

6 4 2 0 2 4 6
6

4

2

0

2

4

6

4 3 2 1 0 1 2
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

6 4 2 0 2 4 6
6

4

2

0

2

4

6

4 3 2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

640 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

4 3 2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.barh(bottom, width, height=0.8, left=None, hold=None, **kwargs)
call signature:

barh(bottom, width, height=0.8, left=0, **kwargs)

Make a horizontal bar plot with rectangles bounded by:

left, left + width, bottom, bottom + height (left, right, bottom and top edges)

bottom, width, height, and left can be either scalars or sequences

Return value is a list of matplotlib.patches.Rectangle instances.

Required arguments:

Argument Description
bottom the vertical positions of the bottom edges of the bars
width the lengths of the bars

Optional keyword arguments:

48.1. matplotlib.pyplot 641

Matplotlib, Release 0.99.3

Key-
word

Description

height the heights (thicknesses) of the bars
left the x coordinates of the left edges of the bars
color the colors of the bars
edge-
color

the colors of the bar edges

linewidth width of bar edges; None means use default linewidth; 0 means don’t
draw edges.

xerr if not None, will be used to generate errorbars on the bar chart
yerr if not None, will be used to generate errorbars on the bar chart
ecolor specifies the color of any errorbar
capsize (default 3) determines the length in points of the error bar caps
align ‘edge’ (default) | ‘center’
log [False|True] False (default) leaves the horizontal axis as-is; True sets it to

log scale

Setting align = ‘edge’ aligns bars by their bottom edges in bottom, while align = ‘center’ interprets
these values as the y coordinates of the bar centers.

The optional arguments color, edgecolor, linewidth, xerr, and yerr can be either scalars or sequences
of length equal to the number of bars. This enables you to use barh as the basis for stacked bar charts,
or candlestick plots.

other optional kwargs:

642 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.bone()
set the default colormap to bone and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.box(on=None)
Turn the axes box on or off according to on.

If on is None, toggle state.

matplotlib.pyplot.boxplot(x, notch=0, sym=’b+’, vert=1, whis=1.5, positions=None,
widths=None, hold=None)

call signature:

boxplot(x, notch=0, sym=’+’, vert=1, whis=1.5,
positions=None, widths=None)

Make a box and whisker plot for each column of x or each vector in sequence x. The box extends
from the lower to upper quartile values of the data, with a line at the median. The whiskers extend
from the box to show the range of the data. Flier points are those past the end of the whiskers.

•notch = 0 (default) produces a rectangular box plot.

48.1. matplotlib.pyplot 643

Matplotlib, Release 0.99.3

•notch = 1 will produce a notched box plot

sym (default ‘b+’) is the default symbol for flier points. Enter an empty string (‘’) if you don’t want
to show fliers.

•vert = 1 (default) makes the boxes vertical.

•vert = 0 makes horizontal boxes. This seems goofy, but that’s how Matlab did it.

whis (default 1.5) defines the length of the whiskers as a function of the inner quartile range. They
extend to the most extreme data point within (whis*(75%-25%)) data range.

positions (default 1,2,...,n) sets the horizontal positions of the boxes. The ticks and limits are auto-
matically set to match the positions.

widths is either a scalar or a vector and sets the width of each box. The default is 0.5, or
0.15*(distance between extreme positions) if that is smaller.

x is an array or a sequence of vectors.

Returns a dictionary mapping each component of the boxplot to a list of the
matplotlib.lines.Line2D instances created.

Example:

1
100

50

0

50

100

150

200

644 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

1
100

50

0

50

100

150

200

48.1. matplotlib.pyplot 645

Matplotlib, Release 0.99.3

1
100

50

0

50

100

150

200

646 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

1
50

0

50

100

150

48.1. matplotlib.pyplot 647

Matplotlib, Release 0.99.3

100 50 0 50 100 150 200

1

648 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

100 50 0 50 100 150 200

1

48.1. matplotlib.pyplot 649

Matplotlib, Release 0.99.3

1 2 3
100

50

0

50

100

150

200

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.broken_barh(xranges, yrange, hold=None, **kwargs)
call signature:

broken_barh(self, xranges, yrange, **kwargs)

A collection of horizontal bars spanning yrange with a sequence of xranges.

Required arguments:

Argument Description
xranges sequence of (xmin, xwidth)
yrange sequence of (ymin, ywidth)

kwargs are matplotlib.collections.BrokenBarHCollection properties:

Property Description
alpha float
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance

Continued on next page

650 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

Table 48.5 – continued from previous page
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

these can either be a single argument, ie:

facecolors = ’black’

or a sequence of arguments for the various bars, ie:

facecolors = (’black’, ’red’, ’green’)

Example:

48.1. matplotlib.pyplot 651

Matplotlib, Release 0.99.3

0 50 100 150 200
seconds since start

Bill

Jim

race interrupted

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.cla()
Clear the current axes

matplotlib.pyplot.clabel(CS, *args, **kwargs)
call signature:

clabel(cs, **kwargs)

adds labels to line contours in cs, where cs is a ContourSet object returned by contour.

clabel(cs, v, **kwargs)

only labels contours listed in v.

Optional keyword arguments:

fontsize: See http://matplotlib.sf.net/fonts.html

colors:

• if None, the color of each label matches the color of the corresponding contour

• if one string color, e.g. colors = ‘r’ or colors = ‘red’, all labels will be plotted in
this color

652 Chapter 48. matplotlib pyplot

http://matplotlib.sf.net/fonts.html

Matplotlib, Release 0.99.3

• if a tuple of matplotlib color args (string, float, rgb, etc), different labels will be
plotted in different colors in the order specified

inline: controls whether the underlying contour is removed or not. Default is True.

inline_spacing: space in pixels to leave on each side of label when placing inline. Defaults
to 5. This spacing will be exact for labels at locations where the contour is straight,
less so for labels on curved contours.

fmt: a format string for the label. Default is ‘%1.3f’ Alternatively, this can be a dictio-
nary matching contour levels with arbitrary strings to use for each contour level (i.e.,
fmt[level]=string)

manual: if True, contour labels will be placed manually using mouse clicks. Click the
first button near a contour to add a label, click the second button (or potentially both
mouse buttons at once) to finish adding labels. The third button can be used to remove
the last label added, but only if labels are not inline. Alternatively, the keyboard can
be used to select label locations (enter to end label placement, delete or backspace act
like the third mouse button, and any other key will select a label location).

rightside_up: if True (default), label rotations will always be plus or minus 90 degrees
from level.

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.500 1.000

1.500

Simplest default with labels

48.1. matplotlib.pyplot 653

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours dashed

654 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours solid

48.1. matplotlib.pyplot 655

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Crazy lines

656 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.0

-0.6

-0
.2

0.2 0.6

1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.40.0 0.4 0.8 1.2 1.6

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.clf()
Clear the current figure

matplotlib.pyplot.clim(vmin=None, vmax=None)
Set the color limits of the current image

To apply clim to all axes images do:

clim(0, 0.5)

If either vmin or vmax is None, the image min/max respectively will be used for color scaling.

If you want to set the clim of multiple images, use, for example:

for im in gca().get_images():
im.set_clim(0, 0.05)

matplotlib.pyplot.close(*args)
Close a figure window

close() by itself closes the current figure

close(num) closes figure number num

close(h) where h is a Figure instance, closes that figure

48.1. matplotlib.pyplot 657

Matplotlib, Release 0.99.3

close(’all’) closes all the figure windows

matplotlib.pyplot.cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at
0x921317c>, window=<function window_hanning at 0x9213064>,
noverlap=0, pad_to=None, sides=’default’, scale_by_freq=None,
hold=None, **kwargs)

call signature:

cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend = mlab.detrend_none,
window = mlab.window_hanning, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)

cohere() the coherence between x and y. Coherence is the normalized cross spectral density:

Cxy =
|Pxy|

2

PxxPyy
(48.1)

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be even;
a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in matlab, where the detrend parameter is a
vector, in matplotlib is it a function. The pylab module defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function as
well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(), scipy.signal(),
scipy.signal.get_window(), etc. The default is window_hanning(). If a
function is passed as the argument, it must take a data segment as an argument and
return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the minimum
distance between resolvable peaks), this can give more points in the plot, allowing for
more detail. This corresponds to the n parameter in the call to fft(). The default is
None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and both
for complex data. ‘onesided’ forces the return of a one-sided PSD, while ‘twosided’
forces two-sided.

658 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

scale_by_freq: boolean Specifies whether the resulting density values should be scaled by
the scaling frequency, which gives density in units of Hz^-1. This allows for integra-
tion over the returned frequency values. The default is True for MatLab compatibility.

Fc: integer The center frequency of x (defaults to 0), which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

The return value is a tuple (Cxy, f), where f are the frequencies of the coherence vector.

kwargs are applied to the lines.

References:

•Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley & Sons
(1986)

kwargs control the Line2D properties of the coherence plot:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]

Continued on next page

48.1. matplotlib.pyplot 659

Matplotlib, Release 0.99.3

Table 48.6 – continued from previous page
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

0 1 2 3 4 5
time

0.08
0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08

s1
 a

n
d
 s

2

0 10 20 30 40 50
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

co
h
e
re

n
ce

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.colorbar(mappable=None, cax=None, ax=None, **kw)
Add a colorbar to a plot.

Function signatures for the pyplot interface; all but the first are also method signatures for the
colorbar() method:

660 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

colorbar(**kwargs)
colorbar(mappable, **kwargs)
colorbar(mappable, cax=cax, **kwargs)
colorbar(mappable, ax=ax, **kwargs)

arguments:

mappable the Image, ContourSet, etc. to which the colorbar applies; this argument is
mandatory for the colorbar() method but optional for the colorbar() function,
which sets the default to the current image.

keyword arguments:

cax None | axes object into which the colorbar will be drawn

ax None | parent axes object from which space for a new colorbar axes will be stolen

Additional keyword arguments are of two kinds:

axes properties:

Prop-
erty

Description

orien-
tation

vertical or horizontal

frac-
tion

0.15; fraction of original axes to use for colorbar

pad 0.05 if vertical, 0.15 if horizontal; fraction of original axes between
colorbar and new image axes

shrink 1.0; fraction by which to shrink the colorbar
aspect 20; ratio of long to short dimensions

colorbar properties:

Prop-
erty

Description

ex-
tend

[‘neither’ | ‘both’ | ‘min’ | ‘max’] If not ‘neither’, make pointed
end(s) for out-of- range values. These are set for a given colormap
using the colormap set_under and set_over methods.

spac-
ing

[‘uniform’ | ‘proportional’] Uniform spacing gives each discrete
color the same space; proportional makes the space proportional to
the data interval.

ticks [None | list of ticks | Locator object] If None, ticks are determined
automatically from the input.

for-
mat

[None | format string | Formatter object] If None, the
ScalarFormatter is used. If a format string is given, e.g. ‘%.3f’,
that is used. An alternative Formatter object may be given instead.

drawedges[False | True] If true, draw lines at color boundaries.

The following will probably be useful only in the context of indexed colors (that
is, when the mappable has norm=NoNorm()), or other unusual circumstances.

48.1. matplotlib.pyplot 661

Matplotlib, Release 0.99.3

Prop-
erty

Description

bound-
aries

None or a sequence

val-
ues

None or a sequence which must be of length 1 less than the sequence
of boundaries. For each region delimited by adjacent entries in
boundaries, the color mapped to the corresponding value in values
will be used.

If mappable is a ContourSet, its extend kwarg is included automatically.

Note that the shrink kwarg provides a simple way to keep a vertical colorbar, for example, from being
taller than the axes of the mappable to which the colorbar is attached; but it is a manual method
requiring some trial and error. If the colorbar is too tall (or a horizontal colorbar is too wide) use a
smaller value of shrink.

For more precise control, you can manually specify the positions of the axes objects in which the
mappable and the colorbar are drawn. In this case, do not use any of the axes properties kwargs.

returns: Colorbar instance; see also its base class, ColorbarBase. Call the set_label() method
to label the colorbar.

matplotlib.pyplot.colormaps()
matplotlib provides the following colormaps.

•autumn

•bone

•cool

•copper

•flag

•gray

•hot

•hsv

•jet

•pink

•prism

•spring

•summer

•winter

•spectral

You can set the colormap for an image, pcolor, scatter, etc, either as a keyword argument:

662 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

imshow(X, cmap=cm.hot)

or post-hoc using the corresponding pylab interface function:

imshow(X)
hot()
jet()

In interactive mode, this will update the colormap allowing you to see which one works best for your
data.

matplotlib.pyplot.colors()
This is a do-nothing function to provide you with help on how matplotlib handles colors.

Commands which take color arguments can use several formats to specify the colors. For the basic
builtin colors, you can use a single letter

Alias Color
‘b’ blue
‘g’ green
‘r’ red
‘c’ cyan
‘m’ magenta
‘y’ yellow
‘k’ black
‘w’ white

For a greater range of colors, you have two options. You can specify the color using an html hex
string, as in:

color = ’#eeefff’

or you can pass an R,G,B tuple, where each of R,G,B are in the range [0,1].

You can also use any legal html name for a color, for example:

color = ’red’,
color = ’burlywood’
color = ’chartreuse’

The example below creates a subplot with a dark slate gray background

subplot(111, axisbg=(0.1843, 0.3098, 0.3098))

Here is an example that creates a pale turqoise title:

title(’Is this the best color?’, color=’#afeeee’)

matplotlib.pyplot.connect(s, func)
Connect event with string s to func. The signature of func is:

def func(event)

where event is a matplotlib.backend_bases.Event. The following events are recognized

48.1. matplotlib.pyplot 663

Matplotlib, Release 0.99.3

•‘button_press_event’

•‘button_release_event’

•‘draw_event’

•‘key_press_event’

•‘key_release_event’

•‘motion_notify_event’

•‘pick_event’

•‘resize_event’

•‘scroll_event’

•‘figure_enter_event’,

•‘figure_leave_event’,

•‘axes_enter_event’,

•‘axes_leave_event’

For the location events (button and key press/release), if the mouse is over the axes, the variable
event.inaxes will be set to the Axes the event occurs is over, and additionally, the variables
event.xdata and event.ydata will be defined. This is the mouse location in data coords. See
KeyEvent and MouseEvent for more info.

Return value is a connection id that can be used with mpl_disconnect().

Example usage:

def on_press(event):
print ’you pressed’, event.button, event.xdata, event.ydata

cid = canvas.mpl_connect(’button_press_event’, on_press)

matplotlib.pyplot.contour(*args, **kwargs)
contour() and contourf() draw contour lines and filled contours, respectively. Except as noted,
function signatures and return values are the same for both versions.

contourf() differs from the Matlab (TM) version in that it does not draw the polygon edges, because
the contouring engine yields simply connected regions with branch cuts. To draw the edges, add line
contours with calls to contour().

call signatures:

contour(Z)

make a contour plot of an array Z. The level values are chosen automatically.

contour(X,Y,Z)

X, Y specify the (x, y) coordinates of the surface

664 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

contour(Z,N)
contour(X,Y,Z,N)

contour N automatically-chosen levels.

contour(Z,V)
contour(X,Y,Z,V)

draw contour lines at the values specified in sequence V

contourf(..., V)

fill the (len(V)-1) regions between the values in V

contour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

X, Y, and Z must be arrays with the same dimensions.

Z may be a masked array, but filled contouring may not handle internal masked regions correctly.

C = contour(...) returns a ContourSet object.

Optional keyword arguments:

colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will be
used.

If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.

If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted
in different colors in the order specified.

alpha: float The alpha blending value

cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and col-
ors is None, a default Colormap is used.

norm: [None | Normalize] A matplotlib.colors.Normalize instance for scaling
data values to colors. If norm is None and colors is None, the default linear scaling is
used.

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will correspond
to the lower left corner, location (0,0). If ‘image’, the rc value for image.origin will
be used.

This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]

If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries. In
this case, the position of Z[0,0] is the center of the pixel, not a corner. If origin
is None, then (x0, y0) is the position of Z[0,0], and (x1, y1) is the position of
Z[-1,-1].

48.1. matplotlib.pyplot 665

Matplotlib, Release 0.99.3

This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default MaxNLocator
is used. The locator is used to determine the contour levels if they are not given
explicitly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour
levels are automatically added to one or both ends of the range so
that all data are included. These added ranges are then mapped to
the special colormap values which default to the ends of the colormap
range, but can be set via matplotlib.cm.Colormap.set_under() and
matplotlib.cm.Colormap.set_over() methods.

contour-only keyword arguments:

linewidths: [None | number | tuple of numbers] If linewidths is None, the default
width in lines.linewidth in matplotlibrc is used.

If a number, all levels will be plotted with this linewidth.

If a tuple, different levels will be plotted with different linewidths in the order specified

linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] If linestyles is None, the
‘solid’ is used.

linestyles can also be an iterable of the above strings specifying a set of linestyles to
be used. If this iterable is shorter than the number of contour levels it will be repeated
as necessary.

If contour is using a monochrome colormap and the contour level is less than 0, then
the linestyle specified in contour.negative_linestyle in matplotlibrc will be
used.

contourf-only keyword arguments:

antialiased: [True | False] enable antialiasing

nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer to
divide the domain into subdomains of roughly nchunk by nchunk points. This may
never actually be advantageous, so this option may be removed. Chunking introduces
artifacts at the chunk boundaries unless antialiased is False.

Example:

666 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.500 1.000

1.500

Simplest default with labels

48.1. matplotlib.pyplot 667

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours dashed

668 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours solid

48.1. matplotlib.pyplot 669

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Crazy lines

670 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.0

-0.6

-0
.2

0.2 0.6

1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.40.0 0.4 0.8 1.2 1.6

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.contourf(*args, **kwargs)
contour() and contourf() draw contour lines and filled contours, respectively. Except as noted,
function signatures and return values are the same for both versions.

contourf() differs from the Matlab (TM) version in that it does not draw the polygon edges, because
the contouring engine yields simply connected regions with branch cuts. To draw the edges, add line
contours with calls to contour().

call signatures:

contour(Z)

make a contour plot of an array Z. The level values are chosen automatically.

contour(X,Y,Z)

X, Y specify the (x, y) coordinates of the surface

contour(Z,N)
contour(X,Y,Z,N)

contour N automatically-chosen levels.

contour(Z,V)
contour(X,Y,Z,V)

48.1. matplotlib.pyplot 671

Matplotlib, Release 0.99.3

draw contour lines at the values specified in sequence V

contourf(..., V)

fill the (len(V)-1) regions between the values in V

contour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

X, Y, and Z must be arrays with the same dimensions.

Z may be a masked array, but filled contouring may not handle internal masked regions correctly.

C = contour(...) returns a ContourSet object.

Optional keyword arguments:

colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will be
used.

If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.

If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted
in different colors in the order specified.

alpha: float The alpha blending value

cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and col-
ors is None, a default Colormap is used.

norm: [None | Normalize] A matplotlib.colors.Normalize instance for scaling
data values to colors. If norm is None and colors is None, the default linear scaling is
used.

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will correspond
to the lower left corner, location (0,0). If ‘image’, the rc value for image.origin will
be used.

This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]

If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries. In
this case, the position of Z[0,0] is the center of the pixel, not a corner. If origin
is None, then (x0, y0) is the position of Z[0,0], and (x1, y1) is the position of
Z[-1,-1].

This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default MaxNLocator
is used. The locator is used to determine the contour levels if they are not given
explicitly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour
levels are automatically added to one or both ends of the range so

672 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

that all data are included. These added ranges are then mapped to
the special colormap values which default to the ends of the colormap
range, but can be set via matplotlib.cm.Colormap.set_under() and
matplotlib.cm.Colormap.set_over() methods.

contour-only keyword arguments:

linewidths: [None | number | tuple of numbers] If linewidths is None, the default
width in lines.linewidth in matplotlibrc is used.

If a number, all levels will be plotted with this linewidth.

If a tuple, different levels will be plotted with different linewidths in the order specified

linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] If linestyles is None, the
‘solid’ is used.

linestyles can also be an iterable of the above strings specifying a set of linestyles to
be used. If this iterable is shorter than the number of contour levels it will be repeated
as necessary.

If contour is using a monochrome colormap and the contour level is less than 0, then
the linestyle specified in contour.negative_linestyle in matplotlibrc will be
used.

contourf-only keyword arguments:

antialiased: [True | False] enable antialiasing

nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer to
divide the domain into subdomains of roughly nchunk by nchunk points. This may
never actually be advantageous, so this option may be removed. Chunking introduces
artifacts at the chunk boundaries unless antialiased is False.

