Library MathComp.fieldext

Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div choice fintype.
Require Import tuple finfun bigop ssralg finalg zmodp matrix vector falgebra.
Require Import poly polydiv mxpoly generic_quotient.


Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Local Open Scope ring_scope.
Import GRing.Theory.

Module FieldExt.

Import GRing.

Section FieldExt.

Variable R : ringType.

Record class_of T := Class {
  base : Falgebra.class_of R T;
  comm_ext : commutative (Ring.mul base);
  idomain_ext : IntegralDomain.axiom (Ring.Pack base T);
  field_ext : Field.mixin_of (UnitRing.Pack base T)
}.

Local Coercion base : class_of >-> Falgebra.class_of.

Section Bases.
Variables (T : Type) (c : class_of T).
Definition base1 := ComRing.Class (@comm_ext T c).
Definition base2 := @ComUnitRing.Class T base1 c.
Definition base3 := @IntegralDomain.Class T base2 (@idomain_ext T c).
Definition base4 := @Field.Class T base3 (@field_ext T c).
End Bases.
Local Coercion base1 : class_of >-> ComRing.class_of.
Local Coercion base2 : class_of >-> ComUnitRing.class_of.
Local Coercion base3 : class_of >-> IntegralDomain.class_of.
Local Coercion base4 : class_of >-> Field.class_of.

Structure type (phR : phant R) := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.

Variables (phR : phant R) (T : Type) (cT : type phR).
Definition class := let: Pack _ c _ := cT return class_of cT in c.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).

Definition pack :=
  fun (bT : Falgebra.type phR) b
    & phant_id (Falgebra.class bT : Falgebra.class_of R bT)
               (b : Falgebra.class_of R T) ⇒
  fun mT Cm IDm Fm & phant_id (Field.class mT) (@Field.Class T
        (@IntegralDomain.Class T (@ComUnitRing.Class T (@ComRing.Class T b
          Cm) b) IDm) Fm) ⇒ Pack phR (@Class T b Cm IDm Fm) T.

Definition pack_eta K :=
  let cK := Field.class K in let Cm := ComRing.mixin cK in
  let IDm := IntegralDomain.mixin cK in let Fm := Field.mixin cK in
  fun (bT : Falgebra.type phR) b & phant_id (Falgebra.class bT) b
  fun cT_ & phant_id (@Class T b) cT_ ⇒ @Pack phR T (cT_ Cm IDm Fm) T.

Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition zmodType := @Zmodule.Pack cT xclass xT.
Definition ringType := @Ring.Pack cT xclass xT.
Definition unitRingType := @UnitRing.Pack cT xclass xT.
Definition comRingType := @ComRing.Pack cT xclass xT.
Definition comUnitRingType := @ComUnitRing.Pack cT xclass xT.
Definition idomainType := @IntegralDomain.Pack cT xclass xT.
Definition fieldType := @Field.Pack cT xclass xT.
Definition lmodType := @Lmodule.Pack R phR cT xclass xT.
Definition lalgType := @Lalgebra.Pack R phR cT xclass xT.
Definition algType := @Algebra.Pack R phR cT xclass xT.
Definition unitAlgType := @UnitAlgebra.Pack R phR cT xclass xT.
Definition vectType := @Vector.Pack R phR cT xclass xT.
Definition FalgType := @Falgebra.Pack R phR cT xclass xT.

Definition Falg_comRingType := @ComRing.Pack FalgType xclass xT.
Definition Falg_comUnitRingType := @ComUnitRing.Pack FalgType xclass xT.
Definition Falg_idomainType := @IntegralDomain.Pack FalgType xclass xT.
Definition Falg_fieldType := @Field.Pack FalgType xclass xT.

Definition vect_comRingType := @ComRing.Pack vectType xclass xT.
Definition vect_comUnitRingType := @ComUnitRing.Pack vectType xclass xT.
Definition vect_idomainType := @IntegralDomain.Pack vectType xclass xT.
Definition vect_fieldType := @Field.Pack vectType xclass xT.

Definition unitAlg_comRingType := @ComRing.Pack unitAlgType xclass xT.
Definition unitAlg_comUnitRingType := @ComUnitRing.Pack unitAlgType xclass xT.
Definition unitAlg_idomainType := @IntegralDomain.Pack unitAlgType xclass xT.
Definition unitAlg_fieldType := @Field.Pack unitAlgType xclass xT.

Definition alg_comRingType := @ComRing.Pack algType xclass xT.
Definition alg_comUnitRingType := @ComUnitRing.Pack algType xclass xT.
Definition alg_idomainType := @IntegralDomain.Pack algType xclass xT.
Definition alg_fieldType := @Field.Pack algType xclass xT.

Definition lalg_comRingType := @ComRing.Pack lalgType xclass xT.
Definition lalg_comUnitRingType := @ComUnitRing.Pack lalgType xclass xT.
Definition lalg_idomainType := @IntegralDomain.Pack lalgType xclass xT.
Definition lalg_fieldType := @Field.Pack lalgType xclass xT.

Definition lmod_comRingType := @ComRing.Pack lmodType xclass xT.
Definition lmod_comUnitRingType := @ComUnitRing.Pack lmodType xclass xT.
Definition lmod_idomainType := @IntegralDomain.Pack lmodType xclass xT.
Definition lmod_fieldType := @Field.Pack lmodType xclass xT.

End FieldExt.

Module Exports.

Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion base : class_of >-> Falgebra.class_of.
Coercion base4 : class_of >-> Field.class_of.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion zmodType : type >-> Zmodule.type.
Canonical zmodType.
Coercion ringType : type >-> Ring.type.
Canonical ringType.
Coercion unitRingType : type >-> UnitRing.type.
Canonical unitRingType.
Coercion comRingType : type >-> ComRing.type.
Canonical comRingType.
Coercion comUnitRingType : type >-> ComUnitRing.type.
Canonical comUnitRingType.
Coercion idomainType : type >-> IntegralDomain.type.
Canonical idomainType.
Coercion fieldType : type >-> Field.type.
Canonical fieldType.
Coercion lmodType : type >-> Lmodule.type.
Canonical lmodType.
Coercion lalgType : type >-> Lalgebra.type.
Canonical lalgType.
Coercion algType : type >-> Algebra.type.
Canonical algType.
Coercion unitAlgType : type >-> UnitAlgebra.type.
Canonical unitAlgType.
Coercion vectType : type >-> Vector.type.
Canonical vectType.
Coercion FalgType : type >-> Falgebra.type.
Canonical FalgType.

Canonical Falg_comRingType.
Canonical Falg_comUnitRingType.
Canonical Falg_idomainType.
Canonical Falg_fieldType.
Canonical vect_comRingType.
Canonical vect_comUnitRingType.
Canonical vect_idomainType.
Canonical vect_fieldType.
Canonical unitAlg_comRingType.
Canonical unitAlg_comUnitRingType.
Canonical unitAlg_idomainType.
Canonical unitAlg_fieldType.
Canonical alg_comRingType.
Canonical alg_comUnitRingType.
Canonical alg_idomainType.
Canonical alg_fieldType.
Canonical lalg_comRingType.
Canonical lalg_comUnitRingType.
Canonical lalg_idomainType.
Canonical lalg_fieldType.
Canonical lmod_comRingType.
Canonical lmod_comUnitRingType.
Canonical lmod_idomainType.
Canonical lmod_fieldType.
Notation fieldExtType R := (type (Phant R)).

Notation "[ 'fieldExtType' F 'of' L ]" :=
  (@pack _ (Phant F) L _ _ id _ _ _ _ id)
  (at level 0, format "[ 'fieldExtType' F 'of' L ]") : form_scope.
Notation "[ 'fieldExtType' F 'of' L 'for' K ]" :=
  (@pack_eta _ (Phant F) L K _ _ id _ id)
  (at level 0, format "[ 'fieldExtType' F 'of' L 'for' K ]") : form_scope.

Notation "{ 'subfield' L }" := (@aspace_of _ (FalgType _) (Phant L))
  (at level 0, format "{ 'subfield' L }") : type_scope.

End Exports.
End FieldExt.
Export FieldExt.Exports.

Section FieldExtTheory.

Variables (F0 : fieldType) (L : fieldExtType F0).
Implicit Types (U V M : {vspace L}) (E F K : {subfield L}).

Lemma dim_cosetv U x : x != 0 → \dim (U × <[x]>) = \dim U.
Proof.
movenz_x; rewrite -limg_amulr limg_dim_eq //.
apply/eqP; rewrite -subv0; apply/subvPy.
by rewrite memv_cap memv0 memv_ker lfunE mulf_eq0 (negPf nz_x) orbF ⇒ /andP[].
Qed.

Lemma prodvC : commutative (@prodv F0 L).
Proof.
moveU V; without loss suffices subC: U V / (U × V V × U)%VS.
  by apply/eqP; rewrite eqEsubv !{1}subC.
by apply/prodvPx y Ux Vy; rewrite mulrC memv_mul.
Qed.
Canonical prodv_comoid := Monoid.ComLaw prodvC.

Lemma prodvCA : left_commutative (@prodv F0 L).
Proof. exact: Monoid.mulmCA. Qed.

Lemma prodvAC : right_commutative (@prodv F0 L).
Proof. exact: Monoid.mulmAC. Qed.

Lemma algid1 K : algid K = 1. Proof. exact/skew_field_algid1/fieldP. Qed.

Lemma mem1v K : 1 \in K. Proof. by rewrite -algid_eq1 algid1. Qed.
Lemma sub1v K : (1 K)%VS. Proof. exact: mem1v. Qed.

Lemma subfield_closed K : agenv K = K.
Proof.
by apply/eqP; rewrite eqEsubv sub_agenv agenv_sub_modr ?sub1v ?asubv.
Qed.

Lemma AHom_lker0 (rT : FalgType F0) (f : 'AHom(L, rT)) : lker f == 0%VS.
Proof. by apply/lker0P; apply: fmorph_inj. Qed.

Lemma AEnd_lker0 (f : 'AEnd(L)) : lker f == 0%VS. Proof. exact: AHom_lker0. Qed.

