JGraph UserManual

/g l wsuakze everything

JGraph and JGraph
Layout Pro

UserManual

For JGraph Version5.10.1.5and JGraph Layout Pro 1.4.0.4- 11 September 2007

JGraph UserManual

We arealwaysinterestedin feedback on JGraph products,ifyou have any questionspleasefeel

freetocontactus usingany of the followingmethods:

Post: JGraph Ltd.
35 Parracombe Way,
Northampton
NN3 3ND
U.K.
Telephone: +44 (0)207871 2332
Fax: +44 (0)870762 4282
Internet: http://www.jgraph.com/contact.html forprivatecontactor

http://www.jgraph.com/forum forcommunitydiscussion

Email: info nospam@jgraph.com ,remove the_nospan suffix.

Copyright (c) David Benson 2004-2007

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the author.

The programs in this book have been included for their instructional value. They have been tested with care but are not guaranteed
for any particular purpose. The publisher does not offer any warranties or representations nor does it accept any liabilities with

respect to the programs.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid written license from
JGraph Ltd.

Neither JGraph Ltd. nor its employees are responsible for any errors that may appear in this publication. The information in this
publication is subject to change without notice.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Page 2

http://www.jgraph.com/contact.html
mailto:info_nospam@jgraph.com
mailto:info_nospam@jgraph.com
mailto:info_nospam@jgraph.com
http://www.jgraph.com/contact.html
http://www.jgraph.com/contact.html
http://www.jgraph.com/contact.html
http://www.jgraph.com/forum
http://www.jgraph.com/forum
http://www.jgraph.com/forum
http://www.jgraph.com/contact.html
http://www.jgraph.com/contact.html
http://www.jgraph.com/contact.html
http://www.jgraph.com/contact.html
http://www.jgraph.com/contact.html
http://www.jgraph.com/contact.html
http://www.jgraph.com/contact.html
http://www.jgraph.com/contact.html

JGraph UserManual

Table of Contents

L INEEOAUCTION. ..ttt b e et e b e et e bt et e e s bt e et e e saeeebeesbbeenbeennee 7
1.1 What does JGIaph dO?oeeeiiiieiiieeee ettt et e et e e e e ssae e e enaeeenseeennns 7
1.2 What 1S @ GTAPRN?....cceiiieiiie ettt s e st e e st e et aeessaeeesseeesseeessseesnsseesnsneesnneens 7

1.2.1 Graph ViSUQHZAtIONoeieiuiiieiiieciie ettt et e e e et e e e e e taeesssaeessseeesnsaeennees 8
1.2.2 GTraph INTETACTIONcccuviiiiiiiieciiieeciee ettt ettt et e et e e e e e saee e eseeesabeeesneeesseesaneeennnns 8
1.2.3 Graph LaYOULSccueertiiiiiiiieiteet ettt ettt sttt et sttt s e e ens 9
1.2.4 GIaph ANALYSIS ..ccueeeiiiiiieiieeieetteee ettt ettt et et e b e st e et esabeeseesnbeenbeeenseenseas 10
1.3 AbOUt this ManUAL.......c..coouiiiiiiiiiiieiiiece ettt s 12
1.3.1 Pre-requisites for this Manual.............ccccoeiiiiiiiiniiiiieie e e 12
1.3.2 Getting Additional RElP........c.ccovieiiiiiiiiiieieee e 12
1.4 ADOUL JGTAPN....coiiiiiiiie ettt ettt e s b e et e e b e eteeesbeenseeenseenseennnas 13
1.4.1 JGraph Swing Compatibility........c..cccveeeiiirieriiieiieeiieie et ae e 13
1.4.2 The JGraph Packages........c..ooviuiiiiiiiieiieeeiie ettt e s 13
1.4.2.1 JGIaphpad........cooeuiieeiieecieece ettt et e e st e e s e e et ae e sbaeenaaeennnee s 14

LR I\, 0. (1715 s PSPPSR 16
1.4.4 JGTaph HICENSINE......vvieeiiieeeiieeeieeeeiee ettt e et e et e et e e steeesaeaesaeeesaaeessaeesssaeesssaeessseeensseens 16
1.5 GEtING STATTE. ...c.eeeiiieiieeee et ettt et ettt e st e bt e s aee et e e saeeenbeenees 17
1.5.1 The JGraph Web Sitecccuiiiiiiiiiiiiiieiecce et 17
1.5.2 Downloading JGIaph........ccccoooiiiiiiiiieie ettt e 17
1.5.3 InStalling JGTaPh.....cooueiiiiiiiieiiee ettt ettt ete et e enbeeees 18
1.5.4 Project structure and build OPtioNS........cccuieevieriieiieiiieiieeie ettt 18
1.6 The Desig@n Of JGTaph.......cccviiiiiiiiiiiieiieee ettt ettt s ae e e ssaeesaesasaens 19
1.6.1 The Use 0F ODJECE TYPES...cecuieriierieeieeitieiieeiteeete et eeteeteesereeseessaeeseesseessseensaesseeseennne 20

2 JGraph and the Graph MOdEL...........cooiiiiiiiiiiiiieie ettt e eaeeeee e 21

2.1 Understanding the HelloWorld application.............ccceeeeieeeiieeiiieeeiieeeiee e 21
2.1.1 Creating the JGIaph........ccoviiiiiiieiecce ettt e e e e e s eaeeeaaeeens 22
2.1.2 INSEIEING CIIS....uuiiiiiiieiiiieeiie ettt ettt e e st e e sae e e saaeeeaaeeensaeesssaeesnseeensseeennses 24

2.1.2.1 Configuring Cells' Attributes before InSertion............ccceecveeecieeeiieeecieeeeiee e 26
2.1.3 Editing Graph CellS........cc.oiiiiiiieiiieieeeee ettt st 28
2.1.3.1 Removing Cell AHITDULES.cooueriiriiiiirienieeeetete ettt 30
2.1.4 RemMOVING CelIS.....uiiiiiiiiiiiieieee ettt ettt st e s ebee e 30
2.1.5 ATEIDULE IMAPS. .. eieiiiieiieeiieiie ettt ettt ettt et e st e et e sate e b eeseaeebeeeateenseesseeenseennaaens 31
2.1.5.1 Attribute Map changes after edit callS..........ccceevieriieniiiniiiiieeeee e 32
2.1.6 SUIMMATY.....coiiuiiiiiieeeiie et te et ee et ee et e et e ettt e etteesabeeesateeessseeensseeasseessseessseesnsneesnsneenas 33

2.2 Creating and Configuring the JGraph class..........cccoocvieiiieriiiiiienieiieeeeeeee e 35
2.2.1 Configuring JGTaPN......cccviiiiiiiiieiieeie ettt ettt et e e e steeeveesaeeesbeeseesnseeseans 36

2.3 The GIaph MOEL.......uviiiiiiiiiieeiie ettt et e et e e tae e e ateeeraaeesnseeennseeennnes 39

2.3.1.1 TNEEOAUCTION. ...ttt ettt ettt et e et e aee s as 39
2.3.1.2 The 3 editing MeEthOdS........cccveiiiiiieiieciie et ree e e e sree e 39
2.3.1.3 Accessing the Graph Model Data.............coociiiiiiiiiiiieieceeeeeee e 39
2.3.1.4 Cloning the Graph Model..........c.c.cooiiiiiiiiiiiiecee e 41
2.3.1.5 Navigating Connections Using the GraphModel interface..........c.ccceceevveevenenncnnen. 41

2.3.1.5.1 Obtaining a collection of edges connected t0 @ VerteX........oceeveevvereenueruennnene 43

2.3.1.5.2 Obtaining the Source and Target Vertices of an Edges..........c.ccccevviierineneenne. 43

B RIS ettt h et h e bttt e a e bttt et h e bt et e bt eaeeaee 44
3oL TYPES OF CIIS ..ottt ettt ettt e e et e st e et e s abeesseeesseesaesssaenseensseenseas 44

Page3

JGraph UserManual

3.2 Cell Interfaces and Default Implementations.............cocveriieiienieeiienie et 44
3.2.1 GraphCell INtErface.......cccuievuiieiiiiieeiieie ettt ettt e 44
3.2.2 The Edge and Port INterfaces.c.ceecuierieiiieiiieeiieitesee ettt 45
3.2.3 The DefaultGraphCell...........ccccooiiiiiiiiieiiecieeiiece ettt eane s 46

3.2.3.1 The Default Graph Cells Constructors and Methods...........ccccoevieriieiieniienieennnnnn, 47
R TN A O 0] 111 o O] SR 48

R B U < o @ o) 1Tt 1SS 48
3.3.1 Obtaining and Changing the User ObJECt..........cccvuieeiiiieiiieeiiieeie et 49

R Oc] U Y4 T £ TSRS 49
3.4.1 Cell HANAICS.....ccuveeeiiie ettt ettt e e st e e e b e e ave e e abeeenseeessseeenneeennnes 50
3.4.2 The Cell View hierarchy.........ccccoeiiriiiiiniiniiieeicetcreeee et 52

3.4.2.1 getPerimeterPOINT.....c..coiiiiiiiiiii ettt et e 53
3.4.2.2 GEEREIACTET.......eiiiieeiiieiie ettt ettt ettt et e st e st e e seeenbeesaeeenseessaeenseens 53
3.4.2.2.1 How to Create your Own Cell View and Renderer............cccccceeeviieninnieennnnnne. 54

3.4.3 Creating Cell Views and Associating them with Cells...........cccoeevieviieiieniiiiiiiieeenee 55
3.4.4 default cell view and Renderer implementations.............ceecueerieeiienieeieeneesieeee e 56
3.4.4.1 THE CeIL VIBWS.....eiiuiiiieiieiieieeie ettt ettt ettt sttt e b et e bt beeneesaeens 56
3.4.4.2 The Cell RENAETETS.cc..eiiiiiiieiieiiieeeeeeee ettt 57
3.4.4.2.1 POTtRENAETET. ..ottt 57
3.4.4.2.2 VerteXRENAEIET.....c..coiiiiiiiiiiee ettt st e 58
3.4.4.2.3 EAERENACIET.......ooeiiiiiiie ettt e e e e e e aae e s eeennaees 58

3.5 USINE CIIS ittt ettt ettt et e st e et e s ebe e bt e sate e bt e saeeebeesaneens 59

3.5. 1 USINZ VETEICES. ..cuvivtetieiieeiteieeit sttt ettt ettt ettt sb et sttt et e bt e bt et sae e bt etesaeenaeeaee 59
35101 BOUNAS. ...ttt sttt et ettt 59
3.5.1.2 Constraining VerteX BoUunds............coociiiiiiiieiiiiiieiecieeeee e 60
3.5.1.3 Resizing and AULOSIZING.........cecueeriieriieiieeiienieeieeeieeeteestaeereeseeesaeesseeenseeseesnseenees 60
35104 TCOM. et ettt et e e ea 61
3.5 1.5 LaDL TOXL. ettt sttt sttt 62
3.5.1.6 BOTARTS. ..ottt 63
3517 COLOTS. .ttt et sttt et st ea 63
BS L8 IS ettt et ettt s s 64

3.5.2 USING EdES...uuvieiiiieiiiieeie ettt et e et e e et e et e e st e e e sbeeessaeeessaeessaeennaeens 64
R TR 0 B 57011 4 1c SRS 64
3.5.2.2 Control Points and ROULING..........ccccuiiiiiiiiiiiieciic et eiae e 64
3.5.2.3 Positioning edge 1abels.........ccccoiiiiiiiiiiiiiieeiee e 65
3.5. 2.4 EAQE StYLES.. ittt ettt et eane s 68
3.5.2.5 Edge end deCOTatioNnS.........cccueieiiiiiuiieiieiie ettt ettt ettt st 69
3.5.2.6 CONNECLIONS TESITAININE.eevieriieeiieeiiertieeieeteeeteesseeereesteeesseensaeeseenseessseesseesseens 70

3.5.3 Attributes for Both Vertices and EdAZes..........ccceeviiiiieiiiiniieiiicieeiecie e 71
3.5.3.1 Constraining Basic Editing FUNCHIONS............cccieriiiiiieiiieiieiecieeeceieesee e 71
3.5.3.2 OPAQUEIIESS.eeeeueeeeeirieeeiiieeeieeesiteeeseteeeseteeesaeeassseessaeessseeeassesensseesnsseesnssessnsseesssseenns 71
3.5.3.3 SELECLION. ...ttt ettt et et 72

3.5.4 USINE POTLS.....eiiiiiie ettt ettt et e et e e st e e s sbe e e saeeessbeeessaeensseesnneeennnes 73
3.5.4.1 POTt POSTHIONINE....cceiuiiieiiiieeiiieeiiieeeiieeeiee et e et e eseae e e aaeestaeestaeesssaeessseeensseessseeanns 73

RTI4TN 75

4 AdVanCed EdITING.......coeiieiiiiieeiieee ettt st ettt et e et e st e enb e nee et e saneens 77

4.1 GIOUPINE. ...ttt ettt ettt et e e sbe et et e ea e e bt eatesbe e bt eateebe e bt eatesbeenbe et e eaee bt eabesaeenbeenseeanen 77

4.1.1 Graph Model Representation of GrOUPING.........cccueevvierireiiienieeiienieeieeeie et 78

Page4

JGraph UserManual

O N (1 1LY 21 o OO 79
4.1.3 GIOUP INSELS. .netiieiiieeiiie ettt ettt e et e et e e st e e st e e sbteesnbeeesaneeas 80
4.1.4 MOVE INLO/OUL OF ZIOUPS....vietiiiiiiiieeiiieiie et eite ettt e steeteeeteebeessaeeseesaseesseensnesnsaenseeans 80
4.1.5 Removing Child CellS.........cccecieriiiiiiiie ittt e sae e ese e 81
4.2 CONNECTIONSEL.eutetieiieiie ettt ettt ettt sttt e sat et e st e esee st e entessee bt enseentesseensesneenneenseas 82
4.3 The GraphLayoutCache.........c.ceevcuiiiiiiieiieeiee ettt e e e e enaee e 83
4.3.1 View-Local iIndePendence.............cccueieeiuiiieiiiieciieeeieeesreeesieeesreeeineeseeeessaeesaeeesnseeenans 83
4.3.2 VISIDIIIEY ..ttt ettt ettt et e et e bt et e e ne et e et e entesaeenteennenneen 84
4.3.2.1 Configuring Visibility after Editing Operations...........ccceeeveeeviieerciieeniieesieeesvee s 84

4.3.3 VIeW-10Cal @ttrIDULES.ueieiiiieeiiecciee ettt et e e ae e e etaeeesbeeensaeeeanaeeennes 85
4.3.4 Expanding and CollapSing GIOUPS.......cceevueruerieniiriineeieetenieete sttt sieesie e 86
4.3.5 Other GraphLayoutCache OPtiONS.........cc.eeeuieriieeiieiieeieeriie ettt ettt e siee e e seeeeneeens 87
4.4 Advanced Model FUNCHIONS.cc.eeiiriiiiiiiriieieciereee ettt 88
4.4.1 MOAEl OTAETING......ccuvieiieieiieiieeie ettt ettt ettt e e be e saesabe e aaeeabeessbeenseessnesnseens 88
A2 BitS. et sttt et h et et h et e e aeeaeeaee 89
4.4.2.1 UNAO/REAO....ueeiiiiieiieieeteee ettt sttt ettt sttt e sae e 89
4.4.2.1.1 Undo-Support REIAY.......cccviriiiiieiiieiieeie ettt s 89
4.4.2.1.2 GraphUndOMAaNaEET..........ccccvieeiiieeiieeeiieeeieeeeiteeeieeesaeeesseeesnseeennseeenveeennes 90

4.5 DIag and DIOP.......eeeeiieeiiie ettt ettt e et e et a e et e e et e e e teeeenbaeeasrae e nbeeennaeeeraeeennaeas 91
4.0 ZIOOTIING.eeeuveeeeieeeiieeetteeeteeeeteeeasteeessseeassee e seeessaeesssaeeasseeeasseeassaeanssaeassseeensseessseessseesnsses 93
4.7 SUINIMIATYeeiieiiiieeeeiieee e et e e e et eeeeeteeeeestteeeeesaseeeeassseeesasssseeeassssaeesenssseessanssaeesssnnsneessnnseees 93
R B 11RO SSRRUPPRSR 95
5.1 Graph Change Events and LISTENETS.ccuerueiiirieriiiieniienieeieeieeeeeestesee ettt 95
5.2 The GraphUI and handling MOUSE INPUL.........ccceiriiiriiiiiieiieeie e 96
5.2.1 MOUSE TOIETANCE.ccueriiiiiiieiiiiritete ettt sttt ettt ettt s nae e 96
5.2.2 ZIOOIMMUING.cuvieiieetieeiie et eetie et e eite et e sttt ebeeeateesbeeesbeenseessbeenseassseensaesnseenseeanseenseeenseenseennne 97
5.2.3 MarqUECHANALET...........ooiuiiiiieiieeiieee ettt ettt e s enbeenee e 97
5.2 4 HANAIES. ...ttt ettt sttt et as 97

6 I/O and JGraph APPIICAtIONS.cccuiiriieriieeiieiieeieeiee et e e et e eaeebeesaaeebeessaeesseesssesnseessseesseensns 99
6.1 XML PEISISEEIICE.euteeiiiiiieeiie ettt ettt ettt ettt et e s bt e bt e s bt e e bt e saeesbeesaeeens 99
6.2 TMAZE EXPOTING....cuiiiiiiiieeiie ettt ettt e et e et e et e e et e e saaaeeestaeesssaeessseeensseeensseeennes 101
(R IV € 0 25 4 010 ¢ F PRSPPI 102
6.4 Exporting in a Headless ENVIrONMENt.............cccoeviiiiiiiiiiieceeeee e 103
6.5 Working without the SWing COMPONENL.............cociiiiiiiiiiiieiee e 104
6.6 JGraph in an APPIEt.......coouiiiiiiiiiii e 104
0.7 PIINEING. ...eotiiiiiieiie ettt ettt et et et e e bt e tee et e e bt e eab e e seesase e ateenbeensaeenseenneeenne 105
T LAYOULS. ...ttt ettt et ettt ettt e et e et e ettt e et e e e bt e e at e e e abee e ab e e e hteeebteesnteesabeeenaneeas 107
7.1 INETOAUCTION .ottt ettt ettt et sttt st be et sbe e bt et e eaeenaeenee 107
7.2 Installation and COMPIIATIONcouiiiiiiiiieiiieiecieee e e e s 107
7.2.1 REQUITEIMENLS.eevvieetieiieeiieeiieeieeeiteeteesteesseessseesseessseesseessseessaeasseeseessseesseessseesseessenns 107
7.2.2 INSTAIIATION. ...ttt et sb ettt b et be et 107
7.2.2.1 Project structure and build OPtiONS.........cccveeeriieeiieeeiieeiee e 107

7.3 The Design of JGraph Layout Pro..........cccviiiiiiiiiii et 110
7.3.1 What does JGraph Layout Pro do?........ccoeeeiiieiiieeiiecieeeeeee et 110
7.4 RUNNING @ LAY OUL......eiiiiiieeiiie ettt e e e st e e s teeesseeesaseeessseeessseeennseeesseeennneas 110
7.4.1 Writing Your OWN LaYOUL.........cccvieiiiiieiiieeciie ettt et e eesveeeseveeeaseeennneas 112
7.4.2 Edge Control POINES.cc.eeiiiiiiiiiiiicieeieneeeeet ettt s 113

T A3 EXAMPIES.eiiiiiiiietie ettt ettt e st ettt e et et et e e bt e sabeenees 113

