slln
an Object Serialization Framework for C+4+

Version 0.8.x
stephan@s11n.net - http://slln.net

15th May 2004

Abstract

CVS version info: $Revision: 1.11 §

Maintainer: stephan@sl1n.net

This document describes s11n and ”s11nlite”, an object serialization framework for C++. It serves as a supple-
ment to the s1ln API documentation and source code, and is not a standalone treatment of the entire s11n library.
Much of this documentation can be considered "required reading” for those wanting to understand sl1n’s features,
especially it’s advanced ones.

sllnlite, introduced in s11n version 0.7.0, simplifies the s11n interface, providing the features that "most clients
need” for saving and loading arbitrary objects. It also provides a reference implementation for implementing similar
client-side interfaces. The author will go so far as to suggest, with uncharacteristic non-humbleness, that sl1nlite’s
interface ushers in the easiest-to-use, least client-intrusive, most flezible general-purpose object serialization library
ever created for C++.

Users who wish to understand s11n are strongly encouraged to learn sllnlite before looking into the rest of the
library, as they will then be in a good position to understand the underlying architecture and framework, which
is significantly more abstract and detailed than sllnlite lets on. Users who think they know everything about
serialization, class templates and classloaders are still encouraged to give s11nlite a try: they might just find that
it’s just too easy to not use!

Contents

1 Preliminaries
1.1 License o o e e e
1.2 Disclaimers o . o e e e e e e e e e e e e e
1.3 Feedback e e e e e e e
1.4 Credits. o e e e e

2 Introduction
2.1 Scope of this document
2.2 WTF is slInlite? e e e e e e e
2.3 Main features e e e e e e e e e
2.4 Notable Caveats (IMPORTANT) e e

2.5 Compatibility with earlier s11n versions L

3 Core concepts

3.1 Terms and Definitions L
3.2 The Official Grossly Oversimplified Overview of the s11n architecture
3.3 Process Overview oL e e e

3.3.1 Serialization L e

3.3.2 Deserialization L
3.4 Node Names and Property Key naming conventions (IMPORTANT!)
3.5 Overview of things to understand about s11n

3.6 Notes on error/success values (i.e., justifying the bool)

OOt R R

co O 1 O O D

11
12
12
13
13
14
14

Serializable Interfaces: overview and conventions

4.1 Serialize operator CONVENtIONS o v v v it i e e e e e e e e e e
4.2 Deserialize operator conventions L. Lol e
4.3 Data Node class names (impl class()) (IMPORTANT!)

4.3.1 Example impl class() usage

4.3.2 Using local library support for impl class() o
4.4 Cooperating with other Serializable interfaces oo Lo
4.5 Member template functions as serialization operators oL oL oL

How to turn JoeAverageClass into a Serializable...
5.1 Create a Serializable class L

5.2 Specifying Serializer Proxy functors Lo e
How to turn JoeNonAverageClass into a Serializable...

Doing things with Serializables

7.1 Setting "simple” properties oL e e e e e e
7.2 Getting property values L e e e e
7.2.1 Simple property error checking
7.2.2 Saving custom Streamable Types
7.3 Finding or adding child nodestoanode L o oo
7.4 Serializing Value Containers L e
7.4.1 Trick: "casting” containers Lo
7.5 De/serializing Serializable objects Lo
7.5.1 Individual Serializable objects
7.5.2 Lists of Serializable pointers
7.5.3 Maps of pointers or value types. L
7.5.4 7Brute force” deserialization Lo L e

Walk-throughs: imlementing Serializable classes

8.1 Sample #1: Read this before trying to code a Serializable! 0000,
8.1.1 Thedata e e
8.1.2 The serialize operator L
8.1.3 The deserialize operator L L
8.1.4 Serializable/proxy registration L. e
8.1.5 Done! Your object is now a generic Serializable Type!,

8.2 Gary’s Code (a.k.a. "The Dream”)
8.2.1 Background context and some longer-term history o000

8.3 Meanwhile, back in the present day... (Gary’s code, remember?)
8.3.1 Gary’s Revelation e
8.3.2 A minor, but significant, addition...o

s11n registration & ”supermacros” (IMPORTANT)

9.1 Supermacros”’o L e e e e
9.2 General: Base Types o . o o e e e
9.3 Choosing class names when registering L
9.4 Registering Base Types supporting serialization operator()s
9.5 Registering types which implement a custom Serializable interface
9.6 Registering Serializable Proxies
9.7 Where to invoke registration (IMPORTANT)

9.7.1 Hand-implementing the macro code (IMPORTANT)

15
16
16
16
17
17
17
18

18
19
19

20

21
21
21
21
22
22
22
22
23
23
23
24
24

24
24
24
24
25
25
25
26
26
27
28
30

10 Existing proxies, functors and algorithms
10.1 Commonly-used Proxies e
10.1.1 Streamable types: slln:streamable type serializer proxy
10.1.2 list/vector/set: slln:list::list serializer proxy
10.1.3 pair: slln:map:pair_serializer proxy o . oo e e
10.1.4 map/multimap: slln:map:map_serializer proxy

10.2 Commonly-used algorithms, functors and helpers L.

11 Data Formats (Serializers)

11.1 General conventions Lo e e
11.1.1 File extensions L e e
11.1.2 Indentation o L e e e
11.1.3 Magic Cookies o o e e e

11.2 Overview of available Serializers L
11.2.1 funtxt (aka, SerialTree 1) e
11.2.2 funxml (aka, SerialTree XML)
11.2.3 simplexml L e e e e
11.2.4 parens oo e e e e e
11.2.5 compact (aka, 51191011) L oL

11.3 Tricks o L
11.3.1 Using a specific Serializer L
11.3.2 Selecting a Serializer in sllnlite e

11.3.3 Multiplexing Serializers L

12 impl class() & class _name<>: the whole truth
12.1 impl class() L

12.2 classname<>(), class _name<>, name typeh and friends Lo

13 SAM: {Serialization,s11n} API Marshaling layer
13.1 The SAM layer & interface e
13.2 SAM’s place in the API calling chain L
13.2.1 More about SAM<X*> e

14 sl1ln-related utilities

14.1 sIINCONVEIT v o e e e e e e e e e e e e e e e e e

15 Miscellaneous features and tricks
15.1 Saving non-Serializables e
15.2 "casting” Serializables with s11n_cast() L Lo
15.3 Cloning Serializables e
15.4 zlib & bz2lib support L. e e
15.5 Using multiple data formats (Serializers) L
15.6 Loading Serializables dynamically via DLLs
15.7 Renaming the s1ln namespace o e e
15.8 Sharing Serializable data via the system clipboard
15.9 slln and toc: "the other ./configure” oL

16 Caveats, gotchas and some things worth knowing
16.1 Serializing class templates L L e e e e
16.2 Compiling and linking s11n client applications L e
16.3 Thread Safety e
16.4 Object Ownership vis-a-vis Serialization
16.5 Cyclic data structures L oo e e e e e

35
35
35
36
36
36
36

36
36
37
37
37
38
38
38
39
40
40
41
41
41
41

41
41
42

44
44
45
45

46
46

46
46
47
47
47
48
48
48
49
49

17 Common problems 51

17.1 Satan speaks through the console during compilation L. o1
17.2 Containers serialize, but fail to deserializeo 51
17.3 :classname<T>(), name class.h and friends oL 52
17.3.1 Duplicate definitions of class name<T> 52

17.3.2 class_name<T> not defined 52

17.3.3 map<X,Y>:uvalue type vs pair<X,Y> L 53

17.4 Abstract base types for Serializables 53

18 Where to go from here? 53
19 Index 53

1 Preliminaries

ACHTUNG: this is a live document covering an in-development software library. Ergo... it may very
well contain some misleading or blatantly incorrect information!

1.1 License

The library described herein, and this documentation, are released into the Public Domain. Some exceptional library
code falls under other licenses such as LGPL, BSD, or MIT-style as described in the README file and their source
files.

All source code in this project has been custom-implemented or uses sources/classes/libraries which fall under LGPL,
BSD, or other relatively non-restrictive licenses. It contains no GPL code, despite it’s "logical inheritance” from the
GPL’d libFunUtil. Source files which do not fall into the Public Domain are prominently marked as such.

To be perfectly honest, i prefer, instead of Public Domain, the phrase Do As You Damned Well Please. That’s exactly
how i feel about sharing source code.

1.2 Disclaimers

1. This manual will make no sense whatsoever to most people. It is target at experienced C++ programmers
("intermediate level”+), and makes many assumptions about prior C+-+ knowledge.

2. Don'’t let the size of this manual make you think that using s11n is difficult! Using s11ln (especially sllnlite) is
simple and straightforward, even for non-guru C++ coders. It also has a number of ”power user” features which
can be exploited by those who truly understand the architecture.

3. slln is, in code terms, still very much under development. The basic model it is based on, however, has proven to
be inordinately effective and low-maintenance since it was introduced in the QUB project (qub.sourceforge.net)
by Rusty "Bozo” Ballinger over 3 years ago. This implementation refines that model, vastly expanding it’s
capabilities.

4. This library is PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

5. Reading disclaimers makes you go blind. ;)

6. Writing them is even worse. :/

And, finally:

This library is developed in my private time and the domain and web site (e.g.) are funded by myself. With that in
mind: unless i am kept employed, this project may "blink out” at any time. That said, this particular project holds a
special place in my heart (obviously, or you wouldn’t be seeing this manual and all this code), so it often does get a
somewhat higher priority than, e.g., dinner or lunch.

1.3 Feedback

By all means, please feel free to submit feedback on this manual and the library: positive, negative, whatever... as
long as it’s constructive it is always happily received. While most development-related communication happens via
private emails, we do have a public mailing list where anyone may post their thoughts:

s11n-devel@lists.sourceforge.net
If this gives you any idea of how seriously feedback is taken:

e The whole 0.7.0 rewrite, and the abstractions and simplifications which grew out of it, were triggered by Ton
Oguara’s feedback about his problems serializing class templates. (That is indeed a deceptively tricky problem,
and the older code could only handle non-trivial cases with a non-trivial amount of code generation. The 0.7x
framework can do this with "relative” ease.)

e This particular document (the one you're reading now), was largely inspired by Gary Boone’s feedback on the
difficulties of getting started with s1ln. Also, the changes in the registration processes from 0.7x to 0.8 were
inspired by Gary.

In a very real way, sllnlite was developed because these two gentlemen took some time to share their thoughts.

The contact address, should you also feel compelled to write what you really think about slln, is at the top of this
document.

Now, i can’t promise to rewrite everything every time someone wants a change, but all input is certainly considered.
)

Whatever it is you're trying to save, s11n wants to help you save it, and goes through great pains to do some deceptively
difficult tricks to simplify this process as much as practically possible. If it can’t do so for your use-cases, then please
consider helping us change s11n to make it capable of doing what you’d like it to. It is my firm belief that the core
slln framework can, with very little modification, save anything. What is currently missing are the algorithms and
containers which may further simplify the whole process, but only usage and experimentation will reveal what that
toolkit needs to look like. If you come across some great ideas, please share them with us!

)

—- stephan

1.4 Credits

Very briefly, in no particular order:

e My parents, Bonnie Pickartz and Joseph Hudgins, because they just need to be thanked in general.
e Rusty "Bozo” Ballinger wrote the conceptual forefather of s11n (http://libfunutil.sourceforge.net).
e Ton Oguara accidentally inspired the whole 0.6 —> 0.7 rewrite/refactor.

e Gary Boone provided valuable feedback on a range of documentation and features, particularly on making it
easier for developers to get started with s11n. Many of the 0.8.x improvements exist because of Gary’s feedback.

e Marshall Cline, of C++ FAQ fame, has provided a number of corrections, insights and suggestions regarding the
handling of cyclic graphs.

e Roger Leigh provided the information needed to add 1ibltdl support to the classloader.
e Tom, from comp.lang.c+-+, provided an interesting fix for an "interface annoyance” in the classloader.

e 7"Ashran”, my office-mate, business partner and best friend, often puts up with me ranting (like a madman, i
might add) about the latest s11n/classloader breakthroughs. He puts up with a lot more than that, actually®.
)

e Peter "What’s Happnin!!?!1?1?!” Angerani, my long-time friend and mentor, for his continued support and
feedback.

Various published authors have, rather unknowingly, had profound impacts on various design decisions during s11n’s
evolution:

IWHADYA MEAN you didn’t pay the office rent yesterday!?!?

e Scott Meyers - a huge percentage of my code is influenced by Scott’s always-practical advice. Here’s your biggest
fan, Scott!

e Andrei Alexandrescu® - his Modern C++ Design was the necessary catalyst i needed for realising the classloader
implementation, and provided the basis for the internals of the s11n: :phoenix<> class, which is used extensively
by slln.

e Herb Sutter - A couple of his (very numerous) articles have led to direct changes in this library. e.g., a breaking-
down of some of the classloader’s member interface into free functions was inspired by his "What’s in a class?”
article.

e Stephen Dewhurst, author of C++ Gotchas: every time i write "template class” and correct it to “class template”,
or change the word "method” to “function”, i think of Stephen. ;)

2 Introduction

So you want to save some objects? Strings and PODs®? Arbitrary objects you’ve written? A std::map<int,std::string>
or std::1list<MyType *>7

No problem:

slln is here to Save Your Data, man!

Historically speaking, saving and loading data structures, even relatively simple ones, is a deceptively thorny problem
in a language like C++, and many coders have spent a great deal of time writing code to serialize and deserialize (i.e.,
save and load) their data. The s1ln framework aims (rather ambitiously) to completely end those days of drudgery.

s11n, a short form of the word “serialization™, is a library for serializing... well, just about any data stucture which
can be coded up in C++. It uses modern C+-+ techniques, unavailable only a few years ago, to provide a flexible,
fairly non-intrusive, maintenance-light, and modern serialization framework... for a programming language which
sorely needs one! sl1ln is particularly well-suited to projects where data is structured as hierarchies or containers of
objects and/or PODs, and provides unprecedentedly simple save/load features for most STL-style containers, pretty
much regardless of their stored types (section 7.4).

In practice, s1ln has far exceeded it’s original expectations, requirements and goals, and it is hoped that more and
more C+-+ users can find relief from Serialization Hell right at home in C++... via slln.

A brief history of the project and a description of it’s main goals are available at:

http://slln.net/history.php

2.1 Scope of this document

This document does not cover every detail of how s11n works (that’d take a whole book®). It does tell clients what they
need to quickly get started with sllnlite (and, by extension, s1ln). For complete details you’ll need this document,
the API docs, and the source code. That said - i try to get all the client-necessary text into this document.

As always, the sources are the definitive place for information: see the README for the locations of the relevant files.

2.2 WTF is sllnlite?

s11nlite is a “light-weight” s11n sub-interface written on top of the slln core and distributed with it. It provides
“what most clients need for serialization” while hiding many of the details of the "raw” core library from the client
(trust me - you want this!). Overall it is significantly simpler to use but, as it is 100% compatible with the core,
still has access to the full power "under the hood” if needed. sllnlite also offers a potential starting point for clients
wishing to implement their own serialization interfaces on top of the s11n core. Such an approach can free most of a
project’s code from direct dependencies s11n by hiding serialization behind an interface which is more suitable to the

2i can even spell it now without looking it up ;).

3Plain Old Data - int, char, bool, double, etc.

4The only (remaining) inherently difficult part for this one is getting the proper type mnames for each component of the container
heirarchy! This problem discussed at length in this documentation, the slln sources, and the class loader library manual. It’s not as
straightforward as it may seem...

5This term was coined by Rusty Ballinger in mid-2003, as far as i am aware. It follows the tradition set by ”i18n”, which is short for
“internationalization”.

6But i’d be happy to entertain a publishing offer! :)

project. (Such extensions are beyond the scope of the document, but feel free to contact the development list if you're
interested in such an option.)

Users new to slln are strongly encouraged to learn to use the code in the sllnlite namespace before looking into the
rest of the library. Doing so will put the coder in a good position to understand the underlying s11n architecture later
on. Users who think they know everything are still encouraged to give sllnlite a try: they might just find that it’s
just too easy to not use! Don’t let the ’lite’ in the name s11nlite fool you: it’s only called s11nlite because it’s a subset
of an even more powerful, more abstracted layer, known as “the s1ln core” or “core slln.” For those who just can’t
wait to dig in: see the README file for the code locations.

sllnlite is still very infantile - as of March 15, 2004, well over 60% of it’s code-base is only 2 weeks old and some 80%+
of the library manual has been rewritten from scratch. That is, 40+ pages of new docs, plus well over 500k of brand
new source files(!!!), all under 16 days of age. Thus, there are bound to be bugs or oversights.

That said, the general model itself has proven to be very effective. Historically, this is the 3rd time the architecture
been significantly refactored, and it is evolving to be more and more useful with each iteration. This particular
iteration is light years ahead of it’s predecessors, in terms of power and flexibility, and is also much simpler to work
with and extend.

2.3 Main features
The library’s primary features and points-of-interest are:

e Quite possibly the most flevible and easiest-to-use C-+-+ serialization framework in the known universe.”
e Provides client code with easy de/serialization of arbitrary streamable types, user-defined Serializable types and
various STL containers.

e Lends itself well to a large number of uses, from de/serializing arbitrary vectors or maps of data (a-la config
files) to saving whole applications in one go.

e Does not tie clients to a specific Serializable interface/heirarchy. The internally-used interfaces can be easily
directed to use client-specific interfaces, which need not even be virtual. This means that the library’s interface
can be made to conform to client-side objects’ needs, as opposed to the other way around.

e Serializable Proxying allows clients to attach proxy classes to ANY given type, such that the proxy type is
delegated all de/serialization operations. The end result is that it is possible to serialize a given type without
having to touch a line of that type’s code, nor does that type have to know it’s playing along. Also, this allows
swapping out serialization techniques whenever you like (in this model, that simply means changing the internal
structure of some "Data Nodes” to suit your needs/preferences).

e Integration into existing class hierarchies is straightforward, quick, relatively painless and can often be incremen-
tally applied to subsets of a project over time, as needed, as opposed to forcing a client to completely refactor.
In fact, using proxies means client classes don’t normally have to change at all to be transformed into "True
Serializables.”

e The data persistance model inherently does not suffer (as, e.g., Java’s does) from the problem of invalidating
serialized data every time an internal change is made to a Serializable data type. It’s properties-based system
ensures that legacy data do not become invalid until developers want them to become so.

e It sports compile-time type-safe classloading, even for those classes loaded via DLLs, without the use of a single
type-cast (neither in the client nor in the library). The classloader can load just about any classes, including 3rd-
party classes, without them knowing they ar participating. The classloader mini-framework has a huge number of
uses and features outside the context of s11n... and it therefor has own web site: http://slln.net/class_loader/

e The APl is 100% data-format agnostic and places no file naming conventions client data files. Several different
data format handlers (aka, Serializers, 5(!) of them) are provided with the library, and adding custom Serializers
is fairly painless: all you need is an input parser and an output formatter.

e Optional client-transparent zlib and bz2lib file de/compression, for 60-95% file size reduction.

e The i/o sub-framework is stream-centric, not file-centric. This sub-module is effectively optional: clients are not
required to use any of the supplied i/o code, as long as they supply their own file parsers (lexers, for example).

e The primary data structures follow STL [Standard Template Library| conventions and are container /functor/algorithm-

centric, thus many generic algorithms can be easily applied to them. The library comes with several useful
functors and algorithms for working with serialized data.

7i’m willing to admit that i may be mistaken, but i have yet to see a contender which comes even close.

7

e Provides a framework under which code from many different projects can share data, even if they internally use
different Serializable interfaces and data formats.

e Uses only standard C++ constructs, no compiler-specific extensions.

Okay, okay, i’ll stop there! ;) (The list really does go on and on!)