Example:

48.1. matplotlib.pyplot 673

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.500 1.000

1.500

Simplest default with labels

674 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours dashed

48.1. matplotlib.pyplot 675

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours solid

676 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Crazy lines

48.1. matplotlib.pyplot 677

Matplotlib, Release 0.99.3

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.0

-0.6

-0
.2

0.2 0.6

1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.40.0 0.4 0.8 1.2 1.6

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.cool()
set the default colormap to cool and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.copper()
set the default colormap to copper and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at
0x921317c>, window=<function window_hanning at 0x9213064>,
noverlap=0, pad_to=None, sides=’default’, scale_by_freq=None,
hold=None, **kwargs)

call signature:

csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)

The cross spectral density Pxy by Welch’s average periodogram method. The vectors x and y are
divided into NFFT length segments. Each segment is detrended by function detrend and windowed
by function window. The product of the direct FFTs of x and y are averaged over each segment to
compute Pxy, with a scaling to correct for power loss due to windowing.

Returns the tuple (Pxy, freqs). P is the cross spectrum (complex valued), and 10 log10 |Pxy| is plotted.

678 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be even;
a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in matlab, where the detrend parameter is a
vector, in matplotlib is it a function. The pylab module defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function as
well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(), scipy.signal(),
scipy.signal.get_window(), etc. The default is window_hanning(). If a
function is passed as the argument, it must take a data segment as an argument and
return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the minimum
distance between resolvable peaks), this can give more points in the plot, allowing for
more detail. This corresponds to the n parameter in the call to fft(). The default is
None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and both
for complex data. ‘onesided’ forces the return of a one-sided PSD, while ‘twosided’
forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled by
the scaling frequency, which gives density in units of Hz^-1. This allows for integra-
tion over the returned frequency values. The default is True for MatLab compatibility.

Fc: integer The center frequency of x (defaults to 0), which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

References: Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley
& Sons (1986)

kwargs control the Line2D properties:

Property Description
Continued on next page

48.1. matplotlib.pyplot 679

Matplotlib, Release 0.99.3

Table 48.7 – continued from previous page
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

680 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

0 1 2 3 4 5
time

0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08

s1
 a

n
d
 s

2

0 10 20 30 40 50
Frequency

80

70

60

50

40

C
S
D

 (
d
b
)

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.delaxes(*args)
delaxes(ax): remove ax from the current figure. If ax doesn’t exist, an error will be raised.

delaxes(): delete the current axes

matplotlib.pyplot.disconnect(cid)
disconnect callback id cid

Example usage:

cid = canvas.mpl_connect(’button_press_event’, on_press)
#...later
canvas.mpl_disconnect(cid)

matplotlib.pyplot.draw()
redraw the current figure

matplotlib.pyplot.errorbar(x, y, yerr=None, xerr=None, fmt=’-‘, ecolor=None,
elinewidth=None, capsize=3, barsabove=False, lolims=False,
uplims=False, xlolims=False, xuplims=False, hold=None,
**kwargs)

call signature:

errorbar(x, y, yerr=None, xerr=None,
fmt=’-’, ecolor=None, elinewidth=None, capsize=3,

48.1. matplotlib.pyplot 681

Matplotlib, Release 0.99.3

barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False)

Plot x versus y with error deltas in yerr and xerr. Vertical errorbars are plotted if yerr is not None.
Horizontal errorbars are plotted if xerr is not None.

x, y, xerr, and yerr can all be scalars, which plots a single error bar at x, y.

Optional keyword arguments:

xerr/yerr: [scalar | N, Nx1, or 2xN array-like] If a scalar number, len(N) array-like ob-
ject, or an Nx1 array-like object, errorbars are drawn +/- value.

If a rank-1, 2xN numpy array, errorbars are drawn at -row1 and +row2

fmt: ‘-‘ The plot format symbol for y. If fmt is None, just plot the errorbars with no line
symbols. This can be useful for creating a bar plot with errorbars.

ecolor: [None | mpl color] a matplotlib color arg which gives the color the errorbar
lines; if None, use the marker color.

elinewidth: scalar the linewidth of the errorbar lines. If None, use the linewidth.

capsize: scalar the size of the error bar caps in points

barsabove: [True | False] if True, will plot the errorbars above the plot symbols. Default
is below.

lolims/uplims/xlolims/xuplims: [False | True] These arguments can be used to indicate
that a value gives only upper/lower limits. In that case a caret symbol is used to
indicate this. lims-arguments may be of the same type as xerr and yerr.

All other keyword arguments are passed on to the plot command for the markers, so you can add
additional key=value pairs to control the errorbar markers. For example, this code makes big red
squares with thick green edges:

x,y,yerr = rand(3,10)
errorbar(x, y, yerr, marker=’s’,

mfc=’red’, mec=’green’, ms=20, mew=4)

where mfc, mec, ms and mew are aliases for the longer property names, markerfacecolor, markeredge-
color, markersize and markeredgewith.

valid kwargs for the marker properties are

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color

Continued on next page

682 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

Table 48.8 – continued from previous page
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Return value is a length 3 tuple. The first element is the Line2D instance for the y symbol lines. The
second element is a list of error bar cap lines, the third element is a list of LineCollection instances
for the horizontal and vertical error ranges.

Example:

48.1. matplotlib.pyplot 683

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

684 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.2

0.4

0.6

0.8

1.0

48.1. matplotlib.pyplot 685

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

686 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

48.1. matplotlib.pyplot 687

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

688 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

48.1. matplotlib.pyplot 689

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

690 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

48.1. matplotlib.pyplot 691

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Distance (m)

0.0

0.2

0.4

0.6

0.8

1.0
H

e
ig

h
t

(m
)

Mean and standard error as a function of distance

692 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
100

101

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.figimage(*args, **kwargs)
call signatures:

figimage(X, **kwargs)

adds a non-resampled array X to the figure.

figimage(X, xo, yo)

with pixel offsets xo, yo,

X must be a float array:

•If X is MxN, assume luminance (grayscale)

•If X is MxNx3, assume RGB

•If X is MxNx4, assume RGBA

Optional keyword arguments:

48.1. matplotlib.pyplot 693

Matplotlib, Release 0.99.3

Key-
word

Description

xo or
yo

An integer, the x and y image offset in pixels

cmap a matplotlib.cm.ColorMap instance, eg cm.jet. If None, default to the rc
image.cmap value

norm a matplotlib.colors.Normalize instance. The default is normalization().
This scales luminance -> 0-1

vmin|vmaxare used to scale a luminance image to 0-1. If either is None, the min and max
of the luminance values will be used. Note if you pass a norm instance, the
settings for vmin and vmax will be ignored.

alpha the alpha blending value, default is 1.0
ori-
gin

[‘upper’ | ‘lower’] Indicates where the [0,0] index of the array is in the upper
left or lower left corner of the axes. Defaults to the rc image.origin value

figimage complements the axes image (imshow()) which will be resampled to fit the current axes. If
you want a resampled image to fill the entire figure, you can define an Axes with size [0,1,0,1].

An matplotlib.image.FigureImage instance is returned.

Addition kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.figlegend(handles, labels, loc, **kwargs)
Place a legend in the figure.

694 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

labels a sequence of strings

handles a sequence of Line2D or Patch instances

loc can be a string or an integer specifying the legend location

A matplotlib.legend.Legend instance is returned.

Example:

figlegend((line1, line2, line3),
(’label1’, ’label2’, ’label3’),
’upper right’)

See Also:

legend()

matplotlib.pyplot.figtext(*args, **kwargs)
Call signature:

figtext(x, y, s, fontdict=None, **kwargs)

Add text to figure at location x, y (relative 0-1 coords). See text() for the meaning of the other
arguments.

kwargs control the Text properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]

Continued on next page

48.1. matplotlib.pyplot 695

Matplotlib, Release 0.99.3

Table 48.9 – continued from previous page
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

matplotlib.pyplot.figure(num=None, figsize=None, dpi=None, facecolor=None, edge-
color=None, frameon=True, FigureClass=<class ‘mat-
plotlib.figure.Figure’>, **kwargs)

call signature:

figure(num=None, figsize=(8, 6), dpi=80, facecolor=’w’, edgecolor=’k’)

Create a new figure and return a matplotlib.figure.Figure instance. If num = None, the figure
number will be incremented and a new figure will be created. The returned figure objects have a
number attribute holding this number.

If num is an integer, and figure(num) already exists, make it active and return a reference to it. If
figure(num) does not exist it will be created. Numbering starts at 1, matlab style:

figure(1)

If you are creating many figures, make sure you explicitly call “close” on the figures you are not using,
because this will enable pylab to properly clean up the memory.

Optional keyword arguments:

Keyword Description
figsize width x height in inches; defaults to rc figure.figsize
dpi resolution; defaults to rc figure.dpi
facecolor the background color; defaults to rc figure.facecolor
edgecolor the border color; defaults to rc figure.edgecolor

rcParams defines the default values, which can be modified in the matplotlibrc file

FigureClass is a Figure or derived class that will be passed on to new_figure_manager() in the
backends which allows you to hook custom Figure classes into the pylab interface. Additional kwargs
will be passed on to your figure init function.

696 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

matplotlib.pyplot.fill(*args, **kwargs)
call signature:

fill(*args, **kwargs)

Plot filled polygons. args is a variable length argument, allowing for multiple x, y pairs with an
optional color format string; see plot() for details on the argument parsing. For example, to plot a
polygon with vertices at x, y in blue.:

ax.fill(x,y, ’b’)

An arbitrary number of x, y, color groups can be specified:

ax.fill(x1, y1, ’g’, x2, y2, ’r’)

Return value is a list of Patch instances that were added.

The same color strings that plot() supports are supported by the fill format string.

If you would like to fill below a curve, eg. shade a region between 0 and y along x, use
fill_between()

The closed kwarg will close the polygon when True (default).

kwargs control the Polygon properties:

48.1. matplotlib.pyplot 697

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

698 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.fill_between(x, y1, y2=0, where=None, hold=None, **kwargs)
call signature:

fill_between(x, y1, y2=0, where=None, **kwargs)

Create a PolyCollection filling the regions between y1 and y2 where where==True

x an N length np array of the x data

y1 an N length scalar or np array of the y data

y2 an N length scalar or np array of the y data

where if None, default to fill between everywhere. If not None, it is a a N length numpy boolean
array and the fill will only happen over the regions where where==True

kwargs keyword args passed on to the PolyCollection

kwargs control the Polygon properties:

Property Description
alpha float
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans

Continued on next page

48.1. matplotlib.pyplot 699

Matplotlib, Release 0.99.3

Table 48.10 – continued from previous page
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

700 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0
b
e
tw

e
e
n
 y

1
 a

n
d
 0

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

b
e
tw

e
e
n
 y

1
 a

n
d
 1

0.0 0.5 1.0 1.5 2.0
x

1.5
1.0
0.5
0.0
0.5
1.0
1.5

b
e
tw

e
e
n
 y

1
 a

n
d
 y

2

48.1. matplotlib.pyplot 701

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5
fill between where

0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5
Now regions with y2>1 are masked

702 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

See Also:

fill_betweenx() for filling between two sets of x-values

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.fill_betweenx(y, x1, x2=0, where=None, hold=None, **kwargs)
call signature:

fill_between(y, x1, x2=0, where=None, **kwargs)

Create a PolyCollection filling the regions between x1 and x2 where where==True

y an N length np array of the y data

x1 an N length scalar or np array of the x data

x2 an N length scalar or np array of the x data

where if None, default to fill between everywhere. If not None, it is a a N length numpy boolean
array and the fill will only happen over the regions where where==True

kwargs keyword args passed on to the PolyCollection

kwargs control the Polygon properties:

%(PolyCollection)s

48.1. matplotlib.pyplot 703

Matplotlib, Release 0.99.3

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0
b
e
tw

e
e
n
 y

1
 a

n
d
 0

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

b
e
tw

e
e
n
 y

1
 a

n
d
 1

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.5
0.0
0.5
1.0
1.5
2.0

b
e
tw

e
e
n
 y

1
 a

n
d
 y

2

704 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

2.0
fill between where

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

2.0
Now regions with y2 > 1 are masked

See Also:

fill_between() for filling between two sets of y-values

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.findobj(o=None, match=None)

pyplot signature: findobj(o=gcf(), match=None)

Recursively find all :class:matplotlib.artist.Artist instances contained in self.

match can be

•None: return all objects contained in artist (including artist)

•function with signature boolean = match(artist) used to filter matches

•class instance: eg Line2D. Only return artists of class type

48.1. matplotlib.pyplot 705

Matplotlib, Release 0.99.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Model complexity --->

0

5

10

15

20
M

e
ss

a
g
e
 l
e
n
g
th

 -
--

>

Minimum Message Length

Model length
Data length
Total message length

matplotlib.pyplot.flag()
set the default colormap to flag and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.gca(**kwargs)
Return the current axis instance. This can be used to control axis properties either using set or the
Axes methods, for example, setting the xaxis range:

plot(t,s)
set(gca(), ’xlim’, [0,10])

or:

plot(t,s)
a = gca()
a.set_xlim([0,10])

matplotlib.pyplot.gcf()
Return a reference to the current figure.

matplotlib.pyplot.gci()
Get the current ScalarMappable instance (image or patch collection), or None if no images or patch
collections have been defined. The commands imshow() and figimage() create Image instances,
and the commands pcolor() and scatter() create Collection instances.

matplotlib.pyplot.get_current_fig_manager()

706 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

matplotlib.pyplot.get_fignums()
Return a list of existing figure numbers.

matplotlib.pyplot.get_plot_commands()

matplotlib.pyplot.ginput(*args, **kwargs)
call signature:

ginput(self, n=1, timeout=30, show_clicks=True,
mouse_add=1, mouse_pop=3, mouse_stop=2)

Blocking call to interact with the figure.

This will wait for n clicks from the user and return a list of the coordinates of each click.

If timeout is zero or negative, does not timeout.

If n is zero or negative, accumulate clicks until a middle click (or potentially both mouse buttons at
once) terminates the input.

Right clicking cancels last input.

The buttons used for the various actions (adding points, removing points, terminating the inputs)
can be overriden via the arguments mouse_add, mouse_pop and mouse_stop, that give the associated
mouse button: 1 for left, 2 for middle, 3 for right.

The keyboard can also be used to select points in case your mouse does not have one or more of the
buttons. The delete and backspace keys act like right clicking (i.e., remove last point), the enter key
terminates input and any other key (not already used by the window manager) selects a point.

matplotlib.pyplot.gray()
set the default colormap to gray and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.grid(b=None, **kwargs)
call signature:

grid(self, b=None, **kwargs)

Set the axes grids on or off; b is a boolean

If b is None and len(kwargs)==0, toggle the grid state. If kwargs are supplied, it is assumed that
you want a grid and b is thus set to True

kawrgs are used to set the grid line properties, eg:

ax.grid(color=’r’, linestyle=’-’, linewidth=2)

Valid Line2D kwargs are

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance

Continued on next page

48.1. matplotlib.pyplot 707

Matplotlib, Release 0.99.3

Table 48.11 – continued from previous page
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

matplotlib.pyplot.hexbin(x, y, C=None, gridsize=100, bins=None, xscale=’linear’,
yscale=’linear’, extent=None, cmap=None, norm=None,
vmin=None, vmax=None, alpha=1.0, linewidths=None, edge-
colors=’none’, reduce_C_function=<function mean at 0x8ad38ec>,
mincnt=None, marginals=False, hold=None, **kwargs)

call signature:

hexbin(x, y, C = None, gridsize = 100, bins = None,
xscale = ’linear’, yscale = ’linear’,

708 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

cmap=None, norm=None, vmin=None, vmax=None,
alpha=1.0, linewidths=None, edgecolors=’none’
reduce_C_function = np.mean, mincnt=None, marginals=True
**kwargs)

Make a hexagonal binning plot of x versus y, where x, y are 1-D sequences of the same length, N. If C
is None (the default), this is a histogram of the number of occurences of the observations at (x[i],y[i]).

If C is specified, it specifies values at the coordinate (x[i],y[i]). These values are accumulated for each
hexagonal bin and then reduced according to reduce_C_function, which defaults to numpy’s mean
function (np.mean). (If C is specified, it must also be a 1-D sequence of the same length as x and y.)

x, y and/or C may be masked arrays, in which case only unmasked points will be plotted.

Optional keyword arguments:

gridsize: [100 | integer] The number of hexagons in the x-direction, default is 100. The
corresponding number of hexagons in the y-direction is chosen such that the hexagons
are approximately regular. Alternatively, gridsize can be a tuple with two elements
specifying the number of hexagons in the x-direction and the y-direction.

bins: [None | ‘log’ | integer | sequence] If None, no binning is applied; the color of each
hexagon directly corresponds to its count value.

If ‘log’, use a logarithmic scale for the color map. Internally, log10(i + 1) is used to
determine the hexagon color.

If an integer, divide the counts in the specified number of bins, and color the hexagons
accordingly.

If a sequence of values, the values of the lower bound of the bins to be used.

xscale: [‘linear’ | ‘log’] Use a linear or log10 scale on the horizontal axis.

scale: [‘linear’ | ‘log’] Use a linear or log10 scale on the vertical axis.

mincnt: None | a positive integer If not None, only display cells with more than mincnt
number of points in the cell

marginals: True|False if marginals is True, plot the marginal density as colormapped rec-
tagles along the bottom of the x-axis and left of the y-axis

extent: [None | scalars (left, right, bottom, top)] The limits of the bins. The default as-
signs the limits based on gridsize, x, y, xscale and yscale.

Other keyword arguments controlling color mapping and normalization arguments:

cmap: [None | Colormap] a matplotlib.cm.Colormap instance. If None, defaults to
rc image.cmap.

norm: [None | Normalize] matplotlib.colors.Normalize instance is used to scale
luminance data to 0,1.

vmin/vmax: scalar vmin and vmax are used in conjunction with norm to normalize lumi-
nance data. If either are None, the min and max of the color array C is used. Note if
you pass a norm instance, your settings for vmin and vmax will be ignored.

48.1. matplotlib.pyplot 709

Matplotlib, Release 0.99.3

alpha: scalar the alpha value for the patches

linewidths: [None | scalar] If None, defaults to rc lines.linewidth. Note that this is a
tuple, and if you set the linewidths argument you must set it as a sequence of floats, as
required by RegularPolyCollection.

Other keyword arguments controlling the Collection properties:

edgecolors: [None | mpl color | color sequence] If ‘none’, draws the edges in the same
color as the fill color. This is the default, as it avoids unsightly unpainted pixels
between the hexagons.

If None, draws the outlines in the default color.

If a matplotlib color arg or sequence of rgba tuples, draws the outlines in the specified
color.

Here are the standard descriptions of all the Collection kwargs:

Property Description
alpha float
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown

Continued on next page

710 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

Table 48.12 – continued from previous page
visible [True | False]
zorder any number

The return value is a PolyCollection instance; use get_array() on this PolyCollection to get
the counts in each hexagon.. If marginals is True, horizontal bar and vertical bar (both PolyCollec-
tions) will be attached to the return collection as attributes hbar and vbar

Example:

4 3 2 10 1 2 3 4

10

0

10

20

Hexagon binning

0

20

40

60

80

100

120

140

co
u
n
ts

4 3 2 10 1 2 3 4

10

0

10

20

With a log color scale

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

lo
g
1

0
(N

)

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.hist(x, bins=10, range=None, normed=False, weights=None, cumu-
lative=False, bottom=None, histtype=’bar’, align=’mid’, orienta-
tion=’vertical’, rwidth=None, log=False, hold=None, **kwargs)

call signature:

hist(x, bins=10, range=None, normed=False, cumulative=False,
bottom=None, histtype=’bar’, align=’mid’,
orientation=’vertical’, rwidth=None, log=False, **kwargs)

Compute and draw the histogram of x. The return value is a tuple (n, bins, patches) or ([n0, n1, ...],
bins, [patches0, patches1,...]) if the input contains multiple data.

48.1. matplotlib.pyplot 711

Matplotlib, Release 0.99.3

Keyword arguments:

bins: Either an integer number of bins or a sequence giving the bins. x are the data to
be binned. x can be an array, a 2D array with multiple data in its columns, or a
list of arrays with data of different length. Note, if bins is an integer input argu-
ment=numbins, bins + 1 bin edges will be returned, compatible with the semantics
of numpy.histogram() with the new = True argument. Unequally spaced bins are
supported if bins is a sequence.

range: The lower and upper range of the bins. Lower and upper outliers are ignored. If
not provided, range is (x.min(), x.max()). Range has no effect if bins is a sequence.