Fact aimg_is_aspace (rT : FalgType F0) (f : 'AHom(L, rT)) (E : {subfield L}) :
  is_aspace (f @: E).
Proof.
rewrite /is_aspace -aimgM limgS ?prodv_id // has_algid1 //.
by apply/memv_imgP; 1; rewrite ?mem1v ?rmorph1.
Qed.
Canonical aimg_aspace rT f E := ASpace (@aimg_is_aspace rT f E).

Lemma Fadjoin_idP {K x} : reflect (<<K; x>>%VS = K) (x \in K).
Proof.
apply: (iffP idP) ⇒ [/addv_idPl→ | <-]; first exact: subfield_closed.
exact: memv_adjoin.
Qed.

Lemma Fadjoin0 K : <<K; 0>>%VS = K.
Proof. by rewrite addv0 subfield_closed. Qed.

Lemma Fadjoin_nil K : <<K & [::]>>%VS = K.
Proof. by rewrite adjoin_nil subfield_closed. Qed.

Lemma FadjoinP {K x E} :
  reflect (K E x \in E)%VS (<<K; x>>%AS E)%VS.
Proof.
apply: (iffP idP) ⇒ [sKxE | /andP].
  by rewrite (subvP sKxE) ?memv_adjoin // (subv_trans _ sKxE) ?subv_adjoin.
by rewrite -subv_add ⇒ /agenvS; rewrite subfield_closed.
Qed.

Lemma Fadjoin_seqP {K} {rs : seq L} {E} :
  reflect (K E {subset rs E})%VS (<<K & rs>> E)%VS.
Proof.
apply: (iffP idP) ⇒ [sKrsE | [sKE /span_subvP/(conj sKE)/andP]].
  split⇒ [|x rs_x]; first exact: subv_trans (subv_adjoin_seq _ _) sKrsE.
  by rewrite (subvP sKrsE) ?seqv_sub_adjoin.
by rewrite -subv_add ⇒ /agenvS; rewrite subfield_closed.
Qed.

Lemma alg_polyOver E p : map_poly (in_alg L) p \is a polyOver E.
Proof. by apply/(polyOverS (subvP (sub1v _)))/polyOver1P; p. Qed.

Lemma sub_adjoin1v x E : (<<1; x>> E)%VS = (x \in E)%VS.
Proof. by rewrite (sameP FadjoinP andP) sub1v. Qed.

Fact vsval_multiplicative K : multiplicative (vsval : subvs_of KL).
Proof. by split ⇒ //=; apply: algid1. Qed.
Canonical vsval_rmorphism K := AddRMorphism (vsval_multiplicative K).
Canonical vsval_lrmorphism K := [lrmorphism of (vsval : subvs_of KL)].

Lemma vsval_invf K (w : subvs_of K) : val w^-1 = (vsval w)^-1.
Proof.
have [-> | Uv] := eqVneq w 0; first by rewrite !invr0.
by apply: vsval_invr; rewrite unitfE.
Qed.

Fact aspace_divr_closed K : divr_closed K.
Proof. by split⇒ [|u v Ku Kv]; rewrite ?mem1v ?memvM ?memvV. Qed.
Canonical aspace_mulrPred K := MulrPred (aspace_divr_closed K).
Canonical aspace_divrPred K := DivrPred (aspace_divr_closed K).
Canonical aspace_smulrPred K := SmulrPred (aspace_divr_closed K).
Canonical aspace_sdivrPred K := SdivrPred (aspace_divr_closed K).
Canonical aspace_semiringPred K := SemiringPred (aspace_divr_closed K).
Canonical aspace_subringPred K := SubringPred (aspace_divr_closed K).
Canonical aspace_subalgPred K := SubalgPred (memv_submod_closed K).
Canonical aspace_divringPred K := DivringPred (aspace_divr_closed K).
Canonical aspace_divalgPred K := DivalgPred (memv_submod_closed K).

Definition subvs_mulC K := [comRingMixin of subvs_of K by <:].
Canonical subvs_comRingType K :=
  Eval hnf in ComRingType (subvs_of K) (@subvs_mulC K).
Canonical subvs_comUnitRingType K :=
  Eval hnf in [comUnitRingType of subvs_of K].
Definition subvs_mul_eq0 K := [idomainMixin of subvs_of K by <:].
Canonical subvs_idomainType K :=
  Eval hnf in IdomainType (subvs_of K) (@subvs_mul_eq0 K).
Lemma subvs_fieldMixin K : GRing.Field.mixin_of (@subvs_idomainType K).
Proof.
by movew nz_w; rewrite unitrE -val_eqE /= vsval_invf algid1 divff.
Qed.
Canonical subvs_fieldType K :=
  Eval hnf in FieldType (subvs_of K) (@subvs_fieldMixin K).
Canonical subvs_fieldExtType K := Eval hnf in [fieldExtType F0 of subvs_of K].

Lemma polyOver_subvs {K} {p : {poly L}} :
  reflect ( q : {poly subvs_of K}, p = map_poly vsval q)
          (p \is a polyOver K).
Proof.
apply: (iffP polyOverP) ⇒ [Hp | [q ->] i]; last by rewrite coef_map // subvsP.
(\poly_(i < size p) (Subvs (Hp i))); rewrite -{1}[p]coefK.
by apply/polyPi; rewrite coef_map !coef_poly; case: ifP.
Qed.

Lemma divp_polyOver K : {in polyOver K &, p q, p %/ q \is a polyOver K}.
Proof.
move_ _ /polyOver_subvs[p ->] /polyOver_subvs[q ->].
by apply/polyOver_subvs; (p %/ q); rewrite map_divp.
Qed.

Lemma modp_polyOver K : {in polyOver K &, p q, p %% q \is a polyOver K}.
Proof.
move_ _ /polyOver_subvs[p ->] /polyOver_subvs[q ->].
by apply/polyOver_subvs; (p %% q); rewrite map_modp.
Qed.

Lemma gcdp_polyOver K :
  {in polyOver K &, p q, gcdp p q \is a polyOver K}.
Proof.
move_ _ /polyOver_subvs[p ->] /polyOver_subvs[q ->].
by apply/polyOver_subvs; (gcdp p q); rewrite gcdp_map.
Qed.

Fact prodv_is_aspace E F : is_aspace (E × F).
Proof.
rewrite /is_aspace prodvCA -!prodvA prodvA !prodv_id has_algid1 //=.
by rewrite -[1]mulr1 memv_mul ?mem1v.
Qed.
Canonical prodv_aspace E F : {subfield L} := ASpace (prodv_is_aspace E F).

Fact field_mem_algid E F : algid E \in F. Proof. by rewrite algid1 mem1v. Qed.
Canonical capv_aspace E F : {subfield L} := aspace_cap (field_mem_algid E F).

Lemma polyOverSv U V : (U V)%VS{subset polyOver U polyOver V}.
Proof. by move/subvPsUV; apply: polyOverS. Qed.

Lemma field_subvMl F U : (U F × U)%VS.
Proof. by rewrite -{1}[U]prod1v prodvSl ?sub1v. Qed.

Lemma field_subvMr U F : (U U × F)%VS.
Proof. by rewrite prodvC field_subvMl. Qed.

Lemma field_module_eq F M : (F × M M)%VS → (F × M)%VS = M.
Proof. by movemodM; apply/eqP; rewrite eqEsubv modM field_subvMl. Qed.

Lemma sup_field_module F E : (F × E E)%VS = (F E)%VS.
Proof.
apply/idP/idP; first exact: subv_trans (field_subvMr F E).
by move/(prodvSl E)/subv_trans->; rewrite ?asubv.
Qed.

Lemma field_module_dimS F M : (F × M M)%VS → (\dim F %| \dim M)%N.
Proof. exact/skew_field_module_dimS/fieldP. Qed.

Lemma field_dimS F E : (F E)%VS → (\dim F %| \dim E)%N.
Proof. exact/skew_field_dimS/fieldP. Qed.

Lemma dim_field_module F M : (F × M M)%VS\dim M = (\dim_F M × \dim F)%N.
Proof. by move/field_module_dimS/divnK. Qed.

Lemma dim_sup_field F E : (F E)%VS\dim E = (\dim_F E × \dim F)%N.
Proof. by move/field_dimS/divnK. Qed.

Lemma field_module_semisimple F M (m := \dim_F M) :
    (F × M M)%VS
  {X : m.-tuple L | {subset X M} 0 \notin X
     & let FX := (\sum_(i < m) F × <[X`_i]>)%VS in FX = M directv FX}.
Proof.
movemodM; have dimM: (m × \dim F)%N = \dim M by rewrite -dim_field_module.
have [X [defM dxFX nzX]] := skew_field_module_semisimple (@fieldP L) modM.
have szX: size X == m.
  rewrite -(eqn_pmul2r (adim_gt0 F)) dimM -defM (directvP dxFX) /=.
  rewrite -sum1_size big_distrl; apply/eqP/eq_big_seqx Xx /=.
  by rewrite mul1n dim_cosetv ?(memPn nzX).
rewrite directvE /= !(big_nth 0) (eqP szX) !big_mkord -directvE /= in defM dxFX.
(Tuple szX) ⇒ //; split⇒ // _ /tnthP[i ->]; rewrite (tnth_nth 0) /=.
by rewrite -defM memvE (sumv_sup i) ?field_subvMl.
Qed.

Section FadjoinPolyDefinitions.

Variables (U : {vspace L}) (x : L).

Definition adjoin_degree := (\dim_U <<U; x>>).-1.+1.
Local Notation n := adjoin_degree.

Definition Fadjoin_sum := (\sum_(i < n) U × <[x ^+ i]>)%VS.

Definition Fadjoin_poly v : {poly L} :=
  \poly_(i < n) (sumv_pi Fadjoin_sum (inord i) v / x ^+ i).

Definition minPoly : {poly L} := 'X^n - Fadjoin_poly (x ^+ n).

Lemma size_Fadjoin_poly v : size (Fadjoin_poly v) n.
Proof. exact: size_poly. Qed.

Lemma Fadjoin_polyOver v : Fadjoin_poly v \is a polyOver U.
Proof.
apply/(all_nthP 0) ⇒ i _; rewrite coef_poly /=.
case: ifPlti; last exact: mem0v.
have /memv_cosetP[y Uy ->] := memv_sum_pi (erefl Fadjoin_sum) (inord i) v.
rewrite inordK //; have [-> | /mulfK→ //] := eqVneq (x ^+ i) 0.
by rewrite mulr0 mul0r mem0v.
Qed.