2.4 Notable Caveats (IMPORTANT)

It would be dishonest (even if only mildly so ;) to say that s11n is a magic bullet - the solution to all object serialization
needs. Here are the currently-known major caveats which must be understood by potential users, as these are type
types of caveats which may prove to be deal-breakers for potential s11n users:

e slln, at it’s core, can be quite difficult to grasp. It’s not the details which are difficult for most people, i think,
but the fact that the details are lie beind very abstract “conventions” and ”close approximations” instead of hard-
and-fast rules and defintions. (This is largely a side-effect of my own personal philosophies, and i appologize if
the core seems a bit... eccentric.)

e The supplied build tree will only run on GNU-based systems. That is, systems running all the common GNU
tools like gzip, GNU make, bash, and other exceedingly common Open Source tools, like perl. That said,
the code itself should be easily portable to other build systems, so long as those hosts support appropriate
compilers (see below). We will gladly host build-related files for other platforms or build environments (e.g.,
GNU Autotools, Microsoft environments, etc.) in the distribution and/or web site, should users submit those.

e Requires a relatively recent, ISO-conformant C++ compiler with excellent support for class templates. Only
known to work with GCC 3.2x and 3.3x, and known to NOT work with GCC 2.9x. Based purely on what i’ve
read of Microsoft Visual C++, there is no hope of this code working on any version lower than 7.1 (i personally
have very little experience with MSVC).

e Some very small pieces of code are specific to Unix-like systems (e.g., dlopen() /1tdlopen()). Users experienced
with other platforms are encouraged to fix that :)! (Grep the tree for dlopen and you’ll jump right to it.)

e slln is untested with binary data. It “should be possible”, but implementing it in terms of the current Serializers
(e.g., as string-encoding conversions) would be extremely inefficient. That said, any data which can ultimately
be represented as a std: :string should pose no problems at all for s11n.

e As it is heavily based on class templates, it is implemented largely as inlined code in header files (for complex
linking reasons). The end effect on clients is that compilation times and object/binary file sizes do suffer. Some
code is implemented in implementation files, so clients must still link to the sl1ln library, either statically or
dynamically, just as they would for any typical C/C++ library.

e Due partly to the side-effects of heavy reliance on class templates, s11n is probably unsuitable for systems with
very limited filesystem space or main memory (e.g., embedded systems, handheld computers, etc.).

e slln is untested in multi-threaded environments. See section 16.3 for more details/speculation.

e It is driven with Generic Programming and reusability /maintenance in mind, not High-performance Computing,
and thus it may not be performant enough for projects which need, really, really fast code. (That said, s1ln
is acceptably fast for all uses i’ve had for it. Make your own judgement.)

e slln is 100% driven by my hobbies and my coding needs, and is constantly under experimentation. Thus it is
subject to change radically at any given moment (as it did from 0.6.x to 0.7.x). Then again, it’s also potentially
subject to sitting still for some significant stretch of time.

2.5 Compatibility with earlier s11n versions

(This is only of interest for clients who have code based on 0.6.x and earlier. That’s probably only me.)

As of version 0.7.0, the 0.6.x interface (“old-style”, as it is now known) is "officially deprecated.” That means it’s
out-moded and should be avoided by future client code. The new interface, especially s11nlite, is highly preferred.

The 0.6.x-based interfaces are no longer, as of 0.7.1, shipped in the source releases. The remaining copies exist on the
s11n download site and as relics in a CVS server, but the code is of little use, as it has been completely supplanted by
the new core.

With 0.8.0 a lot also changed - most of the 0.7.x concepts are still valid, but some usages have changed.

3 Core concepts

Users of s11n should read this section carefully - it details the major components and terms of the architecture, which
will make understanding the library much simpler.

3.1 Terms and Definitions

Below is a list of core terms used in this library. The bolded words within the definitions highlight other important
terms defined in this list, or denote particularly significant data types. This bolding is intended to help reinforce
understanding of the relationships between the various elements of the s11n library.

e s11n - several meanings:

— A short-hand form of the word ”serialization”, following the tradition set by the word ”i18n” as a shorthand
for "internationalization.” That is - by replacing all but the left- and right-most letters of the word with
the number of letters replaced.

— The name of this library.
— Serialization as a computing domain.

— Other, more context-specific, meanings.

e Data Node - a generic term for map-like types which store arbitrary key/value properties and child nodes, plus
some meta-data (like type information for the stored data, if needed). They are structured in a tree-like fashion,
DOM-style. In sllnlite this role is played by the s1in::data_node type, though core s1ln supports any types
which conform to the conventions laid out by that type. (The core doesn’t actually know that type exists.)

e serializable (with a small ”s”)- the property of being able to be save and restore state, e.g., to allow persistant
states across application sessions, network connections, etc.

e Serializable Type or Serializable (with a big ”S”) - any type for which s11n recognizes a Serializable Inter-
face, either implemented directly by a Serializable type or via a Serialization Proxy. Serializables save their
state in Data Nodes during serialization and restore their state from Data Nodes during deserialization.

e Serializable Proxy or Serialization Proxy - a functor (or possibly two) which registers with slln as being
the handler for de/serialization of a given type. By extension, the proxied type is considered to be a full-fledged
Serializable. All de/serialize operations slln performs on behalf of that type are delegated to the proxy
type. This allows, amongst other things, transparent serialization of 3rd-party classes.

Proxies are not technically Serializables - they are, more properly, the implementation for a Serializable’s
serialization operators. (Got that?)

e serialization, to serialize - several meanings:

— To save the state of a Serializable into a Data Node.
— To save a Data Node to a data stream. This emits it to a Serializer-specific grammar.

— Several other context-specific meanings.
e deserialization, to deserialize - the converse of serialize:

— To restore the state of a Serializable, presumably using data from a Data Node.

— To load a Data Node from an input stream.

e de/serialization or de/serialize - shorthand forms of “deserialization and serialization” and “deserialize and
serialize.”

e Serializer - a type responsible for converting data nodes to and from a specific grammar. For example, some
Serializers use a XML dialect, while others use custom formats. Theoretically, any data which can be structured in
a DOM-like fashion (even if only via structural transformation) can be handled by Serializers. In s11n Serializers
are also always Deserializers (at least logically, in terms of the interface), with the one minor exception that
Serializable Proxies may be implemented in terms of two separate functors®.

e serialization operators, de/serialize(), or Serializable Interface - a generic name for the pair of de/serialize
functions which Serializables and Serializable Proxies have, regardless of the actual names or argument types
of the functions. Sometimes also used to refer to the de/serialize functions within other interfaces, such as the
slln core.

8This is, unfortunately, occasionally necessary to avoid potential ambiguity when calling their serialization operators.

9

e de/serialization operations - In abstract terms: generic terms encompassing any functions which trigger a
chain of events which lead through the slln de/serialization core (and, presumably, back). In plain English:
slin::de/serialize<>(), and related functions, fall into this category. In very specific terms, it refers to any
class which end up forwarding through the s1in_api_marshaler<> interface.

e Default Serializable Interface - Serializables which implement both of their serialization operators as operator ()
are said to follow the Default Serializable Interface. Types which do this do not need to tell s11n what their
serialization interface looks like - it will pick them up automatically.

e Load/Save vs De/Serialize - By slln convention, the words "save" and "load" are used when dealing with
streams or files, and "serialize" and "deserialize" are used when refering to saving or restoring the state of a
Serializable to or from a Data Node. Sometimes the words are used interchangeably and, while it is technically
correct in many cases, such usage is considered “marginally ambiguous” in s11n. That said, we aren’t terribly
pedantic about this point ;).

e Classloader - an object used to search for classes based on a lookup key. In s11n this lookup key is conventionally
the string form of a class’ name. Classloaders are used during deserialization to load the proper type for a given
node (this is necessary in order to support polymorphic serialization). The slln classloader has support for
loading classes from DLLs, but that feature is not covered much in these docs. Classloaders work primarily not off
of specific “concrete” types, but off of Base Types, as described briefly below. See http://sl1n.net/class loader/
for more detail than you probably want to know about these.

e T’s classloader, or the T classloader - Refers the the classloader which uses type T as it’s point of reference
for registering and loading classes. More specifically, it means siin::class_loader<T>, a classloader which
supports loading T types. Subtypes of T should be registered with T’s classloader, regardless of whether or not
they also register with their own classloader (e.g., class_loader<SomeTSubType>).

e Base Type - in slln, especially in the context of a classloader, this is used to mean the base-most type which a
given classloader "knows about.” This type is used for registering subtypes of Base Types with the Base Type’s
Serializable Interface, and is a crucial detail for classloading purposes. It is covered in massive detiail in the
classloader’s library manual. In a broader sense, Base Types are used as contexts for marshaling the s11n and
client-side Serializable Interfaces into internally-compatible forms. Base Types are often used as contexts,
in the form of template parameters for functions and classes for which this Base Type distinction is significant
(e.g., those dealing with de/serialization and classloading)®.

e Streamable [Types] - In the context of slln this means any type for which istream> > and ostream< <
operators can be applied to successfully save/restore the state of an object of that type. This inherently includes
all PODs, std::string, and any client-supplied types which meet these conditions. This also implicitely
ezcludes all pointer types. Note that Serializables are not implicitely Streamable, as s11n does not actually
deal with streams at it’s core.

e SAM, the s11n API Marshaler - SAM is the layer of s11n responsible for acting as a communication channel
between s11n’s internal API and any client-side APIs, including, but not at all limited to, forwarding requests
to Serializable Proxies. SAM allows clients to transparently proxy the slln interfaces, is covered in section
13.

e core slln or the s11n core/kernel - These are generic terms referring to the core-most functions in slln.
Specifically, this is limited to the classloader-related functions and de/serialize() variants defined in data_node _serialize.h.
Everything else, from the Serializers to the sllnlite interface, is build around this core.

Did you get all that?

Using the library is not as complex as the above list may imply, as the rest of this documentation will attempt to
convince you. Yes, the details of serialization and classloading, especially in a lower-level language like C++, are
downright scary. slln tries to move the client as far away as possible from those scary details, and it goes to great
pains to do so. However, some understanding of the above terms, and their inter-relationships, is critical to making
full use of s11n (it goes well beyond what this manual covers).

Some non-slln-related terms show up often enough in this documentation that readers not familiar with them will be
at a disadvantage in understanding the library. Briefly, they are:

e i.e. - "in other words” or ”in effect” (from the Latin id est'?)

e e.g. - "for example” or “example given” (from the Latin exempli gratia)

9Normally such template parameters are named SerializableType or NodeType.
10Source: http://www.wsu.edu:8080/ ~brians/errors/e.g.html

10

e Algorithm - we use the same general meaning as in common STL usage: a computuation, normally one com-
monly used in numerous contexts, which is genericized in form such that it can be applied to a wide range of types
which meet the published set of conventions for that algorithm. Like functors, understanding algorithms is es-
sential to effectively using the STL and, by extension, STL-based libraries such as s11n, and algorithms/functors
often go hand-in-hand.
For numerous well-published examples see those in the STL itself, defined in the ISO-standard <algorithm>
header file. Most of the algorithms for s11n are in lib /standalone/src/algo.h (generic algos) and lib/node/src/data_node_al
(s11n-specific).

e Functor - a function or a struct/class type implementing function-call semantics. i.e., a type implementing
one or more operator() member functions. Functors are a cornerstone of all STL-style development, and
must be well-understood before one can make full use of s11n. Most of the client-usable s11ln-related functor
types are declared in lib/standalone/src/functor.h (generic functors) and lib/node/src/data_node functor.h
(s11ln-specific).

e ODR, the One Definition Rule - C/C++’s rule which, put simply, basically states that no function or type

may be defined (i.e., implemented) more than one time in any given binary/library. (This is not an arbitrary
rule, but a technological limitation, akin to std::map being able to only have one object with any given key. In
any case, it’s rather a sane behaviour, if you ask me.)
In s1ln ODR is an oft-heard term because it’s template-based nature, in particular it’s use of macros and
header files to generate “behind-the-scenes” utility and marshaler class template specializations at complile-time,
makes it quite succeptible to ODR violations if some simple, non-obstructive rules are not followed (as described
elsewhere in this manual). (Trust me, once you realize how it works this is never a practical hinderance, and it
is trivial to avoid once you see it happen it a few times and understand it’s nature.) With the release of version
0.8.0, the most commonly-occurring ODR-related problems are believed to be solved.

e Style Points (SP) - an abstract, often poorly-understood and underestimated, unit of measurement of "how
much Style” a particular piece of code exhibits. Poorly-designed code gets minus points, whereas especially
clever code may get plus points (or may, as is occasionally the case, actually be too clever for it’s own good,
and get no points at all). The measurement system for Style Points is not standardized. One common way for
one developer to communicating that s/he wishes to assign SP to, or substract SP from, another developer is to
say say something like, ”+1”, or ”-1”. A phrase like, "cool code!” implicitely carries at least one SP, whereas the
phrase, "great hack!” or ”you rock!” is generally worth several SP (at least from the receiver’s perspective).

It is significant to keep in mind that SP declared by non-developers simply go to /dev/null - they neither count
nor discount the recipient, except possibly in his or her own ego!!. Additionally, the amount of SP a given
reward or pentalty gives or takes may be adjusted by the relative experience levels or reputions of the giver and
receiver. e.g., a 6-month C++ newbie giving +1 SP to a 10-year veteran is not worth nearly as much the other
way around.

The giving of Style Points is sometimes referred to as “schenking” (past tense: schenked or schenkt), derived
from the German verb schenken, meaning "to give [free of cost/as a gift].”

As software developers mature!? they invariably begin, at some indefinate point, to concentrate on Style as much
as they do on the algorithms they develop. This is a natural part of a developer’s growth as a professional, just
as it is in any field, and thus experienced coders can general "pick up SP” much more readily than greenhorns
can.

s11n trivia: To date (17 March 2004), s11n has officially gotten several "neat idea” mails (0 or 1 SP each), one
”(really cool!) hack!” mail (probably 2-3 SP) one “you rock!” mail (’ll also put that at 2-3 SP), and one "work
of art!” mail (regarding the docs, but it doesn’t count: it came from my mother, who’s not a developer ;). And
i’ve loved reading every one of them. :)

3.2 The Official Grossly Oversimplified Overview of the s11n architecture

slln is built out of several quasi-independent sub-modules. ”Quasi-independent” meaning that they mostly rely on
conventions developed within other modules, but not necessarily on the exact types used by those modules. Such
design techniques are a cornerstone of templates-based development, and will be a well-understood principal to STL
coders, thus we won’t even begin to touch on it’s benefits, uses, and multitudinous implications here.

Shameless Plug'3:

This particular aspect of slln’s design is critical to s1ln’s flexibility, and is one of the implementation
details which catapults it far ahead of traditional serialization libraries. It is, for example (and as far

11 And we programmers, by and large, have a repution for living the majority of our lives in exactly that space. ;)

12 As developers, not necessarily as human beings.

13Such a plug is typically worth approximately -1 Style Point, a cost from which this plug is not excempt. In fact, these docs have so
many shameless plugs and outbursts of jubileaum that i’ll go ahead and dock the document as a whole -10 SP. ;)
(i wouldn’t be preaching it if i didn’t believe honestly it, though, so the devotion’s gotta be worth a couple of SP!)
What is a Style Point? See section 3.1.

11

as i am aware), the first software of it’s kind which allows client libraries to transparently adapt the
framework’s interfaces to the client’s interface(s), and to transparently adapt other clients’ Serializable
interfaces (and, additional, transparently adapt to them). In most (all?) other libraries this model is the
other way around: the client has to do all adapting himself. Consider, e.g., that any type can converted
to a Serializable without, e.g., subclassing anything at all. That is, a client can have 1047 different classes
- each with their own serialization interfaces - and they can all transparently de/serialize each other as if
they all had the same function-level interface'*.

Enough plugging. Let’s briefly go over s11n’s major components, in no particular order:

e Classloader - a factory for creating classes based on lookup keys (e.g., class name). This is a critical element
for proper polymorphic deserialization, particularly when loading classes on-the-fly from external sources (e.g.,
a DLL).
As of version 0.7.2, the classloading framework has been simplified via the cllite namespace, which is the class-
loader’s equivalent of sllinlite.

e data node - this is the default/reference implementation for Data Note types. It is supported by a number of
slln-supplied algorithms and functors, though it has no direct dependencies on them. It is significant for this
library that data node has NO dependencies on any other slln-related code, and should never develop such
dependencies: it is a standalone reference implementation of s11n’s Data Node concept.

e Serializers - these objects are responsible for marshaling Data Nodes to and from specific file formats (gram-
mars). The library currently s11n ships with 5 Serializers, but s11nlite only uses one of them by default (which one
it uses is not strictly defined by the interface), and can be changed at runtime by calling s11nlite::serializer _class().

e Core de/serialize() functions - a set of functions which hide the API marshaling that goes on for translating
arbitrary Serializable interfaces into something each other can use. At the application level, these functions
typically make up the heart of the client-side s11n interface, whereas at the library- and class- levels the available
functors and algorithms a much more likely to play a heavy role.

e Serialization API marshalers (SAM)- the core de/serialize passes all of their de/serialize request through
these. These types can be swapped out transparently, customizing the serialization interface on a per-base-type
instance. This feature is used, for example, to direct certain types to use Serializable Proxies, or to implement
pointer-to-reference type translation as needed. These marshaler filter every single de/serialize call made via
the core, and thus the ability to replace them on the client side gives client code 100% plug-in access to the
framework’s de/serialization core, without having to know the details of how everything is marshaled. SAM is
covered in section 13.

e sllnlite - a subset of the above layers, wrapped up in a tidy little interface providing for most common
client object serialization needs. Intended also as a sample client-side interface implementation. That is, by
implementing something like s11nlite a project can completely hide it’s objects from any knowledge of libs11n,
helping to support the "non-intrusion principal” which s11n tries to uphold.

e Generic helper functors and algorithms to support internal and client-side manipulation of Data Nodes and
Serializers, also helpful for sllnlite.

There are also a number of less-visible support layers/classes/functions. See the README file for an overview of
where each part of the library lives in the source tree. The API docs reveal the whole spectrum of available objects
(many of which are internal or special-case, and can be ignored by clients).

Some of the sub-sub layers exist purely as code generated by macros (such as the classloader registration macros), e.g.
to install client-specific preferences into the library.

3.3 Process Overview

3.3.1 Serialization

In the abstract, this is normally what happens for a serialization operation:

1. Client requests the serialization of a Serializable. This is initialized by passing the Serializable into a data con-
tainer (e.g., slln::data_node) via the s11n serialization interace. e.g. sllnlite::serialize<MySerializable>(mynode,myserial

2. slln proxies the request to the registered (or default) interface and passes the target node and source Serializable
to the registered interface.

4Whereas they do all implicitely share a common logical intereface - that of a Serializable, as defined by s11n’s conventions.

12

3. The serialize operator’s implementation should save the Serializable’s state into the data node. It returns true
on success and false on error.

4. slln returns a data node to the client, presumably populated with the data from the Serializable.
5. Client selects a Serializer type and sends the node to it, along with a destination stream /file.
6. Serializer formats the node into the Serializers grammar.

7. The client gets notification of success or failure (true or false, respectively).

Recursive serialization can be triggered, e.g., in a serializable operator’s implementation, which serializes a child
Serializable or a container of Serializables.

Note that in sllnlite the Serializer selection steps are abstracted away to simplify the interface.

3.3.2 Deserialization

While there are at least two client-side approaches to deserialization, most requests normally go more or less like this:

—

. Client requests the deserialization of a Serializable Type from a data stream/file. e.g., sl1nlite::deserialize<MySerializable>
2. s1ln analyses the stream to find a matching Serializer class, then passes the stream off to the that class.
3. Serializer parses the stream into a tree of data nodes and returns the root node to sl11n.

4. If the client requested the loading of a Data Node, as opposed to a Serializable, then the root node is passed to
the user and processing stops here.