Pageb

JGraph UserManual

7.5 USING the LAY OULS......eeiiiiiiieiieie ettt sttt et et e st e eenbeesseeensaesaeeenseeees 114
7.5.1 The TTEE LaYOULS....cc.eeeitiieiiieiieeie ettt ettt ettt et st e bt esebeesaaeenteebeeenbeensaesnseensneenne 114
T.5. 1.1 TTEE LAYOUL....ueviieiiieeeiieeiee ettt ettt e st e et e e st e e s nbeeesabeeenans 114
T.5. 1101 ANGNIMENL. ...ttt ettt ettt e ereessaeebeesssesnsaennneenns 115
7.5.1.1.2 OTIENTATION. ..c.ueiiiiiiiiiiie ettt ettt ettt e bt e st esaneebee e 116
7.5.1.1.3 levelDistance and nodeDIStance...........cocueeveerieeniienieiiienieeeeceeee e 118
7.5.1.1.4 combIneLevelNOAES........cocueeiuiiiiiiiiieieeee e 119
7.5.1.1.5 positionMultipleTrees and treeDistance............eeevveevveeerieeenieeeeiee e, 121
7.5.1.2 Compact Tre€ LaYOUL........cccciiiiieiiiiee et e etee e ree e e e saeee s s eeaeeeeennes 122
7.5.1.3 Radial Tree LayOuULt........c.cceciiiiiiieeiiie ettt et ve e e savaeenree s 122
7.5.2 Organic LayOULS.c..cocuiriiiiiiiinieieetert ettt sttt ettt et 124
7.5.2.1 Spring EMbedded...........cooouiiiiiiiiiiee s 124
7.5.2.2 Fast Organic LayOUL..........ccccutiiieiiieiierie ettt ste ettt eseneesee s 125
7.5.2.3 Inverted Self Organising Map........c.coceeeiierieniiienieeiieiie ettt eaeesee v neees 126
7.5.2.4 OrganiC LaYOUL.........ccoiieiiiiiiieeieeieeeie ettt et saee bt e sbeeseeenbeenseesnseensneens 127
7.5.2.4.1 isOptimizeNodeDistribution and nodeDistributionCostFactor...................... 128
7.5.2.4.2 isOptimizeEdgeLength and edgeLengthCostFactor.............cccceevveeeiieniennnnnn. 129
7.5.2.4.3 isOptimizeEdgeCrossing and edgeCrossingCostFactor............cccccveeveuveeneen. 130
7.5.2.4.4 isOptimizeEdgeDistance, edgeDistanceCostFactor, isFineTuning and
FINETUNINZRAIUS. ... e e e aee e s 133
7.5.2.4.5 isOptimizeBorderLine, borderLineCostFactor and averageNodeArea........... 136
7.5.2.4.6 minMoveRadius, initialMoveRadius and radiusScaleFactor...............c......... 138
7.5.2.4.7 MAXITETATIONS.eeeiiieeiiieeiieeeiteeeee et e et e e et eesaeeeseaeeeeabeeeaseeesseeesaeesnnneas 140
7.5.2.4.8 unchangedEnergyRoundTermination............ccoeceerieeniienieeniienieenieesie e 140
7.5.2.4.9 1SDEtETMINISTIC. ...cuveeutieiieiieieeiterieete ettt ettt st s 140
7.5.2.5 Hierarchical LayOuL...........cccveriieiiiiiiieiiesie ettt ettt 141
7.5.2.5.1 OTICNEALION. ..cuviititieieeiiesteeie ettt ettt et sttt ettt e b e e saeenbeeneesaeas 142
7.5.2.5.2 Intra Node Distance and Inter Rank Cell Spacing..........c.cccceevvvieviencveeninennnn. 142
7.5.2.5.3 1SDEIETMINISTIC. ...cueeuteeiieiieieeiee ettt see e e 142
7.5.3 EAZE ROULINE.eieiiiiiiieeciie ettt ettt e st e e et e e ssteeensaeeesbaeennseeenneeenns 144
7.5.3.1 Orthogonal EAge ROULING........cccoeiiiiiiiiiiiieiiie ettt 144
7.5.4 STMPLE LAYOULS.....coiiiiiiiiieciie ettt ettt eetee e st e e s teeessbaeessseeesssaeesseeensseeanns 145
7.5.4.1 CIrCle LaYOUL.......oiieiiieeiiie ettt ettt e e e e e e eabeeesaeeenseeennaeesnneeas 145
7.6 Using the Example Source Code..........coouiiiiiiiiiiiiiiieieieee et 146
7.6.1 TR PrOGIESS INELET....ccuueiiiiieniieeiieeiie ettt ettt ettt et e et e s e et eesateebeesseeenbeesaeesnbeenneas 146
APPendixX A — DEfINITIONS. ...ccueiitiiiiiieiieie ettt ettt e ettt e st e et eesbeenbeeeabeenseennee 147

Pageb

JGraph UserManual

1 Introduction

JGraph isamature, featurerichopen sourcegraph visualizationlibrarywrittenin Java.JGraph
iswrittentobe a fullySwing compatiblecomponent, both visuallyand in itsdesign architecture.

JGraph canbe run on any system supportingJavaversion1.4or later.

1.1 What does JGraph do?

JGraph provides a range of graph drawing functionality for clientside or serverside
applications. JGraph has a simple, yet powerful API enabling you to visualize, interact with,
automaticallylayout and perform analysisof graphs.The following sectionsdefinetheseterms in
more detail.

Example applicationsfora graph visualization libraryinclude; processdiagrams, workflow and
BPM visualization,flowcharts,trafficor water flow, databaseand WW W visualization,networks
and telecoms displays,mapping applicationsand GIS, UML diagrams, electroniccircuits,VLST,
CAD, financialand socialnetworks,datamining,biochemistry,ecologicalcyclesentityand cause-
effectrelationshipsand organisationalcharts.

JGraph, through it’sprogramming API, provides the means to configure how the graph or
network isdisplayed and the means to associatea context or metadata with those displayed

elements.

1.2 Whatis a Graph?

JGraph visualization isbased on the mathematicaltheoryof networks, graph theory.If you're
seekingJavabarcharts,piecharts,Gantt charts, have a look at the JFreeChartprojeci instead.

A graph consistsof vertices,alsocallednodes, and of edges (the connecting linesbetween the
nodes).Exactlyhow a graph appearsvisuallyisnot defined in graph theory.The term cell willbe

used throughout thismanual todescribean element of a graph, eitheredgesor vertices.

Hllustration 1 : A simple Graph

Page?7

http://www.jfree.org/
http://www.jfree.org/
http://www.jfree.org/
http://java.sun.com/products/jfc/index.jsp
http://java.sun.com/products/jfc/index.jsp
http://java.sun.com/products/jfc/index.jsp
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://www.opensource.org/
http://www.opensource.org/
http://www.opensource.org/
http://www.jgraph.com/
http://www.jgraph.com/
http://www.jgraph.com/

JGraph UserManual

There areadditionaldefinitionsingraph theorythatprovideusefulbackground when dealing
with graphs,theyarelistedinAppendixA ifof interesttoyou.

1.2.1 GRAPH VISUALIZATION

Visualization isthe processof creatinga usefulvisual representation of a graph. The scope of
visualization functionalityisone of JGraphs’main strength. JGraph supportsa wide range of
featurestoenablethedisplayof cellstoonlybe limitedby the skillof thedeveloper.Verticesmay be
shapes, images, other Swing components (including other JGraphs), animations, virtuallyany

graphicaloperationsavailableinSwing.

u;;wf; :

e >, ,r-ﬂ e . A -..-
sV
Y- U Ly ._ = .- \ — -f -
f S e o+ !
mm}lgﬁ. ah A, - ___.-‘ '-;J_ F f.‘.'."ri'ﬁn:\.eh'.wm) '--.A
AT SPAIN vaiech o sna(f
CUERRTT e © L o
\.W-’f L editerranean 5éa :_,__. - ,Rm;d.#
ot Cevtn i *'*'lsi'-:“. e . AT a . : -'I‘
Hllustration 2 : Graph Visualization of a transport system. (c) Tourizm Maps 2003, http.//www.world-
maps.co.uk

1.2.2 GRAPH INTERACTION

Interactionistheway inwhich an applicationusing JGraph can alterthe graph model through
the application GUI. JGraph supports dragging and cloning cells, resizing and re-shaping,

connectingand disconnecting,dragand dropping from externalsources,editingcelllabelsinfplace

Page 8

JGraph UserManual

and more. One of the key benefitsof JGraph is the flexibilityof how interaction can be

programmed.

Hlustration 4 : Live-Preview of a graph resize drag

1.2.3 GRAPH LAYOUTS

Graph cellscan be drawn anywhere in a simple application,includingon top of one another.
Certain applications need to present their information in a generallyordered, or specifically
ordered structure. This might involve ensuring cellsdo not overlap and stay at leasta certain
distance from one another,or that cellsappear in specificpositionsrelativeto other cells,usually
thecellstheyareconnectedtoby edges.Thisactivitycalledthe layoutapplication,can be usedina
number of ways toassistuserssetout theirgraph.For non-editablegraphs,layoutapplicationisthe
processof applyinga layout algorithm to the cellsFor interactivegraphs,thesethat can be edited,
layout applicationmight involve only allowing users to make changes to certaincellsin certain
positions,to reapply the layout algorithm aftereach change to the graph, or to apply the layout

when editingiscomplete.

Page9

JGraph UserManual

Activity Activity

[
Activity '® > Activity

Swimlane 1

Activity

B

o
k]
Activity

Hlustration 5 : Layout of a workflow using the hierarchical layout in JGraph Layout Pro

Activity

I
> Activity >
P

Swimlan

Activity

RN

JGraph Layout Pro isthe supported layoutpackagewithinthe JGraph suite,designed forspeed,

API stabilityfunctionalflexibilityand consistency.Layout Pro supportsa rangeof tree,force-
directedand hierarchicallayoutswhich willfitmost layoutneeds.Suppliedwith fullsourcecode,
JGraph Layout Pro givesyou qualitylayoutsatgreatvalue.

ThisUserManual coverstheuseof the layout functionalityseethe laterChaptersfordetails.

1.2.4 GRAPH ANALYSIS

Page 10

http://www.jgraph.com/layout.html
http://www.jgraph.com/layout.html
http://www.jgraph.com/layout.html

JGraph UserManual

|

|

L

|
i—.——i

Hllustration 6 : Shortest Path Analysis

Analysisof graphs involvesthe applicationof algorithms determiningcertaindetailsabout the
graph structure,forexample,determiningallroutesor the shortestpathbetween two cellsThere
aremore complexgraph analysisalgorithms, thesebeingoftenappliedindomain specifictasks.
Techniquessuch asclustering,decomposition,and optimizationtend tobe targetedatcertain
fieldsof scienceand currentlyhavenot been implemented inthe coreJGraph packages.However,a
number of genericperformance optimizedanalysisalgorithms can be found inthe JGraph Layout

Pro package.

Page 11

JGraph UserManual

1.3 About this Manual

1.3.1 PRE-REQUISITES FOR THIS MANUAL

To benefitfullyfrom thismanual you willneed tohave a reasonableunderstandingof Javaand
at leasta high-leveloverview of Swing.Not allaspectsof Swing arerequired,but knowledge of the
Swing MV C patternisimportant,inparticularhow the renderercomponentsareused. Itwould
alsobe usefulto study one of themajor Swing componentsinmore detail,inparticularthe JTree
class,sinceJGraph issimilartoJTreeinanumber of waysata designlevel.

Ifyou lackexperiencewith programming the Java language,therearemany good books on the

subjectavailableA usefulfreeintroductionisthe Sun JavaTutorial

1.3.2 GETTING ADDITIONAL HELP

There aremany mechanisms for receivinghelp for working with the JGraph software.The

community help forum provides free assistance to JGraph users. The forums combine the
advantagesof many usershelping to answer questionsalong with the guidance of activeJGraph
developersensuringthe qualityand correctnessof responsesand thatasmany questionsaspossible
are answered. However, there isno assurance of getting free assistance, either the answer being
correct,or gettingan answeratall.

When postingat the forums pleaseread thesepostingguidelines following thesewillhelp you

getabetteranswerand encouragemore peopletohelpyou.Pleaseremember peoplehelpingyou on
the forums aregivingup theirfreetime todo so,but note thatthe JGraph team cannot guarantee
that answers provided on the forums are correct as they cannot always monitor alldiscussion

threads.Ifyou requireguaranteedresponsetime supportpleasecontactsales nospam@jgraph.com

for support contract information. Purchased JGraph products allcome with 30 days technical
support,you alsohave theoptionofa 12 months supportpackage.

Pleasedo not privatelycontact JGraph developersasking for freesupport.Itisunfairto expect
specialtreatment and putsthem intheawkward positionof askingyou to repostyour questionon
the forums. Answering the question on the forums means other people can read the thread and

solvetheirproblem without havingtotakemore developerstime.

Page 12

mailto:sales@jgraph.com
mailto:sales@jgraph.com
mailto:sales@jgraph.com
http://www.jgraph.com/forum/viewtopic.php?t=357
http://www.jgraph.com/forum/viewtopic.php?t=357
http://www.jgraph.com/forum/viewtopic.php?t=357
http://www.jgraph.com/forum
http://www.jgraph.com/forum
http://www.jgraph.com/forum
http://java.sun.com/docs/books/tutorial/
http://java.sun.com/docs/books/tutorial/
http://java.sun.com/docs/books/tutorial/

JGraph UserManual

1.4 About JGraph

1.4.1 JGRAPH SWING COMPATIBILITY

JGraph complieswith allof Swingsstandards,such aspluggablelook and feel data-+transfer,
accessibilityinternationalizationand serialization.For more advanced featuressuch asundo/redo,
printingand XML support,the standard Swing designswere alsoused. The designof JGraph has
much incommon with thatof JTreeand the view conceptscomes from Swings textcomponents.
JGraph itselfisan extensionof JComponent,which isSwingsbaseclassforallcomponents.JGraph
alsocomplieswith the Java conventions formethod and variablenaming, source code layoutand

javadocscomments.
1.4.2 THE JGRAPH PACKAGES

There arethreeseparatepackagesavailablefrom JGraph.com.

The main package isJGl"aph itselfwhich comprisesthebasicJGraph swingcomponent:

JavaPackageName Functionality
org.Jjgraph BasicJGraph class
org.jgraph.event Graph EventModels
org.Jjgraph.graph Graph Structureand nodes
org.jgraph.plaf Graph UI delegatecomponent
org.Jjgraph.util Generalpurposeutilities

Table 1 : JGraph Packages

JGraph Layout Pro isa setof functionalitythatbuildson top of JGraph, providingutilitiesa
number of layoutsand variousgraph analysisfunctionalityItcomes with it’sown applicationnote

and supportinthe JGraph forum.

Page13

JGraph UserManual

com.jgraph.algebra Graph AnalysisRoutines
com.jgraph.layout JGraph Facadeand utilities
com.jgraph.layout.organic Forcedirectedlayouts
com.jgraph.layout.tree Tree layouts
com.jgraph.layout.routing Edge routingalgorithms
com.jgraph.layout.hierarchical Hierarchicallayouts

Table 2 : JGraph Layout Pro Packages

Alsoavailablefrom JGraph isJGraphpad.

1.4.2.1 JGraphpad

JGraphpad isa professionalimplementationofacompletedJGraph applicationframework.

1Gragihipad Prio = Dokument 1 *

Dalei Bearbeiten Ansichl Format Zelle Fenster Hilfe

[Clzls] [@la] [¢v -+ m(a] [@]a]a)] w5 (@) [n[b] ¢ [u] [l 5]
H [5[dofelg [m[@ [~ PREBEHBECE ERREEEER

INSERT

i © =

|,'::_.:|
ool 1K L

22 Wiurzelknoten Geandert Ediierbar 100% 5P1:269 E'G0BK Frei (13°924K Total
lllustration 7 : The German version of JGraphpad Pro

Page 14

JGraph UserManual

JGraphpad has an XML- based configuration with programmable user interface factory,
defininghow you want the applicationto appear in the configuration files.Tt alsousesa plug-in
architectureso your application specificfunctionalitycan be developed as a singlemodule, simply
dropped into JGraphpad and you have a readymade graph application.JGraphpad comes with all
the extrafeaturesof JGraph Pro already integrated,aswellastheoption to incorporatethe layouts
from JGraph Layout Pro. If you need a complete, stand-alone graphing application, with
JGraphpad, you arenearlyfinishedwhen you startusingit

JGraphpad includesitsown completeusermanual,30 daysor 12 months technicalsupportand
a range of additionalfeaturesnot found in the freeJGraph version.These include standard XML
I/0 support,richtexteditorsforvertexlabels,an overview panel (birdseye view),a librarypanel

(repositoryor palette) edge routingtoavoidnodes,SVG exportandmore.

Page 15

JGraph UserManual

1.4.3 MXGRAPH

mxGraph isa browser based graph library for allmajor platforms. mx Graph uses the native
vector graphicsdrawing language availableto provide rich diagramming functionalityin a thin
clientarchitecture.mx Graph alsoincludesback-end functionalityfor .NET, PHP and Java that
provide accessto the graph model and persistenceacrossthe majorityof servertechnologies.The
softwareisonlyavailableunder the terms of themx Graph License,a standard commerciallicense.

Evaluationsareavailableon request.

1.4.4 JGRAPH LICENSING

The core JGraph libraryisopen source software.This means the source code is freely

availableThe licensingof thevariouscomponentsatthetime of writingis:

* JGraph - Library General PublicLicense (LGPL) version 2.1 and JGraph License

version1.1.

* JGraph Layout Pro - JGraph Licenseversion 1.1.JGraph Layout Pro isalso freefor

non-commercialuseunder the terms of an academic-stylelicense.

* JGraphpad - GeneralPublicLicense(GPL) version?2 and JGraph Licenseversioni.1.

The core JGraph libraryisavailablefreelyunder the LGPL. The LGPL statesthat you must
provideaccessto the sourcecode to JGraph (and onlyJGraph) ifyou distributean applicationthat
usesJGraph asa library.Ifyou make changesto JGraph or extend it,you must alsoprovide those
changes.The non-JGraph partsof your applicationdo not count as an extension, you may still
keep thatcode private.Pleasenote thataddinga comment inyour userdocumentationstatingthat
the sourcecode to JGraph may be found at the JGraph web sitedoesnot constituteadherence to
thelLGPL.

For detailedlicensingquestionyou arealwaysadvisedto consulta legalprofessional.

Page 16

http://www.mxgraph.com/
http://www.mxgraph.com/
http://www.mxgraph.com/

JGraph UserManual

1.5 Getting Started

1.5.1 THE JGRAPH WEB SITE

To startwith navigateto the JGraph web site The most useful areasto you when starting

JGraph are listedbelow. Use the navigation bar on the lefthand side to locatethe appropriate
section:

« Documentation - All freelyavailabledocuments relatingto JGraph. If you are reading this

aspartof the JGraph usermanual,thisisthemost up-todatedocumentationatthe time of
writing. Additional examples to JGraph are availableat a small cost that demonstrate
specificfeatureswithinJGraph.

e Forum - Here you can ask the JGraph community your questions.A timelyand correct
answer cannot be guaranteed, however the JGraph developerstend to keep a closeeye on
questionsposted.Try tobreak yourproblem down intosinglesmallerquestions.Ifyou post
askingtohave someone writeyour projectforyou, you areunlikelyto receivea reply.Ifyou
require commercialdevel support please contact support@jgraph.com. Before posting to
the forum please search the documentation, the FAQs and search the forum using the
search facilityprovided. The JGraph team have spent a greatdeal of effortputting those
resourcesinplace,pleasetryto savethem havingtopoint you atthem becauseyou havenot
searched yourself.

NOTE: The majority of forum users ask plenty of questions, but answer none.
JGraph is set up to be a community project, it is reasonable that you will have
some questions initially and that you might ask 4 or 5 questions without giving
anything in return. But continuing to ask more than 10-15 questions without
contributing anything in return will be noticed by the JGraph developers, you
will find theywill stop helping you in this case.If you don't know whereto help,
look through the unanswered questions on theforum for a start.

e FAQ - The FAQ containsa number of the question receivedmost often in a summary

format.
e Tracker - The trackercontainscurrentbugs within JGraph. If you think you have a bug,
check ithasnot alreadybeen reportedand alsocheck inthe forum ifyou areunsureifitisa

realbug. Ifyou aresure,pleasedo reportthebug.
1.5.2 DOWNLOADING JGRAPH

The complete JGraph suiteconsistsof allthe components availableto download. These are
JGraph, themain library,JGraph Layout Pro, an additionallibrarycomprisinglayoutsand analysis
functionalitythat buildsstraighton top of JGraph. Finally,there isdJGraphpad, the freeexample
applicationbuilton top of JGraph.

On thedownloadspageon JGraph web siteyou willfindthe latestfreepackagesavailableboth

the source and binarydistributions.Older versionsof JGraph are availablefrom the sourceforge

Page 17

http://www.jgraph.com/downloads.html
http://www.jgraph.com/downloads.html
http://www.jgraph.com/downloads.html
http://www.jgraph.com/jgraphpad.html
http://www.jgraph.com/jgraphpad.html
http://www.jgraph.com/jgraphpad.html
http://www.jgraph.com/tracker/
http://www.jgraph.com/tracker/
http://www.jgraph.com/tracker/
http://www.jgraph.com/faq.html
http://www.jgraph.com/faq.html
http://www.jgraph.com/faq.html
http://www.jgraph.com/forum/search.php?search_id=unanswered
http://www.jgraph.com/forum/search.php?search_id=unanswered
http://www.jgraph.com/forum/search.php?search_id=unanswered
http://www.jgraph.com/forum
http://www.jgraph.com/forum
http://www.jgraph.com/forum
http://www.jgraph.com/docs.html
http://www.jgraph.com/docs.html
http://www.jgraph.com/docs.html
http://www.jgraph.com/
http://www.jgraph.com/
http://www.jgraph.com/

JGraph UserManual

download sitea linkto thisisdisplayedon thedownload page:

Package Release (date) Filename

Latest [=]5.7.4.1 [Motes] (2005-11-18 07-08)
jgraph-5.7 4 1-lgpl_jar 9557465
graph-5.7 4 1-gpl-src_jar 1136133

[#15.7.4 notes] (20051101 05:22)

[#5.7.3.1 Notes] (2005-10-05 13:22)

[#] 5.7.3 [Notes] (2005-08-27 05.25)

[Notes] [2005-08-31 123:04)
jgraph-5.7_1-gpl_jar 946115
jgraph-5.7_1-lgpl-src._jar 1125321

[#) 5.7 Motes] (2005-08-28 15:28)

[*] 5.6.3 [Notes] (2005-D8-07 12.42)

Hllustration 8: : T h.eerG;c;ph files packages at sourceforge.net

The topmost group ina package listwillcontainthemost up todateversion from thatpackage.
The two filesofferedprovide the source (with -srcsuffix)and binaryonlyversions.Note thatthe
binaryversionisbuiltforJaval.4and greater.