Fact Fadjoin_poly_is_linear : linear_for (in_alg L \; *:%R) Fadjoin_poly.
Proof.
movea u v; apply/polyPi; rewrite coefD coefZ !coef_poly.
case: ifPlti; last by rewrite mulr0 addr0.
by rewrite linearP mulrA -mulrDl mulr_algl.
Qed.
Canonical Fadjoin_poly_additive := Additive Fadjoin_poly_is_linear.
Canonical Fadjoin_poly_linear := AddLinear Fadjoin_poly_is_linear.

Lemma size_minPoly : size minPoly = n.+1.
Proof. by rewrite size_addl ?size_polyXn // size_opp ltnS size_poly. Qed.

Lemma monic_minPoly : minPoly \is monic.
Proof.
rewrite monicE /lead_coef size_minPoly coefB coefXn eqxx.
by rewrite nth_default ?subr0 ?size_poly.
Qed.

End FadjoinPolyDefinitions.

Section FadjoinPoly.

Variables (K : {subfield L}) (x : L).
Local Notation n := (adjoin_degree (asval K) x).
Local Notation sumKx := (Fadjoin_sum (asval K) x).

Lemma adjoin_degreeE : n = \dim_K <<K; x>>.
Proof. by rewrite [n]prednK // divn_gt0 ?adim_gt0 // dimvS ?subv_adjoin. Qed.

Lemma dim_Fadjoin : \dim <<K; x>> = (n × \dim K)%N.
Proof. by rewrite adjoin_degreeE -dim_sup_field ?subv_adjoin. Qed.

Lemma adjoin0_deg : adjoin_degree K 0 = 1%N.
Proof. by rewrite /adjoin_degree addv0 subfield_closed divnn adim_gt0. Qed.

Lemma adjoin_deg_eq1 : (n == 1%N) = (x \in K).
Proof.
rewrite (sameP Fadjoin_idP eqP) adjoin_degreeE; have sK_Kx := subv_adjoin K x.
apply/eqP/idP⇒ [dimKx1 | /eqP->]; last by rewrite divnn adim_gt0.
by rewrite eq_sym eqEdim sK_Kx /= (dim_sup_field sK_Kx) dimKx1 mul1n.
Qed.

Lemma Fadjoin_sum_direct : directv sumKx.
Proof.
rewrite directvE /=; case Dn: {-2}n (leqnn n) ⇒ // [m] {Dn}.
elim: m ⇒ [|m IHm] ltm1n; rewrite ?big_ord1 // !(big_ord_recr m.+1) /=.
do [move/(_ (ltnW ltm1n))/eqP; set S := (\sum_i _)%VS] in IHm ×.
rewrite -IHm dimv_add_leqif; apply/subvPz; rewrite memv_cap ⇒ /andP[Sz].
case/memv_cosetPy Ky Dz; rewrite memv0 Dz mulf_eq0 expf_eq0 /=.
apply: contraLR ltm1n ⇒ /norP[nz_y nz_x].
rewrite -leqNgt -(leq_pmul2r (adim_gt0 K)) -dim_Fadjoin.
have{IHm} ->: (m.+1 × \dim K)%N = \dim S.
  rewrite -[m.+1]card_ord -sum_nat_const IHm.
  by apply: eq_bigri; rewrite dim_cosetv ?expf_neq0.
apply/dimvS/agenv_sub_modl; first by rewrite (sumv_sup 0) //= prodv1 sub1v.
rewrite prodvDl subv_add -[S]big_distrr prodvA prodv_id subvv !big_distrr /=.
apply/subv_sumPi _; rewrite -expv_line prodvCA -expvSl expv_line.
have [ltim | lemi] := ltnP i m; first by rewrite (sumv_sup (Sub i.+1 _)).
have{lemi} /eqP->: i == m :> nat by rewrite eqn_leq leq_ord.
rewrite -big_distrr -2!{2}(prodv_id K) /= -!prodvA big_distrr -/S prodvSr //=.
by rewrite -(canLR (mulKf nz_y) Dz) -memvE memv_mul ?rpredV.
Qed.

Let nz_x_i (i : 'I_n) : x ^+ i != 0.
Proof.
by rewrite expf_eq0; case: eqP i ⇒ [->|_] [[]] //; rewrite adjoin0_deg.
Qed.

Lemma Fadjoin_eq_sum : <<K; x>>%VS = sumKx.
Proof.
apply/esym/eqP; rewrite eqEdim eq_leq ?andbT.
  apply/subv_sumPi _; rewrite -agenvM prodvS ?subv_adjoin //.
  by rewrite -expv_line (subv_trans (subX_agenv _ _)) ?agenvS ?addvSr.
rewrite dim_Fadjoin -[n]card_ord -sum_nat_const (directvP Fadjoin_sum_direct).
by apply: eq_bigri _; rewrite /= dim_cosetv.
Qed.

Lemma Fadjoin_poly_eq v : v \in <<K; x>>%VS(Fadjoin_poly K x v).[x] = v.
Proof.
move/(sumv_pi_sum Fadjoin_eq_sum)=> {2}<-; rewrite horner_poly.
by apply: eq_bigri _; rewrite inord_val mulfVK.
Qed.

Lemma mempx_Fadjoin p : p \is a polyOver Kp.[x] \in <<K; x>>%VS.
Proof.
moveKp; rewrite rpred_horner ?memv_adjoin ?(polyOverS _ Kp) //.
exact: subvP_adjoin.
Qed.

Lemma Fadjoin_polyP {v} :
  reflect (exists2 p, p \in polyOver K & v = p.[x]) (v \in <<K; x>>%VS).
Proof.
apply: (iffP idP) ⇒ [Kx_v | [p Kp ->]]; last exact: mempx_Fadjoin.
by (Fadjoin_poly K x v); rewrite ?Fadjoin_polyOver ?Fadjoin_poly_eq.
Qed.

Lemma Fadjoin_poly_unique p v :
  p \is a polyOver Ksize p np.[x] = vFadjoin_poly K x v = p.
Proof.
have polyKx q i: q \is a polyOver Kq`_i × x ^+ i \in (K × <[x ^+ i]>)%VS.
  by move/polyOverPKq; rewrite memv_mul ?Kq ?memv_line.
moveKp szp Dv; have /Fadjoin_poly_eq/eqP := mempx_Fadjoin Kp.
rewrite {1}Dv {Dv} !(@horner_coef_wide _ n) ?size_poly //.
move/polyKx in Kp; have /polyKx K_pv := Fadjoin_polyOver K x v.
rewrite (directv_sum_unique Fadjoin_sum_direct) // ⇒ /eqfunP eq_pq.
apply/polyPi; have [leni|?] := leqP n i; last exact: mulIf (eq_pq (Sub i _)).
by rewrite !nth_default ?(leq_trans _ leni) ?size_poly.
Qed.

Lemma Fadjoin_polyC v : v \in KFadjoin_poly K x v = v%:P.
Proof.
moveKv; apply: Fadjoin_poly_unique; rewrite ?polyOverC ?hornerC //.
by rewrite size_polyC (leq_trans (leq_b1 _)).
Qed.

Lemma Fadjoin_polyX : x \notin KFadjoin_poly K x x = 'X.
Proof.
moveK'x; apply: Fadjoin_poly_unique; rewrite ?polyOverX ?hornerX //.
by rewrite size_polyX ltn_neqAle andbT eq_sym adjoin_deg_eq1.
Qed.

Lemma minPolyOver : minPoly K x \is a polyOver K.
Proof. by rewrite /minPoly rpredB ?rpredX ?polyOverX ?Fadjoin_polyOver. Qed.

Lemma minPolyxx : (minPoly K x).[x] = 0.
Proof.
by rewrite !hornerE hornerXn Fadjoin_poly_eq ?subrr ?rpredX ?memv_adjoin.
Qed.

Lemma root_minPoly : root (minPoly K x) x. Proof. exact/rootP/minPolyxx. Qed.

Lemma Fadjoin_poly_mod p :
  p \is a polyOver KFadjoin_poly K x p.[x] = p %% minPoly K x.
Proof.
moveKp; rewrite {1}(divp_eq p (minPoly K x)) 2!hornerE minPolyxx mulr0 add0r.
apply: Fadjoin_poly_unique ⇒ //; first by rewrite modp_polyOver // minPolyOver.
by rewrite -ltnS -size_minPoly ltn_modp // monic_neq0 ?monic_minPoly.
Qed.

Lemma minPoly_XsubC : reflect (minPoly K x = 'X - x%:P) (x \in K).
Proof.
set p := minPoly K x; apply: (iffP idP) ⇒ [Kx | Dp]; last first.
  suffices ->: x = - p`_0 by rewrite rpredN (polyOverP minPolyOver).
  by rewrite Dp coefB coefX coefC add0r opprK.
rewrite (@all_roots_prod_XsubC _ p [:: x]) /= ?root_minPoly //.
  by rewrite big_seq1 (monicP (monic_minPoly K x)) scale1r.
by apply/eqP; rewrite size_minPoly eqSS adjoin_deg_eq1.
Qed.

Lemma root_small_adjoin_poly p :
  p \is a polyOver Ksize p nroot p x = (p == 0).
Proof.
moveKp szp; apply/rootP/eqP⇒ [px0 | ->]; last by rewrite horner0.
rewrite -(Fadjoin_poly_unique Kp szp px0).
by apply: Fadjoin_poly_unique; rewrite ?polyOver0 ?size_poly0 ?horner0.
Qed.