5. slln looks at the root node’s impl class() member and uses the Serializable Type’s Classloader to load a concrete
Serializable implementation named after the impl class(). If it fails to find a class, processing stops.

6. s11n marshals the data-to-be-deserialized to the registered deserialization interface for Serializable’s type.

7. Deserialize operator’s implementation should restore the Serializable’s state from the source data node. If it
returns false processing stops.

8. slln destroys the now-unnecessary data node.

©

slln returns a (MySerializable *) to the client, which the client now owns.

The interface also supports deserializing nodes directly into arbitrary Serializables, effectively bypassing steps 2-5.

3.4 Node Names and Property Key naming conventions (IMPORTANT!)

When saving data each node is given a name, fetchable via the name() function. Node names can be thought of as
property keys, with the node’s content representing the value of that key. Unlike property keys, node names need not
be unique within any given data tree. All nodes have a default name, but the default name is not defined (i.e., clients
can safely rely on new nodes have some Serializer-parseable name).

In terms of the core s11ln framework, the key/node names client code uses are irrelevant, but most data formats will
require that they follow conventional variable name syntax:

alphanumeric and underscores only, starting with a letter or underscore.

Any other keys or node names will almost certainly not be loadable (they will probably be saveable, but the data will
be effectively corrupted). More precisely, this depends on the data format you’ve chosen (some don’t care so much
about this detail).

Numeric property keys are another topic altogether. Strictly speaking, they are not portable to all parsers. More
specifically, numeric keys (even floating-point) are handled by the parsers supplied with this library (even the XML
ones), but the data won’t be portable to more standards-compliant parsers. Thus, if data portability is a concern,
avoid numeric keys altogether, and also be aware of the algorithms which uses "dummy” numeric keys when storing
containers of objects, which is sometimes necessary to keep the containers’ original ordering.

Serializable classes normally do not need to deal with a node’s name () except to de/serialize child Serializables. There
are many cases where client code needs to set a node name manually, but these should become clear to the coder as
they arise.

13

3.5

Overview of things to understand about slln

After reading over the basic library conventions, users should read through the following to get an overview of what
topics which should be understood by by clients in order to effectively use the slln framework. Much of it is over-
simplified here - this is an overview, after all. Additionally, some of it is true for sllnlite, but only partially true for
core slln.

3.6

slln::data node is the basic type used to store arbitrary key/value pairs and child objects. It follows a DOM-
style interface, so it’s usage should be fairly straightforward. The core library actually supports any generic Data
Node type which supports the same interface as data_node.

The entire client-side interface for loading and saving all objects is declared in s11lnlite.h and in namespace
s11nlite. The core code is available in namespace s11n, and several of those functors and algorithms are useful
within the context of s11nlite. That said, clients may directly use the core s11n, bypassing s11lnlite completely,
but learning sl1nlite first is recommended.

slln is very container/functor/algorithm based, so it’s usage should be familiar to experienced C++ users
(especially users of the STL).

s11n does not enforce a specific Serializable interface, but inherently supports the so-called Default Serializable
Interface. Client-side classes which implement the default Serializable interface (described later) need no special
registration as being Serializable types. Custom interfaces and proxies are easy to install, as described later.

slln’s core is not stream-oriented, but container-oriented. That is, you serialize data to containers, and those
containers get formatted to (or from) streams by Serializers. Thus s11n doesn’t really care about file formats
- it’s core interface is 100% data format agnostic. For saving, clients must declare a format, but loading is
dispatched to the appropriate parser depending on the content of the stream. That said, s1lnlite uses a default
Serializer type, so clients who don’t care about the underlying data format need never worry about this detail
(tip: see sllnlite::serializer class()).

Classloaders and their "BaseType” types are important concepts to understand in sl1n, mainly for template-
types reasons. They are covered in detail in the class loader library manual, and will be explained a bit later
on. All types which are to be deserializable must be registered with an “appropriate classloader.” What that
really means, in all it’s technical glory, could easily turn into whole document! Be assured that this doc will try
to tell you what you need to know in order to register your classes (it is 100% non-intrusive on classes). The
hope is that most s11n use-cases won’t require much client-side understanding of the subtleties of the classloader
framework.

Notes on error/success values (i.e., justifying the bool)

s11n uses, almost exclusively, bool values to report success or failure for de/serialize operations. The reasons that bool
was chosen are long, but here’s a summary:

It is my opinion that some error value is needed. Integer values must either be mapped to a known set of error
codes - e.g. an enum - or be interpretted client-dependently. Neither of those approaches are terribly suitable
for s11n, largely due to it’s inherently abstract and generic nature.

Based on usage history, i felt it was unnecessary to employ exceptions as the standard means of error reporting.
(i partially regret this, but still generally feel that imposing exception conventions on the clients would not be a
good idea.)

If we consider the standard ostream< < and > >istream operators for a moment: yes, it is technically possible to
check for an error after an extraction/insertion by checking the stream’s state, but in practice this is rarely done,
in particular for ostreams. Thus, i/ostream error checking conventions are oddly similar to s11n’s, probably due
to their logically similar roles as i/o marshalers.

Related to the previous point: slln’s core is container-based, and how many coders check for proper insertion
after a push back() or insert()? None, because those operations (perhaps only by convention?) simply do not
fail.

i actually knew a coder once who (in Java) chose to return the String “success” to indicate success and non-
“success” to indicate failure. i figure that’s also not appropriate for slln. ;)

slln’s conceptual ancestor, Rusty Ballinger’s libFunUtil, uses void returns for it’s de/serialize operations, which means
that clients essentially can’t know if a de/serialize fails. When designing s11n i strongly felt that clients need at least
add some basic level of error detection, and finally settled on plain old booleans. There is in fact a comic irony in that
decision: it is so rare that a de/serialization fails, that a void return type would do just as well for 98% of use-cases!

The seeming shortage of de/serialization failures can primarily be attributed to the following:

14

e The majority of the client-side part of s11n does not deal with i/o streams (in particular, with files).

e The points at which Serializables are given data nodes are far away (in interface terms) from the stream opera-
tions. Stream operations are, by far, the most likely point of failure in a serialization library (bad input format,
file does not exist, out of disk space, write access fails, NFS connection cut, blah blah blah blah).

e The slln core is container-based, and container insertions, as a general rule, do not fail. Also, container searches
only fail in the sense that the data being searched for simply isn’t there.

e In the event of a input stream/parse failure while reading in nodes the process will fail early enough that no
deserialize operators are be called, so they can’t very well fail, can they?

[... much later ... |

While returning a bool for a single de/serialization operation still seems reasonable, the logic behind it rather breaks
down when a tree of objects is serialized. If any given object returns false the the serialization as a whole will fail. This
implies that whole trees can be spoiled by one bad apple (no pun intended). In a best-case scenario only one branch
of the tree would be invalidated, but... is that a good thing, to have partial data saved/loaded and have it flagged as
a success? Of course not, thus s11n must generally consider one serialization failure in a chain of calls to be a total
failure. This is it’s general policy, though client /helper code is not required by sl1ln to enforce such a convention'®.

Furthermore, some specific operations, such as using for each() to serialize a list of Serializables, may [will] have
unpredictable results in the face of a serialization failure. Consider: in that case there is no reasonable way to know
which child failed serialization, as for each() will return the overall result of the operation. If the functor performing
the serialization continues after the first error it will produce much different (but not necessarily more valid) results
than if it rejects all requests after a serialization failure. The data_node_child_deserializer<> class , for example,
refuses to serialize further children after the first failure, but this is purely that class’ convention, not a rule. (In fact,
that class has a "tolerant” flag to disable this pedantic behaviour.)

Ah... there is not 100% satisfying solution, and bools seem to meet the middle ground fairly well.

4 Serializable Interfaces: overview and conventions

Rather than overload you with the details of this right up front, we’re going to grossly oversimplify here and tell you
that the following is the interface which s11n expects from your Serializable types.

Each Serializable type must implement the following two methods:

A serialize operator:

[virtual] bool operator()(NodeType & dest) const;
A deserialize operator:

[virtual] bool operator()(const NodeType & src);

It is important to remember that NodeType is actually an abstract description: any type meeting s1ln’s Data Node
conventions will do. sllnlite uses, unsurprisingly, slln::data_node as the NodeType.

The astute reader may have noticed that the above two functions have the same signature... almost. Their constness
is different, and C++ is smart enough to differentiate based on that. The s1ln interface is designed such that it is
very difficult for clients to have an environment where such ambiguity is possible.

These operators need not be virtual, but they may be so. Serializer proxy functors, in particular, are known for having
non-virtual serialization operators, as are, of course, monomorphic Serializable types.

The truth is that s11n only requires that the argument be a compatible data node type and that the constness matches.
sl1n’s core doesn’t care what function it calls, as long as you tell it which one to use - how to tell s11n that is explained
in section 9.

s1ln trivia: When the de/serialize operators are implemented in terms of operator(), a type is said to
conform to the Default Serializable Interface.

I5Especially when s11n’s author can’t even decide if s11n currently does The Right[est] Thing ;). Tt’s mainly a philosophical question at
this point, and those are often the most difficult ones in software design. :/

15

4.1 Serialize operator conventions

e If the type is polymorphic, it must call dest.impl class(), passing it the string form of this type’s class name.
This is currently the only 100% reliable way to get the proper class names of your Serializable subtypes for use
during during deserialization. (This is made clearer later via examples.) Monomorphic types can be reliably
given a name by the framework, and normally no impl class() needs to be called for them (SAM does this -
section 13).

e Should save the object’s state to the destination node, presumably using dest’s API and the s11n functors/algorithms
designed for such operations. State-saving may continue recursively for Serializable child objects.

e Returns true on success, false on error.

4.2 Deserialize operator conventions

e Should restore the state of an object via the node it is given, plus any sub-nodes, if needed. State-restoration
may continue recursively for collecting Serializable child objects.

e The core library s11n generally makes sure that nodes are passed to objects of the types which serialized the
nodes, but users may "brute-force” any node into any Serializable if they wish to. It is not the job of the
deserialize operator to check that it has received a node for the proper type. It may do so, if it wishes, but this
is out of line with s11n conventions, and not recommended.

e The core library only calls the deserialize operator one time per object, but it is possible that client code will
trigger it multiple times for a given object. Thus any lists, pointers and whatnot should be cleaned up before
restoring an object’s state, to avoid problems like leaking resources or duplicating container entries.

e Returns true on success, false on error.

4.3 Data Node class names (impl class()) (IMPORTANT!)

The importance of this method cannot be understated.

Let us repeat that many times:

while(! this->gets _the_point())

std::cout < < "The importance of impl_ class() in the s11n framework cannot be understated. |n”;

(Don’t be ashamed if your loop runs a little longer than average. It’s a learning process.)

impl class() is part of the Data Node interface, and is used for getting and setting the class name of the type of
object a node’s data represents. This class name is stored in the meta-data of a node and is used for classloading the
proper implementation types during deserialization. By convention the impl class() is the string version of the C+-+
class name, including any namespace part, e.g., “foo::bar::MyClass”. The library does not enforce this convention,
and there are indeed cases where using aliases can simplify things or make them more flexible. See the class loader
documentation for hints on what aliasing can potentially do for you (see also lib/cl/src/cl _demp.cpp).

Client code must, unfortunately, call impl class(), but the rules are very simple:

e Serializables (or their proxies) must call the target node’s impl class() in their serialize operator (not the
deserialize operator), passing it the string name which the client code will later expect to be able to load the
class with.

e If a Serializable class inherits serializable behaviour from a parent type, the subclass must set impl class() after
calling the parent implementation, to ensure the proper subclass type gets into the node.

e As of version 0.8.0, s11n can reliably set the class names for monomorpic and base-most types, but cannot do
so for polymorphic types. In practical terms, this means that when proxying a monomorphic type, impl class()
does not need to be set by the client. For polymorphic types it must be set from within that type’s serialize
operator, as described above.

Algorithms which which parse data directly from data nodes irrespective of the node’s impl class() may ignore the
impl_ class(). One example is the de/serialize_streamable xxx() family of functions: they use raw” data nodes, to
avoid a number of problems involved with registering proper class names for arbitrary containers’ classloaders.

For more on class names, including how to set them in a uniform way for arbitrary types, see section 12.

16

4.3.1 Example impl class() usage

Here’s a sample which shows you all you need to know about the bastard child of the s11n framework, impl class():

Assume class A is a Serializable base type using the Default Serializable Interface and B is a subtype of A. In A’s
serialize (not DEserialize) operator we must write:

node.impl class("A”);
In B’s we should do:

if(! this->A::operator()(node)¢) return false;

node.impl class("B”);

It is not strictly necessary that a subtype return false if the parent type fails to serialize, but it is a good idea unless
the subtype knows how to detect and recover from the problem.

Follow those simple rules and all will be well when it comes to loading the proper type at deserialization time. To
extend the above example. After the node contains B’s state, we can do this:

A * a = sllnlite::deserialize<A>(node); // we use A because that’s the Base Type we're referencing on.

That creates a (B*), and deserializes it using B’s interface.

Let’s quickly look at two similar variants on the above which are generally not correct:
B * a = sllnlite::deserialize<A>(node);

That won’t work - it will fail to compile because there is no implicit conversion possible from A to B. That one is
straightforward, but the details for this one are fairly intricate:

B * a = sllnlite::deserialize(node);

This will not fail to compile, but will probably not do what was expected. In this example B is now the "BaseType”
for classloading/deserialization, which has subtle-yet-significant side-effects. For example, if B is never registered with
the B classloader (e.g., class_loader) then the user will probably be surprised when the above returns 0 instead
of a new, freshly-deserialized object. If B is indeed registered with B’s classloader, and B (as a standalone type) is
recognized as a Serializable, then that call would work as expected: it would return a deserialized (B*).

4.3.2 Using local library support for impl class()

Some heavily object-oriented libraries, like Qt (www.trolltech.com), support a polymorphism-safe className() func-
tion, or similar, where base types can get the proper class name of a subtype. If your trees support this, take advantage
of it: set the impl class() one time in the base type if you can get away with it! The sad news is, however, that
the vast majority of us mortals must get by with doing this one part the hard way. :/ There are actually interesting
macro/template-based ways to catch this for “many” use-cases, but no known 100% reliable way to catch them all.

4.4 Cooperating with other Serializable interfaces

Despite common coding practice, and perhaps even common sense, client Serializables should not (for reasons of
form and code reusability) call their own interfaces’ de/serialize methods directly! Instead they should use the various
de/serialize functions. This is to ensure that interface translation can be done in s11n, allowing Serializables of different
ancestries and interfaces to transparently interoperate. It also helps keep your code more portable to being used in
other projects which support sl1n. There are ezactly two known cases where a client Serializable must call it’s direct
ancestor’s de/serialize methods directly, as opposed to through a proxy: as the first operation in their de/serialize
implementations. In those two cases it’s perfectly acceptable to do so, and in fact could not be done any other way.
Any other direct calls to a Serializable interface can be considered ”poor form” and “unportable.” If you find yourself
directly calling a Serializable’s de/serialize methods, see if you can do it via the core API instead (tip: you can!).

For example, instead of using this:

myserializable->serialize(somenode); // NO! Poor form! Unportable!

16See section 4.4 for why you should never directly call a Serializable’s API. This particular case is one of two which simply cannot be
avoided.

17

use one of these:

slinlite::serialize(my_data_node, *myserializable); // YES! Portable

slln::serialize(my_data_node, *myserializable); // Fine!

Note that there are extremely subtle differences in the calling of the previous two functions: the exact template
arguments they take are different. In this case C+-’s normal automatic argument-to-template type resolution suffices
to select the proper types, so specifying them in <> is unnecessary. One theoretical exception is if the Data Node
type is polymorphic, in which case ... email the dev list and we’ll start a discussion about the potential implications
)

In terms of Style Points (section 3.1), calling a Serializable’s APT directly, except in one of the two “that’s-allowed”
cases is immediately worth a good -2 SP or more, and may forever blemish one’s reputation as a generic coder.
Remember: except for the two exceptions mentioned above there is never anything you can do with the local API
which you cannot also do with the “shared” API (barring, of course, the case of an expanded local s11n interface).

4.5 Member template functions as serialization operators

If a Serializable type implements template-based serialization operators, e.g.:

template <typename NodeType> bool operator()(NodeType & dest) const;
template <typename NodeType> bool operator()(const NodeType & src);

then their de/serialize operators will support any NodeType supported by s11n. Note that s11nlite hides the abstract-
ness of the NodeType, so users wishing to do this will have to work more with the core functions (which essentially
only means using NodeType a lot more, e.g., functioname<NodeType...>()).

Using member template functions has other implications, and should be well-thought-out before it is implemented:
e May require puting the implementation in the header file, to avoid potential linking problems.

e Compilers do not completely check template functions until they are called, so there might be a compile-error-
in-waiting for specific NodeTypes.

e Member function templates cannot be virtual. (This is a C++ restriction, not sl1n-imposed.)

Despite those seeming limitations, experience suggests more and more that templated de/serialize operators generally
offers more flexibility than non-templated. In the case of monomorphic types and proxies, there is almost never a
reason to nmot make these operators member templates, and there are several good reasons to do so:

e The class can work with any Data Node type, instead of just, e.g., sllnlite::node_type.

e This is the only effective way to proxy requests for class templates, e.g., STL containers, as it allows a single pair
of operators to handle de/serialization for a whole family of types. e.g., list<int>, list<double>, list<char> ...
Note that this has nothing directly to do with the NodeType itself, but more with getting the impl class() of
the Serializable type.

5 How to turn JoeAverageClass into a Serializable...
In short, creating a Serializable is normally made up of these simple steps:

1. Create the class, implementing a pair of de/serialize methods with the signatures expected by s11n.

2. Tell s11n that your class exists, via registering it - see section 9.
If you are proxying a well-understood data structure for which a functor already exists to de/serialize it, step one
complete disappears! An example would be proxying a std::list<int> or std:list<Serializable*> - those are both

handleable by the s1ln:list::list _serializer proxy class, provided that the contained types are Serializables. For some
useful proxy functors see section 10.

18

5.1 Create a Serializable class

The interface is made up two de/serialize operators. For this example we will use the so-called Default Serializable
Interface, made up of two overloaded operator()s.

Assume we’ve created these classes:

class MyType {

public:

virtual bool operator()(sllnlite::node_type & dest) const; // serialize
virtual bool operator()(const sllnlite::node_type & src); // deserialize
// ... our functions, etc.

};
class MySubType : public MyType {
public:
virtual bool operator()(sllnlite::node_type & dest) const; // serialize

virtual bool operator()(const sllnlite::node_type & src); // deserialize
// ... our functions, etc.

b

It is perfectly okay to make those operators member function templates, templatized on the NodeType, but keep in
mind that member function templates may not be virtual. Implementing them as templates will make the serialization
operators capable of accepting any Data Node type supported by s11n, which may have future maintenance benefits.

If a Serializable will not be proxied, as the ones shown above are not, we must register it as being a Serializable, as
shown here:

The base-most type is registered like so:

#define S1IN_TYPE MyType
#define S11N_NAME "MyType"

#include <slln/reg_serializable.h>
The subtype is registered like so:

#define S11IN_TYPE MySubType
#define S11N_BASE_TYPE MyType
#define S11N_NAME "MySubType"

#include <slln/reg_serializable.h>

For more information on the registration process, see section 9

If MyType does not support the default interface, see section 9.5 for instructions on registering it’s interface with s11n.

5.2 Specifying Serializer Proxy functors

This is one of s1ln’s most powerful features. With this, any type can be made serializable, provided it’s API is
such that the desired data can be fetched and later restored. Almost all modern objects (those worth serializing) are
designed this way, so this is practically never an issue.

Continuing the example from the previous section, if MyType cannot be made Serializable - if you can’t, or don’t
want to, edit the code - then slln can use a functor to handle de/serialize calls.