Note that the downloads for the latestIJGraph versionsprovided on the JGraph.com web site
are locatedon a dedicated JGraph download serverwith fargreaterbandwidth and uptime than
the sourceforge.netservers.JGraph shouldbe your preferreddownload locationforthisreason.

JGraphpad can be obtained from the same download page.Itistestedtowork with a specific
version of JGraph, thisversionnumber isstatedin the README fileAs a generalrule,the free
community version of JGraphpad istestedwith the lastreleasedversion of JGraph at the dateof

releaseand shouldhave the same releasenumber asJGraph.
1.5.3 INSTALLING JGRAPH

Havingdownloaded the threeJGraph packagesselecta folderthatwillbe the rootdevelopment
folder somewhere on your hard disk. JGraph isdelivered in a selfextracting .jarfile.Double-
clickingthe fileinWindows willusuallystartthe installationprocess.To startthe installationfrom

thecommand linetype:

>java -jar jgraph-5 10 0 _O-src.jar

replacingthe .jarfilename as appropriate.A dialogwillfirstappear asking you to agreeto the
licenseunder which you willuse JGraph, you areadvisedto read the license Next, the installation

processwillprompted you to selectthedirectoryto installJGraph into.
1.5.4 PROJECT STRUCTURE AND BUILD OPTIONS

Once Javaand Ant areinstalledlaunch thecommand prompt on windows, or shellterminalon

Page 18

JGraph UserManual

*nix or Mac, navigate to the root folder where you installed JGraph Layout. Typing ant
command,where command isone of the targetsin the ant buildfilewillperform the functionof
thatcommand, asdescribedbelow.Missingout the command willbuildthedefaulttarget.all.

doc/ Documentationroot
src/ Sourceroot
examples/ Examplesroot
build/ Buildenvironment
Table 1. ProjectDirectory Structure
all Clean up and produce alldistributions(*thedefaulttarget)
apidoc GeneratetheAPTI specification (javadoc)
build Run alltaskstocompletelypopulatethebuilddirectory
clean Deleteallgeneratedfilesand directories
compile Compilethebuildtree
compileexample Compilethemain example
dist Produce freshdistributions
distclean Clean up thedistributionfilesonly
doc Generatealldocumentation
example Run themain example
init Initializethebuild
jar BuildallJavaarchives(JARs)
generate Generatethebuildtree

Table 2. Ant command options

For example,tocompileand run theexampleUI typethe following:

‘ant example

1.6 The Design of JGraph

The core JGraph library is design to be as small as possible, to use familiarSwing design
principles,to leave demonstration of applicationspecificideas to examples outside of the core

packageand fortheprovisionof new featuresthrough classextensionfrom thecorelibrary.

Page 19

JGraph UserManual

1.6.1 THE USE OF OBJECT TYPES

A reasonably frequent question iswhy aresomany parametersand return valuesObject types

ratherthan Verticesor Edgesor Ports.To quoteGaudenz:

1.Any objectcan be used asa cellina GraphModel.Itisnot requiredthatcellsimplement an

interface.(Thiswas a requirement sinceone of themodelswas a JINI-LUS on a remotemachine.)

2. The Edge and Port interfacesare only used in the DefaultGraphModel. They are a contract

between thedefaultmodel and itscells.(They arenot usedanywhereelseinJGraph.)

3. The Graph structureshould onlybe accessed through the GraphModel interface,not through
the Edge or Port interfaces.It iseven not required that a GraphModel usesports (itishowever

requiredthateveryedge isrepresentedby an objectinthemodel).

4. Neitherthe JGraph component nor one of the algorithms for graph traversalusesthe Edge or
Port interface, they alluse the GraphModel interfacewhich in turn uses the Edge and Port
interface to retrievethe Graph structure from the cells.This way, the storage structure can be
hidden from theGraphModel client.

Page 20

JGraph UserManual

2 JGraph and the Graph Model
2.1 Understanding the HelloWorld application

In thischapterwe willwalk through each lineof a simpleHelloWorld applicationand explain
themain classedbeingused and theprimaryAPI usedtocreateand manipulatea simplegraph.The

package statement and importsareomitted,itisassumed you arefamiliarwith thebasicsof Java:

public class HelloWorld {
public static void main(String[] args) {
GraphModel model = new DefaultGraphModel () ;
GraphLayoutCache view = new GraphLayoutCache (model,
new
DefaultCellViewFactory())
JGraph graph = new JGraph (model, view);

DefaultGraphCell[] cells = new DefaultGraphCell[3];
cells[0] = new DefaultGraphCell (new String("Hello")):;

GraphConstants.setBounds (cells[0] .getAttributes (), new
Rectangle2D.Double (20,20,40,20)) ;

GraphConstants.setGradientColor (
cells([0] .getAttributes (),
Color.orange) ;
GraphConstants.setOpaque (cells[0] .getAttributes (), true);

DefaultPort port0 = new DefaultPort();
cells[0].add (port0) ;

cells[1l] = new DefaultGraphCell (new String ("World"))

GraphConstants.setBounds (cells[1l] .getAttributes (), new
Rectangle2D.Double (140,140,40,20))

GraphConstants.setGradientColor (
cells[1l].getAttributes(),
Color.red);
GraphConstants.setOpaque (cells[1l] .getAttributes (), true);

DefaultPort portl = new DefaultPort();
cells[1l].add(portl);

DefaultEdge edge = new DefaultEdge () ;
edge.setSource (cells[0] .getChildAt (0)) ;
edge.setTarget (cells[1l].getChildAt (0)) ;
cells[2] = edge;

int arrow = GraphConstants.ARROW CLASSIC;

GraphConstants.setlLineEknd (edge.getAttributes (), arrow);
GraphConstants.setEndFill (edge.getAttributes (), true);

Page 21

JGraph UserManual

graph.getGraphLayoutCache () .insert (cells) ;

JFrame frame = new JFrame () ;

frame.getContentPane () .add (new JScrollPane (graph));
frame.pack() ;

frame.setVisible (true) ;

2.1.1 CREATING THE JGRAPH

At theverycoreof the JGraph libraryistheorg.jgraph.JGraph classThe JGraph class
extends JComponent and you create one JGraph instance per graph component in your
application,the same way as you would one JLabel forone label.Instancesof thisclassbind the
graph model, any graph view(s) and the user interfacecontrolhandlingalltogetherin one place.
Creatinga JGraph instancewithoutany parameterscreatesan examplegraph showingaverybasic

UML diagram of theJGraph architecture:

public class Example {
public static void main(String[] args) {
JGraph graph = new JGraph()

Page 22

JGraph UserManual

JFrame frame = new JFrame () ;

frame.getContentPane () .add (new JScrollPane (graph));
frame.pack();

frame.setVisible (true) ;

JComponent : Componentl

GraphModel F Graphul
£
impiernants impigments

DefaultGraph... BasicGraphUl

Hlustration 9 : Sample data presented on the creation of an empty JGraph

However, thisisnot very informative for our purposes. Instead, in our example we createa
model of the graph, using the default implementation provided, DefaultGraphModel . We
then passthe JGraph constructorthismodel which representedthedatamodel we wish touseto
describe the graph. We also create a default implementation of a view of the graph, the
GraphLayoutCache and inform the JGraph thisisthe view thatwillbe used (don’tworry

about thecellview factoryfornow):

GraphModel model = new DefaultGraphModel () ;
GraphLayoutCache view = new GraphLayoutCache (model,

new DefaultCellViewFactory()):;
JGraph graph = new JGraph (model, view);

Information - The GraphLayoutCache is often thought of as the graph view, and in
previous versions of JGraph was named GraphView. The reason for the term layout cache
is that JTree has a class named AbstractLayoutCache that holds information about
the geometry of the tree nodes. The GraphLayoutCache is different to a standard view in
Swing, since it contains information that is solely stored in the view, i.e. it is stateful. It is
the term GraphLayoutCache we will use from now on when referring to what might be
thought of as the graph view.

Ifthe terms model and view arenot familiarto you, itisworth gettinga basicoverview from a
textsuchas[REF].In simpleterms,themodel holdsthedataabout the graph and providesvarious
methods to accessthat data. The view(s) are one or more layerslogicallyabove the model that
perform the task of visuallypresenting the graph and theseare updated automaticallywhen the

model data changes.By default,views willshow the same graph, but a varietyof functionalityis

Page 23

JGraph UserManual

availableto displaythe graph differentlyin each view, ifrequired. It ispossiblefor the model to
containallthe information needed to represent the graphs logicalstructure, itsgeometriclayout
and itsvisualrepresentation.Some of theseaspectswould be expectedtoonlybe consideredinthe
graph views,but a graph Swing component issomewhat more complex than any of the standard
Swing componentsdue tothevirtuallyunlimited flexibilityof cellpositioningavailableJGraph 1.0
didplacemore weighton storingvisualattributesintheviewsoverthemodel,JGraph 2.0 reversed
this,shiftingcommon wvisualattributesinto the model and was found to be the better solution

architecturally.

GraphLayoutCache GraphLayoutCache GraphlLayoutCache

[- 1 [H 1 CH H 1
CH L H

N %

GraphModel

[- 1
CH]

Hllustration 10 : Multiple views can share the same model

Information - For simple applications it is tempting to avoid the GraphLayoutCache
completely and work directly on the GraphModel, as the GraphModel provides all the
necessary methods to manipulate the graph. You are recommended, unless you have a solid
technical understanding and a good reason otherwise, to start by always working on the
GraphLayoutCache. People often find, as their application grows, that view-specific
features are required and all the calls to the GraphModel have to be changed to calls the
GraphLayoutCache. One important exception to this principle is that if you edit () an
invisible cell in the GraphLayoutCache, it becomes visible. In this case editing the
model directly is preferable. The GraphLayoutCache is discussed further in Chapter 4.

Inbetween the first3 linesofmain() thatsetup our JGraph and the last4 linesthatdisplaythe
JGraph inthe application,liesthe codes that createsthe graph cellsconfiguresthem and inserts
them intothegraph.We’'lllookatthem inorder.

2.1.2 INSERTING CELLS

The threegraph cellswe aregoing to createin the HelloWorld applicationare two vertices

and one edge connectingthevertices:

Page 24

JGraph UserManual

World

Hllustration 11 : The basic
Helloworld example shows two
vertices connected by one edge

cells[0] = new DefaultGraphCell (new String("Hello")):;

DefaultPort port0 = new DefaultPort () ;
cells[0].add (port0) ;
portO.setParent (cells[0]);

DefaultEdge edge = new DefaultEdge () ;

We can createnew simple verticesby constructing DefaultGraphCells and edgeswith
DefaultEdge. These classescan be instantiated with no parameters,or with an object.By
default,whateverthat objectreturnsinitstoString () method willappear as the text for that
vertex or edge. Obviously, String objects return themselves in toString () and this is
sometimes the only object used in thisparameter.In the HelloWorld example we use this
mechanism toassignone vertexthe label“Hello”and othervertexthe label“*World”.

The otherobject,a DefaultPort,might be confusingifyou are familiarwith graph theory.
Portsarean artificialaddition in JGraph used to indicateplaceson a vertexwhere an edgemay
connected to that vertex. The ends of edges connect to verticesby these ports and ports are
represented, at leastin the defaultmodel provided with JGraph, asbeing children of one vertex.
The add () and setParent () callsare the mechanism used in JGraph in indicate the
parent/childrelationshipbetween thevertexand itsport(s).

Settingup the verticesand edge to displayhow we would likethem isdone by modifyingtheir
attributes. A1l cells, including ports, have what is called an attribute map. This is a
java.util.Map,theJGraph defaultimplementationof an attributemap, AttributeMap, is
a subclassof Map .Ensure you understand how Javam aps operateand theirbasicAPI beforeusing
attributemaps. Attributesare stored in key/value pairswhere the keys are attributeslike color,
position and text font. It is worth, at this point, you having a look at the
org.jgraph.GraphConstants class.

Page 25

JGraph UserManual

/ Cell Attribute Map \

Feys Values
GraphConstants ATTOSIZE true
GraphConstants SELECTABLE false
GraphConstants BOUNDS Rectangle 20§ 1

S =/

Hlustration 12 : Key/Value pairs of a cell attribute map describing the cells
visual attributes

GraphConstants isautilitywlassdesigned toallow you toaccessattributemaps ina type-safe
way, i.eensureyou areusingthe correcttypesof objectsforthe availableattributes.Italsoprovides
a usefulguide towhat attributescan be setfor the variouscelltypes.In GraphConstants, after
some initialenumerationvariables,you willfinda listof Strings thatrepresentthepossiblekeys
in attributemaps. The bottom halfof the source file,roughly, containsallthe accessormethods
(getXXX () and setXXX () methods) thatyou shoulduse inyour applicationto readand change
theattributes.The Javadocsof thesemethods and key stringsarethemost up todateand complete
description available,repeatingthem in documents such as thisone isavoided as such references

quicklybecome outdated.

2.1.2.1 Configuring Cells' Attributes before Insertion

All graph cellshave a storagemap that you can obtain using getAttributes () .When
insertingcellsyou can obtain the attributemap thatbelongsto thatcelland manipulateitbefore
insertingthe cellinto the graph. This practiceisonly generallyadvised for insertingcells,when
editingcelltheprocessof usingtransportmaps, not theactualcell’snap (the storagemap) should
be used (seeEditingthe Graph).Below isthe callasan example,of settingthe gradientcoloron
the firstcellto orange.The attributemap from thecellisobtainedwithgetAttributes () ,the
construction of DefaultGraphCell ensures you receive a non-null map. Then the
appropriatesettermethod inGraphConstants iscalledpassinginthemap and thenew valueto

set:
GraphConstants.setGradientColor (cells[0] .getAttributes (),

Color.orange) ;
Anotherexampleis:

GraphConstants.setBounds (cells[0] .getAttributes (), new
Rectangle2D.Double (20,20,40,20)) ;

Page 26

JGraph UserManual

Cellbounds issomething you willcome acrossmany times using JGraph, in particularthe
setBounds () method when moving any cellsin the graph.The bounds of a cellistheminimum
rectanglethatenclosesthe cellcompletely.In theabove exampleanew double precisionrectangle
iscreatedand appliedto the cellusingthe setBounds () method. The x,yco-ordinatesaresetto
(20,20) ,thewidth of thecellto40 and theheightto20.

The processof applyingattributestoedgesisthe same, asshown inthisexample:

int arrow = GraphConstants.ARROW CLASSIC;
GraphConstants.setlLineEnd (edge.getAttributes (), arrow);
GraphConstants.setEndFill (edge.getAttributes (), true);

Here the lineend issettobe a standard arrow and the creation of the end shape for the edge
enabled. Note thatedgesallhave a directioninternallywithinJGraph,itisup toyou whetheryou
want to revealthisdirectedbehaviouron the visiblegraph.Itisalsoworth notingthatthe accessor
methods frequentlyonlyapplytoone ora limitednumber of typesof cellsSettingthe lineend of a
vertexismeaninglessand nothingwillhappen becauseof it,no erroriscausedby doing such a thing
forperformance reasons,sinceno harm willcome of it.The Javadocs of themethods statewhen
theyonlyapplytoparticularcelltype(s).

In terms of indicatinghow the edge isconnected, in our example, these are the lines that

perform thisfunction;

edge.setSource (cells[0] .getChildAt (0)) ;
edge.setTarget (cells[1l] .getChildAt (0)) ;

As mentioned,edgeshave a direction,internallyand connecttoverticesby theportsassignedto
those vertices. Edges can be viewed as going from a Source to a target. The methods
setSource () and setTarget () on the Edge interfacespecifywhich portseach end of the
edge connectsto.In theexample,theportshavebeen obtained from theverticesdoy askingfortheir
firstchild.getChildAt (int) returnsthe childat the index specifiedin the singleparameter.
We know thereisone childattachedtoeach vertexsincewe createdtheportsand assignedthem as
children previously.Note that thismethod of determining portsisenough for our example, but
sometimes isn’'tgood programming practicewhen we get to non-trivialapplications involving
multipleports.

Having createdour cells,configured them and connected the edge to the vertices,we can now

insertthisallintothegraph:

graph.getGraphLayoutCache () .insert (cells) ;

We willalwayswork on the GraphLayoutCache inour examplesof inserting,editingand
removingcellsYou willfind therea number of variantsof the insertmethod and theone shown is
the simplest.It takesan arrayof verticesand edgesand insertsthem into the graph. Try running
the HelloWorld example provided with the JGraph package.Detailsof how todo thisarein
the Introductionchapter.The code isslightlydifferent but the functionalityisthe same.

Try playing with HelloWorld for a few moments to see what simple functionality the

Page 27

JGraph UserManual

JGraph libraryprovidesto you. Selecta vertexand what are called handles appear around the
vertex.You can drag thehandlesto resizethe vertex,or clickand dragthemain partof a vertexto
move it.Double-licka vertextobringup a simpleeditorthatallowsyou toalterthe labels,you can
do the same for the edge too.Click and hold themouse down near the top-leftof the graph area
and drag the mouse towards the bottom-right of the graph and release.The rectangle that is
formed duringthedragistermed a Marquee, releasingthemouse causesallthreecellstobe selected
ifthe marquee completelyoverlapsthe cellsDragging any part of the selection causesthe whole

selection to move at once. Functionality related to this marquee is handled by the
BasicMarqueeHandler.

2.1.3 EDITING GRAPH CELLS

When changing a graph, collect your changes together in one nested map and pass it to
GraphLayoutCache.edit () .That willsortout thechangeon yourview, passittothemodel,
create an undoable edit on your undo command history and refresh everything that needs

refreshing.For example:

Map nested = new Hashtable() ;
Map attributeMapl = new Hashtable();

The nested map isthe map passed into edit () as the firstparameter.attributeMapl

containsdetailsof the attributeson a particularcellthat we want to edit.Let’ssaywe want to

changethelineColor ofacell:

GraphConstants.setLineColor (attributeMapl , Color.orange);

Again, GraphConstants isused to indicatethe attributesetting.But there’sa differenceto
thenew HelloWorld example here.Insteadof fetchingthe attributemap belongingto any one
map, anew Hashtable hasbeen constructed.Why thisisdifferenttomanipulatingan attribute
map duringan insertwillbe explainedshortly.

You can createattributemaps describing the attribute changes for any number of cells.Each
attributemap describesallthe changesforone cellItyou splitthe changesforone cellacrossmany
maps, thiswould stillwork but be inefficient.The next step forour attributemap, assuming we
onlywant tosetitscolor,istoput () theattributemap intothenestedmap.When doingthisyou
provide the cellyou want to alteras the key to the attributemap, i.e.this cellisgetting these
attributechanges.

nested.put (celll, attributeMapl);

You don’thave tocalledit () with thenestedmap justyet,in factitmight be abad ideatodo
so.Callingedit () adds thateditto the undo history,so ifyou want a number of thingsto be

Page 28

JGraph UserManual

grouped intoone undo, make suretheyareperformed aspartofone edit () .So, maybe you want
tomake the labelon anotheredge to lieflatalong the edge and thistobe partof the same atomic
change;

Map attributeMap2 = new Hashtable();

GraphConstants.setLabelAlongEdge (attributeMap?2 , true);
nested.put (cell2, attributeMap2);

And soon.Finallywe passthenestedmap intoedit () and you shouldfindthe resultinggraph

ischangedaccordingly.

graph.getgraphLayoutCache () .edit (nested, null, null, null);

Hested Attrioute Map
BRRR¥ X
|- - Cell2 Attribute DMap2] F .
Celll Attribute Iapl — T Cell3 Attribute Map3
BACKGROUND | Color YELLOW EDITABLE false

VERTICAL ATLIGHNMENT JLabel TOP

Hllustration 13 : Representation of a nested attribute map passed into an edit call. The entries into the nested
map are key/value pairs representing the cell to be changed and a map of attributes to change in that cell.
Within that second attribute map are a set of key/value pairs representing keys from the GraphConstants class
and the new values that those visual attributes are to be assigned by this edit call.

When editingyou shouldnot editthe attributesof a celldirectly,you should storethe changes
inanew map and ask JGraph to apply them foryou. Thismechanism was not necessarywhen
insertingbecause the cell(s)have no existingattributemap tobe altered.When an insert,editor
remove callismade, the graph model createsan objectthat describesthe changes that are to be

made, thisobject iscalled an edit. This edit isexecuted on the current state of the graph to

Page 29

JGraph UserManual

determine the resultinggraph. The reasons forabstractingthe change intoan actualobjectistwo-
fold:1) toprovide listenersof the event thatexecutingthe editfiresameans toobtaininformation
astowhat happened intheedit,2) toprovideundo supportwithin JGraph by storingthe editon
theundo history.

edit () checksthe requestedgraph statechanges requestedagainstthe current graph state.If
thereisfound tobe no change requestedthen no action istaken.Ifyou editthe attributesinplace
on thecellsattributemap beforean edit,the attributemaps passedinwillbe checked againstthose
currentlyheldby the cellsand found tobe the same. This isbecause theywillbe the same object
and soedit () doesnot change the graph since it seesnothing different in the change request.
The reason this process of creating new map to pass into edit () callsisn’tnecessary for
insert () callsisthat for insertsthe celldoesn’texistin the graph and so thereisno attribute
map comparison to be done. If you dislikehaving two differentmethods (the simple insertand
nestedmap) of configuringattributes,the use of nestedhashtablesispossiblewithboth methods.
However,editinginplaceon insertsprovidesbetterperformance.The correspondingcallto insert

wouldbe:

graph.getGraphLayoutCache () .insert (nested, null, null, null);

There are a couple of items of terminology used for attribute maps. The permanent map
associatedwith a celliscalleda storage map and requiresthe use of a specializedattributemap
class.A temporary map used only to indicate an edit change and then discarded is called a

transport map, most genericMap implementationscanbe used forthis.