Lemma minPoly_irr p :
  p \is a polyOver Kp %| minPoly K x(p %= minPoly K x) || (p %= 1).
Proof.
rewrite dvdp_eq; set q := _ %/ _Kp def_pq.
have Kq: q \is a polyOver K by rewrite divp_polyOver // minPolyOver.
move: q Kq def_pq root_minPoly (size_minPoly K x) ⇒ q Kq /eqP→.
rewrite rootMpqx0 szpq.
have [nzq nzp]: q != 0 p != 0.
  by apply/norP; rewrite -mulf_eq0 -size_poly_eq0 szpq.
without loss{pqx0} qx0: q p Kp Kq nzp nzq szpq / root q x.
  moveIH; case/orP: pqx0 ⇒ /IH{IH}IH; first exact: IH.
  have{IH} /orP[]: (q %= p × q) || (q %= 1) by apply: IH ⇒ //; rewrite mulrC.
    by rewrite orbC -{1}[q]mul1r eqp_mul2r // eqp_sym ⇒ →.
  by rewrite -{1}[p]mul1r eqp_sym eqp_mul2r // ⇒ →.
apply/orP; right; rewrite -size_poly_eq1 eqn_leq lt0n size_poly_eq0 nzp andbT.
rewrite -(leq_add2r (size q)) -leq_subLR subn1 -size_mul // mulrC szpq.
by rewrite ltnNge; apply: contra nzq ⇒ /(root_small_adjoin_poly Kq) <-.
Qed.

Lemma minPoly_dvdp p : p \is a polyOver Kroot p x(minPoly K x) %| p.
Proof.
moveKp rootp.
have gcdK : gcdp (minPoly K x) p \is a polyOver K.
  by rewrite gcdp_polyOver ?minPolyOver.
have /orP[gcd_eqK|gcd_eq1] := minPoly_irr gcdK (dvdp_gcdl (minPoly K x) p).
  by rewrite -(eqp_dvdl _ gcd_eqK) dvdp_gcdr.
case/negP: (root1 x).
by rewrite -(eqp_root gcd_eq1) root_gcd rootp root_minPoly.
Qed.

End FadjoinPoly.

Lemma minPolyS K E a : (K E)%VSminPoly E a %| minPoly K a.
Proof.
movesKE; apply: minPoly_dvdp; last exact: root_minPoly.
by apply: (polyOverSv sKE); rewrite minPolyOver.
Qed.

Implicit Arguments Fadjoin_polyP [K x v].
Lemma Fadjoin1_polyP x v :
  reflect ( p, v = (map_poly (in_alg L) p).[x]) (v \in <<1; x>>%VS).
Proof.
apply: (iffP Fadjoin_polyP) ⇒ [[_ /polyOver1P]|] [p ->]; first by p.
by (map_poly (in_alg L) p) ⇒ //; apply: alg_polyOver.
Qed.

Section Horner.

Variables z : L.

Definition fieldExt_horner := horner_morph (fun xmulrC z (in_alg L x)).
Canonical fieldExtHorner_additive := [additive of fieldExt_horner].
Canonical fieldExtHorner_rmorphism := [rmorphism of fieldExt_horner].
Lemma fieldExt_hornerC b : fieldExt_horner b%:P = b%:A.
Proof. exact: horner_morphC. Qed.
Lemma fieldExt_hornerX : fieldExt_horner 'X = z.
Proof. exact: horner_morphX. Qed.
Fact fieldExt_hornerZ : scalable fieldExt_horner.
Proof.
movea p; rewrite -mul_polyC rmorphM /= fieldExt_hornerC.
by rewrite -scalerAl mul1r.
Qed.
Canonical fieldExt_horner_linear := AddLinear fieldExt_hornerZ.
Canonical fieldExt_horner_lrmorhism := [lrmorphism of fieldExt_horner].

End Horner.

End FieldExtTheory.

Notation "E :&: F" := (capv_aspace E F) : aspace_scope.
Notation "'C_ E [ x ]" := (capv_aspace E 'C[x]) : aspace_scope.
Notation "'C_ ( E ) [ x ]" := (capv_aspace E 'C[x])
  (only parsing) : aspace_scope.
Notation "'C_ E ( V )" := (capv_aspace E 'C(V)) : aspace_scope.
Notation "'C_ ( E ) ( V )" := (capv_aspace E 'C(V))
  (only parsing) : aspace_scope.
Notation "E * F" := (prodv_aspace E F) : aspace_scope.
Notation "f @: E" := (aimg_aspace f E) : aspace_scope.

Implicit Arguments Fadjoin_idP [F0 L K x].
Implicit Arguments FadjoinP [F0 L K x E].
Implicit Arguments Fadjoin_seqP [F0 L K rs E].
Implicit Arguments polyOver_subvs [F0 L K p].
Implicit Arguments Fadjoin_polyP [F0 L K x v].
Implicit Arguments Fadjoin1_polyP [F0 L x v].
Implicit Arguments minPoly_XsubC [F0 L K x].

Section MapMinPoly.

Variables (F0 : fieldType) (L rL : fieldExtType F0) (f : 'AHom(L, rL)).
Variables (K : {subfield L}) (x : L).

Lemma adjoin_degree_aimg : adjoin_degree (f @: K) (f x) = adjoin_degree K x.
Proof.
rewrite !adjoin_degreeE -aimg_adjoin.
by rewrite !limg_dim_eq ?(eqP (AHom_lker0 f)) ?capv0.
Qed.

Lemma map_minPoly : map_poly f (minPoly K x) = minPoly (f @: K) (f x).
Proof.
set fp := minPoly (f @: K) (f x); pose fM := [rmorphism of f].
have [p Kp Dp]: exists2 p, p \is a polyOver K & map_poly f p = fp.
  have Kfp: fp \is a polyOver (f @: K)%VS by apply: minPolyOver.
   (map_poly f^-1%VF fp).
    apply/polyOver_polyj _; have /memv_imgP[y Ky ->] := polyOverP Kfp j.
    by rewrite lker0_lfunK ?AHom_lker0.
  rewrite -map_poly_comp map_poly_id // ⇒ _ /(allP Kfp)/memv_imgP[y _ ->].
  by rewrite /= limg_lfunVK ?memv_img ?memvf.
apply/eqP; rewrite -eqp_monic ?monic_map ?monic_minPoly // -Dp eqp_map.
have: ~~ (p %= 1) by rewrite -size_poly_eq1 -(size_map_poly fM) Dp size_minPoly.
apply: implyP; rewrite implyNb orbC eqp_sym minPoly_irr //.
rewrite -(dvdp_map fM) Dp minPoly_dvdp ?fmorph_root ?root_minPoly //.
by apply/polyOver_polyj _; apply/memv_img/polyOverP/minPolyOver.
Qed.

End MapMinPoly.

Section FieldOver.

Variables (F0 : fieldType) (L : fieldExtType F0) (F : {subfield L}).

Definition fieldOver of {vspace L} : Type := L.
Local Notation K_F := (subvs_of F).
Local Notation L_F := (fieldOver F).

Canonical fieldOver_eqType := [eqType of L_F].
Canonical fieldOver_choiceType := [choiceType of L_F].
Canonical fieldOver_zmodType := [zmodType of L_F].
Canonical fieldOver_ringType := [ringType of L_F].
Canonical fieldOver_unitRingType := [unitRingType of L_F].
Canonical fieldOver_comRingType := [comRingType of L_F].
Canonical fieldOver_comUnitRingType := [comUnitRingType of L_F].
Canonical fieldOver_idomainType := [idomainType of L_F].
Canonical fieldOver_fieldType := [fieldType of L_F].

Definition fieldOver_scale (a : K_F) (u : L_F) : L_F := vsval a × u.
Local Infix "*F:" := fieldOver_scale (at level 40).

Fact fieldOver_scaleA a b u : a ×F: (b ×F: u) = (a × b) ×F: u.
Proof. exact: mulrA. Qed.

Fact fieldOver_scale1 u : 1 ×F: u = u.
Proof. by rewrite /(1 ×F: u) /= algid1 mul1r. Qed.

Fact fieldOver_scaleDr a u v : a ×F: (u + v) = a ×F: u + a ×F: v.
Proof. exact: mulrDr. Qed.

Fact fieldOver_scaleDl v a b : (a + b) ×F: v = a ×F: v + b ×F: v.
Proof. exact: mulrDl. Qed.

Definition fieldOver_lmodMixin :=
  LmodMixin fieldOver_scaleA fieldOver_scale1
            fieldOver_scaleDr fieldOver_scaleDl.

Canonical fieldOver_lmodType := LmodType K_F L_F fieldOver_lmodMixin.

Lemma fieldOver_scaleE a (u : L) : a *: (u : L_F) = vsval a × u.
Proof. by []. Qed.

Fact fieldOver_scaleAl a u v : a ×F: (u × v) = (a ×F: u) × v.
Proof. exact: mulrA. Qed.

Canonical fieldOver_lalgType := LalgType K_F L_F fieldOver_scaleAl.

Fact fieldOver_scaleAr a u v : a ×F: (u × v) = u × (a ×F: v).
Proof. exact: mulrCA. Qed.

Canonical fieldOver_algType := AlgType K_F L_F fieldOver_scaleAr.
Canonical fieldOver_unitAlgType := [unitAlgType K_F of L_F].

Fact fieldOver_vectMixin : Vector.mixin_of fieldOver_lmodType.
Proof.
have [bL [_ nz_bL] [defL dxSbL]] := field_module_semisimple (subvf (F × _)).
do [set n := \dim_F {:L} in bL nz_bL *; set SbL := (\sum_i _)%VS] in defL dxSbL.
have in_bL i (a : K_F) : val a × (bL`_i : L_F) \in (F × <[bL`_i]>)%VS.
  by rewrite memv_mul ?(valP a) ?memv_line.
have nz_bLi (i : 'I_n): bL`_i != 0 by rewrite (memPn nz_bL) ?memt_nth.
pose r2v (v : 'rV[K_F]_n) : L_F := \sum_i v 0 i *: (bL`_i : L_F).
have r2v_lin: linear r2v.
  movea u v; rewrite /r2v scaler_sumr -big_split /=; apply: eq_bigri _.
  by rewrite scalerA -scalerDl !mxE.
have v2rP x: {r : 'rV[K_F]_n | x = r2v r}.
  apply: sig_eqW; have /memv_sumP[y Fy ->]: x \in SbL by rewrite defL memvf.
  have /fin_all_exists[r Dr] i: r, y i = r *: (bL`_i : L_F).
    by have /memv_cosetP[a Fa ->] := Fy i isT; (Subvs Fa).
  by (\row_i r i); apply: eq_bigri _; rewrite mxE.
pose v2r x := sval (v2rP x).
have v2rK: cancel v2r (Linear r2v_lin) by rewrite /v2rx; case: (v2rP x).
suffices r2vK: cancel r2v v2r.
  by n, v2r; [exact: can2_linear v2rK | r2v].
mover; apply/rowPi; apply/val_inj/(mulIf (nz_bLi i))/eqP; move: i isT.
by apply/forall_inP; move/directv_sum_unique: dxSbL ⇒ <- //; exact/eqP/v2rK.
Qed.