First we create a proxy, which is simply a struct or class with this interface:

Serialize:
bool operator()(data_node & dest, const SerializableType & src) const;
Deserialize:

bool operator()(const data_node & src, SerializableType & dest) const;
19

Notes about the operators:

e Yes, both functions "should probably” be const in this case, for the widest functor reusabiliity, but if C++ will
let you get away with non-const operators in your contexts then s11n will accept them.

e They may be templated, and/or the functor may be templated. As long as C++’s normal type resolution can
figure out what to do, it’s legal.

e There are rare cases where calls can be ambiguously for this interface, so two functors - one each for de/serialization
- may be necessary. In practice this is rare, however.

We must then register the proxy, as explained in section 9.6.

It may be interesting to know...

e There can be only one de/serialization handler for any given type, so you may not register both a Base Type
and a proxy as being the handler for that Base Type, nor may you register two proxies as being the proxy for a
single base type. Internally chaining calls within proxies can be used to get around the one-proxy limitation.

e Proxies may not normally save/load private data of the being-proxied type. In practice is is rarely an issue, as
most modern libraries provide adequate accessors for their data. Classes designed such that they only possible
way to store/restore their state is from internally should probably be redesigned to be more friendly. As a
base-line comparison: every STL data structure which has been tried with this library has the necessary API to
support proxying.

e A proxy class does not need to register with a classloader. It may be registered - there is no harm in doing so,
but there is never a need to'”. BaseType, on the other hand, must always be registered with the classloader.

e Proxies have a fixed interface - the function names and signatures may not be changed or marshaled (as Serial-
izable interfaces can), for the simple reason that the proxies are the ones doing the marshaling.

e It may sometimes be necessary, due to ambiguity, to split a de/serialization functor into two functors.

e Proxies can potentially chain calls to each other together, which allows some interesting possibilities and very
flexible control over de/serialization without touching your classes. e.g., a data versioning system could be
implemented as a proxy which verifies a version property and then passes on the call to either the local Serializable
interface of the object or to another proxy.

e Client code can, e.g., use a macro to define which proxy will be used for a given type, allowing them to switch
freely between serialization implementations on a per-type basis.

i have a feeling there are a wide range of as-yes-undiscovered tricks for serialization proxies. Gary Boone calls this
feature ”s11n’s most powerful,” and i can’t help but agree with him.

6 How to turn JoeNonAverageClass into a Serializable...

The techniques covered in the previous section work for most classes, but are not suitable for some others.

The following process works the same way for all types, as long as:

e The type implements a serializable interface we can register with s1ln.
or:

e A functor can be registered which will take over serialization for the type.

All that must be done is that the desired interface must be registered with s11n, as described in section 9.

Note that when registering template types, you also need to register their contained types - they will be passed around
just like other Serializables, so if s11n doesn’t know about them you will get compile errors. And keed in mind that,
e.g., list<int> and list<int*> are different types, and thus require different specializations. However, list<int> and
(list<int>*) are equivalent for most of s11n’s purposes.

Note that as of 0.8.x most standard containers need no special registration, with the exception that their contained
types must be recognized Serializables, as mentioned above. Thus, list<vector<map<int,string> > > requires no
registration whatsoever, but list<MySerializable> requires that MySerializable be a recognized Serializable type. Once
that is done, a container type such as vector<list<map<string,MySerializable> > > can be transparently handled by
the core.

1701, more correctly, if you understand the highly unusual (and theoretical) case that would warrant such registration, then you’ll
understand why i oversimplify here ;).

20

7 Doing things with Serializables

Once you’ve got the Serializable “paperwork” out of the way, you're ready to implement the guts of your serialization
operators. In slln this is normally eztremely simple. Some of the many possibilities are shown below.

In maintenance terms, the serialization operators are normally the only part of a Serializable which must be touched
as a class changes. The “paperwork” parts do not change unless things like the class name or it’s parentage change.

7.1 Setting ”simple” properties
Any data which can be represented as a string key/value pair can be stored in a data node as a property:
node.set(“my_property”, my value);

set() is a function template and accepts a string as a key and any Streamable Type as a value.

There are rare cases involving ambiguity between ints/bools/chars which may require that the client explcitely specify
the property’s type as a template parameter:

node.set<int>("my number”’, mynum);

node.set<bool>("my number”, mybool);

Use get_bool() if you wish to treat strings like ”true”, ”1” and “yes” as equivalent to boolean true.
See the slln::data_node API for the full getter/setter APL

Each property within a node has a unique key: setting a property will overwrite any other property which has the
same key.

7.2 Getting property values

Getting properties from nodes is also very simple. In the abstract, it looks like:
T val = node.get<T>("property name”, some T object);

e.g.,
this->name(node.get("name”, this->name()));

What this is saying is:

Set this object’s name to the value of the 'name’ property of node. If 'name’ is not set in the node, or
cannot be converted to a string via i/o streams, then use the current value of this->name().

That sounds like like a mouthful, but it’s very simple: when calling get() you must specify a second parameter, which
must be of the same type as the return result. This second parameter serves several purposes:

e A default value: a known-good value to use in case the requested property is not set or could not be converted.

e An error value: The library cannot know what is an is not a valid value for such conversions, so the client may
supply one here and compare it to what they expect. e.g., data versioning checks could be implemented this
way.

o It tells get() what type of object it returns, without you having to specify get<ReturnType>("mykey”).

As with set(), get() is a family of overloaded /templated functions, and there are cases where, e.g., int and bools may
cause ambiguity at compile time. See set() for one workaround.

7.2.1 Simple property error checking
Here’s how one might implement simple error checking for properties:

int foo = node.get("meaning of life”, -1);
if(-1 ==foo) { ... error ... }
string bar = node.get("name”, ””);

if(bar.empty()) { ... error ... }

Keep in mind that s11n cannot know what values are acceptable for a given property, thus it can make no assumptions
about what values might be error values. In the case that there is literally no known error value for a property, but
we must know whether it is set, we can either use node.is_set() or - more trickily - read the property twice using two
different default values. If get() returns two different values on two successive calls then the property either is not set
or is failing to convert via it’s istream> > operator.

21

7.2.2 Saving custom Streamable Types

This is a no-brainer. Streamable Types are supported using the same get /set interface as all other “simple” properties.

e.g., to save it:

node.set("geom”; this->geometry());
and to load it:

this->geometry(node.get("geom”,; this->geometry()));
or maybe:

this->geometry(node.get("geom”, Geometry()));

7.3 Finding or adding child nodes to a node

Use s11n::find _child by name() and slln:find children by name() to search for child nodes within a given node.
Alternately, use the node’s children() function to get the list of it’s children, and search for them using a criteria of
your choice. Keep in mind that in a deserialize operator, the node object will be const, and you must therefor declare
the return value of these functions to be (const NodeType *). Failing to do so may cause an odd compile error.

Use slln::create child() to create a child and add it to a parent in one step. Alternately, add children using
node.children().push_back().

7.4 Serializing Value Containers

Value Containers are, in this context, std::list- and std::map-compliant containers for which all stored types are
Streamable Types (see 3.1). slln can save, load and convert such types with unprecedented ease.

Normally containers are stored as sub-nodes of a Serializable’s data node, thus saving them looks like:
slln::map::serialize streamable map(targetnode, "subnode name”, my map);

To use this function directly on a target node, without an intervening subnode, use the two-argument version without
the subnode name. Be warned that none of the serialize xxx() functions are meant to be called repeatedly or
collectively on the same data node container. That is, each one expects to have a "private” node in which to save it’s
data, just as a full-fledged Serializable object’s node would. Violating this may result in mangled content in your data
nodes.

Loading a map requires exactly two more characters of work:

s11ln::map::deserialize _streamable map(targetnode, “subnode name”, my map);

(Can you guess which two characters changed? ;)
If you want to de/serialize a std::list or std::vector, use the de/serialize streamable list() variants instead:
s1ln:list::serialize _streamable list(targetnode, "subnodename”, my list);

Note that s11n does not store the exact type information for data serialized this way, which makes it possible to
convert, e.g., a std::list<int> into a std::vector<double *>, via serialization. The wider implication is that any list- or
map-like types can be served by these simple functions (all of them are implemented in 6-8 lines of code, not counting
typedefs).

7.4.1 Trick: ”casting” containers

If you have lists or maps which are similar, but not exactly of the same types, s11n can act as a middleman to convert
them for you. Assume we have the following maps:

map<int,int> imap;

map<double,double> dmap;
We can convert imap to dmap like this:
slln::slln_cast(imap, dmap);

Doing the opposite conversion “should” also work, but would be a potentially bad idea because any post-decimal data
of the doubles would be lost upon conversion to int. Your compiler may or may not complain about that and may
bail out, depending on the error/warning levels you have told your compiler to use.

22

7.5 De/serializing Serializable objects

In terms of the client interface, saving and restoring Serializable objects is slightly more complex than working with
basic types (like PODs), primarily because we must deal with more type information.

7.5.1 Individual Serializable objects

The following C++ code will save any given Serializable object to a file:
sllnlite::save(myobject, “somefile.whatever”);

this will save it into a target data_node:
s1lnlite::serialize(mynode, myobject);

The node could then be saved via an overloaded form of save().

There are several ways to save a file, depending on what Serializer you want to use. sllnlite uses only one Serializer
by default, so we’ll skip that subject for now (tip: see data node_serialize.h and * _serializer.h for more detail, and
sllnlite::serializer class() for a way to override which Serializer it uses).

To load an object is fairly straightforward. The simplest way is:
BaseType * obj = sllulite::load serializable<BaseType>("somefile.s11n”);

BaseType must be a type registered with the appropriate classloader (i.e., the BaseType classloader) and must of
course be a Serializable type. To illustrate that first point more clearly:

SubTypeOfBaseType * obj = sllnlite::load _serializable<BaseType>("somefile.s11n”);

It is critical that you use the base-most type which was registered with s11n, or you will almost certainly not get back
an object from this function.

If you have a non-pointer type which must be populated from a file, it can be deserialized by getting an intermediary
data node, by using something like the following:

sllnlite::node type * n = sllnlite::load node(”somefile.s11n”);
or:

const sllnlite::node type * n = slln:find child by name(parent node, “subnode name”);
Then, assuming you got a node:

bool worked = sllnlite::deserialize(*n, myobject);

delete(n); // NOT if you got it from another node! It belongs to the parent node!

Note, however, that if the deserialize failed, that myobject might be in an undefined or unusable state. In practice
this is extremely rare, but it may happen, and client code may need to be able to deal with this possibility.

7.5.2 Lists of Serializable pointers
Saving lists of Serializables can be done several ways. The simplest way is:
s1ln:list::serialize list(targetnode, srclist);

srclist can be any list/vector-style container which contains SomeSerializableType, regardless of whether it is a pointer
or reference type.

To deserialize a list of children is just as easy:
sllnlite::deserialize list(srcnode, targetlist);

Note that templates figure out the type of Serializable based on the value type of targetlist.
These functions support any type which is "basically compatible” with std::list, including std::vector.
23

7.5.3 Maps of pointers or value types.

For Serializable maps use the s1ln::map::de/serialize_map() functions.
Those functions work with std::multimap as well as std::map.

If file size is a concern, the s11n::map::de/serialize _streamable map() functions produce leaner output but only work
with i/ostreamable types. These two are, however, untested with std::multimap (if it doesn’t work for you, please
report it to us as a bug!).

7.5.4 ”Brute force” deserialization

Any data node can be de/serialized into any given Serializable, provided the Serializable supports a deserialize operator
for that node type. The main implication of this is that clients may force-feed any given node into any object, regardless
of the meta-data type of the data node (it’s impl class()) and the Serializable’s type. This feature can be used and
abused in a number of ways, and one of the most common uses is to deserialize non-pointer Serializables:

if(const data_node * ch = slln:find child by name(srcnode, "fred”))

sllnlite::deserialize(*ch, myobject);
The notable down-side of doing this, however, is this: if the [de]serialize operation fails then myobject may be in an
undefined state. With pointer children, solving this problem is fairly simple: delete it and create from a known-good

set of data. With a non-pointer the handling of the case may get trickier. Again: a) this is very client-specific, and b)
in practice it is very, very rare for a deserialization to fail.

8 Walk-throughs: imlementing Serializable classes

This section contains some example of implementing real-world-style Serializables. It is expected that this section will
grow as exceptionally illustrative samples are developed or submitted to the project.

There are several complete, documented examples in the source tree, e.g., client/sample/src/demo _struct.cpp.

8.1 Sample #1: Read this before trying to code a Serializable!

Here we show the code necessary to save an imaginary client-side Serializable class, MyType.

The code presented here could be implemented either in a Serializable itself or a in a proxy, as appropriate. The code
is the same, either way.

In this example we are not going to proxy any classes, but instead we will use various algorithms to store them. The
end effect is identical, though the internals of each differ slightly.

8.1.1 The data

Let’s assume we have a class, MyType, with this rather ugly mix of internal data we would like to save:

std::map<int,std::string> istrmap;

std: :map<double,std::string> dstrmap;
std::list<std::string> slist;
std::1list<MyType *> childs; // child objects

size_t m_id;
Looks bad, doesn’t it? Don’t worry - this is a trivial case for s1ln.
8.1.2 The serialize operator
Saving member data normally requires one line of code per member, as shown here:

bool operator() (slinlite::node_type & node) const
{

24

node.impl_class("MyType"); // critical!, but see below!

node.set("id", m_id);

using namespace slinlite;

slin::list::serialize_streamable_list(node, "string_ list", slist);
slin::1list::serialize_list(node, "child", childs);
slin::map::serialize_streamable_map(node, "int_to_str_map", istrmap);
slin::map::serialize_streamable_map(node, "dbl_to_str_map", dstrmap);

return true;

A note about the "streamable” functions: we could use, e.g., serialize list() instead of serialize streamable list(), but
that form produces more verbose output.

As of 0.8.0, setting the impl class() is not necessary for monomorphic types - for these types s1ln can (accurately)
collect the class name from the class registration information. For polymorphic types, however, this must be manually
set (sorry!). See section 12 for more information.

8.1.3 The deserialize operator

The deserialize implementation is almost a mirror-image of the serialize implementation, plus a couple lines of client-
dependent administrative code (not always necessary, as explained below):

bool operator() (const sllinlite::node_type & node)

{
/////7////////////// avoid duplicate entries in our lists:
istrmap.clear();
dstrmap.clear();
slist.clear();
slin::free_list_entries(this->childs);
/17777/7777/77///7///// now get our data:
this->m_id = node.get("id", m_id);
slin::list::deserialize_streamable_list(node, "string_list", slist);
slin::1list::deserialize_list(node, "child", childs);
slin::map: :deserialize_streamable_map(node, "int_to_str_map", istrmap);
slin::map: :deserialize_streamable_map(node, "dbl_to_str_map", dstrmap);
return true;

}

A note about cleaning up before deserialization:

In practice these checks are normally not necessary. libslln never, in the normal line of duty, directly calls the
deserialize operator more than one time for any given Serializable. It is conceivable, however, that client code will
initiate a second (or subsequent) deserialize for a live object, in which case we need to avoid the possibility of appending
to our current properties/children, and in the above example we avoid that problem by clearing out all children and
lists/maps first. In practice such cases only happen in test/debug code, not in real client use-cases. The possibility of
multiple-deserialization is there, and it is potentially ugly, so it is prudent to add the extra few lines of code necessary
to make sure deserialization starts in a clean environment.

8.1.4 Serializable/proxy registration

The interface must now be registered with s11n, so that it knows how to intercept requests on that type’s behalf: for
full details see section 9, and for a quick example see 6.

8.1.5 Domne! Your object is now a generic Serializable Type!
That’s all there is to it. Now MyType will work with any s11n API which work with Serializables. For example:

s1lnlite::save(myobject, std::cout);

25

will dump our MyObject to cout via slln serialization. This will load it from a file:

MyType * obj = s1lnlite::load _serializable<MyType>("filename.s11n”); // also has an istream overload

(Keep in mind that the object you get back might actually be some ancestor of MyType - this operation is polymorphic if MyType is.)
Now that wasn’t so tough, was it?

A very significant property of MyType is this:

MyType is now inherently serializable by any code which uses s1Inlite, regardless of the code’s local
Serialization API! s11n takes care of the API translation between the various local APIs.

Weird, eh? Let’s take a moment to day-dream:

Consider for a moment the outrageous possibility that 746 C++ developers worldwide implement slln-compatible
Serializable support for their objects. Aside from having a convenient serialization library at their disposal (i mean,
obviously ;), those 746 developers now have 100% transparent access to each others’ serialization capabilities.

Now consider for a moment the implications of your classes being in that equasion...
Let us toke on that thought for a moment, absorbing the implications.
Well, ¢ think it’s pretty cool, anyway.

8.2 Gary’s Code (a.k.a. ”The Dream”)

TIP: this section has some very informative, revealing information about:

1. The classloader’s role in s11n.
2. Tips, hints and tricks for developing your own Seriaizables and proxies.

3. Why slln, as a problem domain, is so interesting to it’s daddy. i.e., WTF i spend so much time working on this
code. ;)

The code in this example, and much of the commentary accompanying it, was submitted by Gary Boone. Gary is
one of the first client-side users to show an interest in s11n. His feedback and interaction has been truly intstrumental
in driving some of the recent changes (i.e., 0.8.x), particularly in regards to usage simplifications and improved
documentation (from build docs to this manual - the whole gamut).

THANKS, GARY!!! You’re a great example of how user feedback can directly , and notably, affect the
development of Open Source projects!

8.2.1 Background context and some longer-term history

Gary has been trying to save a container of structs, each containing a couple POD types. As anyone who has attempted
such a thing at the stream level can tell you, even for relatively trivial containers and data types (e.g., even non-trivial
strings):

Saving data is relatively easy. Loading data, especially via a generic interface,
is mind-numbingly, ass-kickingly difficult!

The technical challenges involved in loading even relatively trivial data, especially trying to do so in a unified, generic
manner, are downright frigging scary. Some people get their doctorates trying to solve this type of problem'®. Complete
branches of computer science, and hoardes of computer scientists, students, and acolytes alike, have researched these
types of problems for practically eons. Indeed, their efforts have provided us a number of critical components to aid
us on our way in finding the Holy Grail of serialization in C++...

I0Streams, the predecessor of the current STL iostreams architecture!?, brought us, the C/C++ development commu-
nity, tremendous steps forward, compared to the days of reading data using classical brute-force techniques provided
by standard C libraries. That model has evolved further and further, and is now an instrumental part of almost any
C++ code??, but the practice of directly manipulating data via streams is showing its age. Such an approach is, more

8But all i got was this library manual. ;)
9That was well before my time, but i read a lot of C+4 books. ;)
20 Are you going to tell me you never use std::cout and std::cerr? Yeah, right. Tell it to your grandma - maybe she’ll believe you.

26

often than not, not suitable for use with the common higher-level abstractions developers have come to work with
over the past decade?®!.

In the mid-1990’s HTML become a world-wide-wonder, and XML, a more general variant from same family of meta-
languages HTML evolved from, SGML?2, leapt into the limelite. Pratically overnight, XML evolved into the generic
platform for data exchange and, even more significantly, conversion and interchange. XML is here to stay, and i'm a
tremendous fan of XML, but XML’s era has left an even more important legacy than the elegance of XML itself:

More abstractly, and more fundamentally, the popularity and "well-understoodedness” of XML has greatly hightened
our collective understanding of abstract data structures, e.g. DOMs [Document Object Models], and our understanding
of the general needs of data serialization frameworks. That latter point should be neither overlooked nor underestimated!
What time is it now? 2004 already? It looks like we’re ready for another 10-year cycle to begin...

We're in the 21st century now. In languages like Java(tm) and C# serialization operations are basically built-in
(though i do have very deep fundamental differences with Java’s whole serialization model!). Generic classloading, as
well, is EASY in those languages. Far, far away from Javaland, the problem domain of loading and saving data has
terrified C++ developers for a full generation!

slln aims, rather ambitiously, to put an end to that. The whole general problem of serialization is a very interesting
problem to me, on a personal level. It fascinates me, and s11n’s design is a direct result of the energy i have put into
trying to rid the world of this problem for good.