2.1.3.1 Removing Cell Attributes

A common mistake in JGraph isto resortto using a cellsattributemap directlybecause the
mechanism tocompletelyremove an attributefrom an attributemap isnot soobvious.As a result,
usersgetthemap directlyremove theappropriatekeyand calledit () .The correctway todo this
istocallsetRemoveAttribute () :

Object[] keys = new Object[] { GraphConstants.ICON };
GraphConstants.setRemoveAttributes (map, keys):;

Thisexample removes the icon key from a cellsattributemap. The possiblesetof keysyou can
pass in with the array are at the top of the GraphConstants class.Remember to setallthe
removed attributesatonce,asany new arraywilloverwritepreviousentriesAlternatively.fetchthe
arrayusing getRemoveAttributes () , copy the previousvaluesinto a new arraywhilstalso
addingthenew valuesand passthenew arraytothesetRemoveAttributes () method.

2.1.4 REMOVING CELLS

The remainingbasicgraph editingoperationisthatof removingcellsThe simplestremove ()

Page 30

JGraph UserManual

method takesan arrayof cellsto be removed. Like insert () and remove () , thismethod is
availableat both themodel and layout cache levels.Specialconsideration needs tobe given when

removinggrouped cellsseeChapter4 formore details.

2.1.5 ATTRIBUTE MAPS

The map of attributesthateach cellholds istermed an attributemap. The defaultclasswithin
JGraph fordefiningattributemaps isnamed AttributeMap,but alwaystryto accessattribute
maps using the Map interface for the usual reasons of encapsulation and de-coupling of the
interfacefrom the implementation.Attributesareheldwithin the valuesof the key/valuepairsin
themap and the keysarewellknown constantsthat the drawing functionalityunderstands and
interpretsthevaluestoproduce graphicsconfiguredasthe attributesdictate.

Previouslymentioned was theuseof the GraphConstants classtoprovidedefinitionsof the
map keysthatthedefaultdGraph implementationunderstandsand toprovideaway toaccessthe
valuesina typesafemanner.For example, the implementationsof setFont () and getFont ()
inGraphConstants look like:

public static void setFont (Map map, Font font) {
map.put (FONT, font);
}

public static Font getFont (Map map) {
Font font = (Font) map.get (FONT) ;
if (font == null)
font = DEFAULTFONT;
return font;

Note thatthemethods arestatic,you specifytheMap theyaretoactupon intheparameterlist.
These methods ensure that the type of the wvalue object stored under the key
GraphConstants.FONT isa Font.In thecaseof getFont () themethod alsoensuresthata
defaultfont isused ifany particularcelldoes not have a font set.In another part of the JGraph
library,the partthatdealswith drawing labelson verticesand edges,thevalueof getFont () will
be obtained by passing in the attributemap of corresponding celland used to render the label
correctly.

It should be noted that keys of attributemaps defined in GraphConstants relatealmost
entirelyto visual propertiesof cells.In general in JGraph, if the user would like to add new
attributesthen onlyvisualattributes(colorforexample) and visualcontrolattributes(selectable
forexample) shouldbe added to a custom classthatprovidesthe appropriatekey constant,aswell
as the staticsetXXX () and getXXX () methods.One thingto remember isthat attributesare
undoable, thismight affectwhether you might itan attribute or associateitwith your cellin
another way. There is no requirement for this custom class to be a sub-class of

GraphConstants, since virtuallyeverything in that classis staticallydefined. The subjectof

Page 31

JGraph UserManual

associatingcustom non-visualdatawith a celliscovered in chapter3 inthe discussionon celluser

objects.

2.1.5.1 Attribute Map changes after edit calls

The standardway toalterthe contentsof cellsattributemaps istopassanew map of attributes
with the cellina Map entryaspartof a nestedmap totheedit () methods.Sincethe attribute
map of a cellalreadyexiststhereare four statechanges thatmight happen to individualattributes
withintheattributemap:

1. The attributeremainsunchanged,

2. The attributeischanged,

3. The attributeisremoved from themap
4. A new attributeisadded tothemap.

Page 32

JGraph UserManual

/_ Cell Storage Map before edit \

Fevys Values
| GraphConstants ATTOSIZE | true
| GraphConstants SELECTABLE | false / Cell Storage Map after edit \
GraphConstants BOUNDS Rectangle2D$1 | [~ Keys Values
\ "/ | GraphConstants ATTOSIZE ‘ false

/— Transport Iap passed to edit call \

Feys Values - CGraphConstants BOUTNDS Rectangle2D31
GraphConstants ATTOSIZE false | GraphConstants OPAQUE ‘ false
2 =/
|Gmphcc.mtms.REI»&OVEATTRIBUTES | selectable
L| GraphConstants OPAQUE | false

Hllustration 14 : How transport maps passed through edit calls affect cell storage maps.

Tllustration 16 pictoriallyshows the four possible attribute entry state changes during an
edit () callThe yellowbox representsthe stateof the cellattributemap beforethe editcalland
thegreenbox theattributemap passedintheedit () callwithinanestedmap.

1. The BOUNDS attributeisnot inthe transportmap and so remainsunchanged inthepostedit
storagemap.

2. The AUTOSIZE attributeisinboth the preeditstoragemap and the transportmap. In this
casetheposteditstoragemap holdsthevaluepassedinthrough the transportmap.

3. The transportmap holdsan Objectarrayvaluewith the REMOVEATTRIBUTES key.This
array has one element, GraphConstants.SELECTABLE which isactuallya String of value
“selectable” . The editcallchecksto seethe referenced key ispresentinthe preeditstoragemap.
Ttisinour exampleand sothemap entryisdeletedfrom theposteditstoragemap.

4. The OPAQUE attributeispresentinthe transportmap, but not thepreeditstoragemap. The

keyand valuepairarecopiedintotheposteditstoragemap.
2.1.6 SUMMARY

In thissectionwe looked at insertingcellsinto the graph model and manipulatingthem. Each
cellhas an attributemap used to describe itsappearance and behaviors.Using the insert (),
edit () and remove () methodson theGraphLayoutCache we canchangecellsinaway
thatthegraphmodel isupdated, the screenisrepaintedproperly,an undo of thechange isadded to

the undo historyand alllistenersto the model are informed of itchanging. These methods are

Page 33

JGraph UserManual

commonly referredtoasthe 3 editingmethods and itisworth rememberingthatthey form one of
the keypartsof the JGraph API. There currentlyexistsno method inthe GraphModel interface
thatperform a compound of 3 editingmethods to enableinsertion,attributeeditingand removal

inone atomic,undoableoperation.

Page 34

JGraph UserManual

2.2 Creating and Configuring the JGraph class

The JGraph classitselftiestogether the main components of the graph , provides top-level
configuration of the graph and a number of generalutilitymethods. The model-iew-controller

patternforJGraph isshown below:

Javay Swing. Javas, swing plaf
T omponent Cotp onentTT
org.jgraph. graph. org. jeraph. JGraph org.jgraph plat.
Graphhiodel GraphlUlL
org jgraph graph. - . _
o jgraph graph. org jgraph plaf basic.
DetoutiGrzpaiictel GraphLayoutCache Basic Graphlll

Hlustration 15 : JGraph MVC

JGraph isa JComponent and holdsreferencesto itsmodel,view and UI. The basicstructure
of the component, namely the Swing MV C architecture, is inherited from JTree. However,
JGraph has an additionalreferenceto a graph layout cache,which isnot typicallyused in Swing
MV C. The graph layout cache isanalogous to the root view in Swing’stextcomponents,but itis
not referenced by the UI-delegate. Instead, it is referenced by the JGraph object such that it
preservesthe statewhen the look-and-feelischanged.

When creatingyour JGraph instanceand associatedobjects,itisimportanttogetthe orderof
object creation correct and to ensure that the objects correctly reference each other where
appropriate. The JGraph holds references to the current GraphModel and
GraphLayoutCache and the GraphlLayoutCache needs to have a reference to the
GraphModel .The simplestmethod of instantiatinga JGraph is:

JGraph graph = new JGraph();

Thiswillcreatea DefaultGraphModel and GraphLayoutCache foryou and setup the
reference in the GraphLayoutCache to point at the new model. Say, for example, you have

yourown graphmodel,use:

GraphModel model = new MyGraphModel () ;
JGraph graph = new JGraph (model) ;

The GraphLayoutCache willbe setup correctlyfor you in the same way as before.Next,

Page 35

JGraph UserManual

yourown GraphLayoutCache:

GraphModel model = new DefaultGraphModel () ;
GraphLayoutCache view = new MyGraphLayoutCache (model,
new

DefaultCellViewFactory());
JGraph graph = new JGraph (model, view);

You could passnullas the firstparameter to the MyGraphLayoutCache (note thatwe’re
assuming your custom cache object constructors have the same signatures as
GraphLayoutCache)and aDefaultGraphModel wouldbe createdand allthe referencesset
up foryou.However,explicitlycreatingthemodel and passingitinmakes the code much clearer.
Of course,the lastpermutationisa custom model and layoutcache.Simplyuseyourown model in
placeof theDefaultGraphModel inthe lastexampleabove toachievethis.

Another areawhere referencesneed to be kept correctiswhen eitherthemodel or the layout
cache are changed afterthe JGraph hasbeen constructed.To do thisuse the setModel () and
setGraphLayoutCache () methods on the JGraph classpassing the new model and layout
cache instancesrespectivelyUpon settingthemodel any layoutcache currentlyassociatedwith the
JGraph instancewillbe updated tousethenew model instead.When settinga new layoutcache,
the model associated with that layout cache will be passed to Jjgraph.setModel ()
automaticallyIfyou wanted to keep the currentmodel associatedwith the JGraph instanceyou
shouldcreatethenew layoutcacheand passthe currentmodel to itsconstructorbeforepassingthe

layoutcachetojgraph.setGraphLayoutCache () .
2.2.1 CONFIGURING JGRAPH

Many of themain featuresin JGraph can be enabledor disabledthrough the JGraph class.
Below is a listof configuring methods worth learning, note that some are inherited from
superclassesNot allthe configurationmethods in JGraph are listedbelow. Some otherswillbe
introduced in latersections.Keep inmind theseareaccessormethods, foreach set method there
isa corresponding 1S ,or get method. Ifyou would liketo tryout the effectsof any of the set
methodsmentioned, tryapplyingthem to the JGraph instanceinHelloWorld, justafteryou

createit.

. setEnabled (boolean) is the highest level configuration in JGraph (the
method isactuallyin JComponent).This determineswhether or not mouse eventsare
handled. When set to false this disables selection, moving cells,editing labels, resizing,
anythingthatrequiresmouse interaction.The underlyingvariableist rue by default.

. SetEditable (boolean) determineswhether or not verticesand edgesmay be
edited.Editingshould not be confusingwith enabling,editingreferssolelyto the processof
clickingon a graph a setnumber of times (seesetEditClickCount ()) tobringup an

editorinfplace (overor around thevertex) thatallows the stringcontentof the cellslabelto

Page 36

JGraph UserManual

be altered.The underlyingvariableist rue by default.

. setEditClickCount (int) determinesthenumber of time you havetoclickon a
editable cell (by default those allowed string labels) before the editor for that label is
invoked.The underlyingvariabledefaultsto 2, i.edouble<clicktoedit.

. SetMovable (boolean) determines whether or not verticesand edges may be
moved. Note that portscannot be moved in the defaultimplementation at any time. The

underlyingvariableist rue by default.

. SetConnectable (boolean) determines whether or not new connections are
allowed tobe established. Note thatthisonlyappliesthe connectingoperationsperformed in
theGUI, attemptstoprogrammaticallyconnectan edgewillstiliwork even ifthismethod is
setdisabled.Ifyou trythisinthe HelloWorld example, the graph appearswith the edge
connected.You can stildisconnectthe edge by selectingthe edge, then clickingand dragging
one end of theedge away from the attachedvertex.However, ifyou trytodragthe edgeback
onto the wvertex there is no way to reconnect it if you have called

setConnectable (false) .The underlyingvariableist rue by default.

. SetDisconnectable (boolean) determines whether or not connected edges
may be disconnected from theirattached vertices.Specifically,can you grab the end of the
edge attached to the vertex and move it from its attachment point. JGraph based
applications likeworkflow editorsoften do not allow disconnected edges and so use this
method toenforcethatbehaviour.The underlyingvariableist rue by default,i.eedgesmay

be disconnected.

. SetDisconnectOnMove (boolean) determines whether or not connected
edgesshouldbe disconnectedwhen moved. Thisisdifferentto sSetDisconnectable in
thatitrelatestomoving theedgeasawhole,ratherthan one end of theedge.The underlying
variableisfal se by default.

. SetGridEnabled (boolean) determineswhether or not cellsare ‘snapped’ into
particularpositionsin the graph to form a more regularstructure.The concept of a gridis
that a number of pointsare laidout throughout the graph co-ordinate space as a gridand
cellsare positioned on theirclosestgridpoint,a processnaming snapping. The gridcan be

configuredby the distancebetween eachpoint.The underlyingvariableisfal se by default,

Page 37

JGraph UserManual

i.ecellsareinsertedormoved todoubleprecisionco-ordinatesand not moved onto the grid

positions.

« setGridVisible (boolean) determines whether or not the grid is visible. If
setGridEnabled issettotrueyou get ‘snapping’togridpoints,otherwiseno ’snapping’

willoccur.

. SetMoveBelowZero (boolean) determineswhether or not cellsare allowed to
have the position of their top-left corner anywhere in negative co-ordinate space. It is
generallyrecommended not to allow thisunlessthere isa good reason. The underlying
variableisfal se by default.i.ealltop-leftcornersof cellsarealwaysinpositiveco-ordinate

space.

. SetAntiAliased (boolean) determineswhether or not to enable antialiasing
forthe JGraph component.Antialiasingisa technique forblurringsharp, jagged linesusing

colorgradients. The underlyingvariableisfal se by default.

. SetSelectionEnabled (boolean) determineswhetherornot any cellsnay be
selected. The underlyingvariableist rue by default.

Page 38

JGraph UserManual

2.3 The Graph Model

2.3.1.1 Introduction

The graph model storesthe logicalstructureof the graph and thisfitsinwith theMV C ideaof
the data of an objectbeing stored within the model. GraphModel definesthe interface for
objectsthatmay serveasa datasource forthe graph. This interfacedictates to an extent,how the
underlyingdata that describesthe graph model must be storedwithin classesimplementing this
interface.The defaultimplementationof GraphModel,DefaultGraphModel notonlyis
usefulas an instructivetool for explaining graph models,but also issuitablefor the majorityof
simple applications that use JGraph. If you want custom graph model behaviour, your first
approach shouldbe toextend DefaultGraphModel, even verysimplemodelsare reasonably

complextoimplement from scratch.

2.3.1.2 The 3 editing methods

The insert (), edit () and remove () methods on GraphModel perform the
corresponding function that their GraphLayoutCache methods perform, though their
parameters look rather more complex. The use of these methods, and their corresponding
signatures methods in GraphLayoutCache willbe covered in the section on Advanced
Editing.As previouslymentioned, inserting,editingand removing directlyinto themodel means
thatallviews based on thatmodel willreceivethe same changes.Using only thisapproach means
that multipleindependent views are not possible,a decision that needs to be considered at the

specificationstageof an application.
2.3.1.3 Accessing the Graph Model Data

The next methods to be considered in GraphModel are getRootCount ().
getRootAt (), getIndexOfRoot () and contains (). why the data structure of

JGraph modelsishow itisand why thesemethods of accessto the data structureareused requires

Page 39

JGraph UserManual

knowledgeofhow themodel of JTreehasbeen extended to JGraph, aswellasthe terminologyused
to describe the relationship of nodes within a JTree. Background on thistopic in availablein
AppendixA.

By defaulteach vertexor edge insertedintoa JGraph forms the root node of a treein the graph
datamodel.Ports,sincethey logicallybelong to verticesand edges,arechildrenof the cellstheyare
attachedto.Therefore,adding the two verticesand singleedgeasintheHelloworldexamplewould

resultinthe rootsstructurelookinglikethis:

Hllustration 16 : Representation of the roots structure after the Helloworld application has run.
The vertices and edges inserted into roots and the ports are children of the cells that they are
logically part of.

The convention isto callthe structurethat storesthe top-levelverticesand edgesof the graph
roots.Thisname willbe used throughout thismanual to referto that structure,beingthe graph
datamodel structure.The YOOt S structureistechnicallya forestof connectedtrees The treescan
become more complexwhen dealingwith grouped cellsput thiswillbe coveredina laterchapter.

It should be clearnow, from the above diagram, what function the four methods mentioned
perform:

« getRootCount () returnsthenumber of elementsinthe rOOtS structure,thiswould

return3 intheaboveexample.

« getRooOtAt (int) takesa integerparameter and returns the element referringto that
index in the rOOt S structure.Note that thisimpliesthat rOOTS isan ordered collection
and thisisvital for a number of pieces of functionalitythat JGraph provides.Of the
methods that requirenavigation of the rootsstructure, ge tROOTAL () isby farthemost
used and so also the most performance sensitivemethod usually.It isfor thisreason that
rootsinDefaultGraphModel isan ArrayList,by default,enablingthismethod to
complete in constant time. Calling getRootAt (1) would return the vertex represented by
Vertex?2 inthe diagram above.The convention isforthe firstentryinrootstohave an index

of zero.

+ getIndexOfRoot (Object) returntheindexof thecellinthe rootsstructure.Passing
in the objectcorresponding to Edge1 in the above diagram would return 2. IfrOOtS does

not containtheobjectthemethod returns-1.

« contains (Object) returnabooleanindicatingwhetheror not the specifiedobjectcan

Page 40

JGraph UserManual

be found withinroots.

Information - Changing roots to be something other than an ArrayList could be done
with a custom graph model, but there are a number of important reasons for this choice. As
mentioned, getRootAt () is usually the bottleneck method of the four and choosing
another List type or even a Map or Set would result in the method performance
degrading from constant time, O(1), to being proportional the number of entries in roots, O(|
VI+HE|). Also, getIndexOfRoot () naturally lends itself to using the indexOf ()
method of List, the semantics of the return values match up. If a Set or a Map were used,
keep in mind that roots must be ordered, so a LinkedHashMap and LinkedHashSet
would be appropriate. They were only introduced in JDK 1.4, anyone using earlier version
of Java has little option but to use an ArrayList.

These fourmethods form thebasicmeans tonavigateand interrogatethe rootsstructure.There
are additionalmethods that deal with the parent/childrelationship that willbe covered in the
sectionon Groups. It shouldbe remembered that the GraphModel interfaceshould alwaysbe
used to accessthe graph datamodel structure.The interfaceprovidesthe means to obtain the
necessaryinformation about YOOT S and the type checking ispurposefullyweak, cellsare always
passed as Objects, to allow complete flexibilityin the way cellsare designed. Also, accessing
roots through the GraphModel interface provides independence from the actual model
implementation.Ifthemodel needs tobe exchanged forone thatprovidesimproved performance

or databasesynchronization,forexample,thiscan be done without changesto thecallingcode.

2.3.1.4 Cloning the Graph Model

2.3.1.5 Navigating Connections Using the GraphModel interface

Object getSource (Object edge) and Object getTarget (Object
edge) methods in GraphModel provide the means to obtain the cells,if any, that any
particularedge connectsto.Note that edgesimplicitlyhave a direction in JGraph. This doesnot
preclude the visualizationof undirectedgraphs,however.Avoiding the use of arrowheadson edges
isallthatisrequiredtovisuallymake any graph look undirected.

To obtainan Iterator of edgesconnectedto a particularcelledges (Object port)
isavailableAlthough, theparameterisnamed 'port'the GraphModel interfacedoesnot enforce
thatonly POrts may be connected to edges.However, Defaul tGraphModel, forexample,
doesenforcethisrule.The arrangement of verticeshave childrenportsthat form connectionwith
edges isthe best design for the majorityof graph models.There are occasionswhen thisisn’tso
efficient,forexample,graphswith verylargenumbers of verticeseach thatonlyhave one port can
be speed up and have a reduced memory by combining the vertexand port into one object.This

model arrangement isexplained in the laterchapteron performance issues.Also, ifthe same cells

Page 41

JGraph UserManual

are to be used in multiplemodels, with different connection relationships in each model, the
DefaultGraphModel isnot suitable.This isbecause connection relationshipsare stored in
the cellsmaking itimpossibleto defineconnections separatelyindifferentmodels.For thisreason
itisadvisednot to sharecellsdbetween graphmodels,thisisa traitsharedwith JTreeModels.

boolean isEdge (Object edge) andboolean isPort (Object port) are
implementation dependent methods thatmust adhere to the idea that edgescan only connect to
portsand thatportsareallowed tohave edgesconnectedto them.