Canonical fieldOver_vectType := VectType K_F L_F fieldOver_vectMixin.
Canonical fieldOver_FalgType := [FalgType K_F of L_F].
Canonical fieldOver_fieldExtType := [fieldExtType K_F of L_F].

Implicit Types (V : {vspace L}) (E : {subfield L}).

Lemma trivial_fieldOver : (1%VS : {vspace L_F}) =i F.
Proof.
movex; apply/vlineP/idP⇒ [[{x}x ->] | Fx].
  by rewrite fieldOver_scaleE mulr1 (valP x).
by (vsproj F x); rewrite fieldOver_scaleE mulr1 vsprojK.
Qed.

Definition vspaceOver V := <<vbasis V : seq L_F>>%VS.

Lemma mem_vspaceOver V : vspaceOver V =i (F × V)%VS.
Proof.
movey; apply/idP/idP; last rewrite unlock; move⇒ /coord_span→.
  rewrite (@memv_suml F0 L) // ⇒ i _.
  by rewrite memv_mul ?subvsP // vbasis_mem ?memt_nth.
rewrite memv_suml // ⇒ ij _; rewrite -tnth_nth; set x := tnth _ ij.
have/allpairsP[[u z] /= [Fu Vz {x}->]]: x \in _ := mem_tnth ij _.
by rewrite scalerAl (memvZ (Subvs _)) ?memvZ ?memv_span //= vbasis_mem.
Qed.

Lemma mem_aspaceOver E : (F E)%VSvspaceOver E =i E.
Proof.
by movesFE y; rewrite mem_vspaceOver field_module_eq ?sup_field_module.
Qed.

Fact aspaceOver_suproof E : is_aspace (vspaceOver E).
Proof.
rewrite /is_aspace has_algid1; last by rewrite mem_vspaceOver (@mem1v _ L).
by apply/prodvPu v; rewrite !mem_vspaceOver; exact: memvM.
Qed.
Canonical aspaceOver E := ASpace (aspaceOver_suproof E).

Lemma dim_vspaceOver M : (F × M M)%VS\dim (vspaceOver M) = \dim_F M.
Proof.
movemodM; have [] := field_module_semisimple modM.
set n := \dim_F Mb [Mb nz_b] [defM dx_b].
suff: basis_of (vspaceOver M) b by apply: size_basis.
apply/andP; split.
  rewrite eqEsubv; apply/andP; split; apply/span_subvPu.
    by rewrite mem_vspaceOver field_module_eq // ⇒ /Mb.
  move/(@vbasis_mem _ _ _ M); rewrite -defM ⇒ /memv_sumP[{u}u Fu ->].
  apply: memv_sumli _; have /memv_cosetP[a Fa ->] := Fu i isT.
  by apply: (memvZ (Subvs Fa)); rewrite memv_span ?memt_nth.
apply/freePa /(directv_sum_independent dx_b) a_0 i.
have{a_0}: a i *: (b`_i : L_F) == 0.
  by rewrite a_0 {i}// ⇒ i _; rewrite memv_mul ?memv_line ?subvsP.
by rewrite scaler_eq0⇒ /predU1P[] // /idPn[]; rewrite (memPn nz_b) ?memt_nth.
Qed.

Lemma dim_aspaceOver E : (F E)%VS\dim (vspaceOver E) = \dim_F E.
Proof. by rewrite -sup_field_module; exact: dim_vspaceOver. Qed.

Lemma vspaceOverP V_F :
  {V | [/\ V_F = vspaceOver V, (F × V V)%VS & V_F =i V]}.
Proof.
pose V := (F × <<vbasis V_F : seq L>>)%VS.
have idV: (F × V)%VS = V by rewrite prodvA prodv_id.
suffices defVF: V_F = vspaceOver V.
  by V; split⇒ [||u]; rewrite ?defVF ?mem_vspaceOver ?idV.
apply/vspacePv; rewrite mem_vspaceOver idV.
do [apply/idP/idP; last rewrite /V unlock] ⇒ [/coord_vbasis|/coord_span] →.
  by apply: memv_sumli _; rewrite memv_mul ?subvsP ?memv_span ?memt_nth.
apply: memv_sumli _; rewrite -tnth_nth; set xu := tnth _ i.
have /allpairsP[[x u] /=]: xu \in _ := mem_tnth i _.
case⇒ /vbasis_mem Fx /vbasis_mem Vu →.
rewrite scalerAl (coord_span Vu) mulr_sumr memv_suml // ⇒ j_.
by rewrite -scalerCA (memvZ (Subvs _)) ?memvZ // vbasis_mem ?memt_nth.
Qed.

Lemma aspaceOverP (E_F : {subfield L_F}) :
  {E | [/\ E_F = aspaceOver E, (F E)%VS & E_F =i E]}.
Proof.
have [V [defEF modV memV]] := vspaceOverP E_F.
have algE: has_algid V && (V × V V)%VS.
  rewrite has_algid1; last by rewrite -memV mem1v.
  by apply/prodvPu v; rewrite -!memV; exact: memvM.
by (ASpace algE); rewrite -sup_field_module; split; first exact: val_inj.
Qed.

End FieldOver.

Section BaseField.

Variables (F0 : fieldType) (F : fieldExtType F0) (L : fieldExtType F).

Definition baseField_type of phant L : Type := L.
Notation L0 := (baseField_type (Phant (FieldExt.sort L))).

Canonical baseField_eqType := [eqType of L0].
Canonical baseField_choiceType := [choiceType of L0].
Canonical baseField_zmodType := [zmodType of L0].
Canonical baseField_ringType := [ringType of L0].
Canonical baseField_unitRingType := [unitRingType of L0].
Canonical baseField_comRingType := [comRingType of L0].
Canonical baseField_comUnitRingType := [comUnitRingType of L0].
Canonical baseField_idomainType := [idomainType of L0].
Canonical baseField_fieldType := [fieldType of L0].

Definition baseField_scale (a : F0) (u : L0) : L0 := in_alg F a *: u.
Local Infix "*F0:" := baseField_scale (at level 40).

Fact baseField_scaleA a b u : a ×F0: (b ×F0: u) = (a × b) ×F0: u.
Proof. by rewrite [_ ×F0: _]scalerA -rmorphM. Qed.

Fact baseField_scale1 u : 1 ×F0: u = u.
Proof. by rewrite /(1 ×F0: u) rmorph1 scale1r. Qed.

Fact baseField_scaleDr a u v : a ×F0: (u + v) = a ×F0: u + a ×F0: v.
Proof. exact: scalerDr. Qed.

Fact baseField_scaleDl v a b : (a + b) ×F0: v = a ×F0: v + b ×F0: v.
Proof. by rewrite -scalerDl -rmorphD. Qed.

Definition baseField_lmodMixin :=
  LmodMixin baseField_scaleA baseField_scale1
            baseField_scaleDr baseField_scaleDl.

Canonical baseField_lmodType := LmodType F0 L0 baseField_lmodMixin.

Lemma baseField_scaleE a (u : L) : a *: (u : L0) = a%:A *: u.
Proof. by []. Qed.

Fact baseField_scaleAl a (u v : L0) : a ×F0: (u × v) = (a ×F0: u) × v.
Proof. exact: scalerAl. Qed.

Canonical baseField_lalgType := LalgType F0 L0 baseField_scaleAl.

Fact baseField_scaleAr a u v : a ×F0: (u × v) = u × (a ×F0: v).
Proof. exact: scalerAr. Qed.

Canonical baseField_algType := AlgType F0 L0 baseField_scaleAr.
Canonical baseField_unitAlgType := [unitAlgType F0 of L0].

Let n := \dim {:F}.
Let bF : n.-tuple F := vbasis {:F}.
Let coordF (x : F) := (coord_vbasis (memvf x)).

Fact baseField_vectMixin : Vector.mixin_of baseField_lmodType.
Proof.
pose bL := vbasis {:L}; set m := \dim {:L} in bL.
pose v2r (x : L0) := mxvec (\matrix_(i, j) coord bF j (coord bL i x)).
have v2r_lin: linear v2r.
  movea x y; rewrite -linearP; congr (mxvec _); apply/matrixPi j.
  by rewrite !mxE linearP mulr_algl linearP.
pose r2v r := \sum_(i < m) (\sum_(j < n) vec_mx r i j *: bF`_j) *: bL`_i.
have v2rK: cancel v2r r2v.
  movex; transitivity (\sum_(i < m) coord bL i x *: bL`_i); last first.
    by rewrite -coord_vbasis ?memvf.
  apply: eq_bigri _; rewrite mxvecK; congr (_ *: _ : L).
  by rewrite (coordF (coord bL i x)); apply: eq_bigrj _; rewrite mxE.
(m × n)%N, v2r ⇒ //; r2v ⇒ // r.
apply: (canLR vec_mxK); apply/matrixPi j; rewrite mxE.
by rewrite !coord_sum_free ?(basis_free (vbasisP _)).
Qed.

Canonical baseField_vectType := VectType F0 L0 baseField_vectMixin.
Canonical baseField_FalgType := [FalgType F0 of L0].
Canonical baseField_extFieldType := [fieldExtType F0 of L0].

Let F0ZEZ a x v : a *: ((x *: v : L) : L0) = (a *: x) *: v.
Proof. by rewrite [a *: _]scalerA -scalerAl mul1r. Qed.

Let baseVspace_basis V : seq L0 :=
  [seq tnth bF ij.2 *: tnth (vbasis V) ij.1 | ij : 'I_(\dim V) × 'I_n].
Definition baseVspace V := <<baseVspace_basis V>>%VS.

Lemma mem_baseVspace V : baseVspace V =i V.
Proof.
movey; apply/idP/idP⇒ [/coord_span->|/coord_vbasis->]; last first.
  apply: memv_sumli _; rewrite (coordF (coord _ i (y : L))) scaler_suml -/n.
  apply: memv_sumlj _; rewrite -/bF -F0ZEZ memvZ ?memv_span // -!tnth_nth.
  by apply/imageP; (i, j).
apply: memv_sumlk _; rewrite nth_image; case: (enum_val k) ⇒ i j /=.
by rewrite F0ZEZ memvZ ?vbasis_mem ?mem_tnth.
Qed.