If bins is a sequence or range is specified, autoscaling is set off (autoscale_on is set to
False) and the xaxis limits are set to encompass the full specified bin range.

normed: If True, the first element of the return tuple will be the counts normalized to form
a probability density, i.e., n/(len(x)*dbin). In a probability density, the integral
of the histogram should be 1; you can verify that with a trapezoidal integration of the
probability density function:

pdf, bins, patches = ax.hist(...)
print np.sum(pdf * np.diff(bins))

weights An array of weights, of the same shape as x. Each value in x only contributes its
associated weight towards the bin count (instead of 1). If normed is True, the weights
are normalized, so that the integral of the density over the range remains 1.

cumulative: If True, then a histogram is computed where each bin gives the counts in that
bin plus all bins for smaller values. The last bin gives the total number of datapoints.
If normed is also True then the histogram is normalized such that the last bin equals
1. If cumulative evaluates to less than 0 (e.g. -1), the direction of accumulation is
reversed. In this case, if normed is also True, then the histogram is normalized such
that the first bin equals 1.

histtype: [‘bar’ | ‘barstacked’ | ‘step’ | ‘stepfilled’] The type of histogram to draw.

• ‘bar’ is a traditional bar-type histogram. If multiple data are given the bars are
aranged side by side.

• ‘barstacked’ is a bar-type histogram where multiple data are stacked on top of
each other.

• ‘step’ generates a lineplot that is by default unfilled.

• ‘stepfilled’ generates a lineplot that is by default filled.

align: [’left’ | ‘mid’ | ‘right’] Controls how the histogram is plotted.

• ‘left’: bars are centered on the left bin edges.

• ‘mid’: bars are centered between the bin edges.

• ‘right’: bars are centered on the right bin edges.

712 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

orientation: [‘horizontal’ | ‘vertical’] If ‘horizontal’, barh() will be used for bar-type
histograms and the bottom kwarg will be the left edges.

rwidth: The relative width of the bars as a fraction of the bin width. If None, automatically
compute the width. Ignored if histtype = ‘step’ or ‘stepfilled’.

log: If True, the histogram axis will be set to a log scale. If log is True and x is a 1D
array, empty bins will be filtered out and only the non-empty (n, bins, patches) will be
returned.

kwargs are used to update the properties of the hist Rectangle instances:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

You can use labels for your histogram, and only the first Rectangle gets the label (the others get the
magic string ‘_nolegend_’. This will make the histograms work in the intuitive way for bar charts:

ax.hist(10+2*np.random.randn(1000), label=’men’)
ax.hist(12+3*np.random.randn(1000), label=’women’, alpha=0.5)
ax.legend()

label can also be a sequence of strings. If multiple data is provided in x, the labels are asigned
sequentially to the histograms.

Example:

48.1. matplotlib.pyplot 713

Matplotlib, Release 0.99.3

40 60 80 100 120 140 160
Smarts

0.000

0.005

0.010

0.015

0.020

0.025

0.030
P
ro

b
a
b
ili

ty
Histogram of IQ : µ=100, σ=15

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.hlines(y, xmin, xmax, colors=’k’, linestyles=’solid’, label=’‘, hold=None,
**kwargs)

call signature:

hlines(y, xmin, xmax, colors=’k’, linestyles=’solid’, **kwargs)

Plot horizontal lines at each y from xmin to xmax.

Returns the LineCollection that was added.

Required arguments:

y: a 1-D numpy array or iterable.

xmin and xmax: can be scalars or len(x) numpy arrays. If they are scalars, then the
respective values are constant, else the widths of the lines are determined by xmin and
xmax.

Optional keyword arguments:

colors: a line collections color argument, either a single color or a len(y) list of colors

linestyles: [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

Example:

714 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (s)

0

1

2

3

4

5
Comparison of model with data

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.hold(b=None)
Set the hold state. If b is None (default), toggle the hold state, else set the hold state to boolean value
b:

hold() # toggle hold
hold(True) # hold is on
hold(False) # hold is off

When hold is True, subsequent plot commands will be added to the current axes. When hold is False,
the current axes and figure will be cleared on the next plot command.

matplotlib.pyplot.hot()
set the default colormap to hot and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.hsv()
set the default colormap to hsv and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.imread(*args, **kwargs)
Return image file in fname as numpy.array.

Return value is a numpy.array. For grayscale images, the return array is MxN. For RGB images, the
return value is MxNx3. For RGBA images the return value is MxNx4.

48.1. matplotlib.pyplot 715

Matplotlib, Release 0.99.3

matplotlib can only read PNGs natively, but if PIL is installed, it will use it to load the image and
return an array (if possible) which can be used with imshow().

matplotlib.pyplot.imsave(*args, **kwargs)
Saves a 2D numpy.array as an image with one pixel per element. The output formats available
depend on the backend being used.

Arguments:

fname: A string containing a path to a filename, or a Python file-like object. If format is None
and fname is a string, the output format is deduced from the extension of the filename.

arr: A 2D array.

Keyword arguments:

vmin/vmax: [None | scalar] vmin and vmax set the color scaling for the image by fixing the
values that map to the colormap color limits. If either vmin or vmax is None, that limit is
determined from the arr min/max value.

cmap: cmap is a colors.Colormap instance, eg cm.jet. If None, default to the rc image.cmap
value.

format: One of the file extensions supported by the active backend. Most backends support png,
pdf, ps, eps and svg.

origin [‘upper’ | ‘lower’] Indicates where the [0,0] index of the array is in the upper left or
lower left corner of the axes. Defaults to the rc image.origin value.

matplotlib.pyplot.imshow(X, cmap=None, norm=None, aspect=None, interpolation=None,
alpha=1.0, vmin=None, vmax=None, origin=None, extent=None,
shape=None, filternorm=1, filterrad=4.0, imlim=None, resam-
ple=None, url=None, hold=None, **kwargs)

call signature:

imshow(X, cmap=None, norm=None, aspect=None, interpolation=None,
alpha=1.0, vmin=None, vmax=None, origin=None, extent=None,
**kwargs)

Display the image in X to current axes. X may be a float array, a uint8 array or a PIL image. If X is an
array, X can have the following shapes:

•MxN – luminance (grayscale, float array only)

•MxNx3 – RGB (float or uint8 array)

•MxNx4 – RGBA (float or uint8 array)

The value for each component of MxNx3 and MxNx4 float arrays should be in the range 0.0 to 1.0;
MxN float arrays may be normalised.

An matplotlib.image.AxesImage instance is returned.

Keyword arguments:

cmap: [None | Colormap] A matplotlib.cm.Colormap instance, eg. cm.jet. If None,
default to rc image.cmap value.

716 Chapter 48. matplotlib pyplot

http://www.pythonware.com/products/pil/

Matplotlib, Release 0.99.3

cmap is ignored when X has RGB(A) information

aspect: [None | ‘auto’ | ‘equal’ | scalar] If ‘auto’, changes the image aspect ratio to
match that of the axes

If ‘equal’, and extent is None, changes the axes aspect ratio to match that of the image.
If extent is not None, the axes aspect ratio is changed to match that of the extent.

If None, default to rc image.aspect value.

interpolation:

Acceptable values are None, ‘nearest’, ‘bilinear’, ‘bicubic’, ‘spline16’,
‘spline36’, ‘hanning’, ‘hamming’, ‘hermite’, ‘kaiser’, ‘quadric’, ‘catrom’,
‘gaussian’, ‘bessel’, ‘mitchell’, ‘sinc’, ‘lanczos’,

If interpolation is None, default to rc image.interpolation. See also the fil-
ternorm and filterrad parameters

norm: [None | Normalize] An matplotlib.colors.Normalize instance; if None,
default is normalization(). This scales luminance -> 0-1

norm is only used for an MxN float array.

vmin/vmax: [None | scalar] Used to scale a luminance image to 0-1. If either is None,
the min and max of the luminance values will be used. Note if norm is not None, the
settings for vmin and vmax will be ignored.

alpha: scalar The alpha blending value, between 0 (transparent) and 1 (opaque)

origin: [None | ‘upper’ | ‘lower’] Place the [0,0] index of the array in the upper left or
lower left corner of the axes. If None, default to rc image.origin.

extent: [None | scalars (left, right, bottom, top)] Data limits for the axes. The default
assigns zero-based row, column indices to the x, y centers of the pixels.

shape: [None | scalars (columns, rows)] For raw buffer images

filternorm: A parameter for the antigrain image resize filter. From the antigrain documen-
tation, if filternorm = 1, the filter normalizes integer values and corrects the rounding
errors. It doesn’t do anything with the source floating point values, it corrects only
integers according to the rule of 1.0 which means that any sum of pixel weights must
be equal to 1.0. So, the filter function must produce a graph of the proper shape.

filterrad: The filter radius for filters that have a radius parameter, i.e. when interpolation
is one of: ‘sinc’, ‘lanczos’ or ‘blackman’

Additional kwargs are Artist properties:

48.1. matplotlib.pyplot 717

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
contains a callable function
figure a matplotlib.figure.Figure instance
gid an id string
label any string
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Additional kwargs: hold = [True|False] overrides default hold state

718 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

matplotlib.pyplot.ioff()
Turn interactive mode off.

matplotlib.pyplot.ion()
Turn interactive mode on.

matplotlib.pyplot.ishold()
Return the hold status of the current axes

matplotlib.pyplot.isinteractive()
Return the interactive status

matplotlib.pyplot.jet()
set the default colormap to jet and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.legend(*args, **kwargs)
call signature:

legend(*args, **kwargs)

Place a legend on the current axes at location loc. Labels are a sequence of strings and loc can be a
string or an integer specifying the legend location.

To make a legend with existing lines:

legend()

legend() by itself will try and build a legend using the label property of the lines/patches/collections.
You can set the label of a line by doing:

plot(x, y, label=’my data’)

or:

line.set_label(’my data’).

If label is set to ‘_nolegend_’, the item will not be shown in legend.

To automatically generate the legend from labels:

legend((’label1’, ’label2’, ’label3’))

To make a legend for a list of lines and labels:

legend((line1, line2, line3), (’label1’, ’label2’, ’label3’))

To make a legend at a given location, using a location argument:

legend((’label1’, ’label2’, ’label3’), loc=’upper left’)

or:

legend((line1, line2, line3), (’label1’, ’label2’, ’label3’), loc=2)

The location codes are

48.1. matplotlib.pyplot 719

Matplotlib, Release 0.99.3

Location String Location Code
‘best’ 0
‘upper right’ 1
‘upper left’ 2
‘lower left’ 3
‘lower right’ 4
‘right’ 5
‘center left’ 6
‘center right’ 7
‘lower center’ 8
‘upper center’ 9
‘center’ 10

Users can specify any arbitrary location for the legend using the bbox_to_anchor keyword argument.
bbox_to_anchor can be an instance of BboxBase(or its derivatives) or a tuple of 2 or 4 floats. For
example,

loc = ‘upper right’, bbox_to_anchor = (0.5, 0.5)

will place the legend so that the upper right corner of the legend at the center of the axes.

The legend location can be specified in other coordinate, by using the bbox_transform keyword.

The loc itslef can be a 2-tuple giving x,y of the lower-left corner of the legend in axes coords
(bbox_to_anchor is ignored).

Keyword arguments:

prop: [None | FontProperties | dict] A matplotlib.font_manager.FontProperties
instance. If prop is a dictionary, a new instance will be created with prop. If None,
use rc settings.

numpoints: integer The number of points in the legend for line

scatterpoints: integer The number of points in the legend for scatter plot

scatteroffsets: list of floats a list of yoffsets for scatter symbols in legend

markerscale: [None | scalar] The relative size of legend markers vs. original. If None,
use rc settings.

fancybox: [None | False | True] if True, draw a frame with a round fancybox. If None,
use rc

shadow: [None | False | True] If True, draw a shadow behind legend. If None, use rc
settings.

ncol [integer] number of columns. default is 1

mode [[“expand” | None]] if mode is “expand”, the legend will be horizontally expanded
to fill the axes area (or bbox_to_anchor)

bbox_to_anchor [an instance of BboxBase or a tuple of 2 or 4 floats] the bbox that the
legend will be anchored.

720 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

bbox_transform [[an instance of Transform | None]] the transform for the bbox.
transAxes if None.

title [string] the legend title

Padding and spacing between various elements use following keywords parameters. The dimensions
of these values are given as a fraction of the fontsize. Values from rcParams will be used if None.

Keyword Description
borderpad the fractional whitespace inside the legend border
labelspacing the vertical space between the legend entries
handlelength the length of the legend handles
handletextpad the pad between the legend handle and text
borderaxespad the pad between the axes and legend border
columnspacing the spacing between columns

Example:

Model complexity --->

M
e
ss

a
g
e
 l
e
n
g
th

 -
--

>

Minimum Message Length

Model length

Data length

Total message length

Also see Legend guide.

matplotlib.pyplot.loglog(*args, **kwargs)
call signature:

loglog(*args, **kwargs)

Make a plot with log scaling on the x and y axis.

48.1. matplotlib.pyplot 721

Matplotlib, Release 0.99.3

loglog() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_xscale() / matplotlib.axes.Axes.set_yscale().

Notable keyword arguments:

basex/basey: scalar > 1 base of the x/y logarithm

subsx/subsy: [None | sequence] the location of the minor x/y ticks;
None defaults to autosubs, which depend on the number of
decades in the plot; see matplotlib.axes.Axes.set_xscale() /

matplotlib.axes.Axes.set_yscale() for details

nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be masked as in-
valid, or clipped to a very small positive number

The remaining valid kwargs are Line2D properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown

Continued on next page

722 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

Table 48.13 – continued from previous page
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

0 5 10 15 20
10-2

10-1

100
semilogy

10-2 10-1 100 101 102
1.0

0.5

0.0

0.5

1.0
semilogx

2-72-62-52-42-32-22-1202122232425100

101

102
loglog base 4 on x

10-1 100 101 102 10310-1
100
101
102
103
104
105

Errorbars go negative

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.matshow(A, fignum=None, **kw)
Display an array as a matrix in a new figure window.

The origin is set at the upper left hand corner and rows (first dimension of the array) are displayed
horizontally. The aspect ratio of the figure window is that of the array, unless this would make an
excessively short or narrow figure.

Tick labels for the xaxis are placed on top.

48.1. matplotlib.pyplot 723

Matplotlib, Release 0.99.3

With the exception of fignum, keyword arguments are passed to imshow().

fignum: [None | integer | False] By default, matshow() creates a new figure window with auto-
matic numbering. If fignum is given as an integer, the created figure will use this figure number.
Because of how matshow() tries to set the figure aspect ratio to be the one of the array, if you
provide the number of an already existing figure, strange things may happen.

If fignum is False or 0, a new figure window will NOT be created.

matplotlib.pyplot.minorticks_off()
Remove minor ticks from the current plot.

matplotlib.pyplot.minorticks_on()
Display minor ticks on the current plot.

Displaying minor ticks reduces performance; turn them off using minorticks_off() if drawing speed is
a problem.

matplotlib.pyplot.over(func, *args, **kwargs)
over calls:

func(*args, **kwargs)

with hold(True) and then restores the hold state.

matplotlib.pyplot.pcolor(*args, **kwargs)
call signatures:

pcolor(C, **kwargs)
pcolor(X, Y, C, **kwargs)

Create a pseudocolor plot of a 2-D array.

C is the array of color values.

X and Y, if given, specify the (x, y) coordinates of the colored quadrilaterals; the quadrilateral for
C[i,j] has corners at:

(X[i, j], Y[i, j]),
(X[i, j+1], Y[i, j+1]),
(X[i+1, j], Y[i+1, j]),
(X[i+1, j+1], Y[i+1, j+1]).

Ideally the dimensions of X and Y should be one greater than those of C; if the dimensions are the
same, then the last row and column of C will be ignored.

Note that the the column index corresponds to the x-coordinate, and the row index corresponds to y;
for details, see the Grid Orientation section below.

If either or both of X and Y are 1-D arrays or column vectors, they will be expanded as needed into
the appropriate 2-D arrays, making a rectangular grid.

X, Y and C may be masked arrays. If either C[i, j], or one of the vertices surrounding C[i,j] (X or Y at
[i, j], [i+1, j], [i, j+1],[i+1, j+1]) is masked, nothing is plotted.

Keyword arguments:

724 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

cmap: [None | Colormap] A matplotlib.cm.Colormap instance. If None, use rc set-
tings.

norm: [None | Normalize] An matplotlib.colors.Normalize instance is used to
scale luminance data to 0,1. If None, defaults to normalize().

vmin/vmax: [None | scalar] vmin and vmax are used in conjunction with norm to nor-
malize luminance data. If either are None, the min and max of the color array C is
used. If you pass a norm instance, vmin and vmax will be ignored.

shading: [‘flat’ | ‘faceted’] If ‘faceted’, a black grid is drawn around each rectangle; if
‘flat’, edges are not drawn. Default is ‘flat’, contrary to Matlab(TM).

This kwarg is deprecated; please use ‘edgecolors’ instead:

• shading=’flat’ – edgecolors=’None’

• shading=’faceted – edgecolors=’k’

edgecolors: [None | ‘None’ | color | color sequence] If None, the rc setting is used by
default.

If ‘None’, edges will not be visible.

An mpl color or sequence of colors will set the edge color

alpha: 0 <= scalar <= 1 the alpha blending value

Return value is a matplotlib.collection.Collection instance. The grid orientation follows the
Matlab(TM) convention: an array C with shape (nrows, ncolumns) is plotted with the column number
as X and the row number as Y, increasing up; hence it is plotted the way the array would be printed,
except that the Y axis is reversed. That is, C is taken as C*(*y, x).

Similarly for meshgrid():

x = np.arange(5)
y = np.arange(3)
X, Y = meshgrid(x,y)

is equivalent to:

X = array([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]])

Y = array([[0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [2, 2, 2, 2, 2]])

so if you have:

C = rand(len(x), len(y))

then you need:

pcolor(X, Y, C.T)

or:

pcolor(C.T)

48.1. matplotlib.pyplot 725

Matplotlib, Release 0.99.3

Matlab pcolor() always discards the last row and column of C, but matplotlib displays the last row
and column if X and Y are not specified, or if X and Y have one more row and column than C.

kwargs can be used to control the PolyCollection properties:

Property Description
alpha float
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.pcolormesh(*args, **kwargs)
call signatures:

pcolormesh(C)
pcolormesh(X, Y, C)
pcolormesh(C, **kwargs)

726 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

C may be a masked array, but X and Y may not. Masked array support is implemented via cmap and
norm; in contrast, pcolor() simply does not draw quadrilaterals with masked colors or vertices.

Keyword arguments:

cmap: [None | Colormap] A matplotlib.cm.Colormap instance. If None, use rc set-
tings.

norm: [None | Normalize] A matplotlib.colors.Normalize instance is used to
scale luminance data to 0,1. If None, defaults to normalize().

vmin/vmax: [None | scalar] vmin and vmax are used in conjunction with norm to nor-
malize luminance data. If either are None, the min and max of the color array C is
used. If you pass a norm instance, vmin and vmax will be ignored.

shading: [‘flat’ | ‘faceted’] If ‘faceted’, a black grid is drawn around each rectangle; if
‘flat’, edges are not drawn. Default is ‘flat’, contrary to Matlab(TM).

This kwarg is deprecated; please use ‘edgecolors’ instead:

• shading=’flat’ – edgecolors=’None’

• shading=’faceted – edgecolors=’k’

edgecolors: [None | ‘None’ | color | color sequence] If None, the rc setting is used by
default.

If ‘None’, edges will not be visible.

An mpl color or sequence of colors will set the edge color

alpha: 0 <= scalar <= 1 the alpha blending value

Return value is a matplotlib.collection.QuadMesh object.

kwargs can be used to control the matplotlib.collections.QuadMesh properties:

Property Description
alpha float
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance

Continued on next page

48.1. matplotlib.pyplot 727

Matplotlib, Release 0.99.3

Table 48.15 – continued from previous page
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

See Also:

pcolor() For an explanation of the grid orientation and the expansion of 1-D X and/or Y to 2-D
arrays.

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdis-
tance=0.6, shadow=False, labeldistance=1.1, hold=None)

call signature:

pie(x, explode=None, labels=None,
colors=(’b’, ’g’, ’r’, ’c’, ’m’, ’y’, ’k’, ’w’),
autopct=None, pctdistance=0.6, labeldistance=1.1, shadow=False)

Make a pie chart of array x. The fractional area of each wedge is given by x/sum(x). If sum(x) <= 1,
then the values of x give the fractional area directly and the array will not be normalized.