The finalmethods thatallownavigationbetween elementsinthegraphmodel datastructureare
those thatnavigateparent/childrelationships.Thesemethods willalsobe discussedin the context

of groupingina laterchapter.

. Object getParent (Object child) returns the parent, if any, of the
specifiedcellin the graph model data structure.As in trees,allchildrenmay onlyhave one
parent.

. int getIndexOfChild (Object parent, Object child) returnsthe

index of the specifiedchildin the collection the parent holdsof itschildren.Note that this

collectionmust be orderedtobe deterministic.

. Object getChild(Object parent, int index) returnsthe childat
the specifiedindex in the collection that each parent holds of itschildren.Again, for this

method tobe deterministicthe collectionmust be ordered.

. int getChildCount (Object parent) returnsthe number of elements in
the specifiedcellscollectionof children.

For thosefamiliarwith JTreeModel you willrecognizethatnavigatingup and down any tree
startingat an element of YOOLS isalmost the same as the mechanism used in JTrees.From
these methods presented we are able to navigate between allelements of a graph model data
structure,parentsand childrenand between connections.We willnow walk through examplecode
showing how to navigatebetween the variouselementsusingonly the GraphModel interface.
For thiswe have to assume some implementation of the graph model since the relationship
between verticesand portsisnot defined explicitlyor implicitlyin the GraphModel interface.
For thiswe willusetheDefaultGraphModel ,whereportsareseparateobjectsto verticesand
portsarealwaysdirectchildren of the verticestheyarepartof.Note thatutilitymethods to carry
out the functionsdescribedbelow are already availablein JGraph, the examplesto follow are for
thosewishing to understand the architectureof JGraph more thoroughly.A representationof the

relationshipbetween two verticesconnectedby one edge isshown inthediagram below.

Page 42

JGraph UserManual

roots

v

— Vertex 4 I Edge & e Vertex B kT
children SOUrce children
target
Fort a Fort b
parent parent
edges edges

Hllustration 17 : Representation of the associations between graph model data elements
with 2 vertices connected by 1 edges inserted into a DefaultGraphModel
2.3.1.5.1 Obtaining a collection of edges connected to a vertex

To obtaina collectionof edgesusingonly the GraphModel interfacegiven a vertex you must
cyclethrough each port belonging to that vertexand then within each port iteratethrough each

edge connectedto thatport:

List listEdges = new ArrayList():
int numChildren = model.getChildCount (cell);
for (int i = 0; i < numChildren; i++) {
Object port = model.getChild(cell, 1i);
if (model.isPort (port)) {
Iterator iter = model.edges (port);
while (iter.hasNext()) {
listEdges.add(iter.next ());

Note the requirement to check ifa childof a vertexisa port, verticescan alsobe children of

vertices,thebasisof JGraph grouping functionality.

2.3.1.5.2 Obtaining the Source and Target Vertices of an Edges

To obtain the source and targetverticesthat an edge connects to through the portson the
vertex, only using the GraphModel, you obtain the ports at either end of the edges using

getSource()and getTarget()and then obtaintheparentsof thoseports:

Object sourceVertex = model.getParent (model.getSource (edge)) ;
Object targetVertex model .getParent (model.getTarget (edge)) ;

Page43

JGraph UserManual

3 Cells
3.1 Types of Cells

As previouslymentioned, there are three types of graph cellsin JGraph, vertices,edges and
ports.Verticesform themain objectsthat theusercan seeabout the graph, the squares,the circles,
the icons and even more complex objectssuch as other JComponents.Edges are usuallylines
that representgraph structureconnectionsbetween verticesYou can havemultipleedgesbetween
the same pair of vertices,termed parallel edges, or even edges that start (source) and finish
(target) at the same vertex,termed self-loops.

Vertex (with
multi-line label)

[calors
Cd sports
1 food

Hllustration 18 : A variety of vertices, some connecting edges and
available ports visible as small squares

The above diagram shows some verticesand their connecting edges. Also visibleare small
squares,theseareportsattached to the verticesand edges.Portsvisuallyrepresentpointsat which
the ends of edgesmay be connected to verticesor other edges.The reason forhavinga logically-
separateentity for ports isthat multipleports can be fixed (offset) to specifiedpositionson
vertices,so the graph model data structureneeds to distinguishbetween connectionsto different

pointswithinitsboundary.

3.2 Cell Interfaces and Default Implementations

3.2.1 GRAPHCELL INTERFACE

GraphCell isthe interfaceto which graph cellsshould adhere.Note the use of the word
should. 1f desired another interface could be used and the correct use of the GraphModel
interfacewould mean thischange istransparent to the userof themodel.However,many of the
application and extensions to JGraph as well as default interface implementations,
DefaultGraphModel forexample,assume theuseof the GraphCell interface.Unlessyou

have a verygood reason otherwisehave your cellsinheritfrom GraphCel 1 hierarchy.

Page 44

JGraph UserManual

org.jeraph. graph. GraphCell

JAN JAN

org.jgraph. graph Edge org.jgraph. graph Port

Hlustration 19 : The GraphCell interface hierarchy

The vertexisconsidered the defaultcaseand sousesthe GraphCell interfaceitselfEdges
and Ports are considered to be specializations of verticesand so have theirown interfaces.
GraphCell itself only offers two methods, getAttributes () and
setAttributes () . Attributes were mentioned in Chapter 2 and, as the GraphCell
interfacesuggests,are key to defininghow cellappear visually.It isunlikelythat you shouldever
needtocallsetAttributes () on agraph cellthe3 editingmethods arethe defaultroute for
changing attributesand settingan attributemap directlywould retainno undo historyand not
refreshthe celland displayaccordingly.

getAttributes () ismore commonly used, you saw itbeing used instead of creatinga
nestedmap forcellinsertioninthe HelloWorld example inChapter?2.Again, thismethod of
accessingand altering in-place the cellsstoragemap directlyshouldonlygenerallybe used forcell
insertion.However, thereisanotherexception to thisrule,when you wish tochange the attributes
of a cellor cellswithout adding the change to the undo historyand you requirehigh performance
fortheoperation.A common exampleofthisisamouse rollover.Callingedit () isexcessivefor
example,tohighlighta cellwhen themouse isoverit.In thiscaseyou shouldobtainthe attributes
of the cell,make the changes to the storage map infplace, refresh the cell and repaint the
appropriatearea.This operation isusuallybestperformed on the view of the cell,see the section

laterinthischapteron cellviews.
3.2.2 THE EDGE AND PORT INTERFACES

The Edge interfacedefinesthe methods requiredto setand determine the connections fora
particular edge. These are getSource (), getTarget ()., setSource () and
setTarget () .Their functionswillbe reasonablyobvious from the names, remember alledges
have a direction in the model travelingfrom the source end to the targetend. Again, the types
involved in thesemethods areallObjects toprovidecomplete flexibilityIn combinationwith
theGraphModel interfaceitispossibletoobtainthe cell(s)connectingtoedges,determine their

typeand navigateconsistentlywithout referringto implementation specifics.

Page 45

JGraph UserManual

The Port interface defines the necessarymethods to add, remove and obtain the edges
connected to it.Remember thatportsare conceptuallya entityassociatedwith a vertexto which
anynumber of edgesmay connect.Edge S may connecteithertheirsourceor targetend toa port,
making thatport the sourceor targetport, respectivelyAn edgemay alsoconnectboth itssource
and targetends to the same port,making theedgea selfloop.Note thatselfioopsarecreatedwhen
an edge has the same vertexas itssource and target,not justifthe sourceand targetsport isthe
same.When testingforselfioopsyou shouldensurethatyou obtainthe sourceand targetvertices,
generallytheparentsof the sourceand targetport,and seeiftheyarethe same vertex.

The Edge interfacealsodefinesthe staticRoUt ing interface.This interfacedefinesthe route
method which dealwith drawing theedgegivena number of pointsthrough which theedgepasses.

Thiswillbe expanded upon laterinthisChapteron the sectionon usingedges.

Port definesthe methods edges () ,addEdge () and removeEdge () . The add and
remove methods take an Object asper-standard in the JGraph design. Edges () returnsan
Iterator tothec ollection of Edges connectedto thisPort,assetup by theadd and
remove methods.

Note that POrt doesnot storeany information about whether or not itisthe sourceor target
portof edgesthat connectto it.Thisinformation isonly in Edges to avoid redundancy and the
dangerof theinformationgettingout of synchronization.

The two lesserknown methods inPort aregetAnchor () and setAnchor () .The idea
of anchoringalsorequiresan explanationof how portsarepositioned,be they relativeor absolute
and where the originof theiroffsetisor iftheyhave no offsetatall.This isdescribedin the later

sectioninthischapteron UsingPorts.

3.2.3 THE DEFAULTGRAPHCELL

DefaultGraphCell isthe standard implementation of a graph cellprovided in JGraph
and aswithmost of thedefaultimplementationsissuitableeitheras-is,or asthe superclassof your
cells for the majority of applications. Like the corresponding interface, vertices use the
DefaultGraphCell class and edges and ports use default classes subclassed from
DefaultGraphCell:

Page 46

JGraph UserManual

javax.swing tree.
DefaultMutableTreeNode

A

arg.jgraph.araph.
DefaultGraphCell

arg.jaraph.graph. arg.jgraph.graph.
DefaultEdge DefaultPort

Hllustration 20 : The class hierarchy for the default graph cells

The design extension of JGraph from JTree is again apparent here from
DefaultMutableTreeNode being the super class of the default graph cells
implementations. Two important principles are inherited from the tree nodes, that of the
parent/child relationship that cellsmay have with one another and the user object. The
TreeNodes interfaceprovidesbasicmethods to determine a cell’parentsand children.Where
possible,you shoulduse the graph model methods for traversingthe parent/childrelationshipsin
preferenceto that suppliedby DefaultGraphCell, sinceGraphModel isthe interfaceand

thedesigncontract.
3.2.3.1 The Default Graph Cells Constructors and Methods

This leadsus onto the four constructorsof DefaultGraphCell, each takingan additional
parameter.If you look at the source code to the classyou willseeeach constructorpassesa null

valueformissingparametersuntiltheyallend up callingthisconstructor:

public DefaultGraphCell (Object userObject, AttributeMap storageMap,
MutableTreeNode[] children)

The first two parameters you should be reasonably familiar with. The userObject
parameterbecomes the user objectof the cell,obviously.The storageMap parameter,ifnon-
null,isintended to be the AttributeMap used by that cell,generallyfor itslifetime. This
parameter ismost used when your application requiresa custom attributemap for storage.Note
that cellcloning does not make use of thismechanism for transferringattributemaps. The last

parameter,children,isan arrayof the cellsyou wish tomake childrenof the currentcellinthe

Page 47

JGraph UserManual

treenode relationship.Inthe HelloWorld examplewe couldhave createdthe DefaultPort
earlierand inserteditusing thisparameter instead of adding itexplicitlylaterusing the add ()
method of DefaultMutableTreeNode.

The othermethods in DefaultGraphCell are justsimple implementations of those in
GraphModel, other than the additionalclone () method. setAttributes () ensures
that an attributemap iscreated ifnull ispassed in and only the 3-parameter version of the
constructor callssetAttributes () within JGraph. If you have your own attributemap
sub-class,if possible,you should create sub-classesof each of the defaultcelltypeswith a new
instanceof your custom attributemap withinsetAttributes (), In Caseyou forgetto create
an instanceeverytime intheDefaul tGraphModel constructor.

The clone () method returnsa deep copy by using the super<classclone methods and the
clone method of theattributemap.

The DefaultPort implementationistrivialcomprisedmainlyof gettersand settersand the
additionalclone method. Of note, the collectionof edgesisimplemented asa HashSet, this
means thattheorderinwhich the Iterator returned from edges () presentstheedgesisnot
assured.When Java 1.3 becomes end of lifein December 2006 itisintended to change thisto a
LinkedHashSet to retainordering.You may wish tomake the change yourselfuntilthen if
you areusingJaval.4or higherand requirethisfeature.

The DefaultEdge implementation,again, isgenerallyobvious.In the clone () method,
however,itmight not be so clearwhy the sourceand targetobjectsarenot copied.This isbecause
an edge may be cloned into a different model where the original ports do not exist.
DefaultEdge alsocontainsthe defaultroutingalgorithm, DefaultRouting,which alters
the listof pointspassed into the route () method to route the edge in a more aesthetically

pleasingmanner.
3.2.4 CLONING CELLS

The clone () method of DefaultGraphCell callsthe superclassclone and adds a
cloned versionof the attributemap of thatcellto thenew cellItshouldbe noted thatthiscloning
mechanism does not add clonesof children of the originalcell,or even referencesto the original
childrento the clone.Nor does thismechanism clone the userobject (seesection shortlyon User
Objects),itonlyadds a referenceto the originaluserobject.To obtaina “deeply”cloned versionof
a cell,one with cloned children and cloned user object, there is a staticutilitymethod on
DefaultGraphModel toperform thisaction:

‘Object clone = DefaultGraphModel.cloneCell (graph.getModel (), vertex);

3.3 User Objects

The userObject of DefaultMutableTreeNodes, and so also of
DefaultGraphCell, isan Object thatcanplayan importantpartintheway you construct

more complex JGraph-based applications.User objectsstoreany data that isassociatedwith the

Page 48

JGraph UserManual

graph cellthat does not belong as part of the graph cellor itattributes.An example of thisisa

workflow editordesigned to export to a particularworkflow format.The editorwould have cells
representinga start.a branch, a joinan activity.and soon. The userObject would be used to

storeinformation specificto thattypeof cellsothisinformation couldbe fedintotheexportstage.
For an activitycellthismight includea String of the name of the person assigned the activity
and a URL containinginformationabout it.The applicationwould providesome means tomodify
theuserObject and sotheuserObject needstobe accessedby a specializationof a graph

cell,usuallyof the DefaultGraphCell, so that it isaware of the real object type of the

userObject.

The onlymethod thatmust be implemented inauserObject tobeusableinJGraph isthe
toString () method.By defaultthe St ring returned iswhat isdisplayedas the labelforthat
cell.In simple applications with no data storage requirements for the userObject, use a
String itselfastheuserObject ,asshown intheHelloWorld example:

cells[0] = new DefaultGraphCell (new String("Hello"));

The parameter to the DefaultGraphCell isactuallythe cellsuserObject.Sincethe
toStringmethod asa String returnsthis,Strings fitstheminimum requirementsfor
userobjects.

Note that the value to be displayed in the cell’s label has an indirection through
JGraph.convertValueToString (Object) . This method allows the cell label to
displayalternativetextforthe same cellsindifferentinstancesof JGraphs.

3.3.1 OBTAINING AND CHANGING THE USER OBJECT

The userobjectof a cellisonlystoredasan objectassociatedwith a cell,itisnot storedinthea
cell’storageattributemap. However, toprovide consistencywith changesto userobjectsthrough

editingcallsyou can obtaintheuserobjectusing:
‘GraphModel .getValue (Object)
and settheuserobjectusing

‘GraphConstants .setValue (Object)

The attributemap willensurethe userobjectdoesnot end up inthe eventualstoragemap, but
settingthe objectin thisway and callingedit()willensure that the change to the user objectis
correctlyadded totheundo history.

3.4 Cell Views

The MV C patternappliestograph cellswithin JGraph ,aswellastheoveralldesignitselfAll
graph cellshave at leastone associatedcellview thatdealswith variousvisualfunctionalityand the
processof updating the visualizationof that cell.Cellviews associatea renderer,and editorand a

cellhandle.

Page 49

JGraph UserManual

Renderersarepartof the Swing design,theyabstractthe drawing functionalityof a component
into a singlestaticclassinstance,a patternalsoknown as the flyweight design. The ideaisforall
component views thatmay draw the same thing, justwith differentvisualattributes,to sharethis
common instance.This avoids excessivememory requirements for large numbers of the same
component.When a graph cellisrendered the attributesof the cellview are fetched and inserted
intothe rendererinstance,a processknown asconfiguringthe renderer.The cellisthen paintedby
the rendererand thisprocesscontinuesforeach cellThismethod can savea greatdealofmemory
against the worstcase one instance per cell mechanism. However, the process of installing
attributes causes a small performance hit, but this is usually negligible compared to the
computationalrequirementsof paintingcomponents.Renderersaredescribedinmore detaillater
inthischapter.

The editorassociatedwith a cellview isthe same principleas celleditorsfor JTables or
JTree elements.Ifyou double<clickon a vertexor edge intheHelloWorld example itbrings
up what iscalledan in-place editor,thatisa component where you can edittextassociatedwith a
cellatthe locationwhere the cellbeingeditedispositioned.The defaulteditorprovidedisa simple,
singledine editor called DefaultGraphCellEditor, that extends CellEditor. It is

possibletoimplementmultidine,richtext,or evenaword processorstyleeditorifrequired.
34.1 CELL HANDLES

Cellhandlesdo not have a parallelconcept in Swing, inotherSwing componentscelleditingis
only performed by means of infplace editing. JGraph introduces the concepts of changing the

boundarysizeof cellsaswellasmoving cellstoarbitrarylocations.Cellhandlesperform the taskof

Page 50

JGraph UserManual

displayinga visualrepresentationindicatingthatthe cellaffordsresizingand moving,aswellasthe
task of processing interactivemanipulation on a cellor group of cells.The name handle implies
that they possessthe propertiesthat allow you to handle the cell,using themouse or other input
device Handlesappeararound cellsthatarecurrentlyselected,indicatingthe cellmay havemoving
and resizingoperationsapplied.Handlesarea common paradigm inmany graphicalapplications,
forexample ina word processorifyou selectan image handleswillappearon theperimeterof the
image toindicatethatitaffordsmoving and resizing.

Handlesarebasedon the CompositepatterninJGraph.A rootobjectprovidesaccesstochildren
based on a common interface,the CellHandle interface.The UI-delegatecreatesa handle,
usually called RootHandle, and the root handle, in turn, uses the CellView's
getHandle method tocreateitschildhandles.

The CellHandle interfacedefinesthe basicfunctionalitya handlemust provide,note that
the CellHandle interface is very similar to that of MouseMotionListener and
MouselListener. For visualization there is paint (Graphics g) and
overlay (Graphics g) .The paint method draws handle foreach selectedcellforwhen
the cellsare staticand the overlay method dealswith drawing during livepreview, usually
implemented as fastXOR’ed-paintingforspeedwhilstcellsarebeingdynamicallymoved. We will
come back tohandlesinthechapteron Events.

The default implementations of handles in JGraph are the SizeHandle, the
EdgeHandle and the RootHandle.The root handle isresponsibleformoving cellsthe size
handleisused to resizecellsand the edge handleallows the connectionand disconnectionof edges,

aswellasthe interactiveaddition,modificationand removalof individualpointsto/from edges.

arg.jaraph.graph.

: CellHandle |::_ - _
R d4----- - I
Hllustration 21 : The static handle around a
selected cell and edge drawn by the paint

method of the cell handle

IF-
Drg'j&r. ?I. L]
$ e

—— £

Hllustration 22 : A dynamic handle drawn by
overlay when a cell is resized

Page 51

JGraph UserManual

3.4.2 THE CELL VIEW HIERARCHY

orojoraph.araph.
Cellview
£
arg.jaraph.graph. arg.jgraph.graph. org.jaraph.graph.
GraphCellEditor AbstractCellview CellHandle
I fr I
arg.jaraph.graph. arg.jgraph.graph. org.jaraph.graph.
PortWiew VertexView EdgeView
org.joraph.araph. orojoraph.araph. org.jaraph.araph.
PortRenderer VertexRenderer EdgeRenderer
Vi
orojoraph.araph. 1
CellviewRenderer

Hlustration 23 : The CellView interface, default implementations and static relations

The CellView interfacedefinesa number of methods associatedwith on-screen updating,
accessing and modifying visual attributes and accessing associated visual components. The
getRendererComponent (), getHandle () ,getEditor () methods return the
renderer,thehandleand theeditorassociatedwith the cellview, asdescribedearlierinthissection.

The refresh () method iscalledwheneverthemodel cellthatthe cellview isassociatedwith
changes.This performs the necessaryupdating to the cellview attributes,but does not cause the
cellviews to repaint.Note thatthe 3 editingmethods automaticallycallrefreshand repaint forall
views affectedby the change.Itwas mentioned earlierthatifyou wish to affecta high-performance
change to a cellwithout the need foran undo historyof the change, you should change the cells
attribute, call refresh and then repaint. The refresh is only called when the
correspondingcellhaschanged,not when a dependent cellof thegraph cellchanges

The update () method isthemethod thatrefresh usestosynchronizeitsown attributes
with thatof theassociatedgraph cellThismethod iscalledwhen theassociatedmodel cellchanges,
but alsowhen a dependent cellchanges, or when justa view update isrequired, which occurs
duringlivepreviews.

The update method isgood place to implement automaticattributemodification, such as
edge routing or other functionalitythat isbased on other attributesof the cell,or the graph
geometry.