Lemma dim_baseVspace V : \dim (baseVspace V) = (\dim V × n)%N.
Proof.
pose bV0 := baseVspace_basis V; set m := \dim V in bV0 ×.
suffices /size_basis->: basis_of (baseVspace V) bV0.
  by rewrite card_prod !card_ord.
rewrite /basis_of eqxx.
apply/freePs sb0 k; rewrite -(enum_valK k); case/enum_val: ki j.
have free_baseP := freeP (basis_free (vbasisP _)).
move: j; apply: (free_baseP _ _ fullv); move: i; apply: (free_baseP _ _ V).
transitivity (\sum_i \sum_j s (enum_rank (i, j)) *: bV0`_(enum_rank (i, j))).
  apply: eq_bigri _; rewrite scaler_suml; apply: eq_bigrj _.
  by rewrite -F0ZEZ nth_image enum_rankK -!tnth_nth.
rewrite pair_bigA (reindex _ (onW_bij _ (enum_val_bij _))); apply: etrans sb0.
by apply: eq_bigrk _; rewrite -{5 6}[k](enum_valK k); case/enum_val: k.
Qed.

Fact baseAspace_suproof (E : {subfield L}) : is_aspace (baseVspace E).
Proof.
rewrite /is_aspace has_algid1; last by rewrite mem_baseVspace (mem1v E).
by apply/prodvPu v; rewrite !mem_baseVspace; exact: memvM.
Qed.
Canonical baseAspace E := ASpace (baseAspace_suproof E).

Fact refBaseField_key : unit. Proof. by []. Qed.
Definition refBaseField := locked_with refBaseField_key (baseAspace 1).
Canonical refBaseField_unlockable := [unlockable of refBaseField].
Notation F1 := refBaseField.

Lemma dim_refBaseField : \dim F1 = n.
Proof. by rewrite [F1]unlock dim_baseVspace dimv1 mul1n. Qed.

Lemma baseVspace_module V (V0 := baseVspace V) : (F1 × V0 V0)%VS.
Proof.
apply/prodvPu v; rewrite [F1]unlock !mem_baseVspace ⇒ /vlineP[x ->] Vv.
by rewrite -(@scalerAl F L) mul1r; exact: memvZ.
Qed.

Lemma sub_baseField (E : {subfield L}) : (F1 baseVspace E)%VS.
Proof. by rewrite -sup_field_module baseVspace_module. Qed.

Lemma vspaceOver_refBase V : vspaceOver F1 (baseVspace V) =i V.
Proof.
movev; rewrite mem_vspaceOver field_module_eq ?baseVspace_module //.
by rewrite mem_baseVspace.
Qed.

Lemma module_baseVspace M0 :
  (F1 × M0 M0)%VS{V | M0 = baseVspace V & M0 =i V}.
Proof.
movemodM0; pose V := <<vbasis (vspaceOver F1 M0) : seq L>>%VS.
suffices memM0: M0 =i V.
  by V ⇒ //; apply/vspacePv; rewrite mem_baseVspace memM0.
movev; rewrite -{1}(field_module_eq modM0) -(mem_vspaceOver M0) {}/V.
move: (vspaceOver F1 M0) ⇒ M.
apply/idP/idP⇒ [/coord_vbasis|/coord_span]->; apply/memv_sumli _.
  rewrite /(_ *: _) /= /fieldOver_scale; case: (coord _ i _) ⇒ /= x.
  rewrite {1}[F1]unlock mem_baseVspace ⇒ /vlineP[{x}x ->].
  by rewrite -(@scalerAl F L) mul1r memvZ ?memv_span ?memt_nth.
move: (coord _ i _) ⇒ x; rewrite -[_`_i]mul1r scalerAl -tnth_nth.
have F1x: x%:A \in F1.
  by rewrite [F1]unlock mem_baseVspace (@memvZ F L) // mem1v.
by congr (_ \in M): (memvZ (Subvs F1x) (vbasis_mem (mem_tnth i _))).
Qed.

Lemma module_baseAspace (E0 : {subfield L0}) :
  (F1 E0)%VS{E | E0 = baseAspace E & E0 =i E}.
Proof.
rewrite -sup_field_module ⇒ /module_baseVspace[E defE0 memE0].
suffices algE: is_aspace E by (ASpace algE); first exact: val_inj.
rewrite /is_aspace has_algid1 -?memE0 ?mem1v //.
by apply/prodvPu v; rewrite -!memE0; apply: memvM.
Qed.

End BaseField.

Notation baseFieldType L := (baseField_type (Phant L)).

Section MoreFieldOver.

Variables (F0 : fieldType) (L : fieldExtType F0) (F : {subfield L}).

Lemma base_vspaceOver V : baseVspace (vspaceOver F V) =i (F × V)%VS.
Proof. by movev; rewrite mem_baseVspace mem_vspaceOver. Qed.

Lemma base_moduleOver V : (F × V V)%VSbaseVspace (vspaceOver F V) =i V.
Proof. by move⇒ /field_module_eq defV v; rewrite base_vspaceOver defV. Qed.

Lemma base_aspaceOver (E : {subfield L}) :
  (F E)%VSbaseVspace (vspaceOver F E) =i E.
Proof. by rewrite -sup_field_module; apply: base_moduleOver. Qed.

End MoreFieldOver.

Section SubFieldExtension.

Local Open Scope quotient_scope.

Variables (F L : fieldType) (iota : {rmorphism FL}).
Variables (z : L) (p : {poly F}).

Local Notation "p ^iota" := (map_poly (GRing.RMorphism.apply iota) p)
  (at level 2, format "p ^iota") : ring_scope.

Let wf_p := (p != 0) && root p^iota z.
Let p0 : {poly F} := if wf_p then (lead_coef p)^-1 *: p else 'X.
Let z0 := if wf_p then z else 0.
Let n := (size p0).-1.

Let p0_mon : p0 \is monic.
Proof.
rewrite /p0; case: ifP ⇒ [/andP[nz_p _] | _]; last exact: monicX.
by rewrite monicE lead_coefZ mulVf ?lead_coef_eq0.
Qed.

Let nz_p0 : p0 != 0. Proof. by rewrite monic_neq0 // p0_mon. Qed.

Let p0z0 : root p0^iota z0.
Proof.
rewrite /p0 /z0; case: ifP ⇒ [/andP[_ pz0]|]; last by rewrite map_polyX rootX.
by rewrite map_polyZ rootE hornerZ (rootP pz0) mulr0.
Qed.

Let n_gt0: 0 < n.
Proof.
rewrite /n -subn1 subn_gt0 -(size_map_poly iota).
by rewrite (root_size_gt1 _ p0z0) ?map_poly_eq0.
Qed.

Let z0Ciota : commr_rmorph iota z0. Proof. by movex; apply: mulrC. Qed.
Local Notation iotaPz := (horner_morph z0Ciota).
Let iotaFz (x : 'rV[F]_n) := iotaPz (rVpoly x).

Definition equiv_subfext x y := (iotaFz x == iotaFz y).

Fact equiv_subfext_is_equiv : equiv_class_of equiv_subfext.
Proof. by rewrite /equiv_subfext; splitx // y w /eqP→. Qed.

Canonical equiv_subfext_equiv := EquivRelPack equiv_subfext_is_equiv.
Canonical equiv_subfext_encModRel := defaultEncModRel equiv_subfext.

Definition subFExtend := {eq_quot equiv_subfext}.
Canonical subFExtend_eqType := [eqType of subFExtend].
Canonical subFExtend_choiceType := [choiceType of subFExtend].
Canonical subFExtend_quotType := [quotType of subFExtend].
Canonical subFExtend_eqQuotType := [eqQuotType equiv_subfext of subFExtend].

Definition subfx_inj := lift_fun1 subFExtend iotaFz.

Fact pi_subfx_inj : {mono \pi : x / iotaFz x >-> subfx_inj x}.
Proof.
unlock subfx_injx; apply/eqP; rewrite -/(equiv_subfext _ x).
by rewrite -eqmodE reprK.
Qed.
Canonical pi_subfx_inj_morph := PiMono1 pi_subfx_inj.

Let iotaPz_repr x : iotaPz (rVpoly (repr (\pi_(subFExtend) x))) = iotaFz x.
Proof. by rewrite -/(iotaFz _) -!pi_subfx_inj reprK. Qed.

Definition subfext0 := lift_cst subFExtend 0.
Canonical subfext0_morph := PiConst subfext0.

Definition subfext_add := lift_op2 subFExtend +%R.
Fact pi_subfext_add : {morph \pi : x y / x + y >-> subfext_add x y}.
Proof.
unlock subfext_addx y /=; apply/eqmodP/eqP.
by rewrite /iotaFz !linearD /= !iotaPz_repr.
Qed.
Canonical pi_subfx_add_morph := PiMorph2 pi_subfext_add.

Definition subfext_opp := lift_op1 subFExtend -%R.
Fact pi_subfext_opp : {morph \pi : x / - x >-> subfext_opp x}.
Proof.
unlock subfext_oppy /=; apply/eqmodP/eqP.
by rewrite /iotaFz !linearN /= !iotaPz_repr.
Qed.
Canonical pi_subfext_opp_morph := PiMorph1 pi_subfext_opp.

Fact addfxA : associative subfext_add.
Proof. by movex y t; rewrite -[x]reprK -[y]reprK -[t]reprK !piE addrA. Qed.

Fact addfxC : commutative subfext_add.
Proof. by movex y; rewrite -[x]reprK -[y]reprK !piE addrC. Qed.

Fact add0fx : left_id subfext0 subfext_add.
Proof. by movex; rewrite -[x]reprK !piE add0r. Qed.

Fact addfxN : left_inverse subfext0 subfext_opp subfext_add.
Proof. by movex; rewrite -[x]reprK !piE addNr. Qed.

Definition subfext_zmodMixin := ZmodMixin addfxA addfxC add0fx addfxN.
Canonical subfext_zmodType :=
  Eval hnf in ZmodType subFExtend subfext_zmodMixin.

