Matplotlib
Release 0.99.3

Darren Dale, Michael Droettboom, Eric Firing, John Hunter

April 13,2011

User’s Guide

Introduction

Installing

2.1 OK, so you want to do it the hard way?
2.2 Installing fromsource
2.3 Buildrequirements
24 BuildingonOSX
Pyplot tutorial

3.1 Controlling line properties

3.2 Working with multiple figures and axes

3.3 Working withtext

Interactive navigation

4.1 Navigation Keyboard Shortcuts

Customizing matplotlib

5.1 Thematplotlibrcfile
5.2 Dynamicrcsettings

Using matplotlib in a python shell

6.1 Ipythontotherescue
6.2 Other python interpreters
6.3 Controlling interactive updating
Working with text

7.1 Textintroduction
7.2 Basictextcommands
7.3 Text properties and layout
7.4 Writing mathematical expressions
7.5 Textrendering With LaTeX
7.6 Annotatingtext

Image tutorial

CONTENTS

17

..................... 18

21

..................... 21
..................... 21

29

..................... 29
..................... 30
..................... 30

33

..................... 33
..................... 33
..................... 34
..................... 36
..................... 46
..................... 49

53

10

11

12

13

14

15

8.1 Startupcommands L e e e e e e e e e
8.2 Importing image data into Numpy arrays v v v v v b e e e
8.3 Plotting numpy arrays as images . . . « v v v v v v e e e e e e e e e e e e e e e e e e

Artist tutorial

0.1 Customizing your ObJeCtS e e e e e e e e
0.2 ODbJect CONAINEIS v v v i v e
0.3 Figurecontainer i e e e e
0.4 AXESCONtAINETt i i i i e e e e e e e e e e e e e e
0.5 AXISCONAINETS . . .« v & v v v e
9.6 Tickcontainers i e e e e e e e e e e e e e e e

Legend guide

10.1 Whattobedisplayed e e e e
10.2 Multicolumn Legend e
10.3 Legendlocation e e e e e e e e e
10.4 Multiple Legend

Event handling and picking

11.1 Eventconnections i v i i i it et e e e e e e e e e e e e
11.2 Eventattributes e e e e e e e e e e e e
11.3 Mouseenterandleave e e e e e
11.4 Objectpicking o e e e

Transformations Tutorial

12.1 Datacoordinates o i i i e e e e e e e e e e e e e e e e
122 Axescoordinates i i e e e e e e e e e e e e e e e e e
12.3 Blended transformations e e e e e e e
12.4 Using offset transforms to create a shadoweffect
12.5 The transformation pipeline Lo L e

Path Tutorial
13.1 Bézierexample e e e e e e
13.2 Compound paths e e e e e e e

Annotating Axes

14.1 Annotating with Text with Box o
14.2 Annotating with Arrow L e e e e e
143 Using ConnectorPatch L
14.4 Placing Artist at the anchored location of the Axes
14.5 Zoomeffectbetween AXeS L. e
14.6 Define Custom BoxStyle e

Toolkits

I15.1 Basemap e e e e e e e e e
152 GTKTools o e e
153 Excel Tools o . o e e e e e e e e
154 Natgrid e e e e e
15.5 mplot3d e e e e e e e e

67
69
71
71
73
75
77

79
79
81
81
82

85
85
86
90
91

95
95
98
100
101
103

105
106
108

111
111
113
118
119
121
122

15.6 AxesGrid e e s

16 Screenshots
16.1 SimplePlot e e
16.2 Subplotdemo e e e e e e
163 Histograms oo e e e e e e
164 Pathdemo e e e e e
16.5 mplot3d L
16.6 EIIPSES o o e e e e e e e e
16.7 Barcharts o e e e e e e e e
16.8 Piecharts e
169 Tabledemo e e e e
16.10 Scatter demoo e e e e
16.11 Sliderdemo o e e e e e e e
16,12 Filldemo o o e e e e e e e
16.13 Datedemo e e e e e e e e e e
16.14 Financial charts o L e e
16.15 Basemap demoo e e e e e e e e e e e e e
16.16 Log plots o L o e e
16.17 Polar plots e e e e e e e e e e e
16.18 Legends o o o 0 e e e e
16.19 Mathtext_examples o i e e e e e e e e e e e
16.20 Native TeX rendering oo i it e e e e
1621 EEGdemo e e e

17 What’s new in matplotlib
17.1 newin matplotlib-0.99
172 newin 0.98.4 L L L e e

18 License
18.1 License agreement for matplotlib0.99.3

19 Credits

I The Matplotlib FAQ

20 Installation FAQ
20.1 Reportacompilation problem
20.2 matplotlib compiled fine, but nothing shows up withplot
20.3 Cleanly rebuild and reinstall everything
204 Install fromsvn o oL e e e
20.5 Install from @it L . e e e e e e
20.6 Backends
20.7 OS-X qUeSIONS . . .« v v v e e e e e e e e e e e e e e e e e e e
20.8 WIindows qUESLIONS v v v i e e e e e e e e e e e e e e e e e e e

21 Usage
21.1 Matplotlib, pylab, and pyplot: how are they related?

127
127
128
128
129
130
131
132
133
134
135
135
136
137
137
137
138
138
139
140
142
142

145
145
148

157
157

159

163

165
165
165
166
167
167
167
169
172

173
173

22

23

Howto

22.1 Plotting: howto
22.2 Contributing: howto
22.3 Matplotlib in a web application server . . .
224 Searchexamples

Troubleshooting

23.1 Obtaining matplotlib version
23.2 matplotlibinstall location
23.3 .matplotlib directory location.
23.4 Reportaproblem
23.5 Problems with recent svn versions

III The Matplotlib Developers’ Guide

24

25

26

27

28

Coding guide

24.1 Versioncontrol
242 Styleguide
24.3 Documentation and docstrings
24.4 Developing anew backend
245 Licenseso ae oo

Documenting matplotlib

25.1 Gettingstarted
25.2 Organization of matplotlib’s documentation
25.3 Formatting
254 Figures,
25.5 Referring to mpl documents
25.6 Internal section references
25.7 Sectionnames,etc
25.8 Inheritance diagrams
259 Emacshelpers

Doing a matplolib release

26.1 Testing
26.2 Branching
26.3 Packaging
26.4 Release candidate testing:
26.5 Uploading
26.6 Announcing

Working with transformations
27.1 matplotlib.transforms

Adding new scales and projections to matplotlib
28.1 Creatinganewscale
28.2 Creating a new projection
28.3 APl documentation

175
176
183
185
186

187
187
187
187
188
189

191

193
193
197
200
201
201

203
203
203
204
206
207
207
208
208
209

211
211
211
211
212
212
213

215
215

29 Docs outline
20.1 REVIEWEI NOES v v v o e e e e e e e e e e e e e e

IV The Matplotlib API

30 API Changes

30.1
30.2
30.3
30.4
30.5
30.6
30.7
30.8
30.9

Changes in 0.99 .
Changes for 0.98.x
Changes for 0.98.1
Changes for 0.98.0
Changes for 0.91.2
Changes for 0.91.1
Changes for 0.91.0
Changes for 0.90.1
Changes for 0.90.0

30.10 Changes for 0.87.7
30.11 Changes for 0.86 .
30.12 Changes for 0.85 .
30.13 Changes for 0.84 .
30.14 Changes for 0.83 .
30.15 Changes for 0.82 .
30.16 Changes for 0.81 .
30.17 Changes for 0.80 .
30.18 Changes for 0.73 .
30.19 Changes for 0.72 .
30.20 Changes for 0.71 .
30.21 Changes for 0.70 .
30.22 Changes for 0.65.1
30.23 Changes for 0.65 .
30.24 Changes for 0.63 .
30.25 Changes for 0.61 .
30.26 Changes for 0.60 .
30.27 Changes for 0.54.3
30.28 Changes for 0.54 .
30.29 Changes for 0.50 .
30.30 Changes for 0.42 .
30.31 Changes for 0.40 .

31 matplotlib configuration

31.1 matplotlib . ..

32 matplotlib afm
32.1 matplotlib.afm

33 matplotlib artists
33.1 matplotlib.artist e e e
33.2 matplotlib.legend e

245
248

251

253
253
253
255
255
260
260
260
261
262
263
265
265
266
266
267
268
269
269
269
270
271
271
271
271
272
272
272
273
276
277
278

281
281

285
285

289
289
299

33.3 matplotlib.lines e e 301

334 matplotlib.patches 309
33.5 matplotlib.text. e e e e 342
matplotlib axes 355
34.1 matplotlib.axes. e e e 355
matplotlib axis 499
35.1 matplotlib.axis. e 499
matplotlib cbook 507
36.1 matplotlib.cbook 507
matplotlib cm 517
37.1 matplotlib.cm e e e 517
matplotlib collections 519
38.1 matplotlib.collections o v i i i e 519
matplotlib colorbar 531
39.1 matplotlib.colorbar 531
matplotlib colors 533
40.1 matplotlib.colors e e 533
matplotlib dates 541
41.1 matplotlib.dates e 541
matplotlib figure 549
42.1 matplotlib.figure e e 549
matplotlib font_manager 567
43.1 matplotlib.font_manager e 567
432 matplotlib.fontconfig pattern 572
matplotlib nxutils 575
44,1 matplotlib.nxutils e 575
matplotlib mathtext 577
45.1 matplotlib.mathtext e 579
matplotlib mlab 591
46.1 matplotlib.mlab. e 591
matplotlib path 613
47.1 matplotlib.path. e 613
matplotlib pyplot 619

48.1 matplotlib.pyplot e 619

49 matplotlib spine
49.1 matplotlib.spine . .

50 matplotlib ticker
50.1 matplotlib.ticker .

51 matplotlib backends

51.1 matplotlib.backend_bases

51.2 matplotlib.backends.
51.3 matplotlib.backends.
51.4 matplotlib.backends.
51.5 matplotlib.dviread

51.6 matplotlib.typelfont

V Glossary

Python Module Index

backend_gtkagg
backend_qt4agg
backend_wxagg

767
767

771
771

779
779
793
793
793
794
797

799

803

vii

viii

Part I

User’s Guide

CHAPTER
ONE

INTRODUCTION

matplotlib is a library for making 2D plots of arrays in Python. Although it has its origins in emulating
the MATLAB™ graphics commands, it is independent of MATLAB, and can be used in a Pythonic, object
oriented way. Although matplotlib is written primarily in pure Python, it makes heavy use of NumPy and
other extension code to provide good performance even for large arrays.

matplotlib is designed with the philosophy that you should be able to create simple plots with just a few
commands, or just one! If you want to see a histogram of your data, you shouldn’t need to instantiate
objects, call methods, set properties, and so on; it should just work.

For years, I used to use MATLAB exclusively for data analysis and visualization. MATLAB excels at mak-
ing nice looking plots easy. When I began working with EEG data, I found that I needed to write applications
to interact with my data, and developed and EEG analysis application in MATLAB. As the application grew
in complexity, interacting with databases, http servers, manipulating complex data structures, I began to
strain against the limitations of MATLAB as a programming language, and decided to start over in Python.
Python more than makes up for all of MATLAB’s deficiencies as a programming language, but I was having
difficulty finding a 2D plotting package (for 3D VTK more than exceeds all of my needs).

When I went searching for a Python plotting package, I had several requirements:

o Plots should look great - publication quality. One important requirement for me is that the text looks
good (antialiased, etc.)

Postscript output for inclusion with TeX documents

Embeddable in a graphical user interface for application development

Code should be easy enough that I can understand it and extend it

Making plots should be easy

Finding no package that suited me just right, I did what any self-respecting Python programmer would do:
rolled up my sleeves and dived in. Not having any real experience with computer graphics, I decided to
emulate MATLAB’s plotting capabilities because that is something MATLAB does very well. This had the
added advantage that many people have a lot of MATLAB experience, and thus they can quickly get up to
steam plotting in python. From a developer’s perspective, having a fixed user interface (the pylab interface)
has been very useful, because the guts of the code base can be redesigned without affecting user code.

The matplotlib code is conceptually divided into three parts: the pylab interface is the set of functions
provided by matplotlib.pylab which allow the user to create plots with code quite similar to MATLAB
figure generating code (Pyplot tutorial). The matplotlib frontend or matplotlib API is the set of classes that

http://www.python.org
http://www.mathworks.com
http://www.numpy.org
http://www.vtk.org/

Matplotlib, Release 0.99.3

do the heavy lifting, creating and managing figures, text, lines, plots and so on (Artist tutorial). This is an
abstract interface that knows nothing about output. The backends are device dependent drawing devices, aka
renderers, that transform the frontend representation to hardcopy or a display device (What is a backend?).
Example backends: PS creates PostScript® hardcopy, SVG creates Scalable Vector Graphics hardcopy,
Agg creates PNG output using the high quality Anti-Grain Geometry library that ships with matplotlib,
GTK embeds matplotlib in a Gtk+ application, GTKAgg uses the Anti-Grain renderer to create a figure and
embed it a Gtk+ application, and so on for PDF, WxWidgets, Tkinter etc.

matplotlib is used by many people in many different contexts. Some people want to automatically generate
PostScript files to send to a printer or publishers. Others deploy matplotlib on a web application server to
generate PNG output for inclusion in dynamically-generated web pages. Some use matplotlib interactively
from the Python shell in Tkinter on Windows™. My primary use is to embed matplotlib in a Gtk+ EEG
application that runs on Windows, Linux and Macintosh OS X.

4 Chapter 1. Introduction

http://http://www.adobe.com/products/postscript/
http://www.w3.org/Graphics/SVG/
http://www.antigrain.com
http://www.gtk.org/
http://www.adobe.com/products/acrobat/adobepdf.html
http://www.wxpython.org/
http://docs.python.org/lib/module-Tkinter.html

CHAPTER
TWO

INSTALLING

There are lots of different ways to install matplotlib, and the best way depends on what operating system
you are using, what you already have installed, and how you want to use it. To avoid wading through all
the details (and potential complications) on this page, the easiest thing for you to do is use one of the pre-
packaged python distributions that already provide matplotlib built in. The Enthought Python Distribution
(EPD) for Windows, OS X or Redhat is an excellent choice that “just works” out of the box. Another
excellent alternative for Windows users is Python (x, y) which tends to be updated a bit more frequently.
Both of these packages include matplotlib and pylab, and lots of other useful tools. matplotlib is also
packaged for pretty much every major linux distribution, so if you are on linux your package manager will
probably provide matplotlib prebuilt.

One single click installer and you are done.

2.1 OK, so you want to do it the hard way?

For some people, the prepackaged pythons discussed above are not an option. That’s OK, it’s usually pretty
easy to get a custom install working. You will first need to find out if you have python installed on your
machine, and if not, install it. The official python builds are available for download here, but OS X users
please read Which python for OS X?.

Once you have python up and running, you will need to install numpy. numpy provides high performance
array data structures and mathematical functions, and is a requirement for matplotlib. You can test your
progress:

>>> import numpy
>>> print numpy.__version__

matplotlib requires numpy version 1.1 or later. Although it is not a requirement to use matplotlib, we
strongly encourage you to install ipython, which is an interactive shell for python that is matplotlib aware.

Next we need to get matplotlib installed. We provide prebuilt binaries for OS X and Windows on the
matplotlib download page. Click on the latest release of the “matplotlib” package, choose your python
version (2.5 or 2.6) and your platform (macosx or win32) and you should be good to go. If you have any
problems, please check the Installation FAQ, google around a little bit, and post a question the mailing list.
If you are on debian/unbuntu linux, it suffices to do:

http://www.enthought.com/products/epd.php
http://www.pythonxy.com/foreword.php
http://www.python.org/download
http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103
http://ipython.scipy.org/dist
http://sourceforge.net/projects/matplotlib/files/
http://sourceforge.net/project/showfiles.php?group_id=80706

Matplotlib, Release 0.99.3

> sudo apt-get install python-matplotlib

Instructions for installing our OSX binaries are found in the FAQ Installing OSX binaries.

Once you have ipython, numpy and matplotlib installed, in ipython’s “pylab” mode you have a matlab-like
environment that automatically handles most of the configuration details for you, so you can get up and
running quickly:

johnh@flag:~> ipython -pylab
Python 2.4.5 (#4, Apr 12 2008, 09:09:16)
IPython 0.9.0 -- An enhanced Interactive Python.

Welcome to pylab, a matplotlib-based Python environment.
For more information, type ’help(pylab)’.

In [1]: x = randn(10000)
In [2]: hist(x, 100)

Note that when testing matplotlib installations from the interactive python console, there are some issues
relating to user interface toolkits and interactive settings that are discussed in Using matplotlib in a python
shell.

2.2 Installing from source

If you are interested perhaps in contributing to matplotlib development, running the latest greatest code, or
just like to build everything yourself, it is not difficult to build matplotlib from source. Grab the latest tar.gz
release file from sourceforge, or if you want to develop matplotlib or just need the latest bugfixed version,
grab the latest svn version /nstall from svn.

Once you have satisfied the requirements detailed below (mainly python, numpy, libpng and freetype), you
build matplotlib in the usual way:

cd matplotlib
python setup.py build
python setup.py install

We provide a setup.cfg file that lives along setup.py which you can use to customize the build process, for
example, which default backend to use, whether some of the optional libraries that matplotlib ships with are
installed, and so on. This file will be particularly useful to those packaging matplotlib.

2.3 Build requirements

These are external packages which you will need to install before installing matplotlib. Windows users
only need the first two (python and numpy) since the others are built into the matplotlib windows installers
available for download at the sourceforge site. If you are building on OSX, see Building on OSX

python 2.4 (or later but not python3) matplotlib requires python 2.4 or later (download)

6 Chapter 2. Installing

http://sourceforge.net/project/showfiles.php?group_id=80706
http://matplotlib.svn.sourceforge.net/viewvc/matplotlib/trunk/matplotlib/setup.cfg.template?view=markup
http://www.python.org/download/

Matplotlib, Release 0.99.3

numpy 1.1 (or later) array support for python (download)

libpng 1.1 (or later) library for loading and saving PNG files (download). libpng requires zlib. If you are
a windows user, you can ignore this since we build support into the matplotlib single click installer

Jreetype 1.4 (or later) library for reading true type font files. If you are a windows user, you can ignore this
since we build support into the matplotlib single click installer.

Optional

These are optional packages which you may want to install to use matplotlib with a user interface toolkit.
See What is a backend? for more details on the optional matplotlib backends and the capabilities they
provide

tk 8.3 or later The TCL/Tk widgets library used by the TkAgg backend
pyqt 3.1 or later The Qt3 widgets library python wrappers for the QtAgg backend
pyqt 4.0 or later The Qt4 widgets library python wrappers for the Qt4Agg backend

pygtk 2.2 or later The python wrappers for the GTK widgets library for use with the GTK or GTKAgg
backend

wxpython 2.6 or later The python wrappers for the wx widgets library for use with the WXAgg backend
wxpython 2.8 or later The python wrappers for the wx widgets library for use with the WX backend
pyfitk 1.0 or later The python wrappers of the FLTK widgets library for use with FLTKAgg

Required libraries that ship with matplotlib

agg 2.4 The antigrain C++ rendering engine. matplotlib links against the agg template source statically, so
it will not affect anything on your system outside of matplotlib.

pytz 2007g or later timezone handling for python datetime objects. By default, matplotlib will install pytz
if it isn’t already installed on your system. To override the default, use :file:‘setup.cfg to force or
prevent installation of pytz.

dateutil 1.1 or later provides extensions to python datetime handling. By default, matplotlib will install
dateutil if it isn’t already installed on your system. To override the default, use setup.cfg to force
or prevent installation of dateutil.

2.4 Building on OSX

The build situation on OSX is complicated by the various places one can get the png and freetype require-
ments from (darwinports, fink, /usr/X11R6) and the different architectures (x86, ppc, universal) and the
different OSX version (10.4 and 10.5). We recommend that you build the way we do for the OSX release:
by grabbing the tarbar or svn repository, cd-ing into the release/osx dir, and following the instruction in the
README. This directory has a Makefile which will automatically grab the zlib, png and freetype dependen-
cies from the web, build them with the right flags to make universal libraries, and then build the matplotlib
source and binary installers.

2.4. Building on OSX 7

http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103
http://www.libpng.org/pub/png/libpng.html

Matplotlib, Release 0.99.3

8 Chapter 2. Installing

CHAPTER
THREE

PYPLOT TUTORIAL

matplotlib.pyplot is a collection of command style functions that make matplotlib work like matlab.
Each pyplot function makes some change to a figure: eg, create a figure, create a plotting area in a figure,
plot some lines in a plotting area, decorate the plot with labels, etc.... matplotlib.pyplot is stateful, in
that it keeps track of the current figure and plotting area, and the plotting functions are directed to the current
axes

3.0 . T T

2.5

2.0 .

some numbers

1.5

1'8.0 0.5 1.0 1.5 2.0

You may be wondering why the x-axis ranges from 0-2 and the y-axis from 1-3. If you provide a single
list or array to the plot () command, matplotlib assumes it is a sequence of y values, and automatically
generates the x values for you. Since python ranges start with 0, the default x vector has the same length as
y but starts with 0. Hence the x data are [0, 1,2].

Matplotlib, Release 0.99.3

plot() is a versatile command, and will take an arbitrary number of arguments. For example, to plot x
Versus y, you can issue the command:

plt.plot([1,2,3,4], [1,4,9,16]1)

For every x, y pair of arguments, there is a optional third argument which is the format string that indicates
the color and line type of the plot. The letters and symbols of the format string are from matlab, and you
concatenate a color string with a line style string. The default format string is ‘b-‘, which is a solid blue line.
For example, to plot the above with red circles, you would issue

20 T T T T T
e
15f .
10f 1
e
5_ m
@
@
00 2 3 4 5 6

See the plot () documentation for a complete list of line styles and format strings. The axis() command
in the example above takes a list of [xmin, xmax, ymin, ymax] and specifies the viewport of the axes.

If matplotlib were limited to working with lists, it would be fairly useless for numeric processing. Generally,
you will use numpy arrays. In fact, all sequences are converted to numpy arrays internally. The example
below illustrates a plotting several lines with different format styles in one command using arrays.

10 Chapter 3. Pyplot tutorial

http://numpy.scipy.org

Matplotlib, Release 0.99.3

120 | | | |
A
100 L
A
80 |
A
A
60 |
A
A
401 R |
A
* |
20} A L
A ...
Old-q-q-g-ﬂ.d.;!.‘ ‘ $ mE ! ! i

3.1 Controlling line properties

Lines have many attributes that you can set: linewidth, dash style, antialiased, etc; see
matplotlib.lines.Line2D. There are several ways to set line properties

e Use keyword args:

plt.plot(x, y, linewidth=2.0)

o Use the setter methods of the Line2D instance. plot returns a list of lines; eg linel, line2 =
plot(x1l,yl,x2,x2). Below I have only one line so it is a list of length 1. I use tuple unpacking in
the line, = plot(x, y, ’0’) to get the first element of the list:

line, = plt.plot(x, y, ’-’)
line.set_antialiased(False) # turn off antialising

e Use the setp() command. The example below uses a Matlab-style command to set multiple proper-
ties on a list of lines. setp works transparently with a list of objects or a single object. You can either
use python keyword arguments or Matlab-style string/value pairs:

lines = plt.plot(xl, yl1, x2, y2)
use keyword args
plt.setp(lines, color="r’, linewidth=2.0)

3.1. Controlling line properties 11

Matplotlib, Release 0.99.3

or matlab style string value pairs

plt.setp(lines,

"color’, 'r

Here are the available Line2D properties.

To get a list of settable line properties, call the setp () function with a line or lines as argument

’, ’linewidth’, 2.0)

Property Value Type

alpha float

animated [True | False]

antialiased or aa [True | False]

clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]

clip_path a Path instance and a Transform instance, a Patch
color or ¢ any matplotlib color

contains the hit testing function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]

dashes sequence of on/off ink in points

data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string

linestyle or Is -S> | ‘steps’ | ...]

linewidth or 1w

lod

marker
markeredgecolor or mec
markeredgewidth or mew
markerfacecolor or mfc
markersize or ms
markevery

picker

pickradius
solid_capstyle
solid_joinstyle
transform

visible

xdata

ydata

zorder

float value in points

[True | False]

(I 2 P IR S A A B R
any matplotlib color

float value in points

any matplotlib color

float

None | integer | (startind, stride)
used in interactive line selection
the line pick selection radius
[butt’ | ‘round’ | ‘projecting’]
[’miter’ | ‘round’ | ‘bevel’]

a matplotlib.transforms.Transform instance
[True | False]

np.array

np.array

any number

In [69]: lines = plt.plot([1,2,3])

In [70]: plt.setp(lines)
alpha: float

animated:
antialiased or aa:

...snip

[True | False]
[True | False]

12

Chapter 3. Pyplot tutorial

Matplotlib, Release 0.99.3

3.2 Working with multiple figures and axes

Matlab, and pyplot, have the concept of the current figure and the current axes. All plotting commands ap-
ply to the current axes. The function gca () returns the current axes (amatplotlib.axes.Axes instance),
and gcf () returns the current figure (matplotlib.figure.Figure instance). Normally, you don’t have
to worry about this, because it is all taken care of behind the scenes. Below is a script to create two subplots.

1-0 I I I I
0.8 i
0.6f .
0.4 -
0.2f .
0.0f
—-0.2 .
—0.4} .
—-0.6f .
0'80 1 2 3 4 5
1-0 \ I/l\ Il‘\ /l\\ I/l\ I
\ | ! I\ ! ;N !
0.5F | / \\ - /I ‘\ ;o -
I \ \ I
0.0} \\ ,I ‘\ I \ I’ \\ /I ! /I -
Lo - Vo v \\ I
—0.5} \\ ! ! Il \\ | \ II | -
\ /l ‘' v ! ‘\ ; v
—-1.0 ! \y ! N ! 2 ! \/
0 1 2 3 4 5

The figure() command here is optional because figure(l) will be created by default, just as a
subplot(111) will be created by default if you don’t manually specify an axes. The subplot() com-
mand specifies numrows, numcols, fignum where fignum ranges from 1 to numrows*numcols. The
commas in the subplot command are optional if numrows*numcols<10. So subplot(211) is identical
to subplot (2,1, 1). You can create an arbitrary number of subplots and axes. If you want to place an axes
manually, ie, not on a rectangular grid, use the axes() command, which allows you to specify the location
as axes([left, bottom, width, height]) where all values are in fractional (0 to 1) coordinates. See
pylab_examples-axes_demo for an example of placing axes manually and pylab_examples-line_styles for an
example with lots-o-subplots.

You can create multiple figures by using multiple figure() calls with an increasing figure number. Of
course, each figure can contain as many axes and subplots as your heart desires:

import matplotlib.pyplot as plt

plt.figure(l) # the first figure

plt.subplot(211) # the first subplot in the first figure
plt.plot([1,2,3])

3.2. Working with multiple figures and axes 13

Matplotlib, Release 0.99.3

plt.subplot(212) # the second subplot in the first figure
plt.plot([4,5,6]1)

plt.figure(2) # a second figure

plt.plot([4,5,61) # creates a subplot(111) by default
plt.figure(l) # figure 1 current; subplot(212) still current
plt.subplot(211) # make subplot(211) in figurel current

plt.title('Easy as 1,2,3") # subplot 211 title
You can clear the current figure with c1£() and the current axes with cla(). If you find this statefulness,

annoying, don’t despair, this is just a thin stateful wrapper around an object oriented API, which you can
use instead (see Artist tutorial)

3.3 Working with text

The text () command can be used to add text in an arbitrary location, and the x1abel (), ylabel () and
title() are used to add text in the indicated locations (see Text introduction for a more detailed example)

Histogram of 1Q
0.030 ; : : :

0.025
0.020

0.015

FrooapliiLy

0.010

0.005

0'00910 60 80 100 120 140 160

Smarts

All of the text () commands return an matplotlib.text.Text instance. Just as with with lines above,
you can customize the properties by passing keyword arguments into the text functions or using setp():

14 Chapter 3. Pyplot tutorial

Matplotlib, Release 0.99.3

t = plt.xlabel('my data’, fontsize=14, color="red’)

These properties are covered in more detail in Text properties and layout.

3.3.1 Using mathematical expressions in text

matplotlib accepts TeX equation expressions in any text expression. For example to write the expression
o = 15 in the title, you can write a TeX expression surrounded by dollar signs:

plt.title(r’$\sigma_i=15%")

The r preceeding the title string is important — it signifies that the string is a raw string and not to treate
backslashes and python escapes. matplotlib has a built-in TeX expression parser and layout engine, and
ships its own math fonts — for details see Writing mathematical expressions. Thus you can use mathematical
text across platforms without requiring a TeX installation. For those who have LaTeX and dvipng installed,
you can also use LaTeX to format your text and incorporate the output directly into your display figures or
saved postscript — see Text rendering With LaTeX.

3.3.2 Annotating text

The uses of the basic text () command above place text at an arbitrary position on the Axes. A common use
case of text is to annotate some feature of the plot, and the annotate () method provides helper functionality
to make annotations easy. In an annotation, there are two points to consider: the location being annotated
represented by the argument xy and the location of the text xytext. Both of these arguments are (x,y)
tuples.

3.3. Working with text 15

Matplotlib, Release 0.99.3

2.0 I I I I

local max

| _ |

1.5

-1.5

-2.0

In this basic example, both the xy (arrow tip) and xytext locations (text location) are in data coordinates.
There are a variety of other coordinate systems one can choose — see Annotating text and Annotating Axes
for details. More examples can be found in pylab_examples-annotation_demo.

16 Chapter 3. Pyplot tutorial

CHAPTER
FOUR

INTERACTIVE NAVIGATION

POO+ - BB

All figure windows come with a navigation toolbar, which can be used to navigate through the data set. Here
is a description of each of the buttons at the bottom of the toolbar

,ﬁi\

o
v

The Forward and Back buttons These are akin to the web browser forward and back buttons. They are

4

used to navigate back and forth between previously defined views. They have no meaning unless you
have already navigated somewhere else using the pan and zoom buttons. This is analogous to trying
to click Back on your web browser before visiting a new page —nothing happens. Home always takes
you to the first, default view of your data. For Home, Forward and Back, think web browser where
data views are web pages. Use the pan and zoom to rectangle to define new views.

The Pan/Zoom button This button has two modes: pan and zoom. Click the toolbar button to activate

panning and zooming, then put your mouse somewhere over an axes. Press the left mouse button
and hold it to pan the figure, dragging it to a new position. When you release it, the data under the
point where you pressed will be moved to the point where you released. If you press ‘x” or ‘y’ while
panning the motion will be constrained to the x or y axis, respectively. Press the right mouse button
to zoom, dragging it to a new position. The x axis will be zoomed in proportionate to the rightward
movement and zoomed out proportionate to the leftward movement. Ditto for the yaxis and up/down
motions. The point under your mouse when you begin the zoom remains stationary, allowing you to
zoom to an arbitrary point in the figure. You can use the modifier keys ‘x’, ‘y’ or ‘CONTROL’ to
constrain the zoom to the x axes, the y axes, or aspect ratio preserve, respectively.

With polar plots, the pan and zoom functionality behaves differently. The radius axis labels can be
dragged using the left mouse button. The radius scale can be zoomed in and out using the right mouse
button.

17

Matplotlib, Release 0.99.3

The Zoom-to-rectangle button Click this toolbar button to activate this mode. Put your mouse some-
where over and axes and press the left mouse button. Drag the mouse while holding the button to
a new location and release. The axes view limits will be zoomed to the rectangle you have defined.
There is also an experimental ‘zoom out to rectangle’ in this mode with the right button, which will
place your entire axes in the region defined by the zoom out rectangle.

=

The Subplot-configuration button Use this tool to configure the parameters of the subplot: the left,
right, top, bottom, space between the rows and space between the columns.

The Save button Click this button to launch a file save dialog. You can save files with the following
extensions: png, ps, eps, svg and pdf.

4.1 Navigation Keyboard Shortcuts

Toggle y axis scale (log/linear)

Command Keyboard Shortcut(s)
Home/Reset h or r or home

Back c or left arrow or backspace
Forward v or right arrow
Pan/Zoom P

Zoom-to-rect 0

Save S

Toggle fullscreen f

Constrain pan/zoom to X axis hold x

Constrain pan/zoom to y axis hold y

Preserve aspect ratio hold CONTROL
Toggle grid g

1

If you are using matplotlib.pyplot the toolbar will be created automatically for every figure. If you are
writing your own user interface code, you can add the toolbar as a widget. The exact syntax depends on
your UI, but we have examples for every supported Ul in the matplotlib/examples/user_interfaces
directory. Here is some example code for GTK:

from matplotlib.figure import Figure
from matplotlib.backends.backend_gtkagg import FigureCanvasGTKAgg as FigureCanvas
from matplotlib.backends.backend_gtkagg import NavigationToolbar2GTKAgg as NavigationToolbar

win = gtk.Window()

win.connect("destroy", lambda x: gtk.main_quit())

win.set_default_size(400,300)

win.set_title("Embedding in GTK")

18

Chapter 4. Interactive navigation

Matplotlib, Release 0.99.3

vbox = gtk.VBox()
win.add(vbox)

fig = Figure(figsize=(5,4), dpi=100)
ax = fig.add_subplot(111)
ax.plot([1,2,3])

canvas = FigureCanvas(fig) # a gtk.DrawingArea
vbox.pack_start(canvas)

toolbar = NavigationToolbar(canvas, win)
vbox.pack_start(toolbar, False, False)

win.show_all()
gtk.mainQ)

4.1. Navigation Keyboard Shortcuts

19

Matplotlib, Release 0.99.3

20

Chapter 4. Interactive navigation

CHAPTER
FIVE

CUSTOMIZING MATPLOTLIB

5.1 The matplotlibrc file

matplotlib uses matplotlibrc configuration files to customize all kinds of properties, which we call rc
settings or rc parameters. You can control the defaults of almost every property in matplotlib: figure size
and dpi, line width, color and style, axes, axis and grid properties, text and font properties and so on.
matplotlib looks for matplotlibrc in three locations, in the following order:

1. matplotlibrc in the current working directory, usually used for specific customizations that you do
not want to apply elsewhere.

2. .matplotlib/matplotlibrc, for the user’s default customizations. See .matplotlib directory loca-

tion.
3. INSTALL/matplotlib/mpl-data/matplotlibrc, where INSTALL 18 some-
thing like /usr/lib/python2.5/site-packages on Linux, and maybe

C:\Python25\Lib\site-packages on Windows. Every time you install matplotlib, this file
will be overwritten, so if you want your customizations to be saved, please move this file to you
.matplotlib directory.

To display where the currently active matplotlibrc file was loaded from, one can do the following:

>>> import matplotlib
>>> matplotlib.matplotlib_fname()
’ /home/foo/.matplotlib/matplotlibrc’

See below for a sample matplotlibre file.

5.2 Dynamic rc settings

You can also dynamically change the default rc settings in a python script or interactively from the python
shell. All of the rc settings are stored in a dictionary-like variable called matplotlib.rcParams, which is
global to the matplotlib package. rcParams can be modified directly, for example:

import matplotlib as mpl
mpl.rcParams[’lines.linewidth’] = 2
mpl.rcParams[’lines.color’] = ’r’

21

Matplotlib, Release 0.99.3

Matplotlib also provides a couple of convenience functions for modifying rc settings. The
matplotlib.rc() command can be used to modify multiple settings in a single group at once, using
keyword arguments:

import matplotlib as mpl
mpl.rc(’lines’, linewidth=2, color="r’)

There matplotlib.rcdefaults() command will restore the standard matplotlib default settings.

There is some degree of validation when setting the values of rcParams, see matplotlib.rcsetup for
details.

5.2.1 A sample matplotlibrc file

MATPLOTLIBRC FORMAT

This is a sample matplotlib configuration file - you can find a copy
of it on your system in
site-packages/matplotlib/mpl-data/matplotlibrc. If you edit it
there, please note that it will be overridden in your next install.
If you want to keep a permanent local copy that will not be
over-written, place it in HOME/.matplotlib/matplotlibrc (unix/linux
like systems) and C:\Documents and Settings\yourname\.matplotlib
(win32 systems).

This file is best viewed in a editor which supports python mode
syntax highlighting. Blank lines, or lines starting with a comment
symbol, are ignored, as are trailing comments. Other lines must
have the format

key : val # optional comment

Colors: for the color values below, you can either use - a
matplotlib color string, such as r, k, or b - an rgb tuple, such as
(1.0, 0.5, 0.0) - a hex string, such as ff00ff or #ff00ff - a scalar
grayscale intensity such as 0.75 - a legal html color name, eg red,
blue, darkslategray

FHoH H OH O OH K B H O H K K W H W W W W R

CONFIGURATION BEGINS HERE

the default backend; one of GTK GTKAgg GTKCairo CocoaAgg FltkAgg
MacOSX QtAgg Qt4Agg TkAgg WX WXAgg Agg Cairo GDK PS PDF SVG Template
You can also deploy your own backend outside of matplotlib by
referring to the module name (which must be in the PYTHONPATH) as
'module: //my_backend’

backend : TkAgg

FH FH H W H

if you are runing pyplot inside a GUI and your backend choice

conflicts, we will automatically try and find a compatible one for
you if backend_fallback is True

#backend_fallback: True

#interactive : False

#toolbar : toolbar2 # None | classic | toolbar?2

22 Chapter 5. Customizing matplotlib

Matplotlib, Release 0.99.3

#timezone : UTC # a pytz timezone string, eg US/Central or Europe/Paris

Where your matplotlib data lives if you installed to a non-default
location. This is where the matplotlib fonts, bitmaps, etc reside
#datapath : /home/jdhunter/mpldata

LINES
See http://matplotlib.sourceforge.net/api/artist_api.html#module-matplotlib.lines for more
information on line properties.

#lines.linewidth : 1.0 # line width in points

#lines.linestyle H # solid line

#lines.color : blue

#lines.marker : None # the default marker

#lines.markeredgewidth : 0.5 # the line width around the marker symbol
#lines.markersize : 6 # markersize, in points
#lines.dash_joinstyle : miter # miter|round|bevel
#lines.dash_capstyle : butt # butt|round|projecting
#lines.solid_joinstyle : miter # miter|round|bevel
#lines.solid_capstyle : projecting # butt|round|projecting
#lines.antialiased : True # render lines in antialised (no jaggies)

PATCHES

Patches are graphical objects that fill 2D space, like polygons or

circles. See

http://matplotlib.sourceforge.net/api/artist_api.html#module-matplotlib.patches
information on patch properties

#patch.linewidth : 1.0 # edge width in points

#patch. facecolor : blue

#patch.edgecolor : black

#patch.antialiased : True # render patches in antialised (no jaggies)
FONT

#

font properties used by text.Text. See

http://matplotlib.sourceforge.net/api/font_manager_api.html for more
information on font properties. The 6 font properties used for font
matching are given below with their default values.

#

The font.family property has five values: ’serif’ (e.g. Times),

’sans-serif’ (e.g. Helvetica), ’cursive’ (e.g. Zapf-Chancery),

’fantasy’ (e.g. Western), and ’monospace’ (e.g. Courier). Each of
these font families has a default list of font names in decreasing

order of priority associated with them.

#

The font.style property has three values: normal (or roman), italic
or oblique. The oblique style will be used for italic, if it is not
present.

#

The font.variant property has two values: normal or small-caps. For
TrueType fonts, which are scalable fonts, small-caps is equivalent

to using a font size of ’smaller’, or about 83% of the current font
size.

5.2. Dynamic rc settings 23

Matplotlib, Release 0.99.3

#

The font.weight property has effectively 13 values: normal, bold,

bolder, lighter, 100, 200, 300, ..., 900. Normal is the same as

400, and bold is 700. bolder and lighter are relative values with
respect to the current weight.

#

The font.stretch property has 11 values: ultra-condensed,

extra-condensed, condensed, semi-condensed, normal, semi-expanded,

expanded, extra-expanded, ultra-expanded, wider, and narrower. This
property is not currently implemented.

#

The font.size property is the default font size for text, given in pts.
12pt is the standard value.

#

#font. family : sans-serif

#font.style : normal

#font.variant : normal

#font.weight : medium

#font.stretch : normal

note that font.size controls default text sizes. To configure

special text sizes tick labels, axes, labels, title, etc, see the rc
settings for axes and ticks. Special text sizes can be defined

relative to font.size, using the following values: xx-small, x-small,
small, medium, large, x-large, xx-large, larger, or smaller

#font.size 1 12.0

#font.serif : Bitstream Vera Serif, New Century Schoolbook, Century Schoolbook L, Utopia, ITC]
#font.sans-serif : Bitstream Vera Sans, Lucida Grande, Verdana, Geneva, Lucid, Arial, Helvetica, Av
#font.cursive : Apple Chancery, Textile, Zapf Chancery, Sand, cursive

#font. fantasy : Comic Sans MS, Chicago, Charcoal, Impact, Western, fantasy

#font.monospace : Bitstream Vera Sans Mono, Andale Mono, Nimbus Mono L, Courier New, Courier, Fixe
TEXT

text properties used by text.Text. See
http://matplotlib.sourceforge.net/api/artist_api.html#module-matplotlib.text for more
information on text properties

#text.color : black

LaTeX customizations. See http://www.scipy.org/Wiki/Cookbook/Matplotlib/UsingTex
#text.usetex : False # use latex for all text handling. The following fonts
are supported through the usual rc parameter settings:
new century schoolbook, bookman, times, palatino,
zapf chancery, charter, serif, sans-serif, helvetica,
avant garde, courier, monospace, computer modern roman,
computer modern sans serif, computer modern typewriter
If another font is desired which can loaded using the
LaTeX \usepackage command, please inquire at the
matplotlib mailing list
#text.latex.unicode : False # use "ucs" and "inputenc" LaTeX packages for handling
unicode strings.
#text.latex.preamble : # IMPROPER USE OF THIS FEATURE WILL LEAD TO LATEX FAILURES
AND IS THEREFORE UNSUPPORTED. PLEASE DO NOT ASK FOR HELP
IF THIS FEATURE DOES NOT DO WHAT YOU EXPECT IT TO.

H OH H H H K

24 Chapter 5. Customizing matplotlib

Matplotlib, Release 0.99.3

preamble is a comma separated list of LaTeX statements
that are included in the LaTeX document preamble.

An example:

text.latex.preamble : \usepackage{bm},\usepackage{euler}
The following packages are always loaded with usetex, so
beware of package collisions: color, geometry, graphicx,
typelcm, textcomp. Adobe Postscript (PSSNFS) font packages
may also be loaded, depending on your font settings

FHoH OH K K W W W

#text.dvipnghack : None some versions of dvipng don’t handle alpha
channel properly. Use True to correct

and flush ~/.matplotlib/tex.cache

before testing and False to force
correction off. None will try and

guess based on your dvipng version

FH o H H W H

Affects how text, such as titles and labels, are
interpreted by default.

’plain’: As plain, unformatted text

"tex’: As TeX-like text. Text between $’s will be
formatted as a TeX math expression.

This setting has no effect when text.usetex is True.
In that case, all text will be sent to TeX for
processing.

#text.markup : ’plain’

FHOH O K K W W W

The following settings allow you to select the fonts in math mode.
They map from a TeX font name to a fontconfig font pattern.

These settings are only used if mathtext.fontset is ’custom’.

Note that this "custom" mode is unsupported and may go away in the
future.

#mathtext.cal : cursive

#mathtext.rm : serif
#mathtext.tt : monospace
#mathtext.it : serif:italic
#mathtext.bf : serif:bold
#mathtext.sf : sans

#mathtext.fontset : cm # Should be 'cm’ (Computer Modern), ’stix’,
’stixsans’ or ’custom’
#mathtext.fallback_to_cm : True # When True, use symbols from the Computer Modern
fonts when a symbol can not be found in one of
the custom math fonts.

#mathtext.default : it # The default font to use for math.
Can be any of the LaTeX font names, including
the special name "regular" for the same font
used in regular text.

AXES

default face and edge color, default tick sizes,

default fontsizes for ticklabels, and so on. See

http://matplotlib.sourceforge.net/api/axes_api.html#module-matplotlib.axes
#axes.hold : True # whether to clear the axes by default on
#axes. facecolor : white # axes background color

5.2. Dynamic rc settings 25

Matplotlib, Release 0.99.3

#axes.edgecolor : black # axes edge color

#axes.linewidth : 1.0 # edge linewidth

#axes.grid : False # display grid or not

#axes.titlesize : large # fontsize of the axes title

#axes.labelsize : medium # fontsize of the x any y labels
#axes.labelcolor : black

#axes.axisbelow : False # whether axis gridlines and ticks are below

the axes elements (lines, text, etc)
use scientific notation if logl®
of the axis range is smaller than the

#axes.formatter.limits : -7, 7 #
#
first or larger than the second
#
#

#axes.unicode_minus : True use unicode for the minus symbol
rather than hypen. See http://en.wikipedia.org/wiki/Plus_sign#Plus_si

#polaraxes.grid : True # display grid on polar axes
#axes3d.grid : True # display grid on 3d axes
TICKS
see http://matplotlib.sourceforge.net/api/axis_api.html#matplotlib.axis.Tick
#xtick.major.size 1 4 # major tick size in points
#xtick.minor.size 2 # minor tick size in points
#xtick.major.pad 4 # distance to major tick label in points
#xtick.minor.pad 4 # distance to the minor tick label in points
#xtick.color k # color of the tick labels
#xtick.labelsize : medium # fontsize of the tick labels
#xtick.direction : in # direction: in or out
#ytick.major.size : 4 # major tick size in points
#ytick.minor.size : 2 # minor tick size in points
#ytick.major.pad 4 # distance to major tick label in points
#ytick.minor.pad 1 4 # distance to the minor tick label in points
#ytick.color : k # color of the tick labels
#ytick.labelsize : medium # fontsize of the tick labels
#ytick.direction : in # direction: in or out
GRIDS
#grid.color : black # grid color
#grid.linestyle : : # dotted
#grid.linewidth : 0.5 # in points
Legend
#legend. fancybox : False # if True, use a rounded box for the

legend, else a rectangle
#legend.isaxes : True
#legend.numpoints 2 # the number of points in the legend line
#legend. fontsize : large
#legend.pad : 0.0 # deprecated; the fractional whitespace inside the legend border
#legend.borderpad : 0.5 # border whitspace in fontsize units
#legend.markerscale : 1.0 # the relative size of legend markers vs. original
the following dimensions are in axes coords
#legend.labelsep : 0.010 # the vertical space between the legend entries
#legend.handlelen : 0.05 # the length of the legend lines

26 Chapter 5. Customizing matplotlib

Matplotlib, Release 0.99.3

#legend.handletextsep : 0.02 # the space between the legend line and legend text
#legend.axespad : 0.02 # the border between the axes and legend edge
#legend. shadow : False

FIGURE
See http://matplotlib.sourceforge.net/api/figure_api.html#matplotlib.figure.Figure

#figure.figsize : 8, 6 # figure size in inches

#figure.dpi : 80 # figure dots per inch
#figure.facecolor : 0.75 # figure facecolor; 0.75 is scalar gray
#figure.edgecolor : white # figure edgecolor

The figure subplot parameters.

figure width or height

All dimensions are fraction of the

#figure.subplot.left : 0.125 # the left side of the subplots of the figure
#figure.subplot.right : 0.9 # the right side of the subplots of the figure
#figure.subplot.bottom : 0.1 # the bottom of the subplots of the figure

#figure.subplot.top : 0.9 # the top of the subplots of the figure

#figure.subplot.wspace : 0.2 # the amount of width reserved for blank space between subplots
#figure.subplot.hspace : 0.2 # the amount of height reserved for white space between subplots
IMAGES

#image.aspect : equal # equal | auto | a number

#image.interpolation : bilinear # see help(imshow) for options

#image.cmap : jet # gray | jet etc...

#image.lut : 256 # the size of the colormap lookup table

#image.origin : upper # lower | upper

#image.resample : False

CONTOUR PLOTS
#contour.negative_linestyle : dashed # dashed | solid

Agg rendering

Warning: experimental, 2008/10/10

#agg.path.chunksize : 0 # 0 to disable; values in the range
10000 to 100000 can improve speed slightly
and prevent an Agg rendering failure
when plotting very large data sets,
especially if they are very gappy.

It may cause minor artifacts, though.
A value of 20000 is probably a good
starting point.

FH oH H OH W B W

SAVING FIGURES
#path.simplify : False # When True, simplify paths by removing "invisible"
points to reduce file size and increase rendering
speed
#path.simplify_threshold : 0.1 # The threshold of similarity below which
vertices will be removed in the simplification

process

the default savefig params can be different from the display params
Eg, you may want a higher resolution, or to make the figure

background white
#savefig.dpi

100 # figure dots per inch

5.2. Dynamic rc settings 27

Matplotlib, Release 0.99.3

#savefig.facecolor : white # figure facecolor when saving
#savefig.edgecolor : white # figure edgecolor when saving
#cairo. format . png # png, ps, pdf, svg

tk backend params
#tk.window_focus : False # Maintain shell focus for TkAgg
#tk.pythoninspect : False # tk sets PYTHONINSEPCT

ps backend params

#ps.papersize : letter # auto, letter, legal, ledger, A0-A10, BO-B10O®
#ps.useafm : False # use of afm fonts, results in small files
#ps.usedistiller : False # can be: None, ghostscript or xpdf

Experimental: may produce smaller files.
xpdf intended for production of publication quality files,
but requires ghostscript, xpdf and ps2eps
#ps.distiller.res : 6000 # dpi
#ps. fonttype i3 # Output Type 3 (Type3) or Type 42 (TrueType)

pdf backend params

#pdf.compression : 6 # integer from 0O to 9
0 disables compression (good for debugging)
#pdf. fonttype 13 # Output Type 3 (Type3) or Type 42 (TrueType)

svg backend params

#svg.image_inline : True # write raster image data directly into the svg file
#svg.image_noscale : False # suppress scaling of raster data embedded in SVG
#svg.embed_char_paths : True # embed character outlines in the SVG file

docstring params
#docstring.hardcopy = False # set this when you want to generate hardcopy docstring

Set the verbose flags. This controls how much information

matplotlib gives you at runtime and where it goes. The verbosity

levels are: silent, helpful, debug, debug-annoying. Any level is
inclusive of all the levels below it. If your setting is "debug",
you’ll get all the debug and helpful messages. When submitting
problems to the mailing-list, please set verbose to "helpful” or "debug"
and paste the output into your report.

These objects can a filename, or a filehandle like sys.stdout.

You can override the rc default verbosity from the command line by
giving the flags --verbose-LEVEL where LEVEL is one of the legal
levels, eg --verbose-helpful.

You can access the verbose instance in your code
from matplotlib import verbose.
#verbose.level : silent # one of silent, helpful, debug, debug-annoying
#verbose.fileo : sys.stdout # a log filename, sys.stdout or sys.stderr

#
#
#
#
#
#
#
#
The "fileo" gives the destination for any calls to verbose.report.
#
#
#
#
#
#
#
#

28 Chapter 5. Customizing matplotlib

CHAPTER
SIX

USING MATPLOTLIB IN A PYTHON
SHELL

By default, matplotlib defers drawing until the end of the script because drawing can be an expensive oper-
ation, and you may not want to update the plot every time a single property is changed, only once after all
the properties have changed.

But when working from the python shell, you usually do want to update the plot with every command, eg,
after changing the xlabel (), or the marker style of a line. While this is simple in concept, in practice it
can be tricky, because matplotlib is a graphical user interface application under the hood, and there are some
tricks to make the applications work right in a python shell.

6.1 Ipython to the rescue

Fortunately, ipython, an enhanced interactive python shell, has figured out all of these tricks, and is mat-
plotlib aware, so when you start ipython in the pylab mode.

johnh@flag:~> ipython -pylab
Python 2.4.5 (#4, Apr 12 2008, 09:09:16)
IPython 0.9.0 -- An enhanced Interactive Python.

Welcome to pylab, a matplotlib-based Python environment.
For more information, type ’'help(pylab)’.

In [1]: x = randn(10000)
In [2]: hist(x, 100)

it sets everything up for you so interactive plotting works as you would expect it to. Call figure() and a
figure window pops up, call plot () and your data appears in the figure window.

Note in the example above that we did not import any matplotlib names because in pylab mode, ipython will
import them automatically. ipython also turns on interactive mode for you, which causes every pyplot com-
mand to trigger a figure update, and also provides a matplotlib aware run command to run matplotlib scripts
efficiently. ipython will turn off interactive mode during a run command, and then restore the interactive
state at the end of the run so you can continue tweaking the figure manually.

29

http://ipython.scipy.org/dist

Matplotlib, Release 0.99.3

There has been a lot of recent work to embed ipython, with pylab support, into various GUI applications, so
check on the ipython mailing list for the latest status.

6.2 Other python interpreters

If you can’t use ipython, and still want to use matplotlib/pylab from an interactive python shell, eg the plain-
ole standard python interactive interpreter, or the interpreter in your favorite IDE, you are going to need to
understand what a matplotlib backend is What is a backend?.

With the TkAgg backend, that uses the Tkinter user interface toolkit, you can use matplotlib from an arbi-
trary python shell. Just set your backend : TkAgg and interactive : True in your matplotlibrc
file (see Customizing matplotlib) and fire up python. Then:

>>> from pylab import *
>>> plot([1,2,3])
>>> xlabel(’hi mom’)

should work out of the box. Note, in batch mode, ie when making figures from scripts, interactive mode can
be slow since it redraws the figure with each command. So you may want to think carefully before making
this the default behavior.

For other user interface toolkits and their corresponding matplotlib backends, the situation is complicated by
the GUI mainloop which takes over the entire process. The solution is to run the GUI in a separate thread,
and this is the tricky part that ipython solves for all the major toolkits that matplotlib supports. There are
reports that upcoming versions of pygtk will place nicely with the standard python shell, so stay tuned.

6.3 Controlling interactive updating

The interactive property of the pyplot interface controls whether a figure canvas is drawn on every pyplot
command. If interactive is False, then the figure state is updated on every plot command, but will only be
drawn on explicit calls to draw (). When interactive is True, then every pyplot command triggers a draw.

The pyplot interface provides 4 commands that are useful for interactive control.
isinteractive() returns the interactive setting True|False

ion() turns interactive mode on

ioff() turns interactive mode off

draw() forces a figure redraw

When working with a big figure in which drawing is expensive, you may want to turn matplotlib’s interactive
setting off temporarily to avoid the performance hit:

>>> #create big-expensive-figure

>>> ioff() # turn updates off

>>> title(’now how much would you pay?’)
>>> xticklabels(fontsize=20, color="green’)
>>> draw() # force a draw

>>> savefig(’alldone’, dpi=300)

30 Chapter 6. Using matplotlib in a python shell

http://projects.scipy.org/mailman/listinfo/ipython-user

Matplotlib, Release 0.99.3

>>> close()
>>> ion() # turn updating back on
>>> plot(rand(20), mfc="g’, mec="r’, ms=40, mew=4, 1ls="--’, 1lw=3)

6.3. Controlling interactive updating 31

Matplotlib, Release 0.99.3

32

Chapter 6. Using matplotlib in a python shell

CHAPTER
SEVEN

WORKING WITH TEXT

7.1 Text introduction

matplotlib has excellent text support, including mathematical expressions, truetype support for raster and
vector outputs, newline separated text with arbitrary rotations, and unicode support. Because we embed the
fonts directly in the output documents, eg for postscript or PDF, what you see on the screen is what you get
in the hardcopy. freetype2 support produces very nice, antialiased fonts, that look good even at small raster
sizes. matplotlib includes its own matplotlib. font_manager, thanks to Paul Barrett, which implements
a cross platform, W3C compliant font finding algorithm.

You have total control over every text property (font size, font weight, text location and color, etc) with
sensible defaults set in the rc file. And significantly for those interested in mathematical or scientific fig-
ures, matplotlib implements a large number of TeX math symbols and commands, to support mathematical
expressions anywhere in your figure.

7.2 Basic text commands

The following commands are used to create text in the pyplot interface
e text() - add text at an arbitrary location to the Axes; matplotlib.axes.Axes.text() inthe APL
e xlabel () - add an axis label to the x-axis; matplotlib.axes.Axes.set_xlabel () in the APL
e ylabel() - add an axis label to the y-axis; matplotlib.axes.Axes.set_ylabel () in the APL
e title() - add atitle to the Axes; matplotlib.axes.Axes.set_title() in the API.

e figtext() - add text at an arbitrary location to the Figure; matplotlib. figure.Figure.text()
in the API.

e suptitle() - add atitle to the Figure; matplotlib. figure.Figure.suptitle() in the APIL

e annotate() - add an annotation, with optional arrow, to the Axes ;
matplotlib.axes.Axes.annotate() in the APL

All of these functions create and return a matplotlib.text.Text () instance, which can bew configured
with a variety of font and other properties. The example below shows all of these commands in action.

33

http://freetype.sourceforge.net/index2.html

Matplotlib, Release 0.99.3

bold figure suptitle

10 axes title
sl boxed italics text in data coords | .
ol an equation: E=mc’ |
o
o]
L)
> 41 anhnotate i
oL unicode: Institut fur Festkorperphygik
0 , colored text in axes coords
0 2 4 6 8 10

xlabel

7.3 Text properties and layout

The matplotlib.text.Text instances have a variety of properties which can be configured via keyword
arguments to the text commands (eg title(), xlabel () and text()).