The cell view hierarchy stores parent/child relationships separately to the graph model

Page 52

JGraph UserManual

structure.Although thismay seem confusing,itprovidesfora greatdealof flexibilityand much of
the use of thisfunctionalityishidden from the developer.Without thisinformation you would
need togo from thecellview to itsmodel cellobtainitsparentand navigateback to the according
parentcellview.A dependency from model toview ishighlyundesirable An exampleof theuseof
thisstructure isthe way edges connected to cellwithin a collapsed group visuallyattach to the
perimeterof the firstvisibleparent of the cell This isperformed entirelyin the view, without the
need to reference the model. The methods for accessing the cell view relationships are
getParentView () ,getChildViews (), removeFromParent () and isLeaf (),

allperform the functionobviousfrom theirmmaming.

3.4.2.1 getPerimeterPoint

getPerimeterPoint () isthe firstmethod in CellView you are in any danger of
actuallyhaving to implement for a simple application. getPerimeterPoint returns the
pointon theperimeterof the view where the edge specifiedin the parameterlistintersectsThisis
importanttogetright,sincethebasictypeofport,the floatingport,usesthismethod todetermine
where an edge shouldterminateon theboundaryofavertex.The useof portsand floatingportsare
describedinmore detailtowardstheend of thischapter.

AbstractCellView, the abstractsuperclassof alldefaultcellviews willreturn the centerpoint of
the cellifyou do not providean implementationof getPerimeterPoint furtherdown the

classhierarchy.

3.4.2.2 getRenderer

The othermethod you are likelyto have to concern yourselfwith ifyou createa celltype is
getRenderer () . getRenderer is not actually in the CellView interface, only
getRendererComponent is.The implementation of getRendererComponent in
AbstractCellView, the classthat you willsubclassfrom directlyor indirectlyfor 99.9% of

custom cellviews,lookslikethis:

public Component getRendererComponent (JGraph graph, boolean selected,
boolean focus, boolean preview) {
CellViewRenderer cvr = getRenderer();
if (cvr !'= null)
return cvr.getRendererComponent (graph, this, selected, focus,
preview) ;
return null;

As previouslymentioned, each celltype consistsof the cellthe cellview and the cellrenderer.If
anew celltypeyou createisvisuallydistinctfrom the onesyou alreadyhave, forexample,you want
toadd a circlecell you need to createa rendererclassthatpaintsa circleand ensuretheview of that

cellreturnsthatrenderer.

Pageb3

JGraph UserManual
3.4.2.2.1 How to Create your Own Cell View and Renderer
Below isa templateofwhat youmight startwithwhen creatingyourown view:

public class MyView extends AbstractCellView ({

protected static MyRenderer renderer = new MyRenderer () ;

public MyView () {
super () ;

}

public MyView (Object arg0) {
super (arg0) ;

}

public CellViewRenderer getRenderer () {
return renderer;

}

public Point2D getPerimeterPoint (EdgeView edge, Point2D source,
Point2D p) {
if (getRenderer () instanceof MyRenderer)
return ((MyRenderer)
getRenderer ()) .getPerimeterPoint (this,
source, p);
return super.getPerimeterPoint (edge, source, p);

}

public static class MyRenderer extends JLabel implements
CellViewRenderer, Serializable ({

public void paint (Graphics g) {
}

public Component getRendererComponent (JGraph graph, CellView
view, boolean sel, boolean focus, boolean preview) {

}

public Point2D getPerimeterPoint (VertexView view, Point2D
source, Point2D p) {

}

Keep inmind itisadvised to stickto the flyweight pattern and hold a single staticrenderer

instanceforeach typeof cellview to reducethememory footprint.

Page 54

JGraph UserManual

3.4.3 CREATING CELL VIEWS AND ASSOCIATING THEM WITH
CELLS

The processof creatinga cellview for each graph cellcreatedwould be somewhat tedious to
perform manuallyand so it isdone behind the scenes using a cellview factory.The interface
CellViewFactory definesone method, createView () .Thistakesan instanceof a graph
model and the graph cellforwhich the view istobe created,createsthe appropriatecellview and
associates the cell and the view accordingly. The cell view factory is associated with the
GraphLayoutCache and some constructors of GraphLayoutCache take the
CellViewFacto ry asaparameter.You can change and accessthe cellview factoryduringthe
lifeof thecacheusingsetFactoryandgetlFactory.

The defaultimplementationof CellViewFactory isDefaultCellViewFactory,if
you do not specifya CellViewFactory when creatinga GraphLayoutCache, you will
get the default factory instantiated for you. DefaultCellViewFactory, with the

deprecatedmethods removed, lookslikethis:

public CellView createView (GraphModel model, Object cell) {
CellView view = null;
1if (model.isPort (cell))
view = createPortView (cell);
else 1if (model.isEdge (cell))
view = createEdgeView(cell);
else
view = createVertexView (cell) ;
return view;

}

protected VertexView createVertexView (Object cell) {
return new VertexView (cell);

}

protected EdgeView createkEdgeView (Object cell) {
return new EdgeView(cell) ;

}

protected PortView createPortView (Object cell) {
return new PortView (cell);

}

To associateyour new cellsand cellviews extend the DefaultCellViewFactory class,
add checks for your celltypesand return a new instanceof the associatedcellview appropriately.

For example,ifyou add MyVertex and MyVertexView:

protected VertexView createVertexView (Object cell) {
if (cell instanceof MyVertex) {
return new MyVertexView (cell) ;

}

return new VertexView (cell);

Pageb55

JGraph UserManual

Or ifyou justwant to make the defaultvertexuse the circleview you have created, without

creatingyour own celltype:

protected VertexView createVertexView (Object cell) {
return new MyCircleView (cell);

}
Remember, likeallfactoriesthe cellview returnedmust be anew instance.Your applicationwill

not functioncorrectlyiftheyarenot.

3.4.4 DEFAULT CELL VIEW AND RENDERER IMPLEMENTATIONS
3.4.4.1 The Cell Views

The default cell view implementations for the 3 basic cell types are VertexView,
EdgeView and PortView.VertexView isprobably the simplest implementation of the
three,other than the SizeHandle (seeChapter5 on Events).Itsupdate method ensures
that the vertexview has a bounds and the getRenderer and getPerimeterPoint just
deferto thevertexrenderer.

PortView has a size hard-coded into the final variable SIZE and returned in the
getBounds () method. Portstend tobe visuallyrathersimpleand the defaultimplementation
has no handles,meaning no resizing.If you would likevariablesized portsyou might subclass
PortView and implement getBounds to return the bounds attributeof the port’sattribute
map instead.

PortView also has some additional functionality relating to the port location.
getLocation () and shouldInvokePortMagic () provide functionalitythatmake it
possibleto have interactivelymovable portsaswellas the localoptimization of adjustinga ports

positionon avertexinorderto straightenan edgeor edgesconnectingtoit.

Hllustration 24 : A standard floating port edge (left) and an edge connected to port using
'port magic' (right)

Page 56

JGraph UserManual

EdgeView isby farthemost complexof thedefaultviews,sinceitneedsto implementmost of
itsfunctionalityfrom scratch,asopposed tothevertexwhich getsa lotof inheritedfunctionalityin
itsrendererfrom JLabel .Without going inundue detailjustyet,thereare some generaldesign
principlesintheedgeview worthmentioning.

Edgeshave a labellikeverticesbut alsohave the concept of extralabelsThe main labelbehaves
likea vertexlabelwith the usualinplaceeditingand the extralabelsdo not have inplaceediting.
The primaryreason foradding the extralabelswas to supportmultiplicityinUML diagrams.They
are separated from themain labelto simplifyusage forthoseonly requiringone labeland because
theydo not behaveinthe same manner forinjplaceediting.

The actualpath the edge takesisheld ina GeneralPath object,a Graphics2D utility
objectthat consistsof a sequenceof Jjava.awt.Shapes and inheritsfrom Shape itselfThe
startand end drawingson edges,which often consistof some type of arrowhead, arealso Shape
objects.The positionsthrough which the edge passesare calledpointsand a defaultedge has two,
the startpoint and the end point.A pointmay, in fact,be a realpoint or a port object.Any
additionalpointsto thesetwo arecalledcontrolpointsand the lineshape of theedge isdrawn asa
sequence of individuallineshapesbetween each sequentialpairof pointsinthepoints listNote

thatforthisreason,thecollectionthatstoresthe listof pointsmust be ordered.

Extra IabefE?
W_\iaiptatel W
&Exf."a label 1

Hllustration 25 : An edge with its main label and
two extra labels. The edge has two control points
and the line style is set to GraphConstants.
STYLE SPLINE. Since the edge is selected all
points on the edge are indicated by the edge
handle

As thecommentsatthetop of EdgeVi €W suggest,therearesome classtypeassumptionsmade
about the rendererin about 5 of themethods. If you subclassEdgeView and provide your own

renderer,youmust re-implement thesemethods referencingyourown renderertype instead.
3.4.4.2 The Cell Renderers

3.4.4.2.1 PortRenderer

The PortRenderer is a simple JComponent. Have a look at the
getRendererComponent method, here iswhere you need to installthe attributesof the

Page 57

JGraph UserManual

current cellview being painted.Remember that thereisonlyone PortRenderer instance for
allPortViews and sowhen we painteachone we have to setup the rendererforthe currentport
view. This principle extends to all graph cell renderers using the flyweight pattern, the port
renderer is just a simple example of this.This iswhy the cellview and the three cell states,
selected, preview and focus are passed into getRendererComponent () and
stored in the renderer’sown variables.In the paint method the renderer uses these stored
variablesto draw the cellin the appropriatemanner. Selected indicateswhether or the cellis
selected,preview iswhetherornot thecellisbeingdrawn inlivepreview (theXOR’ed preview
you get of the graph whilstdraggingbeforeyou releasethemouse) and focus iswhetheror not
the celliscurrentlythe focus (thiscanbe a differentstatetoselected).

3.4.4.2.2 VertexRenderer

The VertexRenderer inheritsfrom JLabel .Thisprovidesa lotof functionalityfor free,
although seemingly simple tasks can be constrained by the use of a JLabel. Again,
getRendererComponent () setsthe rendererup fora specificview and the cellview states.
In addition to storing these stateslocal, VertexRenderer adds an internalmethod called
installAttributes () .Thisperforms the taskof obtainingthe attributemap of the vertex
and storingallthe visualattributesthataretaken intoaccount duringin the paintmethod locally
intheclassNote thatmost of theattributesbelongto JLalbel ratherthan VertexRenderer
and thisgivessome ideaof theusefulnessof usingJLalbel astheparentclass.

Most of the painting functionalityliesin the parent class,apart from the painting of the
selectionborder and of gradient color fillsAs you would think, the selected flagpassed into
getRendererComponent is used is trigger the painting of the selection border.
getPerimeterPoint () iswheretheactualcalculationof wherean incoming edgemeetsthe
boundary of the vertexisperformed. Note that fora rectangularvertexthe calculationisn’ttrivial,

thesimplestgetPerimeterPoint implementationisactuallyfora circularvertex.

3.4.4.2.3 EdgeRenderer

EdgeRenderer follows the same pattern of installingthe view, itsstateand itsattributes,
though itrequiressomewhat more code sinceitinheritsfrom JComponent and must perform
itsown labelpainting.The extrafunctionalityalsopresentsanother issuewith synchronizingthe
renderer and the cell view when one of the public methods is called without the use of
getRendererComponent. For example, ifyou callgetLabelPosition (EdgeView
view) todetermine thepositionof themain label the attributesnecessaryto determine the label
positionmust be installed.There isamethod setView () toperform thisfunction,and you will
see itused near the top of many of the publicget methods to set the cellview and installthe
attributes.This can mean that for repeated work on the same edge there can be redundant
attributeinstallationwhich can cause a performance hit,usuallysmallin totalpercentage terms,

however.

Page 58

JGraph UserManual

Ifyou extend EdgeRenderer or attempt to implement your own version,bearinmind the
requirementsto ensureattributeinstallationalwaysoccurs.Ifyou find thatedgesarebeingdrawn
in the wrong place or with the label of another edge, you have probably missed out a callto
setView ortheequivalentmethod inyourown class.

Unique to the EdgeRenderer classare the createShape and createLineEnd
methods. There are three Shape objectsin the EAgeView that are created as necessary in
createShape, thesearebeginShape,endShape and lineShape.lineShape isthe
sequenceof Shapes between sequentialpairsof pointsintheedge,each one drawn dependingon
the line style, the dash pattern applied and so on. beginShape and endShape are the
decoration, usuallyarrowheads, that may be placed are either end of 1ineShape and their
creation isdealtwith in createlLineEnd. If you are looking to createnew linestylesor end

decorations,thesearethemethods you need toadapt.

In themechanism of installingcellview attributesin a rendererprior to painting, thereisan
issuewhen thisfunctionalitycan be calledfrom withinmore than one thread.If you do need to
perform graph structureoperationsinone threadand paintinginanother threadyou should split
the event firing/catchingmechanism that links these areas so that allattribute installation and

paintingoccurswithinone threadonly.

3.5 Using Cells

3.5.1 USING VERTICES

In thissectionwe willlook at the variousbuiltin featuresavailablefor displayingvertices.As
mentioned, the defaultvertexrendererinheritsfrom JLabel.JLabel can displaytextand/or

an icon.
3.5.1.1 Bounds

One ofthebasicconceptsofallcellsisitsbounds.The bounds ofacellistheminimum rectangle
that completelyenclosesthat cell.JGraph usesdouble co-ordinatesthroughout and so the type of
any cell’ounds isRectangleZ2D.Double.The bounds of allcellsare availablethrough the
GraphConstants.BOUNDS key in theirstorage attributemap. Since the position and the
dimension of verticesare particularlyuseful data, VertexView storesa cached value of the
bounds in the member variable named bounds. This may be accessed through the
getBounds () method on thatclass.

Itwas mentioned previouslythat the update () method incellviews isa good placeto put
code that performs updating functions that need processing,not only during graph cellchanges,
but alsoduring livepreview changes.ItisVertexView.update () thatupdatesthe cached
bounds valueinVertexView,italsoensuresthatthevalueforbounds isnon-null:

Page 59

JGraph UserManual

bounds = GraphConstants.getBounds (allAttributes);

if (bounds == null) {
bounds = allAttributes.createRect (defaultBounds) ;
GraphConstants.setBounds (allAttributes, bounds) ;

You generallywon’tneed toperform any SetBounds callsforinteractivemanipulationof the
graph, JGraph takescareof thisforyou. Ifyou wish toprogrammaticallypositionor resizenodes,
create a nested map of cell/transport map pairs,as described in Chapter 2, and pass the new
bounds valuesintotheedit () call.

Whenever obtainingthe bounds of a cell,you shoulddo so from the cellview. If you have the
cellview object,getBounds () providesa convenientmethod todo so.Ifyou do not, thereisa
utilitymethod in the JGraph classcalledgetCellBounds (Object cell) which will
return you thebounds valueof the cellview forthe cellpassedinastheparameter.Anotheruseful
utilityin the JGraph classisgetCellBounds (Object[] cells) .Thistakesan array
of cellsand returns the totalbounds of the according cellviews, i.e.the minimum bounding

rectangleof allof the cells.

3.5.1.2 Constraining Vertex Bounds

There areoccasionswhen you want to forcethedimensionsof a vertextobe equalhorizontally
and vertically.Obvious examples are when the shape of a vertexmust be a square, not justa

rectangle,or a circleinsteadof a generalellipse.

GraphConstants.setConstrained (map, true);

willcauseJGraph toenforcethisconditionwhere themap isa transportmap appliedto thecell

duringan editcallor the storagemap of thecellbeforethecellisinserted.

3.5.1.3 Resizing and Autosizing

When you inserta cellyou may want to ensure that the label in the cell (whatever the
userObject of the cellreturns in itstoString call) isentirelyvisible.Getting the font
metrics, calculating the width for the given font and String value would be tedious and so
calling:

GraphConstants.setResize (map, true);

willcausethe cellto be resizedupon insertionso thatthe labelisfullyvisible.This isa one-off
effect,however. JGraph will remove the GraphConstants.RESIZE key from the storage
map of thecellonce theactionisperformed. Ifyou wish one more resizetooccur,setthe attribute
to true again and calledit () .Note that alteringthe cell’sstorage attributemap infplace and
callingrefreshand repaintwillnot work, resizingdepends on a graph model or graph layout cache
change eventbeing fired,which requiresan edit call.

Of course,settingthe cellto resizeon everyeditisnot practicalifyou want the celltoalwaysbe

Page 60

JGraph UserManual

setto itspreferredsize.Instead,you shouldusethe AUTOSTZE key:

GraphConstants.setAutoSize (map, true);

Thiswillsetthe cellto itspreferredsizeaftermodel and layout cache changes.One difference
you willnotice with cellsthat have autosize enabled is that they do not have a handle when
selected.Afterall,itisfairlypointlessto allow the userto resizea cellifthe applicationwillsimply

revertthe change immediately.

—a—un
iz

somewhat

to £it
into this
S
Hllustration 26 : The right-hand vertex is autosized, note
both vertices are selected but the autosized one has no
handles

]]

]]

]] 1

[} [} |

f too large § | Thiz wertex iz autosized
]] 1

]]

]]

The underlyingmechanism to determine the sizeof a cellupon a resizeor autosizeevent is
actuallygetPreferredSize () inthecellrenderer By defaulta vertexwillreturna rectangle
slightlylargerthan theminimum bounding rectangleof theicon and textof the JLabel , ifeither

exist.

3.5.1.4 Icon

JLabels arecapableofdisplayingtextand an I con,theicon issetusing:

GraphConstants.setIcon (Map, Icon)

The specifiedicon willbe displayedwithin the cell, if AUTOSIZE isenabled thiswillensure
that the bounds of the cellare at leastlargeenough to accommodate the icon. Without autosize
enabled the bounds of the cellmight clipthe icon or be somewhat largerthan the icon requires.
You might wish toadapt thepaintmethod of the rendererifyou want to scalethe icon, thiscould

be performed withina subclassof VertexRenderer asfollows:

public static class ScaledVertexRenderer extends VertexRenderer {
public void paint (Graphics g) {
Icon icon = getlIcon();
setIcon (null) ;
Dimension d = getSize();
Image img = null;
if (icon instanceof Imagelcon)
img = ((Imagelcon) icon) .getImage()
if (img !'= null)
g.drawImage (img, 0, 0, d.width - 1, d.height - 1,
graph) ;
super.paint (g) ;

Page61

JGraph UserManual

The methods availablein JLabel arerepeatedinGraphConstants enablingyou toalign
the contentsof the labelalongtheY-axis:

GraphConstants.setVerticalAlignment (Map, int);

where the int parameter may be one of the following constants defined in
SwingConstants:TOP,CENTER (thedefault) or BOTTOM. Also foralignment of the label’s

contentswith theX-axis

GraphConstants.setHorizontalAlignment (Map, int);

where the int parameter may be one of the following constants defined in
SwingConstants: LEFT,CENTER (thedefaultfor image-only labels) RIGHT, LEADING
(thedefaultfortextonlylabels)or TRAILING.

LTSS e

TOP LEFT BOTTOM,
RIGHT

Hlustration 27 : An Icon aligned using various horizontal and/or
vertical alignment settings

3.5.1.5 Label Text
The textcomponent of the JL.abel may alsobe aligned relativeto the icon.Verticalrelative
alignment isperformed using:

GraphConstants.setVerticalTextPosition (Map, int);

where the int parameter may Dbe one of the following constants defined in
SwingConstants: TOP,CENTER (thedefault),or BOTTOM. Horizontalrelativealignment

isachievedusing:

GraphConstants.setHorizontalTextPosition (Map, int);

where the intparametermaybe one of the followingconstantsdefinedinSwingConstants:
LEFT,CENTER,RIGHT ,LEADING,or TRAILING (thedefault).

GraphConstants alsoprovidesthe setFont () method to enableyou to configurethe
font of the textdisplayedand GraphConstants.setForeground () to setthe colorof
the text.Fulldetailsofhow touse fontsarebeyond the scopeof thismanual,seeany good reference

on Javagraphicsformore information.

Page 62

JGraph UserManual
3.5.1.6 Borders

Bordersarea Swing function thatenablesyou topaintaestheticallypleasingbordersaround the
edgesof your Swing components.Sincethe standardvertexisrenderedasa JLabel,you can seta

bordertoyour verticesusingstandardborderswith:

GraphConstants.setBorder (Map, Border) ;

More information on the types of Borders availablecan be found at the Border API
packagesummary:

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/packagesummary.html.

Also athttp://java.sun.com/j2se/1.5.0/docs/api/javax/swing/BorderFactory.html you willfind

usefulfactorymethods simplifyingthe processof creatingthoseborders.For example:

GraphConstants.setBorder (map, BorderFactory.createRaisedBevelBorder()):;

createsa raisedborderof the typeof effectyou would seetypicallyon abutton.

GraphConstants.setBorder (map,
BorderFactory.createlLineBorder (graph.getBackground (), 6));

willcreatea blank border around the vertexusing the background color of the graph to paint
out.This isusefulisyou wish to have edgesterminatea shortdistancesfrom verticesratherthan
directly on the perimeter. The color may be also changed using
GraphConstants.setBorderColor () .