Keyword arguments:

explode: [None | len(x) sequence] If not None, is a len(x) array which specifies the frac-
tion of the radius with which to offset each wedge.

colors: [None | color sequence] A sequence of matplotlib color args through which the
pie chart will cycle.

labels: [None | len(x) sequence of strings] A sequence of strings providing the labels
for each wedge

autopct: [None | format string | format function] If not None, is a string or function
used to label the wedges with their numeric value. The label will be placed inside the

728 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

wedge. If it is a format string, the label will be fmt%pct. If it is a function, it will be
called.

pctdistance: scalar The ratio between the center of each pie slice and the start of the text
generated by autopct. Ignored if autopct is None; default is 0.6.

labeldistance: scalar The radial distance at which the pie labels are drawn

shadow: [False | True] Draw a shadow beneath the pie.

The pie chart will probably look best if the figure and axes are square. Eg.:

figure(figsize=(8,8))
ax = axes([0.1, 0.1, 0.8, 0.8])

Return value: If autopct is None, return the tuple (patches, texts):

• patches is a sequence of matplotlib.patches.Wedge instances

• texts is a list of the label matplotlib.text.Text instances.

If autopct is not None, return the tuple (patches, texts, autotexts), where patches and texts are as
above, and autotexts is a list of Text instances for the numeric labels.

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.pink()
set the default colormap to pink and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.plot(*args, **kwargs)
Plot lines and/or markers to the Axes. args is a variable length argument, allowing for multiple x, y
pairs with an optional format string. For example, each of the following is legal:

plot(x, y) # plot x and y using default line style and color
plot(x, y, ’bo’) # plot x and y using blue circle markers
plot(y) # plot y using x as index array 0..N-1
plot(y, ’r+’) # ditto, but with red plusses

If x and/or y is 2-dimensional, then the corresponding columns will be plotted.

An arbitrary number of x, y, fmt groups can be specified, as in:

a.plot(x1, y1, ’g^’, x2, y2, ’g-’)

Return value is a list of lines that were added.

The following format string characters are accepted to control the line style or marker:

48.1. matplotlib.pyplot 729

Matplotlib, Release 0.99.3

character description
’-’ solid line style
’--’ dashed line style
’-.’ dash-dot line style
’:’ dotted line style
’.’ point marker
’,’ pixel marker
’o’ circle marker
’v’ triangle_down marker
’^’ triangle_up marker
’<’ triangle_left marker
’>’ triangle_right marker
’1’ tri_down marker
’2’ tri_up marker
’3’ tri_left marker
’4’ tri_right marker
’s’ square marker
’p’ pentagon marker
’*’ star marker
’h’ hexagon1 marker
’H’ hexagon2 marker
’+’ plus marker
’x’ x marker
’D’ diamond marker
’d’ thin_diamond marker
’|’ vline marker
’_’ hline marker

The following color abbreviations are supported:

character color
‘b’ blue
‘g’ green
‘r’ red
‘c’ cyan
‘m’ magenta
‘y’ yellow
‘k’ black
‘w’ white

In addition, you can specify colors in many weird and wonderful ways, including full names
(’green’), hex strings (’#008000’), RGB or RGBA tuples ((0,1,0,1)) or grayscale intensities
as a string (’0.8’). Of these, the string specifications can be used in place of a fmt group, but the
tuple forms can be used only as kwargs.

Line styles and colors are combined in a single format string, as in ’bo’ for blue circles.

The kwargs can be used to set line properties (any property that has a set_* method). You can use
this to set a line label (for auto legends), linewidth, anitialising, marker face color, etc. Here is an
example:

730 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

plot([1,2,3], [1,2,3], ’go-’, label=’line 1’, linewidth=2)
plot([1,2,3], [1,4,9], ’rs’, label=’line 2’)
axis([0, 4, 0, 10])
legend()

If you make multiple lines with one plot command, the kwargs apply to all those lines, e.g.:

plot(x1, y1, x2, y2, antialised=False)

Neither line will be antialiased.

You do not need to use format strings, which are just abbreviations. All of the line properties can
be controlled by keyword arguments. For example, you can set the color, marker, linestyle, and
markercolor with:

plot(x, y, color=’green’, linestyle=’dashed’, marker=’o’,
markerfacecolor=’blue’, markersize=12). See
:class:‘~matplotlib.lines.Line2D‘ for details.

The kwargs are Line2D properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)

Continued on next page

48.1. matplotlib.pyplot 731

Matplotlib, Release 0.99.3

Table 48.16 – continued from previous page
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

kwargs scalex and scaley, if defined, are passed on to autoscale_view() to determine whether the
x and y axes are autoscaled; the default is True.

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.plot_date(x, y, fmt=’bo’, tz=None, xdate=True, ydate=False, hold=None,
**kwargs)

call signature:

plot_date(x, y, fmt=’bo’, tz=None, xdate=True, ydate=False, **kwargs)

Similar to the plot() command, except the x or y (or both) data is considered to be dates, and the
axis is labeled accordingly.

x and/or y can be a sequence of dates represented as float days since 0001-01-01 UTC.

Keyword arguments:

fmt: string The plot format string.

tz: [None | timezone string] The time zone to use in labeling dates. If None, defaults to
rc value.

xdate: [True | False] If True, the x-axis will be labeled with dates.

ydate: [False | True] If True, the y-axis will be labeled with dates.

Note if you are using custom date tickers and formatters, it may be necessary to set
the formatters/locators after the call to plot_date() since plot_date() will set the de-
fault tick locator to matplotlib.dates.AutoDateLocator (if the tick locator is not al-
ready set to a matplotlib.dates.DateLocator instance) and the default tick formatter
to matplotlib.dates.AutoDateFormatter (if the tick formatter is not already set to a
matplotlib.dates.DateFormatter instance).

Valid kwargs are Line2D properties:

Property Description
Continued on next page

732 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

Table 48.17 – continued from previous page
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See Also:

dates for helper functions

date2num(), num2date() and drange()

48.1. matplotlib.pyplot 733

Matplotlib, Release 0.99.3

for help on creating the required floating point dates.

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.plotfile(fname, cols=(0,), plotfuncs=None, comments=’#’, skiprows=0,
checkrows=5, delimiter=’, ‘, names=None, subplots=True, new-
fig=True, **kwargs)

Plot the data in fname

cols is a sequence of column identifiers to plot. An identifier is either an int or a string. If it is an
int, it indicates the column number. If it is a string, it indicates the column header. matplotlib will
make column headers lower case, replace spaces with underscores, and remove all illegal characters;
so ’Adj Close*’ will have name ’adj_close’.

•If len(cols) == 1, only that column will be plotted on the y axis.

•If len(cols) > 1, the first element will be an identifier for data for the x axis and the remaining
elements will be the column indexes for multiple subplots if subplots is True (the default), or for
lines in a single subplot if subplots is False.

plotfuncs, if not None, is a dictionary mapping identifier to an Axes plotting function as a string.
Default is ‘plot’, other choices are ‘semilogy’, ‘fill’, ‘bar’, etc. You must use the same type of identifier
in the cols vector as you use in the plotfuncs dictionary, eg., integer column numbers in both or column
names in both. If subplots is False, then including any function such as ‘semilogy’ that changes the
axis scaling will set the scaling for all columns.

comments, skiprows, checkrows, delimiter, and names are all passed on to
matplotlib.pylab.csv2rec() to load the data into a record array.

If newfig is True, the plot always will be made in a new figure; if False, it will be made in the current
figure if one exists, else in a new figure.

kwargs are passed on to plotting functions.

Example usage:

plot the 2nd and 4th column against the 1st in two subplots
plotfile(fname, (0,1,3))

plot using column names; specify an alternate plot type for volume
plotfile(fname, (’date’, ’volume’, ’adj_close’),

plotfuncs={’volume’: ’semilogy’})

Note: plotfile is intended as a convenience for quickly plotting data from flat files; it is not intended
as an alternative interface to general plotting with pyplot or matplotlib.

matplotlib.pyplot.plotting()
Plotting commands

Command Description
axes Create a new axes
axis Set or return the current axis limits
bar make a bar chart
boxplot make a box and whiskers chart

Continued on next page

734 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

Table 48.18 – continued from previous page
cla clear current axes
clabel label a contour plot
clf clear a figure window
close close a figure window
colorbar add a colorbar to the current figure
cohere make a plot of coherence
contour make a contour plot
contourf make a filled contour plot
csd make a plot of cross spectral density
draw force a redraw of the current figure
errorbar make an errorbar graph
figlegend add a legend to the figure
figimage add an image to the figure, w/o resampling
figtext add text in figure coords
figure create or change active figure
fill make filled polygons
fill_between make filled polygons between two sets of y-values
fill_betweenx make filled polygons between two sets of x-values
gca return the current axes
gcf return the current figure
gci get the current image, or None
getp get a graphics property
hist make a histogram
hold set the hold state on current axes
legend add a legend to the axes
loglog a log log plot
imread load image file into array
imsave save array as an image file
imshow plot image data
matshow display a matrix in a new figure preserving aspect
pcolor make a pseudocolor plot
plot make a line plot
plotfile plot data from a flat file
psd make a plot of power spectral density
quiver make a direction field (arrows) plot
rc control the default params
savefig save the current figure
scatter make a scatter plot
setp set a graphics property
semilogx log x axis
semilogy log y axis
show show the figures
specgram a spectrogram plot
stem make a stem plot
subplot make a subplot (numrows, numcols, axesnum)
table add a table to the axes

Continued on next page

48.1. matplotlib.pyplot 735

Matplotlib, Release 0.99.3

Table 48.18 – continued from previous page
text add some text at location x,y to the current axes
title add a title to the current axes
xlabel add an xlabel to the current axes
ylabel add a ylabel to the current axes

The following commands will set the default colormap accordingly:

•autumn

•bone

•cool

•copper

•flag

•gray

•hot

•hsv

•jet

•pink

•prism

•spring

•summer

•winter

•spectral

matplotlib.pyplot.polar(*args, **kwargs)
call signature:

polar(theta, r, **kwargs)

Make a polar plot. Multiple theta, r arguments are supported, with format strings, as in plot().

An optional kwarg resolution sets the number of vertices to interpolate between each pair of points.
The default is 1, which disables interpolation.

matplotlib.pyplot.prism()
set the default colormap to prism and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.psd(x, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at
0x921317c>, window=<function window_hanning at 0x9213064>,
noverlap=0, pad_to=None, sides=’default’, scale_by_freq=None,
hold=None, **kwargs)

call signature:

736 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)

The power spectral density by Welch’s average periodogram method. The vector x is divided into
NFFT length segments. Each segment is detrended by function detrend and windowed by function
window. noverlap gives the length of the overlap between segments. The |fft(i)|2 of each segment i
are averaged to compute Pxx, with a scaling to correct for power loss due to windowing. Fs is the
sampling frequency.

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be even;
a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in matlab, where the detrend parameter is a
vector, in matplotlib is it a function. The pylab module defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function as
well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(), scipy.signal(),
scipy.signal.get_window(), etc. The default is window_hanning(). If a
function is passed as the argument, it must take a data segment as an argument and
return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the minimum
distance between resolvable peaks), this can give more points in the plot, allowing for
more detail. This corresponds to the n parameter in the call to fft(). The default is
None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and both
for complex data. ‘onesided’ forces the return of a one-sided PSD, while ‘twosided’
forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled by
the scaling frequency, which gives density in units of Hz^-1. This allows for integra-
tion over the returned frequency values. The default is True for MatLab compatibility.

Fc: integer The center frequency of x (defaults to 0), which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

48.1. matplotlib.pyplot 737

Matplotlib, Release 0.99.3

Returns the tuple (Pxx, freqs).

For plotting, the power is plotted as 10 log10(Pxx) for decibels, though Pxx itself is returned.

References: Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley
& Sons (1986)

kwargs control the Line2D properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array

Continued on next page

738 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

Table 48.19 – continued from previous page
zorder any number

Example:

0 2 4 6 8 10
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

0 10 20 30 40 50
Frequency

90
80
70
60
50
40
30
20
10

P
o
w

e
r

S
p
e
ct

ra
l
D

e
n
si

ty
 (

d
B

/H
z)

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.quiver(*args, **kw)
Plot a 2-D field of arrows.

call signatures:

quiver(U, V, **kw)
quiver(U, V, C, **kw)
quiver(X, Y, U, V, **kw)
quiver(X, Y, U, V, C, **kw)

Arguments:

X, Y:

The x and y coordinates of the arrow locations (default is tail of arrow; see pivot
kwarg)

U, V:

48.1. matplotlib.pyplot 739

Matplotlib, Release 0.99.3

give the x and y components of the arrow vectors

C: an optional array used to map colors to the arrows

All arguments may be 1-D or 2-D arrays or sequences. If X and Y are absent, they will be generated
as a uniform grid. If U and V are 2-D arrays but X and Y are 1-D, and if len(X) and len(Y) match the
column and row dimensions of U, then X and Y will be expanded with numpy.meshgrid().

U, V, C may be masked arrays, but masked X, Y are not supported at present.

Keyword arguments:

units: [’width’ | ‘height’ | ‘dots’ | ‘inches’ | ‘x’ | ‘y’]

arrow units; the arrow dimensions except for length are in multiples of this
unit.

• ‘width’ or ‘height’: the width or height of the axes

• ‘dots’ or ‘inches’: pixels or inches, based on the figure dpi

• ‘x’ or ‘y’: X or Y data units

The arrows scale differently depending on the units. For ‘x’ or ‘y’, the arrows
get larger as one zooms in; for other units, the arrow size is independent of
the zoom state. For ‘width or ‘height’, the arrow size increases with the width
and height of the axes, respectively, when the the window is resized; for ‘dots’
or ‘inches’, resizing does not change the arrows.

angles: [’uv’ | ‘xy’ | array] With the default ‘uv’, the arrow aspect ratio is 1, so that
if U*==*V the angle of the arrow on the plot is 45 degrees CCW from the x-axis.
With ‘xy’, the arrow points from (x,y) to (x+u, y+v). Alternatively, arbitrary
angles may be specified as an array of values in degrees, CCW from the x-axis.

scale: [None | float] data units per arrow unit, e.g. m/s per plot width; a smaller scale
parameter makes the arrow longer. If None, a simple autoscaling algorithm is used,
based on the average vector length and the number of vectors.

width: shaft width in arrow units; default depends on choice of units, above, and number
of vectors; a typical starting value is about 0.005 times the width of the plot.

headwidth: scalar head width as multiple of shaft width, default is 3

headlength: scalar head length as multiple of shaft width, default is 5

headaxislength: scalar head length at shaft intersection, default is 4.5

minshaft: scalar length below which arrow scales, in units of head length. Do not set this
to less than 1, or small arrows will look terrible! Default is 1

minlength: scalar minimum length as a multiple of shaft width; if an arrow length is less
than this, plot a dot (hexagon) of this diameter instead. Default is 1.

pivot: [‘tail’ | ‘middle’ | ‘tip’] The part of the arrow that is at the grid point; the arrow
rotates about this point, hence the name pivot.

740 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

color: [color | color sequence] This is a synonym for the PolyCollection facecolor
kwarg. If C has been set, color has no effect.

The defaults give a slightly swept-back arrow; to make the head a triangle, make headaxislength the
same as headlength. To make the arrow more pointed, reduce headwidth or increase headlength and
headaxislength. To make the head smaller relative to the shaft, scale down all the head parameters.
You will probably do best to leave minshaft alone.

linewidths and edgecolors can be used to customize the arrow outlines. Additional PolyCollection
keyword arguments:

Property Description
alpha float
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

Additional kwargs: hold = [True|False] overrides default hold state

48.1. matplotlib.pyplot 741

Matplotlib, Release 0.99.3

matplotlib.pyplot.quiverkey(*args, **kw)
Add a key to a quiver plot.

call signature:

quiverkey(Q, X, Y, U, label, **kw)

Arguments:

Q: The Quiver instance returned by a call to quiver.

X, Y: The location of the key; additional explanation follows.

U: The length of the key

label: a string with the length and units of the key

Keyword arguments:

coordinates = [‘axes’ | ‘figure’ | ‘data’ | ‘inches’] Coordinate system and units for X,
Y: ‘axes’ and ‘figure’ are normalized coordinate systems with 0,0 in the lower left
and 1,1 in the upper right; ‘data’ are the axes data coordinates (used for the locations
of the vectors in the quiver plot itself); ‘inches’ is position in the figure in inches, with
0,0 at the lower left corner.

color: overrides face and edge colors from Q.

labelpos = [‘N’ | ‘S’ | ‘E’ | ‘W’] Position the label above, below, to the right, to the left
of the arrow, respectively.

labelsep: Distance in inches between the arrow and the label. Default is 0.1

labelcolor: defaults to default Text color.

fontproperties: A dictionary with keyword arguments accepted by the FontProperties
initializer: family, style, variant, size, weight

Any additional keyword arguments are used to override vector properties taken from Q.

The positioning of the key depends on X, Y, coordinates, and labelpos. If labelpos is ‘N’ or ‘S’, X,
Y give the position of the middle of the key arrow. If labelpos is ‘E’, X, Y positions the head, and if
labelpos is ‘W’, X, Y positions the tail; in either of these two cases, X, Y is somewhere in the middle
of the arrow+label key object.

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.rc(*args, **kwargs)
Set the current rc params. Group is the grouping for the rc, eg. for lines.linewidth the group
is lines, for axes.facecolor, the group is axes, and so on. Group may also be a list or tuple of
group names, eg. (xtick, ytick). kwargs is a dictionary attribute name/value pairs, eg:

rc(’lines’, linewidth=2, color=’r’)

sets the current rc params and is equivalent to:

rcParams[’lines.linewidth’] = 2
rcParams[’lines.color’] = ’r’

742 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

The following aliases are available to save typing for interactive users:

Alias Property
‘lw’ ‘linewidth’
‘ls’ ‘linestyle’
‘c’ ‘color’
‘fc’ ‘facecolor’
‘ec’ ‘edgecolor’
‘mew’ ‘markeredgewidth’
‘aa’ ‘antialiased’

Thus you could abbreviate the above rc command as:

rc(’lines’, lw=2, c=’r’)

Note you can use python’s kwargs dictionary facility to store dictionaries of default parameters. Eg,
you can customize the font rc as follows:

font = {’family’ : ’monospace’,
’weight’ : ’bold’,
’size’ : ’larger’}

rc(’font’, **font) # pass in the font dict as kwargs

This enables you to easily switch between several configurations. Use rcdefaults() to restore the
default rc params after changes.

matplotlib.pyplot.rcdefaults()
Restore the default rc params - the ones that were created at matplotlib load time.

matplotlib.pyplot.rgrids(*args, **kwargs)
Set/Get the radial locations of the gridlines and ticklabels on a polar plot.

call signatures:

lines, labels = rgrids()
lines, labels = rgrids(radii, labels=None, angle=22.5, **kwargs)

When called with no arguments, rgrid() simply returns the tuple (lines, labels), where lines is an
array of radial gridlines (Line2D instances) and labels is an array of tick labels (Text instances).
When called with arguments, the labels will appear at the specified radial distances and angles.

labels, if not None, is a len(radii) list of strings of the labels to use at each angle.

If labels is None, the rformatter will be used

Examples:

set the locations of the radial gridlines and labels
lines, labels = rgrids((0.25, 0.5, 1.0))

set the locations and labels of the radial gridlines and labels
lines, labels = rgrids((0.25, 0.5, 1.0), (’Tom’, ’Dick’, ’Harry’)

48.1. matplotlib.pyplot 743

Matplotlib, Release 0.99.3

matplotlib.pyplot.savefig(*args, **kwargs)
call signature:

savefig(fname, dpi=None, facecolor=’w’, edgecolor=’w’,
orientation=’portrait’, papertype=None, format=None,
transparent=False):

Save the current figure.

The output formats available depend on the backend being used.

Arguments:

fname: A string containing a path to a filename, or a Python file-like object.

If format is None and fname is a string, the output format is deduced from the exten-
sion of the filename.

Keyword arguments:

dpi: [None | scalar > 0] The resolution in dots per inch. If None it will default to the
value savefig.dpi in the matplotlibrc file.

facecolor, edgecolor: the colors of the figure rectangle

orientation: [‘landscape’ | ‘portrait’] not supported on all backends; currently only on
postscript output

papertype: One of ‘letter’, ‘legal’, ‘executive’, ‘ledger’, ‘a0’ through ‘a10’, ‘b0’ through
‘b10’. Only supported for postscript output.

format: One of the file extensions supported by the active backend. Most backends support
png, pdf, ps, eps and svg.

transparent: If True, the figure patch and axes patches will all be transparent. This is
useful, for example, for displaying a plot on top of a colored background on a web
page. The transparency of these patches will be restored to their original values upon
exit of this function.

bbox_inches: Bbox in inches. Only the given portion of the figure is saved. If ‘tight’, try
to figure out the tight bbox of the figure.

pad_inches: Amount of padding around the figure when bbox_inches is ‘tight’.

matplotlib.pyplot.scatter(x, y, s=20, c=’b’, marker=’o’, cmap=None, norm=None,
vmin=None, vmax=None, alpha=1.0, linewidths=None,
faceted=True, verts=None, hold=None, **kwargs)

call signatures:

scatter(x, y, s=20, c=’b’, marker=’o’, cmap=None, norm=None,
vmin=None, vmax=None, alpha=1.0, linewidths=None,
verts=None, **kwargs)

Make a scatter plot of x versus y, where x, y are converted to 1-D sequences which must be of the
same length, N.