34 Chapter 7. Working with text

Matplotlib, Release 0.99.3

horizontalalignment or ha
label

linespacing
multialignment

name or fontname
picker

position

rotation

size or fontsize

style or fontstyle

text

transform

variant
verticalalignment or va
visible

weight or fontweight

Property Value Type

alpha float

backgroundcolor any matplotlib color

bbox rectangle prop dict plus key ‘pad’ which is a pad in points
clip_box a matplotlib.transform.Bbox instance

clip_on [True | False]

clip_path a Path instance and a Transform instance, a Patch

color any matplotlib color

family [“serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
fontproperties a matplotlib.font_manager.FontProperties instance

[‘center’ | ‘right’ | ‘left’]

any string

float

[left’ | ‘right’ | ‘center’]

string eg, [’Sans’ | ‘Courier’ | ‘Helvetica’ ...]
[None|float|boolean|callable]

(xy)

[angle in degrees ‘vertical’ | ‘horizontal’

[size in points | relative size eg ‘smaller’, ‘x-large’]
[‘normal’ | ‘italic’ | ‘oblique’]

string or anything printable with ‘%s’ conversion
a matplotlib.transform transformation instance

[‘normal’ | ‘small-caps’]

[‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]

[True | False]

[‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]

X float
y float
zorder any number

You can layout text with the alignment arguments horizontalalignment, verticalalignment, and
multialignment. horizontalalignment controls whether the x positional argument for the text in-
dicates the left, center or right side of the text bounding box. verticalalignment controls whether
the y positional argument for the text indicates the bottom, center or top side of the text bounding box.
multialignment, for newline separated strings only, controls whether the different lines are left, center or
right justified. Here is an example which uses the text () command to show the various alignment possibil-
ities. The use of transform=ax.transAxes throughout the code indicates that the coordinates are given
relative to the axes bounding box, with 0,0 being the lower left of the axes and 1,1 the upper right.

7.3. Text properties and layout 35

Matplotlib, Release 0.99.3

((
N

&
S

right bottom
right top

g

middle

nitoradl

right center
[eft center
CCTTILCTTTU

left bottom
left top center top

7.4 Writing mathematical expressions

You can use a subset TeX markup in any matplotlib text string by placing it inside a pair of dollar signs ($).

Note that you do not need to have TeX installed, since matplotlib ships its own TeX expression parser, layout
engine and fonts. The layout engine is a fairly direct adaptation of the layout algorithms in Donald Knuth’s
TeX, so the quality is quite good (matplotlib also provides a usetex option for those who do want to call
out to TeX to generate their text (see Text rendering With LaTleX).

Any text element can use math text. You should use raw strings (preceed the quotes with an "r’), and sur-
round the math text with dollar signs ($), as in TeX. Regular text and mathtext can be interleaved within the
same string. Mathtext can use the Computer Modern fonts (from (La)TeX), STIX fonts (with are designed
to blend well with Times) or a Unicode font that you provide. The mathtext font can be selected with the
customization variable mathtext.fontset (see Customizing matplotlib)

Here is a simple example:

plain text
plt.title(’alpha > beta’)

produces “alpha > beta”.

Whereas this:

36 Chapter 7. Working with text

http://www.aip.org/stixfonts/

Matplotlib, Release 0.99.3

math text
plt.title(r’$\alpha > \beta$’)

produces “a > .

Note: Mathtext should be placed between a pair of dollar signs ($). To make it easy to display monetary
values, e.g. “$100.00”, if a single dollar sign is present in the entire string, it will be displayed verbatim as
a dollar sign. This is a small change from regular TeX, where the dollar sign in non-math text would have
to be escaped (‘$’).

Note: While the syntax inside the pair of dollar signs ($) aims to be TeX-like, the text outside does not. In
particular, characters such as:

#3$8%&~_~\N{3F\CVO\[\I

have special meaning outside of math mode in TeX. Therefore, these characters will behave differently
depending on the rcParam text.usetex flag. See the usetex tutorial for more information.

7.4.1 Subscripts and superscripts

To make subscripts and superscripts, use the _’ and ’A’ symbols:

r’$\alpha_i > \beta_i$’

a; > fi (7.1)

Some symbols automatically put their sub/superscripts under and over the operator. For example, to write
the sum of x; from O to co, you could do:

r’$\sum_{i=0}r\infty x_i$’

D ox (7.2)
i=0
7.4.2 Fractions
Fractions can be created with the \frac{}{} command:
r’$\frac{3}{4}$’
produces
3
- 7.3
) (7.3)

Fractions can be arbitrarily nested:

r’$\frac{5 - \frac{1}{x}3}{4}$’

7.4. Writing mathematical expressions 37

Matplotlib, Release 0.99.3

produces
1
S
4

Note that special care needs to be taken to place parentheses and brackets around fractions. Doing things
the obvious way produces brackets that are too small:

(7.4)

r’$(\frac{5 - \frac{1}{x}}{41)$’

1
*) (7.5)

The solution is to precede the bracket with \left and \right to inform the parser that those brackets
encompass the entire object:

r’$\left(\frac{5 - \frac{1}{x}}{4}\right)$’

5_1
2 .

7.4.3 Radicals

Radicals can be produced with the \sqrt[]{} command. For example:

r’$\sqrt{2}$’

V2 (7.7)

Any base can (optionally) be provided inside square brackets. Note that the base must be a simple expres-
sion, and can not contain layout commands such as fractions or sub/superscripts:

r’$\sqrt[3]{x}$’

Vx (7.8)

7.4.4 Fonts

The default font is italics for mathematical symbols.

Note: This default can be changed using the mathtext.default rcParam. This is useful, for example, to
use the same font as regular non-math text for math text, by setting it to regular.

To change fonts, eg, to write “sin” in a Roman font, enclose the text in a font command:

r’$s(t) = \mathcal{A}\mathrm{sin}(2 \omega t)$’

38 Chapter 7. Working with text

Matplotlib, Release 0.99.3

s(2) = AsinRwt) (7.9

More conveniently, many commonly used function names that are typeset in a Roman font have shortcuts.
So the expression above could be written as follows:

r’$s(t) = \mathcal{A}\sin(2 \omega t)$’

s(2) = AsinRwt) (7.10)

Here “s” and “t” are variable in italics font (default), “sin” is in Roman font, and the amplitude “A” is in
calligraphy font. Note in the example above the caligraphy A is squished into the sin. You can use a spacing
command to add a little whitespace between them:

s(t) = \mathcal{A}\/\sin(2 \omega t)

s(t) = Asin2wt) (7.11)
The choices available with all fonts are:
Command Result
\mathrm{Roman} Roman

\mathit{Italic} Italic
\mathtt{Typewriter} Typewriter
\mathcal {CALLIGRAPHY} | CALLIGRAPHY

When using the STIX fonts, you also have the choice of:

Command Result
\mathbb{blackboard} <O T~ON
\mathrm{\mathbb{blackboard}} | <O ~oO\
\mathfrak{Fraktur} Sraftur
\mathsf{sansserif} sansserif
\mathrm{\mathsf{sansserif}} sansserif

There are also three global “font sets” to choose from, which are selected using the mathtext.fontset
parameter in matplotlibre.

cm: Computer Modern (TeX)

’R H .sin(27 fx;)

f+1

stix: STIX (designed to blend well with Times)
oo
R 1 aisin(2afxi)
I=d;

stixsans: STIX sans-serif

7.4. Writing mathematical expressions 39

http://www.aip.org/stixfonts/

Matplotlib, Release 0.99.3

R] aisin(2nfx;)

1I=aj

Additionally, you can use \mathdefault{...} orits alias \mathregular{. ..} to use the font used for
regular text outside of mathtext. There are a number of limitations to this approach, most notably that far
fewer symbols will be available, but it can be useful to make math expressions blend well with other text in
the plot.

Custom fonts

mathtext also provides a way to use custom fonts for math. This method is fairly tricky to use, and should
be considered an experimental feature for patient users only. By setting the rcParam mathtext.fontset
to custom, you can then set the following parameters, which control which font file to use for a particular
set of math characters.

Parameter Corresponds to
mathtext.it \mathit{} or default italic
mathtext.rm \mathrm{} Roman (upright)
mathtext.tt \mathtt{} Typewriter (monospace)
mathtext.bf | \mathbf{} bold italic
mathtext.cal | \mathcal{} calligraphic
mathtext.sf \mathsf{} sans-serif

Each parameter should be set to a fontconfig font descriptor (as defined in the yet-to-be-written font chapter).

The fonts used should have a Unicode mapping in order to find any non-Latin characters, such as Greek.
If you want to use a math symbol that is not contained in your custom fonts, you can set the rcParam
mathtext.fallback_to_cm to True which will cause the mathtext system to use characters from the
default Computer Modern fonts whenever a particular character can not be found in the custom font.

Note that the math glyphs specified in Unicode have evolved over time, and many fonts may not have glyphs
in the correct place for mathtext.

7.4.5 Accents

An accent command may precede any symbol to add an accent above it. There are long and short forms for
some of them.

40 Chapter 7. Working with text

Matplotlib, Release 0.99.3

Command Result
\acute aor\’a
\bar a

\breve a
\ddot aor\"a
\dot aor\.a
\grave aor\‘a
\hat aor*a
\tilde aor\~a
\vec a

QN

Q- Q&

Q>

QW

In addition, there are two special accents that automatically adjust to the width of the symbols below:

Command Result
\widehat{xyz} Xyz
\widetilde{xyz} | xyz

Care should be taken when putting accents on lower-case i’s and j’s. Note that in the following \imath is
used to avoid the extra dot over the i:

r"$\hat i\ \ \hat \imath$"

[(7.12)

7.4.6 Symbols
You can also use a large number of the TeX symbols, as in \infty, \leftarrow, \sum, \int.
Lower-case Greek

a \alpha B \beta x \chi 0 \delta F \digamma

e\epsilon | n\eta v \gamma t\iota kx \kappa

A\lambda | y \mu v \nu w \omega ¢ \phi

7 \pi ¥ \psi p \rho o \sigma 7 \tau

6 \theta v\upsilon | ¢ \varepsilon | » \varkappa | ¢ \varphi

w \varpi o \varrho ¢ \varsigma ? \vartheta | £ \xi

{\zeta
Upper-case Greek

A\Delta | ' \Gamma | A \Lambda | Q \Omega ® \Phi | IT\Pi

¥ \Psi 2 \Sigma | ® \Theta T \Upsilon | E\Xi O \mho

V \nabla
Hebrew

| N\aleph | J\beth | T\daleth | J\gimel |

Delimiters
7.4. Writing mathematical expressions 41

Matplotlib, Release 0.99.3

// [[J \Downarrow | f} \Uparrow | ||\Vert \ \backslash
| \downarrow | (\langle | [\1ceil | \1floor L \llcorner | .o \lrcorner
Y \rangle T\rceil] \rfloor "\ulcorner | 7T \uparrow T\urcorner
| \vert {\{ I\ F\} 11 | |
Big symbols
N \bigcap U \bigcup | () \bigodot | €P \bigoplus | (X) \bigotimes
1 \biguplus | \/ \bigvee | A \bigwedge |][\coprod f \int
Sﬂ\oint IT \prod > \sum
Standard function names
Pr \Pr arccos \arccos | arcsin \arcsin | arctan \arctan
arg \arg cos \cos cosh \cosh cot \cot
coth \coth csc \csc deg \deg det \det
dim \dim exp \exp gcd \gcd hom \hom
inf \inf ker \ker Ig\1g lim \1im
liminf \1iminf | limsup \limsup | In \1n log \log
max \max min \min sec \sec sin \sin
sinh \sinh sup \sup tan \tan tanh \tanh
Binary operation and relation symbols
= \Bumpeq m \Cap U \Cup
= \Doteq > \Join € \Subset
5 \Supset I \Vdash I \Vvdash
~ \approx ~ \approxeq * \ast
=< \asymp 3 \backepsilon ~ \backsim
= \backsimeq A \barwedge ~*\because
0 \between O\bigcirc v \bigtriangledown
A\bigtriangleup | «\blacktriangleleft | » \blacktriangleright
1 \bot > \bowtie © \boxdot
B8 \boxminus B \boxplus X \boxtimes
e \bullet = \bumpeq N \cap
-\cdot o\circ = \circeq
:— \coloneq = \cong U \cup
Z \curlyegprec > \curlyegsucc Y \curlyvee
A \curlywedge T \dag 4 \dashv
1 \ddag o \diamond +\div
% \divideontimes | = \doteq = \doteqdot
+ \dotplus A \doublebarwedge = \eqcirc
—:\eqcolon ~ \eqgsim > \egslantgtr
Z \egslantless =\equiv = \fallingdotseq

42

Chapter 7. Working with text

Matplotlib, Release 0.99.3

~ \frown

> \gegslant

% \gnapprox

2 \gtrapprox
2 \gtreqqgless
€ \in

<\leq

< \lessapprox
= \lesseqqgtr
< \11

s \lneqq

| \mid

¥ \nVDash

\ncong

\neq

\ngtr

< \nless

A \nparallel
¢ \nsubset

2 \nsupset

> \geq

> \gg

= \gneqq

> \gtrdot

= \gtrless

7 \intercal
<\leqq
<\lessdot

s \lessgtr
<« \111

< \lnsim

E \models

¥ \nVdash

\ne

\nequiv
>\ni

£ \nmid

4 \nprec

¢ \nsubseteq
2 \nsupseteq

2 \geqq

>> \ggg

> \gnsim
Z\gtreqgless

> \gtrsim
XN\leftthreetimes
< \legslant

S \lesseqgtr

< \lesssim

< \1lnapprox

< \1ltimes

F \mp

\napprox

\neq

\ngeq

£ \nleq

¢ \notin

+ \nsim

\nsucc
4\ntriangleleft

4 \ntrianglelefteq

¢ \nvDash

o \ominus

® \otimes

M \pitchfork

< \precapprox
3 \precnapprox
oc \propto

< \rtimes

/ \slash

LI \sqcup

C \sgsubseteq
J\sqgsupseteq
C \subseteq

G \subsetneqq
> \succcurlyeq
> \succnsim

2 \supseteq

2 \supsetneqq
T \top

¥ \ntriangleright
¥ \nvdash

@ \oplus

|| \parallel

+ \pm

< \preccurlyeq

S \precnsim

A \rightthreetimes
~\sim

— \smile

C \sgsubset

a1 \sgsupset

* \star

C \subseteqq

> \succ

> \succeq

> \succsim

2 \supseteqq

.. \therefore
<\triangleleft

¥ \ntrianglerighteq
© \odot

@ \oslash

L \perp

< \prec

< \preceq

< \precsim
=\risingdotseq

~ \simeq

n\sqgcap

C \sqgsubset
a\sqgsupset

C \subset

C \subsetneq

% \succapprox

% \succnapprox

D \supset

2 \supsetneq

X \times
<\trianglelefteq

Z\triangleq
@ \uplus

V \vee
L\Wr

< \vartriangleleft

> \triangleright

£ \vDash

> \vartriangleright
V \veebar

> \trianglerighteq
o« \varpropto

F \vdash

A \wedge

Arrow symbols

7.4. Writing mathematical expressions

43

Matplotlib, Release 0.99.3

J \Downarrow

< \Leftrightarrow
<= \Longleftarrow
— \Longrightarrow
/" \Nearrow

= \Rightarrow

” \Rsh

¢ \Swarrow

{§ \Updownarrow

O \circlearrowright
~ \curvearrowright
-->» \dashrightarrow
1l \downdownarrows

| \downharpoonright
< \hookrightarrow
— \leftarrow

— \leftharpoondown
& \leftleftarrows
S \leftrightarrows

«v» \leftrightsquigarrow

< \Leftarrow
& \Lleftarrow

9 \Lsh

R \Nwarrow

= \Rrightarrow

N\ \Searrow

1 \Uparrow

O \circlearrowleft
A \curvearrowleft
<--\dashleftarrow

|l \downarrow

| \downharpoonleft
<« \hookleftarrow
~ \leadsto

<« \leftarrowtail
~— \leftharpoonup
o \leftrightarrow
= \leftrightharpoons
«~\leftsquigarrow

< \Longleftrightarrow

«—— \longleftarrow
+— \longmapsto

«¢ \looparrowleft
— \mapsto

& \nLeftarrow

= \nRightarrow

«+ \nleftarrow

-» \nrightarrow

— \rightarrow

— \rightharpoondown
2 \rightleftarrows

=3 \rightrightarrows
~» \rightsquigarrow
/ \swarrow

« \twoheadleftarrow
T \uparrow

T \updownarrow

I \upharpoonright

= \rightleftharpoons

«—— \longleftrightarrow
— \longrightarrow
> \looparrowright

—o \multimap

< \nLeftrightarrow
/" \nearrow

« \nleftrightarrow
N\ \nwarrow

> \rightarrowtail

— \rightharpoonup

2 \rightleftarrows
= \rightleftharpoons
=3 \rightrightarrows
N\, \searrow

— \to

-» \twoheadrightarrow
T \updownarrow

1 \upharpoonleft

1T \upuparrows

[L]

Miscellaneous symbols

44

Chapter 7. Working with text

Matplotlib, Release 0.99.3

$\$ A\AA 4\Finv

o \Game I\Im q\P

‘R \Re §\S /\angle

\ \backprime % \bigstar m \blacksquare
A \blacktriangle v \blacktriangledown | --- \cdots

v \checkmark ® \circledR ® \circledsS

& \clubsuit C \complement © \copyright
"-.\ddots ¢ \diamondsuit {\ell

0 \emptyset 0 \eth d\exists
b\flat V¥ \forall % \hbar

© \heartsuit # \hslash [Jf \iiint

[\iint [\iint 1 \imath

oo \infty J \jmath ...\1ldots

£ \measuredangle b \natural = \neg
A\nexists 9%6 \oiiint 0 \partial

7 \prime # \sharp & \spadesuit

< \sphericalangle | \ss v \triangledown
@ \varnothing A\vartriangle :\vdots

© \Wp ¥ \yen

If a particular symbol does not have a name (as is true of many of the more obscure symbols in the STIX
fonts), Unicode characters can also be used:

ur’ $\u23ce$’

7.4.7 Example

Here is an example illustrating many of these features in context.

7.4. Writing mathematical expressions 45

Matplotlib, Release 0.99.3

1.0 T

volts (mV)
o
o

—0.5F

-187% 05 2.0

1.0
time (s)

7.5 Text rendering With LaTeX

Matplotlib has the option to use LaTeX to manage all text layout. This option is available with the following
backends:

o Agg
e PS
e PDF

The LaTeX option is activated by setting text.usetex : True in your rc settings. Text handling with
matplotlib’s LaTeX support is slower than matplotlib’s very capable mathtext, but is more flexible, since
different LaTeX packages (font packages, math packages, etc.) can be used. The results can be striking,
especially when you take care to use the same fonts in your figures as in the main document.

Matplotlib’s LaTeX support requires a working LaTeX installation, dvipng (which may be included with
your LaTeX installation), and Ghostscript (GPL Ghostscript 8.60 or later is recommended). The executables
for these external dependencies must all be located on your PATH.

There are a couple of options to mention, which can be changed using rc settings. Here is an example
matplotlibre file:

46 Chapter 7. Working with text

http://www.tug.org
http://sourceforge.net/projects/dvipng
http://www.cs.wisc.edu/~ghost/

Matplotlib, Release 0.99.3

font. family : serif

font.serif : Times, Palatino, New Century Schoolbook, Bookman, Computer Modern Roman
font.sans-serif : Helvetica, Avant Garde, Computer Modern Sans serif

font.cursive : Zapf Chancery

font.monospace : Courier, Computer Modern Typewriter

text.usetex : true

The first valid font in each family is the one that will be loaded. If the fonts are not specified, the Computer
Modern fonts are used by default. All of the other fonts are Adobe fonts. Times and Palatino each have their
own accompanying math fonts, while the other Adobe serif fonts make use of the Computer Modern math
fonts. See the PSNFSS documentation for more details.

To use LaTeX and select Helvetica as the default font, without editing matplotlibrc use:

from matplotlib import rc

rc(’ font’,**{ family’:’sans-serif’,’sans-serif’:[’Helvetica’]})
for Palatino and other serif fonts use:
#rc(’font’,**{’family’:’serif’, ’serif’:[’Palatino’]))
rc(’text’, usetex=True)

Here is the standard example, fex_demo.py:

TEX is Number Z _2677/ !

n=1

3.0 T T T

voltage (mV)

—
ot

o ; ; ; ;
0.0 0.2 0.4 0.6 0.8 1.0
time (s)

Note that display math mode ($$ e=mcA2 9) is not supported, but adding the command \displaystyle,
as in tex_demo.py, will produce the same results.

Note: Certain characters require special escaping in TeX, such as:

7.5. Text rendering With LaTeX 47

http://www.ctan.org/tex-archive/macros/latex/required/psnfss/psnfss2e.pdf

Matplotlib, Release 0.99.3

#3$%&~_ A\ A{}FP\CV\[\]I

Therefore, these characters will behave differently depending on the rcParam text.usetex flag.

7.5.1 usetex with unicode

It is also possible to use unicode strings with the LaTeX text manager, here is an example taken from
tex_unicode_demo.py:

TeX is Number) _2%!

n=1

3.0 1 T T

Velocity (7sec)

—_
ot

OO

time (s)

7.5.2 Postscript options

In order to produce encapsulated postscript files that can be embedded in a new LaTeX document, the default
behavior of matplotlib is to distill the output, which removes some postscript operators used by LaTeX that
are illegal in an eps file. This step produces results which may be unacceptable to some users, because
the text is coarsely rasterized and converted to bitmaps, which are not scalable like standard postscript, and
the text is not searchable. One workaround is to to set ps.distiller.res to a higher value (perhaps
6000) in your rc settings, which will produce larger files but may look better and scale reasonably. A better
workaround, which requires Poppler or Xpdf, can be activated by changing the ps.usedistiller rc setting
to xpd£. This alternative produces postscript without rasterizing text, so it scales properly, can be edited in
Adobe Illustrator, and searched text in pdf documents.

48 Chapter 7. Working with text

http://poppler.freedesktop.org/
http://www.foolabs.com/xpdf

Matplotlib, Release 0.99.3

7.5.3 Possible hangups

e On Windows, the PATH environment variable may need to be modified to include the directories con-
taining the latex, dvipng and ghostscript executables. See environment-variables and setting-windows-
environment-variables for details.

e Using MiKTeX with Computer Modern fonts, if you get odd *Agg and PNG results, go to MiK-
TeX/Options and update your format files

o The fonts look terrible on screen. You are probably running Mac OS, and there is some funny business
with older versions of dvipng on the mac. Set text.dvipnghack : True in your matplotlibrc file.

e On Ubuntu and Gentoo, the base texlive install does not ship with the typelcm package. You may
need to install some of the extra packages to get all the goodies that come bundled with other latex
distributions.

e Some progress has been made so matplotlib uses the dvi files directly for text layout. This allows
latex to be used for text layout with the pdf and svg backends, as well as the *Agg and PS backends.
In the future, a latex installation may be the only external dependency.

7.5.4 Troubleshooting
o Try deleting your .matplotlib/tex.cache directory. If you don’t know where to find
.matplotlib, see .matplotlib directory location.
e Make sure LaTeX, dvipng and ghostscript are each working and on your PATH.

e Make sure what you are trying to do is possible in a LaTeX document, that your LaTeX syntax is valid
and that you are using raw strings if necessary to avoid unintended escape sequences.

e Most problems reported on the mailing list have been cleared up by upgrading Ghostscript. If possible,
please try upgrading to the latest release before reporting problems to the list.

o The text.latex.preamble rc setting is not officially supported. This option provides lots of flexi-
bility, and lots of ways to cause problems. Please disable this option before reporting problems to the
mailing list.

e If you still need help, please see Report a problem

7.6 Annotating text

For a more detailed introduction to annotations, see Annotating Axes.

The uses of the basic text () command above place text at an arbitrary position on the Axes. A common use
case of text is to annotate some feature of the plot, and the annotate () method provides helper functionality
to make annotations easy. In an annotation, there are two points to consider: the location being annotated
represented by the argument xy and the location of the text xytext. Both of these arguments are (x,y)
tuples.

7.6. Annotating text 49

http://www.cs.wisc.edu/~ghost/

Matplotlib, Release 0.99.3

2.0 I I I I

1.5 local max

\

-1.5

-2.0

In this example, both the xy (arrow tip) and xytext locations (text location) are in data coordinates. There
are a variety of other coordinate systems one can choose — you can specify the coordinate system of xy and
xytext with one of the following strings for xycoords and textcoords (default is ‘data’)

argument coordinate system

‘figure points’ points from the lower left corner of the figure
‘figure pixels’ pixels from the lower left corner of the figure
‘figure fraction’ | 0,0 is lower left of figure and 1,1 is upper, right
‘axes points’ points from lower left corner of axes

‘axes pixels’ pixels from lower left corner of axes

‘axes fraction’ 0,1 is lower left of axes and 1,1 is upper right
‘data’ use the axes data coordinate system

For example to place the text coordinates in fractional axes coordinates, one could do:

ax.annotate(’local max’, xy=(3, 1), =xycoords=’data’,
xytext=(0.8, 0.95), textcoords=’axes fraction’,
arrowprops=dict(facecolor="black’, shrink=0.05),
horizontalalignment="right’, verticalalignment="top’,

)

For physical coordinate systems (points or pixels) the origin is the (bottom, left) of the figure or axes. If
the value is negative, however, the origin is from the (right, top) of the figure or axes, analogous to negative
indexing of sequences.

Optionally, you can specify arrow properties which draws an arrow from the text to the annotated point by

50 Chapter 7. Working with text

Matplotlib, Release 0.99.3

giving a dictionary of arrow properties in the optional keyword argument arrowprops.

arrowprops key | description

width the width of the arrow in points

frac the fraction of the arrow length occupied by the head

headwidth the width of the base of the arrow head in points

shrink move the tip and base some percent away from the annotated point and text
*Fkwargs any key for matplotlib.patches.Polygon, e.g. facecolor

In the example below, the xy point is in native coordinates (xycoords defaults to ‘data’). For a polar
axes, this is in (theta, radius) space. The text in this example is placed in the fractional figure coordinate
system. matplotlib.text.Text keyword args like horizontalalignment, verticalalignment and
fontsize are passed from the ‘~matplotlib.Axes.annotate‘ to the ‘‘Text instance

90°

1807

a polar annotation 270°

For more on all the wild and wonderful things you can do with annotations, including fancy arrows, see
Annotating Axes and pylab_examples-annotation_demo.

7.6. Annotating text 51

Matplotlib, Release 0.99.3

52

Chapter 7. Working with text

CHAPTER
EIGHT

IMAGE TUTORIAL

8.1 Startup commands

At the very least, you’ll need to have access to the imshow() function. There are a couple of ways to do it.
The easy way for an interactive environment:

$ipython -pylab

The imshow function is now directly accessible (it’s in your namespace). See also Pyplot tutorial.

The more expressive, easier to understand later method (use this in your scripts to make it easier for others
(including your future self) to read) is to use the matplotlib API (see Artist tutorial) where you use explicit
namespaces and control object creation, etc...

In [1]: import matplotlib.pyplot as plt
In [2]: import matplotlib.image as mpimg
In [3]: import numpy as np

Examples below will use the latter method, for clarity. In these examples, if you use the -pylab method, you
can skip the “mpimg.” and “plt.” prefixes.

8.2 Importing image data into Numpy arrays

Plotting image data is supported by the Python Image Library (PIL), . Natively, matplotlib only supports
PNG images. The commands shown below fall back on PIL if the native read fails.

The image used in this example is a PNG file, but keep that PIL requirement in mind for your own data.

Here’s the image we’re going to play with:

53

http://bytebaker.com/2008/07/30/python-namespaces/
http://www.pythonware.com/products/pil/

Matplotlib, Release 0.99.3

It’s a 24-bit RGB PNG image (8 bits for each of R, G, B). Depending on where you get your data, the other
kinds of image that you’ll most likely encounter are RGBA images, which allow for transparency, or single-
channel grayscale (luminosity) images. You can right click on it and choose “Save image as” to download
it to your computer for the rest of this tutorial.

And here we go...

In [4]: img=mpimg.imread(’stinkbug.png’)

Out[4]:

array([[[0.40784314, .40784314, .40784314],
[0.40784314, .40784314, .40784314],
[0.40784314, 0.40784314, 0.40784314],

(=]
(=]

(=]
(=]

[=]

[0.42745098, 0.42745098, .42745098]7,
[0.42745098, 0.42745098, .42745098]7,
[0.42745098, 0.42745098, 0.42745098]1,

[=]

[[0.41176471, 0.41176471, .41176471]7,
[0.41176471, .41176471, .41176471]7,
[0.41176471, 0.41176471, 0.41176471],

(=]

(=]
(=]

0.42745098,

[0.42745098, 0.42745098],
[0.42745098, 0.42745098, 0.42745098],
[0.42745098, 0.42745098, 0.42745098]],

54 Chapter 8. Image tutorial

Matplotlib, Release 0.99.3

[[0.41960785, 0.41960785, 0.41960785],
[0.41568628, 0.41568628, 0.41568628],
[0.41568628, 0.41568628, 0.41568628],
[0.43137255, 0.43137255, 0.43137255],
[0.43137255, 0.43137255, 0.43137255],
[0.43137255, ©0.43137255, 0.43137255]1,

[[0.43921569, 0.43921569, 0.43921569],
[0.43529412, 0.43529412, 0.43529412],
[0.43137255, ©0.43137255, 0.43137255],
[0.45490196, 0.45490196, 0.45490196],
[0.4509804 , 0.4509804 , 0.4509804],
[0.4509804 , 0.4509804 , 0.4509804 11,

[[0.44313726, 0.44313726, 0.44313726],
[0.44313726, 0.44313726, 0.44313726],
[0.43921569, 0.43921569, 0.43921569],
[0.4509804 , 0.4509804 , 0.4509804],
[0.44705883, 0.44705883, 0.44705883],
[0.44705883, 0.44705883, 0.44705883]11,

[[0.44313726, 0.44313726, 0.44313726],
[0.4509804 , 0.4509804 , 0.4509804 1],
[0.4509804 , 0.4509804 , 0.4509804],
[0.44705883, 0.44705883, 0.44705883],
[0.44705883, 0.44705883, 0.44705883],
[0.44313726, 0.44313726, 0.44313726]1], dtype=float32)

Note the dtype there - float32. Matplotlib has rescaled the 8 bit data from each channel to floating point data
between 0.0 and 1.0. As a side note, the only datatype that PIL can work with is uint8. Matplotlib plotting
can handle float32 and uint8, but image reading/writing for any format other than PNG is limited to uint8
data. Why 8 bits? Most displays can only render 8 bits per channel worth of color gradation. Why can they
only render 8 bits/channel? Because that’s about all the human eye can see. More here (from a photography
standpoint): Luminous Landscape bit depth tutorial.

Each inner list represents a pixel. Here, with an RGB image, there are 3 values. Since it’s a black and white
image, R, G, and B are all similar. An RGBA (where A is alpha, or transparency), has 4 values per inner list,
and a simple luminance image just has one value (and is thus only a 2-D array, not a 3-D array). For RGB
and RGBA images, matplotlib supports float32 and uint8 data types. For grayscale, matplotlib supports only
float32. If your array data does not meet one of these descriptions, you need to rescale it.

8.3 Plotting numpy arrays as images

So, you have your data in a numpy array (either by importing it, or by generating it). Let’s render it. In
Matplotlib, this is performed using the imshow() function. Here we’ll grab the plot object. This object

8.3. Plotting numpy arrays as images 55

http://www.luminous-landscape.com/tutorials/bit-depth.shtml

Matplotlib, Release 0.99.3

gives you an easy way to manipulate the plot from the prompt.

In [5]: imgplot = plt.imshow(img)

50

100

150

200

250

300

350

0 100 200 300 400

You can also plot any numpy array - just remember that the datatype must be float32 (and range from 0.0 to
1.0) or uint8.

8.3.1 Applying pseudocolor schemes to image plots

Pseudocolor can be a useful tool for enhancing contrast and visualizing your data more easily. This is
especially useful when making presentations of your data using projectors - their contrast is typically quite
poor.

Pseudocolor is only relevant to single-channel, grayscale, luminosity images. We currently have an RGB
image. Since R, G, and B are all similar (see for yourself above or in your data), we can just pick on channel
of our data:

In [6]: lum_img = img[:,:,0]

This is array slicing. You can read more in the Numpy tutorial.

In [7]: imgplot = mpimg.imshow(lum_img)

56 Chapter 8. Image tutorial

http://www.scipy.org/Tentative_NumPy_Tutorial

Matplotlib, Release 0.99.3

50

100

150

200

250

300

350

0 100 200 300 400

Now, with a luminosity image, the default colormap (aka lookup table, LUT), is applied. The default is
called jet. There are plenty of others to choose from. Let’s set some others using the set_cmap () method
on our image plot object:

In [8]: imgplot.set_cmap(’hot’)

8.3. Plotting numpy arrays as images 57

Matplotlib, Release 0.99.3

50

100

150

200

250

300

350

0 100 200 300 400

In [9]: imgplot.set_cmap(’spectral’)

58 Chapter 8. Image tutorial

Matplotlib, Release 0.99.3

50 1

100

150

200

0 100 200 300 400

There are many other colormap schemes available. See the list and images of the colormaps.

8.3.2 Color scale reference

It’s helpful to have an idea of what value a color represents. We can do that by adding color bars. It’s as
easy as one line:

In [10]: plt.colorbar()

8.3. Plotting numpy arrays as images 59

http://matplotlib.sourceforge.net/examples/pylab_examples/show_colormaps.html

Matplotlib, Release 0.99.3

50
100
150
200
250
300f
350

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

This adds a colorbar to your existing figure. This won’t automatically change if you change you switch to a
different colormap - you have to re-create your plot, and add in the colorbar again.

8.3.3 Examining a specific data range

Sometimes you want to enhance the contrast in your image, or expand the contrast in a particular region
while sacrificing the detail in colors that don’t vary much, or don’t matter. A good tool to find interesting
regions is the histogram. To create a histogram of our image data, we use the hist () function.

In[10]: plt.hist(lum_img.flatten(), 256, range=(0.0,1.0), fc="k’, ec="k’)

60

Chapter 8. Image tutorial

Matplotlib, Release 0.99.3

10000 T T T

8000

6000

4000

2000

%i) 0.2 0.4 0.6 0.8 1.0

Most often, the “interesting” part of the image is around the peak, and you can get extra contrast by clipping
the regions above and/or below the peak. In our histogram, it looks like there’s not much useful information
in the high end (not many white things in the image). Let’s adjust the upper limit, so that we effectively
“zoom in on” part of the histogram. We do this by calling the set_clim() method of the image plot object.

In[11]: imgplot.set_clim=(0.0,0.7)

8.3. Plotting numpy arrays as images 61

Matplotlib, Release 0.99.3

50
100
150
200
250
3001 A e 1
350 ! ! -I ! L

0 100 200 300 40 0 100 200 300 400

[
0.1 0.3 05 0.7 0.1 03 05 0.7

8.3.4 Array Interpolation schemes

Interpolation calculates what the color or value of a pixel “should” be, according to different mathematical
schemes. One common place that this happens is when you resize an image. The number of pixels change,
but you want the same information. Since pixels are discrete, there’s missing space. Interpolation is how
you fill that space. This is why your images sometimes come out looking pixelated when you blow them
up. The effect is more pronounced when the difference between the original image and the expanded image
is greater. Let’s take our image and shrink it. We’re effectively discarding pixels, only keeping a select few.
Now when we plot it, that data gets blown up to the size on your screen. The old pixels aren’t there anymore,
and the computer has to draw in pixels to fill that space.

In [8]: import Image

In [9]: img = Image.open(’stinkbug.png’) # Open image as PIL image object

In [10]: rsize = img.resize((img.size[0]/10,img.size[1]/10)) # Use PIL to resize
In [11]: rsizeArr = np.asarray(rsize) # Get array back

In [12]: imgplot = mpimg.imshow(rsizeArr)

62 Chapter 8. Image tutorial

Matplotlib, Release 0.99.3

Here we have the default interpolation, bilinear, since we did not give imshow () any interpolation argument.
Let’s try some others:

In [10]: imgplot.set_interpolation(’nearest’)

8.3. Plotting numpy arrays as images 63

Matplotlib, Release 0.99.3

In [10]: imgplot.set_interpolation(’bicubic’)

64 Chapter 8. Image tutorial

Matplotlib, Release 0.99.3

Bicubic interpolation is often used when blowing up photos - people tend to prefer blurry over pixelated.

8.3. Plotting numpy arrays as images 65

Matplotlib, Release 0.99.3

66

Chapter 8. Image tutorial

CHAPTER
NINE

ARTIST TUTORIAL

There are three layers to the matplotlib API. The matplotlib.backend_bases.FigureCanvas is the area
onto which the figure is drawn, the matplotlib.backend_bases.Renderer is the object which knows
how to draw on the FigureCanvas, and the matplotlib.artist.Artist is the object that knows how to
use a renderer to paint onto the canvas. The FigureCanvas and Renderer handle all the details of talking
to user interface toolkits like wxPython or drawing languages like PostScript®), and the Artist handles all
the high level constructs like representing and laying out the figure, text, and lines. The typical user will
spend 95% of his time working with the Artists.

There are two types of Artists: primitives and containers. The primitives represent the standard graph-
ical objects we want to paint onto our canvas: Line2D, Rectangle, Text, AxesImage, etc., and the
containers are places to put them (Axis, Axes and Figure). The standard use is to create a Figure
instance, use the Figure to create one or more Axes or Subplot instances, and use the Axes instance
helper methods to create the primitives. In the example below, we create a Figure instance using
matplotlib.pyplot.figure(), which is a convenience method for instantiating Figure instances and
connecting them with your user interface or drawing toolkit FigureCanvas. As we will discuss below,
this is not necessary — you can work directly with PostScript, PDF Gtk+, or wxPython FigureCanvas in-
stances, instantiate your Figures directly and connect them yourselves — but since we are focusing here on
the Artist API we’ll let pyplot handle some of those details for us:

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(2,1,1) # two rows, one column, first plot

The Axes is probably the most important class in the matplotlib API, and the one you will be working with
most of the time. This is because the Axes is the plotting area into which most of the objects go, and the
Axes has many special helper methods (plot (), text(), hist (), imshow()) to create the most common
graphics primitives (Line2D, Text, Rectangle, Image, respectively). These helper methods will take your
data (eg. numpy arrays and strings) and create primitive Artist instances as needed (eg. Line2D), add
them to the relevant containers, and draw them when requested. Most of you are probably familiar with the
Subplot, which is just a special case of an Axes that lives on a regular rows by columns grid of Subplot
instances. If you want to create an Axes at an arbitrary location, simply use the add_axes () method which
takes a list of [1eft, bottom, width, height] values in 0-1 relative figure coordinates:

fig2 = plt.figure()
ax2 = fig2.add_axes([0.15, 0.1, 0.7, 0.3])

Continuing with our example:

67

http://www.wxpython.org

Matplotlib, Release 0.99.3

import numpy as np

t = np.arange(0.0, 1.0, 0.01)

s = np.sin(2*np.pi*t)

line, = ax.plot(t, s, color="blue’, lw=2)

In this example, ax is the Axes instance created by the fig.add_subplot call above (remember Subplot
is just a subclass of Axes) and when you call ax.plot, it creates a Line2D instance and adds it to the
Axes.lines list. In the interactive ipython session below, you can see that the Axes.lines list is length
one and contains the same line that was returned by the line, = ax.plot... call:

In [101]: ax.lines[0]
Out[101]: <matplotlib.lines.Line2D instance at 0x19a95710>

In [102]: line
Out[102]: <matplotlib.lines.Line2D instance at 0x19a95710>

If you make subsequent calls to ax.plot (and the hold state is “on” which is the default) then additional
lines will be added to the list. You can remove lines later simply by calling the list methods; either of these
will work:

del ax.lines[0]
ax.lines.remove(line) # one or the other, not both!

The Axes also has helper methods to configure and decorate the x-axis and y-axis tick, tick labels and axis
labels:

xtext = ax.set_xlabel('my xdata’) # returns a Text instance
ytext = ax.set_ylabel('my xdata’)

When you call ax.set_xlabel, it passes the information on the Text instance of the XAxis. Each Axes
instance contains an XAxis and a YAxis instance, which handle the layout and drawing of the ticks, tick
labels and axis labels.

Try creating the figure below.

68 Chapter 9. Artist tutorial

http://ipython.scipy.org/

Matplotlib, Release 0.99.3

1.0

0.0

volts

-0.5

-18% 0.2 0.4 0.6 0.8 1.0
60 I I I I I I I
50
40
30
20
10

-4 -3 -2 -1 O 1 2 3 4

9.1 Customizing your objects

Every element in the figure is represented by a matplotlib Artist, and each has an extensive list of properties
to configure its appearance. The figure itself contains a Rectangle exactly the size of the figure, which you
can use to set the background color and transparency of the figures. Likewise, each Axes bounding box
(the standard white box with black edges in the typical matplotlib plot, has a Rectangle instance that
determines the color, transparency, and other properties of the Axes. These instances are stored as member
variables Figure.patch and Axes.patch (“Patch” is a name inherited from MATLAB™, and is a 2D
“patch” of color on the figure, eg. rectangles, circles and polygons). Every matplotlib Artist has the
following properties

9.1. Customizing your objects 69

Matplotlib, Release 0.99.3

Property | Description

alpha The transparency - a scalar from 0-1
animated | A boolean that is used to facilitate animated drawing
axes The axes that the Artist lives in, possibly None

clip_box The bounding box that clips the Artist
clip_on Whether clipping is enabled
clip_path | The path the artist is clipped to

contains A picking function to test whether the artist contains the pick point
figure The figure instance the artist lives in, possibly None

label A text label (eg. for auto-labeling)

picker A python object that controls object picking

transform | The transformation

visible A boolean whether the artist should be drawn

zorder A number which determines the drawing order

Each of the properties is accessed with an old-fashioned setter or getter (yes we know this irritates Python-
istas and we plan to support direct access via properties or traits but it hasn’t been done yet). For example,
to multiply the current alpha by a half:

a = o.get_alpha(Q)
o.set_alpha(0.5%a)

If you want to set a number of properties at once, you can also use the set method with keyword arguments.
For example:

o.set(alpha=0.5, zorder=2)

If you are working interactively at the python shell, a handy way to inspect the Artist properties is to use
the matplotlib.artist.getp() function (simply getp() in pylab), which lists the properties and their
values. This works for classes derived from Artist as well, eg. Figure and Rectangle. Here are the
Figure rectangle properties mentioned above:

In [149]: matplotlib.artist.getp(fig.patch)
alpha = 1.0
animated = False
antialiased or aa = True
axes = None
clip_box = None
clip_on = False
clip_path = None
contains = None
edgecolor or ec = w
facecolor or fc = 0.75
figure = Figure(8.125x6.125)

fill = 1
hatch = None
height =1
label =

linewidth or 1w = 1.0

picker = None

transform = <Affine object at 0x134cca84>
verts = ((0, 0, (0, 1), (1, 1, (1, 0))

70 Chapter 9. Artist tutorial

Matplotlib, Release 0.99.3

visible = True

width = 1

window_extent = <Bbox object at 0x134acbcc>
x=0

y=20

zorder = 1

The docstrings for all of the classes also contain the Artist properties, so you can consult the interactive
“help” or the matplotlib artists for a listing of properties for a given object.

9.2 Object containers

Now that we know how to inspect and set the properties of a given object we want to configure, we need to
now how to get at that object. As mentioned in the introduction, there are two kinds of objects: primitives
and containers. The primitives are usually the things you want to configure (the font of a Text instance,
the width of a Line2D) although the containers also have some properties as well — for example the Axes
Artist is a container that contains many of the primitives in your plot, but it also has properties like the
xscale to control whether the xaxis is ‘linear’ or ‘log’. In this section we’ll review where the various
container objects store the Artists that you want to get at.

9.3 Figure container

The top level container Artist is the matplotlib.figure.Figure, and it contains everything in the
figure. The background of the figure is a Rectangle which is stored in Figure.patch. As you add subplots
(add_subplot()) and axes (add_axes ()) to the figure these will be appended to the Figure.axes. These
are also returned by the methods that create them:

In [156]: fig = plt.figure(Q)

In [157]: axl = fig.add_subplot(211)

In [158]: ax2

fig.add_axes([0.1, 0.1, 0.7, 0.3])

In [159]: axl
Out[159]: <matplotlib.axes.Subplot instance at 0xd54b26c>

In [160]: print fig.axes
[<matplotlib.axes.Subplot instance at 0xd54b26c>, <matplotlib.axes.Axes instance at 0xd3f0b2c>]

Because the figure maintains the concept of the “current axes” (see Figure.gca and Figure.sca) to
support the pylab/pyplot state machine, you should not insert or remove axes directly from the axes list, but
rather use the add_subplot () and add_axes() methods to insert, and the delaxes () method to delete.
You are free however, to iterate over the list of axes or index into it to get access to Axes instances you want
to customize. Here is an example which turns all the axes grids on:

for ax in fig.axes:
ax.grid(True)

9.2. Object containers 71

Matplotlib, Release 0.99.3

The figure also has its own text, lines, patches and images, which you can use to add primitives directly. The
default coordinate system for the Figure will simply be in pixels (which is not usually what you want) but
you can control this by setting the transform property of the Artist you are adding to the figure.

More useful is “figure coordinates” where (0, 0) is the bottom-left of the figure and (1, 1) is the top-right of
the figure which you can obtain by setting the Artist transform to fig.transFigure:

In [191]: fig = plt.figure()

In [192]: 11 = matplotlib.lines.Line2D([0, 1], [®, 1],
transform=fig.transFigure, figure=£fig)

In [193]: 12 = matplotlib.lines.Line2D([®, 1], [1, 0],
transform=fig.transFigure, figure=fig)

In [194]: fig.lines.extend([11, 12])

In [195]: fig.canvas.draw()

Here is a summary of the Artists the figure contains

72 Chapter 9. Artist tutorial

Matplotlib, Release 0.99.3

Figure attribute | Description

axes A list of Axes instances (includes Subplot)

patch The Rectangle background

images A list of FigureImages patches - useful for raw pixel display
legends A list of Figure Legend instances (different from Axes.legends)
lines A list of Figure Line2D instances (rarely used, see Axes.lines)
patches A list of Figure patches (rarely used, see Axes.patches)

texts A list Figure Text instances

9.4 Axes container

The matplotlib.axes.Axes is the center of the matplotlib universe — it contains the vast majority of all
the Artists used in a figure with many helper methods to create and add these Artists to itself, as well
as helper methods to access and customize the Artists it contains. Like the Figure, it contains a Patch
patch which is a Rectangle for Cartesian coordinates and a Circle for polar coordinates; this patch
determines the shape, background and border of the plotting region:

ax = fig.add_subplot(111)
rect = ax.patch # a Rectangle instance
rect.set_facecolor(’green’)

When you call a plotting method, eg. the canonical plot () and pass in arrays or lists of values, the method
will create amatplotlib.lines.Line2D() instance, update the line with all the Line2D properties passed
as keyword arguments, add the line to the Axes.lines container, and returns it to you:

In [213]: x, y = np.random.rand(2, 100)
In [214]: line, = ax.plot(x, y, '-’, color="blue’, linewidth=2)

plot returns a list of lines because you can pass in multiple x, y pairs to plot, and we are unpacking the first
element of the length one list into the line variable. The line has been added to the Axes.lines list:

In [229]: print ax.lines
[<matplotlib.lines.Line2D instance at 0xd378b0c>]

Similarly, methods that create patches, like bar() creates a list of rectangles, will add the patches to the
Axes.patches list:

In [233]: n, bins, rectangles = ax.hist(np.random.randn(1000), 50, facecolor=’yellow’)

In [234]: rectangles
Out[234]: <a list of 50 Patch objects>

In [235]: print len(ax.patches)

You should not add objects directly to the Axes.lines or Axes.patches lists unless you know exactly
what you are doing, because the Axes needs to do a few things when it creates and adds an object. It sets the
figure and axes property of the Artist, as well as the default Axes transformation (unless a transformation is
set). It also inspects the data contained in the Artist to update the data structures controlling auto-scaling,
so that the view limits can be adjusted to contain the plotted data. You can, nonetheless, create objects

9.4. Axes container 73

Matplotlib, Release 0.99.3

yourself and add them directly to the Axes using helper methods like add_line() and add_patch().
Here is an annotated interactive session illustrating what is going on:

In [261]: fig = plt.figure(Q)
In [262]: ax = fig.add_subplot(111)

create a rectangle instance
In [263]: rect = matplotlib.patches.Rectangle((1,1), width=5, height=12)

by default the axes instance is None
In [264]: print rect.get_axes()
None

and the transformation instance is set to the "identity transform"
In [265]: print rect.get_transform()
<Affine object at 0x13695544>

now we add the Rectangle to the Axes
In [266]: ax.add_patch(rect)

and notice that the ax.add_patch method has set the axes
instance

In [267]: print rect.get_axes()

Axes(0.125,0.1;0.775x0.8)

and the transformation has been set too
In [268]: print rect.get_transform()
<Affine object at 0x15009ca4>

the default axes transformation is ax.transData
In [269]: print ax.transData
<Affine object at 0x15009ca4>

notice that the xlimits of the Axes have not been changed
In [270]: print ax.get_x1im()
(0.0, 1.0)

but the data limits have been updated to encompass the rectangle
In [271]: print ax.datalLim.bounds
(1.0, 1.0, 5.0, 12.0)

we can manually invoke the auto-scaling machinery
In [272]: ax.autoscale_view()

and now the xlim are updated to encompass the rectangle
In [273]: print ax.get_x1lim()
(1.0, 6.0)

we have to manually force a figure draw
In [274]: ax.figure.canvas.draw()

There are many, many Axes helper methods for creating primitive Artists and adding them to their respec-
tive containers. The table below summarizes a small sampling of them, the kinds of Artist they create,

74 Chapter 9. Artist tutorial

Matplotlib, Release 0.99.3

and where they store them

Helper method Artist Container
ax.annotate - text annotations | Annotate ax.texts
ax.bar - bar charts Rectangle ax.patches
ax.errorbar - error bar plots Line2D and Rectangle | ax.lines and ax.patches
ax.fill - shared area Polygon ax.patches
ax.hist - histograms Rectangle ax.patches
ax.imshow - image data AxesImage ax.images
ax.legend - axes legends Legend ax.legends
ax.plot - xy plots Line2D ax.lines
ax.scatter - scatter charts PolygonCollection ax.collections
ax.text - text Text ax.texts

In addition to all of these Artists, the Axes contains two important Artist containers: the XAxis and
YAxis, which handle the drawing of the ticks and labels. These are stored as instance variables xaxis and
yaxis. The XAxis and YAxis containers will be detailed below, but note that the Axes contains many
helper methods which forward calls on to the Axis instances so you often do not need to work with them
directly unless you want to. For example, you can set the font size of the XAxis ticklabels using the Axes
helper method:

for label in ax.get_xticklabels():
label.set_color(’orange’)

Below is a summary of the Artists that the Axes contains

Axes attribute | Description

artists A list of Artist instances

patch Rectangle instance for Axes background
collections A list of Collection instances
images A list of AxesImage

legends A list of Legend instances
lines A list of Line2D instances
patches A list of Patch instances

texts A list of Text instances

Xaxis matplotlib.axis. X Axis instance
yaxis matplotlib.axis. YAxis instance

9.5 Axis containers

The matplotlib.axis.Axis instances handle the drawing of the tick lines, the grid lines, the tick labels
and the axis label. You can configure the left and right ticks separately for the y-axis, and the upper and
lower ticks separately for the x-axis. The Axis also stores the data and view intervals used in auto-scaling,
panning and zooming, as well as the Locator and Formatter instances which control where the ticks are
placed and how they are represented as strings.

Each Axis object contains a label attribute (this is what pylab modifies in calls to xlabel() and
ylabel()) as well as a list of major and minor ticks. The ticks are XTick and YTick instances, which

9.5. Axis containers 75

Matplotlib, Release 0.99.3

contain the actual line and text primitives that render the ticks and ticklabels. Because the ticks are dynam-
ically created as needed (eg. when panning and zooming), you should access the lists of major and minor
ticks through their accessor methods get_major_ticks() and get_minor_ticks(). Although the ticks
contain all the primitives and will be covered below, the Axis methods contain accessor methods to return
the tick lines, tick labels, tick locations etc.:

In [285]: axis = ax.xaxis

In [286]: axis.get_ticklocs(Q)
Out[286]: array([®., 1., 2., 3., 4., 5., 6., 7., 8., 9.1

In [287]: axis.get_ticklabels()
Out[287]: <a list of 10 Text major ticklabel objects>

note there are twice as many ticklines as labels because by

default there are tick lines at the top and bottom but only tick
labels below the xaxis; this can be customized

In [288]: axis.get_ticklines()

Out[288]: <a list of 20 Line2D ticklines objects>

by default you get the major ticks back
In [291]: axis.get_ticklines()
Out[291]: <a list of 20 Line2D ticklines objects>

but you can also ask for the minor ticks
In [292]: axis.get_ticklines(minor=True)
Out[292]: <a list of O Line2D ticklines objects>

Here is a summary of some of the useful accessor methods of the Axis (these have corresponding setters
where useful, such as set_major_formatter)

Accessor method Description

get_scale The scale of the axis, eg ‘log’ or ‘linear’
get_view_interval The interval instance of the axis view limits
get_data_interval The interval instance of the axis data limits
get_gridlines A list of grid lines for the Axis

get_label The axis label - a Text instance

get_ticklabels A list of Text instances - keyword minor=True|False
get_ticklines A list of Line2D instances - keyword minor=True|False
get_ticklocs A list of Tick locations - keyword minor=True|False
get_major_locator The matplotlib.ticker.Locator instance for major ticks
get_major_formatter | The matplotlib.ticker.Formatter instance for major ticks
get_minor_locator The matplotlib.ticker.Locator instance for minor ticks
get_minor_formatter | The matplotlib.ticker.Formatter instance for minor ticks
get_major_ticks A list of Tick instances for major ticks

get_minor_ticks A list of Tick instances for minor ticks

grid Turn the grid on or off for the major or minor ticks

Here is an example, not recommended for its beauty, which customizes the axes and tick properties

76 Chapter 9. Artist tutorial

Matplotlib, Release 0.99.3

0.0
Q- QO QO QO QO

Q 1 % o & O

9.6 Tick containers

The matplotlib.axis.Tick is the final container object in our descent from the Figure to the Axes to
the Axis to the Tick. The Tick contains the tick and grid line instances, as well as the label instances for
the upper and lower ticks. Each of these is accessible directly as an attribute of the Tick. In addition, there
are boolean variables that determine whether the upper labels and ticks are on for the x-axis and whether the

right labels and ticks are on for the y-axis.

Tick attribute | Description

ticklline Line2D instance

tick2line Line2D instance

gridline Line2D instance

labell Text instance

label2 Text instance

gridOn boolean which determines whether to draw the tickline
tick10n boolean which determines whether to draw the 1st tickline
tick20n boolean which determines whether to draw the 2nd tickline
label1On boolean which determines whether to draw tick label
label2On boolean which determines whether to draw tick label

Here is an example which sets the formatter for the right side ticks with dollar signs and colors them green
on the right side of the yaxis

9.6. Tick containers

77

Matplotlib, Release 0.99.3

$100.!

$80.0

$60.0

$40.0

$20.0

0.00
20

78

Chapter 9. Artist tutorial

CHAPTER
TEN

LEGEND GUIDE

Do not proceed unless you already have read legend() and matplotlib.legend.Legend!

10.1 What to be displayed

The legend command has a following call signature:

legend(*args, **kwargs)

If len(args) is 2, the first argument should be a list of artist to be labeled, and the second argument should a
list of string labels. If len(args) is O, it automatically generate the legend from label properties of the child
artists by calling get_legend_handles_labels () method. For example, ax./legend() is equivalent to:

handles, labels = ax.get_legend_handles_labels()
ax.legend(handles, labels)

The get_legend_handles_labels() method returns a tuple of two lists, i.e., list of artists and list
of labels (python string). However, it does not return all of its child artists. It returns all artists in
ax.lines and ax.patches and some artists in ax.collection which are instance of LineCollection or
RegularPolyCollection. The label attributes (returned by get_label() method) of collected artists are
used as text labels. If label attribute is empty string or starts with “_”, that artist will be ignored.

e Note that not all kind of artists are supported by the legend. The following is the list of artists that are
currently supported.

Line2D

Patch

LineCollection

RegularPolyCollection

Unfortunately, there is no easy workaround when you need legend for an artist not in the above list
(You may use one of the supported artist as a proxy. See below), or customize it beyond what is
supported by matplotlib.legend.Legend.

79

Matplotlib, Release 0.99.3

e Remember that some pyplot commands return artist not supported by legend, e.g., fill_between()
returns PolyCollection that is not supported. Or some return multiple artists. For example, plot ()
returns list of Line2D instances, and errorbar () returns a length 3 tuple of Line2D instances.

o The legend does not care about the axes that given artists belongs, i.e., the artists may belong to other
axes Or even none.

10.1.1 Adjusting the Order of Legend items

When you want to customize the list of artists to be displayed in the legend, or their order of appearance.
There are a two options. First, you can keep lists of artists and labels, and explicitly use these for the first
two argument of the legend call.:

pl, = plot([1,2,3])
p2, plot([3,2,1])
p3, = plot([2,3,1])
legend([p2, pl], ["line 2", "line 1"])

Or you may use get_legend_handles_labels() to retrieve list of artist and labels and manipulate them
before feeding them to legend call.:

ax = subplot(l,1,1)

pl, ax.plot([1,2,3], label="1line 1")
p2, = ax.plot([3,2,1], label="line 2")
p3, ax.plot([2,3,1], label="1ine 3")

handles, labels = ax.get_legend_handles_labels()

reverse the order
ax.legend(Chandles[::-1], labels[::-1])

or sort them by labels

import operator

hl = sorted(zip(handles, labels),
key=operator.itemgetter(1))

handles2, labels2 = zip(*hl)

ax.legend(handles2, labels2)

10.1.2 Using Proxy Artist

When you want to display legend for an artist not supported by the matplotlib, you may use other supported
artist as a proxy. For example, you may creates an proxy artist without adding it to the axes (so the proxy
artist will not be drawn in the main axes) and feet it to the legend function.:

p = Rectangle((0, ®, 1, 1, fc="r")
legend([p], ["Red Rectangle"])

80 Chapter 10. Legend guide

Matplotlib, Release 0.99.3

10.2 Multicolumn Legend

By specifying the keyword argument ncol, you can have a multi-column legend. Also, mode="expand”
horizontally expand the legend to fill the axes area. See legend_demo3.py for example.