Let poly_rV_modp_K q : rVpoly (poly_rV (q %% p0) : 'rV[F]_n) = q %% p0.
Proof. by apply: poly_rV_K; rewrite -ltnS -polySpred // ltn_modp. Qed.

Let iotaPz_modp q : iotaPz (q %% p0) = iotaPz q.
Proof.
rewrite {2}(divp_eq q p0) rmorphD rmorphM /=.
by rewrite [iotaPz p0](rootP p0z0) mulr0 add0r.
Qed.

Definition subfx_mul_rep (x y : 'rV[F]_n) : 'rV[F]_n :=
  poly_rV ((rVpoly x) × (rVpoly y) %% p0).

Definition subfext_mul := lift_op2 subFExtend subfx_mul_rep.
Fact pi_subfext_mul :
  {morph \pi : x y / subfx_mul_rep x y >-> subfext_mul x y}.
Proof.
unlock subfext_mulx y /=; apply/eqmodP/eqP.
by rewrite /iotaFz !poly_rV_modp_K !iotaPz_modp !rmorphM /= !iotaPz_repr.
Qed.
Canonical pi_subfext_mul_morph := PiMorph2 pi_subfext_mul.

Definition subfext1 := lift_cst subFExtend (poly_rV 1).
Canonical subfext1_morph := PiConst subfext1.

Fact mulfxA : associative (subfext_mul).
Proof.
elim/quotWx; elim/quotWy; elim/quotWw; rewrite !piE /subfx_mul_rep.
by rewrite !poly_rV_modp_K [_ %% p0 × _]mulrC !modp_mul // mulrA mulrC.
Qed.

Fact mulfxC : commutative subfext_mul.
Proof.
by elim/quotWx; elim/quotWy; rewrite !piE /subfx_mul_rep /= mulrC.
Qed.

Fact mul1fx : left_id subfext1 subfext_mul.
Proof.
elim/quotWx; rewrite !piE /subfx_mul_rep poly_rV_K ?size_poly1 // mul1r.
by rewrite modp_small ?rVpolyK // (polySpred nz_p0) ltnS size_poly.
Qed.

Fact mulfx_addl : left_distributive subfext_mul subfext_add.
Proof.
elim/quotWx; elim/quotWy; elim/quotWw; rewrite !piE /subfx_mul_rep.
by rewrite linearD /= mulrDl modp_add linearD.
Qed.

Fact nonzero1fx : subfext1 != subfext0.
Proof.
rewrite !piE /equiv_subfext /iotaFz !linear0.
by rewrite poly_rV_K ?rmorph1 ?oner_eq0 // size_poly1.
Qed.

Definition subfext_comRingMixin :=
  ComRingMixin mulfxA mulfxC mul1fx mulfx_addl nonzero1fx.
Canonical subfext_Ring := Eval hnf in RingType subFExtend subfext_comRingMixin.
Canonical subfext_comRing := Eval hnf in ComRingType subFExtend mulfxC.

Definition subfx_poly_inv (q : {poly F}) : {poly F} :=
  if iotaPz q == 0 then 0 else
  let r := gdcop q p0 in let: (u, v) := egcdp q r in
  ((u × q + v × r)`_0)^-1 *: u.

Let subfx_poly_invE q : iotaPz (subfx_poly_inv q) = (iotaPz q)^-1.
Proof.
rewrite /subfx_poly_inv.
have [-> | nzq] := altP eqP; first by rewrite rmorph0 invr0.
rewrite [nth]lock -[_^-1]mul1r; apply: canRL (mulfK nzq) _; rewrite -rmorphM /=.
have rz0: iotaPz (gdcop q p0) = 0.
  by apply/rootP; rewrite gdcop_map root_gdco ?map_poly_eq0 // p0z0 nzq.
do [case: gdcopPr _; rewrite (negPf nz_p0) orbFco_r_q _] in rz0 ×.
case: (egcdp q r) (egcdpE q r) ⇒ u v /=/eqp_size/esym/eqP.
rewrite coprimep_size_gcd 1?coprimep_sym // ⇒ /size_poly1P[a nz_a Da].
rewrite Da -scalerAl (canRL (addrK _) Da) -lock coefC linearZ linearB /=.
by rewrite rmorphM /= rz0 mulr0 subr0 horner_morphC -rmorphM mulVf ?rmorph1.
Qed.

Definition subfx_inv_rep (x : 'rV[F]_n) : 'rV[F]_n :=
  poly_rV (subfx_poly_inv (rVpoly x) %% p0).

Definition subfext_inv := lift_op1 subFExtend subfx_inv_rep.
Fact pi_subfext_inv : {morph \pi : x / subfx_inv_rep x >-> subfext_inv x}.
Proof.
unlock subfext_invx /=; apply/eqmodP/eqP; rewrite /iotaFz.
by rewrite 2!{1}poly_rV_modp_K 2!{1}iotaPz_modp !subfx_poly_invE iotaPz_repr.
Qed.
Canonical pi_subfext_inv_morph := PiMorph1 pi_subfext_inv.

Fact subfx_fieldAxiom :
  GRing.Field.axiom (subfext_inv : subFExtendsubFExtend).
Proof.
elim/quotWx; apply: contraNeq; rewrite !piE /equiv_subfext /iotaFz !linear0.
apply: contraRnz_x; rewrite poly_rV_K ?size_poly1 // !poly_rV_modp_K.
by rewrite iotaPz_modp rmorph1 rmorphM /= iotaPz_modp subfx_poly_invE mulVf.
Qed.

Fact subfx_inv0 : subfext_inv (0 : subFExtend) = (0 : subFExtend).
Proof.
apply/eqP; rewrite !piE /equiv_subfext /iotaFz /subfx_inv_rep !linear0.
by rewrite /subfx_poly_inv rmorph0 eqxx mod0p !linear0.
Qed.

Definition subfext_unitRingMixin := FieldUnitMixin subfx_fieldAxiom subfx_inv0.
Canonical subfext_unitRingType :=
  Eval hnf in UnitRingType subFExtend subfext_unitRingMixin.
Canonical subfext_comUnitRing := Eval hnf in [comUnitRingType of subFExtend].
Definition subfext_fieldMixin := @FieldMixin _ _ subfx_fieldAxiom subfx_inv0.
Definition subfext_idomainMixin := FieldIdomainMixin subfext_fieldMixin.
Canonical subfext_idomainType :=
  Eval hnf in IdomainType subFExtend subfext_idomainMixin.
Canonical subfext_fieldType :=
  Eval hnf in FieldType subFExtend subfext_fieldMixin.

Fact subfx_inj_is_rmorphism : rmorphism subfx_inj.
Proof.
do 2?split; last by rewrite piE /iotaFz poly_rV_K ?rmorph1 ?size_poly1.
  by elim/quotWx; elim/quotWy; rewrite !piE /iotaFz linearB rmorphB.
elim/quotWx; elim/quotWy; rewrite !piE /subfx_mul_rep /iotaFz.
by rewrite poly_rV_modp_K iotaPz_modp rmorphM.
Qed.
Canonical subfx_inj_additive := Additive subfx_inj_is_rmorphism.
Canonical subfx_inj_rmorphism := RMorphism subfx_inj_is_rmorphism.

Definition subfx_eval := lift_embed subFExtend (fun qpoly_rV (q %% p0)).
Canonical subfx_eval_morph := PiEmbed subfx_eval.

Definition subfx_root := subfx_eval 'X.

Lemma subfx_eval_is_rmorphism : rmorphism subfx_eval.
Proof.
do 2?split⇒ [x y|] /=; apply/eqP; rewrite piE.
- by rewrite -linearB modp_add modNp.
- by rewrite /subfx_mul_rep !poly_rV_modp_K !(modp_mul, mulrC _ y).
by rewrite modp_small // size_poly1 -subn_gt0 subn1.
Qed.
Canonical subfx_eval_additive := Additive subfx_eval_is_rmorphism.
Canonical subfx_eval_rmorphism := AddRMorphism subfx_eval_is_rmorphism.

Definition inj_subfx := (subfx_eval \o polyC).
Canonical inj_subfx_addidive := [additive of inj_subfx].
Canonical inj_subfx_rmorphism := [rmorphism of inj_subfx].

Lemma subfxE x: p, x = subfx_eval p.
Proof.
elim/quotW: xx; (rVpoly x); apply/eqP; rewrite piE /equiv_subfext.
by rewrite /iotaFz poly_rV_modp_K iotaPz_modp.
Qed.

Definition subfx_scale a x := inj_subfx a × x.
Fact subfx_scalerA a b x :
  subfx_scale a (subfx_scale b x) = subfx_scale (a × b) x.
Proof. by rewrite /subfx_scale rmorphM mulrA. Qed.
Fact subfx_scaler1r : left_id 1 subfx_scale.
Proof. by movex; rewrite /subfx_scale rmorph1 mul1r. Qed.
Fact subfx_scalerDr : right_distributive subfx_scale +%R.
Proof. by movea; exact: mulrDr. Qed.
Fact subfx_scalerDl x : {morph subfx_scale^~ x : a b / a + b}.
Proof. by movea b; rewrite /subfx_scale rmorphD mulrDl. Qed.
Definition subfx_lmodMixin :=
  LmodMixin subfx_scalerA subfx_scaler1r subfx_scalerDr subfx_scalerDl.
Canonical subfx_lmodType := LmodType F subFExtend subfx_lmodMixin.

Fact subfx_scaleAl : GRing.Lalgebra.axiom ( *%R : subFExtend_).
Proof. by movea; apply: mulrA. Qed.
Canonical subfx_lalgType := LalgType F subFExtend subfx_scaleAl.

Fact subfx_scaleAr : GRing.Algebra.axiom subfx_lalgType.
Proof. by movea; apply: mulrCA. Qed.
Canonical subfx_algType := AlgType F subFExtend subfx_scaleAr.
Canonical subfext_unitAlgType := [unitAlgType F of subFExtend].

Fact subfx_evalZ : scalable subfx_eval.
Proof. by movea q; rewrite -mul_polyC rmorphM. Qed.
Canonical subfx_eval_linear := AddLinear subfx_evalZ.
Canonical subfx_eval_lrmorphism := [lrmorphism of subfx_eval].