Keyword arguments:

744 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

s: size in points^2. It is a scalar or an array of the same length as x and y.

c: a color. c can be a single color format string, or a sequence of color specifications of
length N, or a sequence of N numbers to be mapped to colors using the cmap and
norm specified via kwargs (see below). Note that c should not be a single numeric
RGB or RGBA sequence because that is indistinguishable from an array of values to
be colormapped. c can be a 2-D array in which the rows are RGB or RGBA, however.

marker: can be one of:

Value Description
‘s’ square
‘o’ circle
‘^’ triangle up
‘>’ triangle right
‘v’ triangle down
‘<’ triangle left
‘d’ diamond
‘p’ pentagram
‘h’ hexagon
‘8’ octagon
‘+’ plus
‘x’ cross

The marker can also be a tuple (numsides, style, angle), which will create a custom,
regular symbol.

numsides: the number of sides

style: the style of the regular symbol:

Value Description
0 a regular polygon
1 a star-like symbol
2 an asterisk
3 a circle (numsides and angle is ignored)

angle: the angle of rotation of the symbol

Finally, marker can be (verts, 0): verts is a sequence of (x, y) vertices for a custom
scatter symbol. Alternatively, use the kwarg combination marker = None, verts =

verts.

Any or all of x, y, s, and c may be masked arrays, in which case all masks will be combined and only
unmasked points will be plotted.

Other keyword arguments: the color mapping and normalization arguments will be used only if c is
an array of floats.

cmap: [None | Colormap] A matplotlib.colors.Colormap instance or registered
name. If None, defaults to rc image.cmap. cmap is only used if c is an array of
floats.

norm: [None | Normalize] A matplotlib.colors.Normalize instance is used to

48.1. matplotlib.pyplot 745

Matplotlib, Release 0.99.3

scale luminance data to 0, 1. If None, use the default normalize(). norm is only
used if c is an array of floats.

vmin/vmax: vmin and vmax are used in conjunction with norm to normalize luminance
data. If either are None, the min and max of the color array C is used. Note if you
pass a norm instance, your settings for vmin and vmax will be ignored.

alpha: 0 <= scalar <= 1 The alpha value for the patches

linewidths: [None | scalar | sequence] If None, defaults to (lines.linewidth,). Note that
this is a tuple, and if you set the linewidths argument you must set it as a sequence of
floats, as required by RegularPolyCollection.

Optional kwargs control the Collection properties; in particular:

edgecolors: ‘none’ to plot faces with no outlines

facecolors: ‘none’ to plot unfilled outlines

Here are the standard descriptions of all the Collection kwargs:

Property Description
alpha float
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance

Continued on next page

746 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

Table 48.21 – continued from previous page
url a url string
urls unknown
visible [True | False]
zorder any number

A Collection instance is returned.

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.sci(im)
Set the current image (target of colormap commands like jet(), hot() or clim()).

matplotlib.pyplot.semilogx(*args, **kwargs)
call signature:

semilogx(*args, **kwargs)

Make a plot with log scaling on the x axis.

semilogx() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_xscale().

Notable keyword arguments:

basex: scalar > 1 base of the x logarithm

subsx: [None | sequence] The location of the minor xticks; None defaults to autosubs,
which depend on the number of decades in the plot; see set_xscale() for details.

nonposx: [’mask’ | ‘clip’] non-positive values in x can be masked as invalid, or clipped
to a very small positive number

The remaining valid kwargs are Line2D properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]

Continued on next page

48.1. matplotlib.pyplot 747

Matplotlib, Release 0.99.3

Table 48.22 – continued from previous page
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See Also:

loglog() For example code and figure

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.semilogy(*args, **kwargs)
call signature:

semilogy(*args, **kwargs)

Make a plot with log scaling on the y axis.

semilogy() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_yscale().

Notable keyword arguments:

basey: scalar > 1 Base of the y logarithm

subsy: [None | sequence] The location of the minor yticks; None defaults to autosubs,
which depend on the number of decades in the plot; see set_yscale() for details.

748 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

nonposy: [’mask’ | ‘clip’] non-positive values in y can be masked as invalid, or clipped
to a very small positive number

The remaining valid kwargs are Line2D properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘None’ | ‘ ‘ | ‘’] and any drawstyle in combination with a linestyle, e.g. ‘steps–‘.
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘*’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘<’ | ‘>’ | ‘D’ | ‘H’ | ‘^’ | ‘_’ | ‘d’ | ‘h’ | ‘o’ | ‘p’ | ‘s’ | ‘v’ | ‘x’ | ‘|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | ‘None’ | ‘ ‘ | ‘’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

48.1. matplotlib.pyplot 749

Matplotlib, Release 0.99.3

See Also:

loglog() For example code and figure

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.set_cmap(cmap)
set the default colormap to cmap and apply to current image if any. See help(colormaps) for more
information.

cmap must be a colors.Colormap instance, or the name of a registered colormap.

See register_cmap() and get_cmap().

matplotlib.pyplot.setp(*args, **kwargs)
matplotlib supports the use of setp() (“set property”) and getp() to set and get object properties,
as well as to do introspection on the object. For example, to set the linestyle of a line to be dashed,
you can do:

>>> line, = plot([1,2,3])
>>> setp(line, linestyle=’--’)

If you want to know the valid types of arguments, you can provide the name of the property you want
to set without a value:

>>> setp(line, ’linestyle’)
linestyle: [’-’ | ’--’ | ’-.’ | ’:’ | ’steps’ | ’None’]

If you want to see all the properties that can be set, and their possible values, you can do:

>>> setp(line)
... long output listing omitted

setp() operates on a single instance or a list of instances. If you are in query mode introspecting the
possible values, only the first instance in the sequence is used. When actually setting values, all the
instances will be set. E.g., suppose you have a list of two lines, the following will make both lines
thicker and red:

>>> x = arange(0,1.0,0.01)
>>> y1 = sin(2*pi*x)
>>> y2 = sin(4*pi*x)
>>> lines = plot(x, y1, x, y2)
>>> setp(lines, linewidth=2, color=’r’)

setp() works with the matlab(TM) style string/value pairs or with python kwargs. For example, the
following are equivalent:

>>> setp(lines, ’linewidth’, 2, ’color’, r’) # matlab style

>>> setp(lines, linewidth=2, color=’r’) # python style

750 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

matplotlib.pyplot.specgram(x, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none
at 0x921317c>, window=<function window_hanning at
0x9213064>, noverlap=128, cmap=None, xextent=None,
pad_to=None, sides=’default’, scale_by_freq=None, hold=None,
**kwargs)

call signature:

specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=128,
cmap=None, xextent=None, pad_to=None, sides=’default’,
scale_by_freq=None, **kwargs)

Compute a spectrogram of data in x. Data are split into NFFT length segments and the PSD of each
section is computed. The windowing function window is applied to each segment, and the amount of
overlap of each segment is specified with noverlap.

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be even;
a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in matlab, where the detrend parameter is a
vector, in matplotlib is it a function. The pylab module defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function as
well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(), scipy.signal(),
scipy.signal.get_window(), etc. The default is window_hanning(). If a
function is passed as the argument, it must take a data segment as an argument and
return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the minimum
distance between resolvable peaks), this can give more points in the plot, allowing for
more detail. This corresponds to the n parameter in the call to fft(). The default is
None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and both
for complex data. ‘onesided’ forces the return of a one-sided PSD, while ‘twosided’
forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled by

48.1. matplotlib.pyplot 751

Matplotlib, Release 0.99.3

the scaling frequency, which gives density in units of Hz^-1. This allows for integra-
tion over the returned frequency values. The default is True for MatLab compatibility.

Fc: integer The center frequency of x (defaults to 0), which offsets the y extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

cmap: A matplotlib.cm.Colormap instance; if None use default determined by rc

xextent: The image extent along the x-axis. xextent = (xmin,xmax) The default is
(0,max(bins)), where bins is the return value from mlab.specgram()

kwargs:

Additional kwargs are passed on to imshow which makes the specgram image

Return value is (Pxx, freqs, bins, im):

•bins are the time points the spectrogram is calculated over

•freqs is an array of frequencies

•Pxx is a len(times) x len(freqs) array of power

•im is a matplotlib.image.AxesImage instance

Note: If x is real (i.e. non-complex), only the positive spectrum is shown. If x is complex, both
positive and negative parts of the spectrum are shown. This can be overridden using the sides keyword
argument.

Example:

752 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

0 5 10 15
3

2

1

0

1

2

3

0 5 10 15
0

200

400

600

800

1000

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.spectral()
set the default colormap to spectral and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.spring()
set the default colormap to spring and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.spy(Z, precision=0, marker=None, markersize=None, aspect=’equal’,
hold=None, **kwargs)

call signature:

spy(Z, precision=0, marker=None, markersize=None,
aspect=’equal’, **kwargs)

spy(Z) plots the sparsity pattern of the 2-D array Z.

If precision is 0, any non-zero value will be plotted; else, values of |Z| > precision will be plotted.

For scipy.sparse.spmatrix instances, there is a special case: if precision is ‘present’, any value
present in the array will be plotted, even if it is identically zero.

The array will be plotted as it would be printed, with the first index (row) increasing down and the
second index (column) increasing to the right.

48.1. matplotlib.pyplot 753

Matplotlib, Release 0.99.3

By default aspect is ‘equal’, so that each array element occupies a square space; set the aspect kwarg
to ‘auto’ to allow the plot to fill the plot box, or to any scalar number to specify the aspect ratio of an
array element directly.

Two plotting styles are available: image or marker. Both are available for full arrays, but only the
marker style works for scipy.sparse.spmatrix instances.

If marker and markersize are None, an image will be returned and any remaining kwargs are passed
to imshow(); else, a Line2D object will be returned with the value of marker determining the marker
type, and any remaining kwargs passed to the plot() method.

If marker and markersize are None, useful kwargs include:

•cmap

•alpha

See Also:

imshow() For image options.

For controlling colors, e.g. cyan background and red marks, use:

cmap = mcolors.ListedColormap([’c’,’r’])

If marker or markersize is not None, useful kwargs include:

•marker

•markersize

•color

Useful values for marker include:

•‘s’ square (default)

•‘o’ circle

•‘.’ point

•‘,’ pixel

See Also:

plot() For plotting options

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.stem(x, y, linefmt=’b-‘, markerfmt=’bo’, basefmt=’r-‘, hold=None)
call signature:

stem(x, y, linefmt=’b-’, markerfmt=’bo’, basefmt=’r-’)

A stem plot plots vertical lines (using linefmt) at each x location from the baseline to y, and places a
marker there using markerfmt. A horizontal line at 0 is is plotted using basefmt.

754 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

Return value is a tuple (markerline, stemlines, baseline).

See Also:

this document for details

examples/pylab_examples/stem_plot.py for a demo

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.step(x, y, *args, **kwargs)
call signature:

step(x, y, *args, **kwargs)

Make a step plot. Additional keyword args to step() are the same as those for plot().

x and y must be 1-D sequences, and it is assumed, but not checked, that x is uniformly increasing.

Keyword arguments:

where: [‘pre’ | ‘post’ | ‘mid’] If ‘pre’, the interval from x[i] to x[i+1] has level y[i+1]

If ‘post’, that interval has level y[i]

If ‘mid’, the jumps in y occur half-way between the x-values.

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.subplot(*args, **kwargs)
Create a subplot command, creating axes with:

subplot(numRows, numCols, plotNum)

where plotNum = 1 is the first plot number and increasing plotNums fill rows first. max(plotNum) ==

numRows * numCols

You can leave out the commas if numRows <= numCols <= plotNum < 10, as in:

subplot(211) # 2 rows, 1 column, first (upper) plot

subplot(111) is the default axis.

New subplots that overlap old will delete the old axes. If you do not want this behavior, use
matplotlib.figure.Figure.add_subplot() or the axes() command. Eg.:

from pylab import *
plot([1,2,3]) # implicitly creates subplot(111)
subplot(211) # overlaps, subplot(111) is killed
plot(rand(12), rand(12))
subplot(212, axisbg=’y’) # creates 2nd subplot with yellow background

Keyword arguments:

axisbg: The background color of the subplot, which can be any valid color specifier. See
matplotlib.colors for more information.

48.1. matplotlib.pyplot 755

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/stem.html

Matplotlib, Release 0.99.3

polar: A boolean flag indicating whether the subplot plot should be a polar projection.
Defaults to False.

projection: A string giving the name of a custom projection to be used for
the subplot. This projection must have been previously registered. See
matplotlib.projections.register_projection()

See Also:

axes() For additional information on axes() and subplot() keyword arguments.

examples/pylab_examples/polar_scatter.py For an example

Example:

0 1 2 3 4 5
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

D
a
m

p
e
d
 o

sc
ill

a
ti

o
n

A tale of 2 subplots

0.0 0.5 1.0 1.5 2.0
time (s)

1.0

0.5

0.0

0.5

1.0

U
n
d
a
m

p
e
d

matplotlib.pyplot.subplot_tool(targetfig=None)
Launch a subplot tool window for targetfig (default gcf).

A matplotlib.widgets.SubplotTool instance is returned.

matplotlib.pyplot.subplots_adjust(*args, **kwargs)
call signature:

subplots_adjust(left=None, bottom=None, right=None, top=None,
wspace=None, hspace=None)

756 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

Tune the subplot layout via the matplotlib.figure.SubplotParams mechanism. The parameter
meanings (and suggested defaults) are:

left = 0.125 # the left side of the subplots of the figure
right = 0.9 # the right side of the subplots of the figure
bottom = 0.1 # the bottom of the subplots of the figure
top = 0.9 # the top of the subplots of the figure
wspace = 0.2 # the amount of width reserved for blank space between subplots
hspace = 0.2 # the amount of height reserved for white space between subplots

The actual defaults are controlled by the rc file

matplotlib.pyplot.summer()
set the default colormap to summer and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.suptitle(*args, **kwargs)
Add a centered title to the figure.

kwargs are matplotlib.text.Text properties. Using figure coordinates, the defaults are:

•x = 0.5 the x location of text in figure coords

•y = 0.98 the y location of the text in figure coords

•horizontalalignment = ‘center’ the horizontal alignment of the text

•verticalalignment = ‘top’ the vertical alignment of the text

A matplotlib.text.Text instance is returned.

Example:

fig.suptitle(’this is the figure title’, fontsize=12)

matplotlib.pyplot.switch_backend(newbackend)
Switch the default backend to newbackend. This feature is experimental, and is only expected to
work switching to an image backend. Eg, if you have a bunch of PostScript scripts that you want to
run from an interactive ipython session, you may want to switch to the PS backend before running
them to avoid having a bunch of GUI windows popup. If you try to interactively switch from one GUI
backend to another, you will explode.

Calling this command will close all open windows.

matplotlib.pyplot.table(**kwargs)
call signature:

table(cellText=None, cellColours=None,
cellLoc=’right’, colWidths=None,
rowLabels=None, rowColours=None, rowLoc=’left’,
colLabels=None, colColours=None, colLoc=’center’,
loc=’bottom’, bbox=None):

Add a table to the current axes. Returns a matplotlib.table.Table instance. For finer grained
control over tables, use the Table class and add it to the axes with add_table().

Thanks to John Gill for providing the class and table.

48.1. matplotlib.pyplot 757

Matplotlib, Release 0.99.3

kwargs control the Table properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
contains a callable function
figure a matplotlib.figure.Figure instance
fontsize a float in points
gid an id string
label any string
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

matplotlib.pyplot.text(x, y, s, fontdict=None, withdash=False, **kwargs)
call signature:

text(x, y, s, fontdict=None, **kwargs)

Add text in string s to axis at location x, y, data coordinates.

Keyword arguments:

fontdict: A dictionary to override the default text properties. If fontdict is None, the de-
faults are determined by your rc parameters.

withdash: [False | True] Creates a TextWithDash instance instead of a Text instance.

Individual keyword arguments can be used to override any given parameter:

text(x, y, s, fontsize=12)

The default transform specifies that text is in data coords, alternatively, you can specify text in axis
coords (0,0 is lower-left and 1,1 is upper-right). The example below places text in the center of the
axes:

text(0.5, 0.5,’matplotlib’,
horizontalalignment=’center’,
verticalalignment=’center’,
transform = ax.transAxes)

You can put a rectangular box around the text instance (eg. to set a background color) by using the
keyword bbox. bbox is a dictionary of matplotlib.patches.Rectangle properties. For example:

758 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

text(x, y, s, bbox=dict(facecolor=’red’, alpha=0.5))

Valid kwargs are matplotlib.text.Text properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

matplotlib.pyplot.thetagrids(*args, **kwargs)

48.1. matplotlib.pyplot 759

Matplotlib, Release 0.99.3

Set/Get the theta locations of the gridlines and ticklabels.

If no arguments are passed, return a tuple (lines, labels) where lines is an array of radial gridlines
(Line2D instances) and labels is an array of tick labels (Text instances):

lines, labels = thetagrids()

Otherwise the syntax is:

lines, labels = thetagrids(angles, labels=None, fmt=’%d’, frac = 1.1)

set the angles at which to place the theta grids (these gridlines are equal along the theta dimension).

angles is in degrees.

labels, if not None, is a len(angles) list of strings of the labels to use at each angle.

If labels is None, the labels will be fmt%angle.

frac is the fraction of the polar axes radius at which to place the label (1 is the edge). Eg. 1.05 is
outside the axes and 0.95 is inside the axes.

Return value is a list of tuples (lines, labels):

•lines are Line2D instances

•labels are Text instances.

Note that on input, the labels argument is a list of strings, and on output it is a list of Text instances.

Examples:

set the locations of the radial gridlines and labels
lines, labels = thetagrids(range(45,360,90))

set the locations and labels of the radial gridlines and labels
lines, labels = thetagrids(range(45,360,90), (’NE’, ’NW’, ’SW’,’SE’))

matplotlib.pyplot.title(s, *args, **kwargs)
Set the title of the current axis to s.

Default font override is:

override = {’fontsize’: ’medium’,
’verticalalignment’: ’bottom’,
’horizontalalignment’: ’center’}

See Also:

text() for information on how override and the optional args work.

matplotlib.pyplot.twinx(ax=None)
Make a second axes overlay ax (or the current axes if ax is None) sharing the xaxis. The ticks for ax2
will be placed on the right, and the ax2 instance is returned.

See Also:

760 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

examples/api_examples/two_scales.py For an example

matplotlib.pyplot.twiny(ax=None)
Make a second axes overlay ax (or the current axes if ax is None) sharing the yaxis. The ticks for ax2
will be placed on the top, and the ax2 instance is returned.

matplotlib.pyplot.vlines(x, ymin, ymax, colors=’k’, linestyles=’solid’, label=’‘, hold=None,
**kwargs)

call signature:

vlines(x, ymin, ymax, color=’k’, linestyles=’solid’)

Plot vertical lines at each x from ymin to ymax. ymin or ymax can be scalars or len(x) numpy arrays.
If they are scalars, then the respective values are constant, else the heights of the lines are determined
by ymin and ymax.

colors a line collections color args, either a single color or a len(x) list of colors

linestyles

one of [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

Returns the matplotlib.collections.LineCollection that was added.

kwargs are LineCollection properties:

Property Description
alpha float
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]

Continued on next page

48.1. matplotlib.pyplot 761

Matplotlib, Release 0.99.3

Table 48.25 – continued from previous page
pickradius unknown
rasterized [True | False | None]
segments unknown
snap unknown
transform Transform instance
url a url string
urls unknown
verts unknown
visible [True | False]
zorder any number

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.waitforbuttonpress(*args, **kwargs)
call signature:

waitforbuttonpress(self, timeout=-1)

Blocking call to interact with the figure.

This will return True is a key was pressed, False if a mouse button was pressed and None if timeout
was reached without either being pressed.