10.3 Legend location

The location of the legend can be specified by the keyword argument loc, either by string or a integer number.

String Number
upper right 1
upper left 2
lower left 3
lower right | 4
right 5
center left 6
center right | 7
lower center | 8
upper center | 9
center 10

By default, the legend will anchor to the bbox of the axes (for legend) or the bbox of the figure (figle-
gend). You can specify your own bbox using bbox_to_anchor argument. bbox_to_anchor can be an in-
stance of BboxBase, a tuple of 4 floats (x, y, width, height of the bbox), or a tuple of 2 floats (x, y with
width=height=0). Unless bbox_transform argument is given, the coordinates (even for the bbox instance)
are considered as normalized axes coordinates.

For example, if you want your axes legend located at the figure corner (instead of the axes corner):

1 = legend(bbox_to_anchor=(0, 0, 1, 1), transform=gcf().transFigure)

Also, you can place above or outer right-hand side of the axes,

10.2. Multicolumn Legend 81

http://matplotlib.sourceforge.net/examples/pylab_examples/legend_demo3.html

Matplotlib, Release 0.99.3

3.0

2.5

2.0

1.5

g

3.0
2.5
2.0

1.5

1.8

10.4 Multiple Legend

Sometime, you want to split the legend into multiple ones.:

pl, = plot([1,2,3])

p2,

plot([3,2,11)

legend([pl], ["Testl"], loc=1)
legend([p2], ["Test2"], loc=4)

However, the above code only shows the second legend. When the legend command is called, a new legend
instance is created and old ones are removed from the axes. Thus, you need to manually add the removed

legend.

— testl — test2
0 0'.5 1'.0 1'.5 2.0
| | | — testl
- 1| — test2
.0 0'.5 1'.0 1'.5 2.0

82

Chapter 10. Legend guide

Matplotlib, Release 0.99.3

3.0 : : .
— Label 1
2.5t .
2.0} .
1.5} .
— Label 2
1'8.0 0.5 1.0 1.5 2.0

10.4. Multiple Legend 83

Matplotlib, Release 0.99.3

84

Chapter 10. Legend guide

CHAPTER
ELEVEN

EVENT HANDLING AND PICKING

matplotlib works with 6 user interface toolkits (wxpython, tkinter, qt, gtk, fitk and macosx) and in order
to support features like interactive panning and zooming of figures, it is helpful to the developers to have
an API for interacting with the figure via key presses and mouse movements that is “GUI neutral” so we
don’t have to repeat a lot of code across the different user interfaces. Although the event handling API
is GUI neutral, it is based on the GTK model, which was the first user interface matplotlib supported.
The events that are triggered are also a bit richer vis-a-vis matplotlib than standard GUI events, including
information like which matplotlib.axes.Axes the event occurred in. The events also understand the
matplotlib coordinate system, and report event locations in both pixel and data coordinates.

11.1 Event connections

To receive events, you need to write a callback function and then connect your function to the event manager,
which is part of the FigureCanvasBase. Here is a simple example that prints the location of the mouse
click and which button was pressed:

fig = plt.figure(Q)
ax = fig.add_subplot(111)
ax.plot(np.random.rand(10))

def onclick(event):
print ’button=%d, x=%d, y=%d, xdata=%f, ydata=%f’%(
event.button, event.x, event.y, event.xdata, event.ydata)

cid = fig.canvas.mpl_connect(’button_press_event’, onclick)

The FigureCanvas method mpl_connect () returns a connection id which is simply an integer. When you
want to disconnect the callback, just call:

fig.canvas.mpl_disconnect(cid)

Here are the events that you can connect to, the class instances that are sent back to you when the event
occurs, and the event descriptions

85

Matplotlib, Release 0.99.3

Event name Class and description

‘button_press_event’ MouseEvent - mouse button is pressed
‘button_release_event’ | MouseEvent - mouse button is released
‘draw_event’ DrawEvent - canvas draw

‘key_press_event’ KeyEvent - key is pressed
‘key_release_event’ KeyEvent - key is released
‘motion_notify_event’ | MouseEvent - mouse motion

‘pick_event’ PickEvent - an object in the canvas is selected
‘resize_event’ ResizeEvent - figure canvas is resized
‘scroll_event’ MouseEvent - mouse scroll wheel is rolled
‘figure_enter_event’ LocationEvent - mouse enters a new figure
‘figure_leave_event’ LocationEvent - mouse leaves a figure
‘axes_enter_event’ LocationEvent - mouse enters a new axes
‘axes_leave_event’ LocationEvent - mouse leaves an axes

11.2 Event attributes

All matplotlib events inherit from the base class matplotlib.backend_bases.Event, which store the
attributes:

name the event name
canvas the FigureCanvas instance generating the event
guiEvent the GUI event that triggered the matplotlib event

The most common events that are the bread and butter of event handling are key press/release events and
mouse press/release and movement events. The KeyEvent and MouseEvent classes that handle these events
are both derived from the LocationEvent, which has the following attributes

X X position - pixels from left of canvas

y y position - pixels from bottom of canvas
inaxes the Axes instance if mouse is over axes
xdata x coord of mouse in data coords

ydata y coord of mouse in data coords

Let’s look a simple example of a canvas, where a simple line segment is created every time a mouse is
pressed:

class LineBuilder:
def __init__(self, line):
self.line = line
self.xs = list(line.get_xdata())
self.ys = list(line.get_ydata())
self.cid = line.figure.canvas.mpl_connect(’button_press_event’, self)

def __call__(self, event):
print ’click’, event
if event.inaxes!=self.line.axes: return

86 Chapter 11. Event handling and picking

Matplotlib, Release 0.99.3

self.xs.append(event.xdata)
self.ys.append(event.ydata)
self.line.set_data(self.xs, self.ys)
self.line. figure.canvas.draw()

fig = plt.figure()

ax = fig.add_subplot(111)
ax.set_title(’click to build line segments’)
line, = ax.plot([0], [0]) # empty line
linebuilder = LineBuilder(line)

The MouseEvent that we just used is a LocationEvent, so we have access to the data and pixel coordinates
in event.x and event.xdata. In addition to the LocationEvent attributes, it has

button button pressed None, 1, 2, 3, ‘up’, ‘down’ (up and down are used for scroll events)

key the key pressed: None, any character, ‘shift’, ‘win’, or ‘control’

11.2.1 Draggable rectangle exercise

Write draggable rectangle class that is initialized with a Rectangle instance but will move its X,y location
when dragged. Hint: you will need to store the original xy location of the rectangle which is stored as
rect.xy and connect to the press, motion and release mouse events. When the mouse is pressed, check to
see if the click occurs over your rectangle (see matplotlib.patches.Rectangle.contains()) and if it
does, store the rectangle xy and the location of the mouse click in data coords. In the motion event callback,
compute the deltax and deltay of the mouse movement, and add those deltas to the origin of the rectangle
you stored. The redraw the figure. On the button release event, just reset all the button press data you stored
as None.

Here is the solution:

import numpy as np
import matplotlib.pyplot as plt

class DraggableRectangle:
def __init__(self, rect):

self.rect = rect

self.press = None

def connect(self):

"connect to all the events we need’

self.cidpress = self.rect.figure.canvas.mpl_connect(
"button_press_event’, self.on_press)

self.cidrelease = self.rect.figure.canvas.mpl_connect(
"button_release_event’, self.on_release)

self.cidmotion = self.rect.figure.canvas.mpl_connect(
‘motion_notify_event’, self.on_motion)

def on_press(self, event):
“on button press we will see if the mouse is over us and store some data’
if event.inaxes != self.rect.axes: return

11.2. Event attributes 87

Matplotlib, Release 0.99.3

contains, attrd = self.rect.contains(event)
if not contains: return

print ’event contains’, self.rect.xy

x0, y0 = self.rect.xy

self.press = x0, y0, event.xdata, event.ydata

def on_motion(self, event):
“on motion we will move the rect if the mouse is over us’
if self.press is None: return
if event.inaxes != self.rect.axes: return
x0, y0, xpress, ypress = self.press
dx = event.xdata - xpress
dy = event.ydata - ypress
#print ’'x0=%f, xpress=%f, event.xdata=%f, dx=%f, x0+dx=%f’%(x0, xpress, event.xdata, dx, x0+dx)
self.rect.set_x(x0+dx)
self.rect.set_y(y0+dy)

self.rect.figure.canvas.draw()

def on_release(self, event):
‘on release we reset the press data’
self.press = None
self.rect.figure.canvas.draw()

def disconnect(self):
"disconnect all the stored connection ids’
self.rect.figure.canvas.mpl_disconnect(self.cidpress)
self.rect.figure.canvas.mpl_disconnect(self.cidrelease)
self.rect.figure.canvas.mpl_disconnect(self.cidmotion)

fig = plt.figure()
ax = fig.add_subplot(111)
rects = ax.bar(range(10), 20*np.random.rand(10))
drs = []
for rect in rects:
dr = DraggableRectangle(rect)
dr.connect()
drs.append(dr)

plt.show()

Extra credit: use the animation blit techniques discussed in the animations recipe to make the animated
drawing faster and smoother.

Extra credit solution:

draggable rectangle with the animation blit techniques; see
http://www.scipy.org/Cookbook/Matplotlib/Animations

import numpy as np

import matplotlib.pyplot as plt

class DraggableRectangle:
lock = None # only one can be animated at a time

88 Chapter 11. Event handling and picking

http://www.scipy.org/Cookbook/Matplotlib/Animations

Matplotlib, Release 0.99.3

def

def

def

def

__init__(self, rect):
self.rect = rect
self.press = None
self.background = None

connect(self):

"connect to all the events we need’

self.cidpress = self.rect.figure.canvas.mpl_connect(
"button_press_event’, self.on_press)

self.cidrelease = self.rect.figure.canvas.mpl_connect(
"button_release_event’, self.on_release)

self.cidmotion = self.rect.figure.canvas.mpl_connect(
‘motion_notify_event’, self.on_motion)

on_press(self, event):

“on button press we will see if the mouse is over us and store some data’
if event.inaxes != self.rect.axes: return

if DraggableRectangle.lock is not None: return

contains, attrd = self.rect.contains(event)

if not contains: return

print ’event contains’, self.rect.xy

x0, y0 = self.rect.xy

self.press = x0, y0, event.xdata, event.ydata

DraggableRectangle.lock = self

draw everything but the selected rectangle and store the pixel buffer
canvas = self.rect.figure.canvas

axes = self.rect.axes

self.rect.set_animated(True)

canvas.draw()

self.background = canvas.copy_from_bbox(self.rect.axes.bbox)

now redraw just the rectangle
axes.draw_artist(self.rect)

and blit just the redrawn area
canvas.blit(axes.bbox)

on_motion(self, event):
“on motion we will move the rect if the mouse is over us’
if DraggableRectangle.lock is not self:
return
if event.inaxes != self.rect.axes: return
x0, y0®, xpress, ypress = self.press
dx = event.xdata - xpress
dy = event.ydata - ypress
self.rect.set_x(x0+dx)
self.rect.set_y(y0+dy)

canvas = self.rect.figure.canvas

axes = self.rect.axes

restore the background region
canvas.restore_region(self.background)

11.2. Event attributes 89

Matplotlib, Release 0.99.3

redraw just the current rectangle
axes.draw_artist(self.rect)

blit just the redrawn area
canvas.blit(axes.bbox)

def on_release(self, event):
"on release we reset the press data’
if DraggableRectangle.lock is not self:
return

self.press = None
DraggableRectangle.lock = None

turn off the rect animation property and reset the background
self.rect.set_animated(False)
self.background = None

redraw the full figure
self.rect.figure.canvas.draw()

def disconnect(self):
"disconnect all the stored connection ids’
self.rect.figure.canvas.mpl_disconnect(self.cidpress)
self.rect.figure.canvas.mpl_disconnect(self.cidrelease)
self.rect.figure.canvas.mpl_disconnect(self.cidmotion)

fig = plt.figure()
ax = fig.add_subplot(111)
rects = ax.bar(range(10), 20*np.random.rand(10))
drs = []
for rect in rects:
dr = DraggableRectangle(rect)
dr.connect()
drs.append(dr)

plt.show()

11.3 Mouse enter and leave

If you want to be notified when the mouse enters or leaves a figure or axes, you can connect to the figure/axes
enter/leave events. Here is a simple example that changes the colors of the axes and figure background that
the mouse is over:

e

Illustrate the figure and axes enter and leave events by changing the
frame colors on enter and leave

i

import matplotlib.pyplot as plt

90 Chapter 11. Event handling and picking

Matplotlib, Release 0.99.3

def enter_axes(event):
print ’enter_axes’, event.inaxes
event.inaxes.patch.set_facecolor(’yellow’)
event.canvas.draw()

def leave_axes(event):
print ’'leave_axes’, event.inaxes
event.inaxes.patch.set_facecolor(’white’)
event.canvas.draw()

def enter_figure(event):
print ’enter_figure’, event.canvas.figure
event.canvas.figure.patch.set_facecolor('red’)
event.canvas.draw()

def leave_figure(event):
print ’'leave_figure’, event.canvas.figure
event.canvas.figure.patch.set_facecolor(’grey’)
event.canvas.draw()

figl = plt.figure()

figl.suptitle(’mouse hover over figure or axes to trigger events’)
axl = figl.add_subplot(211)

ax2 = figl.add_subplot(212)

figl.canvas.mpl_connect(’ figure_enter_event’, enter_figure)
figl.canvas.mpl_connect(’ figure_leave_event’, leave_figure)
figl.canvas.mpl_connect(’axes_enter_event’, enter_axes)
figl.canvas.mpl_connect(’axes_leave_event’, leave_axes)

fig2 = plt.figure()

fig2.suptitle(’mouse hover over figure or axes to trigger events’)
axl = fig2.add_subplot(211)

ax2 = fig2.add_subplot(212)

fig2.canvas.mpl_connect(’ figure_enter_event’, enter_figure)
fig2.canvas.mpl_connect(’ figure_leave_event’, leave_figure)
fig2.canvas.mpl_connect(’axes_enter_event’, enter_axes)
fig2.canvas.mpl_connect(’axes_leave_event’, leave_axes)

plt.show()

11.4 Object picking

You can enable picking by setting the picker property of an Artist (eg a matplotlib Line2D, Text, Patch,
Polygon, AxesImage, etc...)

There are a variety of meanings of the picker property:
None picking is disabled for this artist (default)

boolean if True then picking will be enabled and the artist will fire a pick event if the mouse

11.4. Object picking 91

Matplotlib, Release 0.99.3

event is over the artist

float if picker is a number it is interpreted as an epsilon tolerance in points and the the artist
will fire off an event if its data is within epsilon of the mouse event. For some artists like
lines and patch collections, the artist may provide additional data to the pick event that is
generated, eg the indices of the data within epsilon of the pick event.

function if picker is callable, it is a user supplied function which determines whether the
artist is hit by the mouse event. The signature is hit, props = picker(artist,
mouseevent) to determine the hit test. If the mouse event is over the artist, return
hit=True and props is a dictionary of properties you want added to the PickEvent at-
tributes

After you have enabled an artist for picking by setting the picker property, you need to connect to the figure
canvas pick_event to get pick callbacks on mouse press events. Eg:

def pick_handler(event):
mouseevent = event.mouseevent
artist = event.artist
now do something with this..

The PickEvent which is passed to your callback is always fired with two attributes:

mouseevent the mouse event that generate the pick event. The mouse event in turn has at-
tributes like x and y (the coords in display space, eg pixels from left, bottom) and xdata,
ydata (the coords in data space). Additionally, you can get information about which but-
tons were pressed, which keys were pressed, which Axes the mouse is over, etc. See
matplotlib.backend_bases.MouseEvent for details.

artist the Artist that generated the pick event.

Additionally, certain artists like Line2D and PatchCollection may attach additional meta data like the
indices into the data that meet the picker criteria (eg all the points in the line that are within the specified
epsilon tolerance)

11.4.1 Simple picking example

In the example below, we set the line picker property to a scalar, so it represents a tolerance in points (72
points per inch). The onpick callback function will be called when the pick event it within the tolerance
distance from the line, and has the indices of the data vertices that are within the pick distance tolerance.
Our onpick callback function simply prints the data that are under the pick location. Different matplotlib
Artists can attach different data to the PickEvent. For example, Line2D attaches the ind property, which are
the indices into the line data under the pick point. See pick() for details on the PickEvent properties of
the line. Here is the code:

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_title(’click on points’)

92 Chapter 11. Event handling and picking

Matplotlib, Release 0.99.3

line, = ax.plot(np.random.rand(100), ’o’, picker=5) # 5 points tolerance

def onpick(event):
thisline = event.artist
xdata = thisline.get_xdata()
ydata = thisline.get_ydata()
ind = event.ind
print ’onpick points:’, zip(xdata[ind], ydata[ind])

fig.canvas.mpl_connect(’pick_event’, onpick)

plt.show()

11.4.2 Picking exercise

Create a data set of 100 arrays of 1000 Gaussian random numbers and compute the sample mean and
standard deviation of each of them (hint: numpy arrays have a mean and std method) and make a xy marker
plot of the 100 means vs the 100 standard deviations. Connect the line created by the plot command to the
pick event, and plot the original time series of the data that generated the clicked on points. If more than one
point is within the tolerance of the clicked on point, you can use multiple subplots to plot the multiple time
series.

Exercise solution:

compute the mean and stddev of 100 data sets and plot mean vs stddev.
When you click on one of the mu, sigma points, plot the raw data from
the dataset that generated the mean and stddev

import numpy as np

import matplotlib.pyplot as plt

X = np.random.rand(100, 1000)
xs = np.mean(X, axis=1)
ys np.std(X, axis=1)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_title(’click on point to plot time series’)

line, = ax.plot(xs, ys, ’0’, picker=5) # 5 points tolerance

def onpick(event):
if event.artist!=line: return True
N = len(event.ind)

if not N: return True

figi = plt.figure()

11.4. Object picking 93

Matplotlib, Release 0.99.3

for subplotnum, dataind in enumerate(event.ind):
ax = figi.add_subplot(N,1,subplotnum+1)
ax.plot(X[dataind])
ax.text(0.05, 0.9, 'mu= \nsigma= "%(xs[dataind], ys[dataind]),
transform=ax.transAxes, va='top’)
ax.set_ylim(-0.5, 1.5)
figi.show()
return True

fig.canvas.mpl_connect(’pick_event’, onpick)

plt.show()

94 Chapter 11. Event handling and picking

CHAPTER
TWELVE

TRANSFORMATIONS TUTORIAL

Like any graphics packages, matplotlib is built on top of a transformation framework to easily move between
coordinate systems, the userland data coordinate system, the axes coordinate system, the figure coordinate
system, and the display coordinate system. In 95% of your plotting, you won’t need to think about this,
as it happens under the hood, but as you push the limits of custom figure generation, it helps to have an
understanding of these objects so you can reuse the existing transformations matplotlib makes available
to you, or create your own (see matplotlib.transforms). The table below summarizes the existing
coordinate systems, the transformation object you should use to work in that coordinate system, and the
description of that system. In the Transformation Object column, ax is a Axes instance, and fig is a
Figure instance.

Coor- | Transfor- Description
dinate | mation
Object
data ax.transDatd The userland data coordinate system, controlled by the xlim and ylim
axes ax.transAxes The coordinate system of the Axes; (0,0) is bottom left of the axes, and (1,1)

is top right of the axes

figure fig.transFigulbke coordinate system of the Figure; (0,0) is bottom left of the figure, and
(1,1) is top right of the figure

dis- None This is the pixel coordinate system of the display; (0,0) is the bottom left of
play the display, and (width, height) is the top right of the display in pixels

All of the transformation objects in the table above take inputs in their coordinate system, and transform
the input to the display coordinate system. That is why the display coordinate system has None for the
Transformation Object column — it already is in display coordinates. The transformations also know how to
invert themselves, to go from display back to the native coordinate system. This is particularly useful when
processing events from the user interface, which typically occur in display space, and you want to know
where the mouse click or key-press occurred in your data coordinate system.

12.1 Data coordinates

Let’s start with the most commonly used coordinate, the data coordinate system. Whenever you add data to
the axes, matplotlib updates the datalimits, most commonly updated with the set_x1im() and set_ylim()
methods. For example, in the figure below, the data limits stretch from O to 10 on the x-axis, and -1 to 1 on
the y-axis.

95

Matplotlib, Release 0.99.3

import numpy as np
import matplotlib.pyplot as plt

X = np.arange(0, 10, 0.005)
y = np.exp(-x/2.) * np.sin(2*np.pi*x)

fig = plt.figure()

ax = fig.add_subplot(111)
ax.plot(x, y)
ax.set_x1im(0, 10)
ax.set_ylim(-1, 1)

plt.show()

1.0 I I I 1

0.5j]

0.0

-0.5

-1.0

0 2 4 6 8 10

You can use the ax.transData instance to transform from your data to your display coordinate system,
either a single point or a sequence of points as shown below:

In [14]: type(ax.transData)
Out[14]: <class [:hatplotlib.transforms.CompositeGenericTransform’>

In [15]: ax.transData.transform((5, 0))
Out[15]: array([335.175, 247. 1)

In [16]: ax.transData.transform([(5, 0), (1,2)])
Out[16]:
array([[335.175, 247. 1,

96 Chapter 12. Transformations Tutorial

Matplotlib, Release 0.99.3

[132.435, 642.2 11D

You can use the inverted() method to create a transform which will take you from display to data coordi-
nates:

In [41]: inv = ax.transData.inverted()

In [42]: type(inv)
Out[42]: <class Ehatplotlib.transforms.CompositeGenericTransform’>

In [43]: inv.transform((335.175, 247.))
Out[43]: array([5., 0.1)

If your are typing along with this tutorial, the exact values of the display coordinates may differ if you have
a different window size or dpi setting. Likewise, in the figure below, the display labeled points are probably
not the same as in the ipython session because the documentation figure size defaults are different.

1.0 I I I I
(data = (5.0, 0.0)]
0.5}
0.0
|display = (225.5, 180.
—0.5})
—1.05 2 4 6 8 10

Note: If you run the source code in the example above in a GUI backend, you may also find that the
two arrows for the data and display annotations do not point to exactly the same point. This is because
the display point was computed before the figure was displayed, and the GUI backend may slightly resize
the figure when it is created. The effect is more pronounced if you resize the figure yourself. This is one
good reason why you rarely want to work in display space, but you can connect to the on_draw’ Event to
update figure coordinates on figure draws; see Event handling and picking.

When you change the x or y limits of your axes, the data limits are updated so the transformation yields a

12.1. Data coordinates 97

Matplotlib, Release 0.99.3

new display point. Note that when we just change the ylim, only the y-display coordinate is altered, and
when we change the xlim too, both are altered. More on this later when we talk about the Bbox.

In [54]: ax.transData.transform((5, 0))
Out[54]: array([335.175, 247. D)

In [55]: ax.set_ylim(-1,2)
Out[55]: (-1, 2)

In [56]: ax.transData.transform((5, 0))
Out[56]: array([335.175 , 181.13333333])

In [57]: ax.set_x1im(10,20)
Out[57]: (10, 20)

In [58]: ax.transData.transform((5, 0))
Out[58]: array([-171.675 , 181.13333333])

12.2 Axes coordinates

After the data coordinate system, axes is probably the second most useful coordinate system. Here the point
(0,0) is the bottom left of your axes or subplot, (0.5, 0.5) is the center, and (1.0, 1.0) is the top right. You can
also refer to points outside the range, so (-0.1, 1.1) is to the left and above your axes. This coordinate system
is extremely useful when placing text in your axes, because you often want a text bubble in a fixed, location,
eg. the upper left of the axes pane, and have that location remain fixed when you pan or zoom. Here is a
simple example that creates four panels and labels them ‘A’, ‘B’, ‘C’, ‘D’ as you often see in journals.

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
for i, label in enumerate((’A’, ’B’, ’C’, 'D’)):
ax = fig.add_subplot(2,2,i+1)
ax.text(0.05, 0.95, label, transform=ax.transAxes,
fontsize=16, fontweight='bold’, va="top’)

plt.show()

98 Chapter 12. Transformations Tutorial

Matplotlib, Release 0.99.3

1.0 I I I I 1.0 I I I I

A B
0.8} 10.8f 1
0.6f 10.6 1
0.4f 10.4f 1
0.2} 10.2p 1

0'8.0 0.2 0.4 0.6 0.8 1.00'(8).0 0.2 0.4 0.6 0.8 1.0
1.0

I I I I 1.0 I I I I
C D
0.8} 1 0.8}
0.6} 1 0.6
0.4+ 410.4}
0.2f 1 0.2

0'%.0 0.2 0.4 0.6 0.8 1.00'(()).0 0.2 0.4 0.6 0.8 1.0

You can also make lines or patches in the axes coordinate system, but this is less useful in my experience
than using ax.transAxes for placing text. Nonetheless, here is a silly example which plots some random
dots in data space, and overlays a semi-transparent Circle centered in the middle of the axes with a radius
one quarter of the axes — if your axes does not preserve aspect ratio (see set_aspect()), this will look like
an ellipse. Use the pan/zoom tool to move around, or manually change the data xlim and ylim, and you
will see the data move, but the circle will remain fixed because it is not in data coordinates and will always

remain at the center of the axes.

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.patches as patches

fig = plt.figure(Q)

ax = fig.add_subplot(111)

X, y = 10*np.random.rand(2, 1000)

ax.plot(x, y, 'go’) # plot some data in data coordinates

circ = patches.Circle((0.5, 0.5), 0.25, transform=ax.transAxes,
facecolor="yellow’, alpha=0.5)
ax.add_patch(circ)

plt.show()

12.2. Axes coordinates

99

Matplotlib, Release 0.99.3

12.3 Blended transformations

Drawing in blended coordinate spaces which mix axes with data coordinates is extremely useful, for ex-
ample to create a horizontal span which highlights some region of the y-data but spans across the x-axis
regardless of the data limits, pan or zoom level, etc. In fact these blended lines and spans are so useful, we
have built in functions to make them easy to plot (see axhline(), axvline(), axhspan(), axvspan())
but for didactic purposes we will implement the horizontal span here using a blended transformation. This
trick only works for separable transformations, like you see in normal Cartesian coordinate systems, but not
on inseparable transformations like the PolarTransform.

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.patches as patches
import matplotlib.transforms as transforms

fig = plt.figure()
ax = fig.add_subplot(111)

x = np.random.randn(1000)

ax.hist(x, 30)
ax.set_title(r’$\sigma=1 \/ \dots \/ \sigma=2$%$’, fontsize=16)

100 Chapter 12. Transformations Tutorial

Matplotlib, Release 0.99.3

the x coords of this transformation are data, and the

y coord are axes

trans = transforms.blended_transform_factory(
ax.transData, ax.transAxes)

highlight the 1..2 stddev region with a span.

We want x to be in data coordinates and y to

span from 0..1 in axes coords

rect = patches.Rectangle((1,0), width=1, height=1,
transform=trans, color=’yellow’,
alpha=0.5)

ax.add_patch(rect)

plt.show()

12.4 Using offset transforms to create a shadow effect

One use of transformations is to create a new transformation that is offset from another annotation, eg to
place one object shifted a bit relative to another object. Typically you want the shift to be in some physical
dimension, like points or inches rather than in data coordinates, so that the shift effect is constant at different
zoom levels and dpi settings.

12.4. Using offset transforms to create a shadow effect 101

Matplotlib, Release 0.99.3

One use for an offset is to create a shadow effect, where you draw one object identical to the first just to the
right of it, and just below it, adjusting the zorder to make sure the shadow is drawn first and then the object
it is shadowing above it. The transforms module has a helper transformation ScaledTranslation. It is
instantiated with:

trans = ScaledTranslation(xt, yt, scale_trans)

where xt and yt are the translation offsets, and scale_trans is a transformation which scales xf and y¢ at trans-
formation time before applying the offsets. A typical use case is to use the figure fig.dpi_scale_trans
transformation for the scale_trans argument, to first scale x¢ and yf specified in points to display space before
doing the final offset. The dpi and inches offset is a common-enough use case that we have a special helper
function to create it in matplotlib.transforms.offset_copy(), which returns a new transform with
an added offset. But in the example below, we’ll create the offset transform ourselves. Note the use of the
plus operator in:

offset = transforms.ScaledTranslation(dx, dy,
fig.dpi_scale_trans)
shadow_transform = ax.transData + offset

showing that can chain transformations using the addition operator. This code says: first apply the data
transformation ax.transData and then translate the data by dx and dy points.

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.patches as patches
import matplotlib.transforms as transforms

fig = plt.figure()
ax = fig.add_subplot(111)

make a simple sine wave

X np.arange(®., 2., 0.01)

y = np.sin(2*np.pi*x)

line, = ax.plot(x, y, lw=3, color="bhlue’)

shift the object over 2 points, and down 2 points

dx, dy = 2/72., -2/72.

offset = transforms.ScaledTranslation(dx, dy,
fig.dpi_scale_trans)

shadow_transform = ax.transData + offset

now plot the same data with our offset transform;

use the zorder to make sure we are below the line

ax.plot(x, y, 1lw=3, color='gray’,
transform=shadow_transform,
zorder=0.5*1line.get_zorder())

ax.set_title(’creating a shadow effect with an offset transform’)
plt.show()

102 Chapter 12. Transformations Tutorial

Matplotlib, Release 0.99.3

creating a shadow effect with an offset transform
1.0

0.5

0.0

-0.5

—1.8.

12.5 The transformation pipeline

The ax.transData transform we have been working with in this tutorial is a composite of three different
transformations that comprise the transformation pipeline from data -> display coordinates. Michael Droet-
tboom implemented the transformations framework, taking care to provide a clean API that segregated the
nonlinear projections and scales that happen in polar and logarithmic plots, from the linear affine transfor-
mations that happen when you pan and zoom. There is an efficiency here, because you can pan and zoom in
your axes which affects the affine transformation, but you may not need to compute the potentially expensive
nonlinear scales or projections on simple navigation events. It is also possible to multiply affine transfor-
mation matrices together, and then apply them to coordinates in one step. This is not true of all possible
transformations.

Here is how the ax.transData instance is defined in the basic separable axis Axes class:

self.transData = self.transScale + (self.transLimits + self.transAxes)

We’ve been introduced to the transAxes instance above in Axes coordinates, which maps the (0,0), (1,1)
corners of the axes or subplot bounding box to display space, so let’s look at these other two pieces.

self.transLimits is the transformation that takes you from data to axes coordinates; i.e., it maps your
view xlim and ylim to the unit space of the axes (and transAxes then takes that unit space to display space).
We can see this in action here

12.5. The transformation pipeline 103

Matplotlib, Release 0.99.3

In [80]: ax = subplot(l11)

In [81]: ax.set_x1im(0, 10)
Out[81]: (0, 10)

In [82]: ax.set_ylim(-1,1)
Out[82]: (-1, 1)

In [84]: ax.transLimits.transform((®,-1))
Out[84]: array([0., 0.])

In [85]: ax.transLimits.transform((10,-1))
Out[85]: array([1., 0.1

In [86]: ax.transLimits.transform((10,1))
Out[86]: array([1., 1.1)

In [87]: ax.transLimits.transform((5,0))
Out[87]: array([0.5, 0.5])

and we can use this same inverted transformation to go from the unit axes coordinates back to data coordi-
nates.

In [90]: inv.transform((0.25, 0.25))
Out[90]: array([2.5, -0.51)

The final piece is the self.transScale attribute, which is responsible for the optional non-linear scaling
of the data, eg. for logarithmic axes. When an Axes is initially setup, this is just set to the identity trans-
form, since the basic matplotlib axes has linear scale, but when you call a logarithmic scaling function like
semilogx () or explicitly set the scale to logarithmic with set_xscale(), then the ax.transScale at-
tribute is set to handle the nonlinear projection. The scales transforms are properties of the respective xaxis
and yaxis Axis instances. For example, when you call ax.set_xscale(’log’), the xaxis updates its
scale to amatplotlib.scale.LogScale instance.

For non-separable axes the PolarAxes, there is one more piece to consider, the projection transformation.
The transDatamatplotlib.projections.polar.PolarAxes is similar to that for the typical separable
matplotlib Axes, with one additional piece transProjection:

self.transData = self.transScale + self.transProjection + \
(self.transProjectionAffine + self.transAxes)

transProjection handles the projection from the space, eg. latitude and longitude for map data, or
radius and theta for polar data, to a separable Cartesian coordinate system. There are several projection
examples in the matplotlib.projections package, and the best way to learn more is to open the source
for those packages and see how to make your own, since matplotlib supports extensible axes and projections.
Michael Droettboom has provided a nice tutorial example of creating a hammer projection axes; see api-
custom_projection_example.

104 Chapter 12. Transformations Tutorial

CHAPTER
THIRTEEN

PATH TUTORIAL

The object underlying all of the matplotlib.patch objects is the Path, which supports the standard set of
moveto, lineto, curveto commands to draw simple and compound outlines consisting of line segments and
splines. The Path is instantiated with a (N,2) array of (x,y) vertices, and a N-length array of path codes. For
example to draw the unit rectangle from (0,0) to (1,1), we could use this code

import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches

verts = [
., 0.), # left, bottom
., 1.), # left, top
(1., 1.), # right, top
(1., 0.), # right, bottom
(., 0.), # ignored

]

codes = [Path.MOVETO,
Path.LINETO,
Path.LINETO,
Path.LINETO,
Path.CLOSEPOLY,
]

path = Path(verts, codes)

fig = plt.figure()
ax = fig.add_subplot(111)

patch = patches.PathPatch(path, facecolor=’orange’, lw=2)

ax.add_patch(patch)
ax.set_xlim(-2,2)
ax.set_ylim(-2,2)
plt.show()

105

Matplotlib, Release 0.99.3

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

-2.0

-15 -1.0 -05 00 05 10 15 20

The following path codes are recognized

Code Vertices Description
STOP 1 (ignored) A marker for the end of the entire path (currently not required and
ignored)

MOVETO | 1 Pick up the pen and move to the given vertex.

LINETO | 1 Draw a line from the current position to the given vertex.

CURVE3 | 2 (1 control point, 1 | Draw a quadratic Bézier curve from the current position, with the
endpoint) given control point, to the given end point.

CURVE4 | 3 (2 control points, | Draw a cubic Bézier curve from the current position, with the given
1 endpoint) control points, to the given end point.

CLOSEPOLY (point itself is Draw a line segment to the start point of the current polyline.
ignored)

13.1 Bézier example

Some of the path components require multiple vertices to specify them: for example CURVE 3 is a bézier
curve with one control point and one end point, and CURVE4 has three vertices for the two control points
and the end point. The example below shows a CURVE4 Bézier spline — the bézier curve will be contained

in the convex hull of the start point, the two control points, and the end point

106

Chapter 13. Path Tutorial

http://en.wikipedia.org/wiki/B%C3%A9zier_curve

Matplotlib, Release 0.99.3

import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches

verts = [
., 0.), # PO
(0.2, 1.), # P1
(1., 0.8), # P2
(0.8, 0.), # P3
]

codes = [Path.MOVETO,
Path.CURVE4,
Path.CURVE4,
Path.CURVE4,
]

path = Path(verts, codes)

fig = plt.figure(Q

ax = fig.add_subplot(111)

patch = patches.PathPatch(path, facecolor='none’, lw=2)
ax.add_patch(patch)

xs, ys = zip(*verts)
ax.plot(xs, ys, 'x--’, lw=2, color='black’, ms=10)

ax.text(-0.05, -0.05, 'P0O’)
ax.text(0.15, 1.05, ’P17)
ax.text(1.05, 0.85, 'P27)
ax.text(0.85, -0.05, 'P37")

ax.set_x1im(-0.1, 1.1)
ax.set_ylim(-0.1, 1.1)
plt.show()

13.1. Bézier example 107

Matplotlib, Release 0.99.3

1.0

0.8

0.6

0.4

0.2

0.0

13.2 Compound paths

All of the simple patch primitives in matplotlib, Rectangle, Circle, Polygon, etc, are implemented with
simple path. Plotting functions like hist () and bar (), which create a number of primitives, eg a bunch of
Rectangles, can usually be implemented more efficiently using a compound path. The reason bar creates
a list of rectangles and not a compound path is largely historical: the Path code is comparatively new and
bar predates it. While we could change it now, it would break old code, so here we will cover how to create
compound paths, replacing the functionality in bar, in case you need to do so in your own code for efficiency
reasons, eg you are creating an animated bar plot.

We will make the histogram chart by creating a series of rectangles for each histogram bar: the rectangle
width is the bin width and the rectangle height is the number of datapoints in that bin. First we’ll create
some random normally distributed data and compute the histogram. Because numpy returns the bin edges
and not centers, the length of bins is 1 greater than the length of n in the example below:

histogram our data with numpy
data = np.random.randn(1000)
n, bins = np.histogram(data, 100)

We’ll now extract the corners of the rectangles. Each of the left, bottom, etc, arrays below is len(n),
where n is the array of counts for each histogram bar:

108 Chapter 13. Path Tutorial

Matplotlib, Release 0.99.3

get the corners of the rectangles for the histogram
left = np.array(bins[:-1])

right = np.array(bins[1:])

bottom = np.zeros(len(left))

top = bottom + n

Now we have to construct our compound path, which will consist of a series of MOVETO, LINETO and
CLOSEPOLY for each rectangle. For each rectangle, we need 5 vertices: 1 for the MOVETO, 3 for the LINETO,
and 1 for the CLOSEPOLY. As indicated in the table above, the vertex for the closepoly is ignored but we still
need it to keep the codes aligned with the vertices:

nverts = nrects*(1+3+1)

verts = np.zeros((nverts, 2))
codes = np.ones(nverts, int) * path.Path.LINETO
codes[0::5] = path.Path.MOVETO
codes[4::5] = path.Path.CLOSEPOLY
verts[0::5,0] = left
verts[0::5,1] = bottom
verts[1::5,0] = left
verts[1::5,1] = top

verts[2::5,0] = right
verts[2::5,1] = top

verts[3::5,0] = right
verts[3::5,1] = bottom

All that remains is to create the path, attach it to a PathPatch, and add it to our axes:

barpath = path.Path(verts, codes)

patch = patches.PathPatch(barpath, facecolor=’green’,
edgecolor="yellow’, alpha=0.5)

ax.add_patch(patch)

Here is the result

13.2. Compound paths 109

Matplotlib, Release 0.99.3

110 Chapter 13. Path Tutorial

CHAPTER
FOURTEEN

ANNOTATING AXES

Do not proceed unless you already have read text () and annotate()!

14.1 Annotating with Text with Box

Let’s start with a simple example.

4 T T T T T T T
sl) ".. . |
2t .. :..{Sample B].-

111

Matplotlib, Release 0.99.3

The text () function in the pyplot module (or text method of the Axes class) takes bbox keyword argument,
and when given, a box around the text is drawn.

bbox_props = dict(boxstyle="rarrow,pad=0.3", fc="cyan", ec="b", lw=2)
t = ax.text(®, O, "Direction", ha="center", va="center'", rotation=45,
size=15,
bbox=bbox_props)

The patch object associated with the text can be accessed by:

bb = t.get_bbox_patch()

The return value is an instance of FancyBboxPatch and the patch properties like facecolor, edgewidth, etc.
can be accessed and modified as usual. To change the shape of the box, use set_boxstyle method.

bb.set_boxstyle("rarrow", pad=0.6)

The arguments are the name of the box style with its attributes as keyword arguments. Currently, following
box styles are implemented.

Class Name Attrs
LArrow larrow pad=0.3
RArrow rarrow pad=0.3
Round round pad=0.3,rounding_size=None
Round4 round4 pad=0.3,rounding_size=None

Roundtooth | roundtooth | pad=0.3,tooth_size=None
Sawtooth sawtooth pad=0.3,tooth_size=None
Square square pad=0.3

112 Chapter 14. Annotating Axes

Matplotlib, Release 0.99.3

square

roundtooth

rarrow>
 larrow

Note that the attributes arguments can be specified within the style name with separating comma (this form
can be used as “boxstyle” value of bbox argument when initializing the text instance)

bb.set_boxstyle('"rarrow,pad=0.6")

14.2 Annotating with Arrow

The annotate () function in the pyplot module (or annotate method of the Axes class) is used to draw an
arrow connecting two points on the plot.

ax.annotate("Annotation",
xy=(x1, yl), xycoords=’data’,
xytext=(x2, y2), textcoords='offset points’,

)

This annotates a point at xy in the given coordinate (xycoords) with the text at xytext given in
textcoords. Often, the annotated point is specified in the data coordinate and the annotating text in offset
points. See annotate () for available coordinate systems.

An arrow connecting two point (Xy & xytext) can be optionally drawn by specifying the arrowprops
argument. To draw only an arrow, use empty string as the first argument.

14.2. Annotating with Arrow 113

Matplotlib, Release 0.99.3

ax.annotate("",
xy=(0.2, 0.2), xycoords='data’,
xytext=(0.8, 0.8), textcoords=’data’,
arrowprops=dict(arrowstyle="->",
connectionstyle="arc3"),

)

1-0 I I 1 1

0.8f .

0.6

0.4

0.2

0'%.0 0.2 04 06 08 1.0

The arrow drawing takes a few steps.
1. aconnecting path between two points are created. This is controlled by connectionstyle key value.
2. If patch object is given (patchA & patchB), the path is clipped to avoid the patch.
3. The path is further shrunk by given amount of pixels (shirnkA & shrinkB)

4. The path is transmuted to arrow patch, which is controlled by the arrowstyle key value.

T T
connect clip

shénk nu&ate

The creation of the connecting path between two points is controlled by connectionstyle key and fol-
lowing styles are available.

114 Chapter 14. Annotating Axes

Matplotlib, Release 0.99.3

Name Attrs
angle angleA=90,angleB=0,rad=0.0
angle3 | angleA=90,angleB=0
arc angleA=0,angleB=0,armA=None,armB=None,rad=0.0
arc3 rad=0.0
bar armA=0.0,armB=0.0,fraction=0.3,angle=None

Note that “3” in angle3 and arc3 is meant to indicate that the resulting path is a quadratic spline segment
(three control points). As will be discussed below, some arrow style option only can be used when the
connecting path is a quadratic spline.

The behavior of each connection style is (limitedly) demonstrated in the example below. (Warning : The
behavior of the bar style is currently not well defined, it may be changed in the future).

]

armB=40,
|| rad=0 /
L]

1 1 T T T I I T I I T T T T T T
angle3, angle, arc, bar,
H angleA=90, —+ H angleA=-90, H angleA=-90, H fraction=0.3
angleB=0 angleB=180, angleB=0,
L e ° l{ rad=0 ° l{ armA=30, ° L °
armB=30,
| / 1 | J || rad=0 J |
- ° -1+ ° - ° - ° - °
L L L L L L L L L L L L L L L L L
1 1 T) T 1 1 T 1 1 T T 1 1 T
angle3, arc3,rad=0.3 angle, arc, bar,
H angleA=0, —+] H angleA=-90, H angleA=-90, H fraction=-0.3
angleB=90 angleB=180, angleB=0,
L e ° l{ rad=5 ° l{ armA=30, ° L °
armB=30,
| 1 | J || rad=5 J |
- ° -1+ ° - ° - ° - °
L L L L L L L L L L L L L L L L L
T T T 1 1 T T 1 1 T 1 1 T
angle, arc, bar,
- E H angleA=-90, H angleA=-90, H angle=180,
angleB=10, angleB=0, fraction=-0.2
L 4 . H rad=0 l{ armA=0, . » °
. /
1 1

The connecting path (after clipping and shrinking) is then mutated to an arrow patch, according to the given

arrowstyle.

14.2. Annotating with Arrow

115

Matplotlib, Release 0.99.3

Name Attrs

- None

-> head_length=0.4,head_width=0.2

-[widthB=1.0,lengthB=0.2,angleB=None

-I> head_length=0.4,head_width=0.2

<- head_length=0.4,head_width=0.2

<> head_length=0.4,head_width=0.2

<|- head_length=0.4,head_width=0.2

<|-I> head_length=0.4,head_width=0.2

fancy head_length=0.4,head_width=0.4,tail_width=0.4
simple | head_length=0.5head_width=0.5,tail_width=0.2
wedge tail_width=0.3,shrink_factor=0.5

a—0O A0
=—0 O
| ———[O fancy| == ()

I>—>) simple|=—=()

<1<—0O wedge|=—()

=0

Some arrowstyles only work with connection style that generates a quadratic-spline segment. They are
fancy, simple, and wedge. For these arrow styles, you must use “angle3” or “arc3” connection style.

If the annotation string is given, the patchA is set to the bbox patch of the text by default.

116 Chapter 14. Annotating Axes

Matplotlib, Release 0.99.3

0.8

Test

0.6

0.4

0.2

0'%.0 0.2 04 06 0.8 1.0

As in the text command, a box around the text can be drawn using the bbox argument.

1.0 T T T T

0.6 .
0.4 .
0.2 .

0'%.0 0.2 04 06 0.8 1.0

By default, the starting point is set to the center of the text extent. This can be adjusted with relpos key
value. The values are normalized to the extent of the text. For example, (0,0) means lower-left corner and
(1,1) means top-right.

14.2. Annotating with Arrow 117

Matplotlib, Release 0.99.3

1.0 . T T T

oa Tes)-
0.6]
0.4 .
0.2 .

0'(8).0 0.2 04 06 0.8 1.0

14.3 Using ConnectorPatch

The ConnectorPatch is like an annotation without a text. While the annotate function is recommended in
most of situation, the ConnectorPatch is useful when you want to connect points in different axes.

from matplotlib.patches import ConnectionPatch

xy = (0.2, 0.2)

con = ConnectionPatch(xyA=xy, xyB=xy, coordsA="data", coordsB="data",
axesA=-ax1l, axesB=ax2)

ax2.add_artist(con)

The above code connects point xy in data coordinate of ax1 to point Xy int data coordinate of ax2. Here is
a simple example.

1-0 1 1 1 1 0-5 1 1 1 1

0.8} o Jo0al |

0.6} 103} |

0.4} {oz — |
s

02l & — o4l |

0'%.0 0.2 04 0.6 0.8 1.00'%.0 0.1 0.2 0.3 04 05

118 Chapter 14. Annotating Axes

Matplotlib, Release 0.99.3

While the ConnectorPatch instance can be added to any axes, but you may want it to be added to the axes in
the latter (?) of the axes drawing order to prevent overlap (?) by other axes.

14.4 Placing Artist at the anchored location of the Axes

There are class of artist that can be placed at the anchored location of the Axes. A common example is
the legend. This type of artists can be created by using the OffsetBox class. A few predefined classes are
available in mpl_toolkits.axes_grid.anchored_artists.

from mpl_toolkits.axes_grid.anchored_artists import AnchoredText
at = AnchoredText("Figure 1a",

prop=dict(size=8), frameon=True,

loc=2,

)
at.patch.set_boxstyle('"round,pad=0.,rounding_size=0.2")
ax.add_artist(at)

1.0 I I I I
Figure la

0.8

0.6

0.4

0.2

0'(8).0 0.2 04 06 08 1.0

The loc keyword has same meaning as in the legend command.

A simple application is when the size of the artist (or collection of artists) is known in pixel size during the
time of creation. For example, If you want to draw a circle with fixed size of 20 pixel x 20 pixel (radius =
10 pixel), you can utilize AnchoredDrawingArea. The instance is created with a size of the drawing area
(in pixel). And user can add arbitrary artist to the drawing area. Note that the extents of the artists that are
added to the drawing area has nothing to do with the placement of the drawing area itself. The initial size
only matters.

from mpl_toolkits.axes_grid.anchored_artists import AnchoredDrawingArea

ada = AnchoredDrawingArea(20, 20, 0, O,

loc=1, pad=0., frameon=False)
pl = Circle((10, 10), 10)
ada.drawing_area.add_artist(pl)

14.4. Placing Artist at the anchored location of the Axes 119

Matplotlib, Release 0.99.3

p2 = Circle((30, 10), 5, fc="r")
ada.drawing_area.add_artist(p2)

The artists that are added to the drawing area should not have transform set (they will be overridden) and
the dimension of those artists are interpreted as a pixel coordinate, i.e., the radius of the circles in above
example are 10 pixel and 5 pixel, respectively.

1.0 T T

0.8

0.6

0.4

0.2

0'(()).0 0.2 04 06 0.8 1.0

Sometimes, you want to your artists scale with data coordinate (or other coordinate than canvas pixel).
You can use AnchoredAuxTransformBox class. This is similar to AnchoredDrawingArea except that the
extent of the artist is determined during the drawing time respecting the specified transform.

from mpl_toolkits.axes_grid.anchored_artists import AnchoredAuxTransformBox

box = AnchoredAuxTransformBox(ax.transData, loc=2)
el = Ellipse((0,0), width=0.1, height=0.4, angle=30) # in data coordinates!
box.drawing_area.add_artist(el)

The ellipse in the above example will have width and height corresponds to 0.1 and 0.4 in data coordinate
and will be automatically scaled when the view limits of the axes change.

120 Chapter 14. Annotating Axes

Matplotlib, Release 0.99.3

0.8

0.6

0.4

0.2

0'(8).0 0.2 04 06 0.8 1.0

As in the legend, the bbox_to_anchor argument can be set. Using the HPacker and VPacker, you can have
an arrangement(?) of artist as in the legend (as a matter of fact, this is how the legend is created).

Test . o&@ =
1.0 I I I I

0.8

0.6

0.4

0.2

0'8.0 0.2 04 06 08 1.0

Note that unlike the legend, the bbox_transform is set to IdentityTransform by default.

14.4.1 Advanced Topics
14.5 Zoom effect between Axes

mpl_toolkits.axes_grid.inset_locator defines some patch classes useful for interconnect two axes. Under-
standing the code requires some knowledge of how mpl’s transform works. But, utilizing it will be straight
forward.

14.5. Zoom effect between Axes 121

Matplotlib, Release 0.99.3

1.0———————— 1.0———————
0.8} {0.8} -

0.6} {0.6} -

0.4} {0.4} -

0.2} 10.2} -

O'(()).o/'.z 0|.4/QI/6/0|.8 103022 2.4 2628 3.0
1.0

0.8} -

0.6 -

0.4} -

0.2} -

R A S

14.6 Define Custom BoxStyle

You can use a custom box style. The value for the boxstyle can be a callable object in following forms.:

def __call__(self, x0, y0, width, height, mutation_size,
aspect_ratio=1.):

Given the location and size of the box, return the path of
the box around it.

- *x0%, *y0%, *width*, *height* : location and size of the box
- *mutation_size* : a reference scale for the mutation.

- *aspect_ratio* : aspect-ration for the mutation.

path = ...
return path

Here is a complete example.

122 Chapter 14. Annotating Axes

Matplotlib, Release 0.99.3

0.8

0.6

Test

0.4

0.2

0'%.0 0.2 04 06 0.8 1.0

However, it is recommended that you derive from the matplotlib.patches.BoxStyle._Base as demonstrated
below.

1.0 I I I I

0.8

0.6

X

0.4

0.2

0'(8).0 0.2 04 06 0.8 1.0

Similarly, you can define custom ConnectionStyle and custom ArrowStyle. See the source code of
lib/matplotlib/patches.py and check how each style class is defined.

14.6. Define Custom BoxStyle 123

Matplotlib, Release 0.99.3

124 Chapter 14. Annotating Axes

CHAPTER
FIFTEEN

TOOLKITS

Toolkits are collections of application-specific functions that extend matplotlib.

15.1 Basemap

Plots data on map projections, with continental and political boundaries, see basemap docs.

15.2 GTK Tools

mpl_toolkits.gtktools provides some utilities for working with GTK. This toolkit ships with matplotlib, but
requires pygtk.

15.3 Excel Tools

mpl_toolkits.exceltools provides some utilities for working with Excel. This toolkit ships with matplotlib,
but requires pyExcelerator

15.4 Natgrid

mpl_toolkits.natgrid is an interface to natgrid C library for gridding irregularly spaced data. This requires a
separate installation of the natgrid toolkit from the sourceforge download page.

15.5 mplot3d

mpl_toolkits.mplot3d provides some basic 3D plotting (scatter, surf, line, mesh) tools. Not the fastest or
feature complete 3D library out there, but ships with matplotlib and thus may be a lighter weight solution
for some use cases.

See toolkit_mplot3d-index for more documentation and examples.

125

http://matplotlib.sf.net/basemap/doc/html
http://www.pygtk.org/
http://sourceforge.net/projects/pyexcelerator
http://sourceforge.net/project/showfiles.php?group_id=80706&package_id=142792

Matplotlib, Release 0.99.3

15.6 AxesGrid

The matplotlib AxesGrid toolkit is a collection of helper classes to ease displaying multiple images in
matplotlib. The AxesGrid toolkit is distributed with matplotlib source.

T T T T LI LI —;¢ m

Moo B

|
|

| | ot 1
- - R _
ol el a2 el e O

-2 0 2 202 202

See toolkit_axesgrid-index for documentations.

126 Chapter 15. Toolkits

CHAPTER
SIXTEEN

SCREENSHOTS

Here you will find a host of example figures with the code that generated them

16.1 Simple Plot

The most basic plot (), with text labels

About as simple as it gets, folks

voltage (mV)

1.0 1.5
time (s)

~18%0

127

Matplotlib, Release 0.99.3

16.2 Subplot demo

Multiple regular axes (numrows by numcolumns) are created with the subplot () command.

A tale of 2 subplots

H 00000000 O0OH
O oo NONPOI®O

Damped oscillation

o
U

Undamped
o
o

|
o
U

I
=
o=
o

2.0

16.3 Histograms

The hist () command automatically generates histograms and will return the bin counts or probabilities

128 Chapter 16. Screenshots

Matplotlib, Release 0.99.3

Histogram of IQ: 4 =100, 0 =15
0.030 , , .

0.025

0.020

0.015

FropawliiLy

0.010

0.005

0'00910 60 80 100 120 140 160

Smarts

16.4 Path demo

You can add aribitrary paths in matplotlib as of release 0.98. See the matplotlib.path.

16.4. Path demo 129

Matplotlib, Release 0.99.3

16.5 mplot3d

The mplot3d toolkit (see foolkit_mplot3d-tutorial and mplot3d-examples-index) has support for simple 3d
graphs including surface, wireframe, scatter, and bar charts (added in matlpotlib-0.99). Thanks to John
Porter, Jonathon Taylor and Reinier Heeres for the mplot3d toolkit. The toolkit is included with all standard
matplotlib installs.

130 Chapter 16. Screenshots

Matplotlib, Release 0.99.3

16.6 Ellipses

In support of the Phoenix mission to Mars, which used matplotlib in ground tracking of the spacecraft,
Michael Droettboom built on work by Charlie Moad to provide an extremely accurate 8-spline approxi-
mation to elliptical arcs (see Arc) in the viewport. This provides a scale free, accurate graph of the arc

regardless of zoom level

16.6. Ellipses 131

http://www.jpl.nasa.gov/news/phoenix/main.php

Matplotlib, Release 0.99.3

16.7 Bar charts

The bar () command takes error bars as an optional argument. You can also use up and down bars, stacked
bars, candlestick bars, etc, ... See bar_stacked.py for another example. You can make horizontal bar charts

with the barh () command.

132 Chapter 16. Screenshots

Matplotlib, Release 0.99.3

20 Scores by group and gender

B Men
1 Women

35

7

Gl G2 G3 G4 G5

16.8 Pie chartis

The pie() command uses a matlab(TM) compatible syntax to produce pie charts. Optional features include
auto-labeling the percentage of area, exploding one or more wedges out from the center of the pie, and a
shadow effect. Take a close look at the attached code that produced this figure; nine lines of code.

16.8. Pie charts 133

Matplotlib, Release 0.99.3

16.9 Table demo

Raining Hogs and Dogs

Hogs

The table() command will place a text table on the axes

Frogs

Logs

134

Chapter 16. Screenshots

Matplotlib, Release 0.99.3

Loss by Disaster

2000 1
wn

S 1500f 1
o
—
A

% 1000F i
(@)
|

500]

0 Freeze | Wind Flood | Quake Hai

100 year 431.5] 1049.4 799.6(2149.8 917.9

50 year 292.2 717.8 456.4(1368.5 865.6

20 year 213.8 636.0 305.7(1175.2 796.0

%0 year 124.6 555.4 153.2 677.2 192.5

16.10 Scatter demo

The scatter () command makes a scatter plot with (optional) size and color arguments. This example plots
changes in Google stock price from one day to the next with the sizes coding trading volume and the colors
coding price change in day i. Here the alpha attribute is used to make semitransparent circle markers with
the Agg backend (see What is a backend?)

Exception occurred rendering plot.

16.11 Slider demo

Matplotlib has basic GUI widgets that are independent of the graphical user interface you are using, allow-
ing you to write cross GUI figures and widgets. See matplotlib.widgets and the widget examples <exam-
plespwidgets>

16.10. Scatter demo 135

Matplotlib, Release 0.99.3

1 0 I I I I

®red

Oblue
ogreen

0.6 0.8 1.0
| 5.00
| 3.00

16.12 Fill demo

The £i11 () command lets you plot filled polygons. Thanks to Andrew Straw for providing this function

136 Chapter 16. Screenshots

Matplotlib, Release 0.99.3

0.6 ! ! ! !
0.5
0.4
0.3
0.2
0.1
0.0

-0.1

—0-3% 0.2 0.4 0.6 0.8 1.0

16.13 Date demo

You can plot date data with major and minor ticks and custom tick formatters for both the major and minor
ticks; see matplotlib.ticker and matplotlib.dates for details and usage.

Exception occurred rendering plot.

16.14 Financial charts

You can make much more sophisticated financial plots. This example emulates one of the ChartDirector
financial plots. Some of the data in the plot, are real financial data, some are random traces that I used since
the goal was to illustrate plotting techniques, not market analysis!

Exception occurred rendering plot.