- % ___y
vl il
)

Hlustration 28 : On the left a line Border of the
color of the graph background. On the right a
raised bevel Border

3.5.1.7 Colors

‘GraphConstants .setBackground (map, Color)

setthe fillcolorof verticestoa constantcolor,whereas:

‘GraphConstants .setGradientColor (map, Color)

setsa gradient fillacrossvertex,startingwhite and progressivelydarkening acrossthe vertexto

Page63

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/BorderFactory.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/BorderFactory.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/BorderFactory.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/BorderFactory.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/BorderFactory.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/BorderFactory.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/package-summary.html

JGraph UserManual

the specifiedcolor.

(102,255,102) | | (255,102,204) (0,204,204)

Hllustration 29 : On the left two vertices filled using setColor, and on the right filled using
setGradient. The (Red, Green, Blue) values of the colors used are indicated

3.5.1.8 Inset

GraphConstants.setInset () providesa means to place a buffered area around a
label,so getPreferredSize () returnsa Dimension largeenough for the labelplus the
inset ThisDimension isusedby theone-shot resizeand autosizingfunctionality.

3.5.2 USING EDGES
3.5.2.1 Bounds

Bounds work slightlydifferently in edges. The values of BOUNDS for an edge is stillthe
minimum rectanglethatenclosedtheedge,but itsuse israthermore limitedthan fora vertex.The
bounds of an edge givesno indication where itstartsor finishes,or what path ittakesbetween
thosetwo points.The useof edgebounds shouldbe limitedto determining the clipbounds ifyou

need tomanuallyforcea repaint.
3.5.2.2 Control Points and Routing

As mentioned previously, the DefaultEdge holds a collection of ordered points which
describethe path the edge follows.At itssimplestthe edge willbe drawn asa sequence of straight

linesbetween thesepoints.You can setthesepointsusingan orderedLiist:

GraphConstants.setPoints (Map, List)

However, JGraph alsosupportsorthogonal,bezierand splinestyledrawings and the linestyle

propertyof an edge issetusing:

GraphConstants.setLineStyle (map, int)

on the attributemap of the edge passingin GraphConstants.STYLE ORTHOGONAL,
GraphConstants.STYLE BEZIER or GraphConstants.STYLE SPLINE as
appropriate Remember that thesestylesrequirecontrolpoints,otherwisetheywillsimplyappear
asstraightlines.

Controlpointsmay eitherbe added manuallyor usinga routingmethod.We brieflymentioned

Page 64

JGraph UserManual

earlierin thischapterthe Routing interfacedefined insidethe Edge classA routingalgorithm
isgenerallya staticclassinstance shared by allthe edges being routed in that manner. You set

routingforan edgeusing:

GraphConstants.setRouting (map, GraphConstants.ROUTING SIMPLE) ;

to use DefaultEdge.DefaultRouting, the basic routing algorithm supplied with
JGraph.DefaultRouting setsappropriatecontrolpointsforthevariouslinestylessavingyou
having to define the pointsyourself.DefaultRouting alsosetsthe routing for selfioops, so

thattheyvisuallyleavethe vertexand returntoit.

-L._._._.--""'"r'_'_“‘ o
arthogonal

Beizer Spaling

Hlustration 30 : Three edges with the indicated line styles routed using the
DefaultRouting algorithm

The Routing interfaceitselfdefinesone method, route () ,which takesthe Edge tobe
routed and the listof pointsto be altered as parameters.Two implementationsof paralleledge
routersare availablein the JGraphpad Community Edition, if you require a different custom
implementationitisworth checkingwith theJGraph team toseeifsomeone hasalreadydone it.

Ifyou wish to restrictthe interactive(usingamouse) additionor removalof controlpointsto
and from an edge, setBendable (Map, false) willforbidtheseactions for the specified

edgeeven ifan applicationsupportssuch functionality.
3.5.2.3 Positioning edge labels

The configuringof labelpositioning issomewhat more flexiblethan that for verticesand any
number of labels are supported. The main label displays, like for vertices, whatever the
toString () method of the user object attached to the edge returns. Setting of the label

positionisperformed using:

GraphConstants.setLabelPosition (Map, Point2D);

The point parameter definesthe relativedistance acrossthe edge that the label liesin the X
coordinate and the distance orthogonal to the edge that the labelliesin the Y coordinate.The

relative distance across the edge is measured from 0, at the start of the edge, to

Page65

JGraph UserManual

GraphConstants.PERMILLE, attheend of theedge.So, passingin:
Point2D point = new Point2D.Double (GraphConstants.PERMILLE/2, O0);

willresultinthe labelbeingcenteredmid-way between the startand end points.

g—a—u
¢ Hello ¢
g——a

(GraphConstanmts.PERMILLES2,0)

¥

WBrId|

Hlustration 31 :
(GraphConstants. PERMILLE/2, 0)

Point2D point = new Point2D.Double (GraphConstants.PERMILLE/2, 100);

willresultin the labelbeing positionedmid-way between the x-axispositionson the startand
end pointand 100 pixelsbelow themid-point of the startand end points’y-axispositions.Note,

when we write“below” we aretalkingaboutbeneaththeplanetheedgemakeswhen the startpoint
isthe leftof theend point.

= u []
Hello I }-IWgrlde

(GraphConstants.PERMILLE/2,100)

Hlustration 32 : (GraphConstants. PERMILLE/2,
100)

You can alsogo beyond thebounds of the0 toGraphConstants.PERMILLE range.

(GraphConstants.PERMILLE*2,-50)

Hello > World

Hlustration 33 : (GraphConstants. PERMILLE*2, -50)

Page 66

JGraph UserManual

The extralabelson edgesarestoredasObjects,whatevertheyreturnintheirtoString ()
method iswhat isdisplayed. It isunlikelyyou willuse anything other than Strings as these
objects.The positioningsystem isthe same as forthemain label.The method you use to setand

positiontheseextralabelsare:

GraphConstants.setExtralabels (Map, Object[])
GraphConstants.setExtralabelPositions (Map, Point2D)

So usingthiscode:

Object[] labels = {new String("0...*"),new String("1") };

Point2D[] labelPositions = {new Point2D.Double
(GraphConstants.PERMILLE*7/8, -20), new Point2D.Double
(GraphConstants.PERMILLE/8, -20)};

GraphConstants.setExtralabelPositions (edge.getAttributes(),
labelPositions) ;

GraphConstants.setExtralabels (edge.getAttributes (), labels);

we canplacea labelateitherend of theedgeand slightlyoffsetfrom theplaneof theedge sothat
the labelsarenot overlappedby theedge.Again,note the y-offsetisrelativeto theplaneof theedge,
so rotatingthe edge you stilhave the labelsappearinginthe correctrelativepositions.

Hello

Hello

Hllustration 34 : Extra labels on an edge keeping their relative positioning after rotation, no
comments about the odd state of my galaxy please

Another effectthat isusefulwith regardsto labeldrawing isthe abilityto forcethe labelto be
parallewith theedge:

setLabelAlongEdge (map, true);

Page67

JGraph UserManual

_J |

Standayd labeal

L

Hllustration 35 : Labels being drawn parallel to their edges

The otherconsiderationforedge labelsisthe colorof the textissetusing:

GraphConstants.setForeground (Map, Color)

3.5.2.4 Edge Styles

Thereexistanumber of configurationoptionsto change the appearanceof themain linepartof

an edge (we willdiscussend decorationsnext).The two simpleoptionsare:

GraphConstants.setLineWidth (map, 5); //sets the edge line width to 5
GraphConstants.setLineColor (map, Color.blue); // sets the edge line
color to blue

The other two edge style configuration methods (other than the line shape previously

mentioned) are:

setDashPattern (Map, float[])
setDashOffset (Map, float)

These two values correspond to the last two parameters passed into the BasicStroke

constructor:

BasicStroke (float, int, int, float, float[], float)

but the Javadocsfortheseparametersislessthan helpful.

The dash pattern isa sequence of solidand clearlengthsof edge that repeatsthroughout the
edge.So, creatingan arrayequalto {10,10} wouldmean toedge isdrawn assolidfor10 units,then
clearfor 10 unitsand thisrepeatsalong theedge.{10,2, 2,2} wouldmean solidfor10 units,clear
for2, solidfor? unitsand clearforanother 2, and repeat.Obviously,itonlyreallymakes senseto

have an even number of entriesto thisarray.This patternisappliedconsistently regardlessof the

Page 68

JGraph UserManual

shapeor number of pointsintheedge.A staticvariableGraphConstants.dash representing
a dash pattern of {5,5} isdefined in case you wish to savememory by using thissingleinstance,

insteadof creatingan instanceforeverycellattributemap.

Hllustration 36 : Dash patterned edges with their pattern displayed

The dash offset,alsoknown as the dash phase,determineshow farinto the dash pattern the
drawing shouldbe started.By defaultthedash offsetis0, settingitto5 forthe {10,10}dashpattern
would resultin the startof the edge drawing 5 unitsof solidline,then 10 unitsof clearline,then
back to the 10 solid/ 10 clearrepeatingpattern.Settingthe valueto 12 would resultin the line
startingwith 8 unitsof clearlineand thenback tothe 10 solid/ 10 clearrepeatingpattern.

Hlustration 37 : A {10,10} dash pattern using the indicated offset values

The most common application for the dash offsetisforanimatingedges.JGraph purposefully
never assumes any multithreading, so itcan’tdirectlyoffer such animation. However, a timer
threadtriggeringamethod intheeventdispatchthreadtoalterthedash offsetand updatetheedge
issimpleto implement.For each update you would need to geta collectionof the edges’cellviews
tobe updated,change thedash offsetvalueinplace,then callrefreshon theedgeand finallyrepaint
the entireaffectedarea.Thiswould requirea staticvariableholding the current value of the dash
offsetwhich would be decremented aftereach timer tick.The dash offsetcallitselfwould need to
usethemodulusof the currentdash offsetvalueso itrepeatsbetween the limitsof the dash pattern
range.For example, say the dash patternis{10,10},the completerange of themodulus resultused

forthedash offsetneedstobe 0 to19:

GraphConstants.setDashOffset (map, 20 - Math.abs (dashOffset $ 20));

shouldbe used in thiscase.Note that the dash offsetneeds to be decremented in order to get
animation from the startof the edge to the end, and vice versa.To speed up the animation,

decreasethe timer intervalor decrement thedash offsetvaluebymore than one on each tick.
3.5.2.5 Edge end decorations

At eitherend of theedge you can configureend decorationstobe drawn, thisusuallyconsistsof
arrowheads. JGraph providesa number of commonly used end decorationsthatmay be enabled

using:

GraphConstants.setLineBegin (Map, int)
GraphConstants.setLineEnd (Map, int)

Page 69

JGraph UserManual

where the intparameterisone of the optionsavailablein GraphConstants.To remove a
decoration use the method above for the appropriate end of the edge and pass in
GraphConstants.ARROW NONE. You may also remove the attribute entirely from the
attribute map using GraphConstants.setRemoveAttribute (), as discussed in
Chapter?.

Each of theseend stylemay be filledor not using:

GraphConstants.setBeginFill (Map, boolean)
GraphConstants.setEndFill (Map, boolean)

A & CPhConstants ARROW_TECHNICAL ::_’—“
A «—CraphConstants ARROW_CLASSIC }}’—“
| GraphConstants ARROW SIMPLE "
’—""‘ GraphConstants ARROW _DIAMOND ﬂ’—"
j GraphConstants ARROW _CIRCLE C
e | GraphConstants ARROW _LINE | e
’—“= GraphConstants ARROW_DOUBLELINE =’—“

Hllustration 38 : The available line end decorations, with fill set to true
on the left-hand side

Ifyou wish tochange the sizeof theend decorations,thisisdone using:

GraphConstants.setBeginSize (Map, int)
GraphConstants.setEndSize (Map, int)

3.5.2.6 Connections restraining

It is possible,on a per-edge basis, to set whether or not the edges may be connected or

disconnectedinteractivelyusingthemouse.The methods areselfexplanatory:

setConnectable (Map, boolean)
setDisconnectable (Map, boolean)

Page 70

JGraph UserManual

3.5.3 ATTRIBUTES FOR BOTH VERTICES AND EDGES
3.5.3.1 Constraining Basic Editing Functions

The next three attributes require little explanation.
GraphConstants.setSizeable () controlswhetherornot cellsnay be resizedusingthe
mouse. If set to false, the user is not presented with any handles to resize with.
GraphConstants.setMoveable determines whether or not the cellmay be moved
(repositioned, not resized) interactively. GraphConstants.setEditable (false)
disablesinplaceeditingforlabelsYou couldsetthisvalueto false ifyou want double<clicking
on a cellto perform a different function to labelediting.However, you might alsoliketo change
the number of mouse clicks required to start editing using
JGraph.setEditClickCount () .

Whetherornot cellscanbemoved on aper-axisbasiscan be configuredusing
GraphConstants.setMoveableAxis (Map, int)

where the int parameter is either GraphConstants.X AXIS or
GraphConstants.Y AXIS. Obviously, to forbid moving entirelyuse setMoveable.
SettingthemoveableaxistobeingX AXIS causesthevertextoonlybe movablehorizontallyand
Y AXIS causesthevertextoonlybemovablevertically.

3.5.3.2 Opaqueness

‘GraphConstants .setOpaque (Map, boolean)

will pass the boolean value up to the JComponent.setOpaque () method of the
rendererof the cell As the Javadocs for thatmethod say “f true the component paints every pixel
within its bounds. Otherwise, the component may not paint some or all of its pixels, allowing the
underlying pixels to show through.” . In the caseof verticesconstantbackground filland gradient fill
colorsarenot paintedifopaque issetto false.Text,icon imagesand bordersarestillpainted
regardlessof the settingof thisattribute.In the case of edges, the defaultimplementation of an
edge isnot affectedby thisattribute,but you should take itinto account ityou were to produce

yourown, more complex,implementationof an edge.

Page71

JGraph UserManual

Background Gradient fill
) . [d red text and
fill and white b t and black text thick bori
text :
Gradient fill
[d red text and
b xt and black text\ Rk border

Backgro
fill and w
tar+

Hllustration 39 : The cells on the first and third sets of cell (from the top) are opaque, the second
and bottom sets of cells have opaque set to false

The figureabove shows a setof cellsfirstwith opaque setto Lrue and thentofalse.Italso
shows both setsof cellsoverlappingeach other to variousdegrees.The opaque versionscompletely
obscurethosetheyareinfronton, whereas,inthe caseof thenon-opaque cellooverlapping,justthe

borders,icon and labelsobscurecellsgpaintedbeneaththem.
3.5.3.3 Selection

GraphConstants.setSelectable (map, boolean)

determineswhetheror not thecellmay be selected.Settingthisvalueto fal se basicallycauses
the cellto stop reactingtoany interactivefunction.The cellmay not be resizedmoved (unlessitis

a connectededge thatmoves alongwith a connectedvertexthat isbeingmoved) or have inplace

Page 72

JGraph UserManual

editingperformed.

3.5.4 USING PORTS

3.5.4.1 Port Positioning

When a port isattached asa childof a vertex,by defaultitiswhat isknow asa floatingport.
Thismeans ithasno fixedposition,any edge connectingthe vertexwillbe seento terminateatthe
boundaryof the vertex.Note that the edge isn’tjusthidden by the vertex,floatingportsterminate
edgesexactlyon theboundary,otherwiseknown astheperimeterpoint,of cellsand soarrowheads
arevisibleand correctlyplaced.Thisdefaultimplementationworks forthemajorityof applications
since it resolvesthe issuesassociatedwith edges travelingacrossverticesto a fixedpoint on the
vertexboundary.Note, thisrelieson thegetPerimeterPoint () method on the rendererof

thevertexbeingimplemented correctly.

Hllustration 40 : Two vertices connected by an edge using their floating ports. Note the edge
terminates correctly on either vertex regardless of the edge direction

A second typeofpositioningforportsinvolvesoffsetsInvoking:

GraphConstants.setOffset (Map, Point2D)

on aportcellfixesthe portpositionrelativeto the cellA valueof (0,0)corresponds to the top
left corner of the cell and (GraphConstants.PERMILLE,
GraphConstants.PERMILLE) corresponds to the bottom righthand corner of the cell.
Since the value are a proportion of the cellsdimensions, the portsare alwaysplaced in the same

relativepositionsregardlessof the sizeof the vertex.

Page73

JGraph UserManual

| World

Y Hell Hello
T ello

Hllustration 41 : The HelloWorld example with offset ports added at (0,

GraphConstants. PERMILLE/2) , (GraphConstants. PERMILLE/2, 0) ,

(GraphConstants. PERMILLE/2, GraphConstants. PERMILLE) , (GraphConstants. PERMILLE,
GraphConstants. PERMILLE/2). Connecting edges between offset ports means it is possible that the
edge or vertex might overlap each other. This doesn't happen with floating ports.

(0, GraphConstants.PERMILLE / 0.125)

(0, GraphConstants.PERMILLE ! 0.25) (GraphConstants.PERMILLE, GraphConstants.PERMILLE ! 0.25)

(0, GraphConstants.PERMILLE / 0.375)

(0, GraphConstants.PERMILLE / 0.5) (GraphConstamts.PERMILLE, GraphConstants.PERMILLE / 0.5)

(0, GraphConstants.PERMILLE / 0.625)

(0, GraphConstants.PERMILLE / 0.75) (GraphConstants.PERMILLE, GraphConstants.PERMILLE ! 0.75)

(0, GraphConstants.PERMILLE / 0.875)

Hllustration 42 : A vertex containing a number of visible ports with their offset values shown (the entire rectangle is the
vertex, the labels belong to the ports in this example)

Page74

JGraph UserManual

A thirdmethod of settingthe port position isto do so in absolutecoordinatesrelativeto the
originof thevertex.With absoluteportstheirpositionsrelativeto thedimensionsof thevertexwill
not remain the same through resizing,but theirposition relativeto the vertexoriginwill. Which

axisareabsoluteisconfigurableindependently:

GraphConstants.setAbsoluteX (Map, boolean)
GraphConstants.setAbsoluteY (Map, boolean)

or both together:

GraphConstants.setAbsolute (Map, boolean)

Aftersettingthisflag,you positiontheportsusingtheGraphConstants.setOffset ()
method again,thistime the POint2D parameteristhe absoluteoffsetfrom thevertexorigin.

Hello Hello \\‘\;

World
World

Hllustration 43 : Absolute offset ports often do not appear correctly when the parent vertex is scaled

The fourthmethod isusingport anchors,which involvesdefininganother port that thisport
will be offset relative to. This anchor is the anchor referred to in the POrt interface in
getAnchor and setAnchor. settinganother port as anchor makes that port the origin for
thisport, insteadof the vertexorigin.You can stilldefine the offsetasa proportion of the vertex
dimensions using just setOffset, or you can define the offset as an absolute value using
setAbsolute (map, true) and setOffset () .The anchoringmechanism isusefulif
you wish to define a chain of ports that have fixed positions relativeto each other. Note: Port

anchorsaredisabledin JGraph 5.6.2.1.x pending a bug resolution.

3.6 Summary

* A rangeof configurationoptions forvisualattributesof the defaultcellsisavailablethrough the

Page75

JGraph UserManual

accessormethods of GraphConstants.

* To add anew celltype,definethe new cellclass,itsview classand itsrendererclass.Automate
the creation of the view using the cellview factoryand ensure the view returnsthe rendererin
theappropriatemethod(s).

+ Ifyou wish toadd new functionalityto a cellyou might do soby 1) subclassingattributemap
and adding new attribute type to support the new functionality, 2) by providing the
functionalitythrough methods and variableson the cellclass,or 3) by storingthe data in the
userobjectof thecell.

+ One important note about cellsisthat you can only pass cellsinto edit, insert and
remove callsnevercellviews.

Page76

JGraph UserManual

4 Advanced Editing

4.1 Grouping

Grouping,within JGraph, isthe concept of logicallyassociatingcellswith one another.Thisis
commonly referredto asthe concept of sub-graphs inmany graph toolkitsGrouping involvesone
ormore verticesor edges (portsaregenerallynot discussedwith grouping functions,even though
theyarechildrenof othercells) becoming childrenof a parent vertexor edge (usuallya vertex) in
thegraphmodel datastructure.Thiscausestheparentcellalsoknown asthegroup cellitotakethe
bounds of theminimum bounding rectanglethatenclosesallof the childrencellsOnce grouped,

the group cellmay be moved and resizedlikea stand-alone cellbut the operationaffectsallof the

childrencellsaswell.
o o o o
o i ol o
o [o ot [o

i \ !

d [=
Hlustration 44 : Moving a group and resizing it

Moving a group cellcausesan equaltranslationon the childrencell(s) scalinga group cellcauses

thechildrencellstobe scaledby the same proportions.

Page77

JGraph UserManual

4.1.1 GRAPH MODEL REPRESENTATION OF GROUPING

As mentioned, cellsthat liewithina group arechildcellsof the group cellThis relationshipcan

be nestedany number of times,soa group can containanothergroup,and soon.