Well, okay, i didn’t honestly do it to save the world[’s data]:
1 want to save my objects!

That’s my dream...

Oh, my - what a coincidence, indeed...
That’s s11n dream, too!

slln is actively exploring viable in-language C++ routes to find, then take, the C++ community’s next major evo-
lutionary step in general-purpose object serialization... all right at home in ISO-standard C++. This project takes
the learnings of XML, DOMs, streams, functors, class templates, Meyers, Alexandrescu, Strousup, Sutter, Dewhurst,
"Gamma, et al”, comp.lang.c+-+, application frameworks, PHP, Java??, and... even lowly ol’ me - yeah, i’m the poor
bastard who’s been pursuing this problem for 3+ years ;).

In short, s11n is attempting to apply the learning of an entire generation of software developers and architects, building
upon of the streets they carved for us... through the silicon... armed only with their bare text editors and the source
code for their C compilers. These guys have my utmost respect. Yeah, okay... even the ones who chose to use (or
implement!) vi. ;)

Though slln is quite young, it has a years-long “conceptual history”?*, yet it’s capabilities far exceed any original

plans i had for it. Truth be told, i use it in all my C++ code. i can finally... finallyy FINALLY SAVE MY
OBJECTS!!!!

i hope you will now join me in screaming, at the loudest possible volume:

It’s about damned time!!!

8.3 Meanwhile, back in the present day... (Gary’s code, remember?)

Let us repeat the s11n mantra (well, one of several?®):

sl1n is here to Save Your Data, man!

21Things have changed a lot since the ’80s. Consider for a moment if you could ever, in good conscience, go back to writing data
containers and i/o code in C! No std::string, no std::map, no... std::, period!

22[Standard,Structured] Generic Markup Language

23Incidentally, not C#: slln was started before i ever touched C#. In all honesty, i find C#£’s core model to be inferior to s1ln, at least
in terms of it’s client-side interface. For example, it really bugs me that in C# (or any other serialization framework), the client must know
something so basic as what file format their data is stored in. i say (and slln says): only a file’s i/o parsers really care what format a file
is in.

24Utility-class coding, and lots of design thought, started in early 2001. The ”real coding” began in September, 2003, once i finally
cracked the secrets i needed to implement my dream-classloader.

25Trivia note: The banmner label on the slln web site rotates through slin’s list of official mantra. New mantra are added as they ar
discovered. Submit your slln mantra or clever quip and it will show up on the slln web site. :)

27

The type of problem Gary is trying to solve here is slln’s bread and butter, as his solution will show us in a few
moments.

Now, back to Gary’s story...

After getting over the initial learning hurdles - admittedly, s11n’s abstractness can be a significant hinderness in
understanding it - he got it running and sent me an email, which i’ve reproduced below with his permission.

i have made only minor changes to his example code, to fix a relatively minor ommission in his solution (but, all in all,
not bad for someone just starting with s11n!). i must say, it gives me great pleasure to post Gary’s text here. Through
his mails i have witnessed the dawning of his excitement as he comes to understanding the general utility of s11n, and
that is one of the greatest rewards i, as s11n’s author, can possibly get. Reading his mail certainly made me feel good,
anyway :).

Gary’s email address has been removed from these pages at his request. If, after reading his examples, you’re intested
in contacting Gary, please send me a mail saying so and i will happily forward it on to him.

In the interest of explanation and example, the first part of Gary’s text below is posted as he sent it - with the ommision
i mentioned a moment ago. i will cover that ommision afterwards, by simpy pasting it in the way i explained it to
Gary. In some places i have added descriptive or background information, marked like so:

[editorial:]

8.3.1 Gary’s Revelation

[From: Gary Boone, 12 March 2004]

Attached is my solution ('map of structs.*’). Basically, I followed your suggestion of writing the vector
elements as node children using a for each & functor.

I like the idea of not having to change any of my objects, but instead use functors to tell s11n how to
serialize them.

Dude, it works!! That’s amazing! That’s huge, allowing you to code serialization into your projects without
even touching other people’s code in distributed projects. It means you can experiment with the library
without having to hack/unhack your primary codebase.

Stephan, you have to make this clearer in the docs! It should be example #1:

[editorial: i feel compelled to increase the font size of that last part by a few points, because i had the distinct
impression, while reading it, that Gary was overflowing with amazement at this realization, just as i first did when the
implications of the archtecture started to trickle in. :) That said, the full implications and limits of the architecture
not yet fully understood, and probably won’t be in the forseeable future - i honestly believe it to be that flexible.]

One of the most exciting aspects of s11n is that you may not have to change any of your objects to use it!
For example, suppose you had a struct:

struct elem t {
int index;
double value;
elem_ t(void) : index(-1), value(0.0) {}
elem_t(int i, double v) : index(i), value(v) {}
};
You can serialize it without touching it! Just add this proxy functor so sl1n knows how to serialize and
deserialize it:

// define a functor for serialization/deserialization of elem t structs
struct elem t slln { // note: no inheritence requirements, but polymorphism is permitted.
IR ARSI AR AR K

a so-called ”serialization operator”:
P
// This operator stores src’s state into the dest data container.

28

// Note that the SOURCE Serializable is const, while the TARGET

// data node object is not.
IR R |

bool operator()(slln::data _node &dest, const elem t &src) const?® {

dest.impl class("elem t");

dest.set("i", src.index);

dest.set("v", src.value);

return true;

[editorial: the original code was missing that return. i didn’t catch it until editing this
manual.|

}

/*************************************

// a”deserialization operator”:

// This operator restores dest’s state from the src data container.
// Note that the SOURCE node is const, while

// the TARGET Serializable object is not.

AR AR |
bool operator()(const slln::data node &src, elem t &dest) const {

dest.index = src.get("i", -1);

dest.value = src.get("v", 0.0);

return true;

[editorial: ditto regarding the return value]

|8

[editorial: while the similar-signatured overloads of operator() may seem confusing or annoying at first, with only a
little practice they will become second nature, and the symmetry this approach adds to the API improves it’s overall
ease-of-use. Note the bold text in their descriptions, above, form simple pneumonics to remember which operator does
what.

The constness of the arguments ensures that they cannot normally (i.e., via standard slln operations) be called
ambiguously. That said, i have seen one case of a proxy functor (not Serializable) for which call-ambiguity was
been a problem, which is why proxies may optionally be implemented in terms of two objects: one SerializeFunctor
and a corresponding DeserializeFunctor, each of which must implement their corresponding halves of the de/serialize
equasion. Often it is very useful to first implement de/serialize algorithms (i.e. as functions) and then later supply the
8-line wrapper functor class which forwards the calls to the algorithms. Several internal proxies do exactly this, and it
gives client code two different ways of doing the same thing, at the cost of an extra couple minutes of coding the proxy
wrapper around your algoritm. As a general rule, algorithms are slightly easier to test early on in the development,
as they are missing one level of indirection which proxies logically bring along.

Back to you, Gary...]

The final step is to tell s11n about the association between the proxy and it’s delegatee:
#define S1IN_TYPE elem_t

#define S1IN_TYPE_NAME ’elem_t”’

#define S11N_SERIALIZE_FUNCTOR elem_t_siin

#include <slln/reg_proxy.h>

[editorial: Gary’s original code, for 0.7.x, was replaced here with the 0.8.x method, to avoid confusion. The effect is
the same.

After this registration, elem_t_s11n is now the official delegate for all de/serialize operations involving elem_t, or for
any recognized /registered sub-type of elem_t27. Any time a de/serialize operation involves an elem_t or (elem_t *)
s11n will direct the call to elem_t_s11n. The only way for a client to bypass this proxying is to do the most dispicable,
unthinkable act in all of libs11n: passing the node to the Serializable directly, using the Serializable’s API! See section
4.4 for an explanation of why taking such an action is considered Poor Form.]

26Whether or not a functor has const or non-const operator()s is largely a matter of what the functor is used for. The constness of the
arguments is set - they may not deviate from that shown here. The constness of the operator itself is not defined by s11n conventions.
27This sample class is monomorphic, but the exact same conventions apply for polymorphic Serializable types.

29

You're done. Now you can serialize it as easily as:

elem_t e(2, 34.5);

slinlite: :save(e, std::cout);

Deserializing from a file or stream is just as straightforward:

elem_t * e = sllnlite::load_serializable<elem_t>("somefile.elem");
or:

elem_t e;

bool worked = sllnlite::deserialize(node, e);

[editorial: that last example basically “cannot fail” unless elem t’s deserialize implementation wants it to, e.g., if it
gets out-of-bounds/missing data and decides to complain by returning false. What might cause missing data in a
node? That’s exactly what would effectively happen if you "brute-force” a node populated from a non-elem t source
into an elem t. Consider: the node will probably not be laid out the same internally (different property names,
for example), and if it is laid out the same, there are still no guarantees such an operation is symantically valid for
elem_t. Obviously, handling such cases is 100% client-specific, and must be analysed on a case-by-case basis. In
practice this problem is purely theoretical/academic in nature: such a problem never happens. Consider: frameworks
understand their own data models, and don’t go passing around invalid data to each other. s11n’s strict classloading
scheme means it cannot inherently do such things, so that type of “use and abuse” necessarily comes from client-side
code. Again: this never happens. Jesus, i’'m so pedantic sometimes...|

[End Gary’s mail]
Gary hit it right on the head. The above code is exactly in line with what s11n is designed to do, and his first go at a
proxy was implemented exactly correctly. Kudos, Gary!?®

HOWEVER... as mentioned earlier, there is a slight ommision in this example, which we’ll cover next. It’s the type
of potential problem which could easily lie in waiting for a long time without being discovered... yes... that type of
problem!

8.3.2 A minor, but significant, addition...

ACHTUNG: The info in this section has been partly obsoleted by newer regis-
tration techniques: separate, explicite, client-side classloader registration is no
longer required. However, the text is still informative, and gives some (still-
applicable) insights into s11n not found anywhere else.

Gary’s submission was, from an slln perspective, flawlessly implemented, except that one tiny detail slipped by.
Admittedly, it’s probably a detail which only one person on the planet currently truly understands in all of it’s
intricacies - s11n’s author.

Ironically (as we’ll see soon), for Gary’s particular use-case, the ommision he made (yes, i’'ll finally tell you in a moment
was it is!) would never cause a "real” problem - i.e., client code would mostly work as expected - for reasons explained
in detail below. Thus, Gary’s code didn’t have a bug, per se, but an ommision, which could potentially have turned
into a bug someday (and a hard-to-find one, at that).

Here is my response to Gary’s submission, edited in the interest of clarity, example... and sobriety level ;)

>> Gary wrote:

> // ...then tell slln about it

> // register the proxy

> S11NLITE_PROXY(elem_t, elem_t_siin, elem_t_siin);

That’s all perfect, except for one tiny (but important) detail:

// register elem_t with it’s classloader:

S1INLITE_CL_BASE(elem_t);
Everything will actually work without this registration until you try:

elem_t * e = slinlite::deserialize<elem_t>(node);

28Tet’s call that +1 SP ;).
30

Then the elem _t classloader won’t be able to find a class named “elem t”, i.e., the node’s impl class(). We know the
impl class() is "elem _t” because... (have you guessed yet?) ... the Serializable Proxy set that value in it’s serialize
operator - ezactly what it was supposed to do. In slln-process terms, it is always the job of a Serializable/proxy to
set it’s the impl class() into the target serialization node. Exceptions are allowed when, e.g., a specific functor and
algorithm are designed to work with one another, such that perhaps the algorithm actually takes over the impl name()
responsibility.

The so-called "brute-force" form of deserialization will still work without the classloader registration:

elem_t e;

slinlite: :deserialize(node, e);

Why? The answer is deceptively simple: let’s consider what happens when this call is made:

We ask s11n to give node to e [e’s proxy] so that e can restore it’s state from the node. Ah... we already have a
node. There’s the answer: this approach simply hands the node directly over to e [e’s proxy|, bypassing the need for
a classloader. Consider: we handed the node directly to an existing serializable, and thus we don’t need to create
a Serializable object before we populate it (as would be the for a call to deserialize<BaseType>(node)). Ergo... no
classloader operation is directly invoked there. That said, if elem t implements recurive deserialization (i.e., if it
contains child Serializables), then a classloader call may be invoked by one of the sub-deserializations.

IMO those options (brute-force vs. deserialize-to-new-object) give all the de/serialization flexibility a Serializable
needs, in terms of API interface - they can bypass the CL altogether if they like (a custom CL can be installed for
any given BaseType, too... see data_node_ serialize.h for info).

A longer version of the truth...
Truth be told, CL reg is not always necessary:

e If type T’s been CL registered "somewhere else” (i.e., other code files, or even in other libs we link to) then we
don’t need it. (The classloader is nearly magical in this regard.)

e If an object is only "brute-force" deserialized, CL registration is also not needed.

[Not true for 0.8+, but still informative:]

The reason CL reg cannot be done as a part of the slln-[Serializable/Proxy]| registration macros is that it is too
easy to get ODR [One Definition Rule] violations (happens all the time, actually). Thus the small burden of CL
reg must be placed on the clients, who must simply ensure that no single type is registered with the CL more than
once per compilation unit. In practical terms, that is easy to enforce, and the anonymous namespaces which the reg
code live in play a BIG role in avoiding ODR, collisions across multiple compilation units. In linking terms, there are
LOTS of options for linking CL registrations into an app, as covered a bit in this manual, and in more detail in the
libclass loader manual.

Given the pros and cons, sl1n takes the more cautious (and ultimately much more flexible) route of requiring that
someone register the appropriate types with the CL - s11ln will not do this by itself except for a small number of
common types (PODs/string).

9 slln registration & ”supermacros” (IMPORTANT)

As of version 0.8.0, s11n uses a new class registration process, providing a single interface for registering any types,
and handling all classloader registration.

Historically, macros have been used to handle registration, but these have a huge number of limitations. We now
have a new process which, while a tad more verbose, is far, far superior is many ways (the only down-side being it’s
verbosity). i like to call them...

9.1 ”Supermacros”

s11n uses generic “supermacros”’ to register anything and everything. A supermacro is a header file which is written to
work like a C++ macro, which essentially means that it is designed to be passed parameters and included, potentially
repeatedly.

Use of a supermacro looks something like this:

#define MYARG1 ’’some string’’
#define MYARG2 foo::AType

#include ’’my_supermacro.h’

31

By convention, and for client convenience, the supermacro is responsible for unsetting any arguments it expects after
it is done with them, so client code may repeatedly call the macro without #undef’ing them.

Sample:

#define S1IN_TYPE std::map<std::string,std::string>

#define S11N_NAME "std::map<std::string,std::string>"

#define S11N_SERIALIZE_FUNCTOR slin::value_map_serializer_proxy
#include <slln/reg_proxy.h>

While the now-outmoded registration macros are (barely) suitable for many non-templates-based cases, supermacros
allow some - er... TONS - of features which the simpler macros simply cannot come close to providing. For example:

e A supermacro can handle almost any case, using a single - yet extendable - interface, and more complex variants
can implement their own ”supermacro” file.

e Supermacros can do arbitrary tasks, like classloader registration, freeing clients of this task.

e Arbitrary new supermacros can be introduced at any time without impacting existing code, which means,
for example, client code can use a #define to swtich between interfaces, by including different registration
Supermacros.

e ODR violations can be more easily eliminated (in theory, completely), as each supermacro is free to implement
it’s internals however it wants. e.g., if it uses a custom classloader registration technique then it cannot collide
with the default implementations provided via libclass loader’s macros.

e As they are implemented in "real header code”, they are completely immune to the typical limitations of macros,
and simply much easier to maintain.

e This approach does all necessary registration in one step, including classloader registration (which could not be
reliably done via the macro approach, due to potential of ODR-violations).

e Supermacros can be arbitrarily large, wheres macros get very tedious to edit once they are longer than a few
lines.

e They are much, much easier to debug when something doesn’t compile: we even get proper file names and line
numbers (yes!!!!).

e At least a handful of significant maintenance benifits come to mind.

The adoption of the supermacro mechanic into s11n 0.8 opened up a huge number of possibilities which were simply
not practical to do before, and the implications are still not fully appreciated/understood.

9.2 (eneral: Base Types

All of slln’s activity is "keyed” to a type’s Base Type. This is used for a number of internal mechanisms, far too
detailed to even properly summarize here. A BaseType represents the base-most type which a ’registration tree”
knows about. In client/API terms, this means that when using a heirarchy of types, the base-most Serializable type
should be used for all templatized BaseType/SerializableType parameters.

(See, it’s difficult to describe!)

In most usage using BaseTypes as key is quite natural and normal, but one known case exists where they can be easily
confused:

Assume we have this heirachy:
AType <—|extended by] — BType <— CType
In terms of matching BaseType to subtypes, for most purposes, that looks like this:

e BType’s BaseType is AType
e CType’s BaseType is AType

There are valid cases where registering both bases of CType are useful, but doing so in the same compilation unit will
fail with the default registration process, with ODR collisions. The need to do this is rare, in any case, and requires
a good understanding of how the classloader works. Doing it is very straightforward, but requires a bit of client-side
effort.

32

9.3 Choosing class names when registering

slln does not care what class names you use. We could use the name "fred” for, e.g., std::map<string,string> and
the end effect is the same as if we had used it’s “real” name. In fact, we could also call the pair type contained in that
map “fred” without getting a collision because those two types use different classloaders.

The important thing is that you are consistent with class names. Once you change them, any older data will not be
loadable via the classloader unless you explicitely alias the type names: see cllite::alias() for how to do this, or see the
example in reg serializer.h.

By convention, slln uses a class’ C+-+ name, minus any const and pointer parts, as those parts are irrelevant
for purposes of classloading and cause completely unnecessary maintenance in other parts of the code (including,
potentially, client code). Thus, when slln saves a (std::istring *) and a (std::string), the type slln uses will be
“std::string” for both of them, and the context of a deserialization determines exactly which form is created.

9.4 Registering Base Types supporting serialization operator()s

As of s11n 0.8, s11n "requires” so-called Default Serializables to be registered. In truth, they don’t have to be for all
cases, but for widest compatibility and ease of use, it is highly recommended. It is pretty painless, and must be done
only one time per type:

#define S11N_TYPE ASerType
#define S11N_NAME "ASerType"

#include <slln/reg_seria1izab1e.h>
For a registration of a subtype of ASerType, use:

#define S11N_BASE_TYPE ASerType
#define S11N_TYPE BSerType
#define S11N_NAME "BSerType"

#include <sllin/reg_serializable.h>

The S1IN xxx macros are reset when including the registration code, so client code need not unset them before
redefining them.

9.5 Registering types which implement a custom Serializable interface

If a class implements a pair of de/serialization functions, but does not use operator() overloads, the process is simply
a minor extension of the default case described in the previous section.

For example, assume we have the following two member functions in our classes:

[virtual] bool save()(data_node & dest) const;

[virtual] bool load()(const data_node & src);

(The same names may be used for both functions, as long as the constness is such that they can be properly told apart
by the compiler.)

Simply add these two defines before including the registration supermacro:

#define S11N_SERIALIZE_FUNCTION save
#define S11N_DESERIALIZE_FUNCTION load

That’s it - you’re done.

Note that it is okay to pass operator () as the function names, but doing so is redundant - this is the default behaviour.