16.15 Basemap demo

Jeff Whitaker provided this example showing how to efficiently plot a collection of lines over a colormap
image using the Basemap . Many map projections are handled via the proj4 library: cylindrical equidistant,

16.13. Date demo 137

http://www.advsofteng.com/gallery_finance.html

Matplotlib, Release 0.99.3

mercator, lambert conformal conic, lambert azimuthal equal area, albers equal area conic and stereographic.
See the tutorial entry on the wiki.

Exception occurred rendering plot.

16.16 Log plots

The semilogx (), semilogy() and loglog() functions generate log scaling on the respective axes. The
lower subplot uses a base10 log on the xaxis and a base 4 log on the yaxis. Thanks to Andrew Straw, Darren
Dale and Gregory Lielens for contributions to the log scaling infrastructure.

semilogy semilogx
10° = ! — 1.0y

105

107 Fo N 00

Los

% 5 10 15 201'100'2 10 10° 10' 107

loglog base 4 on x
10* Frr T T30’

22920222%02%2%%

16.17 Polar plots

The polar() command generates polar plots.

138 Chapter 16. Screenshots

http://www.scipy.org/wikis/topical_software/Maps

Matplotlib, Release 0.99.3

ANGa tnere was mucn rejoicing!

90°

1352 45°
.0
1.5
1.0
0.5
180F 0°

225° 15°

270°

16.18 Legends

The legend () command automatically generates figure legends, with Matlab compatible legend placement
commands. Thanks to Charles Twardy for input on the legend command

16.18. Legends 139

Matplotlib, Release 0.99.3

Minimum Message Length

Model length

""" Data length

—— Total message length

Message length --->
AN

Model complexity --->

16.19 Mathtext_examples

A sampling of the many TeX expressions now supported by matplotlib’s internal mathtext engine. The
mathtext module provides TeX style mathematical expressions using freetype2 and the BaKoMa computer
modern or STIX fonts. See the matplotlib.mathtext module for additional. matplotlib mathtext is
an independent implementation, and does not required TeX or any external packages installed on your
computer. See the tutorial at Writing mathematical expressions.

140 Chapter 16. Screenshots

http://freetype.sourceforge.net/index2.html
http://www.stixfonts.org

Matplotlib, Release 0.99.3

o Qb+t ... 45+...

=y

$100.00 a_

$100.00
N I

_a 1Y
rtyr=yr<yzx:yxyczQy
100%y x *y x/yx$y

LTy xVy x—y

_gl TxxAX

16.19. Mathtext_examples 141
rTrTTr X i Yy

Matplotlib, Release 0.99.3

16.20 Native TeX rendering

Although matplotlib’s internal math rendering engine is quite powerful, sometimes you need TeX, and
matplotlib supports external TeX rendering of strings with the usetex option.

T
—e
|
1

TEX is Number Z o
n=1

3.0 T T T

voltage (mV)

—
ot

time (s)

16.21 EEG demo

You can embed matplotlib into pygtk, wxpython, Tk, FLTK or Qt applications. Here is a screenshot of an eeg
viewer called pbrain which is part of the NeuroImaging in Python suite NIPY. Pbrain is written in pygtk us-
ing matplotlib. The lower axes uses specgram() to plot the spectrogram of one of the EEG channels. For an
example of how to use the navigation toolbar in your applications, see user_interfaces-embedding_in_gtk2.
If you want to use matplotlib in a wx application, see user_interfaces-embedding_in_wx2. If you want to
work with glade, see user_interfaces-mpl_with_glade.

142 Chapter 16. Screenshots

http://neuroimaging.scipy.org
http://glade.gnome.org

Matplotlib, Release 0.99.3

% EEG Viewer and Analyzer =
File Patients VMiew Compute Help

< 4 b plEE A VIEeDE I

'Message: Electrode: RTG12 i

16.21. EEG demo 143

Matplotlib, Release 0.99.3

144 Chapter 16. Screenshots

CHAPTER
SEVENTEEN

WHAT’S NEW IN MATPLOTLIB

This page just covers the highlights — for the full story, see the CHANGELOG

17.1 new in matplotlib-0.99

17.1.1 New documentation

Jae-Joon Lee has written two new guides Legend guide and Annotating Axes. Michael Sarahan has written
Image tutorial. John Hunter has written two new tutorials on working with paths and transformations: Path
Tutorial and Transformations Tutorial.

17.1.2 mplot3d

Reinier Heeres has ported John Porter’s mplot3d over to the new matplotlib transformations framework, and
it is now available as a toolkit mpl_toolkits.mplot3d (which now comes standard with all mpl installs). See
mplot3d-examples-index and toolkit_mplot3d-tutorial

145

http://matplotlib.sourceforge.net/_static/CHANGELOG

Matplotlib, Release 0.99.3

17.1.3 axes grid toolkit

Jae-Joon Lee has added a new toolkit to ease displaying multiple images in matplotlib, as well as some
support for curvilinear grids to support the world coordinate system. The toolkit is included standard with
all new mpl installs. See axes_grid-examples-index and axes_grid_users-guide-index.

146 Chapter 17. What’s new in matplotlib

Matplotlib, Release 0.99.3

17.1.4 Axis spine placement

Andrew Straw has added the ability to place “axis spines” — the lines that denote the data limits — in various
arbitrary locations. No longer are your axis lines constrained to be a simple rectangle around the figure —
you can turn on or off left, bottom, right and top, as well as “detach” the spine to offset it away from the
data. See pylab_examples-spine_placement_demo and matplotlib.spines.Spine.

17.1. new in matplotlib-0.99 147

Matplotlib, Release 0.99.3

'\
AV

(I I

N#HHFOOO
O uUTO U1 O WU
T T T T T

I

HFEPOOOKRKEN
U O uU1TO uUlTo ul O
T T T T T T 1

I
N
(@)

T

1 2 3 45 6

It’s been four months since the last matplotlib release, and there are a lot of new features and bug-fixes.

1 2 3 45 6 7 7

17.2 new in 0.98.4

Thanks to Charlie Moad for testing and preparing the source release, including binaries for OS X and
Windows for python 2.4 and 2.5 (2.6 and 3.0 will not be available until numpy is available on those re-
leases). Thanks to the many developers who contributed to this release, with contributions from Jae-Joon
Lee, Michael Droettboom, Ryan May, Eric Firing, Manuel Metz, Jouni K. Seppaenen, Jeff Whitaker, Darren
Dale, David Kaplan, Michiel de Hoon and many others who submitted patches

17.2.1 Legend enhancements

Jae-Joon has rewritten the legend class, and added support for multiple columns and rows, as well as fancy
box drawing. See legend() and matplotlib.legend.Legend.

148 Chapter 17. What’s new in matplotlib

Matplotlib, Release 0.99.3

1.0 T T

AN

0.6

0'%.0 0.2 OI.4

17.2.2 Fancy annotations and arrows

0.6

0.8

1.0

Jae-Joon has added lot’s of support to annotations for drawing fancy boxes and connectors in annotations.

See annotate() and BoxStyle, ArrowStyle, and ConnectionStyle.

17.2. new in 0.98.4

149

Matplotlib, Release 0.99.3

square -|>—0O

=0

<-><>0

roundtooth

<|-|<—O

rarrow>
<|-|>|<>0O

 larrow fancy |==0

simple|=>0O
rround

round wedge =0

17.2.3 Native OS X backend

Michiel de Hoon has provided a native Mac OSX backend that is almost completely implemented in C. The
backend can therefore use Quartz directly and, depending on the application, can be orders of magnitude
faster than the existing backends. In addition, no third-party libraries are needed other than Python and
NumPy. The backend is interactive from the usual terminal application on Mac using regular Python. It
hasn’t been tested with ipython yet, but in principle it should to work there as well. Set ‘backend : macosx’
in your matplotlibre file, or run your script with:

> python myfile.py -dmacosx

17.2.4 psd amplitude scaling

Ryan May did a lot of work to rationalize the amplitude scaling of psd() and friends. See pylab_examples-
psd_demo?2. and pylab_examples-psd_demo3. The changes should increase MATLAB™ compatabililty and

150 Chapter 17. What’s new in matplotlib

http://www.mathworks.com

Matplotlib, Release 0.99.3

increase scaling options.

17.2.5 Fill between

Added a fill_between() function to make it easier to do shaded region plots in the presence of masked
data. You can pass an x array and a ylower and yupper array to fill betweem, and an optional where argument
which is a logical mask where you want to do the filling.

Ls fill between where

1.0

0.5

0.0

-0.5

-1.0

-1, I I I
8.0 0.5 1.0 1.5 2.0

17.2.6 Lots more

Here are the 0.98.4 notes from the CHANGELOG:

Added mdehoon’s native macosx backend from sf patch 2179017 - JDH

Removed the prints in the set_*style commands. Return the list of
pprinted strings instead - JDH

Some of the changes Michael made to improve the output of the
property tables in the rest docs broke of made difficult to use
some of the interactive doc helpers, eg setp and getp. Having all
the rest markup in the ipython shell also confused the docstrings.
I added a new rc param docstring.harcopy, to format the docstrings
differently for hardcopy and other use. Ther ArtistInspector

17.2. new in 0.98.4 151

Matplotlib, Release 0.99.3

could use a little refactoring now since there is duplication of
effort between the rest out put and the non-rest output - JDH

Updated spectral methods (psd, csd, etc.) to scale one-sided
densities by a factor of 2 and, optionally, scale all densities by
the sampling frequency. This gives better MatLab

compatibility. -RM

Fixed alignment of ticks in colorbars. -MGD

drop the deprecated "new" keyword of np.histogram() for numpy 1.2
or later. -JJL

Fixed a bug in svg backend that new_figure_manager() ignores
keywords arguments such as figsize, etc. -JJL

Fixed a bug that the handlelength of the new legend class set too
short when numpoints=1 -JJL

Added support for data with units (e.g. dates) to
Axes.fill _between. -RM

Added fancybox keyword to legend. Also applied some changes for
better look, including baseline adjustment of the multiline texts
so that it is center aligned. -JJL

The transmuter classes in the patches.py are reorganized as
subclasses of the Style classes. A few more box and arrow styles
are added. -JJL

Fixed a bug in the new legend class that didn’t allowed a tuple of
coordinate vlaues as loc. -JJL

Improve checks for external dependencies, using subprocess
(instead of deprecated popen*) and distutils (for version

checking) - DSD

Reimplementaion of the legend which supports baseline alignement,
multi-column, and expand mode. - JJL

Fixed histogram autoscaling bug when bins or range are given
explicitly (fixes Debian bug 503148) - MM

Added rcParam axes.unicode_minus which allows plain hypen for
minus when False - JDH

Added scatterpoints support in Legend. patch by Erik Tollerud -
JJL

Fix crash in log ticking. - MGD

Added static helper method BrokenHBarCollection.span_where and
Axes/pyplot method fill_between. See

152 Chapter 17. What’s new in matplotlib

Matplotlib, Release 0.99.3

examples/pylab/fill_between.py - JDH

Add x_isdata and y_isdata attributes to Artist instances, and use
them to determine whether either or both coordinates are used when
updating datalim. This is used to fix autoscaling problems that
had been triggered by axhline, axhspan, axvline, axvspan. - EF

Update the psd(), csd(), cohere(), and specgram() methods of Axes
and the csd() cohere(), and specgram() functions in mlab to be in
sync with the changes to psd(). In fact, under the hood, these
all call the same core to do computations. - RM

Add ’pad_to’ and ’sides’ parameters to mlab.psd() to allow
controlling of zero padding and returning of negative frequency
components, respecitively. These are added in a way that does not
change the API. - RM

Fix handling of c kwarg by scatter; generalize is_string_like to
accept numpy and numpy.ma string array scalars. - RM and EF

Fix a possible EINTR problem in dviread, which might help when
saving pdf files from the qt backend. - JKS

Fix bug with zoom to rectangle and twin axes - MGD

Added Jae Joon’s fancy arrow, box and annotation enhancements --
see examples/pylab_examples/annotation_demo2.py

Autoscaling is now supported with shared axes - EF
Fixed exception in dviread that happened with Minion - JKS

set_xlim, ylim now return a copy of the viewlim array to avoid
modify inplace surprises

Added image thumbnail generating function
matplotlib.image.thumbnail. See examples/misc/image_thumbnail.py
- JDH

Applied scatleg patch based on ideas and work by Erik Tollerud and
Jae-Joon Lee. - MM

Fixed bug in pdf backend: if you pass a file object for output
instead of a filename, e.g. in a wep app, we now flush the object
at the end. - JKS

Add path simplification support to paths with gaps. - EF

Fix problem with AFM files that don’t specify the font’s full name
or family name. - JKS

Added ’scilimits’ kwarg to Axes.ticklabel_format() method, for
easy access to the set_powerlimits method of the major

17.2. new in 0.98.4

153

Matplotlib, Release 0.99.3

ScalarFormatter. - EF

Experimental new kwarg borderpad to replace pad in legend, based
on suggestion by Jae-Joon Lee. - EF

Allow spy to ignore zero values in sparse arrays, based on patch
by Tony Yu. Also fixed plot to handle empty data arrays, and
fixed handling of markers in figlegend. - EF

Introduce drawstyles for lines. Transparently split linestyles
like ’'steps-- To?

into drawstyle ’steps’ and linestyle ’--’. Legends
always use drawstyle ’default’. - MM

Fixed quiver and quiverkey bugs (failure to scale properly when
resizing) and added additional methods for determining the arrow
angles - EF

Fix polar interpolation to handle negative values of theta - MGD

Reorganized cbook and mlab methods related to numerical
calculations that have little to do with the goals of those two
modules into a separate module numerical_methods.py Also, added
ability to select points and stop point selection with keyboard in
ginput and manual contour labeling code. Finally, fixed contour
labeling bug. - DMK

Fix backtick in Postscript output. - MGD

[2089958] Path simplification for vector output backends
Leverage the simplification code exposed through path_to_polygons
to simplify certain well-behaved paths in the vector backends
(PDF, PS and SVG). '"path.simplify" must be set to True in
matplotlibrc for this to work. - MGD

Add "filled" kwarg to Path.intersects_path and
Path.intersects_bbox. - MGD

Changed full arrows slightly to avoid an xpdf rendering problem
reported by Friedrich Hagedorn. - JKS

Fix conversion of quadratic to cubic Bezier curves in PDF and PS
backends. Patch by Jae-Joon Lee. - JKS

Added 5-point star marker to plot command g- EF
Fix hatching in PS backend - MGD
Fix log with base 2 - MGD

Added support for bilinear interpolation in
NonUniformImage; patch by Gregory Lielens. - EF

Added support for multiple histograms with data of

154 Chapter 17. What’s new in matplotlib

Matplotlib, Release 0.99.3

different length - MM

Fix step plots with log scale - MGD

Fix masked arrays with markers in non-Agg backends - MGD

Fix clip_on kwarg so it actually works correctly - MGD

Fix locale problems in SVG backend - MGD

fix quiver so masked values are not plotted - JSW

improve interactive pan/zoom in gt4 backend on windows - DSD

Fix more bugs in NaN/inf handling. In particular, path
simplification (which does not handle NaNs or infs) will be turned
off automatically when infs or NaNs are present. Also masked

arrays are now converted to arrays with NaNs for consistent
handling of masks and NaNs - MGD and EF

17.2. new in 0.98.4 155

Matplotlib, Release 0.99.3

156 Chapter 17. What’s new in matplotlib

CHAPTER
EIGHTEEN

LICENSE

Matplotlib only uses BSD compatible code, and its license is based on the PSF license. See the Open
Source Initiative licenses page for details on individual licenses. Non-BSD compatible licenses (eg LGPL)
are acceptable in matplotlib 7oolkits. For a discussion of the motivations behind the licencing choice, see
Licenses.

18.1 License agreement for matplotlib 0.99.3

1. This LICENSE AGREEMENT is between John D. Hunter (“JDH”), and the Individual or Organization
(“Licensee”) accessing and otherwise using matplotlib software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, JDH hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use matplotlib 0.99.3 alone or in any derivative version, provided,
however, that JDH’s License Agreement and JDH’s notice of copyright, i.e., “Copyright (c) 2002-2009 John
D. Hunter; All Rights Reserved” are retained in matplotlib 0.99.3 alone or in any derivative version prepared
by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates matplotlib 0.99.3 or any
part thereof, and wants to make the derivative work available to others as provided herein, then Licensee
hereby agrees to include in any such work a brief summary of the changes made to matplotlib 0.99.3.

4. JDH is making matplotlib 0.99.3 available to Licensee on an “AS IS” basis. JDH MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, JDH MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
MATPLOTLIB 0.99.3 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. JDH SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF MATPLOTLIB 0.99.3
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING MATPLOTLIB 0.99.3, OR ANY DERIVA-
TIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

157

http://www.python.org/psf/license
http://www.opensource.org/licenses

Matplotlib, Release 0.99.3

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between JDH and Licensee. This License Agreement does not grant permission to use JDH
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using matplotlib 0.99.3, Licensee agrees to be bound by the terms
and conditions of this License Agreement.

158 Chapter 18. License

CHAPTER
NINETEEN

CREDITS

matplotlib was written by John Hunter and is now developed and maintained by a number of active devel-
opers.

Special thanks to those who have made valuable contributions (roughly in order of first contribution by date)
Jeremy O’Donoghue wrote the wx backend

Andrew Straw provided much of the log scaling architecture, the fill command, PIL support for
imshow, and provided many examples. He also wrote the support for dropped axis spines and the
buildbot unit testing infrastructure which triggers the JPL/James Evans platform specific builds and
regression test image comparisons from svn matplotlib across platforms on svn commits.

Charles Twardy provided the impetus code for the legend class and has made countless bug reports and
suggestions for improvement.

Gary Ruben made many enhancements to errorbar to support x and y errorbar plots, and added a number
of new marker types to plot.

John Gill wrote the table class and examples, helped with support for auto-legend placement, and added
support for legending scatter plots.

David Moore wrote the paint backend (no longer used)

Todd Miller supported by STSCI contributed the TkAgg backend and the numerix module, which allows
matplotlib to work with either numeric or numarray. He also ported image support to the postscript
backend, with much pain and suffering.

Paul Barrett supported by STSCI overhauled font management to provide an improved, free-standing,
platform independent font manager with a WC3 compliant font finder and cache mechanism and
ported truetype and mathtext to PS.

Perry Greenfield supported by STSCI overhauled and modernized the goals and priorities page, imple-
mented an improved colormap framework, and has provided many suggestions and a lot of insight to
the overall design and organization of matplotlib.

Jared Wahlstrand wrote the initial SVG backend.
Steve Chaplin served as the GTK maintainer and wrote the Cairo and GTKCairo backends.

Jim Benson provided the patch to handle vertical mathttext.

159

http://www.ohloh.net/projects/matplotlib/contributors
http://mpl-buildbot.code.astraw.com/
http://www.stsci.edu
http://www.stsci.edu
http://www.stsci.edu

Matplotlib, Release 0.99.3

Gregory Lielens provided the FltkAgg backend and several patches for the frontend, including contribu-
tions to toolbar2, and support for log ticking with alternate bases and major and minor log ticking.

Darren Dale

did the work to do mathtext exponential labeling for log plots, added improved support for scalar
formatting, and did the lions share of the psfrag LaTeX support for postscript. He has made
substantial contributions to extending and maintaining the PS and Qt backends, and wrote the
site.cfg and matplotlib.conf build and runtime configuration support. He setup the infrastructure
for the sphinx documentation that powers the mpl docs.

Paul Mcguire provided the pyparsing module on which mathtext relies, and made a number of optimiza-
tions to the matplotlib mathtext grammar.

Fernando Perez has provided numerous bug reports and patches for cleaning up backend imports and ex-
panding pylab functionality, and provided matplotlib support in the pylab mode for ipython. He also
provided the matshow () command, and wrote TConfig, which is the basis for the experimental traited
mpl configuration.

Andrew Dalke of Dalke Scientific Software contributed the strftime formatting code to handle years earlier
than 1900.

Jochen Voss served as PS backend maintainer and has contributed several bugfixes.
Nadia Dencheva
supported by STSCI provided the contouring and contour labeling code.

Baptiste Carvello provided the key ideas in a patch for proper shared axes support that underlies ganged
plots and multiscale plots.

Jeffrey Whitaker at NOAA wrote the Basemap tookit

Sigve Tjoraand, Ted Drain, James Evans and colleagues at the JPL collaborated on the QtAgg backend
and sponsored development of a number of features including custom unit types, datetime support,
scale free ellipses, broken bar plots and more. The JPL team wrote the unit testing image comparison
infrastructure for regression test image comparisons.

James Amundson did the initial work porting the qt backend to qt4

Eric Firing has contributed significantly to contouring, masked array, pcolor, image and quiver support,
in addition to ongoing support and enhancements in performance, design and code quality in most
aspects of matplotlib.

Daishi Harada added support for “Dashed Text”. See dashpointlabel.py and TextWithDash.

Nicolas Young added support for byte images to imshow, which are more efficient in CPU and memory,
and added support for irregularly sampled images.

The brainvisa Orsay team and Fernando Perez added Qt support to ipython in pylab mode.

Charlie Moad contributed work to matplotlib’s Cocoa support and has done a lot of work on the OSX and
win32 binary releases.

Jouni K. Seppaenen wrote the PDF backend and contributed numerous fixes to the code, to tex sup-
port and to the get_sample_data handler

160 Chapter 19. Credits

http://www.ctan.org/tex-archive/help/Catalogue/entries/psfrag.html?action=/tex-archive/macros/latex/contrib/supported/psfrag
http://ipython.scipy.org
http://www.dalkescientific.com/
http://www.stsci.edu
http://www.boulder.noaa.gov
http://www.jpl.nasa.gov
http://matplotlib.svn.sourceforge.net/viewvc/matplotlib/trunk/matplotlib/test
http://brainvisa.info
http://ipython.scipy.org

Matplotlib, Release 0.99.3

Paul Kienzle improved the picking infrastruture for interactive plots, and with Alex Mont contributed fast
rendering code for quadrilateral meshes.

Michael Droettboom supported by STSCI wrote the enhanced mathtext support, implementing Knuth’s
box layout algorithms, saving to file-like objects across backends, and is responsible for numerous
bug-fixes, much better font and unicode support, and feature and performance enhancements across
the matplotlib code base. He also rewrote the transformation infrastructure to support custom projec-
tions and scales.

John Porter, Jonathon Taylor and Reinier Heeres John Porter wrote the mplot3d module for basic 3D
plotting in matplotlib, and Jonathon Taylor and Reinier Heeres ported it to the refactored transform
trunk.

Jae-Joon Lee implemented fancy arrows and boxes, rewrote the legend support to handle multiple
columns and fancy text boxes, wrote the axes grid toolkit, and has made numerous contributions
to the code and documentation

161

http://www.stsci.edu

Matplotlib, Release 0.99.3

162 Chapter 19. Credits

Part 11

The Matplotlib FAQ

163

CHAPTER
TWENTY

INSTALLATION FAQ

Contents

e Installation FAQ
— Report a compilation problem

matplotlib compiled fine, but nothing shows up with plot
Cleanly rebuild and reinstall everything

% Easy Install

* Windows installer

% Source install
Install from svn
Install from git
Backends

* What is a backend?

% Compile matplotlib with PyGTK-2.4
— OS-X questions

% Which python for OS X?

% Installing OSX binaries

% easy_install from egg

% Building and installing from source on OSX with EPD
Windows questions

x Binary installers for windows

20.1 Report a compilation problem

See Report a problem.

20.2 matplotlib compiled fine, but nothing shows up with plot

The first thing to try is a clean install and see if that helps. If not, the best way to test your install is
by running a script, rather than working interactively from a python shell or an integrated development
environment such as IDLE which add additional complexities. Open up a UNIX shell or a DOS command

165

Matplotlib, Release 0.99.3

prompt and cd into a directory containing a minimal example in a file. Something like simple_plot.py,
or for example:

from pylab import *

plot([1,2,3])
show ()

and run it with:

python simple_plot.py --verbose-helpful

This will give you additional information about which backends matplotlib is loading, version information,
and more. At this point you might want to make sure you understand matplotlib’s configuration process,
governed by the matplotlibrc configuration file which contains instructions within and the concept of the
matplotlib backend.

If you are still having trouble, see Report a problem.

20.3 Cleanly rebuild and reinstall everything

The steps depend on your platform and installation method.

20.3.1 Easy Install

1. Delete the caches from your .matplotlib configuration directory.
2. Run:

easy_install -m PackageName

3. Delete any .egg files or directories from your installation directory.

20.3.2 Windows installer

1. Delete the caches from your .matplotlib configuration directory.

2. Use Start — Control Panel to start the Add and Remove Software utility.

20.3.3 Source install

Unfortunately:

python setup.py clean

does not properly clean the build directory, and does nothing to the install directory. To cleanly rebuild:
1. Delete the caches from your .matplotlib configuration directory.

2. Delete the build directory in the source tree

166 Chapter 20. Installation FAQ

Matplotlib, Release 0.99.3

3. Delete any matplotlib directories or eggs from your installation directory <locating-matplotlib-
install>

20.4 Install from svn

Checking out the main source:

svn co https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/trunk/matplotlib matplotlib

and build and install as usual with:

> cd matplotlib
> python setup.py install

If you want to be able to follow the development branch as it changes just replace the last step with (Make
sure you have setuptools installed):

> python setupegg.py develop

This creates links in the right places and installs the command line script to the appropriate places. Then, if
you want to update your matplotlib at any time, just do:

> svn update

When you run svn update, if the output shows that only Python files have been updated, you are all set. If C

files have changed, you need to run the python setupegg develop command again to compile them.

There is more information on using Subversion in the developer docs.

20.5 Install from git

See Using git.

20.6 Backends

20.6.1 What is a backend?

A lot of documentation on the website and in the mailing lists refers to the “backend” and many new
users are confused by this term. matplotlib targets many different use cases and output formats. Some
people use matplotlib interactively from the python shell and have plotting windows pop up when they type
commands. Some people embed matplotlib into graphical user interfaces like wxpython or pygtk to build
rich applications. Others use matplotlib in batch scripts to generate postscript images from some numerical
simulations, and still others in web application servers to dynamically serve up graphs.

To support all of these use cases, matplotlib can target different outputs, and each of these capabililities is
called a backend; the “frontend” is the user facing code, ie the plotting code, whereas the “backend” does
all the dirty work behind the scenes to make the figure. There are two types of backends: user interface

20.4. Install from svn 167

Matplotlib, Release 0.99.3

backends (for use in pygtk, wxpython, tkinter, qt, macosx, or fltk) and hardcopy backends to make image
files (PNG, SVG, PDF, PS).

There are a two primary ways to configure your backend. One is to set the backend parameter in you
matplotlibrc file (see Customizing matplotlib):

backend : WXAgg # use wxpython with antigrain (agg) rendering

The other is to use the matplotlib use () directive:

import matplotlib
matplotlib.use(’PS’) # generate postscript output by default

If you use the use directive, this must be done before importing matplotlib.pyplot or
matplotlib.pylab.

If you are unsure what to do, and just want to get cranking, just set your backend to TkAgg. This will do
the right thing for 95% of the users. It gives you the option of running your scripts in batch or working
interactively from the python shell, with the least amount of hassles, and is smart enough to do the right
thing when you ask for postscript, or pdf, or other image formats.

If however, you want to write graphical user interfaces, or a web application server (Matplotlib in a web
application server), or need a better understanding of what is going on, read on. To make things a little
more customizable for graphical user interfaces, matplotlib separates the concept of the renderer (the thing
that actually does the drawing) from the canvas (the place where the drawing goes). The canonical renderer
for user interfaces is Agg which uses the antigrain C++ library to make a raster (pixel) image of the figure.
All of the user interfaces can be used with agg rendering, eg WXAgg, GTKAgg, QTAgg, TkAgg, CocoaAgg. In
addition, some of the user interfaces support other rendering engines. For example, with GTK, you can also
select GDK rendering (backend GTK) or Cairo rendering (backend GTKCairo).

For the rendering engines, one can also distinguish between vector or raster renderers. Vector graphics
languages issue drawing commands like “draw a line from this point to this point” and hence are scale free,
and raster backends generate a pixel represenation of the line whose accuracy depends on a DPI setting.

Here is a summary of the matplotlib renderers (there is an eponymous backed for each):

Renderer | Filetypes Description

AGG png raster graphics — high quality images using the Anti-Grain Geometry engine
PS ps eps vector graphics — Postscript output

PDF pdf vector graphics — Portable Document Format

SVG SVg vector graphics — Scalable Vector Graphics

Cairo png ps pdf svg ... | vector graphics — Cairo graphics

GDK png jpg tiff ... raster graphics — the Gimp Drawing Kit

And here are the user interfaces and renderer combinations supported:

168 Chapter 20. Installation FAQ

http://antigrain.html
http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikipedia.org/wiki/Raster_graphics
http://www.antigrain.com/
http://en.wikipedia.org/wiki/PostScript
http://en.wikipedia.org/wiki/Portable_Document_Format
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Cairo_(graphics)
http://en.wikipedia.org/wiki/GDK

Matplotlib, Release 0.99.3

Backend | Description

GTKAgg | Aggrenderingtoa GTK canvas (requires PyGTK)

GTK GDK rendering to a GTK canvas (not recommended) (requires PyGTK)
GTKCairo | Cairo rendering to a GTK Canvas (requires PyGTK)

WXAgg Agg rendering to to a wxWidgets canvas (requires wxPython)

WX Native wxWidgets drawing to a wxWidgets Canvas (not recommended) (requires wxPython)
TkAgg Agg rendering to a Tk canvas (requires TklInter)
QtAgg Agg rendering to a Qf canvas (requires PyQt)

QtdAgg Agg rendering to a Q4 canvas (requires PyQt4)
FLTKAgg | Aggrendering to a FLTK canvas (requires pyFLTK)
macosx Cocoa rendering in OSX windows

20.6.2 Compile matplotlib with PyGTK-2.4

There is a bug in PyGTK-2.4. You need to edit pygobject.h to add the G_BEGIN_DECLS and G_END_DECLS
macros, and rename typename parameter to typename_:

- const char *typename,
+ const char *typename_,

20.7 OS-X questions

20.7.1 Which python for OS X?

Apple ships with its own python, many users have had trouble with it so there are alternatives. If it is feasible
for you, we recommend the enthought python distribution EPD for OS X (which comes with matplotlib and
much more) or the MacPython or the official OS X version from python.org.

20.7.2 Installing OSX binaries

If you want to install matplotlib from one of the binary installers we build, you have two choices: a
dmg installer, which is a typical Installer.app, or an binary OSX egg, which you can install via setuptools
easy_install.

The mkpg installer will have a “dmg” extension, and will have a name like
matplotlib-0.99.0-py2.5-macosx10.5.dmg depending on the python, matplotlib, and OSX
versions. Save this file and double click it, which will open up a folder with a file in it that
has the mpkg extension. Double click this to run the Installer.app, which will prompt you
for a password if you need system wide installation privileges, and install to a directory like
/Library/Frameworks/Python. framework/Versions/2.5/1ib/python2.5/site-packages,
again depedending on your python version. This directory should be in your python path, so you can test
your installation with:

> python -c ’import matplotlib; print matplotlib.__version__, matplotlib.__file__’

If you get an error like:

20.7. OS-X questions 169

http://www.pygtk.org
http://www.pygtk.org
http://www.pygtk.org
http://www.wxpython.org/
http://www.wxpython.org/
http://wiki.python.org/moin/TkInter
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://pyfltk.sourceforge.net
http://bugzilla.gnome.org/show_bug.cgi?id=155304
http://www.enthought.com/products/epd.php
http://wiki.python.org/moin/MacPython/Leopard
http://www.python.org/download/

Matplotlib, Release 0.99.3

Traceback (most recent call last):
File "<string>", line 1, in <module>
ImportError: No module named matplotlib

then you will need to set your PYTHONPATH, eg:

export PYTHONPATH=/Library/Frameworks/Python. framework/Versions/2.5/1ib/python2.5/site-packages: $PYTHON!

See also environment-variables.

If you are upgrading your matplotlib using the dmg installer over an Enthought Python Distribution, you
may get an error like “You must use a framework install of python”. EPD puts their python in a directory
like :file://Library/Frameworks/Python. framework/Versions/4. 3.0 where 4.3.0 is an EPD version
number. The mpl installer needs the python version number, so you need to create a symlink pointing your
python version to the EPS version before installing matplotlib. For example, for python veersion 2.5 and
EPD version 4.3.0:

> cd /Library/Frameworks/Python. framework/Versions
> 1ln -s 4.3.0 2.5

20.7.3 easy_.install from egg

You can also us the eggs we build for OSX (see the installation instructions for easy_install if you do not
have it on your system already). You can try:

> easy_install matplotlib

which should grab the latest egg from the sourceforge site, but the naming conventions for OSX eggs appear
to be broken (see below) so there is no guarantee the right egg will be found. We recommend you download
the latest egg from our download site directly to your harddrive, and manually install it with

> easy_install —install-dir=~/dev/lib/python2.5/site-packages/ matplotlib-0.99.0.rc1-py2.5-
macosx-10.5-i386.egg

Some users have reported problems with the egg for 0.98 from the matplotlib download site, with
easy_install, getting an error:

> easy_install ./matplotlib-0.98.0-py2.5-macosx-10.3-fat.egg
Processing matplotlib-0.98.0-py2.5-macosx-10.3-fat.egg

removing ’/Library/Python/2.5/site-packages/matplotlib-0.98.0-py2.5-
...snip...

Reading http://matplotlib.sourceforge.net

Reading http://cheeseshop.python.org/pypi/matplotlib/0.91.3

No local packages or download links found for matplotlib==0.98.0
error: Could not find suitable distribution for
Requirement.parse('matplotlib==0.98.0")

If you rename matplotlib-0.98.0-py2.5-macosx-10.3-fat.egg to
matplotlib-0.98.0-py2.5.egg, easy_install will install it from the disk. Many Mac OS X
eggs with cruft at the end of the filename, which prevents their installation through easy_install. Renaming
is all it takes to install them; still, it’s annoying.

170 Chapter 20. Installation FAQ

http://pypi.python.org/pypi/setuptools#cygwin-mac-os-x-linux-other
http://sourceforge.net/projects/matplotlib/files/

Matplotlib, Release 0.99.3

20.7.4 Building and installing from source on OSX with EPD

If you have the EPD installed (Which python for OS X?), it might turn out to be rather tricky to install a
new version of matplotlib from source on the Mac OS 10.5 . Here’s a procedure that seems to work, at least
sometimes:

0. Remove the ~/.matplotlib folder (“rm -rf ~/.matplotlib™).

1. Edit the file (make a backup before you start, just in case):
/Library/Frameworks/Python. framework/Versions/Current/lib/python2.5/config/Makefile,
removing all occurrences of the string -arch ppc, changing the line MACOSX_DEPLOYMENT_TARGET=10.3
to MACOSX_DEPLOYMENT_TARGET=10.5 and changing the occurrences of Mac0SX10.4u.sdk into
Mac0SX10.5.sdk

2. In /Library/Frameworks/Python. framework/Versions/Current/lib/pythonX.Y/site-packages/easy-ins
(where X.Y is the version of Python you are building against) Comment out the line containing the

name of the directory in which the previous version of MPL was installed (Looks something like
./matplotlib-0.98.5.2n2-py2.5-macosx-10.3-fat.egg).

3. Save the following as a shell script , for example . /install-matplotlib-epd-osx.sh

NAME=matplotlib
VERSION=0_99
PREFIX=$HOME
#branch="release"
branch="trunk"
if [$branch = "trunk"]
then
echo getting the trunk
svn co https://matplotlib.svn.sourceforge.net/svnroot/$NAME/trunk/$NAME $NAME
cd $NAME

fi
if [$branch = "release"]
then
echo getting the maintenance branch
svn co https://matplotlib.svn.sf.net/svnroot/matplotlib/branches/v${VERSION}_maint $NAMESVEI
cd $NAMES$VERSION
fi
export CFLAGS="-0s -arch i386"
export LDFLAGS="-0Os -arch i386"
export PKG_CONFIG_PATH="/usr/x11/1ib/pkgconfig"
export ARCHFLAGS="-arch i386"
python setup.py build
python setup.py install #--prefix=$PREFIX #Use this if you don’t want it installed into your de
cd ..

Run this script (for example sh ./install-matplotlib-epd-osx.sh) in the directory in which you
want the source code to be placed, or simply type the commands in the terminal command line. This script
sets some local variable (CFLAGS, LDFLAGS, PKG_CONFIG_PATH, ARCHFLAGS), removes previous
installations, checks out the source from svn, builds and installs it. The backend seems to be set to MacOSX.

20.7. OS-X questions 171

Matplotlib, Release 0.99.3

20.8 Windows questions

20.8.1 Binary installers for windows

If you have already installed python, you can use one of the matplotlib binary installers for windows — you
can get these from the sourceforge download site. Choose the files that match your version of python (eg
py2.5 if you installed Python 2.5) which have the exe extension. If you haven’t already installed python,
you can get the official version from the python web site. There are also two packaged distributions of
python that come preloaded with matplotlib and many other tools like ipython, numpy, scipy, vtk and user
interface toolkits. These packages are quite large because they come with so much, but you get everything
with a single click installer.

o the enthought python distribution EPD

e python (x, y)

172 Chapter 20. Installation FAQ

http://sourceforge.net/project/platformdownload.php?group_id=80706
http://python.org/download/
http://www.enthought.com/products/epd.php
http://www.pythonxy.com/foreword.php

CHAPTER
TWENTYONE

USAGE

Contents

e Usage
— Matplotlib, pylab, and pyplot: how are they related?

21.1 Matplotlib, pylab, and pyplot: how are they related?

Matplotlib is the whole package; pylab is a module in matplotlib that gets installed alongside matplotlib;
and matplotlib.pyplot is a module in matplotlib.

Pyplot provides a Matlab-style state-machine interface to the underlying object-oriented plotting library in
matplotlib.

Pylab combines the pyplot functionality (for plotting) with the numpy functionality (for mathematics and for
working with arrays) in a single namespace, making that namespace (or environment) even more Matlab-
like. This is what you get if you use the ipython shell with the -pylab option, which imports everything from
pylab and makes plotting fully interactive.

We have been gradually converting the matplotlib examples from pure Matlab-style, using “from pylab
import *”, to a preferred style in which pyplot is used for some convenience functions, either pyplot or the
object-oriented style is used for the remainder of the plotting code, and numpy is used explicitly for numeric
array operations.

In this preferred style, the imports at the top are:

import matplotlib.pyplot as plt
import numpy as np

Then one calls, for example, np.arange, np.zeros, np.pi, plt.figure, plt.plot, plt.show, etc.
Example, pure Matlab-style:

from pylab import *
x = arange(0®, 10, 0.2)
y = sin(x)

173

Matplotlib, Release 0.99.3

plot(x, y)
show()

Now in preferred style, but still using pyplot interface:

import matplotlib.pyplot as plt
import numpy as np

X = np.arange(0, 10, 0.2)

y = np.sin(x)

plt.plot(x, y)

plt.show()

And using pyplot convenience functions, but object-orientation for the rest:

import matplotlib.pyplot as plt
import numpy as np

X = np.arange(0, 10, 0.2)

y np.sin(x)

fig = plt.figure()

ax = fig.add_subplot(111)
ax.plot(x, y)

plt.show()

So, why do all the extra typing required as one moves away from the pure matlab-style? For very simple
things like this example, the only advantage is educational: the wordier styles are more explicit, more clear
as to where things come from and what is going on. For more complicated applications, the explicitness and
clarity become increasingly valuable, and the richer and more complete object-oriented interface will likely
make the program easier to write and maintain.

174 Chapter 21. Usage

CHAPTER
TWENTYTWO

HOWTO

Contents

e Howto

— Plotting: howto

*

XK K X X K X KX X ¥ ¥ X

*

Find all objects in figure of a certain type

Save transparent figures

Move the edge of an axes to make room for tick labels
Automatically make room for tick labels
Configure the tick linewidths

Align my ylabels across multiple subplots

Skip dates where there is no data

Test whether a point is inside a polygon

Control the depth of plot elements

Make the aspect ratio for plots equal

Make a movie

Multiple y-axis scales

Generate images without having a window popup
Use show()

— Contributing: howto

*
*

Submit a patch
Contribute to matplotlib documentation

— Matplotlib in a web application server

*
*
*
*

matplotlib with apache
matplotlib with django
matplotlib with zope
Clickable images for HTML

— Search examples

175

Matplotlib, Release 0.99.3

22.1 Plotting: howto

22.1.1 Find all objects in figure of a certain type

Every matplotlib artist (see Artist tutorial) has a method called findobj () that can be used to recursively
search the artist for any artists it may contain that meet some criteria (eg match all Line2D instances or
match some arbitrary filter function). For example, the following snippet finds every object in the figure
which has a set_color property and makes the object blue:

def myfunc(x):
return hasattr(x, ’set_color’)

for o in fig.findobj(myfunc):
o.set_color(’blue’)

You can also filter on class instances:

import matplotlib.text as text
for o in fig.findobj(text.Text):
o.set_fontstyle(’italic’)

22.1.2 Save transparent figures

The savefig() command has a keyword argument transparent which, if True, will make the figure and
axes backgrounds transparent when saving, but will not affect the displayed image on the screen. If you
need finer grained control, eg you do not want full transparency or you to affect the screen displayed version
as well, you can set the alpha properties directly. The figure has a matplotlib.patches.Rectangle
instance called patch and the axes has a Rectangle instance called patch. You can set any property on them
directly (facecolor, edgecolor, linewidth, linestyle, alpha). Eg:

fig = plt.figure()
fig.patch.set_alpha(0.5)
ax = fig.add_subplot(111)
ax.patch.set_alpha(0.5)

If you need all the figure elements to be transparent, there is currently no global alpha setting, but you can
set the alpha channel on individual elements, eg:

ax.plot(x, y, alpha=0.5)
ax.set_xlabel(’volts’, alpha=0.5)

22.1.3 Move the edge of an axes to make room for tick labels

For subplots, you can control the default spacing on the left, right, bottom, and top as
well as the horizontal and vertical spacing between multiple rows and columns using the
matplotlib. figure.Figure.subplots_adjust() method (in pyplot it is subplots_adjust()). For
example, to move the bottom of the subplots up to make room for some rotated x tick labels:

176 Chapter 22. Howto

Matplotlib, Release 0.99.3

fig = plt.figure()
fig.subplots_adjust(bottom=0.2)
ax = fig.add_subplot(111)

You can control the defaults for these parameters in your matplotlibrc file; see Customizing matplotlib.
For example, to make the above setting permanent, you would set:

figure.subplot.bottom : 0.2 # the bottom of the subplots of the figure

The other parameters you can configure are, with their defaults

left = 0.125 the left side of the subplots of the figure

right = 0.9 the right side of the subplots of the figure

bottom = 0.1 the bottom of the subplots of the figure

top = 0.9 the top of the subplots of the figure

wspace = (0.2 the amount of width reserved for blank space between subplots
hspace = 0.2 the amount of height reserved for white space between subplots

If you want additional control, you can create an Axes using the axes () command (or equivalently the figure
matplotlib.figure.Figure.add_axes() method), which allows you to specify the location explicitly:

ax = fig.add_axes([left, bottom, width, height])

where all values are in fractional (0 to 1) coordinates. See axes_demo.py for an example of placing axes
manually.

22.1.4 Automatically make room for tick labels

In most use cases, it is enough to simpy change the subplots adjust parameters as described in Move the
edge of an axes to make room for tick labels. But in some cases, you don’t know ahead of time what your
tick labels will be, or how large they will be (data and labels outside your control may be being fed into
your graphing application), and you may need to automatically adjust your subplot parameters based on the
size of the tick labels. Any matplotlib.text.Text instance can report its extent in window coordinates
(a negative x coordinate is outside the window), but there is a rub.

The matplotlib.backend_bases.RendererBase instance, which is used to calculate the text size, is
not known until the figure is drawn (matplotlib.figure.Figure.draw()). After the window is drawn
and the text instance knows its renderer, you can call matplotlib.text.Text.get_window_extent().
One way to solve this chicken and egg problem is to wait until the figure is draw by con-
necting (matplotlib.backend_bases.FigureCanvasBase.mpl_connect()) to the “on_draw” signal
(DrawEvent) and get the window extent there, and then do something with it, eg move the left of the canvas
over; see Event handling and picking.

Here is that gets a bounding box in relative figure coordinates (0..1) of each of the labels and uses it to move
the left of the subplots over so that the tick labels fit in the figure

22.1. Plotting: howto 177

http://matplotlib.sf.net/examples/axes_demo.py

Matplotlib, Release 0.99.3

labels

long

really, really, really

22.1.5 Configure the tick linewidths

In matplotlib, the ticks are markers. All Line2D objects support a line (solid, dashed, etc) and a marker
(circle, square, tick). The tick linewidth is controlled by the “markeredgewidth” property:

import matplotlib.pyplot as plt
fig = plt.figure(Q)

ax = fig.add_subplot(111)
ax.plot(range(10))

for line in ax.get_xticklines() + ax.get_yticklines():
line.set_markersize(10)

plt.show()

The other properties that control the tick marker, and all markers, are markerfacecolor,
markeredgecolor, markeredgewidth, markersize. For more information on configuring ticks, see
Axis containers and Tick containers.

22.1.6 Align my ylabels across multiple subplots

If you have multiple subplots over one another, and the y data have different scales, you can often get ylabels
that do not align vertically across the multiple subplots, which can be unattractive. By default, matplotlib

178 Chapter 22. Howto

Matplotlib, Release 0.99.3

positions the x location of the ylabel so that it does not overlap any of the y ticks. You can override this
default behavior by specifying the coordinates of the label. The example below shows the default behavior
in the left subplots, and the manual setting in the right subplots.

ylabels not aligned ylabels aligned
2000 I I I I I I I I 2000 I I I I I I I
5 1500 1500
£ 3
2 1000 c1000
o o)
v T
c 500 500
%0 123456789 0
1.0 I I I I I I I I 1.0
~ 0.8 0.9
®) o
c 0.6 T 0.8
2 c
© 0.4 2 0.7
v T
£0.2 0.6
0.0 0.5

22.1.7 Skip dates where there is no data

When plotting time series, eg financial time series, one often wants to leave out days on which there is no
data, eg weekends. By passing in dates on the x-xaxis, you get large horizontal gaps on periods when there
is not data. The solution is to pass in some proxy x-data, eg evenly sampled indicies, and then use a custom
formatter to format these as dates. The example below shows how to use an ‘index formatter’ to achieve the
desired plot:

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import matplotlib.ticker as ticker

r = mlab.csv2rec(’../data/aapl.csv’)
r.sort()
r = r[-30:] # get the last 30 days

N = len(r)
ind = np.arange(N) # the evenly spaced plot indices

22.1. Plotting: howto 179

Matplotlib, Release 0.99.3

def format_date(x, pos=None):
thisind = np.clip(int(x+0.5), 0, N-1)
return r.date[thisind].strftime(’%Y-%m-%d’)

fig = plt.figure()

ax = fig

.add_subplot(111)

ax.plot(ind, r.adj_close, ’'o0-")

ax.xaxis

.set_major_formatter(ticker.FuncFormatter(format_date))

fig.autofmt_xdate()

plt.show()

22.1.8 Test whether a point is inside a polygon

The matplotlib.nxutils provides two high performance methods: for a single point use pnpoly () and
for an array of points use points_inside_poly(). For a discussion of the implementation see pnpoly.

In [25]: import numpy as np
In [26]: import matplotlib.nxutils as nx
In [27]: verts = np.array([[0,0], [0, 1], [1, 1], [1,0]], float)
In [28]: nx.pnpoly(0.5, 0.5, verts)
Out[28]: 1
In [29]: nx.pnpoly(0.5, 1.5, verts)
Out[29]: ©
In [30]: points = np.random.rand(10,2)*2
In [31]: points
Out[31]:
array([[1.03597426, 0.61029911],
[1.94061056, 0.65233947],
[1.08593748, 1.16010789],
[©.9255139 , 1.79098751],
[1.54564936, 1.15604046],
[1.71514397, 1.26147554],
[1.19133536, 0.56787764],
[©.40939549, 0.35190339],
[1.8944715 , 0.61785408],
[©.03128518, ©.48144145]1])
In [32]: nx.points_inside_poly(points, verts)
Out[32]: array([False, False, False, False, False, False, False, True, False, True], dtype=bool)
180 Chapter 22. Howto

http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html

Matplotlib, Release 0.99.3

22.1.9 Control the depth of plot elements

Within an axes, the order that the various lines, markers, text, collections, etc appear is determined by
the matplotlib.artist.Artist.set_zorder() property. The default order is patches, lines, text, with
collections of lines and collections of patches appearing at the same level as regular lines and patches,
respectively:

line, = ax.plot(x, y, zorder=10)

You can also use the Axes property matplotlib.axes.Axes.set_axisbelow() to control whether the
grid lines are placed above or below your other plot elements.

22.1.10 Make the aspect ratio for plots equal

The Axes property matplotlib.axes.Axes.set_aspect () controls the aspect ratio of the axes. You can
set it to be ‘auto’, ‘equal’, or some ratio which controls the ratio:

ax = fig.add_subplot(111, aspect=’equal’)

22.1.11 Make a movie

If you want to take an animated plot and turn it into a movie, the best approach is to save a series of image
files (eg PNG) and use an external tool to convert them to a movie. You can use mencoder, which is part of
the mplayer suite for this:

#fps (frames per second) controls the play speed
mencoder ’'mf://*.png’ -mf type=png:fps=10 -ovc \\
lavc -lavcopts vcodec=wmv2 -oac copy -0 animation.avi

The swiss army knife of image tools, ImageMagick’s convert works for this as well.

Here is a simple example script that saves some PNGs, makes them into a movie, and then cleans up:

import os, sys
import matplotlib.pyplot as plt

files = []

fig = plt.figure(figsize=(5,5))
ax = fig.add_subplot(111)

for i in range(50): # 50 frames

ax.claQ
ax.imshow(rand(5,5), interpolation='nearest’)
fname = ’_tmp%03d.png’%i

print ’Saving frame’, fname
fig.savefig(fname)
files.append(fname)

print ’Making movie animation.mpg - this make take a while’
os.system("mencoder ’'mf://_tmp*.png’ -mf type=png:fps=10 \\
-ovc lavc -lavcopts vcodec=wmv2 -oac copy -0 animation.mpg")

22.1. Plotting: howto 181

http://www.mplayerhq.hu/DOCS/HTML/en/mencoder.html
http://www.mplayerhq.hu
http://www.imagemagick.org/script/convert.php

Matplotlib, Release 0.99.3

22.1.12 Multiple y-axis scales

A frequent request is to have two scales for the left and right y-axis, which is possible using twinx () (more
than two scales are not currently supported, though it is on the wish list). This works pretty well, though
there are some quirks when you are trying to interactively pan and zoom, since both scales do not get the
signals.

The approach twinx () (and its sister twiny ()) uses is to use 2 different axes, turning the axes rectangular
frame off on the 2nd axes to keep it from obscuring the first, and manually setting the tick locs and labels
as desired. You can use separate matplotlib.ticker formatters and locators as desired since the two axes are
independent:

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()

axl = fig.add_subplot(111)

t = np.arange(0.01, 10.0, 0.01)
sl = np.exp(t)

axl.plot(t, s1, 'b-")
axl.set_xlabel(’ time (s)’)
axl.set_ylabel(’exp’)

ax2 = axl.twinx()

s2 = np.sin(2*np.pi*t)
ax2.plot(t, s2, 'r.’)
ax2.set_ylabel(’sin’)
plt.show()

22.1.13 Generate images without having a window popup

The easiest way to do this is use an image backend (see What is a backend?) such as Agg (for PNGs), PDF,
SVG or PS. In your figure generating script, just place call matplotlib.use() directive before importing

pylab or pyplot:

import matplotlib
matplotlib.use(’Agg’)

import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.savefig('myfig’)

See Also:

Matplotlib in a web application server For information about running matplotlib inside of a web application.

22.1.14 Use show()

The user interface backends need to start the GUI mainloop, and this is what show () does. It tells matplotlib
to raise all of the figure windows and start the mainloop. Because the mainloop is blocking, you should only
call this once per script, at the end. If you are using matplotlib to generate images only and do not want a

182 Chapter 22. Howto

Matplotlib, Release 0.99.3

user interface window, you do not need to call show (see Generate images without having a window popup
and What is a backend?).

Because it is expensive to draw, matplotlib does not want to redrawing the figure many times in a script such
as the following:

plot([1,2,3]) # draw here ?
xlabel (" time’) # and here ?
ylabel(’volts’) # and here ?
title(’a simple plot’) # and here ?
show()

Itis possible to force matplotlib to draw after every command, which is what you usually want when working
interactively at the python console (see Using matplotlib in a python shell), but in a script you want to defer
all drawing until the script has executed. This is especially important for complex figures that take some
time to draw. show () is designed to tell matplotlib that you’re all done issuing commands and you want to
draw the figure now.

Note: show() should be called at most once per script and it should be the last line of your script. At that
point, the GUI takes control of the interpreter. If you want to force a figure draw, use draw() instead.

Many users are frustrated by show because they want it to be a blocking call that raises the figure, pauses the
script until the figure is closed, and then allows the script to continue running until the next figure is created
and the next show is made. Something like this:

WARNING : illustrating how NOT to use show
for i in range(10):

make figure i

show()

This is not what show does and unfortunately, because doing blocking calls across user interfaces can be
tricky, is currently unsupported, though we have made some progress towards supporting blocking events.

22.2 Contributing: howto

22.2.1 Submit a patch

First obtain a copy of matplotlib svn (see Install from svn) and make your changes to the matplotlib source
code or documentation and apply a svn diff. If it is feasible, do your diff from the top level directory, the one
that contains setup.py. Eg,:

> cd /path/to/matplotlib/source
> svn diff > mypatch.diff

and then post your patch to the matplotlib-devel mailing list. If you do not get a response within 24 hours,
post your patch to the sourceforge patch tracker, and follow up on the mailing list with a link to the source-
forge patch submissions. If you still do not hear anything within a week (this shouldn’t happen!), send us a
kind and gentle reminder on the mailing list.

If you have made lots of local changes and do not want to a diff against the entire tree, but rather against
a single directory or file, that is fine, but we do prefer svn diffs against the top level (where setup.py lives)

22.2. Contributing: howto 183

http://sourceforge.net/mail/?group_id=80706
http://sourceforge.net/tracker2/?atid=560722&group_id=80706&func=browse

Matplotlib, Release 0.99.3

since it is nice to have a consistent way to apply them.

If you are posting a patch to fix a code bug, please explain your patch in words — what was broken before
and how you fixed it. Also, even if your patch is particularly simple, just a few lines or a single function
replacement, we encourage people to submit svn diffs against HEAD or the branch they are patching. It just
makes life simpler for us, since we (fortunately) get a lot of contributions, and want to receive them in a stan-
dard format. If possible, for any non-trivial change, please include a complete, free-standing example that
the developers can run unmodified which shows the undesired behavior pre-patch and the desired behavior
post-patch, with a clear verbal description of what to look for. The original developer may have written the
function you are working on years ago, and may no longer be with the project, so it is quite possible you are
the world expert on the code you are patching and we want to hear as much detail as you can offer.

When emailing your patch and examples, feel free to paste any code into the text of the message, indeed we
encourage it, but also attach the patches and examples since many email clients screw up the formatting of
plain text, and we spend lots of needless time trying to reformat the code to make it usable.

You should check out the guide to developing matplotlib to make sure your patch abides by our coding
conventions The Matplotlib Developers’ Guide.

22.2.2 Contribute to matplotlib documentation

matplotlib is a big library, which is used in many ways, and the documentation we have only scratches the
surface of everything it can do. So far, the place most people have learned all these features are through
studying the examples (Search examples), which is a recommended and great way to learn, but it would
be nice to have more official narrative documentation guiding people through all the dark corners. This is
where you come in.

There is a good chance you know more about matplotlib usage in some areas, the stuff you do every day,
than many of the core developers who write most of the documentation. Just pulled your hair out compiling
matplotlib for windows? Write a FAQ or a section for the /nstalling page. Are you a digital signal processing
wizard? Write a tutorial on the signal analysis plotting functions like xcorr(), psd() and specgram().
Do you use matplotlib with django or other popular web application servers? Write a FAQ or tutorial and
we’ll find a place for it in the User’s Guide. Bundle matplotlib in a py2exe app? ... I think you get the idea.

matplotlib is documented using the sphinx extensions to restructured text ReST. sphinx is a extensible
python framework for documentation projects which generates HTML and PDF, and is pretty easy to write;
you can see the source for this document or any page on this site by clicking on Show Source link at the end
of the page in the sidebar (or here for this document).

The sphinx website is a good resource for learning sphinx, but we have put together a cheat-sheet at Docu-
menting matplotlib which shows you how to get started, and outlines the matplotlib conventions and exten-
sions, eg for including plots directly from external code in your documents.

Once your documentation contributions are working (and hopefully tested by actually building the docs) you
can submit them as a patch against svn. See Install from svn and Submit a patch. Looking for something to
do? Search for TODO.

184 Chapter 22. Howto

http://www.djangoproject.com/
http://www.py2exe.org/
http://sphinx.pocoo.org/index.html
http://docutils.sourceforge.net/rst.html

Matplotlib, Release 0.99.3

22.3 Matplotlib in a web application server

Many users report initial problems trying to use maptlotlib in web application servers, because by default
matplotlib ships configured to work with a graphical user interface which may require an X11 connection.
Since many barebones application servers do not have X11 enabled, you may get errors if you don’t config-
ure matplotlib for use in these environments. Most importantly, you need to decide what kinds of images
you want to generate (PNG, PDF, SVG) and configure the appropriate default backend. For 99% of users,
this will be the Agg backend, which uses the C++ antigrain rendering engine to make nice PNGs. The Agg
backend is also configured to recognize requests to generate other output formats (PDF, PS, EPS, SVG).
The easiest way to configure matplotlib to use Agg is to call:

do this before importing pylab or pyplot
import matplotlib

matplotlib.use(’Agg’)

import matplotlib.pyplot as plt

For more on configuring your backend, see What is a backend?.