If timeout is negative, does not timeout.

matplotlib.pyplot.winter()
set the default colormap to winter and apply to current image if any. See help(colormaps) for more
information

matplotlib.pyplot.xcorr(x, y, normed=True, detrend=<function detrend_none at 0x921317c>,
usevlines=True, maxlags=10, hold=None, **kwargs)

call signature:

def xcorr(self, x, y, normed=True, detrend=mlab.detrend_none,
usevlines=True, maxlags=10, **kwargs):

Plot the cross correlation between x and y. If normed = True, normalize the data by the cross correla-
tion at 0-th lag. x and y are detrended by the detrend callable (default no normalization). x and y must
be equal length.

Data are plotted as plot(lags, c, **kwargs)

Return value is a tuple (lags, c, line) where:

•lags are a length 2*maxlags+1 lag vector

•c is the 2*maxlags+1 auto correlation vector

•line is a Line2D instance returned by plot().

The default linestyle is None and the default marker is ‘o’, though these can be overridden with
keyword args. The cross correlation is performed with numpy.correlate() with mode = 2.

762 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

If usevlines is True:

vlines() rather than plot() is used to draw vertical lines from the origin to the xcorr.
Otherwise the plotstyle is determined by the kwargs, which are Line2D properties.

The return value is a tuple (lags, c, linecol, b) where linecol is the
matplotlib.collections.LineCollection instance and b is the x-axis.

maxlags is a positive integer detailing the number of lags to show. The default value of None will
return all (2*len(x)-1) lags.

Example:

xcorr() above, and acorr() below.

Example:

60 40 20 0 20 40 60
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20
0.25

60 40 20 0 20 40 60
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Additional kwargs: hold = [True|False] overrides default hold state

matplotlib.pyplot.xlabel(s, *args, **kwargs)
Set the x axis label of the current axis to s

Default override is:

override = {
’fontsize’ : ’small’,
’verticalalignment’ : ’top’,

48.1. matplotlib.pyplot 763

Matplotlib, Release 0.99.3

’horizontalalignment’ : ’center’
}

See Also:

text() For information on how override and the optional args work

matplotlib.pyplot.xlim(*args, **kwargs)
Set/Get the xlimits of the current axes:

xmin, xmax = xlim() # return the current xlim
xlim((xmin, xmax)) # set the xlim to xmin, xmax
xlim(xmin, xmax) # set the xlim to xmin, xmax

If you do not specify args, you can pass the xmin and xmax as kwargs, eg.:

xlim(xmax=3) # adjust the max leaving min unchanged
xlim(xmin=1) # adjust the min leaving max unchanged

The new axis limits are returned as a length 2 tuple.

matplotlib.pyplot.xscale(*args, **kwargs)
call signature:

xscale(scale, **kwargs)

Set the scaling for the x-axis: ‘linear’ | ‘log’ | ‘symlog’

Different keywords may be accepted, depending on the scale:

‘linear’

‘log’

basex/basey: The base of the logarithm

nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be masked
as invalid, or clipped to a very small positive number

subsx/subsy: Where to place the subticks between each major tick. Should be a
sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4, 5,
6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

‘symlog’

basex/basey: The base of the logarithm

linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to avoid
having the plot go to infinity around zero).

subsx/subsy: Where to place the subticks between each major tick. Should be a
sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4, 5,
6, 7, 8, 9]

764 Chapter 48. matplotlib pyplot

Matplotlib, Release 0.99.3

will place 10 logarithmically spaced minor ticks between each major tick.

matplotlib.pyplot.xticks(*args, **kwargs)
Set/Get the xlimits of the current ticklocs and labels:

return locs, labels where locs is an array of tick locations and
labels is an array of tick labels.
locs, labels = xticks()

set the locations of the xticks
xticks(arange(6))

set the locations and labels of the xticks
xticks(arange(5), (’Tom’, ’Dick’, ’Harry’, ’Sally’, ’Sue’))

The keyword args, if any, are Text properties. For example, to rotate long labels:

xticks(arange(12), calendar.month_name[1:13], rotation=17)

matplotlib.pyplot.ylabel(s, *args, **kwargs)
Set the y axis label of the current axis to s.

Defaults override is:

override = {
’fontsize’ : ’small’,
’verticalalignment’ : ’center’,
’horizontalalignment’ : ’right’,
’rotation’=’vertical’ : }

See Also:

text() For information on how override and the optional args work.

matplotlib.pyplot.ylim(*args, **kwargs)
Set/Get the ylimits of the current axes:

ymin, ymax = ylim() # return the current ylim
ylim((ymin, ymax)) # set the ylim to ymin, ymax
ylim(ymin, ymax) # set the ylim to ymin, ymax

If you do not specify args, you can pass the ymin and ymax as kwargs, eg.:

ylim(ymax=3) # adjust the max leaving min unchanged
ylim(ymin=1) # adjust the min leaving max unchanged

The new axis limits are returned as a length 2 tuple.

matplotlib.pyplot.yscale(*args, **kwargs)
call signature:

yscale(scale, **kwargs)

Set the scaling for the y-axis: ‘linear’ | ‘log’ | ‘symlog’

48.1. matplotlib.pyplot 765

Matplotlib, Release 0.99.3

Different keywords may be accepted, depending on the scale:

‘linear’

‘log’

basex/basey: The base of the logarithm

nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be masked
as invalid, or clipped to a very small positive number

subsx/subsy: Where to place the subticks between each major tick. Should be a
sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4, 5,
6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

‘symlog’

basex/basey: The base of the logarithm

linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to avoid
having the plot go to infinity around zero).

subsx/subsy: Where to place the subticks between each major tick. Should be a
sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4, 5,
6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

matplotlib.pyplot.yticks(*args, **kwargs)
Set/Get the ylimits of the current ticklocs and labels:

return locs, labels where locs is an array of tick locations and
labels is an array of tick labels.
locs, labels = yticks()

set the locations of the yticks
yticks(arange(6))

set the locations and labels of the yticks
yticks(arange(5), (’Tom’, ’Dick’, ’Harry’, ’Sally’, ’Sue’))

The keyword args, if any, are Text properties. For example, to rotate long labels:

yticks(arange(12), calendar.month_name[1:13], rotation=45)

766 Chapter 48. matplotlib pyplot

CHAPTER

FORTYNINE

MATPLOTLIB SPINE

49.1 matplotlib.spine

class matplotlib.spines.Spine(axes, spine_type, path, **kwargs)
Bases: matplotlib.patches.Patch

an axis spine – the line noting the data area boundaries

Spines are the lines connecting the axis tick marks and noting the boundaries of the data area. They
can be placed at arbitrary positions. See function:~matplotlib.spines.Spine.set_position for more in-
formation.

The default position is (’outward’,0).

Spines are subclasses of class:~matplotlib.patches.Patch, and inherit much of their behavior.

Spines draw a line or a circle, depending if function:~matplotlib.spines.Spine.set_patch_line or func-
tion:~matplotlib.spines.Spine.set_patch_circle has been called. Line-like is the default.

•axes : the Axes instance containing the spine

•spine_type : a string specifying the spine type

•path : the path instance used to draw the spine

Valid kwargs are:

767

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

classmethod circular_spine(axes, center, radius, **kwargs)
(staticmethod) Returns a circular Spine.

cla()
Clear the current spine

get_patch_transform()

get_path()

get_position()
get the spine position

get_spine_transform()
get the spine transform

classmethod linear_spine(axes, spine_type, **kwargs)
(staticmethod) Returns a linear Spine.

register_axis(axis)
register an axis

An axis should be registered with its corresponding spine from the Axes instance. This allows
the spine to clear any axis properties when needed.

768 Chapter 49. matplotlib spine

Matplotlib, Release 0.99.3

set_color(c)
Set the edgecolor.

ACCEPTS: matplotlib color arg or sequence of rgba tuples

See Also:

set_facecolor(), set_edgecolor() For setting the edge or face color individually.

set_patch_circle(center, radius)
set the spine to be circular

set_patch_line()
set the spine to be linear

set_position(position)
set the position of the spine

Spine position is specified by a 2 tuple of (position type, amount). The position types are:

•‘outward’ : place the spine out from the data area by the specified number of points. (Neg-
ative values specify placing the spine inward.)

•‘axes’ : place the spine at the specified Axes coordinate (from 0.0-1.0).

•‘data’ : place the spine at the specified data coordinate.

Additionally, shorthand notations define a special positions:

•‘center’ -> (‘axes’,0.5)

•‘zero’ -> (‘data’, 0.0)

49.1. matplotlib.spine 769

Matplotlib, Release 0.99.3

770 Chapter 49. matplotlib spine

CHAPTER

FIFTY

MATPLOTLIB TICKER

50.1 matplotlib.ticker

50.1.1 Tick locating and formatting

This module contains classes to support completely configurable tick locating and formatting. Although the
locators know nothing about major or minor ticks, they are used by the Axis class to support major and
minor tick locating and formatting. Generic tick locators and formatters are provided, as well as domain
specific custom ones..

Tick locating

The Locator class is the base class for all tick locators. The locators handle autoscaling of the view limits
based on the data limits, and the choosing of tick locations. A useful semi-automatic tick locator is Multi-
pleLocator. You initialize this with a base, eg 10, and it picks axis limits and ticks that are multiples of your
base.

The Locator subclasses defined here are

NullLocator No ticks

FixedLocator Tick locations are fixed

IndexLocator locator for index plots (eg. where x = range(len(y)))

LinearLocator evenly spaced ticks from min to max

LogLocator logarithmically ticks from min to max

MultipleLocator

ticks and range are a multiple of base; either integer or float

OldAutoLocator choose a MultipleLocator and dyamically reassign it for intelligent ticking during navi-
gation

MaxNLocator finds up to a max number of ticks at nice locations

AutoLocator MaxNLocator with simple defaults. This is the default tick locator for most plotting.

771

Matplotlib, Release 0.99.3

There are a number of locators specialized for date locations - see the dates module

You can define your own locator by deriving from Locator. You must override the __call__ method, which
returns a sequence of locations, and you will probably want to override the autoscale method to set the view
limits from the data limits.

If you want to override the default locator, use one of the above or a custom locator and pass it to the x or y
axis instance. The relevant methods are:

ax.xaxis.set_major_locator(xmajorLocator)
ax.xaxis.set_minor_locator(xminorLocator)
ax.yaxis.set_major_locator(ymajorLocator)
ax.yaxis.set_minor_locator(yminorLocator)

The default minor locator is the NullLocator, eg no minor ticks on by default.

Tick formatting

Tick formatting is controlled by classes derived from Formatter. The formatter operates on a single tick
value and returns a string to the axis.

NullFormatter no labels on the ticks

IndexFormatter set the strings from a list of labels

FixedFormatter set the strings manually for the labels

FuncFormatter user defined function sets the labels

FormatStrFormatter use a sprintf format string

ScalarFormatter default formatter for scalars; autopick the fmt string

LogFormatter formatter for log axes

You can derive your own formatter from the Formatter base class by simply overriding the __call__
method. The formatter class has access to the axis view and data limits.

To control the major and minor tick label formats, use one of the following methods:

ax.xaxis.set_major_formatter(xmajorFormatter)
ax.xaxis.set_minor_formatter(xminorFormatter)
ax.yaxis.set_major_formatter(ymajorFormatter)
ax.yaxis.set_minor_formatter(yminorFormatter)

See pylab_examples-major_minor_demo1 for an example of setting major an minor ticks. See the
matplotlib.dates module for more information and examples of using date locators and formatters.

class matplotlib.ticker.TickHelper

class DummyAxis

get_data_interval()

772 Chapter 50. matplotlib ticker

Matplotlib, Release 0.99.3

get_view_interval()

set_data_interval(vmin, vmax)

set_view_interval(vmin, vmax)

TickHelper.create_dummy_axis()

TickHelper.set_axis(axis)

TickHelper.set_bounds(vmin, vmax)

TickHelper.set_data_interval(vmin, vmax)

TickHelper.set_view_interval(vmin, vmax)

class matplotlib.ticker.Formatter
Bases: matplotlib.ticker.TickHelper

Convert the tick location to a string

fix_minus(s)
some classes may want to replace a hyphen for minus with the proper unicode symbol as de-
scribed here. The default is to do nothing

Note, if you use this method, eg in :meth‘format_data‘ or call, you probably don’t want to use it
for format_data_short() since the toolbar uses this for interative coord reporting and I doubt
we can expect GUIs across platforms will handle the unicode correctly. So for now the classes
that override fix_minus() should have an explicit format_data_short() method

format_data(value)

format_data_short(value)
return a short string version

get_offset()

set_locs(locs)

class matplotlib.ticker.FixedFormatter(seq)
Bases: matplotlib.ticker.Formatter

Return fixed strings for tick labels

seq is a sequence of strings. For positions i < len(seq) return seq[i] regardless of x. Otherwise
return ‘’

get_offset()

set_offset_string(ofs)

class matplotlib.ticker.NullFormatter
Bases: matplotlib.ticker.Formatter

Always return the empty string

class matplotlib.ticker.FuncFormatter(func)
Bases: matplotlib.ticker.Formatter

User defined function for formatting

50.1. matplotlib.ticker 773

http://sourceforge.net/tracker/index.php?func=detail&aid=1962574&group_id=80706&atid=560720

Matplotlib, Release 0.99.3

class matplotlib.ticker.FormatStrFormatter(fmt)
Bases: matplotlib.ticker.Formatter

Use a format string to format the tick

class matplotlib.ticker.ScalarFormatter(useOffset=True, useMathText=False)
Bases: matplotlib.ticker.Formatter

Tick location is a plain old number. If useOffset==True and the data range is much smaller than the
data average, then an offset will be determined such that the tick labels are meaningful. Scientific
notation is used for data < 1e-3 or data >= 1e4.

fix_minus(s)
use a unicode minus rather than hyphen

format_data(value)
return a formatted string representation of a number

format_data_short(value)
return a short formatted string representation of a number

get_offset()
Return scientific notation, plus offset

pprint_val(x)

set_locs(locs)
set the locations of the ticks

set_powerlimits(lims)
Sets size thresholds for scientific notation.

e.g. formatter.set_powerlimits((-3, 4)) sets the pre-2007 default in which scientific
notation is used for numbers less than 1e-3 or greater than 1e4. See also set_scientific().

set_scientific(b)
True or False to turn scientific notation on or off see also set_powerlimits()

class matplotlib.ticker.LogFormatter(base=10.0, labelOnlyBase=True)
Bases: matplotlib.ticker.Formatter

Format values for log axis;

if attribute decadeOnly is True, only the decades will be labelled.

base is used to locate the decade tick, which will be the only one to be labeled if labelOnlyBase is
False

base(base)
change the base for labeling - warning: should always match the base used for LogLocator

format_data(value)

format_data_short(value)
return a short formatted string representation of a number

is_decade(x)

774 Chapter 50. matplotlib ticker

Matplotlib, Release 0.99.3

label_minor(labelOnlyBase)
switch on/off minor ticks labeling

nearest_long(x)

pprint_val(x, d)

class matplotlib.ticker.LogFormatterExponent(base=10.0, labelOnlyBase=True)
Bases: matplotlib.ticker.LogFormatter

Format values for log axis; using exponent = log_base(value)

base is used to locate the decade tick, which will be the only one to be labeled if labelOnlyBase is
False

class matplotlib.ticker.LogFormatterMathtext(base=10.0, labelOnlyBase=True)
Bases: matplotlib.ticker.LogFormatter

Format values for log axis; using exponent = log_base(value)

base is used to locate the decade tick, which will be the only one to be labeled if labelOnlyBase is
False

class matplotlib.ticker.Locator
Bases: matplotlib.ticker.TickHelper

Determine the tick locations;

Note, you should not use the same locator between different Axis because the locator stores references
to the Axis data and view limits

autoscale()
autoscale the view limits

pan(numsteps)
Pan numticks (can be positive or negative)

refresh()
refresh internal information based on current lim

view_limits(vmin, vmax)
select a scale for the range from vmin to vmax

Normally This will be overridden.

zoom(direction)
Zoom in/out on axis; if direction is >0 zoom in, else zoom out

class matplotlib.ticker.IndexLocator(base, offset)
Bases: matplotlib.ticker.Locator

Place a tick on every multiple of some base number of points plotted, eg on every 5th point. It is
assumed that you are doing index plotting; ie the axis is 0, len(data). This is mainly useful for x ticks.

place ticks on the i-th data points where (i-offset)%base==0

class matplotlib.ticker.FixedLocator(locs, nbins=None)
Bases: matplotlib.ticker.Locator

50.1. matplotlib.ticker 775

Matplotlib, Release 0.99.3

Tick locations are fixed. If nbins is not None, the array of possible positions will be subsampled to
keep the number of ticks <= nbins +1. The subsampling will be done so as to include the smallest
absolute value; for example, if zero is included in the array of possibilities, then it is guaranteed to be
one of the chosen ticks.

class matplotlib.ticker.NullLocator
Bases: matplotlib.ticker.Locator

No ticks

class matplotlib.ticker.LinearLocator(numticks=None, presets=None)
Bases: matplotlib.ticker.Locator

Determine the tick locations

The first time this function is called it will try to set the number of ticks to make a nice tick partitioning.
Thereafter the number of ticks will be fixed so that interactive navigation will be nice

Use presets to set locs based on lom. A dict mapping vmin, vmax->locs

view_limits(vmin, vmax)
Try to choose the view limits intelligently

class matplotlib.ticker.LogLocator(base=10.0, subs=[, 1.0])
Bases: matplotlib.ticker.Locator

Determine the tick locations for log axes

place ticks on the location= base**i*subs[j]

base(base)
set the base of the log scaling (major tick every base**i, i interger)

subs(subs)
set the minor ticks the log scaling every base**i*subs[j]

view_limits(vmin, vmax)
Try to choose the view limits intelligently

class matplotlib.ticker.AutoLocator
Bases: matplotlib.ticker.MaxNLocator

class matplotlib.ticker.MultipleLocator(base=1.0)
Bases: matplotlib.ticker.Locator

Set a tick on every integer that is multiple of base in the view interval

view_limits(dmin, dmax)
Set the view limits to the nearest multiples of base that contain the data

class matplotlib.ticker.MaxNLocator(nbins=10, steps=None, trim=True, integer=False, sym-
metric=False, prune=None)

Bases: matplotlib.ticker.Locator

Select no more than N intervals at nice locations.

Keyword args: prune

776 Chapter 50. matplotlib ticker

Matplotlib, Release 0.99.3

Remove edge ticks – useful for stacked or ganged plots where the upper tick of one axes
overlaps with the lower tick of the axes above it. One of ‘lower’ | ‘upper’ | ‘both’ | None.
If prune==’lower’, the smallest tick will be removed. If prune==’upper’, the largest tick
will be removed. If prune==’both’, the largest and smallest ticks will be removed. If
prune==None, no ticks will be removed.

bin_boundaries(vmin, vmax)

view_limits(dmin, dmax)

50.1. matplotlib.ticker 777

Matplotlib, Release 0.99.3

778 Chapter 50. matplotlib ticker

CHAPTER

FIFTYONE

MATPLOTLIB BACKENDS

51.1 matplotlib.backend_bases

Abstract base classes define the primitives that renderers and graphics contexts must implement to serve as
a matplotlib backend

RendererBase An abstract base class to handle drawing/rendering operations.

FigureCanvasBase The abstraction layer that separates the matplotlib.figure.Figure from the back-
end specific details like a user interface drawing area

GraphicsContextBase An abstract base class that provides color, line styles, etc...

Event The base class for all of the matplotlib event handling. Derived classes suh as KeyEvent and
MouseEvent store the meta data like keys and buttons pressed, x and y locations in pixel and Axes
coordinates.

class matplotlib.backend_bases.Cursors

class matplotlib.backend_bases.DrawEvent(name, canvas, renderer)
Bases: matplotlib.backend_bases.Event

An event triggered by a draw operation on the canvas

In addition to the Event attributes, the following event attributes are defined:

renderer the RendererBase instance for the draw event

class matplotlib.backend_bases.Event(name, canvas, guiEvent=None)
A matplotlib event. Attach additional attributes as defined in FigureCanvasBase.mpl_connect().
The following attributes are defined and shown with their default values

name the event name

canvas the FigureCanvas instance generating the event

guiEvent the GUI event that triggered the matplotlib event

class matplotlib.backend_bases.FigureCanvasBase(figure)
The canvas the figure renders into.

Public attributes

779

Matplotlib, Release 0.99.3

figure A matplotlib.figure.Figure instance

blit(bbox=None)
blit the canvas in bbox (default entire canvas)

button_press_event(x, y, button, guiEvent=None)
Backend derived classes should call this function on any mouse button press. x,y are the canvas
coords: 0,0 is lower, left. button and key are as defined in MouseEvent.