9.6 Registering Serializable Proxies

In fact, there is no one single way to do this, because there are several pieces to a registration:
The important things are:
e Proxied type must be registered with appropriate classloader (normally it’s own).

e Proxied class’ name should be registered with class _name<ProxiedType>>. Not strictly required, but very useful.
33

e Proxy implementation must be have a SAM specialization installed (section 13).
After months of experimentation, s11n refines the process to simply calling the following supermacro:

#define S11N_TYPE ASerType

#define S11N_NAME "ASerType"

#define S11N_SERIALIZE_FUNCTOR SampleProxySerializer

// optional: #define S11N_DESERIALIZE_FUNCTOR SampleProxyDeserializer

// DESERIALIZE defaults to the SERIALIZE functor, which works fine for most cases.
#include <sllin/reg_proxy.h>

This is repeated for each proxy/type combination you wish to register. The macros used by reg_proxy.h are temporary,
and unset when it is included.

There are other optional macros to define for that header: see reg_proxy.h for full details.
If we extend ASerType with BSerType, B’s will look like this:

#define S11N_BASE_TYPE ASerType
#define S11N_TYPE BSerType
#define S11N_NAME "BSerType"
#include <slin/reg_proxy.h>

Without the need to specify the functor name - it is inherited from the BASE TYPE.

9.7 Where to invoke registration (IMPORTANT)

It is important to understand exactly where the Serializable registration macros need to be, so that you can place
them in your code at a point where s11n can find them when needed. In general this is very straightforward, but it is
easy to miss it.

At any point where a de/serialize operation is requested for type T via the s11n core framework (including s11nlite),
the following conditions must be met:

e The Serializable registration implementation code for T must be available to s11n. In practice, this means that
the registration code must be available to the the client code requesting the operation at the time it is compiled.

e T must be a complete type, not, e.g., defined only via a forward declaration. (T’s implementation need not be
available, but it’s interface must be declared.)

Because of sl1n’s templated nature, these rules apply at compile time. This essentially means that the registration
should generally be done in one of the following places:

e T’s header file. (Most straightforward, but also arguably the sloppiest and most intrusive on T.)

e The implementation file(s) making the operation. (Be careful to avoid unduly duplicating registrations, for
maintenance reasons.)

e A separate header created exclusively for this purpose, which is included by any code which initiates de/serialize
operations on T objects. For example, we might have T.h and T slln.h, which registers the class with s11n.
(This is probably the cleanest solution for non-trivial projects.)

In the simplest client-side case - a main.cpp with all implementation code in that file - simply call the registration
macros right after each class’ declaration.

9.7.1 Hand-implementing the macro code (IMPORTANT)

Whenever these docs refer to calling a certain macro, what they really imply is: include code which is functionally
equivalent to that generated by the macro. This code can be hand-written, generated via a script, or whatever. In
any case, it must be available when s11n needs it, as described above.

34

10 Existing proxies, functors and algorithms

slln’s ability to use algorithms, functors and proxies to de/serialize arbitrary types is the heart of it’s power and
flexibility. The library comes with a number of useful functors/algos/proxies, some of which are described in this
section. Once a couple of these are understood, implementing customized ones is very straightforward.

Most of the classes/functions listed below live in one of the following files:

lib/node/src/data_node_ functor.h
lib/node/src/data_node ago.h

lib /standalone/src/algo.h
lib/standalone/src/functor.h

The whole library, with the unfortunately exception of the Serializer lexers, is based upon the STL, so experienced
STL coders should have no trouble coming up with their own utility functors and algorithms for use with s11n. (Please
submit them back to this project for inclusion in the mainstream releases!)

10.1 Commonly-used Proxies

This section briefly lists some of the available proxies which are often useful for common tasks.
To install any of these proxies for one your types, simply do this:

#define S11N_TYPE MyType

#define S11N_NAME *’MyType”’

#define S11N_SERIALIZE_FUNCTOR serializer_proxy

// #define S11N_DESERIALIZE_FUNCTOR deserializer_proxy
// =77~ not required unless noted by the proxy’s docs.

#include <sllin/reg_proxy.h>

In theory, passing an algorithm function name as the functor(s) will also work, but it hasn’t been tested yet.

When writing proxies, remember that it is perfectly okay for proxies to hand work off to each other - they may be
chained to use several “small” serializers to deal with more complex types. As an example, the pair _serializer proxy
can be used to serialize each element of any map. If you write any proxies or algorithms which are compatible with
this framework, please submit them to us!

Keep in mind that most std:: containers are automatically proxied by the “most generic” proxy available. As usual,
“most generic” also means "not the most efficient” for all cases. Clients may set up their own proxies for specific
container instantiations. As of 0.8.3, the following containers are handled without any client-side intervention:

o std::list

e std::vector

e std::map and std::multimap
e std::pair

e std:set (std::multiset “might” work - it’s untested)

10.1.1 Streamable types: slln::istreamable type serializer proxy

This proxy can handle any streamable type, treating it as a single Serializable object. Thus a proxies int or float
will be stored in it’s own data node during serialization. While this is definately not space-efficient for small types, it
allows some very flexible algorithms to be written based off of this functor, because PODs registered with this proxy
can be treated as full-fledged Serialiables.

slln installs this proxy for all basic POD types and std::string by default. Clients may plug in any i/ostreamable
types they wish using the reg_proxy.h supermacro.

35

10.1.2 list /vector/set: slln::list::list serializer proxy

This flexible proxy can handle any type of list/vector/set containing Serializables. It handles, e.g., list<int> and
list<<int™>, or vector<pair<string,MySerializable*> >, and set<string>, provided the internally-contained parts are
Serializable. Remember, the basic PODs are inherently handled, so there is no need to register the contained-in-list
type for those or std::string.

Trivia:

The source code for this proxy shows an interesting example of how pointer and non-pointer types can be
treated identically in template code, including allocation and deallocation objects in a way which is agnostic
of this detail. This makes some formerly impossible-or-difficult cases very staightforward to implement in
one function.

10.1.3 pair: slln::map::pair serializer proxy

Like list _serializer proxy, this type can handle pairs containing any pointer or reference type which is itself a Seri-
alizable. It would be highly unusual to use this proxy directly - it exists primarily to simplify the implementation of
the std::map proxy.

10.1.4 map/multimap: slln::map::map _serializer proxy

Like list _serializer proxy, this type can handle maps containing any pointer or reference type which is itself a Seri-
alizable. This proxy also works for std::set and std::multimap.

Alternately, maps containing only Streamable Types may be proxied by s11n::map::streamable _map _serializer proxy.
This proxy will produce leaner output, but is only suitable for Streamables and is untested with multimaps (if that
doesn’t work, it’s a bug).

10.2 Commonly-used algorithms, functors and helpers

The list below summarizes some algorithms which often come in handy in client code or when developing s11n proxies
and algorithms. Please see their API docs for their full details, and please do not use one of these without understanding
it’s conventions and restrictions.

More functors and algos are being developed all the time, as needed, so see the API docs for new ones which might
not be in this list.

| function() or functor | Short description
free [list,map| entries() Generically deallocates entries in a list/map and empties it.
create_ child() Creates a named data node and inserts it into a given parent.
child pointer deep copier Deep-copies a list of pointers. Not polymorphism-safe.
object _deleter Use with std::for _each(), to generically deallocate objects.
pointer cleaner Essentially a poor-man’s multi-pointer auto_ ptr.

de/serialize _streamable _map() | Do just that. Supports any map/multimap containing only i/ostreamable types.

de/serialize streamable list() | Ditto, for list/vector types.

de/serialize [map/list/pair]() de/serialize containers of Serializables.

object _reference wrapper Allows referring to an object as if it is a reference, regardless of it’s pointerness.
pair_entry_ deallocator Generically deallocates elements in a pair<X[*],Y[*]>.

abstract _creator A weird type to allow consolidation of some algos regardess of argument pointerness.

11 Data Formats (Serializers)

s11n uses an interface, generically known as the Serializer interface, which defines how client code initializes a load or
save request, but specifies nothing about data formats. Indeed, the i/o layer of s11n is implemented on top of the core
serialization API, which was written before the i/o layer was, and the core is 100% code-independent of this layer. In
slinlite only one Serializer is used by default: use sllnlite::serializer class() to change it.

11.1 General conventions

However data-format agnostic s11n may be, all supported data formats have a similar logical construction. The basic
conventions for data formats compatible with the s11n model are:

36

e Each data file contains, at most, one root node, per long-standing XML conventions.

e Nodes may represent any Serializable type, with all that that implies, or "raw” data nodes (i.e., nodes without
meta-information specifying the type of object they represent).

e Nodes may contain an arbitrary number of child nodes.
e Nodes must have a name meeting the criteria specified in section 4.3. The name need not be unique.

e Nodes must have an “impl class” - the class name of the type for which the node contains data, to be used by
the classloader when deserializing the node. It is acceptable to use "dummy names” here, provided someone
knows how to parse the data out (e.g., the functions described in in section 7.4 work this way). s11n defines an
impl class() accessor function for getting and setting this name in a node.

e Nodes may contain an arbitrary number of key/value pairs, called properties:

— Propery keys must be unique within any given node, and ”should” contain only alpha-numeric characters
or underscores, for compatibility with the widest variety of i/o formats. See section 4.3 for the general
guidelines.

— Property values may be of any Streamable Type (not pointers) which supports de/serialization via the
standard C++ istream™> > and ostream< < operators.

All that is basically saying is, the framework expects that data can be structured similarly to an XML DOM. Practice
implies that the vast majority of data can be easily structured this way, or can at least be structured in a way which
is easily convertable to a DOM. Whether it is an efficient model for a given data set is another question entirely, of
course.

11.1.1 File extensions

File extensions are irrelevant for the library - client files may be named however you like. Clients are of course free
to implement their own extention-to-format or extension-to-class conventions. (i tend to use the file extension .s11n,
because that’s really what the files are holding - data for the s11n framework.)

11.1.2 Indentation

Most Serializers indent their output to make it more readable for humans. Where appropriate they use hard tabs
instead of spaces, to help reduce file sizes. There are plans for offering a toggle for indention, but where exactly this
toggle should live is still under consideration. On large data sets indentation can make a significant difference in file
size, and can account for up to 10% of a file’s size for data sets containing lots of small data (e.g., integers).

11.1.3 Magic Cookies

This information is mainly of interest to parser writers and people who want to hand-edit serialized data.

Each Serializer has an associated "magic cookie" string, represented as the first line of an slln data file. In the
examples show in the following sections, the magic cookie is shown as the first line of the sample data. This string
should be in the first line of a serialized file so the data readers can tell, without trying to parse the whole thing, which
parser is associated with a file. The input parsers themselves do not use the cookie, but it is required by code which
maps cookies to parsers. This is a crucial detail for loading data without having to know the data format in advance.
(Tip: it uses s1in::classload<SomeSerializableBaseType>()).

Note that the i/o classes include this cookie in their output, so clients need not normally even know the cookie exists
- they are mentioned here mainly for the benefit of those writing parsers, so they know how the framework will know
to select their format’s parser, or for those who wish to hand-edit s11n data files.

Be aware that s11n consumes the magic cookie while analyzing an input stream, so the input parsers do not get their
cookie. This has one minor down-side - the same Serializers cannot easily support multiple cookies (e.g., different
versions). However, it makes the streaming much simpler internally by avoiding the need to buffer the whole input
stream before passing it on.

See serializers.{h,cpp} for samples of how to add new Serializers to the framework.

37

11.2 Overview of available Serializers

This section briefly describes the various data formats which the included Serializers support. The exact data format
you use for a given project will depend on many factors. Clients are free to write their own i/o support, and need not
depend on the interfaces provided with s11n.

Basic compatibility tests are run on the various de/serializers, and currently they all seem to be equally compatible
for "normal” serialization needs (that is, the things i’ve used it for so far). Any known or potential problems with
specific parsers are listed in their descriptions. No significant cross-format incompatibilities are known to exist.

11.2.1 funtxt (aka, SerialTree 1)

Serializer class: slln::io::funtxt_serializer

This is a simple-grammared, text-based format which looks similar to conventional config files, but with some important
differences to support deserialization of more complex data types.

This format was adopted from libFfunUtil, as it has been used in the QUB project since 2000, and should be read-
compatible with that project’s parser. It has a very long track record in the QUB project and can be recommended
for a wide variety of standard data sets uses. It also has the benefit of being one of the most human-readable/editable
of the formats (with parens being a close contender: section 11.2.4).

Known caveats/limitations:

e Known to have problems reading some unusual string contructs, such as properties which start with a quote but
do not end with one.

Sample:

#SerialTree 1
nodename class=SomeClass {
property_name property value
prop2 property values can \
span lines.

comment line.
child_node class=AnotherClass {

properties ...

¥
Unlike most of the parsers, this one is rather picky about some of the control tokens?:

e Closing braces must be on a line by themselves.

e Each property must be on it’s own line, but may span lines if each newline is backslash-escaped. Such newlines
are retained when the data is read in.

This parser accepts some constructs which the original (libFunUtil) parser does not, such as C-style comment blocks,
but those extensions are not documented because i prefer to maintain data compatibility with libFunUtil, and they
play no role in the automated usage of the parser (they are useful for people who hand-edit the files, though).

11.2.2 funxml (aka, SerialTree XML)

Serializer class: slin::io::funxml_serializer

The so-called funxml format is, like funtxt, adopted from libFunUtil and has a long track-record. This file format is
highly recommended, primarily because of it’s long history in the QUB project, and it easily handles a wide variety
of complex data.

Known limitations/caveats:

e Does only very rudimentary character translation for XML entities - just enough for the input parser to reliably
handle it. This will be fixed when problematic data actually shows up in a use-case.

29Hey, it was my first lexer - gimme a breat ;). Also, i wanted it to be compatible with libFunUtil’s.

38

e To help support the various container serialization functions (section 7.4), this parser accepts node names which
are numeric. That feature is not compatible with XML standards, and data files which use this feature may not
be loadable by most XML tools without some filtering.

e Does not parse self-closing elements, e.g. <node ... />. Supporting that would make the output files more
compact, so that’s on the to-do list.

Sample:

<!DOCTYPE SerialTree>

<nodename class="’SomeClass’’>

<property_name>property value</property_name>
<prop2>value</prop2>
<empty></empty>

</nodename>

11.2.3 simplexml

Serializer class: siin::io::simplexml_serializer

This simple XML dialect is similar to funxml, but stores nodes’ properties as XML attributes instead of as elements.
This leads to much smaller output but is not suitable for data which are too complex to be used as XML attributes.

This format handles XML CDATA as follows:

e Only CDATA wrapped in <! [CDATA[a block like this]]> are recognized.
e At input-time all XML CDATA is stuffed into the "CDATA” property of the node.

e At output-time any data in a node’s CDATA property is not saved as an XML attribute named "CDATA”, but
is instead stored as an XML CDATA block.

This is a non-standard extension to data node conventions, so clients which rely on this feature will be dependent on
this specific Serializer. In practice, this feature has never been used client-side, but it seemed like an interesting thing
to code at the time :/.

Known limitations:

e See the caveats/limitations notes in section 11.2.2. Most of those apply here.

e Not suitable for use with data which cannot be safely stored as XML attributes. That is, it is fine for storing
numbers and other simple types, but storing complex strings may result in Grief (in the form of un-readable
data).

e The XML attribute name "s11n_class” is reserved for use by the Serializer, to store the impl class() of each
node.

Sample:

<!DOCTYPE siin::simplexml>

<nodename sllin_class="’SomeClass”’

property_name="’property value”’
prop2=""kquot;quotes" get translated”
prop3="’value’’>

<![CDATA[optional CDATA stuff 11>

<subnode slin_class="Whatever’’ name="’subl’’ />

<subnode slin_class="Whatever’ name="'sub2’’ />

</nodename>

39

11.2.4 parens

Serializer class: slin::io::parens_serializer

This serializer uses a compact lisp-like grammar which produces smaller files than the other Serializers in most contexts.
It is arguably as easy to hand-edit as funtxt (section 11.2.1) and has some extra features specifically to help support
hand-editing. It is arguably the best-suited of the available Serializers for simple data, like numbers and simple strings,
because of it’s grammatic compactness and human-readability.

Known limitations:

e Known to have problems with some unusual string contructs, such as properties which start with a quote but
do not end with one.

Sample:

(s1in::parens)

nodename=(ClassName

(property_name value may be a \(’’non-trivial’’\) string.)
(prop2 prop2)
subnode=(SomeClass (some_property value))

(* Comment block.

subnode=(NodeClass (prop value))

Comment blocks cannot be used in property values,

but may be used in class blocks (outside of a property),
’’between’’ nodes, or in the global scope (outside the root node).

*)

This format generally does not care about extraneous whitespaces. The exception is property values, where leading
whitespace is removed but internal and trailing whitespace is kept intact.

When hand-editing, be sure that any closing parenthesis [some people call them braces| in propery values are backslash-
escaped:

(prop_name contains a \) but that’s okay as long as it’s escaped.)

Opening parens may optionally be escaped: this is to help out Emacs, which gets out-of-sync in terms of indention and
paren-matching when only the closing parens are escaped. When saving data the Serializer will escape both opening
and closing parens.

11.2.5 compact (aka, 51191011)

Serializer class: slin::io::compact_serializer

This Serializer read and writes a compact, almost-binary grammar. Despite it’s name (and the initial expectations),
it is not always the most compact of the formats. The internal "dumb numbers” nature of this Serializer, with very
little context-dependency to screw things up while parsing, should make it suitable for just about any data.

Known limitations:

Hand-editing it is very difficult. The data’s sizes are encoded in the stream, preceeding the data, and any change
in the data requires an update to the block’s size - failing to do so effectively corrupts the data.

e Node names, impl class names and property keys are limited to 255 characters in length.

Property data is "limited” to 4GB per property.

Input parser breaks with SOME single-letter class names, for reasons not yet fully understood.

Sample:

5119101130
f108somenode06NoClasse101a0003foo0. ..

30751197 is as close to “s11n” as i could get with integers. ”1011” represents the data format version (there was a predecessor in 0.6.x and
earlier).

40

11.3 Tricks
11.3.1 Using a specific Serializer

Simply pick the class you would and use it’s de/serialize() member functions.
Normally you must select a class (i.e., file format) when saving, but loading is done transparently of the format.
See the various s11n::serialize<>() functions for a form which takes a SerializerType template argument.

11.3.2 Selecting a Serializer in sllnlite

See sllnlite::serializer class() and sllnlite::create_serializer(), both of which take a classname for any registered
subclass of sllnlite::serializer base type.

11.3.3 Multiplexing Serializers

This has never been done, but it seems marginally reasonable. i can personally see little benefit in doing so, however.

If you’d like, e.g., save to multiple output formats at once, or add debugging, accounting, or logging info to a Serializer,
this is straightforward to do: create a Serializer. By subclassing an existing Serializer it is straightforward to add your
own code and pass the call on. If you don’t need sl1n to see your Serializer, then don’t write one, and simply provide
a function which does the same thing.

Saving to multiple formats is only straightforward when the Serializer is passed a filename (as opposed to a stream).
In this case it can simple invoke the Serializers it wishes, in order, sending the output to a different file. Packaging
the output in the same output stream is only useful if this theoretical Serializer can also separate them later. If
a multiplexer accepts an input stream, it must buffer the stream so that it can pass on the streamed data to each
multiplexed Serializer, as the stream contents will be consumed by the first reader.

12 impl class() & class name<>: the whole truth

Once upon a time - the first few months of s11n’s development - s11n developed a rather interesting trick for getting
a type’s name at runtime. Despite how straightforward this must sound, i promise it is not. C+-+ offers no 100%
reliable, in-language, understood way of getting something as seemingly trivial as a type’s frigging name. While s11n’s
trick (shown soon) works, it has some limitations in terms of cases which it simply cannot catch - the end effect of
which being that objects of BType end up getting the class name of their base-most type (e.g., "AType”). Let’s not
even think about using typeid for class names: typeid::name() officially provides undefined behaviour, which means
we won’t even consider it.

Historical note:

Very early versions of s11n used a typeid-to-typename mapping, which worked quite well (and did not
require cousistent typeids across app sessions), but it turns out that typeid(T).name() can return different
values for T when T is used different code contexts, e.g., in a DLL vs linked in to the main app. Thus
that approach was, sadly, abandoned.