Alternatively, you can avoid pylab/pyplot altogeher, which will give you a little more control, by calling the
API directly as shown in agg_o0o0.py .

You can either generate hardcopy on the filesystem by calling savefig:

do this before importing pylab or pyplot
import matplotlib

matplotlib.use(’Agg’)

import matplotlib.pyplot as plt

fig = plt.figure(Q

ax = fig.add_subplot(111)

ax.plot([1,2,3])

fig.savefig(’test.png’)

or by saving to a file handle:

import sys

fig.savefig(sys.stdout)

Here is an example using the Python Imaging Library PIL. First the figure is saved to a StringlO objectm
which is then fed to PIL for further processing:

import StringIO, Image

imgdata = StringIO.StringI0(Q)
fig.savefig(imgdata, format=’png’)
imgdata.seek(®) # rewind the data
im = Image.open(imgdata)

22.3.1 matplotlib with apache

TODO; see Contribute to matplotlib documentation.

22.3. Matplotlib in a web application server 185

http://antigrain.com
http://matplotlib.sf.net/examples/api/agg_oo.py

Matplotlib, Release 0.99.3

22.3.2 matplotlib with django

TODO; see Contribute to matplotlib documentation.

22.3.3 matplotlib with zope

TODO; see Contribute to matplotlib documentation.

22.3.4 Clickable images for HTML

Andrew Dalke of Dalke Scientific has written a nice article on how to make html click maps with matplotlib
agg PNGs. We would also like to add this functionality to SVG and add a SWF backend to support these
kind of images. If you are interested in contributing to these efforts that would be great.

22.4 Search examples

The nearly 300 code examples-index included with the matplotlib source distribution are full-text searchable
from the search page, but sometimes when you search, you get a lot of results from the The Matplotlib API
or other documentation that you may not be interested in if you just want to find a complete, free-standing,
working piece of example code. To facilitate example searches, we have tagged every code example page
with the keyword codex for code example which shouldn’t appear anywhere else on this site except in the
FAQ and in every example. So if you want to search for an example that uses an ellipse, search for codex
ellipse.

186 Chapter 22. Howto

http://www.dalkescientific.com
http://www.dalkescientific.com/writings/diary/archive/2005/04/24/interactive_html.html

CHAPTER
TWENTYTHREE

TROUBLESHOOTING

Contents

e Troubleshooting

— Obtaining matplotlib version
matplotlib install location
.matplotlib directory location
Report a problem
Problems with recent svn versions

23.1 Obtaining matplotlib version

To find out your matplotlib version number, import it and print the __version__ attribute:

>>> import matplotlib
>>> matplotlib.__version__
’0.98.0°

23.2 matplotlib install location

You can find what directory matplotlib is installed in by importing it and printing the __file__ attribute:

>>> import matplotlib
>>> matplotlib.__file__
’ /home/jdhunter/dev/1ib64/python2.5/site-packages/matplotlib/__init__.pyc’

23.3 .matplotlib directory location

Each wuser has a .matplotlib/ directory which may contain a matplotlibrc file and vari-
ous caches to improve matplotlib’s performance. To locate your .matplotlib/ directory, use
matplotlib.get_configdir():

187

Matplotlib, Release 0.99.3

>>> import matplotlib as mpl
>>> mpl.get_configdir()
’ /home/darren/.matplotlib’

On unix like systems, this directory is generally located in your HOME directory. On windows, it is in your
documents and settings directory by default:

>>> import matplotlib
>>> mpl.get_configdir()
"C:\\Documents and Settings\\jdhunter\\.matplotlib’

If you would like to use a different configuration directory, you can do so by specifying the location in your
MPLCONFIGDIR environment variable — see sefting-linux-osx-environment-variables.

23.4 Report a problem

If you are having a problem with matplotlib, search the mailing lists first: there’s a good chance someone
else has already run into your problem.

If not, please provide the following information in your e-mail to the mailing list:
e your operating system; on Linux/UNIX post the output of uname -a
e matplotlib version:
python -c ‘import matplotlib; print matplotlib.__version__*
e where you obtained matplotlib (e.g. your Linux distribution’s packages or the matplotlib Sourceforge
site, or the enthought python distribution EPD.
e any customizations to your matplotlibrc file (see Customizing matplotlib).

o if the problem is reproducible, please try to provide a minimal, standalone Python script that demon-
strates the problem. This is the critical step. If you can’t post a piece of code that we can run and
reproduce your error, the chances of getting help are significantly diminished. Very often, the mere
act of trying to minimize your code to the smallest bit that produces the error will help you find a bug
in your code that is causing the problem.

e you can get very helpful debugging output from matlotlib by running your script with a
verbose-helpful or --verbose-debug flags and posting the verbose output the lists:

> python simple_plot.py --verbose-helpful > output.txt

If you compiled matplotlib yourself, please also provide
e any changes you have made to setup.py or setupext.py
e the output of:

rm -rf build
python setup.py build

188 Chapter 23. Troubleshooting

http://lists.sourceforge.net/mailman/listinfo/matplotlib-users
http://www.enthought.com/products/epd.php

Matplotlib, Release 0.99.3

The beginning of the build output contains lots of details about your platform that are useful for the
matplotlib developers to diagnose your problem.

e your compiler version — eg, gcc --version
Including this information in your first e-mail to the mailing list will save a lot of time.

You will likely get a faster response writing to the mailing list than filing a bug in the bug tracker. Most
developers check the bug tracker only periodically. If your problem has been determined to be a bug and
can not be quickly solved, you may be asked to file a bug in the tracker so the issue doesn’t get lost.

23.5 Problems with recent svn versions

First make sure you have a clean build and install (see Cleanly rebuild and reinstall everything), get the
latest svn update, install it and run a simple test script in debug mode:

rm -rf build
rm -rf /path/to/site-packages/matplotlib*
svn up

python setup.py install > build.out
python examples/pylab_examples/simple_plot.py --verbose-debug > run.out

and post build.out and run.out to the matplotlib-devel mailing list (please do not post svn problems to
the users list).

Of course, you will want to clearly describe your problem, what you are expecting and what you are getting,
but often a clean build and install will help. See also Report a problem.

23.5. Problems with recent svn versions 189

http://lists.sourceforge.net/mailman/listinfo/matplotlib-devel
http://lists.sourceforge.net/mailman/listinfo/matplotlib-users

Matplotlib, Release 0.99.3

190 Chapter 23. Troubleshooting

Part 111

The Matplotlib Developers’ Guide

191

CHAPTER
TWENTYFOUR

CODING GUIDE

24.1 Version control

24.1.1 svn checkouts

Checking out everything in the trunk (matplotlib and toolkits):

svn co https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/trunk \
matplotlib --username=youruser --password=yourpass

Checking out the main source:

svn co https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/trunk/\
matplotlib mpl --username=youruser --password=yourpass

Branch checkouts, eg the release branch:

svn co https://matplotlib.svn.sf.net/svnroot/matplotlib/branches/v0_99_maint mpl99

24.1.2 Committing changes

When committing changes to matplotlib, there are a few things to bear in mind.
o if your changes are non-trivial, please make an entry in the CHANGELOG

o if you change the API, please document it in doc/api/api_changes.rst, and consider posting to
matplotlib-devel

e Are your changes python2.4 compatible? We still support 2.4, so avoid features new to 2.5
e Can you pass examples/tests/backend_driver.py? This is our poor man’s unit test.
e Can you add a test to unit/nose_tests.py to test your changes?

e If you have altered extension code, do you pass unit/memleak_hawaii.py?

¢ if you have added new files or directories, or reorganized existing ones, are the new files included in
the match patterns in MANIFEST. in. This file determines what goes into the source distribution of the
mpl build.

193

http://lists.sourceforge.net/mailman/listinfo/matplotlib-devel

Matplotlib, Release 0.99.3

o Keep the release branch (eg 0.90 and trunk in sync where it makes sense. If there is a bug on both that
needs fixing, use svnmerge.py to keep them in sync. See Using svnmerge below.

24.1.3 Using svhmerge
svnmerge is useful for making bugfixes to a maintenance branch, and then bringing those changes into the
trunk.
The basic procedure is:
e install svnmerge.py in your PATH:

> wget http://svn.apache.org/repos/asf/subversion/trunk/contrib/\
client-side/svnmerge/svnmerge.py

e get a svn checkout of the branch you’ll be making bugfixes to and the trunk (see above)
e Create and commit the bugfix on the branch.

e Then make sure you svn upped on the trunk and have no local modifications, and then from your
checkout of the svn trunk do:

svnmerge.py merge -S BRANCHNAME

Where BRANCHNAME is the name of the branch to merge from, e.g. vO_99_maint.
If you wish to merge only specific revisions (in an unusual situation), do:

> svnmerge.py merge -rNNN1-NNN2

where the NNN are the revision numbers. Ranges are also acceptable.

The merge may have found some conflicts (code that must be manually resolved). Correct those
conflicts, build matplotlib and test your choices. If you have resolved any conflicts, you can let svn
clean up the conflict files for you:

> svn -R resolved .

svnmerge . py automatically creates a file containing the commit messages, so you are ready to make
the commit:

> svn commit -F svnmerge-commit-message.txt

Setting up svnmerge

Note: The following applies only to release managers when there is a new release. Most developers will
not have to concern themselves with this.

e Creating a new branch from the trunk (if the release version is 0.98.5 at revision 6573):

> svn copy \
https://matplotlib.svn.sf.net/svnroot/matplotlib/trunk/matplotlib@6573 \
https://matplotlib.svn.sf.net/svnroot/matplotlib/branches/v0_98_5_maint \
-m "Creating maintenance branch for §.98.5"

194 Chapter 24. Coding guide

http://www.orcaware.com/svn/wiki/Svnmerge.py

Matplotlib, Release 0.99.3

e You can add a new branch for the trunk to “track’ using “svnmerge.py init”, e.g., from a working copy
of the trunk:

> svnmerge.py init https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/branches/v0_98_5_m:
property ’svnmerge-integrated’ set on ’.’

After doing a “svn commit” on this, this merge tracking is available to everyone, so there’s no need
for anyone else to do the “svnmerge init”.
e Tracking can later be removed with the “svnmerge.py uninit” command, e.g.:

> svnmerge.py -S v0_9_5_maint uninit

24.1.4 Using git

Some matplotlib developers are experimenting with using git on top of the subversion repository. Developers
are not required to use git, as subversion will remain the canonical central repository for the foreseeable
future.

Cloning the git mirror
There is an experimental matplotlib github mirror of the subversion repository. To make a local clone of it
in the directory mpl.git, enter the following commands:

This will create your copy in the mpl.git directory

git clone git://github.com/astraw/matplotlib.git mpl.git

cd mpl.git

git config --add remote.origin.fetch +refs/remotes/*:refs/remotes/*

git fetch

git svn init --branches=branches --trunk=trunk/matplotlib --tags=tags https://matplotlib.svn.sourceforg

Now just get the latest svn revisions from the SourceForge SVN repository
git svn fetch -r 6800:HEAD

To install from this cloned repository, use the commands in the svn installation section:

> cd mpl.git
> python setup.py install

Using git

The following is a suggested workflow for git/git-svn.
Start with a virgin tree in sync with the svn trunk on the git branch “master”:

git checkout master
git svn rebase

24.1. Version control 195

http://github.com/astraw/matplotlib

Matplotlib, Release 0.99.3

To create a new, local branch called “whizbang-branch’:

git checkout -b whizbang-branch

Do make commits to the local branch:

hack on a bunch of files

git add bunch of files

git commit -m "modified a bunch of files"
repeat this as necessary

Now, go back to the master branch and append the history of your branch to the master branch, which will
end up as the svn trunk:

git checkout master

git svn rebase # Ensure we have most recent svn

git rebase whizbang-branch # Append whizbang changes to master branch
git svn dcommit -n # Check that this will apply to svn

git svn dcommit # Actually apply to svn

Finally, you may want to continue working on your whizbang-branch, so rebase it to the new master:

git checkout whizbang-branch
git rebase master

If you get the dreaded “Unable to determine upstream SVN information from working tree history” error
when running “git svn rebase”, try creating a new git branch based on subversion trunk and cherry pick your
patches onto that:

git checkout -b work remotes/trunk # create a new "work" branch
git cherry-pick <commit> # where <commit> will get applied to new branch

Working on a maintenance branch from git

The matplotlib maintenance branches are also available through git. (Note thatthe git svn init line in the
instructions above was updated to make this possible. If you created your git mirror without a --branches
option, you will need to perform all of the steps again in a new directory).

You can see which branches are available with:

git branch -a

To switch your working copy to the 0.98.5 maintenance branch:

git checkout v0_98_5_maint

Then you probably want to (as above) create a new local branch based on that branch:

git checkout -b whizbang-branch

When you git svn dcommit from a maintenance branch, it will commit to that branch, not to the trunk.

196 Chapter 24. Coding guide

Matplotlib, Release 0.99.3

While it should theoretically be possible to perform merges from a git maintenance branch to a git trunk
and then commit those changes back to the SVN trunk, I have yet to find the magic incantation to make that
work. However, svnmerge as described above can be used and in fact works quite well.

A note about git write access

The matplotlib developers need to figure out if there should be write access to the git repository. This im-
plies using the personal URL (git@github.com:astraw/matplotlib.git) rather than the public URL
(git://github.com/astraw/matplotlib.git) for the repository. However, doing so may make life
complicated in the sense that then there are two writeable matplotlib repositories, which must be synced to
prevent divergence. This is probably not an insurmountable problem, but it is a problem that the developers
should reach a consensus about. Watch this space...

24.2 Style guide

24.2.1 Importing and name spaces

For numpy, use:

import numpy as np

a = np.array([1,2,3])
For masked arrays, use:

import numpy.ma as ma

For matplotlib main module, use:

import matplotlib as mpl
mpl.rcParams[’xtick.major.pad’] = 6

For matplotlib modules (or any other modules), use:

import matplotlib.cbook as cbook

if cbook.iterable(z):
pass

We prefer this over the equivalent from matplotlib import cbook because the latter is ambiguous as
to whether cbook is a module or a function. The former makes it explicit that you are importing a module
or package. There are some modules with names that match commonly used local variable names, eg
matplotlib.lines or matplotlib.colors. To avoid the clash, use the prefix ‘m’ with the import
some.thing as mthing syntax, eg:

import matplotlib.lines as mlines

import matplotlib.transforms as transforms # OK

import matplotlib.transforms as mtransforms # OK, if you want to disambiguate
import matplotlib.transforms as mtrans # OK, if you want to abbreviate

24.2. Style guide 197

http://www.numpy.org

Matplotlib, Release 0.99.3

24.2.2 Naming, spacing, and formatting conventions

In general, we want to hew as closely as possible to the standard coding guidelines for python written by
Guido in PEP 0008, though we do not do this throughout.

e functions and class methods: lower or lower_underscore_separated
e attributes and variables: lower or lowerUpper
e classes: Upper or MixedCase

Prefer the shortest names that are still readable.

Configure your editor to use spaces, not hard tabs. The standard indentation unit is always four spaces; if
there is a file with tabs or a different number of spaces it is a bug — please fix it. To detect and fix these and
other whitespace errors (see below), use reindent.py as a command-line script. Unless you are sure your
editor always does the right thing, please use reindent.py before checking changes into svn.

Keep docstrings uniformly indented as in the example below, with nothing to the left of the triple quotes.
The matplotlib.cbook.dedent () function is needed to remove excess indentation only if something
will be interpolated into the docstring, again as in the example below.

Limit line length to 80 characters. If a logical line needs to be longer, use parentheses to break it; do not use
an escaped newline. It may be preferable to use a temporary variable to replace a single long line with two
shorter and more readable lines.

Please do not commit lines with trailing white space, as it causes noise in svn diffs. Tell your editor to strip
whitespace from line ends when saving a file. If you are an emacs user, the following in your .emacs will
cause emacs to strip trailing white space upon saving for python, C and C++:

; and similarly for c++-mode-hook and c-mode-hook
(add-hook ’python-mode-hook
(lambda (O
(add-hook ’write-file-functions ’delete-trailing-whitespace)))

for older versions of emacs (emacs<22) you need to do:

(add-hook ’python-mode-hook
(lambda (O
(add-hook ’local-write-file-hooks ’delete-trailing-whitespace)))

24.2.3 Keyword argument processing

Matplotlib makes extensive use of **kwargs for pass-through customizations from one function to another.
A typical example is in matplotlib.pylab.text (). The definition of the pylab text function is a simple
pass-through to matplotlib.axes.Axes.text():

in pylab.py

def text(*args, **kwargs):
ret = gca().text(*args, **kwargs)
draw_if_ interactive()
return ret

198 Chapter 24. Coding guide

http://www.python.org/dev/peps/pep-0008
http://svn.python.org/projects/doctools/trunk/utils/reindent.py

Matplotlib, Release 0.99.3

text() in simplified form looks like this, i.e., it just passes all args and kwargs on to
matplotlib.text.Text.__init__Q):

in axes.py
def text(self, x, y, s, fontdict=None, withdash=False, **kwargs):
t = Text(x=x, y=y, text=s, **kwargs)

and __init__ () (again with liberties for illustration) just passes them on to the
matplotlib.artist.Artist.update() method:

in text.py

def __init__(self, x=0, y=0, text="’, **kwargs):
Artist.__init__(self)
self.update(kwargs)

update does the work looking for methods named like set_property if property is a keyword argument.
L.e., no one looks at the keywords, they just get passed through the API to the artist constructor which looks
for suitably named methods and calls them with the value.

As a general rule, the use of **kwargs should be reserved for pass-through keyword arguments, as in the
example above. If all the keyword args are to be used in the function, and not passed on, use the key/value
keyword args in the function definition rather than the **kwargs idiom.

In some cases, you may want to consume some keys in the local function, and let others pass through. You
can pop the ones to be used locally and pass on the rest. For example, in plot (), scalex and scaley are
local arguments and the rest are passed on as Line2D () keyword arguments:

in axes.py

scalex = kwargs.pop(’scalex’, True)

scaley = kwargs.pop(’scaley’, True)

if not self._hold: self.cla()

lines = []

for line in self._get_lines(*args, **kwargs):
self.add_line(line)
lines.append(line)

Note: there is a use case when kwargs are meant to be used locally in the function (not passed on), but
you still need the **kwargs idiom. That is when you want to use *args to allow variable numbers of non-
keyword args. In this case, python will not allow you to use named keyword args after the *args usage, so
you will be forced to use **kwargs. An example ismatplotlib.contour.ContourLabeler.clabel():

in contour.py
def clabel(self, *args, **kwargs):
fontsize = kwargs.get(’ fontsize’, None)
inline = kwargs.get(’inline’, 1)
self.fmt = kwargs.get(fmt’, ’ D)
colors = kwargs.get(’colors’, None)
if len(args) == 0:
levels = self.levels
indices = range(len(self.levels))
elif len(args) == 1:
..etc...

24.2. Style guide 199

Matplotlib, Release 0.99.3

24.3 Documentation and docstrings

Matplotlib uses artist introspection of docstrings to support properties. All properties that you want to
support through setp and getp should have a set_property and get_property method in the Artist
class. Yes, this is not ideal given python properties or enthought traits, but it is a historical legacy for now.
The setter methods use the docstring with the ACCEPTS token to indicate the type of argument the method
accepts. Eg. inmatplotlib.lines.Line2D:

in lines.py
def set_linestyle(self, linestyle):

e

Set the linestyle of the line

ACCEPTS: [’-’ | ’==" | ’=.” | ’:’ | ’steps’ | ’'None’ | ’ ’ | '’]

o

Since matplotlib uses a lot of pass-through kwargs, eg. in every function that creates a line (plot(),
semilogx (), semilogy (), etc...), it can be difficult for the new user to know which kwargs are supported.
Matplotlib uses a docstring interpolation scheme to support documentation of every function that takes a
**kwargs. The requirements are:

1. single point of configuration so changes to the properties don’t require multiple docstring edits.
2. as automated as possible so that as properties change, the docs are updated automagically.

The functions matplotlib.artist.kwdocd and matplotlib.artist.kwdoc() to facilitate this. They
combine python string interpolation in the docstring with the matplotlib artist introspection facility that
underlies setp and getp. The kwdocd is a single dictionary that maps class name to a docstring of kwargs.
Here is an example from matplotlib.lines:

in lines.py
artist.kwdocd[’Line2D’] = artist.kwdoc(Line2D)

Then in any function accepting Line2D pass-through kwargs, eg. matplotlib.axes.Axes.plot():

in axes.py
def plot(self, *args, **kwargs):

o

Some stuff omitted

The kwargs are Line2D properties:
%(Line2D)s

kwargs scalex and scaley, if defined, are passed on
to autoscale_view to determine whether the x and y axes are
autoscaled; default True. See Axes.autoscale_view for more
information
pass

plot.__doc__ = cbook.dedent(plot.__doc__) % artist.kwdocd

Note there is a problem for Artist __init__ methods, eg. matplotlib.patches.Patch.__init__(),
which supports Patch kwargs, since the artist inspector cannot work until the class is fully defined

200 Chapter 24. Coding guide

Matplotlib, Release 0.99.3

and we can’t modify the Patch.__init__.__doc__ docstring outside the class definition. There are

some some manual hacks in this case, violating the “single entry point” requirement above — see the
artist.kwdocd[’Patch’] setting in matplotlib.patches.

24.4 Developing a new backend

If you are working on a custom backend, the backend setting in matplotlibrc (Customizing matplotlib)
supports an external backend via the module directive. if my_backend.py is a matplotlib backend in your
PYTHONPATH, you can set use it on one of several ways

¢ in matplotlibrc:

backend : module://my_backend

o with the use directive is your script:

import matplotlib
matplotlib.use(’module://my_backend’)

e from the command shell with the -d flag:

> python simple_plot.py -d module://my_backend

24.5 Licenses

Matplotlib only uses BSD compatible code. If you bring in code from another project make sure it has a
PSF, BSD, MIT or compatible license (see the Open Source Initiative licenses page for details on individual
licenses). If it doesn’t, you may consider contacting the author and asking them to relicense it. GPL and
LGPL code are not acceptable in the main code base, though we are considering an alternative way of
distributing L/GPL code through an separate channel, possibly a toolkit. If you include code, make sure you
include a copy of that code’s license in the license directory if the code’s license requires you to distribute
the license with it. Non-BSD compatible licenses are acceptable in matplotlib toolkits (eg basemap), but
make sure you clearly state the licenses you are using.

24.5.1 Why BSD compatible?

The two dominant license variants in the wild are GPL-style and BSD-style. There are countless other
licenses that place specific restrictions on code reuse, but there is an important difference to be considered
in the GPL and BSD variants. The best known and perhaps most widely used license is the GPL, which
in addition to granting you full rights to the source code including redistribution, carries with it an extra
obligation. If you use GPL code in your own code, or link with it, your product must be released under a
GPL compatible license. L.e., you are required to give the source code to other people and give them the
right to redistribute it as well. Many of the most famous and widely used open source projects are released
under the GPL, including linux, gcc, emacs and sage.

The second major class are the BSD-style licenses (which includes MIT and the python PSF license). These
basically allow you to do whatever you want with the code: ignore it, include it in your own open source

24.4. Developing a new backend 201

http://www.opensource.org/licenses

Matplotlib, Release 0.99.3

project, include it in your proprietary product, sell it, whatever. python itself is released under a BSD
compatible license, in the sense that, quoting from the PSF license page:

There is no GPL-like "copyleft" restriction. Distributing
binary-only versions of Python, modified or not, is allowed. There
is no requirement to release any of your source code. You can also
write extension modules for Python and provide them only in binary
form.

Famous projects released under a BSD-style license in the permissive sense of the last paragraph are the
BSD operating system, python and TeX.

There are several reasons why early matplotlib developers selected a BSD compatible license. matplotlib
is a python extension, and we choose a license that was based on the python license (BSD compatible).
Also, we wanted to attract as many users and developers as possible, and many software companies will
not use GPL code in software they plan to distribute, even those that are highly committed to open source
development, such as enthought, out of legitimate concern that use of the GPL will “infect” their code base
by its viral nature. In effect, they want to retain the right to release some proprietary code. Companies and
institutions who use matplotlib often make significant contributions, because they have the resources to get
a job done, even a boring one. Two of the matplotlib backends (FLTK and WX) were contributed by private
companies. The final reason behind the licensing choice is compatibility with the other python extensions
for scientific computing: ipython, numpy, scipy, the enthought tool suite and python itself are all distributed
under BSD compatible licenses.

202 Chapter 24. Coding guide

http://enthought.com

CHAPTER
TWENTYFIVE

DOCUMENTING MATPLOTLIB

25.1 Getting started

The documentation for matplotlib is generated from ReStructured Text using the Sphinx documentation
generation tool. Sphinx-0.5 or later is required. You might still run into problems, so most developers work
from the sphinx source repository (Mercurial based) because it is a rapidly evolving project:

hg clone http://bitbucket.org/birkenfeld/sphinx/
cd sphinx
python setup.py install

The documentation sources are found in the doc/ directory in the trunk. To build the users guide in html
format, cd into doc/ and do:

python make.py html

or:

./make.py html

you can also pass a 1atex flag to make.py to build a pdf, or pass no arguments to build everything.

The output produced by Sphinx can be configured by editing the conf . py file located in the doc/.

25.2 Organization of matplotlib’s documentation

The actual ReStructured Text files are kept in doc/users, doc/devel, doc/api and doc/faq. The main
entry point is doc/index.rst, which pulls in the index.rst file for the users guide, developers guide,
api reference, and fags. The documentation suite is built as a single document in order to make the most
effective use of cross referencing, we want to make navigating the Matplotlib documentation as easy as
possible.

Additional files can be added to the various guides by including their base file name (the .rst extension is
not necessary) in the table of contents. It is also possible to include other documents through the use of an
include statement, such as:

203

http://sphinx.pocoo.org/

Matplotlib, Release 0.99.3

. include:: ../../TODO

25.3 Formatting

The Sphinx website contains plenty of documentation concerning ReST markup and working with Sphinx
in general. Here are a few additional things to keep in mind:

o Please familiarize yourself with the Sphinx directives for inline markup. Matplotlib’s documentation

makes heavy use of cross-referencing and other semantic markup. For example, when referring to
external files, use the : file: directive.

o Function arguments and keywords should be referred to using the emphasis role. This will keep

matplotlib’s documentation consistant with Python’s documentation:

Here is a description of *argument®

Please do not use the default role:

Please do not describe ‘argument‘ like this.

nor the 1iteral role:

Please do not describe ‘‘argument‘‘ like this.

Sphinx does not support tables with column- or row-spanning cells for latex output. Such tables can
not be used when documenting matplotlib.

e Mathematical expressions can be rendered as png images in html, and in the usual way by latex. For

example:
:math: ‘\sin(x_nA2) yields: sin(xﬁ), and:

. math::

\int_{-\infty}*{\infty}\frac{er{i\phi}}{1+x*2\frac{eAr{i\phi}}{1+x42}}

00 ei¢
f — (25.1)
o0 1 422 ¢

1+x2

yields:

Interactive IPython sessions can be illustrated in the documentation using the following directive:

. sourcecode:: ipython
In [69]: lines = plot([1,2,3])

which would yield:

In [69]: lines = plot([1,2,3])

204

Chapter 25. Documenting matplotlib

http://sphinx.pocoo.org/contents.html
http://sphinx.pocoo.org/markup/inline.html

Matplotlib, Release 0.99.3

e Footnotes ' can be added using [#]_, followed later by:

. rubric:: Footnotes
[#]

o Use the note and warning directives, sparingly, to draw attention to important comments:

. hote::
Here is a note

yields:
Note: here is a note

also:

Warning: here is a warning

e Use the deprecated directive when appropriate:

. deprecated:: 0.98
This feature is obsolete, use something else.

yields: Deprecated since version 0.98: This feature is obsolete, use something else.

o Use the versionadded and versionchanged directives, which have similar syntax to the deprecated
role:

. versionadded:: 0.98
The transforms have been completely revamped.

New in version 0.98: The transforms have been completely revamped.
o Use the seealso directive, for example:

. seealso::

Using ReST :ref: ‘emacs-helpers‘:
One example

A bit about :ref:‘referring-to-mpl-docs‘:
One more

yields:

See Also:

Using ResT Emacs helpers: One example

A bit about Referring to mpl documents: One more

o Please keep the Glossary in mind when writing documentation. You can create a references to a term
in the glossary with the : term: role.

! For example.

25.3. Formatting 205

Matplotlib, Release 0.99.3

e The autodoc extension will handle index entries for the API, but additional entries in the index need
to be explicitly added.

25.3.1 Docstrings

In addition to the aforementioned formatting suggestions:
e Please limit the text width of docstrings to 70 characters.
e Keyword arguments should be described using a definition list.

Note: matplotlib makes extensive use of keyword arguments as pass-through arguments, there are a
many cases where a table is used in place of a definition list for autogenerated sections of docstrings.

25.4 Figures

25.4.1 Dynamically generated figures

Figures can be automatically generated from scripts and included in the docs. It is not necessary to explicitly
save the figure in the script, this will be done automatically at build time to ensure that the code that is
included runs and produces the advertised figure. Several figures will be saved with the same basename as
the filename when the documentation is generated (low and high res PNGs, a PDF). Matplotlib includes a
Sphinx extension (sphinxext/plot_directive.py) for generating the images from the python script and
including either a png copy for html or a pdf for latex:

. plot:: pyplots/pyplot_simple.py
:include-source:

If the script produces multiple figures (through multiple calls to pyplot.figure()), each will be given a
numbered file name and included.

The path should be relative to the doc directory. Any plots specific to the documentation should be added to
the doc/pyplots directory and committed to SVN. Plots from the examples directory may be referenced
through the symlink mpl_examples in the doc directory. eg.:

. plot:: mpl_examples/pylab_examples/simple_plot.py

The :scale: directive rescales the image to some percentage of the original size, though we don’t recom-
mend using this in most cases since it is probably better to choose the correct figure size and dpi in mpl
and let it handle the scaling. : include-source: will present the contents of the file, marked up as source
code.

25.4.2 Static figures

Any figures that rely on optional system configurations need to be handled a little differently. These figures
are not to be generated during the documentation build, in order to keep the prerequisites to the documen-
tation effort as low as possible. Please run the doc/pyplots/make.py script when adding such figures,
and commit the script and the images to svn. Please also add a line to the README in doc/pyplots for any

206 Chapter 25. Documenting matplotlib

http://sphinx.pocoo.org/markup/para.html#index-generating-markup

Matplotlib, Release 0.99.3

additional requirements necessary to generate a new figure. Once these steps have been taken, these figures
can be included in the usual way:

. plot:: pyplots/tex_unicode_demo.py
:include-source:

25.4.3 Examples

The source of the files in the examples directory are automatically included in the HTML docs. An image
is generated and included for all examples in the api and pylab_examples directories. To exclude the
example from having an image rendered, insert the following special comment anywhere in the script:

-*- noplot -*-

25.5 Referring to mpl documents

In the documentation, you may want to include to a document in the matplotlib src, e.g. a license file or an
image file from mpl-data, refer to it via a relative path from the document where the rst file resides, eg, in
users/navigation_toolbar.rst, we refer to the image icons with:

. image:: ../../lib/matplotlib/mpl-data/images/subplots.png
In the users subdirectory, if I want to refer to a file in the mpl-data directory, I use the symlink directory. For
example, from customizing.rst:

. literalinclude:: ../../lib/matplotlib/mpl-data/matplotlibrc

On exception to this is when referring to the examples dir. Relative paths are extremely confusing in the
sphinx plot extensions, so without getting into the dirty details, it is easier to simply include a symlink to the
files at the top doc level directory. This way, API documents like matplotlib.pyplot.plot() can refer
to the examples in a known location.

In the top level doc directory we have symlinks pointing to the mpl examples:

home:~/mpl/doc> 1s -1 mpl_*
mpl_examples -> ../examples

So we can include plots from the examples dir using the symlink:

. plot:: mpl_examples/pylab_examples/simple_plot.py

We used to use a symlink for mpl-data too, but the distro becomes very large on platforms that do not
support links (eg the font files are duplicated and large)

25.6 Internal section references

To maximize internal consistency in section labeling and references, use hypen separated, descriptive labels
for section references, eg:

25.5. Referring to mpl documents 207

Matplotlib, Release 0.99.3

. _howto-webapp:

and refer to it using the standard reference syntax:

See :ref: ‘howto-webapp"

Keep in mind that we may want to reorganize the contents later, so let’s avoid top level names in references
like user or devel or faq unless necesssary, because for example the FAQ “what is a backend?” could
later become part of the users guide, so the label:

. _what-is-a-backend

18 better than:

. _fag-backend

In addition, since underscores are widely used by Sphinx itself, let’s prefer hyphens to separate words.

25.7 Section names, etc

For everything but top level chapters, please use Upper lower for section titles, eg Possible hangups
rather than Possible Hangups

25.8 Inheritance diagrams

Class inheritance diagrams can be generated with the inheritance-diagram directive. To use it, you
provide the directive with a number of class or module names (separated by whitespace). If a module name
is provided, all classes in that module will be used. All of the ancestors of these classes will be included in
the inheritance diagram.

A single option is available: parts controls how many of parts in the path to the class are shown. For
example, if parts == 1, the class matplotlib.patches.Patch is shown as Patch. If parts == 2, it is
shown as patches.Patch. If parts == 0, the full path is shown.

Example:

. inheritance-diagram:: matplotlib.patches matplotlib.lines matplotlib.text
:parts: 2

208 Chapter 25. Documenting matplotlib

Matplotlib, Release 0.99.3

‘ patches.RegularPolygon ‘—+ patches.CirclePolygon ‘

‘ patches.FancyArrowPatch H patches.ConnectionPatch ‘

patches.Ellipse patches.Arc
patches.Wedge patches.Circle

) ‘ patches.FancyBboxPatch ‘

patches.Arrow
_ | patches Arrow |
patches.Patch
patches.Polygon patches.FancyArrow
patches.YAArrow
patches.Rectangle
patches.PathPatch

patches.Shadow

artist.Artist ” text.Text text. TextWithDash

lines.Line2D text.Annotation

‘ lines.VertexSelector ‘ ‘ patches.BoxStyle ‘

patches._Style patches.ArrowStyle

‘ patches.ConnectionStyle ‘ /'

I

25.9 Emacs helpers

There is an emacs mode rst.ecl which automates many important ReST tasks like building and updateing
table-of-contents, and promoting or demoting section headings. Here is the basic . emacs configuration:
(require ’rst)
(setq auto-mode-alist

(append ’(("\\.txt$" . rst-mode)

("\\.rst$" . rst-mode)
("\\.rest$" . rst-mode)) auto-mode-alist))

Some helpful functions:

C-c TAB - rst-toc-insert
Insert table of contents at point
C-c C-u - rst-toc-update

Update the table of contents at point

25.9. Emacs helpers 209

http://docutils.sourceforge.net/tools/editors/emacs/rst.el

Matplotlib, Release 0.99.3

C-c C-1 rst-shift-region-left
Shift region to the left
C-c C-r rst-shift-region-right

Shift region to the right

210 Chapter 25. Documenting matplotlib

CHAPTER
TWENTYSIX

DOING A MATPLOLIB RELEASE

A guide for developers who are doing a matplotlib release
e Edit __init__.py and bump the version number

When doing a release

26.1 Testing

o Make sure examples/tests/backend_driver.py runs without errors and check the output of the
PNG, PDF, PS and SVG backends

e Run unit/memleak_hawaii3.py and make sure there are no memory leaks
o Run unit/nose_tests.py and make sure all the unit tests are passing
o try some GUI examples, eg simple_plot.py with GTKAgg, TkAgg, etc...

e remove font cache and tex cache from .matplotlib and test with and without cache on some exam-
ple script

26.2 Branching

Once all the tests are passing and you are ready to do a release, you need to create a release branch and
configure svn-merge to use it; Michael Droettboom should probably handle this step, but if he is not available
see instructions at Setting up svnmerge. On the bracnh, do any additional testing you want to do, and then
build binaries and source distributions for testing as release candidates.

26.3 Packaging
e Make sure the MANIFEST.in us up to date and remove MANIFEST so it will be rebuilt by MANI-
FEST.in
e run svn-clean from in the mpl svn directory before building the sdist

o unpack the sdist and make sure you can build from that directory

211

http://svn.collab.net/repos/svn/trunk/contrib/client-side/svn-clean

Matplotlib, Release 0.99.3

e Use setup.cfg to set the default backends. For windows and OSX, the default backend should be
TkAgg. You should also turn on or off any platform specific build options you need. Importantly,
you also need to make sure that you delete the build dir after any changes to file:setup.cfg before
rebuilding since cruft in the build dir can get carried along.

e on windows, unix2dos the rc file

o We have a Makefile for the OS X builds in the mpl source dir release/osx, so use this to prepare
the OS X releases.

e We have a Makefile for the win32 mingw builds in the mpl source dir release/win32
which you can use this to prepare the windows releases, but this is currently bro-
ken for python2.6 as described at http://www.nabble.com/binary-installers-for-python2.6-libpng-
segfault%2C-MSVCR90.DLL-and-%09mingw-td23971661.html

26.4 Release candidate testing:

Post the release candidates to http://matplotlib.sf.net/release-candidates and post a message to matplotlib-
users and devel requesting testing. To post to the server, you can do:

> scp somefile.tgz jdh2358,matplotlib@shell.sf.net:/home/groups/m/ma/matplotlib/htdocs/release-candidat

replacing ‘jdh2358’ with your sourceforge login.

Any changes to fix bugs in the release candidate should be fixed in the release branch and merged into the
trunk with svn-merge; see Using svnmerge. When the release candidate is signed off on, build the final sdist,
binaries and eggs, and upload them to the sourceforge release area.

26.5 Uploading

e Post the win32 and OS-X binaries for testing and make a request on matplotlib-devel for testing.
Pester us if we don’t respond

o ftp the source and binaries to the anonymous FTP site:

mpl> svn-clean

mpl> python setup.py sdist

mpl> cd dist/

dist> sftp jdh2358@frs.sourceforge.net
Connecting to frs.sourceforge.net...
sftp> cd uploads

sftp> 1s

sftp> 1ls

matplotlib-0.98.2.tar.gz

sftp> put matplotlib-0.98.2.tar.gz
Uploading matplotlib-0.98.2.tar.gz to /incoming/j/jd/jdh2358/uploads/matplotlib-0.98.2.tar.gz

e go https://sourceforge.net/project/admin/editpackages.php?group_id=80706 and do a file release.
Click on the “Admin” tab to log in as an admin, and then the “File Releases” tab. Go to the bot-
tom and click “add release” and enter the package name but not the version number in the “Package

212 Chapter 26. Doing a matplolib release

http://www.nabble.com/binary-installers-for-python2.6--libpng-segfault%2C-MSVCR90.DLL-and-%09mingw-td23971661.html
http://www.nabble.com/binary-installers-for-python2.6--libpng-segfault%2C-MSVCR90.DLL-and-%09mingw-td23971661.html
http://matplotlib.sf.net/release-candidates
https://sourceforge.net/project/admin/editpackages.php?group_id=80706

Matplotlib, Release 0.99.3

Name” box. You will then be prompted for the “New release name” at which point you can add the
version number, eg somepackage-0.1 and click “Create this release”.

You will then be taken to a fairly self explanatory page where you can enter the Change notes, the
release notes, and select which packages from the incoming ftp archive you want to include in this
release. For each binary, you will need to select the platform and file type, and when you are done
you click on the “notify users who are monitoring this package link”

26.6 Announcing

Announce the release on matplotlib-announce, matplotlib-users and matplotlib-devel. Include a summary
of highlights from the CHANGELOG and/or post the whole CHANGELOG since the last release.

26.6. Announcing 213

Matplotlib, Release 0.99.3

214 Chapter 26. Doing a matplolib release

CHAPTER
TWENTYSEVEN

WORKING WITH TRANSFORMATIONS

BboxBase

TransformedBbox
TransformWapper

‘ CompositeGenericTransform ‘

‘ TransformNode ‘4% Transform

‘ TransformedPath ‘

Affine2DBase

‘ BlendedGenericTransform ‘

CompositeAffine2D

27.1 matplotlib.transforms

matplotlib includes a framework for arbitrary geometric transformations that is used determine the final
position of all elements drawn on the canvas.

Transforms are composed into trees of TransformNode objects whose actual value depends on their chil-
dren. When the contents of children change, their parents are automatically invalidated. The next time
an invalidated transform is accessed, it is recomputed to reflect those changes. This invalidation/caching
approach prevents unnecessary recomputations of transforms, and contributes to better interactive perfor-
mance.

For example, here is a graph of the transform tree used to plot data to the graph:

215

Matplotlib, Release 0.99.3

CompositeGenericTransform

b
CompositeAffine2D
a b
| a BboxTransformFrom BboxTransformTo
boxin boxout
TransformedBbox TransformedBbox

_transformy bbox

 J

TransformWrapper Bbox

child

IdentityTransform

BboxTransformTo

_bbox &ansf orm
Bbox

boxout

Transform

edBbox

" bbhox

transform

Bbox

Affine2D

The framework can be used for both affine and non-affine transformations. However, for speed, we want
use the backend renderers to perform affine transformations whenever possible. Therefore, it is possible to
perform just the affine or non-affine part of a transformation on a set of data. The affine is always assumed

to occur after the non-affine. For any transform:

full transform == non-affine part + affine part

The backends are not expected to handle non-affine transformations themselves.

216

Chapter 27. Working with transformations

Matplotlib, Release 0.99.3

class matplotlib. transforms.TransformNode
Bases: object

TransformNode is the base class for anything that participates in the transform tree and needs to
invalidate its parents or be invalidated. This includes classes that are not really transforms, such as
bounding boxes, since some transforms depend on bounding boxes to compute their values.

Creates a new TransformNode.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy ()
might normally be used.

invalidate()
Invalidate this TransformNode and all of its ancestors. Should be called any time the transform
changes.

set_children(*children)
Set the children of the transform, to let the invalidation system know which transforms can
invalidate this transform. Should be called from the constructor of any transforms that depend
on other transforms.

class matplotlib.transforms.BboxBase
Bases: matplotlib.transforms.TransformNode

This is the base class of all bounding boxes, and provides read-only access to its data. A mutable
bounding box is provided by the Bbox class.

The canonical representation is as two points, with no restrictions on their ordering. Convenience
properties are provided to get the left, bottom, right and top edges and width and height, but these are
not stored explicity.

Creates a new TransformNode.

anchored (c, container=None)
Return a copy of the Bbozx, shifted to position ¢ within a container.

c: may be either:

ea sequence (cx, cy) where cx and cy range from O to 1, where 0 is left or bottom and 1 is
right or top

ea string: - ‘C’ for centered - ‘S’ for bottom-center - ‘SE’ for bottom-left - ‘E’ for left - etc.

Optional argument container is the box within which the Bbox is positioned; it defaults to the
initial Bbox.

bounds
(property) Returns (x0, y0, width, height).

contains(x, y)
Returns True if (x, y) is a coordinate inside the bounding box or on its edge.

containsx(x)
Returns True if x is between or equal to x0 and x1.

27.1. matplotlib.transforms 217

Matplotlib, Release 0.99.3

containsy(y)
Returns True if y is between or equal to y® and y1.

corners()
Return an array of points which are the four corners of this rectangle. For example, if this Bbox
is defined by the points (a, b) and (c, d), corners () returns (a, b), (a, d), (c, b) and (c, d).

count_contains (vertices)
Count the number of vertices contained in the Bbox.

vertices is a Nx2 Numpy array.

count_overlaps (bboxes)
Count the number of bounding boxes that overlap this one.

bboxes is a sequence of BboxBase objects

expanded (sw, sh)
Return a new Bbox which is this Bbox expanded around its center by the given factors sw and
sh.

extents
(property) Returns (x0, y0, x1, y1).

frozen()
TransformNode is the base class for anything that participates in the transform tree and needs to
invalidate its parents or be invalidated. This includes classes that are not really transforms, such
as bounding boxes, since some transforms depend on bounding boxes to compute their values.

fully_contains(x, y)
Returns True if (x, y) is a coordinate inside the bounding box, but not on its edge.

fully_containsx(x)
Returns True if x is between but not equal to x0 and x1.

fully_containsy(y)
Returns True if y is between but not equal to y0 and y1.

fully_overlaps (other)
Returns True if this bounding box overlaps with the given bounding box other, but not on its
edge alone.

height
(property) The height of the bounding box. It may be negative if y1 < y0.

intervalx
(property) intervalx is the pair of x coordinates that define the bounding box. It is not guar-
anteed to be sorted from left to right.

intervaly
(property) intervaly is the pair of y coordinates that define the bounding box. It is not guar-
anteed to be sorted from bottom to top.

inverse_transformed (transform)
Return a new Bbox object, statically transformed by the inverse of the given transform.

218

Chapter 27. Working with transformations

Matplotlib, Release 0.99.3

is_unit(Q)
Returns True if the Bbox is the unit bounding box from (0, 0) to (1, 1).

max

(property) max is the top-right corner of the bounding box.
min

(property) min is the bottom-left corner of the bounding box.

overlaps (other)
Returns True if this bounding box overlaps with the given bounding box other.

po
(property) pO is the first pair of (x, y) coordinates that define the bounding box. It is not guaran-
teed to be the bottom-left corner. For that, use min.

pl
(property) pl is the second pair of (x, y) coordinates that define the bounding box. It is not
guaranteed to be the top-right corner. For that, use max.

padded(p)
Return a new Bbox that is padded on all four sides by the given value.

rotated (radians)
Return a new bounding box that bounds a rotated version of this bounding box by the given
radians. The new bounding box is still aligned with the axes, of course.

shrunk (mx, my)
Return a copy of the Bbox, shrunk by the factor mx in the x direction and the factor my in the y
direction. The lower left corner of the box remains unchanged. Normally mx and my will be less
than 1, but this is not enforced.

shrunk_to_aspect (box_aspect, container=None, fig_aspect=1.0)
Return a copy of the Bbox, shrunk so that it is as large as it can be while having the desired
aspect ratio, box_aspect. If the box coordinates are relative—that is, fractions of a larger box
such as a figure—then the physical aspect ratio of that figure is specified with fig_aspect, so that
box_aspect can also be given as a ratio of the absolute dimensions, not the relative dimensions.

size
(property) The width and height of the bounding box. May be negative, in the same way as
width and height.

splitx(*args)
e.g., bbox.splitx(£f1, £2, ...)

Returns a list of new Bbox objects formed by splitting the original one with vertical lines at
fractional positions f1, 2, ...

splity (*args)
e.g., bbox.splitx(£f1, £2, ...)

Returns a list of new Bbox objects formed by splitting the original one with horizontal lines at
fractional positions f1, f2, ...

27.1. matplotlib.transforms 219

Matplotlib, Release 0.99.3

transformed (transform)
Return a new Bbox object, statically transformed by the given transform.

translated(zx, ty)
Return a copy of the Bbox, statically translated by #x and #y.

static union(bboxes)
Return a Bbox that contains all of the given bboxes.

width
(property) The width of the bounding box. It may be negative if x1 < x0.

x0
(property) x0 is the first of the pair of x coordinates that define the bounding box. x0 is not
guaranteed to be less than x1. If you require that, use xmin.

x1
(property) x1 is the second of the pair of x coordinates that define the bounding box. x1 is not
guaranteed to be greater than x0. If you require that, use xmax.

Xmax
(property) xmax is the right edge of the bounding box.

xmin
(property) xmin is the left edge of the bounding box.

y®
(property) yO is the first of the pair of y coordinates that define the bounding box. y0 is not
guaranteed to be less than y1. If you require that, use ymin.

yl
(property) y1 is the second of the pair of y coordinates that define the bounding box. y1 is not
guaranteed to be greater than y0. If you require that, use ymax.

ymax
(property) ymax is the top edge of the bounding box.

ymin

(property) ymin is the bottom edge of the bounding box.

class matplotlib. transforms.Bbox (points)

Bases: matplotlib.transforms.BboxBase
A mutable bounding box.
points: a 2x2 numpy array of the form [[xO0, y0], [x1, y1]]

If you need to create a Bbox object from another form of data, consider the static methods unit(),
from_bounds () and from_extents().

static from_bounds (x0, y0, width, height)
(staticmethod) Create a new Bbox from x0, y0, width and height.

width and height may be negative.

static from_extents (*args)
(staticmethod) Create a new Bbox from left, bottom, right and top.

220

Chapter 27. Working with transformations

Matplotlib, Release 0.99.3

The y-axis increases upwards.

get_points()
Get the points of the bounding box directly as a numpy array of the form: [[x0, y0], [x1, y1]].

ignore (value)
Set whether the existing bounds of the box should be ignored by subsequent calls to
update_from_data() orupdate_from_data_xy().

value:

eWhen True, subsequent calls to update_from_data() will ignore the existing bounds of
the Bbox.

eWhen False, subsequent calls to update_from_data() will include the existing bounds of
the Bbox.

set (other)
Set this bounding box from the “frozen” bounds of another Bbox.

set_points (points)
Set the points of the bounding box directly from a numpy array of the form: [[x0, y0], [x1, y1]].
No error checking is performed, as this method is mainly for internal use.

staticunit ()
(staticmethod) Create a new unit Bbox from (0, 0) to (1, 1).

update_£from_data(x, y, ignore=None)
Update the bounds of the Bbox based on the passed in data. After updating, the bounds will have
positive width and height; x0 and y0 will be the minimal values.

Xx: a numpy array of x-values

y: a numpy array of y-values

ignore:
e when True, ignore the existing bounds of the Bbox.
e when False, include the existing bounds of the Bbox.
e when None, use the last value passed to ignore().

update_from_data_xy (xy, ignore=None, updatex=True, updatey=True)
Update the bounds of the Bbox based on the passed in data. After updating, the bounds will have
positive width and height; x0 and y0 will be the minimal values.

xy: a numpy array of 2D points

ignore:
e when True, ignore the existing bounds of the Bbox.
e when False, include the existing bounds of the Bbox.

e when None, use the last value passed to ignore().

27.1. matplotlib.transforms 221

Matplotlib, Release 0.99.3

updatex: when True, update the x values
updatey: when True, update the y values

update_£from_path(path, ignore=None, updatex=True, updatey=True)
Update the bounds of the Bbox based on the passed in data. After updating, the bounds will have
positive width and height; x0 and y0 will be the minimal values.

path: a Path instance

ignore:
o when True, ignore the existing bounds of the Bbox.
e when False, include the existing bounds of the Bbox.
e when None, use the last value passed to ignore().

updatex: when True, update the x values

updatey: when True, update the y values

classmatplotlib. transforms.TransformedBbox (bbox, transform)
Bases: matplotlib.transforms.BboxBase

A Bbox that is automatically transformed by a given transform. When either the child bounding box
or transform changes, the bounds of this bbox will update accordingly.

bbox: a child Bbox
transform: a 2D Transform

get_points()
Get the points of the bounding box directly as a numpy array of the form: [[x0, yO0], [x1, y1]].

class matplotlib.transforms.Transform
Bases: matplotlib.transforms.TransformNode

The base class of all TransformNode instances that actually perform a transformation.

All non-affine transformations should be subclasses of this class. New affine transformations should
be subclasses of Affine2D.

Subclasses of this class should override the following members (at minimum):
einput_dims
eoutput_dims
etransform()
eis_separable
ehas_inverse
einverted() (if has_inverse() can return True)

If the transform needs to do something non-standard with mathplotlib.path.Path objects, such
as adding curves where there were once line segments, it should override:

etransform_path()

222 Chapter 27. Working with transformations

Matplotlib, Release 0.99.3

Creates a new TransformNode.

get_affine()
Get the affine part of this transform.

inverted (O
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform(values)
Performs the transformation on the given array of values.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine (values)
Performs only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_angles (angles, pts, radians=False, pushoff=1e-05)
Performs transformation on a set of angles anchored at specific locations.

The angles must be a column vector (i.e., numpy array).

The pts must be a two-column numpy array of X,y positions (angle transforms currently only
work in 2D). This array must have the same number of rows as angles.

radians indicates whether or not input angles are given in radians (True) or degrees (False;
the default).

pushoff is the distance to move away from pts for determining transformed angles (see dis-
cussion of method below).

The transformed angles are returned in an array with the same size as angles.

The generic version of this method uses a very generic algorithm that transforms pts, as well as
locations very close to pts, to find the angle in the transformed system.

transform_non_affine (values)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

27.1. matplotlib.transforms 223

Matplotlib, Release 0.99.3

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_path(path)
Returns a transformed copy of path.

path: a Path instance.
In some cases, this transform may insert curves into the path that began as line segments.

transform_path_affine (path)
Returns a copy of path, transformed only by the affine part of this transform.

path: a Path instance.
transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(value:

transform_path_non_affine(path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.
transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(value:

transform_point (point)
A convenience function that returns the transformed copy of a single point.

The point is given as a sequence of length input_dims. The transformed point is returned as a
sequence of length output_dims.

class matplotlib.transforms.TransformWrapper (child)
Bases: matplotlib.transforms.Transform

A helper class that holds a single child transform and acts equivalently to it.

This is useful if a node of the transform tree must be replaced at run time with a transform of a different
type. This class allows that replacement to correctly trigger invalidation.

Note that TransformWrapper instances must have the same input and output dimensions during their
entire lifetime, so the child transform may only be replaced with another child transform of the same
dimensions.

child: A class:Transform instance. This child may later be replaced with set ().

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy ()
might normally be used.

set (child)
Replace the current child of this transform with another one.

The new child must have the same number of input and output dimensions as the current child.

class matplotlib.transforms.AffineBase
Bases: matplotlib.transforms.Transform

The base class of all affine transformations of any number of dimensions.

224 Chapter 27. Working with transformations

Matplotlib, Release 0.99.3

get_affine()
Get the affine part of this transform.

get_matrix()
Get the underlying transformation matrix as a numpy array.

transform_non_affine (points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine (transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_path_affine(path)
Returns a copy of path, transformed only by the affine part of this transform.

path: a Path instance.
transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(value:

transform_path_non_affine(parh)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.
transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(value:

class matplotlib.transforms.Affine2DBase
Bases: matplotlib.transforms.AffineBase

The base class of all 2D affine transformations.

2D affine transformations are performed using a 3x3 numpy array:

@ T w
@ anNn
= H M

This class provides the read-only interface. For a mutable 2D affine transformation, use Affine2D.

Subclasses of this class will generally only need to override a constructor and get_matrix() that
generates a custom 3x3 matrix.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy ()
might normally be used.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

27.1. matplotlib.transforms 225

Matplotlib, Release 0.99.3

x === self.inverted().transform(self.transform(x))

static matrix_from_values(a, b, ¢, d, e, f)
(staticmethod) Create a new transformation matrix as a 3x3 numpy array of the form:

@ T o
@ anNn
= H @

to_values()
Return the values of the matrix as a sequence (a,b,c,d,e,f)

transform(points)
Performs only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to transform_affine (transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine (points)
Performs only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to transform_affine (transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_point (point)
A convenience function that returns the transformed copy of a single point.

The point is given as a sequence of length input_dims. The transformed point is returned as a
sequence of length output_dims.

class matplotlib.transforms.Affine2D (matrix=None)
Bases: matplotlib.transforms.Affine2DBase

A mutable 2D affine transformation.

Initialize an Affine transform from a 3x3 numpy float array:

@ T o
@ anNn
= H @

If matrix is None, initialize with the identity transform.

clear()
Reset the underlying matrix to the identity transform.

static from_values(q, b, ¢, d, e, f)
(staticmethod) Create a new Affine2D instance from the given values:

226 Chapter 27. Working with transformations

Matplotlib, Release 0.99.3

@ T w
@ anNn
= H @

get_matrix()
Get the underlying transformation matrix as a 3x3 numpy array:

@ T w
@ an
= H @

static identity ()
(staticmethod) Return a new Affine2D object that is the identity transform.

Unless this transform will be mutated later on, consider using the faster IdentityTransform
class instead.

rotate(theta)
Add a rotation (in radians) to this transform in place.

Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg(),
translate() and scale().

rotate_around(x, y, theta)
Add a rotation (in radians) around the point (X, y) in place.

Returns self, so this method can easily be chained with more calls to rotate (), rotate_deg(),
translate() and scale().

rotate_deg(degrees)
Add a rotation (in degrees) to this transform in place.

Returns self, so this method can easily be chained with more calls to rotate (), rotate_deg(),
translate() and scale().

rotate_deg_around(x, y, degrees)
Add a rotation (in degrees) around the point (X, y) in place.

Returns self, so this method can easily be chained with more calls to rotate (), rotate_deg(),
translate() and scale().

scale(sx, sy=None)
Adds a scale in place.

If sy is None, the same scale is applied in both the x- and y-directions.

Returns self, so this method can easily be chained with more calls to rotate (), rotate_deg(),
translate() and scale().

set (other)
Set this transformation from the frozen copy of another Affine2DBase object.

set_matrix(mitx)
Set the underlying transformation matrix from a 3x3 numpy array:

27.1. matplotlib.transforms 227

Matplotlib, Release 0.99.3

@ T w
@ anNn
= H @

translate(ix, ty)
Adds a translation in place.

Returns self, so this method can easily be chained with more calls to rotate (), rotate_deg(),
translate() and scale().

class matplotlib.transforms.IdentityTransform

Bases: matplotlib.transforms.Affine2DBase
A special class that does on thing, the identity transform, in a fast way.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy ()
might normally be used.

get_affine()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

get_matrix()
Get the underlying transformation matrix as a numpy array.

inverted ()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform(points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine (transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine (points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

228

Chapter 27. Working with transformations

Matplotlib, Release 0.99.3

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_non_affine (points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine (transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_path(path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.
transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(value:

transform_path_affine (path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.
transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(value:

transform_path_non_affine(parh)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.
transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(value:

class matplotlib. transforms.BlendedGenericTransform(x_transform, y_transform)
Bases: matplotlib.transforms.Transform

A “blended” transform uses one transform for the x-direction, and another transform for the y-
direction.