This method will be call all functions connected to the ‘button_press_event’ with a MouseEvent
instance.

button_release_event(x, y, button, guiEvent=None)
Backend derived classes should call this function on any mouse button release.

x the canvas coordinates where 0=left

y the canvas coordinates where 0=bottom

guiEvent the native UI event that generated the mpl event

This method will be call all functions connected to the ‘button_release_event’ with a
MouseEvent instance.

draw(*args, **kwargs)
Render the Figure

draw_cursor(event)
Draw a cursor in the event.axes if inaxes is not None. Use native GUI drawing for efficiency if
possible

draw_event(renderer)
This method will be call all functions connected to the ‘draw_event’ with a DrawEvent

draw_idle(*args, **kwargs)
draw() only if idle; defaults to draw but backends can overrride

enter_notify_event(guiEvent=None)
Backend derived classes should call this function when entering canvas

guiEvent the native UI event that generated the mpl event

flush_events()
Flush the GUI events for the figure. Implemented only for backends with GUIs.

get_default_filetype()

get_supported_filetypes()

get_supported_filetypes_grouped()

get_width_height()
return the figure width and height in points or pixels (depending on the backend), truncated to
integers

idle_event(guiEvent=None)
call when GUI is idle

780 Chapter 51. matplotlib backends

Matplotlib, Release 0.99.3

key_press_event(key, guiEvent=None)
This method will be call all functions connected to the ‘key_press_event’ with a KeyEvent

key_release_event(key, guiEvent=None)
This method will be call all functions connected to the ‘key_release_event’ with a KeyEvent

leave_notify_event(guiEvent=None)
Backend derived classes should call this function when leaving canvas

guiEvent the native UI event that generated the mpl event

motion_notify_event(x, y, guiEvent=None)
Backend derived classes should call this function on any motion-notify-event.

x the canvas coordinates where 0=left

y the canvas coordinates where 0=bottom

guiEvent the native UI event that generated the mpl event

This method will be call all functions connected to the ‘motion_notify_event’ with a
MouseEvent instance.

mpl_connect(s, func)
Connect event with string s to func. The signature of func is:

def func(event)

where event is a matplotlib.backend_bases.Event. The following events are recognized

•‘button_press_event’

•‘button_release_event’

•‘draw_event’

•‘key_press_event’

•‘key_release_event’

•‘motion_notify_event’

•‘pick_event’

•‘resize_event’

•‘scroll_event’

•‘figure_enter_event’,

•‘figure_leave_event’,

•‘axes_enter_event’,

•‘axes_leave_event’

For the location events (button and key press/release), if the mouse is over the axes, the variable
event.inaxes will be set to the Axes the event occurs is over, and additionally, the variables
event.xdata and event.ydata will be defined. This is the mouse location in data coords. See
KeyEvent and MouseEvent for more info.

51.1. matplotlib.backend_bases 781

Matplotlib, Release 0.99.3

Return value is a connection id that can be used with mpl_disconnect().

Example usage:

def on_press(event):
print ’you pressed’, event.button, event.xdata, event.ydata

cid = canvas.mpl_connect(’button_press_event’, on_press)

mpl_disconnect(cid)
disconnect callback id cid

Example usage:

cid = canvas.mpl_connect(’button_press_event’, on_press)
#...later
canvas.mpl_disconnect(cid)

onHilite(ev)
Mouse event processor which highlights the artists under the cursor. Connect this to the ‘mo-
tion_notify_event’ using:

canvas.mpl_connect(’motion_notify_event’,canvas.onHilite)

onRemove(ev)
Mouse event processor which removes the top artist under the cursor. Connect this to the
‘mouse_press_event’ using:

canvas.mpl_connect(’mouse_press_event’,canvas.onRemove)

pick(mouseevent)

pick_event(mouseevent, artist, **kwargs)
This method will be called by artists who are picked and will fire off PickEvent callbacks
registered listeners

print_bmp(*args, **kwargs)

print_emf(*args, **kwargs)

print_eps(*args, **kwargs)

print_figure(filename, dpi=None, facecolor=’w’, edgecolor=’w’, orientation=’portrait’,
format=None, **kwargs)

Render the figure to hardcopy. Set the figure patch face and edge colors. This is useful because
some of the GUIs have a gray figure face color background and you’ll probably want to override
this on hardcopy.

Arguments are:

filename can also be a file object on image backends

orientation only currently applies to PostScript printing.

dpi the dots per inch to save the figure in; if None, use savefig.dpi

facecolor the facecolor of the figure

782 Chapter 51. matplotlib backends

Matplotlib, Release 0.99.3

edgecolor the edgecolor of the figure

orientation ‘ landscape’ | ‘portrait’ (not supported on all backends)

format when set, forcibly set the file format to save to

print_pdf(*args, **kwargs)

print_png(*args, **kwargs)

print_ps(*args, **kwargs)

print_raw(*args, **kwargs)

print_rgb(*args, **kwargs)

print_svg(*args, **kwargs)

print_svgz(*args, **kwargs)

resize(w, h)
set the canvas size in pixels

resize_event()
This method will be call all functions connected to the ‘resize_event’ with a ResizeEvent

scroll_event(x, y, step, guiEvent=None)
Backend derived classes should call this function on any scroll wheel event. x,y are the canvas
coords: 0,0 is lower, left. button and key are as defined in MouseEvent.

This method will be call all functions connected to the ‘scroll_event’ with a MouseEvent in-
stance.

set_window_title(title)
Set the title text of the window containing the figure. Note that this has no effect if there is no
window (eg, a PS backend).

start_event_loop(timeout)
Start an event loop. This is used to start a blocking event loop so that interactive functions, such
as ginput and waitforbuttonpress, can wait for events. This should not be confused with the main
GUI event loop, which is always running and has nothing to do with this.

This is implemented only for backends with GUIs.

start_event_loop_default(timeout=0)
Start an event loop. This is used to start a blocking event loop so that interactive functions, such
as ginput and waitforbuttonpress, can wait for events. This should not be confused with the main
GUI event loop, which is always running and has nothing to do with this.

This function provides default event loop functionality based on time.sleep that is meant to be
used until event loop functions for each of the GUI backends can be written. As such, it throws
a deprecated warning.

Call signature:

start_event_loop_default(self,timeout=0)

51.1. matplotlib.backend_bases 783

Matplotlib, Release 0.99.3

This call blocks until a callback function triggers stop_event_loop() or timeout is reached. If
timeout is <=0, never timeout.

stop_event_loop()
Stop an event loop. This is used to stop a blocking event loop so that interactive functions, such
as ginput and waitforbuttonpress, can wait for events.

This is implemented only for backends with GUIs.

stop_event_loop_default()
Stop an event loop. This is used to stop a blocking event loop so that interactive functions, such
as ginput and waitforbuttonpress, can wait for events.

Call signature:

stop_event_loop_default(self)

switch_backends(FigureCanvasClass)
instantiate an instance of FigureCanvasClass

This is used for backend switching, eg, to instantiate a FigureCanvasPS from a FigureCanvas-
GTK. Note, deep copying is not done, so any changes to one of the instances (eg, setting figure
size or line props), will be reflected in the other

class matplotlib.backend_bases.FigureManagerBase(canvas, num)
Helper class for matlab mode, wraps everything up into a neat bundle

Public attibutes:

canvas A FigureCanvasBase instance

num The figure nuamber

destroy()

full_screen_toggle()

key_press(event)

resize(w, h)
For gui backends: resize window in pixels

set_window_title(title)
Set the title text of the window containing the figure. Note that this has no effect if there is no
window (eg, a PS backend).

show_popup(msg)
Display message in a popup – GUI only

class matplotlib.backend_bases.GraphicsContextBase
An abstract base class that provides color, line styles, etc...

copy_properties(gc)
Copy properties from gc to self

get_alpha()
Return the alpha value used for blending - not supported on all backends

784 Chapter 51. matplotlib backends

Matplotlib, Release 0.99.3

get_antialiased()
Return true if the object should try to do antialiased rendering

get_capstyle()
Return the capstyle as a string in (‘butt’, ‘round’, ‘projecting’)

get_clip_path()
Return the clip path in the form (path, transform), where path is a Path instance, and transform
is an affine transform to apply to the path before clipping.

get_clip_rectangle()
Return the clip rectangle as a Bbox instance

get_dashes()
Return the dash information as an offset dashlist tuple.

The dash list is a even size list that gives the ink on, ink off in pixels.

See p107 of to PostScript BLUEBOOK for more info.

Default value is None

get_hatch()
Gets the current hatch style

get_hatch_path(density=6.0)
Returns a Path for the current hatch.

get_joinstyle()
Return the line join style as one of (‘miter’, ‘round’, ‘bevel’)

get_linestyle(style)
Return the linestyle: one of (‘solid’, ‘dashed’, ‘dashdot’, ‘dotted’).

get_linewidth()
Return the line width in points as a scalar

get_rgb()
returns a tuple of three floats from 0-1. color can be a matlab format string, a html hex color
string, or a rgb tuple

get_snap()
returns the snap setting which may be:

•True: snap vertices to the nearest pixel center

•False: leave vertices as-is

•None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel
center

get_url()
returns a url if one is set, None otherwise

restore()
Restore the graphics context from the stack - needed only for backends that save graphics con-
texts on a stack

51.1. matplotlib.backend_bases 785

http://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF

Matplotlib, Release 0.99.3

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends

set_antialiased(b)
True if object should be drawn with antialiased rendering

set_capstyle(cs)
Set the capstyle as a string in (‘butt’, ‘round’, ‘projecting’)

set_clip_path(path)
Set the clip path and transformation. Path should be a TransformedPath instance.

set_clip_rectangle(rectangle)
Set the clip rectangle with sequence (left, bottom, width, height)

set_dashes(dash_offset, dash_list)
Set the dash style for the gc.

dash_offset is the offset (usually 0).

dash_list specifies the on-off sequence as points. (None, None) specifies a solid line

set_foreground(fg, isRGB=False)
Set the foreground color. fg can be a matlab format string, a html hex color string, an rgb unit
tuple, or a float between 0 and 1. In the latter case, grayscale is used.

The GraphicsContextBase converts colors to rgb internally. If you know the color is rgb
already, you can set isRGB=True to avoid the performace hit of the conversion

set_graylevel(frac)
Set the foreground color to be a gray level with frac

set_hatch(hatch)
Sets the hatch style for filling

set_joinstyle(js)
Set the join style to be one of (‘miter’, ‘round’, ‘bevel’)

set_linestyle(style)
Set the linestyle to be one of (‘solid’, ‘dashed’, ‘dashdot’, ‘dotted’).

set_linewidth(w)
Set the linewidth in points

set_snap(snap)
Sets the snap setting which may be:

•True: snap vertices to the nearest pixel center

•False: leave vertices as-is

•None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel
center

set_url(url)
Sets the url for links in compatible backends

786 Chapter 51. matplotlib backends

Matplotlib, Release 0.99.3

class matplotlib.backend_bases.IdleEvent(name, canvas, guiEvent=None)
Bases: matplotlib.backend_bases.Event

An event triggered by the GUI backend when it is idle – useful for passive animation

class matplotlib.backend_bases.KeyEvent(name, canvas, key, x=0, y=0, guiEvent=None)
Bases: matplotlib.backend_bases.LocationEvent

A key event (key press, key release).

Attach additional attributes as defined in FigureCanvasBase.mpl_connect().

In addition to the Event and LocationEvent attributes, the following attributes are defined:

key the key pressed: None, chr(range(255), shift, win, or control

This interface may change slightly when better support for modifier keys is included.

Example usage:

def on_key(event):
print ’you pressed’, event.key, event.xdata, event.ydata

cid = fig.canvas.mpl_connect(’key_press_event’, on_key)

class matplotlib.backend_bases.LocationEvent(name, canvas, x, y, guiEvent=None)
Bases: matplotlib.backend_bases.Event

A event that has a screen location

The following additional attributes are defined and shown with their default values

In addition to the Event attributes, the following event attributes are defined:

x x position - pixels from left of canvas

y y position - pixels from bottom of canvas

inaxes the Axes instance if mouse is over axes

xdata x coord of mouse in data coords

ydata y coord of mouse in data coords

x, y in figure coords, 0,0 = bottom, left

class matplotlib.backend_bases.MouseEvent(name, canvas, x, y, button=None, key=None,
step=0, guiEvent=None)

Bases: matplotlib.backend_bases.LocationEvent

A mouse event (‘button_press_event’, ‘button_release_event’, ‘scroll_event’, ‘motion_notify_event’).

In addition to the Event and LocationEvent attributes, the following attributes are defined:

button button pressed None, 1, 2, 3, ‘up’, ‘down’ (up and down are used for scroll events)

key the key pressed: None, chr(range(255), ‘shift’, ‘win’, or ‘control’

step number of scroll steps (positive for ‘up’, negative for ‘down’)

51.1. matplotlib.backend_bases 787

Matplotlib, Release 0.99.3

Example usage:

def on_press(event):
print ’you pressed’, event.button, event.xdata, event.ydata

cid = fig.canvas.mpl_connect(’button_press_event’, on_press)

x, y in figure coords, 0,0 = bottom, left button pressed None, 1, 2, 3, ‘up’, ‘down’

class matplotlib.backend_bases.NavigationToolbar2(canvas)
Base class for the navigation cursor, version 2

backends must implement a canvas that handles connections for ‘button_press_event’ and ‘but-
ton_release_event’. See FigureCanvasBase.mpl_connect() for more information

They must also define

save_figure() save the current figure

set_cursor() if you want the pointer icon to change

_init_toolbar() create your toolbar widget

draw_rubberband() (optional) draw the zoom to rect “rubberband” rectangle

press() (optional) whenever a mouse button is pressed, you’ll be notified with the event

release() (optional) whenever a mouse button is released, you’ll be notified with the
event

dynamic_update() (optional) dynamically update the window while navigating

set_message() (optional) display message

set_history_buttons() (optional) you can change the history back / forward buttons
to indicate disabled / enabled state.

That’s it, we’ll do the rest!

back(*args)
move back up the view lim stack

drag_pan(event)
the drag callback in pan/zoom mode

draw()
redraw the canvases, update the locators

draw_rubberband(event, x0, y0, x1, y1)
draw a rectangle rubberband to indicate zoom limits

dynamic_update()

forward(*args)
move forward in the view lim stack

home(*args)
restore the original view

788 Chapter 51. matplotlib backends

Matplotlib, Release 0.99.3

mouse_move(event)

pan(*args)
Activate the pan/zoom tool. pan with left button, zoom with right

press(event)
this will be called whenver a mouse button is pressed

press_pan(event)
the press mouse button in pan/zoom mode callback

press_zoom(event)
the press mouse button in zoom to rect mode callback

push_current()
push the current view limits and position onto the stack

release(event)
this will be called whenever mouse button is released

release_pan(event)
the release mouse button callback in pan/zoom mode

release_zoom(event)
the release mouse button callback in zoom to rect mode

save_figure(*args)
save the current figure

set_cursor(cursor)
Set the current cursor to one of the Cursors enums values

set_history_buttons()
enable or disable back/forward button

set_message(s)
display a message on toolbar or in status bar

update()
reset the axes stack

zoom(*args)
activate zoom to rect mode

class matplotlib.backend_bases.PickEvent(name, canvas, mouseevent, artist,
guiEvent=None, **kwargs)

Bases: matplotlib.backend_bases.Event

a pick event, fired when the user picks a location on the canvas sufficiently close to an artist.

Attrs: all the Event attributes plus

mouseevent the MouseEvent that generated the pick

artist the Artist picked

other extra class dependent attrs – eg a Line2D pick may define different extra attributes than a
PatchCollection pick event

51.1. matplotlib.backend_bases 789

Matplotlib, Release 0.99.3

Example usage:

line, = ax.plot(rand(100), ’o’, picker=5) # 5 points tolerance

def on_pick(event):
thisline = event.artist
xdata, ydata = thisline.get_data()
ind = event.ind
print ’on pick line:’, zip(xdata[ind], ydata[ind])

cid = fig.canvas.mpl_connect(’pick_event’, on_pick)

class matplotlib.backend_bases.RendererBase
An abstract base class to handle drawing/rendering operations.

The following methods must be implemented in the backend:

•draw_path()

•draw_image()

•draw_text()

•get_text_width_height_descent()

The following methods should be implemented in the backend for optimization reasons:

•draw_markers()

•draw_path_collection()

•draw_quad_mesh()

close_group(s)
Close a grouping element with label s Is only currently used by backend_svg

draw_image(x, y, im, bbox, clippath=None, clippath_trans=None)
Draw the image instance into the current axes;

x is the distance in pixels from the left hand side of the canvas.

y the distance from the origin. That is, if origin is upper, y is the distance from top. If origin is
lower, y is the distance from bottom

im the matplotlib._image.Image instance

bbox a matplotlib.transforms.Bbox instance for clipping, or None

draw_markers(gc, marker_path, marker_trans, path, trans, rgbFace=None)
Draws a marker at each of the vertices in path. This includes all vertices, including control points
on curves. To avoid that behavior, those vertices should be removed before calling this function.

gc the GraphicsContextBase instance

marker_trans is an affine transform applied to the marker.

trans is an affine transform applied to the path.

790 Chapter 51. matplotlib backends

Matplotlib, Release 0.99.3

This provides a fallback implementation of draw_markers that makes multiple calls to
draw_path(). Some backends may want to override this method in order to draw the marker
only once and reuse it multiple times.

draw_path(gc, path, transform, rgbFace=None)
Draws a Path instance using the given affine transform.

draw_path_collection(master_transform, cliprect, clippath, clippath_trans, paths,
all_transforms, offsets, offsetTrans, facecolors, edgecolors,
linewidths, linestyles, antialiaseds, urls)

Draws a collection of paths, selecting drawing properties from the lists facecolors, edgecolors,
linewidths, linestyles and antialiaseds. offsets is a list of offsets to apply to each of the paths.
The offsets in offsets are first transformed by offsetTrans before being applied.

This provides a fallback implementation of draw_path_collection() that makes multi-
ple calls to draw_path. Some backends may want to override this in order to render each
set of path data only once, and then reference that path multiple times with the different
offsets, colors, styles etc. The generator methods _iter_collection_raw_paths() and
_iter_collection() are provided to help with (and standardize) the implementation across
backends. It is highly recommended to use those generators, so that changes to the behavior of
draw_path_collection() can be made globally.

draw_quad_mesh(master_transform, cliprect, clippath, clippath_trans, meshWidth,
meshHeight, coordinates, offsets, offsetTrans, facecolors, antialiased,
showedges)

This provides a fallback implementation of draw_quad_mesh() that generates paths and then
calls draw_path_collection().

draw_tex(gc, x, y, s, prop, angle, ismath=’TeX!’)

draw_text(gc, x, y, s, prop, angle, ismath=False)
Draw the text instance

gc the GraphicsContextBase instance

x the x location of the text in display coords

y the y location of the text in display coords

s a matplotlib.text.Text instance

prop a matplotlib.font_manager.FontProperties instance

angle the rotation angle in degrees

backend implementers note

When you are trying to determine if you have gotten your bounding box right (which is what
enables the text layout/alignment to work properly), it helps to change the line in text.py:

if 0: bbox_artist(self, renderer)

to if 1, and then the actual bounding box will be blotted along with your text.

51.1. matplotlib.backend_bases 791

Matplotlib, Release 0.99.3

flipy()
Return true if y small numbers are top for renderer Is used for drawing text (matplotlib.text)
and images (matplotlib.image) only

get_canvas_width_height()
return the canvas width and height in display coords

get_image_magnification()
Get the factor by which to magnify images passed to draw_image(). Allows a backend to have
images at a different resolution to other artists.

get_texmanager()
return the matplotlib.texmanager.TexManager instance

get_text_width_height_descent(s, prop, ismath)
get the width and height, and the offset from the bottom to the baseline (descent), in display
coords of the string s with FontProperties prop

new_gc()
Return an instance of a GraphicsContextBase

open_group(s, gid=None)
Open a grouping element with label s. If gid is given, use gid as the id of the group. Is only
currently used by backend_svg.

option_image_nocomposite()
overwrite this method for renderers that do not necessarily want to rescale and composite raster
images. (like SVG)

points_to_pixels(points)
Convert points to display units

points a float or a numpy array of float

return points converted to pixels

You need to override this function (unless your backend doesn’t have a dpi, eg, postscript or
svg). Some imaging systems assume some value for pixels per inch:

points to pixels = points * pixels_per_inch/72.0 * dpi/72.0

start_rasterizing()

stop_rasterizing()

strip_math(s)

class matplotlib.backend_bases.ResizeEvent(name, canvas)
Bases: matplotlib.backend_bases.Event

An event triggered by a canvas resize

In addition to the Event attributes, the following event attributes are defined:

width width of the canvas in pixels

height height of the canvas in pixels

792 Chapter 51. matplotlib backends

Matplotlib, Release 0.99.3

51.2 matplotlib.backends.backend_gtkagg

TODO We’ll add this later, importing the gtk backends requires an active X-session, which is not compatible
with cron jobs.