To be honest, the details of class names vis-a-vis s11n, in particular vis-a-vis s11n client-side code, are an amazingly
long story. We're going to skip over significant amounts of background detail, theory, design philosophy, etc., and cut
to the "hows” and the more significant "whys”.

12.1 impl class()

By slln convention, impl class() is a member function of Data Node types, used to get and set the string form of a
type’s name. For slln this is significant at the following points:

1. When serializing an object, the node it is stored in should have it’s impl class() set to the object’s class name.
This is possible to achieve at the framework level for the majority of (all?) monomorphic types, but impossible
to achieve polymorphically without some small amount of client-side work. In s11n this “small amount” of work
comes in the form of setting a node’s impl name() to the string form of the Serializable’s class’ name. This is
done in an object’s serialize operator (not deserialize). If a type inherits Serializable behaviours it must set the
impl _class() after calling the inherited behaviour, to avoid that the parent type overwrite the impl class() of
the subtype.

Note that Serializable Proxies need to set the impl class() to the name of the Serializable type, not to the name
of the proxy type. Why? Read the next section and then it should be clear

41

2. When deserializing a node to a given BaseType, as in this code:
BaseType * b = slinlite::deserialize<BaseType>(somenode);
s11n asks the BaseType’s classloader (e.g., s1ln::classloader<BaseType>()) for an object of type mapped to
the name stored in somenode.impl_class(). The classloader, ideally, has a subtype of BaseType registered with
that name (or it is BaseType’s name, or maybe it can find the type via a DLL lookup). If so, the classloader will
return a new instance of that type and s11ln will hand off the data node to it using the internal API marshaling
interfaces. If no class of the given name can be found by BaseType’s classloader (other classloaders are not
considered), deserialialization necessarily fails, as there is no object to deserialize the data into.
When a data node is ”directly” handed to a Serializable (e.g., s1inlite: :deserialize(srcnode,target)) then
the impl class() is drrelevant, as sl1ln must assume that the given node and Serializable "belong together”,
semantically speaking. This property can be used to store arbitrary data in nodes, and have complementary
de/serialize algorithms or functors which understand a common ”data layout” within a given node. e.g., some
of the various serialize[container]() variants use this: each pair of de/serialize functors supports one end of the
data’s "dialect”, would be one way to put it.

In theory these points are all pretty straightforward, and all should make pretty clear sense. After all, to load a
specific type it must have a lookup key of some type, and a classname makes a pretty darned convenient key type for
a classloader. The classloader’s core actually supports any key type, but slln is restricted to strings, mainly for the
point just mentioned, but also because non-strings aren’t meaningful in the context of doing DLL searches for new
Serializable types. Consider: what should an int key type be useful for in that context - interpretting it as an inode
number? Thus, s11n internally uses only string-keyed classloaders.

Hopefully the significance of a node’s impl _class() is now fully understood. If not, please suggest how we can improve
the above text to make it as straightforward as possible to understand!

Side-notes:

e i do honestly believe it to be impossible in C++, using only in-language techniques, to 100% reliably get the
class name for polymorphic types, not considering options like external (file-based) lookup tables. ¢ would be
extremely happy to be proven wrong! Please contact me if you know a magic trick for this!

e slln actually did use external lookup tables for class names once, created by using the nm tool to extract all
type names from an application/DLL after linking it. The immediate advantages are that it works fairly well,
as it has access to all class names used in the binary (app/DLL), but it’s cumbersome, build-wise, and wvery
memory-hungry, as a huge number of the types in any binary are not at all relevant to the client for purposes of
slln (e.g., __gcc_blahblah internal<Foo *std::alocator<Foo>>).

12.2 classname<>>(), class name<>>, name_type.h and friends
In the previous section i mentioned that s11n has a useful trick for getting the class name of a type. It’s described in

detail here...

To jump right in, here’s how to map a type to a string class name. We’ll show both ways, and soon you should
understand why the second way is highly preferred. You do not need either of these if the class is registered via one
of the core’s registration supermacros, as those processes do this part already:

Method #1: (old-style: avoid this)

#include <slln/class_name.h>
// ... declare or forward-declare MyType ...
CLASS NAME(MyType);

Metod #2: (highly preferred)

#define NAME _TYPE mynamespace::MyType< TemplatizedType >
#define TYPE NAME “mynamespace::MyType<Templatized Type>"
#include <slln/name type.h>

By slln convention, the class name should contain no spaces. This is not a strict requirement, but helps ensure that
classnames are all treated consistently, which is critical if someone ever has to parse out a specific element of, e.g., a
template type. That said, you can name the above type "fred” and it will work as well - just make sure not to use the
same name for more than one type associated with the same classloader.

After the type is registered, the following code will return a (const char *) holding the type’s name:

class_name<MyType>:name()
42

or it’s convenience form:
::classname<MyType>()

Sounds pretty simple, right? If the preferred form is used, it is easy. If you use the macro form, you need to watch
out for the following hiccups:

e MyType’s name may not contain any commas: commas break C macros, as they are the argument delimiter
character. A type with a comma in the name requires hand-specializing a class_name<'T> or using name_type.h.
Tip: see the 1ib/cl/class_names script for a code-generation shortcut.

e MyType should not (normally) be a typedef. Aha! You thought you’d use a typedef to get around the comma
problem! Think again. When a typedef is passed to the macro, the typedef’s name is registered as the class
name. While this is not fundamentally evil (and does have valid uses!) it is generally not the desired behaviour.

The whole class name<T> interface and conventions are covered in this list:

e class_name<T>::name() returns a (const char *) holding the value "I”. Whether or not a return value of 0 is
acceptable for unspecialized class _name<X>’s is still up for discussion. The current framework never returns
0, and returns an undefined string from non-specialized class _name<X> instantiations.

e In the case of class_name<T*>, pointer part of the type is not represented in the name. i.e., class_name<T*>: :name ()
is "T”. This behaviour has a long list of justifications. Suffice it to say that leaving it off simplifies significant parts
of s11n’s internals, and also makes s11n more flexible at the same time. e.g., it cuts the number of classloader
registrations (and potentially factory objects) by half because we really don’t need both ”T” and "T*” for T - if
we're classloading we’re always dealing with pointers, so a descriptive string explaining that to the classloader is
reduntant, maintenance-cumbersome, and ultimately unnecessary.

Side note: interestingly, some of s11n algorithms can generically interpet e.g., “list<int>”, as either "list<int>"
or "list<int*>" (or even as pointers to one of those list types) with exactly the same algorithm: we let template
code do all the type-juggling, using copy-based object creation for non-pointers and heap-based for pointer types.
(It’s pretty cool: see the sources for, e.g., s11n::list::list serializer proxy and slln::map::pair serializer proxy.)
For example, if you deserialize such a type to a list<int*> you will get a list of pointers to int, whereas if you
pass it a list<int> as a container, that’s exactly what it will convert the serialized data to.

The point being: the removal of the ”*” from "T*” is part of what makes such generic code easy to implement in
slln.

e class_name<T> lives in an anonymous namespace directly off of the global namespace. This deceptively subtle
detail is critical for a number of reasons... all of them well out of scope here (no pun intended). Well, okay, let’s
summarize these rules:

If class_name<T> lives in a non-anonymous namespace (i.e., named or global) then a binary in which class name<T >
was defined more than once will get ODR violations at link-time. Anonymous namespaces work around that
problem - the specializations scattered throughout a source tree (potentially instantiated many times each) are
collapsed at link-time into one instance of the class. As it is, class_loader<T> may not be specialized more than
once for the same T in the same compilation unit (i.e., once per implementation file). Violating this rule will
result in a compile-time error due to duplicate class definitions (i.e., a textbook example of an ODR violation).
One implication of this is that putting the CLASS NAME(MyType) in MyType.h is a guaranteed way to give
all users of MyType a proper class _name<MyType> specialization.

The anonymous namespace provides adequate flexibility on deciding where a class template specialization lives,
to avoid many of the compile- and link-time problems associated with non-anonymous namespaces and utility
classes such as this one, which tend to be used in lots of disparate places.

e ::classname<T>() is is guaranteed to be functionally identical to class name<T>:mname(), and is provided
because... well, because it’s a lot easier to type and a lot friendlier looking. Note that sometimes you may
be forced to fully qualify the call, e.g., ::classname<T>(), and it is generally preferable to do so, mainly for
maintenance reasons (it makes the function easier to locate when you’re not sure where it comes from).

The exact process of how class name<T> or class _name<T*> get mapped to their string forms is undefined - it can
happen in any way the specialization implementor wishes, as long as the specialization conforms to the above interface
and are consistent: changes in the string form - even whitespace - may break older serialized data.

i:elassname<T>() will only return a valid value if a class_name<T> specialization exists (i.e., the above registration
can been done), which means that any T passed to classname<T>() or class name<T> must have an appropriate
specialization if the class name is to be useful. Earlier versions of s11n aborted when an unspecialized class name<T>
was used, but this restriction has since been lifted.

43

13 SAM: {Serialization,s11n} API Marshaling layer

Achtung: SAM is not Beginner’s Stuff. This is, as Harald Schmidt puts it so well in a German coffee
advertisement, Chefsache - intended for use by the “higher ups.” This is not meant to discourage you from
reading it, only to warn you that in sllnlite, and probably even when using the core directly, you will
normally never need to know about SAM.

It’s time to confess to having told a little white lie. Repeatedly, even willfully, many times over in this span of this
document.

The Truth is:
s11n’s core doesn’t actually implement it’s own ”Default Serializable Interface”!

WTF? If s11n doesn’t do it, who does?

Following computer science’s oft-quoted “another layer of indirection” law, slln puts several layers of indirection
between the de/serialization API and... itself. To this end, s11n defines a minimal interface which describes only what
the s11ln core needs in order to effectively do it’s work - no more, no less. s11ln sends all de/serialize requests through
this interface, which is generically known as SAM.

i admit it: i have, so far, willfully glossed right over SAM. However, i did so purely in the interest of keeping everyone’s
brains from immediately going all wahoonie-shaped when they first open up the s11ln manual. As you’ve made this
far in the manual, we can only assume that wahoonie-shaped suits your brain just fine. If that is indeed the case, keep
reading to learn the Truth about SAM...

13.1 The SAM layer & interface

i’ve been telling you this whole time that types which support slln’s Default Serializable Interface are... well, “by
default, they’re already Serializables.” In a sense, that’s correct, but only in the sense that i’ve been “abstracting away”
the very subtle, yet very powerful, features implied by the existance of SAM. Bear with me through these details, and
then you’ll surely understand why SAM is buried so far down in the manual.

At the heart of s11ln, the core knows only about two small details:

e Data Node conventions (and only a small subset of them).

e SAM’s two API functions and their conventions (which are identical to those of s11n’s core de/serialize functions).

s1ln’s core doesn’t know anything about anyone’s de/serialize() interface except for that of SAM’s. The core, to be
honest, is essentially quite dumb - implemented in a relative handful of lines of code®! - looking over the code now
i’d guess that, if we don’t count the two de/serialize subnode() convenience funtions3?2, it’s less than 30 actual code
lines(!).

As with the rest of the framework, SAM is an abstract concept, not a concrete type. SAM itself, as a concept, defines
only the interface between s11n’s core and the world of client-side code. Versions 0.7.0-0.8.1 allowed clients to swap
out the whole SAM layer, but this was removed in 0.8.2 because a) to save compilation time and object space by
reducing frivilous class templates, and b) i honeslty don’t think anyone will ever swap out the SAM. If someone is
indeed interested in this contact us - it’s trivial to re-implement without changing the client-side interface.

The following code reveals the entire client-to-core communication interface:

template <typename SerializableT>

struct sliln_api_marshaler {

typedef SerializableT serializable_type;

static const bool is_registered; // reserved for possible future use
template <typename NodeType>

static bool serialize(NodeType &dest, const serializable_type & src);
template <typename NodeType>

static bool deserialize(const NodeType & src, serializable_type & dest);

Y

31 Trivia: the majority of the code is split between the Serializers and, since only recently, de/serialization functors and algorithms.
32i never use them, anyway, as i find them somewhat out-of-place (but admittedly convenient), prefering to use slln:create child()

instead.

44

By now that interface should look eerily familar. Note that static functions were chosen, instead of functor-style
operator()s, based on the idea that these operations are activated very often, and i felt that avoiding the cost of such
a frivilous functor was worth it. Additionally, this interface defines something ”solid” for clients, as opposed to sl11n’s
normal convention of using two functions with the same name - operator(). And (there’s another, lamer reason) the
operator()-style interface can easily generate ambiguity errors here, so it needs to be avoided.

Specializations of this type may define additional typedefs and such, but the interface shown above represents the core
interface: extensions are completely optional, but reduction in interface is not allowed.

When a client makes an s11n call such as this one:

sllnlite::save(myobject, std::cout);

3

myobject will soon end up in the sl1n core3?, as described in the next section.

It is important to understand how s1ln "selects” a SAM specialization: by the type argument passed as a Serializable
templatized type (be it a proxied POD, a MyType, or a proxied std::map - that’s irrelevant). Thus, in the above call,
s11n would use a SAM<myobject’s type> specialization. We’ve jumped ahead just a tad, and it’s now time to back
up a step and, with the above in mind, get a better understanding of SAM’s place in the s11n model...

13.2 SAM’s place in the API calling chain

After client code initiates a de/serialization operation, once control gets to the s11n kernel the process goes something
like this:

1. s1ln asks the runtime environment for the default SAM for this BaseType? (i.e., the SAM<BaseType> special-
ization.)

2. slln passes off the Serializable and Data Node to that marshaler.

3. At this point in the process the s11n kernel has nothing more to do except wait for a return value from SAM.
[We could go on a 17-page tangent about exceptions at this point... but we won'’t.|

4. SAM is now in control of the request, and passed marshals the call into the API expected by it’s parameterized
type, which may be any API whatsoever. Normally this is the “direct” Serializable interface of the type or that
of a proxy type.

5. SAM<BaseType> eventualy returns to the core, which then passes the results directly back to the user.

Note that in this context, “client code” might actualy refer to an algorithm or functor shipped with s11ln - as far as
the core is concerned, anything, including common "convenience” operations (e.g., child node creation) which happen
before the the core calls, and while waiting on SAM, are "client code.”

As a special case®, SAM<X*> is single implementation, not intended to be further specialized - see
below!

13.2.1 More about SAM<X*>

A single specialization does pointer-to-reference argument translation (since it’s SerializableTypes will be pointer types)
and blindly forwards them on to SAM<X>. Thus pointers and references to Serializables are internally handled the
same way (where practical/possible), as far as he core API is concerned, and both X and (X*) can normally often
used interchangeably for Serializable types passed to de/serialize operations.

The end effect is that if a client specializes SAM< Y >, calls made via SAM< Y*> will end up at the expected place -
the client-side specialization of SAM < Y >. See below for further information regarding this pointer-type specialization.

Client code SHOULD NOT implement any pointer-type specializations of sl1n_api_translat0r<X*>35.
If a client implements a SAM<X*> specialization the effects may range from no effect to a very difficult-to-track de-
screpency when some pointer types (e.g., X*) aren’t passed around the same as others. Then again... maybe that’s
ezactly the behaviour you need for type (SpecialT*)... so go right on ahead, just be aware of slln’s default handling
of SAM<X*>, and the implications of implementing a pointer specialization for a SAM. Such tricks are not recom-
mended, as it would be very difficult to track that down later, especially as the pointer/reference transparency of the
API means you can’t simply grep for the API being passed a dereferenced pointer.

3330unds scary, doesn’t it? Don’t worry - typically these operations take only mircoseconds on modern computers, so he won’t be in
there long.

34Now that i re-read this, this is one of extremely few ”special cases” in slln - i have a special type of non-love for “special cases” in
general, and avoid them in the interfaces at all costs.

35 .. without much consideration, that is. There are conceivable uses for this, but they seem to be well beyond the realm of “common
serialization needs”, and thus we won’t dwell on them here.

45

14 slln-related utilities

This section list the utility scripts/applications which come with s11n.

14.1 sllnconvert

Sources: client/s11nconvert/src/main_dn.cpp
Installed as PREFIX /bin/s11nconvert

sllnconvert is a command-line tool to convert data files between the various formats sl1n supports. This version
not usage-compatible with version shipped with 0.6.x and earlier: please see the older documentation for that one’s
description.

Run it with -7 or —help to see the full help.
Sample usages:

Re-serialize inputfile.s11n (regardless of it’s format) using the ”parens” serializer:
sllnconvert -f inputfile.s11n -s parens > outfile.s11n

Convert stdin to the “compact” format and save it to outfile, compressing it with bzip2 compression:
cat infile | s11lnconvert -s compact -o outfile -bz

Note that gzip/bzip input/output compression is supported for files, but not when reading/writing from/to standard
input /output®. You may, of course, use compatible 3rd-party tools, such as gzip and bzip2, to de/compress your s11ln
data.

15 Miscellaneous features and tricks

s11n has a number of features which may be useful in specific cases. While some of them require support code from
“outside the sllnlite sandbox”, a few of them are touched on here.

15.1 Saving non-Serializables

Let’s say we’ve got a small main() routine with no support classes, but which uses some lists or maps. No problem
- simply use the various free functions available for saving such types (e.g., section 7.4). This can be used, e.g., as a
poor-man’s config file:

typedef std::map<std::string,std::string> ConfigMap;
ConfigMap theConfig;

... populate it ...

// save it:

sllnlite::save(theConfig, “my.config”); // also has an ostream overload

// load it:

sllnlite:node type * node = sllnlite::load node("my.config”); // or istream overload
if (! node) { ... error ... }

s1ln::map::deserialize streamable map(*node, theConfig);

delete(node);

// theConfig is now populated

Alternately, simply use a slln::data_node as a primitive config object.

36Sorry, i don’t have a compress-in-memory streambuffer for these.

46

15.2 ”casting” Serializables with s11n_cast()

Serializable containers of “approximately compatible” types can easily be ”cast” to one another, e.g., list<int> and
vector<int>, or even list<int> to vector<double*>.

The following code will convert a list to a vector, as long as the types contained in the list can be converted (by C++)
to the appopriate type:

bool worked = s11nlite::s11n_ cast(mylist, myvector);

Done!

Reminder: if this fails then myvector may be partially populated. If it contains pointers it may need to be cleaned up
- see s1ln::free list entries() for a convenience function which does that for arbitrary list types.

15.3 Cloning Serializables

Generic cloning of any Serializable:
SerializableT * obj = sllnlite::clone<SerializableT > (someserializable);

As you probably guessed, this performs a clone operation based on serialization. The copy is a polymorphic copy
insofar as the de/serialization operations provide polymorphic behaviour. Reminder: make sure to use the proper
(i-e., base-most) SerializableT type for the template parameter.

15.4 zlib & bz2lib support

slln supports file de/compression using zlib and bz2lib if configure finds the appropriate libraries and headers. How-
ever, in the interest of data file portability /reusability, file compression is off by default. Use s11n: : compression_policy ()
to set the library’s default file compression policy (defined in file_utils.h).

All functions in s1ln’s API which deal with input files transparently handle compressed input files if the compres-
sor is supported by the underlying framework, regardless of the policy set in slln::compression_policy(): see
slln::get istream() and get ostream() if you’d like your client-side code to do the same. Note that compression
is not supported for arbitrary streams, only for files. Sorry about that - we don’t have full-fledged de/compressor
streambuffer implementations, only file-based ones (if you want to write one, PLEASE DO! :).

As a general rule, gzip will compress most s11n data approximately 60-90%, and bzip often much better, but bzip takes
50-100% more time than gzip to compress the same data. The speed difference between using gzip and no compression
is normally negligible, but bzip is noticably slower on medium-large data sets.

To completely disable gzip /bzip de/compression in your libs11n installation, run:
./configure --without-zlib --without-bzlib [any other args, like --prefix=...]