This “generic” version can handle any given child transform in the x- and y-directions.

Create a new “blended” transform using x_transform to transform the x-axis and y_transform to trans-
form the y-axis.

You will generally not call this constructor directly but use the blended_transform_factory()
function instead, which can determine automatically which kind of blended transform to create.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy ()
might normally be used.

get_affine()
Get the affine part of this transform.

27.1. matplotlib.transforms 229

Matplotlib, Release 0.99.3

inverted ()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform(points)
Performs the transformation on the given array of values.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine (points)
Performs only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to transform_affine (transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_non_affine (points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine (transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

class matplotlib.transforms.BlendedAffine2D (x_transform, y_transform)
Bases: matplotlib.transforms.Affine2DBase

A “blended” transform uses one transform for the x-direction, and another transform for the y-
direction.

This version is an optimization for the case where both child transforms are of type Affine2DBase.

Create a new “blended” transform using x_transform to transform the x-axis and y_transform to trans-
form the y-axis.

Both x_transform and y_transform must be 2D affine transforms.

You will generally not call this constructor directly but use the blended_transform_factory()
function instead, which can determine automatically which kind of blended transform to create.

get_matrix()
Get the underlying transformation matrix as a numpy array.

matplotlib.transforms.blended_transform_factory(x_transform, y_transform)
Create a new “blended” transform using x_transform to transform the x-axis and y_transform to trans-
form the y-axis.

230 Chapter 27. Working with transformations

Matplotlib, Release 0.99.3

A faster version of the blended transform is returned for the case where both child transforms are
affine.

class matplotlib.transforms.CompositeGenericTransform(a, b)
Bases: matplotlib.transforms.Transform

A composite transform formed by applying transform a then transform b.
This “generic” version can handle any two arbitrary transformations.
Create a new composite transform that is the result of applying transform a then transform b.

You will generally not call this constructor directly but use the composite_transform_factory()
function instead, which can automatically choose the best kind of composite transform instance to
create.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy ()
might normally be used.

get_affine()
Get the affine part of this transform.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform(points)
Performs the transformation on the given array of values.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine (points)
Performs only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to transform_affine (transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_non_affine (points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

27.1. matplotlib.transforms 231

Matplotlib, Release 0.99.3

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_path(path)
Returns a transformed copy of path.

path: a Path instance.
In some cases, this transform may insert curves into the path that began as line segments.

transform_path_affine (path)
Returns a copy of path, transformed only by the affine part of this transform.

path: a Path instance.
transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(value:

transform_path_non_affine(path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.
transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(value:

class matplotlib.transforms.CompositeAffine2D(a, b)
Bases: matplotlib.transforms.Affine2DBase

A composite transform formed by applying transform a then transform b.

This version is an optimization that handles the case where both a and b are 2D affines.
Create a new composite transform that is the result of applying transform a then transform b.
Both a and b must be instances of Affine2DBase.

You will generally not call this constructor directly but use the composite_transform_factory()
function instead, which can automatically choose the best kind of composite transform instance to
create.

get_matrix()
Get the underlying transformation matrix as a numpy array.

matplotlib.transforms.composite_transform_factory(a, b)
Create a new composite transform that is the result of applying transform a then transform b.

Shortcut versions of the blended transform are provided for the case where both child transforms are
affine, or one or the other is the identity transform.

Composite transforms may also be created using the ‘+’ operator, e.g.:

c=a+bhb

class matplotlib. transforms.BboxTransform(boxin, boxout)
Bases: matplotlib.transforms.Affine2DBase

BboxTransform linearly transforms points from one Bbox to another Bbox.

Create a new BboxTransform that linearly transforms points from boxin to boxout.

232 Chapter 27. Working with transformations

Matplotlib, Release 0.99.3

get_matrix()
Get the underlying transformation matrix as a numpy array.

class matplotlib.transforms.BboxTransformTo (boxoutr)
Bases: matplotlib.transforms.Affine2DBase

BboxTransformTo is a transformation that linearly transforms points from the unit bounding box to
a given Bbox.

Create a new BboxTransformTo that linearly transforms points from the unit bounding box to boxout.

get_matrix()
Get the underlying transformation matrix as a numpy array.

class matplotlib.transforms.BboxTransformFrom(boxin)
Bases: matplotlib.transforms.Affine2DBase

BboxTransformFrom linearly transforms points from a given Bbox to the unit bounding box.

get_matrix()
Get the underlying transformation matrix as a numpy array.

classmatplotlib.transforms.ScaledTranslation(xt, yt, scale_trans)
Bases: matplotlib.transforms.Affine2DBase

A transformation that translates by xt and yt, after xt and yt have been transformad by the given
transform scale_trans.

get_matrix()
Get the underlying transformation matrix as a numpy array.

class matplotlib.transforms.TransformedPath (path, transform)
Bases: matplotlib.transforms.TransformNode

A TransformedPath caches a non-affine transformed copy of the Path. This cached copy is auto-
matically updated when the non-affine part of the transform changes.

Create a new TransformedPath from the given Path and Transform.

get_fully_transformed_path()
Return a fully-transformed copy of the child path.

get_transformed_path_and_affine()
Return a copy of the child path, with the non-affine part of the transform already applied, along
with the affine part of the path necessary to complete the transformation.

get_transformed_points_and_affine()
Return a copy of the child path, with the non-affine part of the transform already applied,
along with the affine part of the path necessary to complete the transformation. Unlike
get_transformed_path_and_affine(), no interpolation will be performed.

matplotlib.transforms.nonsingular (vmin, vmax, expander=0.001, tiny=Ie-15, increas-
ing=True)
Ensure the endpoints of a range are finite and not too close together.

“too close” means the interval is smaller than ‘tiny’ times the maximum absolute value.

27.1. matplotlib.transforms 233

Matplotlib, Release 0.99.3

If they are too close, each will be moved by the ‘expander’. If ‘increasing’ is True and vmin > vmax,
they will be swapped, regardless of whether they are too close.

If either is inf or -inf or nan, return - expander, expander.

234 Chapter 27. Working with transformations

CHAPTER
TWENTYEIGHT

ADDING NEW SCALES AND
PROJECTIONS TO MATPLOTLIB

Matplotlib supports the addition of custom procedures that transform the data before it is displayed.

There is an important distinction between two kinds of transformations. Separable transformations, working
on a single dimension, are called “scales”, and non-separable transformations, that handle data in two or
more dimensions at a time, are called “projections”.

From the user’s perspective, the scale of a plot can be set with set_xscale() and set_xscale(). Pro-
jections can be chosen using the projection keyword argument to the plot () or subplot() functions,

e.g.
plot(x, y, projection="custom™)
This document is intended for developers and advanced users who need to create new scales and projections

for matplotlib. The necessary code for scales and projections can be included anywhere: directly within a
plot script, in third-party code, or in the matplotlib source tree itself.

28.1 Creating a new scale

Adding a new scale consists of defining a subclass of matplotlib.scale.ScaleBase, that includes the
following elements:

o A transformation from data coordinates into display coordinates.

e An inverse of that transformation. This is used, for example, to convert mouse positions from screen
space back into data space.

e A function to limit the range of the axis to acceptable values (limit_range_for_scale()). A log
scale, for instance, would prevent the range from including values less than or equal to zero.

e Locators (major and minor) that determine where to place ticks in the plot, and optionally, how to
adjust the limits of the plot to some “good” values. Unlike 1imit_range_for_scale(), which is
always enforced, the range setting here is only used when automatically setting the range of the plot.

e Formatters (major and minor) that specify how the tick labels should be drawn.

235

Matplotlib, Release 0.99.3

Once the class is defined, it must be registered with matplotlib so that the user can select it.

A full-fledged and heavily annotated example is in examples/api/custom_scale_example.py. There
are also some classes inmatplotlib.scale that may be used as starting points.

28.2 Creating a new projection

Adding a new projection consists of defining a subclass of matplotlib.axes.Axes, that includes the
following elements:

A transformation from data coordinates into display coordinates.

An inverse of that transformation. This is used, for example, to convert mouse positions from screen
space back into data space.

Transformations for the gridlines, ticks and ticklabels. Custom projections will often need to place
these elements in special locations, and matplotlib has a facility to help with doing so.

Setting up default values (overriding cla()), since the defaults for a rectilinear axes may not be
appropriate.

Defining the shape of the axes, for example, an elliptical axes, that will be used to draw the background
of the plot and for clipping any data elements.

Defining custom locators and formatters for the projection. For example, in a geographic projection,
it may be more convenient to display the grid in degrees, even if the data is in radians.

Set up interactive panning and zooming. This is left as an “advanced” feature left to the reader, but
there is an example of this for polar plots in matplotlib.projections.polar.

Any additional methods for additional convenience or features.

Once the class is defined, it must be registered with matplotlib so that the user can select it.

A full-fledged and heavily annotated example is in examples/api/custom_projection_example.py.
The polar plot functionality in matplotlib.projections.polar may also be of interest.

28.3 APl documentation

28.3.1 matplotlib.scale

classmatplotlib.scale.LinearScale (axis, **kwargs)

Bases: matplotlib.scale.ScaleBase
The default linear scale.

get_transform()
The transform for linear scaling is just the IdentityTransform.

set_default_locators_and_formatters (axis)
Set the locators and formatters to reasonable defaults for linear scaling.

236

Chapter 28. Adding new scales and projections to matplotlib

Matplotlib, Release 0.99.3

class matplotlib.scale.LogScale (axis, **kwargs)
Bases: matplotlib.scale.ScaleBase

A standard logarithmic scale. Care is taken so non-positive values are not plotted.

For computational efficiency (to push as much as possible to Numpy C code in the common cases),
this scale provides different transforms depending on the base of the logarithm:

ebase 10 (Log10Transform)
ebase 2 (Log2Transform)
ebase e (NaturalLogTransform)

earbitrary base (LogTransform)

basex/basey: The base of the logarithm

nonposx/nonposy: ['mask’ | ‘clip’] non-positive values in x or y can be masked as invalid, or clipped
to a very small positive number

subsx/subsy: Where to place the subticks between each major tick. Should be a sequence of integers.
For example, in a log10 scale: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.
get_transform()
Return a Transform instance appropriate for the given logarithm base.

limit_range_for_scale (vmin, vmax, minpos)
Limit the domain to positive values.

set_default_locators_and_formatters (axis)
Set the locators and formatters to specialized versions for log scaling.

class matplotlib.scale.ScaleBase
Bases: object

The base class for all scales.
Scales are separable transformations, working on a single dimension.
Any subclasses will want to override:

ename

eget_transform()

And optionally:
e set_default_locators_and_formatters()
e limit_range_for_scale()

get_transform()
Return the Transform object associated with this scale.

28.3. APl documentation 237

Matplotlib, Release 0.99.3

limit_range_for_scale (vmin, vmax, minpos)
Returns the range vmin, vimax, possibly limited to the domain supported by this scale.

minpos should be the minimum positive value in the data. This is used by log scales to de-
termine a minimum value.

set_default_locators_and_formatters (axis)
Set the Locator and Formatter objects on the given axis to match this scale.

class matplotlib.scale.SymmetricalLogScale(axis, **kwargs)

Bases: matplotlib.scale.ScaleBase

The symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the
origin.

Since the values close to zero tend toward infinity, there is a need to have a range around zero that is
linear. The parameter linthresh allows the user to specify the size of this range (-linthresh, linthresh).

basex/basey: The base of the logarithm

linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to avoid having the plot go to
infinity around zero).

subsx/subsy: Where to place the subticks between each major tick. Should be a sequence of integers.
For example, in a log10 scale: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

get_transform()
Return a SymmetricalLogTransform instance.

set_default_locators_and_formatters (axis)
Set the locators and formatters to specialized versions for symmetrical log scaling.

matplotlib.scale.get_scale_docs()

Helper function for generating docstrings related to scales.

matplotlib.scale.register_scale(scale_class)

Register a new kind of scale.

scale_class must be a subclass of ScaleBase.

matplotlib.scale.scale_factory(scale, axis, **kwargs)

Return a scale class by name.

ACCEPTS: [linear | log | symlog]

28.3.2 matplotlib.projections

classmatplotlib.projections.ProjectionRegistry

Bases: object
Manages the set of projections available to the system.

get_projection_class (name)
Get a projection class from its name.

238

Chapter 28. Adding new scales and projections to matplotlib

Matplotlib, Release 0.99.3

get_projection_names()
Get a list of the names of all projections currently registered.

register (*projections)
Register a new set of projection(s).

matplotlib.projections.get_projection_class(projection=None)
Get a projection class from its name.

If projection is None, a standard rectilinear projection is returned.

matplotlib.projections.get_projection_names()
Get a list of acceptable projection names.

matplotlib.projections.projection_factory(projection, figure, rect, **kwargs)
Get a new projection instance.

projection is a projection name.
figure is a figure to add the axes to.
rect is a Bbox object specifying the location of the axes within the figure.

Any other kwargs are passed along to the specific projection constructor being used.

matplotlib.projections.polar
classmatplotlib.projections.polar.PolarAxes(*args, **kwargs)
Bases: matplotlib.axes.Axes
A polar graph projection, where the input dimensions are theta, r.
Theta starts pointing east and goes anti-clockwise.

class InvertedPolarTransform
Bases: matplotlib.transforms.Transform

The inverse of the polar transform, mapping Cartesian coordinate space x and y back to theta
and r.

Creates a new TransformNode.

inverted ()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not
cause a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform(xy)
Performs the transformation on the given array of values.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N
x output_dims).

28.3. APl documentation 239

Matplotlib, Release 0.99.3

class PolarAxes.PolarAffine (scale_transform, limits)
Bases: matplotlib.transforms.Affine2DBase

The affine part of the polar projection. Scales the output so that maximum radius rests on the
edge of the axes circle.

limits is the view limit of the data. The only part of its bounds that is used is ymax (for the radius
maximum). The theta range is always fixed to (0, 2pi).

get_matrix()
Get the underlying transformation matrix as a numpy array.

class PolarAxes.PolarTransform
Bases: matplotlib.transforms.Transform

The base polar transform. This handles projection theta and r into Cartesian coordinate space x
and y, but does not perform the ultimate affine transformation into the correct position.

Creates a new TransformNode.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not
cause a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform(tr)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In
affine transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N
x output_dims).

transform_non_affine(r)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In
affine transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N
x output_dims).

transform_path (path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(va

240 Chapter 28. Adding new scales and projections to matplotlib

Matplotlib, Release 0.99.3

transform_path_non_affine(path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.
transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(va

class PolarAxes.RadialLocator (base)
Bases: matplotlib.ticker.Locator

Used to locate radius ticks.

Ensures that all ticks are strictly positive. For all other tasks, it delegates to the base Locator
(which may be different depending on the scale of the r-axis.

class PolarAxes.ThetaFormatter
Bases: matplotlib.ticker.Formatter

Used to format the theta tick labels. Converts the native unit of radians into degrees and adds a
degree symbol.

PolarAxes.can_zoom()
Return True if this axes support the zoom box

PolarAxes.format_coord(theta, r)
Return a format string formatting the coordinate using Unicode characters.

PolarAxes.get_data_ratio()
Return the aspect ratio of the data itself. For a polar plot, this should always be 1.0

PolarAxes.set_rgrids(radii, labels=None, angle=None, rpad=None, fmt=None,

**kwargs)
Set the radial locations and labels of the r grids.

The labels will appear at radial distances radii at the given angle in degrees.
labels, if not None, is a len(radii) list of strings of the labels to use at each radius.
If labels is None, the built-in formatter will be used.

rpad is a fraction of the max of radii which will pad each of the radial labels in the radial
direction.

Return value is a list of tuples (line, label), where line is Line2D instances and the label is Text
instances.

kwargs are optional text properties for the labels:

Property Description

alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]

axes an Axes instance

backgroundcolor any matplotlib color

bbox rectangle prop dict

clip_box amatplotlib.transforms.Bbox instance

28.3. APl documentation 241

Matplotlib, Release 0.99.3

Table 28.1 — continued fro:

clip_on

clip_path

color

contains

family or fontfamily or fontname or name
figure
fontproperties or font_properties
gid
horizontalalignment or ha
label

linespacing

lod

multialignment

picker

position

rasterized

rotation

rotation_mode
size or fontsize

snap

stretch or fontstretch
style or fontstyle

text

transform

url

variant or fontvariant
verticalalignment or va or ma
visible

weight or fontweight

X

y
zorder

[True | False]

[(Path, Transform) | Patch | None]

any matplotlib color

a callable function

[FONTNAME | ‘serif” | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
amatplotlib.figure.Figure instance
amatplotlib.font_manager.FontProperties instance

an id string

[‘center’ | ‘right’ | ‘left’]

any string

float (multiple of font size)

[True | False]

[’left’ | ‘right’ | ‘center’]

[None|float|boolean|callable]

(x,y)

[True | False | None]

[angle in degrees | ‘vertical’ | ‘horizontal’]

unknown

[size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large
unknown

[a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘c
[‘normal’ | ‘italic’ | ‘oblique’]

string or anything printable with ‘%s’ conversion.

Transform instance

a url string

[‘normal’ | ‘small-caps’]

[‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]

[True | False]

[a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’
float

float

any number

ACCEPTS: sequence of floats

PolarAxes.set_rscale (value, **kwargs)

call signature:

set_yscale(value)

Set the scaling of the y-axis: ‘linear’ | ‘log’ | ‘symlog’

ACCEPTS: ['linear’ | ‘log’ | ‘symlog’]

Different kwargs are accepted, depending on the scale: ‘linear’

410g9

242 Chapter 28. Adding new scales and projections to matplotlib

Matplotlib, Release 0.99.3

basex/basey: The base of the logarithm

nonposx/nonposy: [’'mask’ | ‘clip’] non-positive values in x or y can be
masked as invalid, or clipped to a very small positive number

subsx/subsy: Where to place the subticks between each major tick. Should be
a sequence of integers. For example, in a logl10 scale: [0, 1, 2, 3, 4,
5, 6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.
‘symlog’
basex/basey: The base of the logarithm

linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to
avoid having the plot go to infinity around zero).

subsx/subsy: Where to place the subticks between each major tick. Should be
a sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4,
5, 6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

PolarAxes.set_rticks (ticks, minor=False)
Set the y ticks with list of ticks

ACCEPTS: sequence of floats
Keyword arguments:
minor: [False | True] Sets the minor ticks if True

PolarAxes.set_thetagrids(angles, labels=None, frac=None, fmt=None, **kwargs)

Set the angles at which to place the theta grids (these gridlines are equal along the theta dimen-

sion). angles is in degrees.
labels, if not None, is a 1en(angles) list of strings of the labels to use at each angle.

If labels is None, the labels will be fmt % angle

frac is the fraction of the polar axes radius at which to place the label (1 is the edge). Eg. 1.05 is

outside the axes and 0.95 is inside the axes.

Return value is a list of tuples (line, label), where line is Line2D instances and the label is Text

instances.

kwargs are optional text properties for the labels:

Property Description

alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]

axes an Axes instance

backgroundcolor any matplotlib color

bbox rectangle prop dict

clip_box amatplotlib.transforms.Bbox instance

28.3. APl documentation

243

Matplotlib, Release 0.99.3

Table 28.2 — continued fro:

clip_on

clip_path

color

contains

family or fontfamily or fontname or name
figure
fontproperties or font_properties
gid
horizontalalignment or ha
label

linespacing

lod

multialignment

picker

position

rasterized

rotation

rotation_mode
size or fontsize

snap

stretch or fontstretch
style or fontstyle

text

transform

url

variant or fontvariant
verticalalignment or va or ma
visible

weight or fontweight

X

y
zorder

[True | False]

[(Path, Transform) | Patch | None]

any matplotlib color

a callable function

[FONTNAME | ‘serif” | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
amatplotlib.figure.Figure instance
amatplotlib.font_manager.FontProperties instance

an id string

[‘center’ | ‘right’ | ‘left’]

any string

float (multiple of font size)

[True | False]

[’left’ | ‘right’ | ‘center’]

[None|float|boolean|callable]

(x,y)

[True | False | None]

[angle in degrees | ‘vertical’ | ‘horizontal’]

unknown

[size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large
unknown

[a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘c
[‘normal’ | ‘italic’ | ‘oblique’]

string or anything printable with ‘%s’ conversion.

Transform instance

a url string

[‘normal’ | ‘small-caps’]

[‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]

[True | False]

[a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’
float

float

any number

ACCEPTS: sequence of floats

244 Chapter 28. Adding new scales and projections to matplotlib

CHAPTER
TWENTYNINE

DOCS OUTLINE

Proposed chapters for the docs, who has responsibility for them, and who reviews them. The “unit” doesn’t
have to be a full chapter (though in some cases it will be), it may be a chapter or a section in a chapter.

User’s guide unit | Author Status Reviewer
plotting 2-D arrays | Eric has author | Perry ? Darren
colormapping Eric has author | ?
quiver plots Eric has author | ?
histograms Manuel ? | no author | Erik Tollerud ?
bar / errorbar ? no author | ?

x-y plots ? no author | Darren
time series plots ? no author | ?
date plots John has author | ?
working with data | John has author | Darren
custom ticking ? no author | ?
masked data Eric has author | ?
patches ? no author | ?
legends ? no author | ?
animation John has author | ?
collections ? no author | ?
text - mathtext Michael accepted | John
text - usetex Darren accepted | John
text - annotations John submitted | ?
fonts et al Michael ? | no author | Darren
pyplot tut John submitted | Eric
configuration Darren submitted | ?
win32 install Charlie ? | no author | Darren
os X install Charlie ? | no author | ?
linux install Darren has author | ?
artist api John submitted | ?
event handling John submitted | ?
navigation John submitted | ?
interactive usage ? no author | ?
widgets ? no author | ?
ui - gtk ? no author | ?

Continued on next page

245

Matplotlib, Release 0.99.3

Table 29.1 — continued from previous page

ui - wx ? no author | ?
ui - tk ? no author | ?
ui - qt Darren has author | ?
backend - pdf Jouni ? no author | ?
backend - ps Darren has author | ?
backend - svg ? no author | ?
backend - agg ? no author | ?
backend - cairo ? no author | ?
Here is the ouline for the dev guide, much less fleshed out

Developer’s guide unit | Author | Status Reviewer

the renderer John has author | Michael ?

the canvas John has author | ?

the artist John has author | ?

transforms Michael | submitted | John

documenting mpl Darren submitted | John, Eric, Mike?

coding guide John complete | Eric

and_much_more ? ? ?

We also have some work to do converting docstrings to ReST for the API Reference. Please be sure to
follow the few guidelines described in Formatting. Once it is converted, please include the module in the
API documentation and update the status in the table to “converted”. Once docstring conversion is complete
and all the modules are available in the docs, we can figure out how best to organize the API Reference and

continue from there.

Module

Author

Status

backend_agg
backend_cairo
backend_cocoa
backend_emf
backend_fltkagg
backend_gdk
backend_gtk
backend_gtkagg
backend_gtkcairo
backend_mixed
backend_pdf
backend_ps
backend_qt
backend_qtagg
backend_qt4
backend_qtdagg
backend_svg
backend_template
backend_tkagg

backend_wx ‘

Darren
Darren
Darren
Darren
Darren

needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
needs conversion

‘ needs conversion

Continued on next page ‘

246

Chapter 29. Docs outline

Matplotlib, Release 0.99.3

Table 29.2 — continued from previous page

backend_wxagg
backends/tkagg
config/checkdep
config/cutils
config/mplconfig
config/mpltraits
config/rcparams
config/rcsetup
config/tconfig
config/verbose

projections/__init__

projections/geo
projections/polar
afm

artist

axes

axis
backend_bases
cbook

cm

collections
colorbar

colors

contour

dates

dviread

figure

finance
font_manager
fontconfig_pattern
image

legend

lines

mathtext

mlab

mpl

patches

path

pylab

pyplot

quiver

rcsetup

scale

table
texmanager
text

Darren
Darren
Darren
Darren
Darren
Darren
Darren
Darren
Mike

Mike

Mike

Darren
Darren
Darren
Darren
Mike
Mike

Mike & 77?
Mike
John/Mike

Mike
Mike

Mike

Darren
Mike

needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
converted

converted (not included—experimental)

converted
converted
converted
converted
converted
converted
converted
converted
converted
converted
converted

needs conversion
needs conversion
needs conversion
needs conversion
needs conversion
converted
converted

needs conversion
needs conversion
converted
converted
converted

N/A

converted
converted

N/A

converted

needs conversion
needs conversion
converted

needs conversion
needs conversion
converted

Continued on next page

247

Matplotlib, Release 0.99.3

Table 29.2 — continued from previous page

ticker John converted
transforms Mike converted
typelfont needs conversion
units needs conversion
widgets needs conversion

And we might want to do a similar table for the FAQ, but that may also be overkill...

If you agree to author a unit, remove the question mark by your name (or add your name if there is no
candidate), and change the status to “has author”. Once you have completed draft and checked it in, you can
change the status to “submitted” and try to find a reviewer if you don’t have one. The reviewer should read
your chapter, test it for correctness (eg try your examples) and change the status to “complete” when done.

You are free to lift and convert as much material from the web site or the existing latex user’s guide as you
see fit. The more the better.

The UI chapters should give an example or two of using mpl with your GUI and any relevant info, such as
version, installation, config, etc... The backend chapters should cover backend specific configuration (eg PS
only options), what features are missing, etc...

Please feel free to add units, volunteer to review or author a chapter, etc...

It is probably easiest to be an editor. Once you have signed up to be an editor, if you have an author pester
the author for a submission every so often. If you don’t have an author, find one, and then pester them!
Your only two responsibilities are getting your author to produce and checking their work, so don’t be shy.
You do not need to be an expert in the subject you are editing — you should know something about it and be
willing to read, test, give feedback and pester!

29.1 Reviewer notes

If you want to make notes for the authorwhen you have reviewed a submission, you can put them here. As
the author cleans them up or addresses them, they should be removed.

29.1.1 mathtext user’s guide- reviewed by JDH

This looks good (see Writing mathematical expressions) — there are a few minor things to close the book on
this chapter:

1. The main thing to wrap this up is getting the mathtext module ported over to rest and included in
the API so the links from the user’s guide tutorial work.

o There’s nothing in the mathtext module that I really consider a “public” API (i.e. that would be
useful to people just doing plots). If mathtext.py were to be documented, I would put it in the
developer’s docs. Maybe I should just take the link in the user’s guide out. - MGD

2. This section might also benefit from a little more detail on the customizations that are possible (eg an
example fleshing out the rc options a little bit). Admittedly, this is pretty clear from readin ghte rc file,
but it might be helpful to a newbie.

248 Chapter 29. Docs outline

Matplotlib, Release 0.99.3

e The only rcParam that is currently useful is mathtext.fontset, which is documented here. The
others only apply when mathtext.fontset == ‘custom’, which I'd like to declare “unsupported”.
It’s really hard to get a good set of math fonts working that way, though it might be useful in

a bind when someone has to use a specific wacky font for mathtext and only needs basics, like
sub/superscripts. - MGD

3. There is still a TODO in the file to include a complete list of symbols

e Done. It’s pretty extensive, thanks to STIX... - MGD

29.1. Reviewer notes 249

Matplotlib, Release 0.99.3

250 Chapter 29. Docs outline

Part IV

The Matplotlib API

251

CHAPTER
THIRTY

API CHANGES

This chapter is a log of changes to matplotlib that affect the outward-facing API. If updating matplotlib
breaks your scripts, this list may help describe what changes may be necessary in your code.

e You can now print several figures to one pdf file. See the docstrings of the class
matplotlib.backends.backend_pdf.PdfPages for more information.

e Removed configobj and enthought.traits packages, which are only required by the experimental traited
config and are somewhat out of date. If needed, install them independently.

30.1 Changes in 0.99

e pylab no longer provides a load and save function. These are available in matplotlib.mlab, or you can
use numpy.loadtxt and numpy.savetxt for text files, or np.save and np.load for binary numpy arrays.

e User-generated colormaps can now be added to the set recognized by matplotlib.cm.get_cmap().
Colormaps can be made the default and applied to the current image using
matplotlib.pyplot.set_cmap().

e changed use_mrecords default to False in mlab.csv2rec since this is partially broken

o Axes instances no longer have a “frame” attribute. Instead, use the new “spines” attribute. Spines is a
dictionary where the keys are the names of the spines (e.g. ‘left’,’right’ and so on) and the values are
the artists that draw the spines. For normal (rectilinear) axes, these artists are Line2D instances. For
other axes (such as polar axes), these artists may be Patch instances.

e Polar plots no longer accept a resolution kwarg. Instead, each Path must specify its own number of
interpolation steps. This is unlikely to be a user-visible change — if interpolation of data is required,
that should be done before passing it to matplotlib.

30.2 Changes for 0.98.x

o psd(), csd(), and cohere() will now automatically wrap negative frequency components to the begin-
ning of the returned arrays. This is much more sensible behavior and makes them consistent with
specgram(). The previous behavior was more of an oversight than a design decision.

253

http://www.voidspace.org.uk/python/configobj.html
http://code.enthought.com/projects/traits

Matplotlib, Release 0.99.3

Added new keyword parameters nonposx, nonposy to matplotlib.axes.Axes methods that set log
scale parameters. The default is still to mask out non-positive values, but the kwargs accept ‘clip’,
which causes non-positive values to be replaced with a very small positive value.

Added new matplotlib.pyplot.fignum_exists() andmatplotlib.pyplot.get_fignums();
they merely expose information that had been hidden in matplotlib._pylab_helpers.

Deprecated numerix package.
Added new matplotlib.image.imsave () and exposed it to the matplotlib.pyplot interface.
Remove support for pyExcelerator in exceltools — use xlwt instead

Changed the defaults of acorr and xcorr to use usevlines=True, maxlags=10 and normed=True since
these are the best defaults

Following keyword parameters for matplotlib.label.Label are now deprecated and new set of
parameters are introduced. The new parameters are given as a fraction of the font-size. Also, scat-
teryoffsets, fancybox and columnspacing are added as keyword parameters.

Deprecated New

pad borderpad
labelsep labelspacing
handlelen handlelength
handlestextsep | handletextpad
axespad borderaxespad

Removed the configobj and experimental traits rc support

Modified matplotlib.mlab.psd(), matplotlib.mlab.csd(), matplotlib.mlab.cohere(),
and matplotlib.mlab.specgram() to scale one-sided densities by a factor of 2. Also, option-
ally scale the densities by the sampling frequency, which gives true values of densities that can be
integrated by the returned frequency values. This also gives better MatLab compatibility. The cor-
responding matplotlib.axes.Axes methods and matplotlib.pyplot functions were updated as
well.

Font lookup now uses a nearest-neighbor approach rather than an exact match. Some fonts may be
different in plots, but should be closer to what was requested.

matplotlib.axes.Axes.set_xlim(),matplotlib.axes.Axes.set_ylim() now return a copy
of the viewlim array to avoid modify-in-place surprises.

matplotlib.afm.AFM.get_fullname() and matplotlib.afm.AFM.get_familyname() no
longer raise an exception if the AFM file does not specify these optional attributes, but returns a
guess based on the required FontName attribute.

Changed precision kwarg inmatplotlib.pyplot.spy(); default is O, and the string value ‘present’
is used for sparse arrays only to show filled locations.

matplotlib.collections.EllipseCollection added.

Added angles kwarg to matplotlib.pyplot.quiver() for more flexible specification of the ar-
row angles.

Deprecated (raise NotImplementedError) all the mlab2 functions frommatplotlib.mlab out of con-
cern that some of them were not clean room implementations.

254

Chapter 30. API Changes

Matplotlib, Release 0.99.3

e Methods matplotlib.collections.Collection.get_offsets() and
matplotlib.collections.Collection.set_offsets() added to Collection base class.

e matplotlib. figure.Figure.figurePatch renamed matplotlib.figure.Figure.patch;

matplotlib.axes.Axes.axesPatch renamed matplotlib.axes.Axes.patch;
matplotlib.axes.Axes.axesFrame renamed matplotlib.axes.Axes. frame.
matplotlib.axes.Axes.get_frame(), which returns matplotlib.axes.Axes.patch, is
deprecated.

e Changes in the matplotlib.contour.ContourLabeler attributes

(matplotlib.pyplot.clabel() function) so that they all have a form like .labelAttribute.
The three attributes that are most likely to be used by end users, .cl, .cl_xy and .cl_cvalues
have been maintained for the moment (in addition to their renamed versions), but they are deprecated
and will eventually be removed.

e Moved several functions in matplotlib.mlab and matplotlib.cbook into a separate module
matplotlib.numerical_methods because they were unrelated to the initial purpose of mlab or
cbook and appeared more coherent elsewhere.

30.3 Changes for 0.98.1

e Removed broken matplotlib.axes3d support and replaced it with a non-implemented error point-
ing to 0.91.x

30.4 Changes for 0.98.0

e matplotlib.image.imread() now no longer always returns RGBA data—if the image is lumi-
nance or RGB, it will return a MxN or MxNx3 array if possible. Also uint8 is no longer always forced
to float.

e Rewrote the matplotlib.cm.ScalarMappable callback infrastructure to use
matplotlib.cbook.CallbackRegistry rather than custom callback handling. Any users of
matplotlib.cm.ScalarMappable.add_observer() of the ScalarMappable should use the
matplotlib.cm.ScalarMappable.callbacks CallbackRegistry instead.

e New axes function and Axes method provide control over the plot
color cycle: matplotlib.axes.set_default_color_cycle() and
matplotlib.axes.Axes.set_color_cycle().

e matplotlib now requires Python 2.4, so matplotlib.cbook will no longer provide set,
enumerate(), reversed() or izip() compatibility functions.

e In Numpy 1.0, bins are specified by the Ileft edges only. The axes method
matplotlib.axes.Axes.hist() now uses future Numpy 1.3 semantics for histograms. Pro-
viding binedges, the last value gives the upper-right edge now, which was implicitly set to +infinity
in Numpy 1.0. This also means that the last bin doesn’t contain upper outliers any more by default.

e New axes method and pyplot function, hexbin(), is an alternative to scatter() for large datasets.
It makes something like a pcolor () of a 2-D histogram, but uses hexagonal bins.

30.3. Changes for 0.98.1 255

Matplotlib, Release 0.99.3

e New kwarg, symmetric, in matplotlib.ticker.MaxNLocator allows one require an axis to be
centered around zero.

o Toolkits must now be imported from mpl_toolkits (notmatplotlib.toolkits)

30.4.1 Notes about the transforms refactoring

A major new feature of the 0.98 series is a more flexible and extensible transformation infrastructure, written
in Python/Numpy rather than a custom C extension.

The primary goal of this refactoring was to make it easier to extend matplotlib to support new kinds of
projections. This is mostly an internal improvement, and the possible user-visible changes it allows are yet
to come.

See matplotlib.transforms for a description of the design of the new transformation framework.

For efficiency, many of these functions return views into Numpy arrays. This means that if you hold on to a
reference to them, their contents may change. If you want to store a snapshot of their current values, use the
Numpy array method copy().

The view intervals are now stored only in one place — in the matplotlib.axes.Axes instance, not in the
locator instances as well. This means locators must get their limits from their matplotlib.axis.Axis,
which in turn looks up its limits from the Axes. If a locator is used temporarily and not assigned to an
Axis or Axes, (e.g. in matplotlib.contour), a dummy axis must be created to store its bounds. Call
matplotlib.ticker.Locator.create_dummy_axis() to do so.

The functionality of Pbox has been merged with Bbox. Its methods now all return copies rather than modi-
fying in place.

The following lists many of the simple changes necessary to update code from the old transformation frame-
work to the new one. In particular, methods that return a copy are named with a verb in the past tense,
whereas methods that alter an object in place are named with a verb in the present tense.

256 Chapter 30. API Changes

Matplotlib, Release 0.99.3

matplotlib.transforms

Old method

New method

Bbox.get_bounds (]
Bbox.width()
Bbox.height ()
Bbox.intervalx().get_
Bbox.intervalx().set_l
Bbox.intervaly().get_
Bbox.intervaly().set_l
Bbox.xmin()
Bbox.ymin()
Bbox.xmax()
Bbox.ymax()
Bbox.overlaps(bboxe
bbox_all(bboxes)
Ibwh_to_bbox(l, b,

w, h)

in-
verse_transform_bbo)
bbox)

Inter-
val.contains_open(v)
Interval.contains(v)
iden-

tity_transform()
blend_xy_sep_transfd
ytrans)
scale_transform(xs,
ys)
get_bbox_transform(}
boxout)

Trans-
form.seq_xy_tup(poin
Trans-

transforms.Bbox.bounds
transforms.Bbox.width
transforms.Bbox.height
bawrahé)forms.Bbox.intervalx
Bt) intervalx is now a property.]
bawrahg)forms.Bbox.intervaly
bbb) intervaly is now a property.]
transforms.Bbox.x0 or transforms.Bbox.xmin
transforms.Bbox.y0 or transforms.Bbox.ymin
transforms.Bbox.x1 or transforms.Bbox.xmax
transforms.Bbox.yl or transforms.Bbox.ymax
)Bbox.count_overlaps(bboxes)
Bbox.union(bboxes) [transforms.Bbox.union() is a staticmethod.]
Bbox.from_bounds(x0, yO, w, h) [transforms.Bbox. from_bounds() is a
staticmethod.]
Bbox.inverse_transformed(trans)
x(trans,

1
1
1
1

interval_contains_open(tuple, v)

interval_contains(tuple, v)
matplotlib.transforms.IdentityTransform

riilestdeds. transform_factory(xtrans, ytrans)
Affine2D().scale(xs[, ys])

badBboxTransform(boxin, boxout) or BboxTransformFrom(boxin) or
BboxTransformTo(boxout)
Transform.transform(points)

ts)
Transform.inverted().transform(points)

Sform.inverse_xy_tup(points)

'The Bbox is bound by the points (x0, y0) to (x1, y1) and there is no defined order to these points, that is, x0 is not necessarily
the left edge of the box. To get the left edge of the Bbox, use the read-only property xmin.

30.4. Changes for 0.98.0

257

Matplotlib, Release 0.99.3

matplotlib.axes

Old method | New method
Axes.get_positiom(gtplotlib.axes.Axes.get_position() 2
Axes.set_positiopnfptplotlib.axes.Axes.set_position() 3
Axes.toggle_log himepiy()1ib.axes.Axes.set_yscale() *
Subplot class | removed.

The Polar class has moved to matplotlib.projections.polar.

matplotlib.artist

Old method | New method
Artist.set_clip_pdhtisuse}_clip_path(path, transform) >

matplotlib.collections

Old New method
method
linestyle linestyles °

matplotlib.colors
Old method New method
ColorConver- ColorConvertor.to_rgba_array(c)

tor.to_rgba_list(c)| [matplotlib.colors.ColorConvertor.to_rgba_array() returns an Nx4
Numpy array of RGBA color quadruples.]

matplotlib.contour

Old method New method
Con- matplotlib.contour.Contour.get_paths‘ () [Returns a list of
tour._segments | matplotlib.path.Path instances.]

Zmatplotlib.axes.Axes.get_position() used to return a list of points, now it returns amatplotlib.transforms.Bbox
instance.

‘matplotlib.axes.Axes.set_position() now accepts either four scalars or amatplotlib.transforms.Bbox instance.

“Since the recfactoring allows for more than two scale types (‘log’” or ‘linear’), it no longer makes sense to have a toggle.
Axes.toggle_log_lineary() has been removed.

Smatplotlib.artist.Artist.set_clip_path() now accepts a matplotlib.path.Path instance and a
matplotlib.transforms.Transform that will be applied to the path immediately before clipping.

®Linestyles are now treated like all other collection attributes, i.e. a single value or multiple values may be provided.

258 Chapter 30. API Changes

Matplotlib, Release 0.99.3

matplotlib. figure

0Old method New method
Figure.dpi.get() | Figure.dpi.set() | matplotlib.figure.Figure.dpi (a property)

matplotlib.patches

Old method New method
Patch.get_verts()| matplotlib.patches.Patch.get_path() [Returns amatplotlib.path.Path
instance]

matplotlib.backend_bases

Old method New method

GraphicsCon- GraphicsContext.set_clip_rectangle(bbox)
text.set_clip_rectangle(tuple)

GraphicsCon- GraphicsContext.get_clip_path()’
text.get_clip_path()

GraphicsCon- GraphicsContext.set_clip_path()
text.set_clip_path()

RendererBase

New methods:
e draw_path(self, gc, path, transform, rgbFace)

e draw_markers(self, gc, marker_path, marker_trans, path, trans, rgbFace)
<matplotlib.backend_bases.RendererBase.draw_markers()

e draw_path_collection(self, master_transform, cliprect, clippath,
clippath_trans, paths, all_transforms, offsets, offsetTrans, facecolors,
edgecolors, linewidths, linestyles, antialiaseds) [optional]

Changed methods:

o draw_image(self, x, y, im, bbox) is now draw_image(self, x, y, im, bbox, clippath,
clippath_trans)

Removed methods:
e draw_arc

e draw_line_collection

"matplotlib.backend_bases.GraphicsContext.get_clip_path() returns a tuple of the form (path, affine_transform),
where path is amatplotlib.path.Path instance and affine_transform is amatplotlib.transforms.Affine2D instance.

®matplotlib.backend_bases.GraphicsContext.set_clip_path() now only accepts a
matplotlib.transforms.TransformedPath instance.

30.4. Changes for 0.98.0 259

Matplotlib, Release 0.99.3

draw_line
draw_lines
draw_point
draw_quad_mesh
draw_poly_collection
draw_polygon
draw_rectangle

draw_regpoly_collection

30.5 Changes for 0.91.2

For csv2rec(), checkrows=0 is the new default indicating all rows will be checked for type inference

A warning is issued when an image is drawn on log-scaled axes, since it will not log-scale the image
data.

Moved rec2gtk() tomatplotlib.toolkits.gtktools
Moved rec2excel () tomatplotlib.toolkits.exceltools

Removed, dead/experimental Examplelnfo, @ Namespace and Importer code from
matplotlib.__init__

30.6 Changes for 0.91.1

30.7 Changes for 0.91.0

Changed cbook.is_file_like() to cbook.is_writable_file_like() and corrected behavior.

Added ax kwarg to pyplot.colorbar() and Figure.colorbar() so that one can specify the axes
object from which space for the colorbar is to be taken, if one does not want to make the colorbar axes
manually.

Changed cbook.reversed() so it yields a tuple rather than a (index, tuple). This agrees with the
python reversed builtin, and cbook only defines reversed if python doesnt provide the builtin.

Made skiprows=1 the default on csv2rec()
The gd and paint backends have been deleted.

The errorbar method and function now accept additional kwargs so that upper and lower limits can be
indicated by capping the bar with a caret instead of a straight line segment.

The matplotlib.dviread file now has a parser for files like psfonts.map and pdftex.map, to map
TeX font names to external files.

260

Chapter 30. API Changes

Matplotlib, Release 0.99.3

The file matplotlib.typelfont contains a new class for Type 1 fonts. Currently it simply reads
pfa and pfb format files and stores the data in a way that is suitable for embedding in pdf files. In the
future the class might actually parse the font to allow e.g. subsetting.

matplotlib.FT2Font now supports FT_Attach_File(). In practice this can be used to read an
afm file in addition to a pfa/pfb file, to get metrics and kerning information for a Type 1 font.

The AFM class now supports querying CapHeight and stem widths. The get_name_char method now
has an isord kwarg like get_width_char.

Changed pcolor() default to shading="flat’; but as noted now in the docstring, it is preferable to
simply use the edgecolor kwarg.

The mathtext font commands (\cal, \rm, \it, \tt) now behave as TeX does: they are in effect
until the next font change command or the end of the grouping. Therefore uses of \cal{R}
should be changed to ${\cal R}$. Alternatively, you may use the new LaTeX-style font com-
mands (\mathcal, \mathrm, \mathit, \mathtt) which do affect the following group, eg.
$\mathcal{R}S$.

Text creation commands have a new default linespacing and a new 1linespacing kwarg, which is a
multiple of the maximum vertical extent of a line of ordinary text. The defaultis 1.2; linespacing=2
would be like ordinary double spacing, for example.

Changed default kwarg in matplotlib.colors.Normalize.__init__‘() to clip=False; clip-
ping silently defeats the purpose of the special over, under, and bad values in the colormap, thereby
leading to unexpected behavior. The new default should reduce such surprises.

Made the emit property of set_x1im() and set_ylim() True by default; removed the Axes custom
callback handling into a ‘callbacks’ attribute which is a CallbackRegistry instance. This now
supports the ‘xlim_changed’ and ‘ylim_changed” Axes events.

30.8 Changes for 0.90.1

The file dviread.py has a (very limited and fragile) dvi reader
for usetex support. The API might change in the future so don’t
depend on it yet.

Removed deprecated support for a float value as a gray-scale;
now it must be a string, like ’0.5’. Added alpha kwarg to
ColorConverter.to_rgba_list.

New method set_bounds(vmin, vmax) for formatters, locators sets
the viewInterval and dataInterval from floats.

Removed deprecated colorbar_classic.
Line2D.get_xdata and get_ydata valid_only=False kwarg is replaced
by orig=True. When True, it returns the original data, otherwise

the processed data (masked, converted)

Some modifications to the units interface.
units.ConversionInterface.tickers renamed to

30.8. Changes for 0.90.1

261

Matplotlib, Release 0.99.3

units.ConversionInterface.axisinfo and it now returns a
units.AxisInfo object rather than a tuple. This will make it
easier to add axis info functionality (eg I added a default label
on this iteration) w/o having to change the tuple length and hence
the API of the client code everytime new functionality is added.
Also, units.ConversionInterface.convert_to_value is now simply
named units.ConversionInterface.convert.

Axes.errorbar uses Axes.vlines and Axes.hlines to draw its error
limits int he vertical and horizontal direction. As you’ll see
in the changes below, these funcs now return a LineCollection
rather than a list of lines. The new return signature for
errorbar is ylins, caplines, errorcollections where
errorcollections is a xerrcollection, yerrcollection

Axes.vlines and Axes.hlines now create and returns a LineCollection, not a list
of lines. This is much faster. The kwarg signature has changed,
so consult the docs

MaxNLocator accepts a new Boolean kwarg (’integer’) to force
ticks to integer locations.

Commands that pass an argument to the Text constructor or to
Text.set_text() now accept any object that can be converted
with ’%s’. This affects xlabel(), title(), etc.

Barh now takes a **kwargs dict instead of most of the old
arguments. This helps ensure that bar and barh are kept in sync,
but as a side effect you can no longer pass e.g. color as a
positional argument.

ft2font.get_charmap() now returns a dict that maps character codes
to glyph indices (until now it was reversed)

Moved data files into lib/matplotlib so that setuptools’ develop
mode works. Re-organized the mpl-data layout so that this source
structure is maintained in the installation. (I.e. the ’fonts’ and
’images’ sub-directories are maintained in site-packages.).
Suggest removing site-packages/matplotlib/mpl-data and
~/.matplotlib/ttffont.cache before installing

30.9 Changes for 0.90.0

All artists now implement a "pick" method which users should not
call. Rather, set the "picker" property of any artist you want to
pick on (the epsilon distance in points for a hit test) and
register with the "pick_event" callback. See
examples/pick_event_demo.py for details

Bar, barh, and hist have "log" binary kwarg: log=True
sets the ordinate to a log scale.

262 Chapter 30. API Changes

Matplotlib, Release 0.99.3

Boxplot can handle a list of vectors instead of just
an array, so vectors can have different lengths.

Plot can handle 2-D x and/or y; it plots the columns.
Added linewidth kwarg to bar and barh.

Made the default Artist._transform None (rather than invoking
identity_transform for each artist only to have it overridden
later). Use artist.get_transform() rather than artist._transform,
even in derived classes, so that the default transform will be
created lazily as needed

New LogNorm subclass of Normalize added to colors.py.
All Normalize subclasses have new inverse() method, and
the __call__() method has a new clip kwarg.

Changed class names in colors.py to match convention:
normalize -> Normalize, no_norm -> NoNorm. Old names
are still available for now.

Removed obsolete pcolor_classic command and method.

Removed lineprops and markerprops from the Annotation code and
replaced them with an arrow configurable with kwarg arrowprops.
See examples/annotation_demo.py - JDH

30.10 Changes for 0.87.7

Completely reworked the annotations API because I found the old
API cumbersome. The new design is much more legible and easy to
read. See matplotlib.text.Annotation and
examples/annotation_demo.py

markeredgecolor and markerfacecolor cannot be configured in
matplotlibrc any more. Instead, markers are generally colored
automatically based on the color of the line, unless marker colors
are explicitely set as kwargs - NN

Changed default comment character for load to '#’ - JDH

math_parse_s_ft2font_svg from mathtext.py & mathtext2.py now returns
width, height, svg_elements. svg_elements is an instance of Bunch (
cmbook.py) and has the attributes svg_glyphs and svg_lines, which are both
lists.

Renderer.draw_arc now takes an additional parameter, rotation.
It specifies to draw the artist rotated in degrees anti-
clockwise. It was added for rotated ellipses.

30.10. Changes for 0.87.7

263

Matplotlib, Release 0.99.3

Renamed Figure.set_figsize_inches to Figure.set_size_inches to
better match the get method, Figure.get_size_inches.

Removed the copy_bbox_transform from transforms.py; added
shallowcopy methods to all transforms. All transforms already
had deepcopy methods.

FigureManager.resize(width, height): resize the window
specified in pixels

barh: x and y args have been renamed to width and bottom
respectively, and their order has been swapped to maintain
a (position, value) order.

bar and barh: now accept kwarg ’edgecolor’.

bar and barh: The left, height, width and bottom args can
now all be scalars or sequences; see docstring.

barh: now defaults to edge aligned instead of center
aligned bars

bar, barh and hist: Added a keyword arg ’align’ that
controls between edge or center bar alignment.

Collections: PolyCollection and LineCollection now accept
vertices or segments either in the original form [(x,y),

(x,y), ...] or as a 2D numerix array, with X as the first column
and Y as the second. Contour and quiver output the numerix

form. The transforms methods Bbox.update() and
Transformation.seq_xy_tups() now accept either form.

Collections: LineCollection is now a ScalarMappable like
PolyCollection, etc.

Specifying a grayscale color as a float is deprecated; use
a string instead, e.g., 0.75 -> ’0.75’.

Collections: initializers now accept any mpl color arg, or
sequence of such args; previously only a sequence of rgba
tuples was accepted.

Colorbar: completely new version and api; see docstring. The
original version is still accessible as colorbar_classic, but
is deprecated.

Contourf: "extend" kwarg replaces "clip_ends"; see docstring.
Masked array support added to pcolormesh.

Modified aspect-ratio handling:
Removed aspect kwarg from imshow
Axes methods:
set_aspect(self, aspect, adjustable=None, anchor=None)

264 Chapter 30

. API Changes

Matplotlib, Release 0.99.3

set_adjustable(self, adjustable)
set_anchor(self, anchor)

Pylab interface:
axis(’image’)

Backend developers: ft2font’s load_char now takes a flags
argument, which you can OR together from the LOAD_XXX
constants.

30.11 Changes for 0.86

Matplotlib data is installed into the matplotlib module.
This is similar to package_data. This should get rid of
having to check for many possibilities in _get_data_path().
The MATPLOTLIBDATA env key is still checked first to allow
for flexibility.

1) Separated the color table data from cm.py out into

a new file, _cm.py, to make it easier to find the actual
code in cm.py and to add new colormaps. Everything

from _cm.py is imported by cm.py, so the split should be
transparent.

2) Enabled automatic generation of a colormap from

a list of colors in contour; see modified
examples/contour_demo.py.

3) Support for imshow of a masked array, with the
ability to specify colors (or no color at all) for
masked regions, and for regions that are above or

below the normally mapped region. See
examples/image_masked.py.

4) In support of the above, added two new classes,
ListedColormap, and no_norm, to colors.py, and modified
the Colormap class to include common functionality. Added
a clip kwarg to the normalize class.

30.12 Changes for 0.85

Made xtick and ytick separate props in rc

made pos=None the default for tick formatters rather than 0 to
indicate "not supplied"

Removed "feature" of minor ticks which prevents them from
overlapping major ticks. Often you want major and minor ticks at
the same place, and can offset the major ticks with the pad. This
could be made configurable

Changed the internal structure of contour.py to a more 00 style.

30.11. Changes for 0.86

265

Matplotlib, Release 0.99.3

Calls to contour or contourf in axes.py or pylab.py now return
a ContourSet object which contains references to the
LineCollections or PolyCollections created by the call,

as well as the configuration variables that were used.

The ContourSet object is a "mappable" if a colormap was used.

Added a clip_ends kwarg to contourf. From the docstring:
* clip_ends = True
If False, the limits for color scaling are set to the
minimum and maximum contour levels.
True (default) clips the scaling limits. Example:
if the contour boundaries are V = [-100, 2, 1, 0, 1, 2, 100],
then the scaling limits will be [-100, 100] if clip_ends
is False, and [-3, 3] if clip_ends is True.
Added kwargs linewidths, antialiased, and nchunk to contourf. These
are experimental; see the docstring.

Changed Figure.colorbar():
kw argument order changed;
if mappable arg is a non-filled ContourSet, colorbar() shows
lines instead hof polygons.
if mappable arg is a filled ContourSet with clip_ends=True,
the endpoints are not labelled, so as to give the
correct impression of open-endedness.

Changed LineCollection.get_linewidths to get_linewidth, for
consistency.

30.13 Changes for 0.84

Unified argument handling between hlines and vlines. Both now
take optionally a fmt argument (as in plot) and a keyword args
that can be passed onto Line2D.

Removed all references to "data clipping” in rc and lines.py since
these were not used and not optimized. I’m sure they’ll be
resurrected later with a better implementation when needed.

’set’ removed - no more deprecation warnings. Use ’setp’ instead.
Backend developers: Added flipud method to image and removed it

from to_str. Removed origin kwarg from backend.draw_image.
origin is handled entirely by the frontend now.

30.14 Changes for 0.83

- Made HOME/.matplotlib the new config dir where the matplotlibrc
file, the ttf.cache, and the tex.cache live. The new default

266 Chapter 30. API Changes

Matplotlib, Release 0.99.3

filenames in .matplotlib have no leading dot and are not hidden.
Eg, the new names are matplotlibrc, tex.cache, and ttffont.cache.
This is how ipython does it so it must be right.

If old files are found, a warning is issued and they are moved to
the new location.

- backends/__init__.py no longer imports new_figure_manager,
draw_if_ interactive and show from the default backend, but puts
these imports into a call to pylab_setup. Also, the Toolbar is no
longer imported from WX/WXAgg. New usage:

from backends import pylab_setup
new_figure_manager, draw_if_interactive, show = pylab_setup()

- Moved Figure.get_width_height() to FigureCanvasBase. It now
returns int instead of float.

30.15 Changes for 0.82

- toolbar import change in GTKAgg, GTKCairo and WXAgg

- Added subplot config tool to GTK* backends -- note you must now
import the NavigationToolbar2 from your backend of choice rather
than from backend_gtk because it needs to know about the backend
specific canvas -- see examples/embedding_in_gtk2.py. Ditto for
wx backend -- see examples/embedding_in_wxagg.py

- hist bin change

Sean Richards notes there was a problem in the way we created
the binning for histogram, which made the last bin
underrepresented. From his post:

I see that hist uses the linspace function to create the bins
and then uses searchsorted to put the values in their correct
bin. Thats all good but I am confused over the use of linspace
for the bin creation. I wouldn’t have thought that it does
what is needed, to quote the docstring it creates a "Linear
spaced array from min to max". For it to work correctly
shouldn’t the values in the bins array be the same bound for
each bin? (i.e. each value should be the lower bound of a
bin). To provide the correct bins for hist would it not be
something like

def bins(xmin, xmax, N):
if N==1: return xmax
dx = (xmax-xmin)/N # instead of N-1
return xmin + dx*arange(N)

30.15. Changes for 0.82 267

Matplotlib, Release 0.99.3

This suggestion is implemented in 0.81. My test script with these
changes does not reveal any bias in the binning

from matplotlib.numerix.mlab import randn, rand, zeros, Float
from matplotlib.mlab import hist, mean

Nbins = 50
Ntests = 200
results = zeros((Ntests,Nbins), typecode=Float)
for i in range(Ntests):
print ’computing’, i
X = rand(10000)
n, bins = hist(x, Nbins)
results[i] = n
print mean(results)

30.16 Changes for 0.81

- pylab and artist "set" functions renamed to setp to avoid clash
with python2.4 built-in set. Current version will issue a
deprecation warning which will be removed in future versions

- imshow interpolation arguments changes for advanced interpolation
schemes. See help imshow, particularly the interpolation,
filternorm and filterrad kwargs

- Support for masked arrays has been added to the plot command and
to the Line2D object. Only the valid points are plotted. A
"valid_only" kwarg was added to the get_xdata() and get_ydata()
methods of Line2D; by default it is False, so that the original
data arrays are returned. Setting it to True returns the plottable
points.

- contour changes:

Masked arrays: contour and contourf now accept masked arrays as
the variable to be contoured. Masking works correctly for
contour, but a bug remains to be fixed before it will work for
contourf. The "badmask" kwarg has been removed from both
functions.

Level argument changes:

01d version: a list of levels as one of the positional
arguments specified the lower bound of each filled region; the
upper bound of the last region was taken as a very large
number. Hence, it was not possible to specify that z values
between 0 and 1, for example, be filled, and that values
outside that range remain unfilled.

268 Chapter 30

. API Changes

Matplotlib, Release 0.99.3

New version: a list of N levels is taken as specifying the
boundaries of N-1 z ranges. Now the user has more control over
what is colored and what is not. Repeated calls to contourf
(with different colormaps or color specifications, for example)
can be used to color different ranges of z. Values of z
outside an expected range are left uncolored.

Example:
0ld: contourf(z, [®, 1, 2]) would yield 3 regions: 0-1, 1-2, and >2.
New: it would yield 2 regions: 0-1, 1-2. If the same 3 regions were

desired, the equivalent list of levels would be [0, 1, 2,
1e38].