51.3 matplotlib.backends.backend_qt4agg

Render to qt from agg

class matplotlib.backends.backend_qt4agg.FigureCanvasQTAgg(figure)
Bases: matplotlib.backends.backend_qt4.FigureCanvasQT,
matplotlib.backends.backend_agg.FigureCanvasAgg

The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc...

Public attribute

figure - A Figure instance

blit(bbox=None)
Blit the region in bbox

draw()
Draw the figure when xwindows is ready for the update

drawRectangle(rect)

paintEvent(e)
Draw to the Agg backend and then copy the image to the qt.drawable. In Qt, all drawing should
be done inside of here when a widget is shown onscreen.

print_figure(*args, **kwargs)

class matplotlib.backends.backend_qt4agg.FigureManagerQTAgg(canvas, num)
Bases: matplotlib.backends.backend_qt4.FigureManagerQT

class matplotlib.backends.backend_qt4agg.NavigationToolbar2QTAgg(canvas, par-
ent, coordi-
nates=True)

Bases: matplotlib.backends.backend_qt4.NavigationToolbar2QT

coordinates: should we show the coordinates on the right?

matplotlib.backends.backend_qt4agg.new_figure_manager(num, *args, **kwargs)
Create a new figure manager instance

51.4 matplotlib.backends.backend_wxagg

class matplotlib.backends.backend_wxagg.FigureCanvasWxAgg(parent, id, figure)
Bases: matplotlib.backends.backend_agg.FigureCanvasAgg,
matplotlib.backends.backend_wx.FigureCanvasWx

51.2. matplotlib.backends.backend_gtkagg 793

Matplotlib, Release 0.99.3

The FigureCanvas contains the figure and does event handling.

In the wxPython backend, it is derived from wxPanel, and (usually) lives inside a frame instantiated
by a FigureManagerWx. The parent window probably implements a wxSizer to control the displayed
control size - but we give a hint as to our preferred minimum size.

Initialise a FigureWx instance.

•Initialise the FigureCanvasBase and wxPanel parents.

•Set event handlers for: EVT_SIZE (Resize event) EVT_PAINT (Paint event)

blit(bbox=None)
Transfer the region of the agg buffer defined by bbox to the display. If bbox is None, the entire
buffer is transferred.

draw(drawDC=None)
Render the figure using agg.

print_figure(filename, *args, **kwargs)

class matplotlib.backends.backend_wxagg.FigureFrameWxAgg(num, fig)
Bases: matplotlib.backends.backend_wx.FigureFrameWx

get_canvas(fig)

class matplotlib.backends.backend_wxagg.NavigationToolbar2WxAgg(canvas)
Bases: matplotlib.backends.backend_wx.NavigationToolbar2Wx

get_canvas(frame, fig)

matplotlib.backends.backend_wxagg.new_figure_manager(num, *args, **kwargs)
Create a new figure manager instance

51.5 matplotlib.dviread

An experimental module for reading dvi files output by TeX. Several limitations make this not (currently)
useful as a general-purpose dvi preprocessor, but it is currently used by the pdf backend for processing
usetex text.

Interface:

dvi = Dvi(filename, 72)
iterate over pages (but only one page is supported for now):
for page in dvi:

w, h, d = page.width, page.height, page.descent
for x,y,font,glyph,width in page.text:

fontname = font.texname
pointsize = font.size
...

for x,y,height,width in page.boxes:
...

class matplotlib.dviread.Dvi(filename, dpi)
Bases: object

794 Chapter 51. matplotlib backends

Matplotlib, Release 0.99.3

A dvi (“device-independent”) file, as produced by TeX. The current implementation only reads the
first page and does not even attempt to verify the postamble.

Initialize the object. This takes the filename as input and opens the file; actually reading the file
happens when iterating through the pages of the file.

close()
Close the underlying file if it is open.

class matplotlib.dviread.DviFont(scale, tfm, texname, vf)
Bases: object

Object that holds a font’s texname and size, supports comparison, and knows the widths of glyphs in
the same units as the AFM file. There are also internal attributes (for use by dviread.py) that are not
used for comparison.

The size is in Adobe points (converted from TeX points).

texname
Name of the font as used internally by TeX and friends. This is usually very different from any
external font names, and dviread.PsfontsMap can be used to find the external name of the
font.

size
Size of the font in Adobe points, converted from the slightly smaller TeX points.

widths
Widths of glyphs in glyph-space units, typically 1/1000ths of the point size.

size

texname

widths

class matplotlib.dviread.Encoding(filename)
Bases: object

Parses a *.enc file referenced from a psfonts.map style file. The format this class understands is a very
limited subset of PostScript.

Usage (subject to change):

for name in Encoding(filename):
whatever(name)

encoding

class matplotlib.dviread.PsfontsMap(filename)
Bases: object

A psfonts.map formatted file, mapping TeX fonts to PS fonts. Usage:

>>> map = PsfontsMap(find_tex_file(’pdftex.map’))
>>> entry = map[’ptmbo8r’]
>>> entry.texname
’ptmbo8r’

51.5. matplotlib.dviread 795

Matplotlib, Release 0.99.3

>>> entry.psname
’Times-Bold’
>>> entry.encoding
’/usr/local/texlive/2008/texmf-dist/fonts/enc/dvips/base/8r.enc’
>>> entry.effects
{’slant’: 0.16700000000000001}
>>> entry.filename

For historical reasons, TeX knows many Type-1 fonts by different names than the outside world.
(For one thing, the names have to fit in eight characters.) Also, TeX’s native fonts are not Type-1
but Metafont, which is nontrivial to convert to PostScript except as a bitmap. While high-quality
conversions to Type-1 format exist and are shipped with modern TeX distributions, we need to know
which Type-1 fonts are the counterparts of which native fonts. For these reasons a mapping is needed
from internal font names to font file names.

A texmf tree typically includes mapping files called e.g. psfonts.map, pdftex.map, dvipdfm.map.
psfonts.map is used by dvips, pdftex.map by pdfTeX, and dvipdfm.map by dvipdfm. psfonts.map
might avoid embedding the 35 PostScript fonts (i.e., have no filename for them, as in the Times-Bold
example above), while the pdf-related files perhaps only avoid the “Base 14” pdf fonts. But the user
may have configured these files differently.

class matplotlib.dviread.Tfm(filename)
Bases: object

A TeX Font Metric file. This implementation covers only the bare minimum needed by the Dvi class.

checksum
Used for verifying against the dvi file.

design_size
Design size of the font (in what units?)

width
Width of each character, needs to be scaled by the factor specified in the dvi file. This is a dict
because indexing may not start from 0.

height
Height of each character.

depth
Depth of each character.

checksum

depth

design_size

height

width

class matplotlib.dviread.Vf(filename)
Bases: matplotlib.dviread.Dvi

796 Chapter 51. matplotlib backends

Matplotlib, Release 0.99.3

A virtual font (*.vf file) containing subroutines for dvi files.

Usage:

vf = Vf(filename)
glyph = vf[code]
glyph.text, glyph.boxes, glyph.width

matplotlib.dviread.find_tex_file(filename, format=None)
Call kpsewhich to find a file in the texmf tree. If format is not None, it is used as the value for the
--format option.

Apparently most existing TeX distributions on Unix-like systems use kpathsea. I hear MikTeX (a
popular distribution on Windows) doesn’t use kpathsea, so what do we do? (TODO)

See Also:

Kpathsea documentation The library that kpsewhich is part of.

51.6 matplotlib.type1font

This module contains a class representing a Type 1 font.

This version reads pfa and pfb files and splits them for embedding in pdf files. It also supports SlantFont
and ExtendFont transformations, similarly to pdfTeX and friends. There is no support yet for subsetting.

Usage:

>>> font = Type1Font(filename)
>>> clear_part, encrypted_part, finale = font.parts
>>> slanted_font = font.transform({’slant’: 0.167})
>>> extended_font = font.transform({’extend’: 1.2})

Sources:

• Adobe Technical Note #5040, Supporting Downloadable PostScript Language Fonts.

• Adobe Type 1 Font Format, Adobe Systems Incorporated, third printing, v1.1, 1993. ISBN 0-201-
57044-0.

class matplotlib.type1font.Type1Font(input)
Bases: object

A class representing a Type-1 font, for use by backends.

parts
A 3-tuple of the cleartext part, the encrypted part, and the finale of zeros.

prop
A dictionary of font properties.

Initialize a Type-1 font. input can be either the file name of a pfb file or a 3-tuple of already-decoded
Type-1 font parts.

parts

51.6. matplotlib.type1font 797

http://www.tug.org/kpathsea/

Matplotlib, Release 0.99.3

prop

transform(effects)
Transform the font by slanting or extending. effects should be a dict where effects[’slant’]
is the tangent of the angle that the font is to be slanted to the right (so negative values slant to the
left) and effects[’extend’] is the multiplier by which the font is to be extended (so values
less than 1.0 condense). Returns a new Type1Font object.

798 Chapter 51. matplotlib backends

Part V

Glossary

799

Matplotlib, Release 0.99.3

AGG The Anti-Grain Geometry (Agg) rendering engine, capable of rendering high-quality images

Cairo The Cairo graphics engine

dateutil The dateutil library provides extensions to the standard datetime module

EPS Encapsulated Postscript (EPS)

FLTK FLTK (pronounced “fulltick”) is a cross-platform C++ GUI toolkit for UNIX/Linux (X11), Mi-
crosoft Windows, and MacOS X

freetype freetype is a font rasterization library used by matplotlib which supports TrueType, Type 1, and
OpenType fonts.

GDK The Gimp Drawing Kit for GTK+

GTK The GIMP Toolkit (GTK) graphical user interface library

JPG The Joint Photographic Experts Group (JPEG) compression method and file format for photographic
images

numpy numpy is the standard numerical array library for python, the successor to Numeric and numarray.
numpy provides fast operations for homogeneous data sets and common mathematical operations like
correlations, standard deviation, fourier transforms, and convolutions.

PDF Adobe’s Portable Document Format (PDF)

PNG Portable Network Graphics (PNG), a raster graphics format that employs lossless data compression
which is more suitable for line art than the lossy jpg format. Unlike the gif format, png is not encum-
bered by requirements for a patent license.

PS Postscript (PS) is a vector graphics ASCII text language widely used in printers and publishing.
Postscript was developerd by adobe systems and is starting to show its age: for example is does
not have an alpha channel. PDF was designed in part as a next-generation document format to replace
postscript

pyfltk pyfltk provides python wrappers for the FLTK widgets library for use with FLTKAgg

pygtk pygtk provides python wrappers for the GTK widgets library for use with the GTK or GTKAgg
backend. Widely used on linux, and is often packages as ‘python-gtk2’

pyqt pyqt provides python wrappers for the Qt widgets library and is requied by the matplotlib QtAgg
and Qt4Agg backends. Widely used on linux and windows; many linux distributions package this as
‘python-qt3’ or ‘python-qt4’.

python python is an object oriented interpreted language widely used for scripting, application develop-
ment, web application servers, scientific computing and more.

pytz pytz provides the Olson tz database in Python. it allows accurate and cross platform timezone calcu-
lations and solves the issue of ambiguous times at the end of daylight savings

Qt Qt is a cross-platform application framework for desktop and embedded development.

Qt4 Qt4 is the most recent version of Qt cross-platform application framework for desktop and embedded
development.

801

http://antigrain.com
http://cairographics.org
http://labix.org/python-dateutil
http://en.wikipedia.org/wiki/Encapsulated_PostScript
http://www.fltk.org/
http://www.freetype.org/
http://www.gtk.org/
http://en.wikipedia.org/wiki/Jpeg
http://numpy.scipy.org
http://en.wikipedia.org/wiki/Portable_Document_Format
http://en.wikipedia.org/wiki/Portable_Network_Graphics
http://en.wikipedia.org/wiki/PostScript
http://pyfltk.sourceforge.net/
http://www.pygtk.org/
http://wiki.python.org/moin/PyQt
http://python.org
http://pytz.sourceforge.net/
http://trolltech.com/products/qt/
http://trolltech.com/products/qt/

Matplotlib, Release 0.99.3

raster graphics Raster graphics, or bitmaps, represent an image as an array of pixels which is resolution
dependent. Raster graphics are generally most practical for photo-realistic images, but do not scale
easily without loss of quality.

SVG The Scalable Vector Graphics format (SVG). An XML based vector graphics format supported by
many web browsers.

TIFF Tagged Image File Format (TIFF) is a file format for storing images, including photographs and line
art.

Tk Tk is a graphical user interface for Tcl and many other dynamic languages. It can produce rich, native
applications that run unchanged across Windows, Mac OS X, Linux and more.

vector graphics vector graphics use geometrical primitives based upon mathematical equations to repre-
sent images in computer graphics. Primitives can include points, lines, curves, and shapes or poly-
gons. Vector graphics are scalable, which means that they can be resized without suffering from
issues related to inherent resolution like are seen in raster graphics. Vector graphics are generally
most practical for typesetting and graphic design applications.

wxpython wxpython provides python wrappers for the wxWidgets library for use with the WX and WXAgg
backends. Widely used on linux, OS-X and windows, it is often packaged by linux distributions as
‘python-wxgtk’

wxWidgets WX is cross-platform GUI and tools library for GTK, MS Windows, and MacOS. It uses
native widgets for each operating system, so applications will have the look-and-feel that users on
that operating system expect.

802

http://en.wikipedia.org/wiki/Raster_graphics
http://en.wikipedia.org/wiki/Svg
http://en.wikipedia.org/wiki/Tagged_Image_File_Format
http://www.tcl.tk/
http://en.wikipedia.org/wiki/Vector_graphics
http://www.wxpython.org/
http://www.wxwidgets.org/

PYTHON MODULE INDEX

m
matplotlib, 281
matplotlib.afm, 285
matplotlib.artist, 289
matplotlib.axes, 355
matplotlib.axis, 499
matplotlib.backend_bases, 779
matplotlib.backends.backend_qt4agg, 793
matplotlib.backends.backend_wxagg, 793
matplotlib.cbook, 507
matplotlib.cm, 517
matplotlib.collections, 519
matplotlib.colorbar, 531
matplotlib.colors, 533
matplotlib.dates, 541
matplotlib.dviread, 794
matplotlib.figure, 549
matplotlib.font_manager, 567
matplotlib.fontconfig_pattern, 572
matplotlib.legend, 299
matplotlib.lines, 301
matplotlib.mathtext, 579
matplotlib.mlab, 591
matplotlib.nxutils, 575
matplotlib.patches, 309
matplotlib.path, 613
matplotlib.projections, 238
matplotlib.projections.polar, 239
matplotlib.pyplot, 619
matplotlib.scale, 236
matplotlib.spines, 767
matplotlib.text, 342
matplotlib.ticker, 771
matplotlib.transforms, 215
matplotlib.type1font, 797

803

	I User's Guide
	Introduction
	Installing
	OK, so you want to do it the hard way?
	Installing from source
	Build requirements
	Building on OSX

	Pyplot tutorial
	Controlling line properties
	Working with multiple figures and axes
	Working with text

	Interactive navigation
	Navigation Keyboard Shortcuts

	Customizing matplotlib
	The matplotlibrc file
	Dynamic rc settings

	Using matplotlib in a python shell
	Ipython to the rescue
	Other python interpreters
	Controlling interactive updating

	Working with text
	Text introduction
	Basic text commands
	Text properties and layout
	Writing mathematical expressions
	Text rendering With LaTeX
	Annotating text

	Image tutorial
	Startup commands
	Importing image data into Numpy arrays
	Plotting numpy arrays as images

	Artist tutorial
	Customizing your objects
	Object containers
	Figure container
	Axes container
	Axis containers
	Tick containers

	Legend guide
	What to be displayed
	Multicolumn Legend
	Legend location
	Multiple Legend

	Event handling and picking
	Event connections
	Event attributes
	Mouse enter and leave
	Object picking

	Transformations Tutorial
	Data coordinates
	Axes coordinates
	Blended transformations
	Using offset transforms to create a shadow effect
	The transformation pipeline

	Path Tutorial
	Bézier example
	Compound paths

	Annotating Axes
	Annotating with Text with Box
	Annotating with Arrow
	Using ConnectorPatch
	Placing Artist at the anchored location of the Axes
	Zoom effect between Axes
	Define Custom BoxStyle

	Toolkits
	Basemap
	GTK Tools
	Excel Tools
	Natgrid
	mplot3d
	AxesGrid

	Screenshots
	Simple Plot
	Subplot demo
	Histograms
	Path demo
	mplot3d
	Ellipses
	Bar charts
	Pie charts
	Table demo
	Scatter demo
	Slider demo
	Fill demo
	Date demo
	Financial charts
	Basemap demo
	Log plots
	Polar plots
	Legends
	Mathtext_examples
	Native TeX rendering
	EEG demo

	What's new in matplotlib
	new in matplotlib-0.99
	new in 0.98.4

	License
	License agreement for matplotlib 0.99.3

	Credits

	II The Matplotlib FAQ
	Installation FAQ
	Report a compilation problem
	matplotlib compiled fine, but nothing shows up with plot
	Cleanly rebuild and reinstall everything
	Install from svn
	Install from git
	Backends
	OS-X questions
	Windows questions

	Usage
	Matplotlib, pylab, and pyplot: how are they related?

	Howto
	Plotting: howto
	Contributing: howto
	Matplotlib in a web application server
	Search examples

	Troubleshooting
	Obtaining matplotlib version
	matplotlib install location
	.matplotlib directory location
	Report a problem
	Problems with recent svn versions

	III The Matplotlib Developers' Guide
	Coding guide
	Version control
	Style guide
	Documentation and docstrings
	Developing a new backend
	Licenses

	Documenting matplotlib
	Getting started
	Organization of matplotlib's documentation
	Formatting
	Figures
	Referring to mpl documents
	Internal section references
	Section names, etc
	Inheritance diagrams
	Emacs helpers

	Doing a matplolib release
	Testing
	Branching
	Packaging
	Release candidate testing:
	Uploading
	Announcing

	Working with transformations
	matplotlib.transforms

	Adding new scales and projections to matplotlib
	Creating a new scale
	Creating a new projection
	API documentation

	Docs outline
	Reviewer notes

	IV The Matplotlib API
	API Changes
	Changes in 0.99
	Changes for 0.98.x
	Changes for 0.98.1
	Changes for 0.98.0
	Changes for 0.91.2
	Changes for 0.91.1
	Changes for 0.91.0
	Changes for 0.90.1
	Changes for 0.90.0
	Changes for 0.87.7
	Changes for 0.86
	Changes for 0.85
	Changes for 0.84
	Changes for 0.83
	Changes for 0.82
	Changes for 0.81
	Changes for 0.80
	Changes for 0.73
	Changes for 0.72
	Changes for 0.71
	Changes for 0.70
	Changes for 0.65.1
	Changes for 0.65
	Changes for 0.63
	Changes for 0.61
	Changes for 0.60
	Changes for 0.54.3
	Changes for 0.54
	Changes for 0.50
	Changes for 0.42
	Changes for 0.40

	matplotlib configuration
	matplotlib

	matplotlib afm
	matplotlib.afm

	matplotlib artists
	matplotlib.artist
	matplotlib.legend
	matplotlib.lines
	matplotlib.patches
	matplotlib.text

	matplotlib axes
	matplotlib.axes

	matplotlib axis
	matplotlib.axis

	matplotlib cbook
	matplotlib.cbook

	matplotlib cm
	matplotlib.cm

	matplotlib collections
	matplotlib.collections

	matplotlib colorbar
	matplotlib.colorbar

	matplotlib colors
	matplotlib.colors

	matplotlib dates
	matplotlib.dates

	matplotlib figure
	matplotlib.figure

	matplotlib font_manager
	matplotlib.font_manager
	matplotlib.fontconfig_pattern

	matplotlib nxutils
	matplotlib.nxutils

	matplotlib mathtext
	matplotlib.mathtext

	matplotlib mlab
	matplotlib.mlab

	matplotlib path
	matplotlib.path

	matplotlib pyplot
	matplotlib.pyplot

	matplotlib spine
	matplotlib.spine

	matplotlib ticker
	matplotlib.ticker

	matplotlib backends
	matplotlib.backend_bases
	matplotlib.backends.backend_gtkagg
	matplotlib.backends.backend_qt4agg
	matplotlib.backends.backend_wxagg
	matplotlib.dviread
	matplotlib.type1font

	V Glossary
	Python Module Index