Hypothesis (pz0 : root p^iota z).

Section NonZero.

Hypothesis nz_p : p != 0.

Lemma subfx_inj_eval q : subfx_inj (subfx_eval q) = q^iota.[z].
Proof.
by rewrite piE /iotaFz poly_rV_modp_K iotaPz_modp /iotaPz /z0 /wf_p nz_p pz0.
Qed.

Lemma subfx_inj_root : subfx_inj subfx_root = z.
Proof. by rewrite subfx_inj_eval // map_polyX hornerX. Qed.

Lemma subfx_injZ b x : subfx_inj (b *: x) = iota b × subfx_inj x.
Proof. by rewrite rmorphM /= subfx_inj_eval // map_polyC hornerC. Qed.

Lemma subfx_inj_base b : subfx_inj b%:A = iota b.
Proof. by rewrite subfx_injZ rmorph1 mulr1. Qed.

Lemma subfxEroot x : {q | x = (map_poly (in_alg subFExtend) q).[subfx_root]}.
Proof.
have /sig_eqW[q ->] := subfxE x; q.
apply: (fmorph_inj subfx_inj_rmorphism).
rewrite -horner_map /= subfx_inj_root subfx_inj_eval //.
by rewrite -map_poly_comp (eq_map_poly subfx_inj_base).
Qed.

Lemma subfx_irreducibleP :
 ( q, root q^iota zq != 0 → size p size q) irreducible_poly p.
Proof.
split⇒ [min_p | irr_p q qz0 nz_q].
  split⇒ [|q nonC_q q_dv_p].
    by rewrite -(size_map_poly iota) (root_size_gt1 _ pz0) ?map_poly_eq0.
  have /dvdpP[r Dp] := q_dv_p; rewrite -dvdp_size_eqp // eqn_leq dvdp_leq //=.
  have [nz_r nz_q]: r != 0 q != 0 by apply/norP; rewrite -mulf_eq0 -Dp.
  have: root r^iota z || root q^iota z by rewrite -rootM -rmorphM -Dp.
  case/orP⇒ /min_p; [case/(_ _)/idPn⇒ // | exact].
  rewrite polySpred // -leqNgt Dp size_mul //= polySpred // -subn2 ltn_subRL.
  by rewrite addSnnS addnC ltn_add2l ltn_neqAle eq_sym nonC_q size_poly_gt0.
pose r := gcdp p q; have nz_r: r != 0 by rewrite gcdp_eq0 (negPf nz_p).
suffices /eqp_size <-: r %= p by rewrite dvdp_leq ?dvdp_gcdr.
rewrite (irr_p _) ?dvdp_gcdl // -(size_map_poly iota) gtn_eqF //.
by rewrite (@root_size_gt1 _ z) ?map_poly_eq0 // gcdp_map root_gcd pz0.
Qed.

End NonZero.

Section Irreducible.

Hypothesis irr_p : irreducible_poly p.
Let nz_p : p != 0. Proof. exact: irredp_neq0. Qed.

Lemma min_subfx_vectAxiom : Vector.axiom (size p).-1 subfx_lmodType.
Proof.
move/subfx_irreducibleP: irr_p ⇒ /=/(_ nz_p) min_p; set d := (size p).-1.
have Dd: d.+1 = size p by rewrite polySpred.
pose Fz2v x : 'rV_d := poly_rV (sval (sig_eqW (subfxE x)) %% p).
pose vFz : 'rV_dsubFExtend := subfx_eval \o @rVpoly F d.
have FLinj: injective subfx_inj by apply: fmorph_inj.
have Fz2vK: cancel Fz2v vFz.
  movex; rewrite /vFz /Fz2v; case: (sig_eqW _) ⇒ /= q →.
  apply: FLinj; rewrite !subfx_inj_eval // {2}(divp_eq q p) rmorphD rmorphM /=.
  by rewrite !hornerE (eqP pz0) mulr0 add0r poly_rV_K // -ltnS Dd ltn_modpN0.
suffices vFzK: cancel vFz Fz2v.
  by Fz2v; [apply: can2_linear Fz2vK | vFz].
apply: inj_can_sym Fz2vK _v1 v2 /(congr1 subfx_inj)/eqP.
rewrite -subr_eq0 -!raddfB /= subfx_inj_eval // ⇒ /min_p/implyP.
rewrite leqNgt implybNN -Dd ltnS size_poly linearB subr_eq0 /=.
by move/eqP/(can_inj (@rVpolyK _ _)).
Qed.

Definition SubfxVectMixin := VectMixin min_subfx_vectAxiom.
Definition SubfxVectType := VectType F subFExtend SubfxVectMixin.
Definition SubfxFalgType := Eval simpl in [FalgType F of SubfxVectType].
Definition SubFieldExtType := Eval simpl in [fieldExtType F of SubfxFalgType].

End Irreducible.

End SubFieldExtension.

Prenex Implicits subfx_inj.

Lemma irredp_FAdjoin (F : fieldType) (p : {poly F}) :
    irreducible_poly p
  {L : fieldExtType F & \dim {:L} = (size p).-1 &
    {z | root (map_poly (in_alg L) p) z & <<1; z>>%VS = fullv}}.
Proof.
casep_gt1 irr_p; set n := (size p).-1; pose vL := [vectType F of 'rV_n].
have Dn: n.+1 = size p := ltn_predK p_gt1.
have nz_p: p != 0 by rewrite -size_poly_eq0 -Dn.
suffices [L dimL [toPF [toL toPF_K toL_K]]]:
   {L : fieldExtType F & \dim {:L} = (size p).-1
      & {toPF : {linear L{poly F}} & {toL : {lrmorphism {poly F}L} |
         cancel toPF toL & q, toPF (toL q) = q %% p}}}.
- L ⇒ //; pose z := toL 'X; set iota := in_alg _.
  suffices q_z q: toPF (map_poly iota q).[z] = q %% p.
     z; first by rewrite /root -(can_eq toPF_K) q_z modpp linear0.
    apply/vspacePx; rewrite memvf; apply/Fadjoin_polyP.
     (map_poly iota (toPF x)).
      by apply/polyOverPi; rewrite coef_map memvZ ?mem1v.
    by apply: (can_inj toPF_K); rewrite q_z -toL_K toPF_K.
  elim/poly_ind: q ⇒ [|a q IHq].
    by rewrite map_poly0 horner0 linear0 mod0p.
  rewrite rmorphD rmorphM /= map_polyX map_polyC hornerMXaddC linearD /=.
  rewrite linearZ /= -(rmorph1 toL) toL_K -modp_scalel alg_polyC modp_add.
  congr (_ + _); rewrite -toL_K rmorphM /= -/z; congr (toPF (_ × z)).
  by apply: (can_inj toPF_K); rewrite toL_K.
pose toL q : vL := poly_rV (q %% p); pose toPF (x : vL) := rVpoly x.
have toL_K q : toPF (toL q) = q %% p.
  by rewrite /toPF poly_rV_K // -ltnS Dn ?ltn_modp -?Dn.
have toPF_K: cancel toPF toL.
  by movex; rewrite /toL modp_small ?rVpolyK // -Dn ltnS size_poly.
have toPinj := can_inj toPF_K.
pose mul x y := toL (toPF x × toPF y); pose L1 := toL 1.
have L1K: toPF L1 = 1 by rewrite toL_K modp_small ?size_poly1.
have mulC: commutative mul by rewrite /mulx y; rewrite mulrC.
have mulA: associative mul.
  by movex y z; apply: toPinj; rewrite -!(mulC z) !toL_K !modp_mul mulrCA.
have mul1: left_id L1 mul.
  by movex; apply: toPinj; rewrite mulC !toL_K modp_mul mulr1 -toL_K toPF_K.
have mulD: left_distributive mul +%R.
  movex y z; apply: toPinj; rewrite /toPF raddfD /= -!/(toPF _).
  by rewrite !toL_K /toPF raddfD mulrDl modp_add.
have nzL1: L1 != 0 by rewrite -(inj_eq toPinj) L1K /toPF raddf0 oner_eq0.
pose mulM := ComRingMixin mulA mulC mul1 mulD nzL1.
pose rL := ComRingType (RingType vL mulM) mulC.
have mulZl: GRing.Lalgebra.axiom mul.
  movea x y; apply: toPinj; rewrite toL_K /toPF !linearZ /= -!/(toPF _).
  by rewrite toL_K -scalerAl modp_scalel.
have mulZr: GRing.Algebra.axiom (LalgType F rL mulZl).
  by movea x y; rewrite !(mulrC x) scalerAl.
pose aL := AlgType F _ mulZr; pose urL := FalgUnitRingType aL.
pose uaL := [unitAlgType F of AlgType F urL mulZr].
pose faL := [FalgType F of uaL].
have unitE: GRing.Field.mixin_of urL.
  movex nz_x; apply/unitrP; set q := toPF x.
  have nz_q: q != 0 by rewrite -(inj_eq toPinj) /toPF raddf0 in nz_x.
  have /Bezout_eq1_coprimepP[u upq1]: coprimep p q.
    apply: contraLR (leq_gcdpr p nz_q) ⇒ /irr_p/implyP.
    rewrite dvdp_gcdl -ltnNge /= ⇒ /eqp_size→.
    by rewrite (polySpred nz_p) ltnS size_poly.
  suffices: x × toL u.2 = 1 by (toL u.2); rewrite mulrC.
  apply: toPinj; rewrite !toL_K -upq1 modp_mul modp_add mulrC.
  by rewrite modp_mull add0r.
pose ucrL := [comUnitRingType of ComRingType urL mulC].
have mul0 := GRing.Field.IdomainMixin unitE.
pose fL := FieldType (IdomainType ucrL mul0) unitE.
[fieldExtType F of faL for fL]; first by rewrite dimvf; apply: mul1n.
[linear of toPF as @rVpoly _ _].
suffices toLM: lrmorphism (toL : {poly F}aL) by (LRMorphism toLM).
have toLlin: linear toL.
  by movea q1 q2; rewrite -linearP -modp_scalel -modp_add.
do ?split; try exact: toLlin; moveq r /=.
by apply: toPinj; rewrite !toL_K modp_mul -!(mulrC r) modp_mul.
Qed.