30.17 Changes for 0.80

- xlim/ylim/axis always return the new limits regardless of
arguments. They now take kwargs which allow you to selectively
change the upper or lower limits while leaving unnamed limits
unchanged. See help(xlim) for example

30.18 Changes for 0.73

- Removed deprecated Colormaplet and friends
- Removed all error handling from the verbose object

- figure num of zero is now allowed

30.19 Changes for 0.72

- Line2D, Text, and Patch copy_properties renamed update_from and
moved into artist base class

- LineCollecitons.color renamed to LineCollections.set_color for
consistency with set/get introspection mechanism,

- pylab figure now defaults to num=None, which creates a new figure
with a guaranteed unique number

- contour method syntax changed - now it is matlab compatible
unchanged: contour(Z)
old: contour(Z, x=Y, y=Y)

new: contour(X, Y, Z)

see http://matplotlib.sf.net/matplotlib.pylab.html#-contour

30.17. Changes for 0.80 269

Matplotlib, Release 0.99.3

- Increased the default resolution for save command.

- Renamed the base attribute of the ticker classes to _base to avoid conflict

with the base method. Sitt for subs
- subs=none now does autosubbing in the tick locator.

- New subplots that overlap old will delete the old axes. If you
do not want this behavior, use fig.add_subplot or the axes
command

30.20 Changes for 0.71

Significant numerix namespace changes, introduced to resolve
namespace clashes between python built-ins and mlab names.
Refactored numerix to maintain separate modules, rather than
folding all these names into a single namespace. See the following
mailing list threads for more information and background

http://sourceforge.net/mailarchive/forum.php?thread_id=6398890&forum_id=36187
http://sourceforge.net/mailarchive/forum.php?thread_id=6323208&forum_id=36187

OLD usage
from matplotlib.numerix import array, mean, fft
NEW usage

from matplotlib.numerix import array
from matplotlib.numerix.mlab import mean
from matplotlib.numerix.fft import fft

numerix dir structure mirrors numarray (though it is an incomplete
implementation)

numerix

numerix/mlab
numerix/linear_algebra
numerix/fft
numerix/random_array

but of course you can use ’'numerix : Numeric’ and still get the
symbols.

pylab still imports most of the symbols from Numerix, MLab, fft,
etc, but is more cautious. For names that clash with python names
(min, max, sum), pylab keeps the builtins and provides the numeric
versions with an a* prefix, eg (amin, amax, asum)

270 Chapter 30

. API Changes

Matplotlib, Release 0.99.3

30.21 Changes for 0.70

MplEvent factored into a base class Event and derived classes
MouseEvent and KeyEvent

Removed definct set_measurement in wx toolbar

30.22 Changes for 0.65.1

removed add_axes and add_subplot from backend_bases. Use
figure.add_axes and add_subplot instead. The figure now manages the
current axes with gca and sca for get and set current axe. If you
have code you are porting which called, eg, figmanager.add_axes, you
can now simply do figmanager.canvas.figure.add_axes.

30.23 Changes for 0.65

mpl_connect and mpl_disconnect in the matlab interface renamed to
connect and disconnect

Did away with the text methods for angle since they were ambiguous.
fontangle could mean fontstyle (obligue, etc) or the rotation of the
text. Use style and rotation instead.

30.24 Changes for 0.63

Dates are now represented internally as float days since 0001-01-01,
UTC.

All date tickers and formatters are now in matplotlib.dates, rather
than matplotlib.tickers

converters have been abolished from all functions and classes.
num2date and date2num are now the converter functions for all date
plots

Most of the date tick locators have a different meaning in their
constructors. In the prior implementation, the first argument was a
base and multiples of the base were ticked. Eg

HourLocator(5) # old: tick every 5 minutes

In the new implementation, the explicit points you want to tick are
provided as a number or sequence

30.21. Changes for 0.70 271

Matplotlib, Release 0.99.3

HourLocator(range(®,5,61)) # new: tick every 5 minutes

This gives much greater flexibility. I have tried to make the
default constructors (no args) behave similarly, where possible.

Note that YearLocator still works under the base/multiple scheme.
The difference between the YearLocator and the other locators is
that years are not recurrent.
Financial functions:
matplotlib.finance.quotes_historical_yahoo(ticker, datel, date2)
datel, date2 are now datetime instances. Return value is a list
of quotes where the quote time is a float - days since gregorian

start, as returned by date2num

See examples/finance_demo.py for example usage of new API

30.25 Changes for 0.61

canvas.connect is now deprecated for event handling. use
mpl_connect and mpl_disconnect instead. The callback signature is
func(event) rather than func(widget, evet)

30.26 Changes for 0.60

ColormapJlet and Grayscale are deprecated. For backwards
compatibility, they can be obtained either by doing

from matplotlib.cm import Colormaplet
or
from matplotlib.matlab import *

They are replaced by cm.jet and cm.grey

30.27 Changes for 0.54.3

removed the set_default_font / get_default_font scheme from the
font_manager to unify customization of font defaults with the rest of
the rc scheme. See examples/font_properties_demo.py and help(rc) in
matplotlib.matlab.

272 Chapter 30

. API Changes

Matplotlib, Release 0.99.3

30.28 Changes for 0.54

30.28.1 matlab interface
dpi

Several of the backends used a PIXELS_PER_INCH hack that I added to try and make images render
consistently across backends. This just complicated matters. So you may find that some font sizes and line
widths appear different than before. Apologies for the inconvenience. You should set the dpi to an accurate
value for your screen to get true sizes.

pcolor and scatter

There are two changes to the matlab interface API, both involving the patch drawing commands. For ef-
ficiency, pcolor and scatter have been rewritten to use polygon collections, which are a new set of objects
from matplotlib.collections designed to enable efficient handling of large collections of objects. These new
collections make it possible to build large scatter plots or pcolor plots with no loops at the python level,
and are significantly faster than their predecessors. The original pcolor and scatter functions are retained as
pcolor_classic and scatter_classic.

The return value from pcolor is a PolyCollection. Most of the propertes that are available on rectangles or
other patches are also available on PolyCollections, eg you can say:

= scatter(blah, blah)
.set_linewidth(1.0)
.set_facecolor(’r’)

C
C
C
c.set_alpha(0.5)

or:

c = scatter(blah, blah)
set(c, ’'linewidth’, 1.0, ’facecolor’, ’r’, ’alpha’, 0.5)

Because the collection is a single object, you no longer need to loop over the return value of scatter or pcolor
to set properties for the entire list.

If you want the different elements of a collection to vary on a property, eg to have different line widths, see
matplotlib.collections for a discussion on how to set the properties as a sequence.

For scatter, the size argument is now in points”2 (the area of the symbol in points) as in matlab and is not in
data coords as before. Using sizes in data coords caused several problems. So you will need to adjust your
size arguments accordingly or use scatter_classic.

mathtext spacing

For reasons not clear to me (and which I’ll eventually fix) spacing no longer works in font groups. However,
I added three new spacing commands which compensate for this ** (regular space), ‘/’ (small space) and
‘hspace{frac}’ where frac is a fraction of fontsize in points. You will need to quote spaces in font strings,
is:

30.28. Changes for 0.54 273

Matplotlib, Release 0.99.3

title(r’$\rm{Histogram\ of\ IQ:}\ \mu=100,\ \sigma=15$’)

30.28.2 Object interface - Application programmers
Autoscaling

The x and y axis instances no longer have autoscale view. These are handled by
axes.autoscale_view

Axes creation

You should not instantiate your own Axes any more using the OO API. Rather, create a Figure
as before and in place of:

f = Figure(figsize=(5,4), dpi=100)
a = Subplot(f, 111)
f.add_axis(a)

use:

f = Figure(figsize=(5,4), dpi=100)
a f.add_subplot(111)

That is, add_axis no longer exists and is replaced by:

add_axes(rect, axisbg=defaultcolor, frameon=True)
add_subplot (num, axisbg=defaultcolor, frameon=True)

Artist methods

If you define your own Artists, you need to rename the _draw method to draw

Bounding boxes

matplotlib.transforms.Bound2D is replaced by matplotlib.transforms.Bbox. If you want to
construct a bbox from left, bottom, width, height (the signature for Bound2D), use mat-
plotlib.transforms.Ibwh_to_bbox, as in

bbox = clickBBox = Ibwh_to_bbox(left, bottom, width, height)

The Bbox has a different API than the Bound2D. Eg, if you want to get the width and height of
the bbox

OLD:: width = fig.bbox.x.interval() height = fig.bbox.y.interval()
New:: width = fig.bbox.width() height = fig.bbox.height()

274 Chapter 30. API Changes

Matplotlib, Release 0.99.3

Object constructors

You no longer pass the bbox, dpi, or transforms to the various Artist constructors. The old way
or creating lines and rectangles was cumbersome because you had to pass so many attributes to
the Line2D and Rectangle classes not related directly to the gemoetry and properties of the ob-
ject. Now default values are added to the object when you call axes.add_line or axes.add_patch,
so they are hidden from the user.

If you want to define a custom transformation on these objects, call o.set_transform(trans)
where trans is a Transformation instance.

In prior versions of you wanted to add a custom line in data coords, you would have to do
1 = Line2D(dpi, bbox, x, y, color = color, transx = transx, transy = transy,)

now all you need is
1 = Line2D(x, y, color=color)

and the axes will set the transformation for you (unless you have set your own already, in which
case it will eave it unchanged)

Transformations

The entire transformation architecture has been rewritten. Previously the x and y transforma-
tions where stored in the xaxis and yaxis insstances. The problem with this approach is it only
allows for separable transforms (where the x and y transformations don’t depend on one an-
other). But for cases like polar, they do. Now transformations operate on x,y together. There is
a new base class matplotlib.transforms.Transformation and two concrete implemetations, mat-
plotlib.transforms.SeparableTransformation and matplotlib.transforms.Affine. The Separable-
Transformation is constructed with the bounding box of the input (this determines the rectangu-
lar coordinate system of the input, ie the x and y view limits), the bounding box of the display,
and possibily nonlinear transformations of x and y. The 2 most frequently used transforma-
tions, data cordinates -> display and axes coordinates -> display are available as ax.transData
and ax.transAxes. See alignment_demo.py which uses axes coords.

Also, the transformations should be much faster now, for two reasons
o they are written entirely in extension code

e because they operate on x and y together, they can do the entire transformation in one
loop. Earlier I did something along the lines of:

xt = sx*func(x) + tx
yt sy“func(y) + ty

Although this was done in numerix, it still involves 6 length(x) for-loops (the multiply,
add, and function evaluation each for x and y). Now all of that is done in a single pass.

If you are using transformations and bounding boxes to get the cursor position in data coor-
dinates, the method calls are a little different now. See the updated examples/coords_demo.py
which shows you how to do this.

30.28. Changes for 0.54 275

Matplotlib, Release 0.99.3

Likewise, if you are using the artist bounding boxes to pick items on the canvas with the
GUI, the bbox methods are somewhat different. You will need to see the updated exam-
ples/object_picker.py.

See unit/transforms_unit.py for many examples using the new transformations.

30.29 Changes for 0.50

* refactored Figure class so it is no longer backend dependent.
FigureCanvasBackend takes over the backend specific duties of the
Figure. matplotlib.backend_bases.FigureBase moved to
matplotlib.figure.Figure.

* backends must implement FigureCanvasBackend (the thing that
controls the figure and handles the events if any) and
FigureManagerBackend (wraps the canvas and the window for matlab
interface). FigureCanvasBase implements a backend switching
mechanism

* Figure is now an Artist (like everything else in the figure) and
is totally backend independent

* GDFONTPATH renamed to TTFPATH
* backend faceColor argument changed to rgbFace
* colormap stuff moved to colors.py

* arg_to_rgb in backend_bases moved to class ColorConverter in
colors.py

* GD users must upgrade to gd-2.0.22 and gdmodule-0.52 since new gd
features (clipping, antialiased lines) are now used.

* Renderer must implement points_to_pixels
Migrating code:
Matlab interface:
The only API change for those using the matlab interface is in how
you call figure redraws for dynamically updating figures. In the
old API, you did
fig.draw(Q)

In the new API, you do

manager = get_current_fig_manager()
manager.canvas.draw()

See the examples system_monitor.py, dynamic_demo.py, and anim.py

276 Chapter 30. API Changes

Matplotlib, Release 0.99.3

APT

There is one important API change for application developers.
Figure instances used subclass GUI widgets that enabled them to be
placed directly into figures. Eg, FigureGTK subclassed
gtk.DrawingArea. Now the Figure class is independent of the
backend, and FigureCanvas takes over the functionality formerly
handled by Figure. 1In order to include figures into your apps,
you now need to do, for example

gtk example

fig = Figure(figsize=(5,4), dpi=100)

canvas = FigureCanvasGTK(fig) # a gtk.DrawingArea
canvas.show()

vbox.pack_start(canvas)

If you use the NavigationToolbar, this in now intialized with a
FigureCanvas, not a Figure. The examples embedding_in_gtk.py,
embedding_in_gtk2.py, and mpl_with_glade.py all reflect the new
API so use these as a guide.

All prior calls to

figure.draw() and
figure.print_figure(args)

should now be

canvas.draw() and
canvas.print_figure(args)

Apologies for the inconvenience. This refactorization brings
significant more freedom in developing matplotlib and should bring
better plotting capabilities, so I hope the inconvenience is worth
it.

30.30 Changes for 0.42

* Refactoring AxisText to be backend independent. Text drawing and
get_window_extent functionality will be moved to the Renderer.

* backend_bases.AxisTextBase is now text.Text module

* All the erase and reset functionality removed frmo AxisText - not
needed with double buffered drawing. Ditto with state change.
Text instances have a get_prop_tup method that returns a hashable
tuple of text properties which you can use to see if text props
have changed, eg by caching a font or layout instance in a dict
with the prop tup as a key -- see RendererGTK.get_pango_layout in
backend_gtk for an example.

30.30. Changes for 0.42 277

Matplotlib, Release 0.99.3

* Text._get_xy_display renamed Text.get_xy_display
* Artist set_renderer and wash_brushes methods removed
* Moved Legend class from matplotlib.axes into matplotlib.legend

* Moved Tick, XTick, YTick, Axis, XAxis, YAxis from matplotlib.axes
to matplotlib.axis

* moved process_text_args to matplotlib.text

* After getting Text handled in a backend independent fashion, the
import process is much cleaner since there are no longer cyclic
dependencies

* matplotlib.matlab._get_current_fig_manager renamed to
matplotlib.matlab.get_current_fig_manager to allow user access to
the GUI window attribute, eg figManager.window for GIK and
figManager. frame for wx

30.31 Changes for 0.40

- Artist

* __init__ takes a DPI instance and a Bound2D instance which is
the bounding box of the artist in display coords

* get_window_extent returns a Bound2D instance

* set_size is removed; replaced by bbox and dpi

* the clip_gc method is removed. Artists now clip themselves with
their box

* added _clipOn boolean attribute. If True, gc clip to bbox.

- AxisTextBase
* Initialized with a transx, transy which are Transform instances
* set_drawing_area removed
* get_left_right and get_top_bottom are replaced by get_window_extent

- Line2D Patches now take transx, transy
* Initialized with a transx, transy which are Transform instances

- Patches
* Initialized with a transx, transy which are Transform instances

- FigureBase attributes dpi is a DPI intance rather than scalar and
new attribute bbox is a Bound2D in display coords, and I got rid
of the left, width, height, etc... attributes. These are now
accessible as, for example, bbox.x.min is left, bbox.x.interval()
is width, bbox.y.max is top, etc...

- GcfBase attribute pagesize renamed to figsize

278 Chapter 30. API Changes

Matplotlib, Release 0.99.3

- Axes
* removed figbg attribute
* added fig instance to __init__
* resizing is handled by figure call to resize.

- Subplot

* added fig instance to __init__

- Renderer methods for patches now take gcEdge and gcFace instances.
gcFace=None takes the place of filled=False

- True and False symbols provided by cbook in a python2.3 compatible
way

- new module transforms supplies BoundlD, Bound2D and Transform
instances and more

- Changes to the matlab helpers API

* _matlab_helpers.GcfBase is renamed by Gcf. Backends no longer
need to derive from this class. Instead, they provide a factory
function new_figure_manager (num, figsize, dpi). The destroy
method of the GcfDerived from the backends is moved to the derived
FigureManager.

FigureManagerBase moved to backend_bases
* Gcf.get_all_figwins renamed to Gcf.get_all_fig managers
Jeremy:

Make sure to self._reset = False in AxisTextWX._set_font. This was
something missing in my backend code.

30.31. Changes for 0.40 279

Matplotlib, Release 0.99.3

280 Chapter 30. API Changes

CHAPTER
THIRTYONE

MATPLOTLIB CONFIGURATION

31.1 matplotlib

This is an object-orient plotting library.
A procedural interface is provided by the companion pylab module, which may be imported directly, e.g:

from pylab import *

or using ipython:

ipython -pylab

For the most part, direct use of the object-oriented library is encouraged when programming rather than
working interactively. The exceptions are the pylab commands figure(), subplot(), show(), and
savefig(), which can greatly simplify scripting.

Modules include:

matplotlib.axes defines the Axes class. Most pylab commands are wrappers for Axes
methods. The axes module is the highest level of OO access to the library.

matplotlib.figure defines the Figure class.

matplotlib.artist defines the Artist base class for all classes that draw things.
matplotlib.lines defines the Line2D class for drawing lines and markers
matplotlib.patches defines classes for drawing polygons

matplotlib.text defines the Text, TextWithDash, and Annotate classes
matplotlib.image defines the AxesImage and FigureImage classes
matplotlib.collections classes for efficient drawing of groups of lines or polygons
matplotlib.colors classes for interpreting color specifications and for making colormaps

matplotlib.cm colormaps and the ScalarMappable mixin class for providing color map-
ping functionality to other classes

matplotlib.ticker classes for calculating tick mark locations and for formatting tick labels

281

Matplotlib, Release 0.99.3

matplotlib.backends a subpackage with modules for various gui libraries and output for-
mats

The base matplotlib namespace includes:

rcParams a global dictionary of default configuration settings. It is initialized by code which
may be overridded by a matplotlibrc file.

rc() afunction for setting groups of rcParams values

use() a function for setting the matplotlib backend. If used, this function must be called
immediately after importing matplotlib for the first time. In particular, it must be called
before importing pylab (if pylab is imported).

matplotlib is written by John D. Hunter (jdh2358 at gmail.com) and a host of others.

matplotlib.rc(group, **kwargs)
Set the current rc params. Group is the grouping for the rc, eg. for lines.linewidth the group
is lines, for axes. facecolor, the group is axes, and so on. Group may also be a list or tuple of
group names, eg. (xtick, ytick). kwargs is a dictionary attribute name/value pairs, eg:

rc(’lines’, linewidth=2, color="r’)

sets the current rc params and is equivalent to:

rcParams[’lines.linewidth’] = 2
rcParams[’lines.color’] = 'r’

The following aliases are available to save typing for interactive users:

Alias | Property

‘Iw’ ‘linewidth’

‘Is? ‘linestyle’

‘c’ ‘color’

“fc’ ‘facecolor’

‘ec’ ‘edgecolor’

‘mew’ | ‘markeredgewidth’
‘aa’ ‘antialiased’

Thus you could abbreviate the above rc command as:

rc(’lines’, 1lw=2, c="r’)

Note you can use python’s kwargs dictionary facility to store dictionaries of default parameters. Eg,
you can customize the font rc as follows:

font = {’family’ : ’monospace’,
'weight’ : ’bold’,
'size’ : ’larger’}
rc(’font’, **font) # pass in the font dict as kwargs

This enables you to easily switch between several configurations. Use rcdefaults() to restore the
default rc params after changes.

282 Chapter 31. matplotlib configuration

Matplotlib, Release 0.99.3

matplotlib.rcdefaults()
Restore the default rc params - the ones that were created at matplotlib load time.

matplotlib.use(arg, warn=True)
Set the matplotlib backend to one of the known backends.

The argument is case-insensitive. For the Cairo backend, the argument can have an extension to
indicate the type of output. Example:

use(‘cairo.pdf”)
will specify a default of pdf output generated by Cairo.
Note: this function must be called before importing pylab for the first time; or, if you are not using
pylab, it must be called before importing matplotlib.backends. If warn is True, a warning is issued
if you try and callthis after pylab or pyplot have been loaded. In certain black magic use cases, eg

pyplot.switch_backends, we are doing the reloading necessary to make the backend switch work (in
some cases, eg pure image backends) so one can set warn=False to supporess the warnings

31.1. matplotlib 283

Matplotlib, Release 0.99.3

284 Chapter 31. matplotlib configuration

CHAPTER
THIRTYTWO

MATPLOTLIB AFM

32.1 matplotlib.afm

This is a python interface to Adobe Font Metrics Files. Although a number of other python implementations
exist (and may be more complete than mine) I decided not to go with them because either they were either

1. copyrighted or used a non-BSD compatible license
2. had too many dependencies and I wanted a free standing lib

3. Did more than I needed and it was easier to write my own than figure out how to just get what I needed
from theirs

It is pretty easy to use, and requires only built-in python libs:

>>> from afm import AFM

>>> fh = file('ptmr8a.afm’)

>>> afm = AFM(fh)

>>> afm.string _width_height(’What the heck?’)
(6220.0, 683)

>>> afm.get_fontname()
’Times-Roman’

>>> afm.get_kern_dist(’A’, "f7)
0

>>> afm.get_kern_dist(’A’, 'y’)
-92.0

>>> afm.get_bbox_char(’!’)
[130, -9, 238, 676]

>>> afm.get_bbox_font()

[-168, -218, 1000, 898]

AUTHOR: John D. Hunter <jdh2358 @ gmail.com>

class matplotlib.afm.AFM(fh)
Parse the AFM file in file object fh

get_angle()
Return the fontangle as float

get_bbox_char(c, isord=False)

285

mailto:jdh2358@gmail.com

Matplotlib, Release 0.99.3

get_capheight ()
Return the cap height as float

get_familyname ()
Return the font family name, eg, ‘Times’

get_fontname()
Return the font name, eg, ‘Times-Roman’

get_fullname()
Return the font full name, eg, ‘Times-Roman’

get_height_char(c, isord=False)
Get the height of character ¢ from the bounding box. This is the ink height (space is 0)

get_horizontal_stem_width()
Return the standard horizontal stem width as float, or None if not specified in AFM file.

get_kern_dist(cl/, ¢2)
Return the kerning pair distance (possibly 0) for chars ¢/ and c2

get_kern_dist_from_name (namel, name2)
Return the kerning pair distance (possibly 0) for chars namel and name2

get_name_char (c, isord=Fualse)
Get the name of the character, ie, ;’ is ‘semicolon’

get_str_bbox(s)
Return the string bounding box

get_str_bbox_and_descent(s)
Return the string bounding box

get_underline_thickness()
Return the underline thickness as float

get_vertical_stem_width()
Return the standard vertical stem width as float, or None if not specified in AFM file.

get_weight()
Return the font weight, eg, ‘Bold’ or ‘Roman’

get_width_char(c, isord=False)
Get the width of the character from the character metric WX field

get_width_from_char_name (name)
Get the width of the character from a typel character name

get_xheight()
Return the xheight as float

string_width_height (s)
Return the string width (including kerning) and string height as a (w, h) tuple.

matplotlib.afm.parse_afm(fh)
Parse the Adobe Font Metics file in file handle fh. Return value is a (dhead, dcmet-
rics, dkernpairs, dcomposite) tuple where dhead is a _parse_header() dict, dcmetrics is a

286 Chapter 32. matplotlib afm

Matplotlib, Release 0.99.3

_parse_composites() dict, dkernpairs is a _parse_kern_pairs() dict (possibly {}), and dcom-
posite is a _parse_composites() dict (possibly {})

32.1. matplotlib.afm 287

Matplotlib, Release 0.99.3

288 Chapter 32. matplotlib afm

CHAPTER
THIRTYTHREE

MATPLOTLIB ARTISTS

‘ patches.RegularPolygon ‘4% patches.CirclePolygon ‘

‘ patches.FancyArrowPatch H patches.ConnectionPatch ‘

patches.Wedge
}’ ‘ patches.FancyBboxPatch ‘

lines.Line2D text.Annotation

‘ lines.VertexSelector ‘ ‘ patches.BoxStyle ‘

patches._Style patches.ArrowStyle

‘ patches.ConnectionStyle ‘ /

=
patches.Patch

33.1 matplotlib.artist

classmatplotlib.artist.Artist
Bases: object

Abstract base class for someone who renders into a FigureCanvas.

289

Matplotlib, Release 0.99.3

add_callback (func)
Adds a callback function that will be called whenever one of the Artist‘s properties changes.

Returns an id that is useful for removing the callback with remove_callback() later.

contains (mouseevent)
Test whether the artist contains the mouse event.

Returns the truth value and a dictionary of artist specific details of selection, such as which
points are contained in the pick radius. See individual artists for details.

convert_xunits(x)
For artists in an axes, if the xaxis has units support, convert x using xaxis unit type

convert_yunits(y)
For artists in an axes, if the yaxis has units support, convert y using yaxis unit type

draw(renderer, *args, **kwargs)
Derived classes drawing method

findobj (match=None)
pyplot signature: findobj(o=gcf(), match=None)
Recursively find all :class:matplotlib.artist.Artist instances contained in self.
match can be
eNone: return all objects contained in artist (including artist)
efunction with signature boolean = match(artist) used to filter matches

eclass instance: eg Line2D. Only return artists of class type

290

Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

Minimum Message Length

20 . . ' ' '
s /
- - Model length /
------ Data length)
15} — Total message length| /,” |
A
5
(@)}
3 10}
)
(@)}
©
?
QO
S 5¢
of |

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Model complexity --->

get_alpha()
Return the alpha value used for blending - not supported on all backends

get_animated()
Return the artist’s animated state

get_axes()
Return the Axes instance the artist resides in, or None

get_children()
Return a list of the child Artist‘s this :class: ‘Artist contains.

get_clip_box()
Return artist clipbox

get_clip_on()
Return whether artist uses clipping

get_clip_path()
Return artist clip path

get_contains()
Return the _contains test used by the artist, or None for default.

get_figure()
Return the Figure instance the artist belongs to.

33.1. matplotlib.artist 291

Matplotlib, Release 0.99.3

get_gidQ
Returns the group id

get_label()
Get the label used for this artist in the legend.

get_picker()
Return the picker object used by this artist

get_rasterized()

get_snap()
Returns the snap setting which may be:

eTrue: snap vertices to the nearest pixel center
eFalse: leave vertices as-is

eNone: (auto) If the path contains only rectilinear line segments, round to the nearest pixel
center

Only supported by the Agg backends.

get_transform()
Return the Transform instance used by this artist.

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_url()
Returns the url

get_visible()
Return the artist’s visiblity

get_zorder()
Return the Artist‘s zorder.

have_units()
Return True if units are set on the x or y axes

hitlist(event)
List the children of the artist which contain the mouse event event.

is_figure_set()
Returns True if the artist is assigned to a Figure.

is_transform_set()
Returns True if Artist has a transform explicitly set.

pchanged ()
Fire an event when property changed, calling all of the registered callbacks.

pick (mouseevent)
call signature:

292

Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

pick(mouseevent)

each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set

pickable()
Return True if Artist is pickable.

properties()
return a dictionary mapping property name -> value for all Artist props

remove()
Remove the artist from the figure if possible. The effect will not be visible un-
til the figure is redrawn, e.g., with matplotlib.axes.Axes.draw_idle(). Call
matplotlib.axes.Axes.relim() to update the axes limits if desired.

Note: relim() will not see collections even if the collection was added to axes with autolim =
True.

Note: there is no support for removing the artist’s legend entry.

remove_callback (oid)
Remove a callback based on its id.

See Also:
add_callback() For adding callbacks
set (**kwargs)
A tkstyle set command, pass kwargs to set properties

set_alpha (alpha)
Set the alpha value used for blending - not supported on all backends.

ACCEPTS: float (0.0 transparent through 1.0 opaque)

set_animated (b))
Set the artist’s animation state.

ACCEPTS: [True | False]

set_axes (axes)
Set the Axes instance in which the artist resides, if any.

ACCEPTS: an Axes instance

set_clip_box(clipbox)
Set the artist’s clip Bbox.

ACCEPTS: amatplotlib. transforms.Bbox instance

set_clip_on(b)
Set whether artist uses clipping.

ACCEPTS: [True | False]

33.1. matplotlib.artist 293

Matplotlib, Release 0.99.3

set_clip_path(path, transform=None)
Set the artist’s clip path, which may be:

ea Patch (or subclass) instance

ea Path instance, in which case an optional Transform instance may be provided, which
will be applied to the path before using it for clipping.

eNone, to remove the clipping path

For efficiency, if the path happens to be an axis-aligned rectangle, this method will set the clip-
ping box to the corresponding rectangle and set the clipping path to None.

ACCEPTS: [(Path, Transform) | Patch | None]

set_contains (picker)
Replace the contains test used by this artist. The new picker should be a callable function which
determines whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)
If the mouse event is over the artist, return hit = True and props is a dictionary of properties you
want returned with the contains test.
ACCEPTS: a callable function

set_figure(fig)
Set the Figure instance the artist belongs to.

ACCEPTS: amatplotlib. figure.Figure instance

set_gid(gid)
Sets the (group) id for the artist

ACCEPTS: an id string

set_label (s)
Set the label to s for auto legend.

ACCEPTS: any string

set_lod(on)
Set Level of Detail on or off. If on, the artists may examine things like the pixel width of the
axes and draw a subset of their contents accordingly

ACCEPTS: [True | False]

set_picker (picker)
Set the epsilon for picking used by this artist

picker can be one of the following:
eNone: picking is disabled for this artist (default)

oA boolean: if True then picking will be enabled and the artist will fire a pick event if the
mouse event is over the artist

294 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

o A float: if picker is a number it is interpreted as an epsilon tolerance in points and the artist
will fire off an event if it’s data is within epsilon of the mouse event. For some artists like
lines and patch collections, the artist may provide additional data to the pick event that is
generated, e.g. the indices of the data within epsilon of the pick event

oA function: if picker is callable, it is a user supplied function which determines whether the

artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

to determine the hit test. if the mouse event is over the artist, return hit=True and props is a
dictionary of properties you want added to the PickEvent attributes.
ACCEPTS: [None|float|boolean|callable]

set_rasterized(rasterized)
Force rasterized (bitmap) drawing in vector backend output.

Defaults to None, which implies the backend’s default behavior
ACCEPTS: [True | False | None]

set_snap (snap)
Sets the snap setting which may be:

oTrue: snap vertices to the nearest pixel center
eFalse: leave vertices as-is

eNone: (auto) If the path contains only rectilinear line segments, round to the nearest pixel
center

Only supported by the Agg backends.

set_transform(r)
Set the Transform instance used by this artist.

ACCEPTS: Transform instance

set_url (url)
Sets the url for the artist

ACCEPTS: a url string

set_visible(b)
Set the artist’s visiblity.

ACCEPTS: [True | False]

set_zorder (level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

ACCEPTS: any number

update (props)
Update the properties of this Artist from the dictionary prop.

33.1. matplotlib.artist 295

Matplotlib, Release 0.99.3

update_f£from(other)
Copy properties from other to self.

classmatplotlib.artist.ArtistInspector (o)

A helper class to inspect an Artist and return information about it’s settable properties and their
current values.

Initialize the artist inspector with an Artist or sequence of Artists. If a sequence is used, we
assume it is a homogeneous sequence (all Artists are of the same type) and it is your responsibility
to make sure this is so.

aliased_name(s)
return ‘PROPNAME or alias’ if s has an alias, else return PROPNAME.

E.g. for the line markerfacecolor property, which has an alias, return ‘markerfacecolor or mfc’
and for the transform property, which does not, return ‘transform’

aliased_name_rest (s, target)
return ‘PROPNAME or alias’ if s has an alias, else return PROPNAME formatted for ReST

E.g. for the line markerfacecolor property, which has an alias, return ‘markerfacecolor or mfc’
and for the transform property, which does not, return ‘transform’

findobj (match=None)
Recursively find all matplotlib.artist.Artist instances contained in self.

If match is not None, it can be
efunction with signature boolean = match(artist)
eclass instance: eg Line2D

used to filter matches.

get_aliases()
Get a dict mapping fullname -> alias for each alias in the ArtistInspector.

Eg., for lines:

{’markerfacecolor’: ’'mfc’,
"linewidth’ 71w,

}

get_setters()
Get the attribute strings with setters for object. Eg., for a line, return [’markerfacecolor’,
’linewidth’,].

get_valid_values(artr)
Get the legal arguments for the setter associated with attr.

This is done by querying the docstring of the function set_attr for a line that begins with AC-
CEPTS:

6€|C 4|4 ’|6,9

Eg., for a line linestyle, return [‘- 2| “steps’ | ‘None’]

is_alias(o)
Return True if method object o is an alias for another function.

296

Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

pprint_getters()
Return the getters and actual values as list of strings.

pprint_setters (prop=None, leadingspace=2)
If prop is None, return a list of strings of all settable properies and their valid values.

If prop is not None, it is a valid property name and that property will be returned as a string of
property : valid values.

pprint_setters_rest (prop=None, leadingspace=2)
If prop is None, return a list of strings of all settable properies and their valid values. Format the
output for ReST

If prop is not None, it is a valid property name and that property will be returned as a string of
property : valid values.

properties()
return a dictionary mapping property name -> value

matplotlib.artist.allow_rasterization(draw)
Decorator for Artist.draw method. Provides routines that run before and after the draw call. The
before and after functions are useful for changing artist-dependant renderer attributes or making other
setup function calls, such as starting and flushing a mixed-mode renderer.

matplotlib.artist.get(o, property=None)
Return the value of handle property. property is an optional string for the property you want to return

Example usage:

getp(o) # get all the object properties
getp(o, ’linestyle’) # get the linestyle property

0 is a Artist instance, eg Line2D or an instance of a Axes or matplotlib.text.Text. If the
property is ‘somename’, this function returns
0.get_somename()

getp() can be used to query all the gettable properties with getp (o). Many properties have aliases
for shorter typing, e.g. ‘Iw’ is an alias for ‘linewidth’. In the output, aliases and full property names
will be listed as:

property or alias = value
e.g.:
linewidth or lw =2

matplotlib.artist.getp(o, property=None)
Return the value of handle property. property is an optional string for the property you want to return

Example usage:

getp(o) # get all the object properties
getp(o, ’'linestyle’) # get the linestyle property

0 is a Artist instance, eg Line2D or an instance of a Axes or matplotlib.text.Text. If the
property is ‘somename’, this function returns

33.1. matplotlib.artist 297

Matplotlib, Release 0.99.3

0.get_somename()

getp() can be used to query all the gettable properties with getp (o). Many properties have aliases
for shorter typing, e.g. ‘Iw’ is an alias for ‘linewidth’. In the output, aliases and full property names
will be listed as:

property or alias = value
e.g.:
linewidth or lw =2
matplotlib.artist.kwdoc(a)

matplotlib.artist.setp(h, *args, **kwargs)
matplotlib supports the use of setp() (“set property”) and getp() to set and get object properties,
as well as to do introspection on the object. For example, to set the linestyle of a line to be dashed,
you can do:

>>> line, = plot([1,2,3])
>>> setp(line, linestyle="--’)

If you want to know the valid types of arguments, you can provide the name of the property you want
to set without a value:

>>> setp(line, ’'linestyle’)

’ ’ ’ ’

linestyle: [’-" | ’-=" | ’-." |

"steps’ | ’None’]

If you want to see all the properties that can be set, and their possible values, you can do:

>>> setp(line)
. long output listing omitted

setp() operates on a single instance or a list of instances. If you are in query mode introspecting the
possible values, only the first instance in the sequence is used. When actually setting values, all the
instances will be set. E.g., suppose you have a list of two lines, the following will make both lines
thicker and red:

>>> x = arange(0,1.0,0.01)

>>> yl1 = sin(2%pi*x)

>>> y2 sin(4*pi*x)

>>> lines = plot(x, y1l, x, y2)

>>> setp(lines, linewidth=2, color="r’)

setp () works with the matlab(TM) style string/value pairs or with python kwargs. For example, the
following are equivalent:

>>> setp(lines, ’linewidth’, 2, ’color’, r’) # matlab style

>>> setp(lines, linewidth=2, color="r’) # python style

298 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

33.2 matplotlib.legend

Place a legend on the axes at location loc. Labels are a sequence of strings and loc can be a string or an

integer specifying the legend location
The location codes are

‘best’ : 0, (only implemented for axis legends) “upper right’ : 1, ‘upper left’ : 2, ‘lower left’ : 3,
‘lower right’ : 4, ‘right’ : 5, ‘center left’ : 6, ‘center right’ : 7, ‘lower center’ : 8, ‘upper center’
1 9, ‘center’ : 10,

Return value is a sequence of text, line instances that make up the legend

classmatplotlib.legend.Legend(parent, handles, labels, loc=None, numpoints=None,
markerscale=None, scatterpoints=3, scatteryoffsets=None,
prop=None, pad=None, labelsep=None, handlelen=None,
handletextsep=None, axespad=None, borderpad=None, la-
belspacing=None, handlelength=None, handletextpad=None,
borderaxespad=None, columnspacing=None, ncol=1,
mode=None, fancybox=None, shadow=None, title=None,

bbox_to_anchor=None, bbox_transform=None)
Bases: matplotlib.artist.Artist

Place a legend on the axes at location loc. Labels are a sequence of strings and loc can be a string or

an integer specifying the legend location
The location codes are:

"best’

’upper right’
"upper left’
"lower left’
’lower right’)

0, (only implemented for axis legends)
1
2
3
4
‘right’ : 5,
6
7
8
9
1

"center left’
’center right’
"lower center’
’upper center’
‘center’

0,
loc can be a tuple of the noramilzed coordinate values with respect its parent.
Return value is a sequence of text, line instances that make up the legend
eparent : the artist that contains the legend
ehandles : a list of artists (lines, patches) to add to the legend

elabels : a list of strings to label the legend

Optional keyword arguments:

33.2. matplotlib.legend

299

Matplotlib, Release 0.99.3

Keyword Description

loc a location code

prop the font property

markerscale the relative size of legend markers vs. original
numpoints the number of points in the legend for line
scatterpoints the number of points in the legend for scatter plot
scatteryoffsets a list of yoffsets for scatter symbols in legend
fancybox if True, draw a frame with a round fancybox. If None, use rc
shadow if True, draw a shadow behind legend

ncol number of columns

borderpad the fractional whitespace inside the legend border
labelspacing the vertical space between the legend entries
handlelength the length of the legend handles

handletextpad the pad between the legend handle and text
borderaxespad the pad between the axes and legend border
columnspacing | the spacing between columns

title the legend title

bbox_to_anchor | the bbox that the legend will be anchored.
bbox_transform | the transform for the bbox. transAxes if None.

The dimensions of pad and spacing are given as a fraction of the _fontsize. Values from rcParams will

be used if None.

Users can specify any arbitrary location for the legend using the bbox_to_anchor keyword argument.
bbox_to_anchor can be an instance of BboxBase(or its derivatives) or a tuple of 2 or 4 floats. See

set_bbox_to_anchor () for more detail.

The legend location can be specified by setting loc with a tuple of 2 floats, which is interpreted as the

lower-left corner of the legend in the normalized axes coordinate.

draw (artist, renderer, *args, **kwargs)
Draw everything that belongs to the legend

draw_frame(b)
b is a boolean. Set draw frame to b

get_bbox_to_anchor()
return the bbox that the legend will be anchored

get_children()
return a list of child artists

get_£frame()
return the Rectangle instance used to frame the legend

get_lines()
return a list of lines.Line2D instances in the legend

get_patches()
return a list of patch instances in the legend

get_texts()
return a list of text.Text instance in the legend

300

Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

get_title()

return Text instance for the legend title

get_window_extent()

return a extent of the the legend

set_bbox_to_anchor (bbox, transform=None)
set the bbox that the legend will be anchored.

bbox can be a BboxBase instance, a tuple of [left, bottom, width, height] in the given transform
(normalized axes coordinate if None), or a tuple of [left, bottom] where the width and height
will be assumed to be zero.

set_title(stle)

set the legend title

33.3 matplotlib.lines

This module contains all the 2D line class which can draw with a variety of line styles, markers and colors.

class matplotlib.lines.Line2D(xdata, ydata, linewidth=None, linestyle=None, color=None,

marker=None, markersize=None,
markeredgecolor=None, markerfacecolor=None, Sill-
style="full’, antialiased=None, dash_capstyle=None,
solid_capstyle=None, dash_joinstyle=None,
solid_joinstyle=None, pickradius=5, drawstyle=None, markev-
ery=None, **kwargs)

markeredgewidth=None,

Bases: matplotlib.artist.Artist

A line - the line can have both a solid linestyle connecting all the vertices, and a marker at each vertex.
Additionally, the drawing of the solid line is influenced by the drawstyle, eg one can create “stepped”

lines in various styles.

Create a Line2D instance with x and y data in sequences xdata, ydata.

The kwargs are Line2D properties:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]

antialiased or aa
axes

clip_box
clip_on
clip_path
colororc
contains
dash_capstyle
dash_joinstyle
dashes

[True | False]

an Axes instance
amatplotlib.transforms.Bbox instance
[True | False]

[(Path, Transform) | Patch | None]

any matplotlib color

a callable function

[butt’ | ‘round’ | ‘projecting’]

[’miter’ | ‘round’ | ‘bevel’]

sequence of on/off ink in points

33.3. matplotlib.lines

301

Matplotlib, Release 0.99.3

Table 33.1 — continued from previous pe

data

drawstyle

figure

fillstyle

gid

label

linestyleorls
linewidth or lw

lod

marker
markeredgecolor or mec
markeredgewidth or mew
markerfacecolor or mfc
markersize or ms
markevery

picker

pickradius
rasterized

snap

solid_capstyle
solid_joinstyle
transform

url

visible

xdata

ydata

zorder

2D array

[‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]

amatplotlib. figure.Figure instance

[full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]

an id string

any string

[-1*] | ‘None’ | * “| “] and any drawstyle in combination with a linestyle, e.g.
float value in points

[True | False]

[+ 1 e 22 537 4 [< | 57 D7 T’ Y
any matplotlib color

float value in points

any matplotlib color

float

None | integer | (startind, stride)

float distance in points or callable pick function fn(artist, event)
float distance in points

[True | False | None]

unknown

[’butt’ | ‘round’ | ‘projecting’]

['miter’ | ‘round’ | ‘bevel’]
amatplotlib.transforms.Transform instance

a url string

[True | False]

1D array

1D array

any number

‘d? | ch’ | co’ I 4p7 | ‘S’ | <y

See set_linestyle() for a decription of the line styles, set_marker () for a description of the
markers, and set_drawstyle() for a description of the draw styles.

contains (mouseevent)

Test whether the mouse event occurred on the line. The pick radius determines the preci-
sion of the location test (usually within five points of the value). Use get_pickradius()
or set_pickradius() to view or modify it.

Returns True if any values are within the radius along with {’ind’:

pointlist}, where

pointlist is the set of points within the radius.

TODO: sort returned indices by distance

draw (artist, renderer, *args, **kwargs)

get_aa()

alias for get_antialiased

get_antialiased()

302

Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

get_cQ
alias for get_color

get_color()

get_dash_capstyle()
Get the cap style for dashed linestyles

get_dash_joinstyle()
Get the join style for dashed linestyles

get_data(orig=True)
Return the xdata, ydata.

If orig is True, return the original data
get_drawstyle()

get_fillstyle()
return the marker fillstyle

get_linestyle()
get_linewidth()

get_l1s(
alias for get_linestyle

get_1lw(Q)
alias for get_linewidth

get_marker()
get_markeredgecolor()
get_markeredgewidth()
get_markerfacecolor()
get_markersize()

get_markevery()
return the markevery setting

get_mec()
alias for get_markeredgecolor

get_mew()
alias for get_markeredgewidth

get_mfc()
alias for get_markerfacecolor

get_ms()
alias for get_markersize

get_path(Q)
Return the Path object associated with this line.

33.3. matplotlib.lines 303

Matplotlib, Release 0.99.3

get_pickradius()
return the pick radius used for containment tests

get_solid_capstyle()
Get the cap style for solid linestyles

get_solid_joinstyle()
Get the join style for solid linestyles

get_window_extent (renderer)

get_xdata(orig=True)
Return the xdata.

If orig is True, return the original data, else the processed data.

get_xydata()
Return the xy data as a Nx2 numpy array.

get_ydata(orig=True)
Return the ydata.

If orig is True, return the original data, else the processed data.

is_dashed()
return True if line is dashstyle

recache()

set_aa(val)
alias for set_antialiased

set_antialiased(b)
True if line should be drawin with antialiased rendering

ACCEPTS: [True | False]

set_axes(ax)
Set the Axes instance in which the artist resides, if any.

ACCEPTS: an Axes instance

set_c(val)
alias for set_color

set_color (color)
Set the color of the line

ACCEPTS: any matplotlib color

set_dash_capstyle(s)
Set the cap style for dashed linestyles

ACCEPTS: [’butt’ | ‘round’ | ‘projecting’]

set_dash_joinstyle(s)
Set the join style for dashed linestyles ACCEPTS: [’miter’ | ‘round’ | ‘bevel’]

304 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

set_dashes(seq)
Set the dash sequence, sequence of dashes with on off ink in points. If seq is empty or if seq =
(None, None), the linestyle will be set to solid.

ACCEPTS: sequence of on/off ink in points

set_data(*args)
Set the x and y data

ACCEPTS: 2D array

set_drawstyle (drawstyle)
Set the drawstyle of the plot

‘default’ connects the points with lines. The steps variants produce step-plots. ‘steps’ is equiva-
lent to ‘steps-pre’ and is maintained for backward-compatibility.

ACCEPTS: [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]

set_fillstyle(fs)
Set the marker fill style; ‘full’ means fill the whole marker. The other options are for half filled
markers
ACCEPTS: [full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]

set_linestyle(linestyle)
Set the linestyle of the line (also accepts drawstyles)

linestyle | description
‘- solid

e dashed

£y dash_dot

’ dotted
‘None’ draw nothing
draw nothing
draw nothing

3}

‘steps’ is equivalent to ‘steps-pre’ and is maintained for backward-compatibility.

See Also:

set_drawstyle() To set the drawing style (stepping) of the plot.

ACCEPTS: [-“| =" =2 | % | ‘None’ | © | “] and any drawstyle in combination with a
linestyle, e.g. ‘steps—°.

set_linewidth(w)
Set the line width in points

ACCEPTS: float value in points

set_ls(val)
alias for set_linestyle

set_lw(val)
alias for set_linewidth

33.3. matplotlib.lines 305

Matplotlib, Release 0.99.3

set_marker (marker)
Set the line marker

marker description

¢ point

‘) pixel

‘0’ circle

A triangle_down

o triangle_up

‘<’ triangle_left

>’ triangle_right

‘1 tri_down

‘2 tri_up

‘3’ tri_left

‘4 tri_right

‘s’ square

‘P pentagon

o star

‘h’ hexagonl

‘H’ hexagon2

‘4 plus

X’ X

‘D’ diamond

‘d’ thin_diamond

1 vline

< hline

TICKLEFT tickleft

TICKRIGHT tickright

TICKUP tickup

TICKDOWN tickdown

CARETLEFT caretleft

CARETRIGHT | caretright

CARETUP caretup

CARETDOWN | caretdown

‘None’ nothing

‘e nothing

© nothing
ACCEPTS: [47| ¥ | ¢ |2 D |22 || ‘< |’>|'D|’H |’V |’ |’d

‘h’ | ’O’ | p | ,S’ | ’V’ | ’X’ | 9|7

TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT

‘None’l’,l"]

set_markeredgecolor(ec)

Set the marker edge color

ACCEPTS: any matplotlib color

306

Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

set_markeredgewidth(ew)
Set the marker edge width in points

ACCEPTS: float value in points

set_markerfacecolor (fc)
Set the marker face color

ACCEPTS: any matplotlib color

set_markersize(sz)
Set the marker size in points

ACCEPTS: float

set_markevery (every)
Set the markevery property to subsample the plot when using markers. Eg if markevery=5,
every 5-th marker will be plotted. every can be

None Every point will be plotted

an integer N Every N-th marker will be plotted starting with marker O

A length-2 tuple of integers every=(start, N) will start at point start and plot every N-th marker
ACCEPTS: None | integer | (startind, stride)

set_mec(val)
alias for set_markeredgecolor

set_mew(val)
alias for set_markeredgewidth

set_mfc(val)
alias for set_markerfacecolor

set_ms (val)
alias for set_markersize

set_picker(p)
Sets the event picker details for the line.

ACCEPTS: float distance in points or callable pick function fn(artist, event)

set_pickradius(d)
Sets the pick radius used for containment tests

ACCEPTS: float distance in points

set_solid_capstyle(s)
Set the cap style for solid linestyles

ACCEPTS: [’butt’ | ‘round’ | “projecting’]

set_solid_joinstyle(s)
Set the join style for solid linestyles ACCEPTS: ['miter’ | ‘round’ | ‘bevel’]

33.3. matplotlib.lines 307

Matplotlib, Release 0.99.3

set_transform(s)
set the Transformation instance used by this artist

ACCEPTS: amatplotlib.transforms. Transform instance

set_xdata(x)
Set the data np.array for x

ACCEPTS: 1D array

set_ydata(y)
Set the data np.array for y

ACCEPTS: 1D array

update_f£from(other)
copy properties from other to self

class matplotlib.lines.VertexSelector (/ine)

Manage the callbacks to maintain a list of selected vertices formatplotlib.lines.Line2D. Derived
classes should override process_selected() to do something with the picks.

Here is an example which highlights the selected verts with red circles:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as lines

class HighlightSelected(lines.VertexSelector):
def __init__(self, line, fmt="ro’, **kwargs):
lines.VertexSelector.__init__(self, line)
self.markers, = self.axes.plot([], [], fmt, **kwargs)

def process_selected(self, ind, xs, ys):
self.markers.set_data(xs, ys)

self.canvas.draw()

fig = plt.figure(Q)

ax = fig.add_subplot(111)
X, ¥y = np.random.rand(2, 30)
line, = ax.plot(x, y, ’'bs-’, picker=5)

selector = HighlightSelected(line)
plt.show()

Initialize the class with amatplotlib.lines.Line2D instance. The line should already be added to
some matplotlib.axes.Axes instance and should have the picker property set.

onpick(event)
When the line is picked, update the set of selected indicies.

process_selected(ind, xs, ys)
Default “do nothing” implementation of the process_selected() method.

ind are the indices of the selected vertices. xs and ys are the coordinates of the selected vertices.

308

Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

matplotlib.lines.segment_hits(cx, ¢y, x, y, radius)
Determine if any line segments are within radius of a point. Returns the list of line segments that are
within that radius.

matplotlib.lines.unmasked_index_ranges (mask, compressed=True)

33.4 matplotlib.patches

class matplotlib.patches.Arc(xy, width, height, angle=0.0, thetal=0.0, theta2=360.0,

**kwargs)
Bases: matplotlib.patches.Ellipse

An elliptical arc. Because it performs various optimizations, it can not be filled.

The arc must be used in an Axes instance—it can not be added directly to a Figure—because it is
optimized to only render the segments that are inside the axes bounding box with high resolution.

The following args are supported:

xy center of ellipse

width length of horizontal axis

height length of vertical axis

angle rotation in degrees (anti-clockwise)

thetal starting angle of the arc in degrees

theta? ending angle of the arc in degrees

If thetal and theta2 are not provided, the arc will form a complete ellipse.

Valid kwargs are:

33.4. matplotlib.patches 309

Matplotlib, Release 0.99.3

Property Description

alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]

antialiased or aa | [True | False] or None for default

axes an Axes instance

clip_box amatplotlib.transforms.Bbox instance
clip_on [True | False]

clip_path [(Path, Transform) | Patch | None]

color matplotlib color spec

contains a callable function

edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure amatplotlib.figure.Figure instance
fill [True | False]

gid an id string

hatch L/ IN T X 07 [FO7 [27] %7]
label any string

linestyleorls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default

lod [True | False]

picker [None|float|boolean|callable]

rasterized [True | False | None]

snap unknown

transform Transform instance

url a url string

visible [True | False]

zorder any number

draw (artist, renderer, *args, **kwargs)
Ellipses are normally drawn using an approximation that uses eight cubic bezier splines. The
error of this approximation is 1.89818e-6, according to this unverified source:

Lancaster, Don. Approximating a Circle or an Ellipse Using Four Bezier Cubic
Splines.

http://www.tinaja.com/glib/ellipse4.pdf

There is a use case where very large ellipses must be drawn with very high accuracy, and it is
too expensive to render the entire ellipse with enough segments (either splines or line segments).
Therefore, in the case where either radius of the ellipse is large enough that the error of the spline
approximation will be visible (greater than one pixel offset from the ideal), a different technique
is used.

In that case, only the visible parts of the ellipse are drawn, with each visible arc using a fixed
number of spline segments (8). The algorithm proceeds as follows:

1.The points where the ellipse intersects the axes bounding box are located. (This is done
be performing an inverse transformation on the axes bbox such that it is relative to the
unit circle — this makes the intersection calculation much easier than doing rotated ellipse
intersection directly).

310 Chapter 33. matplotlib artists

http://www.tinaja.com/glib/ellipse4.pdf

Matplotlib, Release 0.99.3

This uses the “line intersecting a circle” algorithm from:

Vince, John. Geometry for Computer Graphics: Formulae, Examples & Proofs.
London: Springer-Verlag, 2005.

2.The angles of each of the intersection points are calculated.

3.Proceeding counterclockwise starting in the positive x-direction, each of the visible arc-
segments between the pairs of vertices are drawn using the bezier arc approximation tech-
nique implemented in matplotlib.path.Path.arc().

class matplotlib.patches.Arrow(x, y, dx, dy, width=1.0, **kwargs)
Bases: matplotlib.patches.Patch

An arrow patch.

Draws an arrow, starting at (x, y), direction and length given by (dx, dy) the width of the arrow is
scaled by width.

Valid kwargs are:

Property Description

alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]

antialiased or aa | [True | False] or None for default

axes an Axes instance

clip_box amatplotlib.transforms.Bbox instance
clip_on [True | False]

clip_path [(Path, Transform) | Patch | None]

color matplotlib color spec

contains a callable function

edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure amatplotlib.figure.Figure instance
fill [True | False]

gid an id string

hatch /TN T+ %7 o7 [FO7 |7 |77]
label any string

linestyleorls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default

lod [True | False]

picker [None|float|boolean|callable]

rasterized [True | False | None]

snap unknown

transform Transform instance

url a url string

visible [True | False]

zorder any number

get_patch_transform()

get_path()

33.4. matplotlib.patches 311

Matplotlib, Release 0.99.3

class matplotlib.patches.ArrowStyle
Bases: matplotlib.patches._Style

ArrowStyle is a container class which defines several arrowstyle classes, which is used to create an
arrow path along a given path. These are mainly used with FancyArrowPatch.

A arrowstyle object can be either created as:

ArrowStyle.Fancy(head_length=.4, head_width=.4, tail _width=.4)

or:

ArrowStyle("Fancy", head_length=.4, head_width=.4, tail_width=.4)

or:

ArrowStyle("Fancy, head_length=.4, head_width=.4, tail_width=.4")

The following classes are defined

Class Name | Attrs

Curve - None

CurveB -> head_length=0.4,head_width=0.2

BracketB -[widthB=1.0,lengthB=0.2,angleB=None
CurveFilledB -1> head_length=0.4,head_width=0.2

CurveA <- head_length=0.4,head_width=0.2

CurveAB <> head_length=0.4,head_width=0.2

CurveFilledA <|- head_length=0.4,head_width=0.2
CurveFilledAB | <|-|> | head_length=0.4,head_width=0.2

Fancy fancy head_length=0.4,head_width=0.4,tail_width=0.4
Simple simple | head_length=0.5head_width=0.5,tail_width=0.2
Wedge wedge tail_width=0.3,shrink_factor=0.5

An instance of any arrow style class is an callable object, whose call signature is:

__call__(self, path, mutation_size, linewidth, aspect_ratio=1.)

and it returns a tuple of a Path instance and a boolean value. path is a Path instance along witch the
arrow will be drawn. mutation_size and aspect_ratio has a same meaning as in BoxStyle. linewidth
is a line width to be stroked. This is meant to be used to correct the location of the head so that it does
not overshoot the destination point, but not all classes support it.

312 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

=—0 < —O
I ———[O fancy|=—= ()

1>—> () simple|=—=()

<1<—0O wedge|=—()

=<0

class BracketB(widthB=1.0, lengthB=0.2, angleB=None)
Bases: matplotlib.patches._Bracket

An arrow with a bracket([) at its end.

widthB width of the bracket

lengthB length of the bracket

angleB angle between the bracket and the line

class ArrowStyle.Curve
Bases: matplotlib.patches._Curve

A simple curve without any arrow head.

class ArrowStyle.CurveA(head_length=0.4, head_width=0.2)
Bases: matplotlib.patches._Curve

An arrow with a head at its begin point.
head_length length of the arrow head
head_width width of the arrow head

class ArrowStyle.CurveAB (head length=0.4, head_width=0.2)
Bases: matplotlib.patches._Curve

An arrow with heads both at the begin and the end point.