If you don’t use the supplied build tree, to disable compression support you should define these C macros, ideally in
config.h or the global compiler options (or similar):

HAVE_ZLIB=0
HAVE_BZLIB=0

And remove gzstream.* and bzstream.* from your project file(s).
There is no benefit whatsoever in disabling such support, but hey... it’s your source tree.

As a final tip, you can enable output compression pre-main(), in case you don’t want to muddle your main() with it,
using something like the following in global /namespace-scope code:

int bogus_ placeholder = (slln::compression policy(s11n::GZipCompression),0);

That simply performs the call when the placeholder var is initialized (pre-main()).

Trivia note: this trick is actually the same one the classloader uses to register classes: they send their registration to
the classloader when the app or DLL they are in goes through the static-data-init phase, i.e. when opened by the OS.

47

15.5 Using multiple data formats (Serializers)

It is possible, and easy, to use multiple Serializers, from within in one application.

Traditionally, loading nodes without knowing which data format they are in can be considerably more work than
working with a known format. Fortunately, s11n handles these gory details for the client: it loads an appropriate file
handler based on the content of a file. (Tip: clients can easily plug in their own Serializers.)

Saving data to a stream necessarily requires that the user specify a format - that is, client code must explicitely select
it’s desired Serializer. Once again, s11lnlite abstracts a detail away from the client: it uses a single Serializer by default,
so sllnlite’s stream-related functions do not ask for this.

Data can always be converted between formats programmaticaly by using the appropriate Serializer classes, or by
using the sllnconvert tool (see section 14.1).

It is not possible, without lots of work on the client’s side, to use multiple data formats in one data file - all data files
must be processable by a single Serializer.

15.6 Loading Serializables dynamically via DLLs

slln’s default classloader is DLL-aware. When it cannot find a built-in class of a given name it looks for the file
ClassName.so in a configurable search path available via cllite::class_path(). The DLL loading support is fairly easy
to extend if the default behaviour is too simplistic for your needs, but it’s customization is, so far, undocumented: see
lib/cl/src/cllite.h.

15.7 Renaming the s11n namespace

Largely in the interest of making s11n more viable for direct inclusion into other projects’ trees, the supplied build
tree supports this rather eccentric feature:

./configure —s11n-namespace=myns

That changes all of the sl11n-namespaced source code to use the given namespace. The new namespace must be top-
level, without any :: parts (sorry for that limitation, but the code maintenance effort involved in a variable-depth-ns
solution is impractical). This name-space change is set at configure-type and applied at build-time: the “real sources”
have placeholder tokens which get filtered into the namespace during the build.

Before you do this, be aware that it has far-reaching implications, some of which are:

e #include <slln/foo.h> becomes #include <myns/foo.h>
e headers are installed to PREFIX /include/myns

e The name of the compiled library file is changed:
libs11ln.{so,a} become libmyns_slln.{so,a}

e All macros which are prefixed with ”s11n_” are changed to be prefixed with "myns_”. e.g., s1ln_ CLASSLOADER _REGIS'
becomes myns CLASSLOADER REGISTERI.

e The like-named, like-signatured classes myns::Foo and slln::Foo are actually completely different, unrelated
types, which may have major implications when writing to the interface of one or the other. For example, some
functions may need to be made into template functions to be able to handle both (basically identical) interfaces.
This also means that the two Foo types use two completely different classloaders.

e Documentation (like this file) is not updated to contain the new namespace.

Some of these changes are applied to allow differently-namespaced versions of the lib to co-exist on the same systems,
in both source and library forms, without collisions.

Given the wide-reaching effects, clients should think not once, not twice, but thrice before actually using this feature.
Again, it is mainly provided in the interest of people who want to copy/paste the s11ln tree directly into their project’s
tree and use their own namespace for the s11ln framework.

48

15.8 Sharing Serializable data via the system clipboard

Experience has shown that holding pointers to objects in the system clipboard can be fatal to an application (at least
in Qt: if the object is deleted while the clipboard is looking at it, the clipboard client can easily step on a dangling
pointer and die die die). One perhaps-not-immediately-obvious use for slln is for storing serialized objects in the
clipboard as text (e.g. XML). Since nodes can be serialized to any stream it is trivial to convert them to strings (via
std::ostringstream). Likewise, deserialization can be done from an input string (via std::istringstream). It is
definately not the most efficient approach to cut/copy/paste, but it has worked very well for us in the QUB project
for several years now.

Additionally, QUB uses XML for drag/drop copying so if the drag goes to a different client, the client will have an
XML object to deal with. This allows it, for example, to drop it’s objects onto a KDE desktop.

Assuming you serialize to a common data format (i.e., XML), this approach may make your data available to a wide
variety of third-party apps via common copy/paste operations.

15.9 slln and toc: ”the other ./configure”

slln is co-developed with another pet-project of mine, a build environment framework for GNU systems called toc:
http://toc.sourceforge.net/

In the off-chance that you just happen to use toc to build client code for s1ln, see toc/tests/libslln.sh for a toc test
which checks for libs11n and sets up the configure/Makefile vars needed to compile/link against it.

16 Caveats, gotchas and some things worth knowing

16.1 Serializing class templates

All in all, serializing class templates is implemented just like all other classes. There is one especially tricky element,
however: given that we don’t know in advance what parameterized types will be used, how do we set the proper type
name (i.e., the target data node’s impl class())?

One approach - the only one i’ve found, for that matter - is to use a class_name<X> partial template specialization.
See section 12 for information on class name< >, and see s1ln’s sam standard containers.h for examples of imple-
menting the appropriate partial template specializations for class name<>. That header contains, for example, the
specializations used for getting std::list /vector /map class names.

16.2 Compiling and linking s11n client applications

Use the s11n-config script, installed under PREFIX /bin, to get information about your libsl1n installation, including
compiler and linker flags clients should use when building with s11n. It may (or may not) be interesting to know that
sl1ln-config is created by the configure process.

As with all Unix binaries which link to dynamically-loaded libraries, clients of libs11n must be able to find the library.
On most Unix-like systems this is accomplished by adding the directory containing the libs to the LD LIBRARY PATH
environment variable. Alternately, many systems store these paths in /etc/ld.so.conf (but editing this requires root
access). To see if your client binary can find libsl1n, type the following from a shell:

ldd /path/to/my/app
Example output:

stephan@ludo:~/cvs/slin/client/sample> 1dd ./test

1ibltdl.so.3 => /usr/1lib/1libltdl.so.3 (0x40034000)

libslin.so0.0 => /home/stephan/cvs/s1in/1ib/libslin.so0.0 (0x4003b000)
libz.so.1 => /1lib/libz.so.1 (0x400b7000)

libbz2.s0.1 => /usr/lib/libbz2.so0.1 (0x400c6000)

libstdc++.s50.5 => /usr/lib/libstdc++.s0.5 (0x400d47000)

libm.so.6 => /1ib/i686/1ibm.so.6 (0x40197000)

libgcc_s.so.1 => /1lib/libgcc_s.so.1 (0x401ba000)

libc.so.6 => /1ib/i686/1libc.so.6 (0x401c2000)

libdl.so0.2 => /1ib/libdl.so.2 (0x402£5000)

/1lib/1ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

49

16.3 Thread Safety

To be perfectly correct, there are no guarantees. i have no practical experience coding in MT environments.
The s11n code "should” be "fairly” thread-safe, with one known major exception:
Some of the lex-based input parsers are known to be 100% thread-unsafe (or un-thread-safe, if you prefer):

e compact _serializer

o simplexml serializer

The others (parens, funtxt and funxml) have been extensively reworked to use instance-specific internal buffers, as
opposed to global data, and are believed to be thread-safe.

The lack of thread safety guarantees means that s11n cannot currently be safely used in most network communication
contexts, for example, as they would presumably want to read from multiple client-server streams.

The guilty code is probably almost all in the flexers, though some of the shared objects (e.g., classloaders) could con-
ceivably be affected (but probably not enough to make any practical difference, at least in the case of the classloaders).

16.4 Object Ownership vis-a-vis Serialization

(Many, many thanks to Marshall Cline, of C++ FAQ fame, for his feedback on this!)

It is important to keep in mind that slln does not inherently manage any object relationships. Instead, it leaves
this task to the client, who will presumably manage them via serialization operators or via algorithms. To give an
example, the core does not know anything about de/serializing a std::map<X,Y> - it is up to the client to serialize
the map. It just so happens, however, that the library comes with some algorithms for doing this.

This library essentially takes the same approach as one does when managing pointer ownership. To be clear: that has
no inherent relationship to serialization, except that the two are conceptually similar. To clarify what is meant by
this we will use a simple example which every C++ developer has certainly come across:

When dynamically allocating objects, it is always important to determine how they will be destroyed. More specif-
ically, it is important to determine who will destroy them. Quite often - probably most of the time - the object
which allocates the memory is also the one to free it. Sometimes a smart pointer is the one to manage this, and
sometimes pointer ownership is passed off to objects other than the one which allocated it (perhaps to client code).
This library takes a similar approach to managing de/serialization of objects. Thus, clients must decide where a
given object will be de/serialized. Oftentimes this is handled in a parent object’s serialization operators or via an
algorithm designed to manage a specific type of parent-child relationship. To go back to the example of map<X,Y>:
slln::map:serialize_map() can manage the serialize-time relationships of a collection of (Y*) to their parent object,
a map<X,Y*>. Conversely, slln::map::deserialize_map() manages those relationships at deserialize-time. The seri-
alization relationship of the Y pointers to their container may or may not be equivalent to their memory or parent
ownership, but is handled in a conceptually similar way. That is to say that each (Y*) has a well-defined "serialization
owner” - the s11n::map::de/serialize() algorithms.

Thus when we speak of “serialization ownership”, we are speaking of a process which is conceptually similar to ”pointer
ownership.” More specifically, we are speaking of the code which is responsible for de/serializing a given object.
While it is very possible that pointer /memory ownership of a given object are managed by the same code which owns
serialization, there is no specific rule which says this should be the case.

A data structure containing objects A and B, which both serialize each other, will cause infinite recursion in the
s1ln core during serialization unless one or both of those structures can accomodate the recursive relationship vis-
a-vis serialization. Such recursion is presumably indicative of mis-understood or incorrect serialization ownership.
Consider: presumably only an object’s serialization owner should serialize that object, and child objects should
generally never have more that serialization owner. Data Node-based de/serialization (as opposed to Serializable-
based) never infinitely recurses because those structures simply don’t manage the types of relationships which can
lead to cycles. In other words, any such recursion must be coming from client-manipulated Data Node trees. (As
Marshall has pointed out: a tree is by definition acyclic, and thus once there are cycles it is no longer a tree.)

One advantage to this “s11n doesn’t know anything” approach, as opposed to the library blindly serializing all objects
it finds, is that clients can customize the de/serialization handling for any given structure to fit their needs. For
example, serialize _map() does not do what the client wants, another algorithm can be dropped in to replace it for a
given case. By adding a serialization proxy, this algorithm can be transparently plugged in to the framework, such
that users of a special-case map need not even know they are using a customized algorithm.

16.5 Cyclic data structures

Can sl11n handle cyclic data structures?

The short answer is: yes
50

The longer answer is: there are currently no algorithms shipped with the library which inherently handle cycles. Thus
clients must write their own.

17 Common problems

In this section i impart some of my hard-earned knowledge with the hope that it saves some grey hairs in other
developers...

17.1 Satan speaks through the console during compilation

If, during compilation, your terminal is filled with what appear to be endless screens of gibberish from the mouth of
Satan himself, don’t panic: that’s the STL’s way of telling you it is pissed off.

It may very well be one of these common mistakes (i do them all the time, if it’s any consolation):

e You're trying to serialize a type which isn’t yet registered with sl1n. This often happens when serializing
containers: remember that the contained type(s) must be Serializables, and that a map’s value type (a pair
type) must also be made Serializable in order to make a map Serializable.

e You've swapped the arguments for a de/serialize() call. By convention, nodes always come before Serializables
in the parameter list. Swapping these will cause you no end of error messages from Hell, with things like, "no
such function ... list<..>:impl class()...” or ”list<_..>::children()”. The first hint that the args are swapped is
that it’s trying to call a Data Node API function on your Serializable.

e You’'ve tried to pass a pointer as a node argument. Serializables are generally accepted regardless of whether
they are passed as pointers or not, but nodes are only passed by reference. Why? Because nodes are easy for
the API to control in this regard and Serializables aren’t, so they get some extra leeway (besides, it was easy
to implement the pointer-to-reference translation at one point in the core). This property internally simplifies
many operations on Serializables, as well.

e You have jumped from sllnlite to s1ln without being aware of the different template args required by like-
named functions in the s11n namespace. Shame on you. Almost without exception, the sllnlite:: functions
with the same name as slln:: functions are missing one template parameter (the first one) - the data node
type - because sllnlite abstracts that detail away. That said, in many cases the calls are identical, because
template type resolution will do the right thing, in which case the s11n/lite functions are basically the same (lite
duplicates/forwards lots of functions simply to keep a whole usable client-side APT in that namespace). Be sure
to check for differences, though, before freely switching between the two (see the API docs).

e Const errors during a de/serialize call: make sure that your Serializable’s [proxy’s| serialization operators have
the proper constness, as defined in section 4. In the case of a proxy, you may have to split it into two functors:
one each for de/serialization, and be sure to add S1IN_DESERIALIZE FUNCTOR to the registration call.
This shouldn’t normally be necessary, however.

e When fetching a child node during a deserialize operation using, e.g., slln::find _child by name(), be sure you
use a (const NodeType *) and not a non-const (NodeType *), as the parent object is const in that context.

e When iterating over containers, be sure to use const_iterators if the NodeType or SerializableType passed to
the function are const, as appropriate.

To be honest, though, those are just the common ones - any minor violation in usage will cause the STL to go haywire,
as i’'m certain you have already experienced many times in your coding life.

17.2 Containers serialize, but fail to deserialize

This is almost invariably caused by a simple logic error:
(Been there, done that.)

When serializing containers, it is essential that each container is serialized into a separate node. After all, each
container is ONE object, and one node represents one object . It is easy to accidentally, e.g., serialize both a list<int>
and map<string,string>> into the same node.

If you’ve done that, there may be two ways to recover from it (assuming you need to recover the data):

e Edit the output file and split the nodes up. Feasibility depends on the Serializer used: some may not be
hand-editable. (Tip: sllnconvert can convert it for you - section 14.1.)

51

e Programmatically fish the data out of the node, e.g., using slln:find children by name() to separate the
various children. In a worst-case (all entries have the same name) you’ll need to do it based on impl _class(),
but that would be no fun at all, as they are unpredictable. (Expecting an "AType” node? Think again - you got
a "BType™)

Also, it is essential that you use always use complementary de/serialization algorithms/proxies. For example, if you
use serialize streamable map() to save a map, then use only deserialize streamable map() to deserialize it, as any
other algorithm may structure the serialized data however it likes, as defined in it’s documentation. Be aware of each
algorithm’s weaknesses and strengths before settling on it, because changing later may not be feasilbe (old data won’t
be readable without, e.g., special-case code to check for it and use the "old” algorithm).

17.3 ::classname<T>(), name class.h and friends

As of 15 March 2004 [will soon be s11n 0.8.0] the CLASS_NAME() macro is fully obsoleted by the name_ class.h
“supermacro”, which can support types with commas in their names (any type name is valid). The underlying mechanics
of them are identical - they are compatible, but the CLASS NAME() macro cannot be used in all cases, as described
later, and may eventually be phased out.

17.3.1 Duplicate definitions of class name<T>

This can be caused by at least these things:

e Using CLASS NAME(X) (or a variant of it) more than once for the same type in the same compilation unit.

e Calling class_name<X> (or ::classname<X>()) before class_name<X> is actually declared (not necessarily
defined). This normally happens when, e.g., X calls ::classname<X>() to get it’s own name, e.g., in it’s serialize
operator. When this is called in template code it is not as much of a problem, because the call is not complete
analysed until the template code containing it is instantiated (i.e., called for the first time).

In the second case: if you want to use ::classname<X>() from within X’s code in there are workarounds, but they’re
not necessarily pretty:

e Before defining the class, forward-declare it your class, then use CLASS NAME(X) (or equivalent).

e Make sure you call it from inside a member function template, then call CLASS NAME(X) directly after
declaring class X.

e If X’s declaration and implementation are separated (not always possible with template code) the answer is trivial:
simply register the name from X.cpp after including X.h. Note, however, that if you do NOT call class_name<X>
from within that impl file (or from something included by the impl file), then class name<X> is never actually
instantiated and will not be linked in with your code. The end result will be a very confusing "undefined reference
to ...class_name<X>..” error. ("But I DID define it RIGHT HERE, you f*!4#&@ compiler!!!"” Indeed, you may
have, but it is never actually created until used once in the same compilation unit. This is a normal feature of
templates.)

17.3.2 class name<T> not defined

(Also see the previous section.)
Compile-time:
The most common cause is that CLASS_NAME(T) has not be called before class_name<T> is used. This one is

normally easy to fix. It is really easy to forget to define a class _name<T> for arbitrary template-typed T’s, by the
way, but there is no known way to programmitically get their names without a helper like class name<T>.

Link-time:
There is a more complex case i hit once which took me hours to track down:

If a class_name<T> specialization is defined in an implementation file, but is never used (instantiated) within
that impl file, then class name<T> is never actually instantiated. Thus, code outside of that impl file which call
class_name<T>> does not see the macro-generated code from the original impl file, as it was never actually instantiated
by the compiler.

52

17.3.3 map<X,Y>:value type vs pair<X,Y>

map<X,Y>::value type is not pair<X,Y>, but pair<const X,Y>.

Thus, class _name<pair<X,Y> > will return a different value than class name<mymap::value type>, because tem-
plate type resolution is sending you to two completely different class templates. After discovering this, a class_name<const
T> specialization was put in place to try to avoid this, so it “shouldn’t happen” again.

In any case, this may also cause a problem when proxying maps via sl1ln. The map’s value type type must also be
proxied (tip: pair_serializer proxy). When proxying a map/pair combination, you should register map’s value type
typedef instead of pair<X,Y>. That said, most maps do not require any special registration or proxy declaration, as
they are handled by slln::map::map _serializer proxy, which handles this const/non-const descrepancy.

17.4 Abstract base types for Serializables

s11n can handle abstract base types: simply add this line before including the registration supermacro, reg serializable.h:
#define SIIN _ABSTRACT _BASE

That’s all. This does not have to be added for subclasses of that type. As usual, this macro will be unset after
including the supermacro.

For the curious: this installs a no-op object factory for the type, as those types cannot be instantiated, and thus
cannot be created using new(). As far as the classloader is concerned, trying to instantiate a registered abstract type
simply causes 0 to be returned.

18 Where to go from here?

Since the new s11n framework is so new there is very little sample client-side code for it. There are a couple client-side
apps code in the s11n source tree, which will certainly prove informative to those starting out with s11n:

client /sample/src/demo _struct.cpp
client /sample/src/demo_hierarchy.cpp

client /sl1nconvert /src/main.cpp

The web site is updated fairly often, and you just might find something interesting over on there if you check back
once in a while:

http://s1ln.net

As always:

e The source tree is always the most-definitive source of information, but the web site is also updated fairly often,
sometimes a bit in advance of upcoming changes.

e i am always open to getting mails with questions about s1ln, so don’t hesitate to ask. i will ask that you please
browse the manual first, but i certainly do not expect you to scour every web page or code file before posing a
question. i understand that the documentation has some gaping holes in it right now, and i will be happy to fill
those holes by directly answering your questions.

Once again: thats a lot for taking the time to consider adding sl11n to your toolkit!
—— stephan@s11n.net

19 Index

DAMN: turning on the index breaks IyX’s exports! And the index doesn’t show up in the lyxport-converted versions...
Sheesh...

53