33.4. matplotlib.patches 313

Matplotlib, Release 0.99.3

head_length length of the arrow head
head_width width of the arrow head

class ArrowStyle.CurveB (head_length=0.4, head_width=0.2)
Bases: matplotlib.patches._Curve

An arrow with a head at its end point.
head_length length of the arrow head
head_width width of the arrow head

class ArrowStyle.CurveFilledA(head_length=0.4, head_width=0.2)
Bases: matplotlib.patches._Curve

An arrow with filled triangle head at the begin.
head_length length of the arrow head
head_width width of the arrow head

class ArrowStyle.CurveFilledAB (head_length=0.4, head_width=0.2)
Bases: matplotlib.patches._Curve

An arrow with filled triangle heads both at the begin and the end point.
head_length length of the arrow head
head_width width of the arrow head

class ArrowStyle.CurveFilledB (head_length=0.4, head_width=0.2)
Bases: matplotlib.patches._Curve

An arrow with filled triangle head at the end.
head_length length of the arrow head
head_width width of the arrow head

class ArrowStyle.Fancy (head_length=0.4, head_width=0.4, tail_width=0.4)
Bases: matplotlib.patches._Base

A fancy arrow. Only works with a quadratic bezier curve.
head_length length of the arrow head

head_with width of the arrow head

tail_width width of the arrow tail

transmute (path, mutation_size, linewidth)

class ArrowStyle.Simple (head_length=0.5, head_width=0.5, tail_width=0.2)
Bases: matplotlib.patches._Base

A simple arrow. Only works with a quadratic bezier curve.
head_length length of the arrow head

head_with width of the arrow head

314 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

tail_width width of the arrow tail
transmute (path, mutation_size, linewidth)

class ArrowStyle.Wedge (tail_width=0.3, shrink_factor=0.5)
Bases: matplotlib.patches._Base

Wedge(?) shape. Only wokrs with a quadratic bezier curve. The begin point has a
width of the tail_width and the end point has a width of 0. At the middle, the width is
shrink_factor*tail_width.

tail_width width of the tail
shrink_factor fraction of the arrow width at the middle point
transmute (path, mutation_size, linewidth)

class matplotlib.patches.BoxStyle
Bases: matplotlib.patches._Style

BoxStyle is a container class which defines several boxstyle classes, which are used for
FancyBoxPatch.

A style object can be created as:

BoxStyle.Round(pad=0.2)

or:

BoxStyle("Round", pad=0.2)

or:

BoxStyle("Round, pad=0.2")

Following boxstyle classes are defined.

Class Name Attrs

LArrow larrow pad=0.3

RArrow rarrow pad=0.3

Round round pad=0.3,rounding_size=None
Round4 round4 pad=0.3,rounding_size=None
Roundtooth | roundtooth | pad=0.3,tooth_size=None
Sawtooth sawtooth pad=0.3,tooth_size=None
Square square pad=0.3

An instance of any boxstyle class is an callable object, whose call signature is:

__call__(self, x0, y0, width, height, mutation_size, aspect_ratio=1.)

and returns a Path instance. x0, y0, width and height specify the location and size of the box to be
drawn. mutation_scale determines the overall size of the mutation (by which I mean the transforma-
tion of the rectangle to the fancy box). mutation_aspect determines the aspect-ratio of the mutation.

33.4. matplotlib.patches 315

Matplotlib, Release 0.99.3

square

rarrow>
 larrow

class LArrow(pad=0.3)
Bases: matplotlib.patches._Base

(left) Arrow Box

transmute (x0, y0, width, height, mutation_size)

class BoxStyle.RArrow(pad=0.3)
Bases: matplotlib.patches.LArrow

(right) Arrow Box
transmute (x0, y0, width, height, mutation_size)

class BoxStyle.Round (pad=0.3, rounding_size=None)
Bases: matplotlib.patches._Base

A box with round corners.
pad amount of padding
rounding_size rounding radius of corners. pad if None

transmute (x0, y0, width, height, mutation_size)

316

Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

class BoxStyle.Round4 (pad=0.3, rounding_size=None)
Bases: matplotlib.patches._Base

Another box with round edges.

pad amount of padding

rounding_size rounding size of edges. pad if None
transmute (x0, y0, width, height, mutation_size)

class BoxStyle.Roundtooth(pad=0.3, tooth_size=None)
Bases: matplotlib.patches.Sawtooth

A roundtooth(?) box.

pad amount of padding

tooth_size size of the sawtooth. pad* if None
transmute (x0, y0, width, height, mutation_size)

class BoxStyle.Sawtooth(pad=0.3, tooth_size=None)
Bases: matplotlib.patches._Base

A sawtooth box.

pad amount of padding

tooth_size size of the sawtooth. pad* if None
transmute (x0, y0, width, height, mutation_size)

class BoxStyle.Square (pad=0.3)
Bases: matplotlib.patches._Base

A simple square box.
pad amount of padding
transmute (x0, y0, width, height, mutation_size)

classmatplotlib.patches.Circle(xy, radius=5, **kwargs)
Bases: matplotlib.patches.Ellipse

A circle patch.

Create true circle at center xy = (x, y) with given radius. Unlike CirclePolygon which is a polygonal
approximation, this uses Bézier splines and is much closer to a scale-free circle.

Valid kwargs are:

33.4. matplotlib.patches 317

Matplotlib, Release 0.99.3

Property Description

alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]

antialiased or aa | [True | False] or None for default

axes an Axes instance

clip_box amatplotlib.transforms.Bbox instance
clip_on [True | False]

clip_path [(Path, Transform) | Patch | None]

color matplotlib color spec

contains a callable function

edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure amatplotlib.figure.Figure instance
fill [True | False]

gid an id string

hatch L/ IN T X 07 [FO7 [27] %7]
label any string

linestyleorls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default

lod [True | False]

picker [None|float|boolean|callable]

rasterized [True | False | None]

snap unknown

transform Transform instance

url a url string

visible [True | False]

zorder any number

get_radius()
return the radius of the circle

radius
return the radius of the circle

set_radius (radius)
Set the radius of the circle

ACCEPTS: float

class matplotlib.patches.CirclePolygon(xy, radius=>5, resolution=20, **kwargs)
Bases: matplotlib.patches.RegularPolygon

A polygon-approximation of a circle patch.

Create a circle at xy = (x, y) with given radius. This circle is approximated by a regular polygon with
resolution sides. For a smoother circle drawn with splines, see Circle.

Valid kwargs are:

318 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

Property Description

alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]

antialiased or aa | [True | False] or None for default

axes an Axes instance

clip_box amatplotlib.transforms.Bbox instance
clip_on [True | False]

clip_path [(Path, Transform) | Patch | None]

color matplotlib color spec

contains a callable function

edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure amatplotlib.figure.Figure instance
fill [True | False]

gid an id string

hatch L/ IN T X 07 [FO7 [27] %7]
label any string

linestyleorls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default

lod [True | False]

picker [None|float|boolean|callable]

rasterized [True | False | None]

snap unknown

transform Transform instance

url a url string

visible [True | False]

zorder any number

class matplotlib.patches.ConnectionPatch(xyA, xyB, coordsA, coordsB=None, ax-
esA=None, axesB=None, arrowstyle="-*, ar-
row_transmuter=None, connectionstyle="arc3’,
connector=None, patchA=None, patchB=None,
shrinkA=0.0, shrinkB=0.0, mutation_scale=10.0,
mutation_aspect=None, clip_on=False,

**lwargs)
Bases: matplotlib.patches.FancyArrowPatch

A ConnectionPatch class is to make connecting lines between two points (possibly in different
axes).

Connect point xyA in coordsA with point xyB in coordsB

Valid keys are

33.4. matplotlib.patches 319

Matplotlib, Release 0.99.3

Key Description

arrowstyle the arrow style

connectionstyle | the connection style

relpos default is (0.5, 0.5)

patchA default is bounding box of the text

patchB default is None

shrink A default is 2 points

shrinkB default is 2 points

mutation_scale | default is text size (in points)

mutation_aspect | defaultis 1.

? any key formatplotlib.patches.PathPatch

coordsA and coordsB are strings that indicate the coordinates of xyA and xyB.

Prop- Description

erty

‘figure points from the lower left corner of the figure

points’

‘figure pixels from the lower left corner of the figure

pixels’

‘figure 0,0 is lower left of figure and 1,1 is upper, right

frac-

tion’

‘axes points from lower left corner of axes

points’

‘axes pixels from lower left corner of axes

pixels’

‘axes 0,1 is lower left of axes and 1,1 is upper right

frac-

tion’

‘data’ use the coordinate system of the object being annotated (default)

‘offset Specify an offset (in points) from the xy value

points’

‘polar’ you can specify theta, r for the annotation, even in cartesian plots. Note that if you are
using a polar axes, you do not need to specify polar for the coordinate system since
that is the native “data” coordinate system.

draw (renderer)
Draw.

get_annotation_clip()

Return
ues.

annotation_clip attribute. See set_annotation_clip() for the meaning of return val-

get_path_in_displaycoord()

Return

the mutated path of the arrow in the display coord

set_annotation_clip(b)
set annotation_clip attribute.

oTrue : the annotation will only be drawn when self.xy is inside the axes.

320

Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

eFalse : the annotation will always be drawn regardless of its position.

eNone : the self.xy will be checked only if xycoords is “data”

class matplotlib.patches.ConnectionStyle
Bases: matplotlib.patches._Style

ConnectionStyle is a container class which defines several connectionstyle classes, which is used

to create a path between two points. These are mainly used with FancyArrowPatch.

A connectionstyle object can be either created as:

ConnectionStyle.Arc3(rad=0.2)

or:

ConnectionStyle("Arc3", rad=0.2)

or:

ConnectionStyle("Arc3, rad=0.2")

The following classes are defined

Class Name Attrs

Angle | angle | angleA=90,angleB=0,rad=0.0

Angle3 | angle3 | angleA=90,angleB=0

Arc arc angleA=0,angleB=0,armA=None,armB=None,rad=0.0
Arc3 arc3 rad=0.0

Bar bar armA=0.0,armB=0.0,fraction=0.3,angle=None

An instance of any connection style class is an callable object, whose call signature is:

__call__(self, posA, posB, patchA=None, patchB=None, shrinkA=2., shrinkB=2.)

and it returns a Path instance. posA and posB are tuples of x,y coordinates of the two points to be
connected. patchA (or patchB) is given, the returned path is clipped so that it start (or end) from the
boundary of the patch. The path is further shrunk by shrinkA (or shrinkB) which is given in points.

class Angle (angleA=90, angleB=0, rad=0.0)
Bases: matplotlib.patches._Base

Creates a picewise continuous quadratic bezier path between two points. The path has a one
passing-through point placed at the intersecting point of two lines which crosses the start (or
end) point and has a angle of angleA (or angleB). The connecting edges are rounded with rad.

angleA starting angle of the path

angleB ending angle of the path

rad rounding radius of the edge

connect (posA, posB)

class ConnectionStyle.Angle3 (angleA=90, angleB=0)
Bases: matplotlib.patches._Base

33.4. matplotlib.patches

321

Matplotlib, Release 0.99.3

Creates a simple quadratic bezier curve between two points. The middle control points is placed
at the intersecting point of two lines which crosses the start (or end) point and has a angle of
angleA (or angleB).

angleA starting angle of the path
angleB ending angle of the path
connect (posA, posB)

class ConnectionStyle.Arc(angleA=0, angleB=0, armA=None, armB=None, rad=0.0)
Bases: matplotlib.patches._Base

Creates a picewise continuous quadratic bezier path between two points. The path can have two
passing-through points, a point placed at the distance of armA and angle of angleA from point
A, another point with respect to point B. The edges are rounded with rad.

angleA : starting angle of the path
angleB : ending angle of the path
armA : length of the starting arm
armB : length of the ending arm
rad : rounding radius of the edges
connect (posA, posB)

class ConnectionStyle.Arc3 (rad=0.0)
Bases: matplotlib.patches._Base

Creates a simple quadratic bezier curve between two points. The curve is created so that the
middle contol points (C1) is located at the same distance from the start (CO) and end points(C2)
and the distance of the C1 to the line connecting CO-C2 is rad times the distance of C0-C2.

rad curvature of the curve.
connect (posA, posB)

class ConnectionStyle.Bar (armA=0.0, armB=0.0, fraction=0.3, angle=None)
Bases: matplotlib.patches._Base

A line with angle between A and B with armA and armB. One of the arm is extend so that they
are connected in a right angle. The length of armA is determined by (armA + fraction x AB
distance). Same for armB.

armA : minimum length of armA armB : minimum length of armB fraction : a fraction of
the distance between two points that will be added to armA and armB. angle : anlge of the
connecting line (if None, parallel to A and B)

connect (posA, posB)

class matplotlib.patches.Ellipse(xy, width, height, angle=0.0, **kwargs)
Bases: matplotlib.patches.Patch

A scale-free ellipse.

xy center of ellipse

322 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

width length of horizontal axis
height length of vertical axis
angle rotation in degrees (anti-clockwise)

Valid kwargs are:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa | [True | False] or None for default
axes an Axes instance
clip_box amatplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure amatplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch L/ TN X 07 [FO7 [27] %7]
label any string
linestyleorls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number
contains(ev)

get_patch_transform()

get_path()
Return the vertices of the rectangle

class matplotlib.patches.FancyArrow(x, y, dx, dy, width=0.001, length_includes_head=False,
head_width=None, head_length=None, shape="full’,

overhang=0, head_starts_at_zero=False, **kwargs)
Bases: matplotlib.patches.Polygon

Like Arrow, but lets you set head width and head height independently.
Constructor arguments

length_includes_head: True if head is counted in calculating the length.

33.4. matplotlib.patches

323

Matplotlib, Release 0.99.3

shape: ['full’, ‘left’, ‘right’]
overhang: distance that the arrow is swept back (0 overhang means triangular shape).

head_starts_at_zero: If True, the head starts being drawn at coordinate O instead of ending
at coordinate 0.

Valid kwargs are:

Property Description

alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]

antialiased or aa | [True | False] or None for default

axes an Axes instance

clip_box amatplotlib.transforms.Bbox instance
clip_on [True | False]

clip_path [(Path, Transform) | Patch | None]

color matplotlib color spec

contains a callable function

edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure amatplotlib. figure.Figure instance
fill [True | False]

gid an id string

hatch LTINS+ 1% 07 [FO7 [0] 7]
label any string

linestyleorls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or Iw float or None for default

lod [True | False]

picker [None|float|boolean|callable]

rasterized [True | False | None]

snap unknown

transform Transform instance

url a url string

visible [True | False]

zorder any number

class matplotlib.patches.FancyArrowPatch(posA=None, posB=None, path=None, ar-

rowstyle="simple’, arrow_transmuter=None,
connectionstyle="arc3’, connector=None,
patchA=None, patchB=None, shrinkA=2.0,
shrinkB=2.0, mutation_scale=1.0, muta-

tion_aspect=None, **kwargs)
Bases: matplotlib.patches.Patch

A fancy arrow patch. It draws an arrow using the :class:ArrowStyle.

If posA and posB is given, a path connecting two point are created according to the connectionstyle.
The path will be clipped with patchA and patchB and further shirnked by shrinkA and shrinkB. An
arrow is drawn along this resulting path using the arrowstyle parameter. If path provided, an arrow is
drawn along this path and patchA, patchB, shrinkA, and shrinkB are ignored.

324 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

The connectionstyle describes how posA and posB are connected. It can be an instance of the Con-
nectionStyle class (matplotlib.patches.ConnectionStlye) or a string of the connectionstyle name, with
optional comma-separated attributes. The following connection styles are available.

Class Name | Attrs
Angle | angle | angleA=90,angleB=0,rad=0.0
Angle3 | angle3 | angleA=90,angleB=0

Arc arc angleA=0,angleB=0,armA=None,armB=None,rad=0.0
Arc3 arc3 rad=0.0
Bar bar armA=0.0,armB=0.0,fraction=0.3,angle=None

The arrowstyle describes how the fancy arrow will be drawn. It can be string of the available ar-
rowstyle names, with optional comma-separated attributes, or one of the ArrowStyle instance. The
optional attributes are meant to be scaled with the mutation_scale. The following arrow styles are

available.
Class Name Attrs
Curve - None
CurveB -> head_length=0.4,head_width=0.2
BracketB -[widthB=1.0,lengthB=0.2,angleB=None
CurveFilledB -1> head_length=0.4,head_width=0.2
CurveA <- head_length=0.4,head_width=0.2
CurveAB <-> head_length=0.4,head_width=0.2
CurveFilledA <|- head_length=0.4,head_width=0.2
CurveFilledAB | <|-|> head_length=0.4,head_width=0.2
Fancy fancy head_length=0.4,head_width=0.4 tail_width=0.4
Simple simple | head_length=0.5head_width=0.5,tail_width=0.2
Wedge wedge | tail_width=0.3,shrink_factor=0.5

mutation_scale [a value with which attributes of arrowstyle] (e.g., head_length) will be scaled. de-
fault=1.

mutation_aspect [The height of the rectangle will be] squeezed by this value before the mutation and
the mutated box will be stretched by the inverse of it. default=None.

Valid kwargs are:

33.4. matplotlib.patches 325

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa | [True | False] or None for default
axes an Axes instance
clip_box amatplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure amatplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch L/ IN T X 07 [FO7 [27] %7]
label any string
linestyleorls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number
draw (renderer)

get_arrowstyle()
Return the arrowstyle object

get_connectionstyle()
Return the ConnectionStyle instance

get_mutation_aspect()
Return the aspect ratio of the bbox mutation.

get_mutation_scale()
Return the mutation scale.

get_path()
return the path of the arrow in the data coordinate. Use get_path_in_displaycoord() medthod to
retrieve the arrow path in the disaply coord.

get_path_in_displaycoord()
Return the mutated path of the arrow in the display coord

set_arrowstyle (arrowstyle=None, **kw)
Set the arrow style.

326 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

arrowstyle can be a string with arrowstyle name with optional comma-separated attributes.
Alternatively, the attrs can be provided as keywords.

set_arrowstyle(“Fancy,head_length=0.2") set_arrowstyle(“fancy”, head_length=0.2)
Old attrs simply are forgotten.
Without argument (or with arrowstyle=None), return available box styles as a list of strings.

set_connectionstyle (connectionstyle, **kw)
Set the connection style.

connectionstyle can be a string with connectionstyle name with optional comma-separated
attributes. Alternatively, the attrs can be probided as keywords.

set_connectionstyle(“arc,angleA=0,armA=30,rad=10") set_connectionstyle(“‘arc”, an-
gleA=0,armA=30,rad=10)

Old attrs simply are forgotten.
Without argument (or with connectionstyle=None), return available styles as a list of strings.

set_mutation_aspect (aspect)
Set the aspect ratio of the bbox mutation.

ACCEPTS: float

set_mutation_scale(scale)
Set the mutation scale.

ACCEPTS: float

set_patchA(patchA)
set the begin patch.

set_patchB (patchB)
set the begin patch

set_positions(posA, posB)
set the begin end end positions of the connecting path. Use current vlaue if None.

class matplotlib.patches.FancyBboxPatch(xy, width, height, boxstyle="round’,
bbox_transmuter=None, mutation_scale=1.0,

mutation_aspect=None, **kwargs)
Bases: matplotlib.patches.Patch

Draw a fancy box around a rectangle with lower left at xy*=(*x, y) with specified width and height.

FancyBboxPatch class is similar to Rectangle class, but it draws a fancy box around the rectangle.
The transformation of the rectangle box to the fancy box is delegated to the BoxTransmuterBase
and its derived classes.

xy = lower left corner
width, height

boxstyle determines what kind of fancy box will be drawn. It can be a string of the style name with a
comma separated attribute, or an instance of BoxStyle. Following box styles are available.

33.4. matplotlib.patches 327

Matplotlib, Release 0.99.3

Class Name Attrs
LArrow larrow pad=0.3
RArrow rarrow pad=0.3
Round round pad=0.3,rounding_size=None
Round4 round4 pad=0.3,rounding_size=None

Roundtooth | roundtooth | pad=0.3,tooth_size=None
Sawtooth sawtooth pad=0.3,tooth_size=None
Square square pad=0.3

mutation_scale : a value with which attributes of boxstyle (e.g., pad) will be scaled. default=1.

mutation_aspect : The height of the rectangle will be squeezed by this value before the mutation and
the mutated box will be stretched by the inverse of it. default=None.

Valid kwargs are:
Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa | [True | False] or None for default
axes an Axes instance
clip_box amatplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]|
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure amatplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch LTINS+ 1% 07 [O7 [0] %]
label any string
linestyleorls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or Iw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number
get_bbox()

get_boxstyle()
Return the boxstyle object

get_height()
Return the height of the rectangle

328 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

get_mutation_aspect()
Return the aspect ratio of the bbox mutation.

get_mutation_scale()
Return the mutation scale.

get_path()
Return the mutated path of the rectangle

get_width()
Return the width of the rectangle

get_xQ)
Return the left coord of the rectangle

get_y(
Return the bottom coord of the rectangle

set_bounds (*args)
Set the bounds of the rectangle: 1,b,w,h

ACCEPTS: (left, bottom, width, height)

set_boxstyle(boxstyle=None, **kw)
Set the box style.

boxstyle can be a string with boxstyle name with optional comma-separated attributes. Alterna-
tively, the attrs can be provided as keywords:

set_boxstyle("round,pad=0.2")
set_boxstyle("round", pad=0.2)

OId attrs simply are forgotten.

Without argument (or with boxstyle = None), it returns available box styles.

ACCEPTS: [
Class Name Attrs

LArrow larrow pad=0.3

RArrow rarrow pad=0.3

Round round pad=0.3,rounding_size=None
Round4 round4 pad=0.3,rounding_size=None
Roundtooth | roundtooth | pad=0.3,tooth_size=None
Sawtooth sawtooth pad=0.3,tooth_size=None
Square square pad=0.3

]

set_height (/)
Set the width rectangle

ACCEPTS: float

set_mutation_aspect (aspect)
Set the aspect ratio of the bbox mutation.

33.4. matplotlib.patches 329

Matplotlib, Release 0.99.3

ACCEPTS: float

set_mutation_scale(scale)
Set the mutation scale.

ACCEPTS: float

set_width(w)
Set the width rectangle

ACCEPTS: float

set_x(x)
Set the left coord of the rectangle

ACCEPTS: float

set_y(y)
Set the bottom coord of the rectangle

ACCEPTS: float

class matplotlib.patches.Patch(edgecolor=None, facecolor=None, linewidth=None,
linestyle=None, antialiased=None, hatch=None, fill=True,
**kwargs)

Bases: matplotlib.artist.Artist
A patch is a 2D thingy with a face color and an edge color.

If any of edgecolor, facecolor, linewidth, or antialiased are None, they default to their rc params
setting.

The following kwarg properties are supported

330 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa | [True | False] or None for default
axes an Axes instance
clip_box amatplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure amatplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch L/ IN T X 07 [FO7 [27] %7]
label any string
linestyleorls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number
contains (mouseevent)

Test whether the mouse event occurred in the patch.
Returns T/F, {}

contains_point (point)
Returns True if the given point is inside the path (transformed with its transform attribute).

draw (artist, renderer, *args, **kwargs)
Draw the Patch to the given renderer.

get_aa()
Returns True if the Patch is to be drawn with antialiasing.

get_antialiased()
Returns True if the Patch is to be drawn with antialiasing.

get_data_transform()

get_ec()
Return the edge color of the Patch.

get_edgecolor()
Return the edge color of the Patch.

33.4. matplotlib.patches 331

Matplotlib, Release 0.99.3

get_extents()
Return a Bbox object defining the axis-aligned extents of the Patch.

get_facecolor()
Return the face color of the Patch.

get_£fc(
Return the face color of the Patch.

get_£ill(
return whether fill is set

get_hatch()
Return the current hatching pattern

get_linestyle()
Return the linestyle. Will be one of [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

get_linewidth()
Return the line width in points.

get_l1s(
Return the linestyle. Will be one of [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

get_1lw(Q)
Return the line width in points.

get_patch_transform()

get_path()
Return the path of this patch

get_transform()
Return the Transform applied to the Patch.

get_verts()
Return a copy of the vertices used in this patch

If the patch contains Bézier curves, the curves will be interpolated by line segments. To access
the curves as curves, use get_path().

get_window_extent (renderer=None)

set_aa(aa)
alias for set_antialiased

set_antialiased(aa)
Set whether to use antialiased rendering

ACCEPTS: [True | False] or None for default

set_color(c)
Set both the edgecolor and the facecolor.

ACCEPTS: matplotlib color spec
See Also:

332 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

set_facecolor(), set_edgecolor() For setting the edge or face color individually.

set_ec(color)
alias for set_edgecolor

set_edgecolor (color)
Set the patch edge color

ACCEPTS: mpl color spec, or None for default, or ‘none’ for no color

set_facecolor (color)
Set the patch face color

ACCEPTS: mpl color spec, or None for default, or ‘none’ for no color

set_fc(color)
alias for set_facecolor

set_f£ill(b)
Set whether to fill the patch

ACCEPTS: [True | False]

set_hatch (hatch)
Set the hatching pattern

hatch can be one of:

- diagonal hatching
back diagonal

- vertical

- horizontal

- crossed

- crossed diagonal
small circle

- large circle

- dots

- stars

I — -
1

O O MW +
I

Letters can be combined, in which case all the specified hatchings are done. If same letter
repeats, it increases the density of hatching of that pattern.

Hatching is supported in the PostScript, PDF, SVG and Agg backends only.

ACCEPTS: [/ | V|1 1= |+ | % [07|07 | 7 | **]
set_linestyle(ls)

Set the patch linestyle

ACCEPTS: [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

set_linewidth(w)
Set the patch linewidth in points

ACCEPTS: float or None for default

33.4. matplotlib.patches 333

Matplotlib, Release 0.99.3

set_ls(ls)
alias for set_linestyle

set_lw(lw)
alias for set_linewidth

update_f£from(other)
Updates this Patch from the properties of other.

class matplotlib.patches.PathPatch(path, **kwargs)

Valid kwargs are:

Bases: matplotlib.patches.Patch
A general polycurve path patch.

pathis amatplotlib.path.Path object.

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]

antialiased or aa

axes
clip_box
clip_on
clip_path
color
contains
edgecolor or ec
facecolor or fc
figure

fill

gid

hatch

label
linestyleorls
linewidth or Iw
lod

picker [None|float|boolean|callable]
rasterized [True | False | None]

snap unknown

transform Transform instance

url a url string

visible [True | False]

zorder any number

[True | False] or None for default

an Axes instance

amatplotlib.transforms.Bbox instance

[True | False]

[(Path, Transform) | Patch | None]

matplotlib color spec

a callable function

mpl color spec, or None for default, or ‘none’ for no color
mpl color spec, or None for default, or ‘none’ for no color
amatplotlib.figure.Figure instance

[True | False]

an id string

/TN % o™ [FO7 |57 |77]

any string

[’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

float or None for default

[True | False]

See Also:
Patch For additional kwargs

get_path(Q)

334

Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

class matplotlib.patches.Polygon(xy, closed=True, **kwargs)

Bases: matplotlib.patche

A general polygon patch.

s.Patch

Xy is a numpy array with shape Nx2.

If closed is True, the polygon will be closed so the starting and ending points are the same.

Valid kwargs are:

edgecolor or ec
facecolor or fc
figure

fill

gid

hatch

label
linestyleorls
linewidth or lw

Property Description

alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]

antialiased or aa | [True | False] or None for default

axes an Axes instance

clip_box amatplotlib.transforms.Bbox instance
clip_on [True | False]

clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec

contains a callable function

mpl color spec, or None for default, or ‘none’ for no color
mpl color spec, or None for default, or ‘none’ for no color
amatplotlib. figure.Figure instance

[True | False]

an id string

/TN T+ %7 o7 [FO7 |57 |7]

any string

[’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

float or None for default

lod [True | False]
picker [Nonel|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number
See Also:

Patch For additional kwargs

get_closed()
get_path(Q)
get_xyQ
set_closed(closed)

set_xy (vertices)

33.4. matplotlib.patches

335

Matplotlib, Release 0.99.3

Xy

Set/get the vertices of the polygon. This property is provided for backward compatibility with
matplotlib 0.91.x only. New code should use get_xy () and set_xy() instead.

class matplotlib.patches.Rectangle (xy, width, height, **kwargs)

Bases: matplotlib.patches.Patch

Draw a rectangle with lower left at xy = (x, y) with specified width and height.

fill is a boolean indicating whether to fill the rectangle

Valid kwargs are:

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]

antialiased or aa

axes

clip_box
clip_on
clip_path
color
contains
edgecolor orec
facecolor or fc
figure

fill

gid

hatch

label
linestyle orls
linewidth or lw
lod

[True | False] or None for default

an Axes instance
amatplotlib.transforms.Bbox instance
[True | False]

[(Path, Transform) | Patch | None]
matplotlib color spec

a callable function

mpl color spec, or None for default, or ‘none’ for no color
mpl color spec, or None for default, or ‘none’ for no color

amatplotlib.figure.Figure instance
[True | False]

an id string

L/ IN T+ X 07 [FO7 [27] %7]
any string

[’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

float or None for default

[True | False]

picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number
contains (mouseevent)
get_bbox()

get_height()
Return the height of the rectangle

get_patch_transform()

get_path()
Return the vertices of the rectangle

336

Chapter 33.

matplotlib artists

Matplotlib, Release 0.99.3

get_width(
Return the width of the rectangle

get_x(Q)
Return the left coord of the rectangle

get_xy()
Return the left and bottom coords of the rectangle

get_yQ
Return the bottom coord of the rectangle

set_bounds (*args)
Set the bounds of the rectangle: 1,b,w,h

ACCEPTS: (left, bottom, width, height)

set_height (/)
Set the width rectangle

ACCEPTS: float

set_width(w)
Set the width rectangle

ACCEPTS: float

set_x(x)
Set the left coord of the rectangle

ACCEPTS: float

set_xy(xy)
Set the left and bottom coords of the rectangle

ACCEPTS: 2-item sequence

set_y(y)
Set the bottom coord of the rectangle

ACCEPTS: float

Xy
Return the left and bottom coords of the rectangle

classmatplotlib.patches.RegularPolygon(xy, numVertices,

*rkwargs)
Bases: matplotlib.patches.Patch

A regular polygon patch.

Constructor arguments:

xy A length 2 tuple (x, y) of the center.
numVertices the number of vertices.

radius The distance from the center to each of the vertices.

radius=3,

orientation=0,

33.4. matplotlib.patches

337

Matplotlib, Release 0.99.3

orientation rotates the polygon (in radians).

Valid kwargs are:

Property Description

alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]

antialiased or aa | [True | False] or None for default

axes an Axes instance

clip_box amatplotlib.transforms.Bbox instance
clip_on [True | False]

clip_path [(Path, Transform) | Patch | None]

color matplotlib color spec

contains a callable function

edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure amatplotlib. figure.Figure instance
fill [True | False]

gid an id string

hatch L/ TN+ X o7 [FO7 [27] 77]
label any string

linestyleorls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or Iw float or None for default

lod [True | False]

picker [None|float|boolean|callable]

rasterized [True | False | None]

snap unknown

transform Transform instance

url a url string

visible [True | False]

zorder any number

get_patch_transform()
get_path()
numvertices
orientation

radius

Xy

class matplotlib.patches.Shadow(patch, ox, oy, props=None, **kwargs)
Bases: matplotlib.patches.Patch

Create a shadow of the given patch offset by ox, oy. props, if not None, is a patch property update
dictionary. If None, the shadow will have have the same color as the face, but darkened.

kwargs are

338 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa | [True | False] or None for default
axes an Axes instance
clip_box amatplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure amatplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch L/ IN T X 07 [FO7 [27] %7]
label any string
linestyleorls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number
draw (renderer)

get_patch_transform()
get_path()

class matplotlib.patches.Wedge(center, r, thetal, theta2, width=None, **kwargs)
Bases: matplotlib.patches.Patch

Wedge shaped patch.

Draw a wedge centered at x, y center with radius r that sweeps thetal to theta2 (in degrees). If width
is given, then a partial wedge is drawn from inner radius r - width to outer radius r.

Valid kwargs are:

33.4. matplotlib.patches 339

Matplotlib, Release 0.99.3

Property Description
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]

antialiased or aa
axes

clip_box
clip_on
clip_path
color
contains
edgecolor orec
facecolor or fc
figure

fill

gid

hatch

label
linestyle orls
linewidth or lw
lod

[True | False] or None for default

an Axes instance

amatplotlib.transforms.Bbox instance

[True | False]

[(Path, Transform) | Patch | None]

matplotlib color spec

a callable function

mpl color spec, or None for default, or ‘none’ for no color
mpl color spec, or None for default, or ‘none’ for no color
amatplotlib.figure.Figure instance

[True | False]

an id string

L/ IN T X 07 [FO7 [27] %7]

any string

[’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

float or None for default

[True | False]

picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number
get_path(Q)

class matplotlib.patches.YAArrow(figure, xytip, xybase, width=4, frac=0.1, headwidth=12,

**kwargs)
Bases: matplotlib.patches.Patch

Yet another arrow class.

This is an arrow that is defined in display space and has a tip at x/, y/ and a base at x2, y2.

Constructor arguments:

xytip (x, y) location of arrow tip

xybase (x,y) location the arrow base mid point

figure The Figure instance (fig.dpi)

width The width of the arrow in points

Jrac The fraction of the arrow length occupied by the head
headwidth The width of the base of the arrow head in points

Valid kwargs are:

340

Chapter 33.

matplotlib artists

Matplotlib, Release 0.99.3

Property Description

alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]

antialiased or aa | [True | False] or None for default

axes an Axes instance

clip_box amatplotlib.transforms.Bbox instance
clip_on [True | False]

clip_path [(Path, Transform) | Patch | None]

color matplotlib color spec

contains a callable function

edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure amatplotlib.figure.Figure instance
fill [True | False]

gid an id string

hatch L/ IN T X 07 [FO7 [27] %7]
label any string

linestyleorls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default

lod [True | False]

picker [None|float|boolean|callable]

rasterized [True | False | None]

snap unknown

transform Transform instance

url a url string

visible [True | False]

zorder any number

get_patch_transform()
get_path()

getpoints(x/, yl, x2, y2, k)
For line segment defined by (x1, yI) and (x2, y2) return the points on the line that is perpendicular
to the line and intersects (x2, y2) and the distance from (x2, y2) of the returned points is k.

matplotlib.patches.bbox_artist (artist, renderer, props=None, fill=True)
This is a debug function to draw a rectangle around the bounding box returned by
get_window_extent () of an artist, to test whether the artist is returning the correct bbox.

props is a dict of rectangle props with the additional property ‘pad’ that sets the padding around the
bbox in points.

matplotlib.patches.draw_bbox (bbox, renderer, color="k’, trans=None)
This is a debug function to draw a rectangle around the bounding box returned by
get_window_extent () of an artist, to test whether the artist is returning the correct bbox.

33.4. matplotlib.patches 341

Matplotlib, Release 0.99.3

33.5 matplotlib.text

Classes for including text in a figure.

class matplotlib.text.Annotation(s, xy, xytext=None, xycoords="data’, textcoords=None, ar-

rowprops=None, **kwargs)
Bases: matplotlib.text.Text

A Text class to make annotating things in the figure, such as Figure, Axes, Rectangle, etc., easier.

Annotate the x, y point xy with text s at x, y location xytext. (If xytext = None, defaults to xy, and if
textcoords = None, defaults to xycoords).

arrowprops, if not None, is a dictionary of line properties (see matplotlib.lines.Line2D) for the
arrow that connects annotation to the point.

If the dictionary has a key arrowstyle, a Fancy ArrowPatch instance is created with the given dictionary
and is drawn. Otherwise, a YA Arow patch instance is created and drawn. Valid keys for YA Arow are

Key | Description

width | the width of the arrow in points

frac the fraction of the arrow length occupied by the head
head- | the width of the base of the arrow head in points
width
shrink | oftentimes it is convenient to have the arrowtip and base a bit away from the text and
point being annotated. If d is the distance between the text and annotated point, shrink
will shorten the arrow so the tip and base are shink percent of the distance d away from
the endpoints. ie, shrink=0.05 is 5%

? any key for matplotlib.patches.polygon

Valid keys for Fancy ArrowPatch are

Key Description

arrowstyle the arrow style

connectionstyle | the connection style

relpos default is (0.5, 0.5)

patchA default is bounding box of the text
patchB default is None

shrink A default is 2 points

shrinkB default is 2 points

mutation_scale default is text size (in points)
mutation_aspect | defaultis 1.

? any key for matplotlib.patches.PathPatch

xycoords and textcoords are strings that indicate the coordinates of xy and xyfext.

342

Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

Prop- Description

erty

‘figure points from the lower left corner of the figure

points’

‘figure pixels from the lower left corner of the figure

pixels’

‘figure 0,0 is lower left of figure and 1,1 is upper, right

frac-

tion’

‘axes points from lower left corner of axes

points’

‘axes pixels from lower left corner of axes

pixels’

‘axes 0,1 is lower left of axes and 1,1 is upper right

frac-

tion’

‘data’ use the coordinate system of the object being annotated (default)
‘offset Specify an offset (in points) from the xy value

points’

‘polar’ you can specify theta, r for the annotation, even in cartesian plots. Note that if you are

using a polar axes, you do not need to specify polar for the coordinate system since
that is the native “data” coordinate system.

If a ‘points’ or ‘pixels’ option is specified, values will be added to the bottom-left and if negative,
values will be subtracted from the top-right. Eg:

10 points to the right of the left border of the axes and

5 points below the top border

xy=(10,-5), xycoords=’axes points’

The annotation_clip attribute contols the visibility of the annotation when it goes outside the axes
area. If True, the annotation will only be drawn when the xy is inside the axes. If False, the annotation
will always be drawn regardless of its position. The default is None, which behave as True only if

xycoords is”data”.

Additional kwargs are Text properties:

Property Description

alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]

axes an Axes instance

backgroundcolor any matplotlib color

bbox rectangle prop dict

clip_box amatplotlib.transforms.Bbox instance
clip_on [True | False]

clip_path [(Path, Transform) | Patch | None]
color any matplotlib color

contains a callable function

family or fontfamily or fontname or name

[FONTNAME | ‘serif” | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]

33.5. matplotlib.text

343

Matplotlib, Release 0.99.3

Table 33.3 — continued fro1

figure
fontproperties or font_properties
gid
horizontalalignment or ha
label

linespacing

lod

multialignment

picker

position

rasterized

rotation

rotation_mode
size or fontsize

snap

stretch or fontstretch
style or fontstyle

text

transform

url

variant or fontvariant
verticalalignment or va or ma
visible

weight or fontweight

amatplotlib. figure.Figure instance
amatplotlib.font_manager.FontProperties instance

an id string

[‘center’ | ‘right’ | ‘left’]

any string

float (multiple of font size)

[True | False]

[’left’ | ‘right’ | ‘center’]

[None|float|boolean|callable]

(x,y)

[True | False | None]

[angle in degrees | ‘vertical’ | ‘horizontal’]

unknown

[size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large
unknown

[a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘c
[‘normal’ | ‘italic’ | ‘oblique’]

string or anything printable with ‘%s’ conversion.

Transform instance

a url string

[‘normal’ | ‘small-caps’]

[‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]

[True | False]

[@a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’

X float
y float
zorder any number
contains (event)
draw (renderer)
Draw the Annotation object to the given renderer.
get_annotation_clip()
Return annotation_clip attribute. See set_annotation_clip() for the meaning of return val-
ues.
set_annotation_clip(b)
set annotation_clip attribute.
oTrue : the annotation will only be drawn when self.xy is inside the axes.
eFalse : the annotation will always be drawn regardless of its position.
eNone : the self.xy will be checked only if xycoords is “data”
set_figure(fig)
344 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

update_positions (renderer)

Update the pixel positions of the annotated point and the text.

class matplotlib.text.Text(x=0, y=0,

text="", color=None, verticalalignment="bottom’,

horizontalalignment="left’, multialignment=None, font-
properties=None, rotation=None, linespacing=None, rota-
tion_mode=None, **kwargs)

Bases: matplotlib.artist.Artist

Handle storing and drawing of text in window or data coordinates.

Create a Text instance at x, y with string fext.

Valid kwargs are

family or fontfamily or fontname or name
figure
fontproperties or font_properties
gid
horizontalalignment or ha
label

linespacing

lod

multialignment

picker

position

rasterized

rotation

rotation_mode
size or fontsize

snap

stretch or fontstretch
style or fontstyle

text

transform

url

variant or fontvariant
verticalalignment or va or ma

Property Description

alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]

axes an Axes instance

backgroundcolor any matplotlib color

bbox rectangle prop dict

clip_box amatplotlib.transforms.Bbox instance
clip_on [True | False]

clip_path [(Path, Transform) | Patch | None]
color any matplotlib color

contains a callable function

[FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
amatplotlib. figure.Figure instance
amatplotlib.font_manager.FontProperties instance

an id string

[‘center’ | ‘right’ | ‘left’]

any string

float (multiple of font size)

[True | False]

[’left’ | ‘right’ | ‘center’]

[None|float|boolean|callable]

(x,y)

[True | False | None]

[angle in degrees | ‘vertical’ | ‘horizontal’]

unknown

[size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large
unknown

[a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘c
[‘normal’ | ‘italic’ | ‘oblique’]

string or anything printable with ‘%s’ conversion.

Transform instance

a url string

[‘normal’ | ‘small-caps’]

[‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]

33.5. matplotlib.text

345

Matplotlib, Release 0.99.3

Table 33.4 — continued fro:

visible [True | False]
weight or fontweight [@a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’
X float
y float
zorder any number
contains (mouseevent)

Test whether the mouse event occurred in the patch.
In the case of text, a hit is true anywhere in the axis-aligned bounding-box containing the text.
Returns True or False.

draw (renderer)
Draws the Text object to the given renderer.

get_bbox_patch()
Return the bbox Patch object. Returns None if the the FancyBboxPatch is not made.

get_color()
Return the color of the text

get_family ()
Return the list of font families used for font lookup

get_font_properties()
alias for get_fontproperties

get_fontfamily ()
alias for get_family

get_fontname()
alias for get_name

get_fontproperties()
Return the FontProperties object

get_fontsize()
alias for get_size

get_fontstretch()
alias for get_stretch

get_fontstyle()
alias for get_style

get_fontvariant()
alias for get_variant

get_fontweight)
alias for get_weight

346 Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

get_ha()
alias for get_horizontalalignment

get_horizontalalignment()
Return the horizontal alignment as string. Will be one of ‘left’, ‘center’ or ‘right’.

get_name()
Return the font name as string

get_position()
Return the position of the text as a tuple (x, y)

get_prop_tup()
Return a hashable tuple of properties.

Not intended to be human readable, but useful for backends who want to cache derived informa-
tion about text (eg layouts) and need to know if the text has changed.

get_rotation()
return the text angle as float in degrees

get_rotation_mode()
get text rotation mode

get_size()
Return the font size as integer

get_stretch()
Get the font stretch as a string or number

get_style()
Return the font style as string

get_text()
Get the text as string

get_va(Q)
alias for getverticalalignment ()

get_variant()
Return the font variant as a string

get_verticalalignment()
Return the vertical alignment as string. Will be one of ‘top’, ‘center’, ‘bottom’ or ‘baseline’.

get_weight()
Get the font weight as string or number

get_window_extent (renderer=None, dpi=None)
Return a Bbox object bounding the text, in display units.

In addition to being used internally, this is useful for specifying clickable regions in a png file
on a web page.

renderer defaults to the _renderer attribute of the text object. This is not assigned until the first
execution of draw(), so you must use this kwarg if you want to call get_window_extent ()

33.5. matplotlib.text 347

Matplotlib, Release 0.99.3

prior to the first draw(). For getting web page regions, it is simpler to call the method after
saving the figure.

dpi defaults to self.figure.dpi; the renderer dpi is irrelevant. For the web application, if figure.dpi
is not the value used when saving the figure, then the value that was used must be specified as
the dpi argument.

is_math_text(s)

Returns True if the given string s contains any mathtext.

set_backgroundcolor (color)

Set the background color of the text by updating the bbox.
See Also:

set_bbox() To change the position of the bounding box.

ACCEPTS: any matplotlib color

set_bbox (rectprops)

Draw a bounding box around self. rectprops are any settable properties for a rectangle, eg
facecolor="red’, alpha=0.5.

t.set_bbox(dict(facecolor="red’, alpha=0.5))

If rectprops has “boxstyle” key. A FancyBboxPatch is initialized with rectprops and will be
drawn. The mutation scale of the FancyBboxPath is set to the fontsize.

ACCEPTS: rectangle prop dict

set_color (color)

Set the foreground color of the text

ACCEPTS: any matplotlib color

set_family (fonmame)

Set the font family. May be either a single string, or a list of strings in decreasing priority. Each
string may be either a real font name or a generic font class name. If the latter, the specific font
names will be looked up in the matplotlibrc file.

ACCEPTS: [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]

set_font_properties(fp)

alias for set_fontproperties

set_fontname (fontname)

alias for set_family

set_fontproperties(fp)

Set the font properties that control the text. fp must be a
matplotlib. font_manager.FontProperties object.

ACCEPTS: amatplotlib. font_manager.FontProperties instance

set_fontsize (fontsize)

alias for set_size

348

Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

set_fontstretch(stretch)
alias for set_stretch

set_fontstyle (fontstyle)
alias for set_style

set_fontvariant (variant)
alias for set_variant

set_fontweight (weight)
alias for set_weight

set_ha(align)
alias for set_horizontalalignment

set_horizontalalignment (align)
Set the horizontal alignment to one of

ACCEPTS: [‘center’ | ‘right’ | ‘left’]

set_linespacing(spacing)
Set the line spacing as a multiple of the font size. Default is 1.2.

ACCEPTS: float (multiple of font size)

set_ma(align)
alias for set_verticalalignment

set_multialignment (align)
Set the alignment for multiple lines layout. The layout of the bounding box of all the lines is
determined bu the horizontalalignment and verticalalignment properties, but the multiline text
within that box can be

ACCEPTS: [’left’ | ‘right’ | ‘center’]

set_name (fontname)
alias for set_family

set_position(xy)
Set the (x, y) position of the text

ACCEPTS: (x,y)

set_rotation(s)
Set the rotation of the text

ACCEPTS: [angle in degrees | ‘vertical’ | ‘horizontal’]

set_rotation_mode (m)
set text rotation mode. If “anchor”, the un-rotated text will first aligned according to their ha and
va, and then will be rotated with the alignement reference point as a origin. If None (default),
the text will be rotated first then will be aligned.

set_size(fontsize)
Set the font size. May be either a size string, relative to the default font size, or an absolute font
size in points.

33.5. matplotlib.text 349

Matplotlib, Release 0.99.3

ACCEPTS: [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ |
‘xx-large’]

set_stretch(stretch)
Set the font stretch (horizontal condensation or expansion).

ACCEPTS: [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘con-
densed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-
expanded’]

set_style(fontstyle)
Set the font style.

ACCEPTS: [‘normal’ | ‘italic’ | ‘oblique’]

set_text(s)
Set the text string s

It may contain newlines (\n) or math in LaTeX syntax.
ACCEPTS: string or anything printable with ‘%s’ conversion.

set_va(align)
alias for set_verticalalignment

set_variant (variant)
Set the font variant, either ‘normal’ or ‘small-caps’.

ACCEPTS: [‘normal’ | ‘small-caps’]

set_verticalalignment (align)
Set the vertical alignment

ACCEPTS: [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]

set_weight (weight)
Set the font weight.

ACCEPTS: [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’
| ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]

set_x(x)
Set the x position of the text

ACCEPTS: float

set_y(y)
Set the y position of the text

ACCEPTS: float

update_bbox_position_size(renderer)
Update the location and the size of the bbox. This method should be used when the position and
size of the bbox needs to be updated before actually drawing the bbox.

update_f£from(other)
Copy properties from other to self

350

Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

classmatplotlib.text.TextWithDash(x=0, y=0, text="‘, color=None, verticalalign-
ment="center’, horizontalalignment="center’, multi-
alignment=None, fontproperties=None, rotation=None,
linespacing=None, dashlength=0.0, dashdirection=0,
dashrotation=None, dashpad=3, dashpush=0)
Bases: matplotlib.text.Text

This is basically a Text with a dash (drawn with a Line2D) before/after it. It is intended to be a
drop-in replacement for Text, and should behave identically to it when dashlength = 0.0.

The dash always comes between the point specified by set_position() and the text. When a dash
exists, the text alignment arguments (horizontalalignment, verticalalignment) are ignored.

dashlength is the length of the dash in canvas units. (default = 0.0).
dashdirection is one of 0 or 1, where 0 draws the dash after the text and 1 before. (default = 0).

dashrotation specifies the rotation of the dash, and should generally stay None. In this case
get_dashrotation() returns get_rotation(). (l.e., the dash takes its rotation from the text’s
rotation). Because the text center is projected onto the dash, major deviations in the rotation cause
what may be considered visually unappealing results. (default = None)

dashpad is a padding length to add (or subtract) space between the text and the dash, in canvas units.
(default = 3)

dashpush “pushes” the dash and text away from the point specified by set_position() by the
amount in canvas units. (default = 0)

Note: The alignment of the two objects is based on the bounding box of the Text, as obtained
by get_window_extent(). This, in turn, appears to depend on the font metrics as given by the
rendering backend. Hence the quality of the “centering” of the label text with respect to the dash
varies depending on the backend used.

Note: I’'m not sure that I got the get_window_extent () right, or whether that’s sufficient for
providing the object bounding box.

draw (renderer)
Draw the TextiithDash object to the given renderer.

get_dashdirection()
Get the direction dash. 1 is before the text and O is after.

get_dashlength()
Get the length of the dash.

get_dashpad()
Get the extra spacing between the dash and the text, in canvas units.

get_dashpush()
Get the extra spacing between the dash and the specified text position, in canvas units.

get_dashrotation()
Get the rotation of the dash in degrees.

get_figure()
return the figure instance the artist belongs to

33.5. matplotlib.text 351

Matplotlib, Release 0.99.3

get_position()
Return the position of the text as a tuple (x, y)

get_prop_tup()
Return a hashable tuple of properties.

Not intended to be human readable, but useful for backends who want to cache derived informa-
tion about text (eg layouts) and need to know if the text has changed.

get_window_extent (renderer=None)
Return a Bbox object bounding the text, in display units.

In addition to being used internally, this is useful for specifying clickable regions in a png file
on a web page.

renderer defaults to the _renderer attribute of the text object. This is not assigned until the first
execution of draw(), so you must use this kwarg if you want to call get_window_extent ()
prior to the first draw(). For getting web page regions, it is simpler to call the method after
saving the figure.

set_dashdirection(dd)
Set the direction of the dash following the text. 1 is before the text and O is after. The default is
0, which is what you’d want for the typical case of ticks below and on the left of the figure.

ACCEPTS: int (1 is before, O is after)

set_dashlength(d/)
Set the length of the dash.

ACCEPTS: float (canvas units)

set_dashpad(dp)
Set the “pad” of the TextWithDash, which is the extra spacing between the dash and the text, in
canvas units.

ACCEPTS: float (canvas units)

set_dashpush(dp)
Set the “push” of the TextWithDash, which is the extra spacing between the beginning of the
dash and the specified position.

ACCEPTS: float (canvas units)

set_dashrotation(dr)
Set the rotation of the dash, in degrees

ACCEPTS: float (degrees)

set_figure(fig)
Set the figure instance the artist belong to.

ACCEPTS: amatplotlib. figure.Figure instance

set_position(xy)
Set the (x, y) position of the TextWithDash.

ACCEPTS: (x,y)

352

Chapter 33. matplotlib artists

Matplotlib, Release 0.99.3

set_transform(s)
Set the matplotlib. transforms.Transform instance used by this artist.

ACCEPTS: amatplotlib.transforms. Transform instance

set_x(x)
Set the x position of the TextWithDash.

ACCEPTS: float

set_y(y)
Set the y position of the TextWithDash.

ACCEPTS: float

update_coords (renderer)

Computes the actual x, y coordinates for text based on the input x, y and the dashlength. Since
the rotation is with respect to the actual canvas’s coordinates we need to map back and forth.

matplotlib.text.get_rotation(rotation)
Return the text angle as float.

rotation may be ‘horizontal’, ‘vertical’, or a numeric value in degrees.

33.5. matplotlib.text 353

Matplotlib, Release 0.99.3

354 Chapter 33. matplotlib artists

CHAPTER
THIRTYFOUR

MATPLOTLIB AXES

34.1 matplotlib.axes

class matplotlib.axes.Axes(fig, rect, axisbg=None, frameon=True, sharex=None, sharey=None,

label="", xscale=None, yscale=None, **kwargs)
Bases: matplotlib.artist.Artist

The Axes contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets
the coordinate system.

The Axes instance supports callbacks through a callbacks attribute which is a CallbackRegistry
instance. The events you can connect to are ‘xlim_changed’ and ‘ylim_changed’ and the callback will
be called with func(ax) where ax is the Axes instance.

acorr (x, **kwargs)
call signature:

acorr(x, normed=True, detrend=mlab.detrend_none, usevlines=True,

Plot the autocorrelation of x. If normed = True, normalize the data by the autocorrelation at 0-th
lag. x is detrended by the detrend callable (default no normalization).

Data are plotted as plot(lags, c, **kwargs)
Return value is a tuple (lags, c, line) where:
e/ags are a length 2*maxlags+1 lag vector
eoc is the 2*maxlags+1 auto correlation vector
oline is a Line2D instance returned by plot ()

The default linestyle is None and the default marker is ’o’, though these can be overridden with
keyword args. The cross correlation is performed with numpy . correlate () with mode = 2.

If usevlines is True, vlines () rather than plot () is used to draw vertical lines from the origin
to the acorr. Otherwise, the plot style is determined by the kwargs, which are Line2D properties.

maxlags is a positive integer detailing the number of lags to show. The default value of None
will return all 2imeslen(x) — 1 lags.

355

Matplotlib, Release 0.99.3

The return value is a tuple (lags, c, linecol, b) where
elinecol is the LineCollection
ob is the x-axis.
See Also:
plot() or vliines()
For documentation on valid kwargs.
Example:

xcorr () above, and acorr () below.

Example:
0.25 T T T T T
0.20F e —t P b .
0.15F R A SN RS S B :
0.10F 1 iy 'ttt .
0.05F Lol b T b bl 1 -
0.00 ; ; ' 1 ﬁ
—005‘ 1 i Lo : : """"" """"" 1
—-0.10f---- 11 SN N | SEEELALLIERES (RN ERRRERERS ERRRRRRRRE SRR AERERS .
—0.15} - ST PSR N IETTERPPRS R .
—02000—40 —20 0 20 40 60
1.0 ! ! ! !
0.8f R S - .
0.6f e S s S S :
0.4f e O A NN .
0.2 : :
0.0
—0.2

-60 -40 -20

add_artist(a)
Add any Artist to the axes.

Returns the artist.

add_collection(collection, autolim=True)
Add a Collection instance to the axes.

Returns the collection.

0 20 40 60

356

Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

add_line(line)
Add a Line2D to the list of plot lines

Returns the line.

add_patch(p)
Add a Patch p to the list of axes patches; the clipbox will be set to the Axes clipping box. If the
transform is not set, it will be set to transData.

Returns the patch.

add_table (tab)
Add a Table instance to the list of axes tables

Returns the table.

annotate(*args, **kwargs)
call signature:

annotate(s, xy, xytext=None, xycoords=’data’,
textcoords="data’, arrowprops=None, **kwargs)

Keyword arguments:

Annotate the x, y point xy with text s at x, y location xyfext. (If xytext = None, defaults to xy, and
if textcoords = None, defaults to xycoords).

arrowprops, if not None, is a dictionary of line properties (see matplotlib.lines.Line2D)
for the arrow that connects annotation to the point.

If the dictionary has a key arrowstyle, a FancyArrowPatch instance is created with the given
dictionary and is drawn. Otherwise, a YAArow patch instance is created and drawn. Valid keys
for YAArow are

Key | Description

width | the width of the arrow in points

frac the fraction of the arrow length occupied by the head
head- | the width of the base of the arrow head in points
width
shrink | oftentimes it is convenient to have the arrowtip and base a bit away from the text
and point being annotated. If d is the distance between the text and annotated point,
shrink will shorten the arrow so the tip and base are shink percent of the distance d
away from the endpoints. ie, shrink=0.05 is 5%

? any key for matplotlib.patches.polygon

Valid keys for Fancy ArrowPatch are

34.1. matplotlib.axes 357

Matplotlib, Release 0.99.3

Key Description

arrowstyle the arrow style

connectionstyle | the connection style

relpos default is (0.5, 0.5)

patchA default is bounding box of the text
patchB default is None

shrink A default is 2 points

shrinkB default is 2 points

mutation_scale | default is text size (in points)
mutation_aspect | defaultis 1.

? any key formatplotlib.patches.PathPatch

xycoords and textcoords are strings that indicate the coordinates of xy and xyrext.

Prop- Description

erty

‘figure | points from the lower left corner of the figure

points’

‘figure | pixels from the lower left corner of the figure

pixels’

‘figure | 0,0 is lower left of figure and 1,1 is upper, right

frac-

tion’

‘axes points from lower left corner of axes

points’

‘axes pixels from lower left corner of axes

pixels’

‘axes 0,1 is lower left of axes and 1,1 is upper right

frac-

tion’

‘data’ use the coordinate system of the object being annotated (default)

‘offset Specify an offset (in points) from the xy value

points’

‘polar’ | you can specify theta, r for the annotation, even in cartesian plots. Note that if
you are using a polar axes, you do not need to specify polar for the coordinate
system since that is the native “data” coordinate system.

If a “points’ or ‘pixels’ option is specified, values will be added to the bottom-left and if negative,
values will be subtracted from the top-right. Eg:

10 points to the right of the left border of the axes and
5 points below the top border
xy=(10,-5), xycoords=’axes points’

The annotation_clip attribute contols the visibility of the annotation when it goes outside the
axes area. If True, the annotation will only be drawn when the xy is inside the axes. If False, the
annotation will always be drawn regardless of its position. The default is None, which behave
as True only if xycoords is”data”.

Additional kwargs are Text properties:

358

Chapter 34. matplotlib axes

Matplotlib, Release 0.99.3

Property Description

alpha float (0.0 transparent through 1.0 opaque)

animated [True | False]

axes an Axes instance

backgroundcolor any matplotlib color

bbox rectangle prop dict

clip_box amatplotlib.transforms.Bbox instance

clip_on [True | False]

clip_path [(Path, Transform) | Patch | None]

color any matplotlib color

contains a callable function

family or fontfamily or fontname or name | [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cur