[W <]
‘Eial GHHIi GHEHb ‘Hél;\\iili’]%H%’ W'IH'

Hllustration 45 : How the Graph Model will look after 3 vertices and 3 edges are
grouped (additional ports not shown for clarity)

The simplestmethod to group cellsprogrammaticallyisto setup the parent/childrelationship
priortoallthe group cell(s)oeing inserted.Note onlythe topmost group cellneeds to be specified
in the insert callifthe child relationships are correctlyformed priorto the insert.This
couldbe done usingtheadd () method availableinDefaultGraphCell:

vertexl.add (vertex?2) ;

inthe same way we added portstoverticesintheHelloWorld example.You may alsousethe
constructorof DefaultGraphCell thatacceptsan arrayof children:

Object[] children = {vertex2, vertex3, vertex4, edgel, edge2, edge3};

DefaultGraphCell vertexl = new DefaultGraphCell (new String”Vertexl”,
null, children):;

JGraph.getDescendants (Object[]) provides a method to obtain all of the
descendant cells(children) of those specifiedin the singleparameter.Along with the getRoots
method, thesetwo methods combine tomake theprimarycommand you shoulduse toobtainall

cellsinthegraph:
graph.getDescendants (graph.getRoots ()) ;

Justobtainingtherootswillonlywork aslongasthereareno group structures.
Note thatyou must explicitlycreatethe group cellin thenormal way you might createany cell.
Grouping togetherany number of cellsvillnot automaticallycreatea parentcell There isa helper

method intheGraphLayoutCache:
insertGroup (Object group, Object[] children)

that groups the cellsin the array parameter under the group celland performs the insert

Page 78

JGraph UserManual

command.

These methods mentioned, however, do not allow for the changing of the parent/child
relationshipduringedit and callsnor are they capableof adding the grouping operation to the
undo historyaspartofan insert () callFor thisyoumustuseaParentMap.

4.1.2 PARENTMAP

The ParentMap classdefinesthe parent/childrelationshipsof cells.It can be used in the
appropriateedit () and insert () callsinGraphModel and GraphLayoutCache that
have a ParentMap asone of theirattributes.ParentMaps arestoredaspartof the graph model
edit,or graph layout cache edit,so any changes to the parent/childrelationship(s)are undoable.
The ideawith ParentMaps isto describethe parent/childrelationshipyou would liketo alter
thegraphmodel to representand passtheparentmap totheedit orinsert method.

ParentMaps may be createdinone of threeways.The firstistopassthe childrenand parent
totheParentMap constructor:

ParentMap parentMap = new ParentMap (children, parent);

thiscausesthe arrayof children to have the specifiedparent in the parentmap. To invoke this

changecall:

graph.getGraphLayoutCache.edit (null, null, parentMap, null);

note thatyou can alsomake changesto cellattributesusingthe firstparameterat the same time
as changing the group structureusingthe ParentMap.Within theedit callthe changemade
to the group structurewillbe storedaswellas the grouping structurepriorto the editcallThis
enablesundo/redo tobe ableto restorethe currentand previousstates.

The second method of creatinga parentmap isto constructthe classeitherusing the default
constructor, or the constructor just mentioned, and then to add further entriesusing the
addEntry () or addEntries () methods. addEntries allows you to assign multiple
children to a singleparent and addEntry add a singlechildand associated singleparent to the
parentmap. Thesemethods add one ormore ENntry objectsto the ParentMap,each Entry
objectrepresentingone parent/childrelationship.

When we describethe ParentMap and how itiscomposed of some number of ENtry pairs,
remember thattheparentofany ENtry pairmay benull .Thisishow you representa parentless
celli.eacellyou want toadd tothemodel roots.Generalizingthewhole conceptof a parentmap,

therearethreeoperationsyou can use ittodescrilbe Below we show thosethreeoperations:

1. You currentlyhave a cellwith no parent,you want to assignita parent.Add an entryto the
ParentMap with thecellasthechildand thenew parent.

ParentMap pm = new ParentMap() ;

Page 79

JGraph UserManual

pm.addEntry (childCell, groupCell);

2. You currentlyhave a cellwith a parent, you want itto have no parent.Add an entryto the

ParentMap withthecellasthechildand settheparenttonull.

Object[] children = {childCell};
ParentMap pm = new ParentMap (childCell, null);

3. You currentlyhavea cellwith a parent,you want toassignita differentparent.Add an entryto

ParentMap with thecellasthechildand thenew parent.

ParentMap pm = new ParentMap()
pm.addEntry (childCell, newGroupCell) ;

Otherexamplesyoumight findusefularethe operationtogroup selectedcells:

DefaultGraphCell group = new DefaultGraphCell () ;
graph.getGraphLayoutCache () .edit (null, null, new ParentMap
(graph.getSelectionCells (), group), null);

and theoperationtoungroup selectedcells:

graph.getGraphLayoutCache () .edit (null, null, new ParentMap
(graph.getSelectionCells (), null), null);

4.1.3 GROUP INSETS

GraphConstants.setInset () can alsobe used on group cellsto provide a boundary
between theminimum bounding rectangleof thechildcellsand thegroup cellitself.

Hlustration 46 : A group cell with an inset of 10

4.1.4 MOVE INTO/OUT OF GROUPS

In the JGraph classthere existtwo methods, setMoveIntoGroups (boolean) and

Page 80

JGraph UserManual

setMoveOutOfGroups (boolean) .Thesedeterminewhetheror not tomake a cellpartof
a group cell when you drag the cell into or completely out of a group cell. So, with
setMovelIntoGroups setto true, moving cellsso that the mouse position isinside the
bounds of an existingvisiblegroup cellwillcause the cellsto become directchildof that group.
With setMoveOutOfGroups setto true, dragginga childwithin a group cellcompletely

out of thegroup cellwillcausethecelltobecome a rootcelli.ehaveno parent.

4.1.5 REMOVING CHILD CELLS

Using the remove () callon cellsthatarepartof a group structureisslightlydifferentto the
pattern for other editingcalls.If you callremove on the verticesnumbered 3 and 4 in the figure

below:

Hlustration 47 : A group
structure before cells 3 and 4
are removed

thosecellawillbe removed from thegroup structureand leaving:

Page 81

JGraph UserManual

Hllustration 48 : The group structure
after the remove() call

A calltoremove () onlypassinginvertex!would be, essentiallyan ungroup command and
the same appliestoany cellwhich actsasa group. Ifyou wish the remove theentiregroup structure
you need to calldJGraph.getDescendants (Object) (or use themethod of the same
name intheDefaultGraphModel) on the topmostparentcelltoobtaina collectioncontainingthe

celland allitschildrenand thenpassallthesecellstotheremove () method.

4.2 ConnectionSet

ConnectionSet isthe finalof the threemain parametersto insert and edit callsthe
othertwo beingthenestedmap of attributesand theparentmap.A ConnectionSet describes
the connection stateof any number of edgesand so isalsostoredaspartof any editchange object
toenablecorrectundo/redos.

The designof ConnectionSet issimilarto thatof the ParentMap, there isthe overall
classthatholdsone ormore entriesor connectionsinthiscase,and theymay be setup through the

constructor,individuallyor asa collection.

ConnectionSet (Object edge, Object port, boolean source)

createsa simpleConnectionSet associatingthe specifiedport and edge and alsoindicating
whether or not the port isat the source or targetend of the edge. This createsa Connection
object,which isan innerclassof ConnectionSet,and adds itto the setof connectionsheld.

You can alsocreatethe setof connectionsyourselfand passitinusing:
‘ConnectionSet (Set)
Individualconnectionscanbe createdusing:
‘connect (Object edge, Object source, Object target)
which setstheedgewithintheConnectionSet tohave the specifiedsourceand targets,

‘connect(Object edge, Object port, boolean source)

which setsthe edge tobe connectedto theportwithintheConnectionSet and whetheror
not itisthe sourceor targetportisindicatedby thelboolean parameter.Also:

Page 82

JGraph UserManual

‘disconnect (Object edge)

setstheedge asbeingdisconnectedatboth endswithintheConnectionSet and

‘disconnect(Object edge, boolean source)

disconnectsjustthe sourceor targetend, asspecifiedwithintheConnectionSet.
Alsoavailableisthe staticutilitynethod, ConnectionSet.create () :

ConnectionSet create (GraphModel m, Object[] cells, boolean disconnect)

This returnsa new ConnectionSet instancebased on the array of cellspassed in which
contains edges and/ or ports. If disconnect is true the ConnectionSet returned
describesthose specifiedcellsin a disconnected state.If true, itdescribesthe edges connected
accordinglyto model .getSource (cell) and model.getTarget (cell) and ports
accordingto thereturnvalueof port.edges () .

4.3 The GraphLayoutCache

The GraphLayoutCache holdsthe cellviews,one foreach cellinthemodel.Itholdsa list
of cell view roots and another cached 1list of port views for performance reasons.
GraphLayoutCache alsoholdsamapping from thecellstocellviews,theonlyplaceinJGraph
where you can translate in the model-towiew direction. GraphLayoutCache actually
implementstheCel l1Mapper interfacewhich definesmethods toadd and getmappingsbetween
cellsand cellviews. The CellMapper interfaceisnot such an obvious design contractas the

GraphModel isbutwhen obtainingthecellview foracell youmust alwaysusegetMapping:
cellView = graph.getGraphLayoutCache () .getMapping (cell);

The reversemapping from graph view to graph model isnot required since CellViews have
referencesto theircorresponding graph cells.Seeing the rolethe GraphLayoutCache playsin the
mapping between the model and view domain, it may make more sense now why the
GraphLayoutCache holds the referenceto the CellViewFactory, the factoryclassthat createscell

viewsdependingon thecelltype.
4.3.1 VIEW-LOCAL INDEPENDENCE

The GraphLayoutCache objectprovidesthe means to override information held in the
graph model so that you may have multipleindependent views of the same model. This enables
features such as cellvisibility,view-local attributesand expanding and collapsing.To setup a
GraphLayoutCache inthisway you need to setitspartial attributeto true, thismust
be done intheGraphLayoutCache constructor:

GraphLayoutCache (GraphModel model, CellViewFactory factory, boolean
partial)

Page 83

JGraph UserManual

To change the partialstatus of a GraphLayoutCache during itslifetime would cause
serioussynchronizationissuesand scasetPartial () method isnot made available.

Once aGraphLayoutCache hasbeenmade partial thereisadifferencein functionality
between performing the 3 editingmethods on the GraphLayoutCache and on the graph
model. Performing them on the GraphLayoutCache willalways update the view you are
working in. Performing them on the graph model willmake the changesto the model, but not
reflectthosechangesinanypartial GraphLayoutCache.so ifyou insertcellsdirectlyinto
themodel, theywillnot appearinviewswhere the GraphLayoutCache ispartial .Thisis
therecommend technique forinsertinginvisiblecells.

The reason for the naming of the partial attribute is to indicate that the
GraphLayoutCache isa partial representation of what liesin the model, although the

boundarycaseisthatthe contentsarethe same and itisthewhole representation.

4.3.2 VISIBILITY

With apartialGraphLayoutCache,you areableto setany individualcelltobeing invisible

using:
graph.getGraphLayoutCache () .setVisible (cell, false);

which willperform theedit and appropriateupdatesforyou.You can alsodefinea setof cells

tobemade visibleand anothersetof cellstobe made invisibleinone callusing:
setVisible (Object[] visible, Object[] invisible)

A cellbeing set to be invisiblesimplymeans itisnot drawn in that view, the model remains

unchanged,onlytheGraphlLayoutCache holdsadditionalvisibilityinformationwhen partial.

4.3.2.1 Configuring Visibility after Editing Operations

Thereareanumber of configurationoptionsforeditingoperationsthatautomaticallydealwith
visibilityissuesfor cellsthathave some relationshipin the graph model.For example,ifa vertexis
made invisibleitusuallydoes not make senseto leaveedgesconnected to that vertexvisible.The
hidesExistingConnections variablesetto true ensuresthishappensand true isits
defaultvalue.

For the reverseoperation, showsExistingConnections determines whether or not
edgesthathave both verticesconnected to itmade visiblearemade visiblethemselves.The default
is.again,true.

showsChangedConnections determineswhether or not edges should be made visible
when theyarereconnectedtodifferentverticeswhich areboth visiblethedefaultistrue.

showsInsertedConnections determines whether or not inserted edges should me
made visibleifeithertheirsourceor targetarealreadyvisiblethedefaultvalueistrue.

FinallyhidesDanglingConnections determineswhetheror not edgesshouldbe made

Page 84

JGraph UserManual

invisiblewhen either connected vertex isremoved from the model.The defaultfor thisvalue is
false

4.3.3 VIEW-LOCAL ATTRIBUTES

Visibilityisone of the important view-independent featuresin JGraph. Another isview-local
attributes.View-local attributes enable you to have any of the attribute types available (in
GraphConstants,orany extraattributesyou might define) storea localvaluein the cellview
storageattributemap and have thatvalueoverridethe valuestoredin the storageattributemap of
the corresponding graph model cell . There aretwo variablesin the GraphLayoutCache that
supportthisfunctionalityal lAttributesLocal and localAttributes.

allAttributesLocal isaboolean flagthat determineswhether or not tomake all
attributesview-local,so the allattributessetin the GraphLayoutCache are stored locallyin
the cellviews and those are the attributesused for the visualization.localAttributes isa
Set of attributekeys (e.gGraphConstants.BOUNDS,GraphConstants.FONT etc.)
thatuse the value in the cellview attributemap over thatin the graph model cellYou can setall

attributestoview-localusing:
‘ setAllAttributesLocal (true) ;

and setthevalueof localAttributesusing:

\setLocalAttributes (attributeSet) ;

Note the setting of the local attribute set overwrite the current set, it does not add to it.
Therefore,ifyou wish toadd toit,callgetLocalAttributes () and add tothesetobtained
inplace.

Note, ifyou wish to remove a view-localattributethisrequiresmore than simplyremoving the
key from the localattributesset.The attributevalueshouldalsobe removed from allcellview that
have thatattributeset.Dependingon applicationrequirements,you willeitherleavethe attributes
deleted or readd them to the equivalent graph model cells’attributemaps. From JGraph 5.6.3
onwards the method removelLocalAttribute (Object attribute, boolean
addToModel) is available in the GraphLayoutCache to assist this process. The
attribute isthe key tobe removed and the flagindicateswhetheror not to readd the deleted
attributeto themodel cells.

As previouslymentioned, ifyou perform an insertcallto themodel with a partiallayout cache,
the cellisinvisibleto startwith in the layout cache.Ifyou perform an editon themodel and you
change an attributewhich isview-localina graph layoutcache,the valuedoesnot getpassedto the
cellviews’ attributemaps. Similarly,ifyou perform an editdirectlyon a graph layout cache any
view-localattributesare not passed onto the model cells.This means you can have colors,cell
positionsand size,text font,any of the attributesin GraphConstants displaydifferentlyin
one view to anotherby using partiallayout caches, settingthe appropriateattributesto be view-

localand editingthoseattributesusingtheeditcallon thepartiallayoutcache.

Page 85

JGraph UserManual

In theexamplesdirectoryof thepackageyou receivedwith thisusermanual you willfindthe file
org.jgraph.example.GraphEdMV. java. This is an example implementation of a
simplemultiview application.The following code in the constructorof GraphEdMV setsthe

view-localattributes:

Set localAttributes = new HashSet () ;

localAttributes.add (GraphConstants.BOUNDS) ;

localAttributes.add (GraphConstants.POINTS) ;

localAttributes.add (GraphConstants.LABELPOSITION) ;
localAttributes.add (GraphConstants.ROUTING) ;
graph.getGraphLayoutCache () .setLocalAttributes (localAttributes) ;

settingthe cellpositionsand sizes,theedgepointsand routingand the labelpositionstobe view

independent.

4.3.4 EXPANDING AND COLLAPSING GROUPS

JGraph supports the expansion and collapsing of grouped cells.Obviously, in your own
application you don’twant to ask usersto perform the grouping operation, so you willgenerally
have some means of determining which cellsthe user isreferringto in a collapseoperation and
perform thegroupingand collapsinginone operation.

The GraphEdX example demonstratesthe manual grouping and expanding and collapsingof
cellsThe figurebelow shows a selectionof cellsbeinggrouped, collapsedand expanded again.The
GraphEdX sourcecode can be found in the examplesdirectoryof your User Manual or JGraph
installation.The demo renderersa small“-” or “+” in the top leftcorner of the group cellto
indicatethat the group affordsbeing collapsedand expanded. Mouse presseventson that corner
need tobe captured (seechapterb, Events) to triggerthe callsto expand and collapse.

The actualcallthatcausescellstocollapseis:

‘graph .getGraphLayoutCache () .collapse (graph.getSelectionCells()) ;

and toexpand:

‘graph .getGraphLayoutCache () .expand (graph.getSelectionCells()) ;

The cell(s)passed in as the singleparameter isthe group cell.You might noticethat the edge
from cell11 into the group terminateson the perimeteron the group when itiscollapsed.This
behaviorisstandard forvisualcollapsingand expanding.When cellsareinvisibleitischecked to see
iftheyhave a visibleparent,director indirect.If so, any edgesconnected to the invisiblecellare
promoted,in theview only, toterminateattheperimeterpointof the firstvisibleparentcell There

areno model changesinvolvedinthisprocess.

Page 86

JGraph UserManual

g B MEEN Py SRS P) SN P Mp —»{ 15 {22 |—» 32
5 ! o
33
ﬂ zaﬂ 2 23ﬂ33
/ﬂ Hﬂd o ,/7 ﬂqu
15\ 16
24 —>{35 \“24—}35
= T CRA|
d =B u
25 \‘1_'/,25
17 17
=l

| 2|22 ‘
10 —» 15 22 32 10— 165 |— ™22 — w32
| % - ”
il
4 35
3 zaﬁ
I P i P
16\
24 |—™ 35

™ LRE|

d = o
I P \‘1_'/, 25
17

Hllustration 49 : A selection of cells being grouped (2), collapsed (3) and expanded again (4)

For example, in the case of a user application involvinga tree structure that can expand and
collapse,you might preferto renderthe " on thebaseof allcellsThe userclickingon thatsymbol
would causethe applicationto find allcellsbelow that treenode, group them and thenode itself,

then collapsethegroup, allinone operation.
4.3.5 OTHER GRAPHLAYOUTCACHE OPTIONS

The GraphLayoutCache hasa fewmore visualconfigurationoptions:

+ autoSizeOnValueChange - when setto true allverticesare resizedto theirpreferred
sizeplusany insetvalue in the cellview attributemap everytime theirlabeltextchanges.This
function might be seen as a global override of the percellautosize function. The important
difference between this function and the per~cell autosize attribute is
autoSizeOnValueChange stilkllowsyou toresizecellsnanually.

+ selectsAllInsertedCells - determineswhether or not inserted cellsare selected.
The defaultvalueistrue.

+ selectsLocallInsertedCells - determineswhetherornot localinsertedcellsthatis,

Page 87

JGraph UserManual

cellsinsertedto apartialgraph layoutcache,areselected. The defaultvalueistrue.

4.4 Advanced Model Functions

4.4.1 MODEL ORDERING

The graphmodel hasan orderto itscellsdefinedby the orderof the rootscollection.Childcells
arealsodeterministicallyprderedwhen accessingthem from theparentand sotheentiremodel has
an order.This isimportant when performing analysison the graph model, or layouts,since this
orderingmeans the resultscan be reliedupon tobe deterministicThe orderinginthemodel alsois
used forlayering the cells.

Layeringrelatesto theway inwhich any cellcan overlapany otherand thereneeds to be some
method to determine which cellsliein front of which. The ruleisthat the cellat the startof
roots liesupon thebacksmost layerand each sequentialroot cellliesupon thenext layerup until
you reach the lastentry in YOOTS which lieson the topmost layer.If you perform an insert
operationadding two cellsthe order the cellsare insertedin isthe same asthe orderingin the cell
arraypassed into insert () . The firstcellwillbe the firstentry into rootsand liebehind the

second inthe layeringstructure.

Inserted

Insered first
second

Inserted

second

Hllustration 50 : The layering resulting
from the insertion of two cells

Regardlessofhow you dragthecellsthe cellinsertedsecond willremainoverthe firstwhen they
overlap.Sincechildcellsof groups lieentirelywithin thebounds of thegroup cellthewhole group
has the layerposition of the root cellWithin the group each levelof childcellsare ordered and,
again, the firstentry of any level lieson the backmost layerwithin that group. This pattern
continuestoan arbitrarylevelof nesting.

Rather than provideultrafinegrainedpositioningof celllayersitismore effectiveto simplybe

abletomove a specifiedsetof cellsto theback-most layer:

‘toBack (Object[] cells)

or tothe foremost layer:

‘toFront (Object[] cells)

Page 88

JGraph UserManual

these methods exist in both the GraphLayoutCache class and the GraphModel
interface.Note that a number of cellsmay be affected and cellscannot share the same layer.
Therefore,the operationsmove the specifiedcellsto startor end of the levelof the graph structure

theyexistupon but retainthe same relativeorderbetween thosecells.
4.4.2 EDITS

When youperform an inserteditor remove callan objectcalledan editiscreated.In the caseof
callsto the GraphModel a GraphModelEdit object is created and for callsto the
GraphLayoutCache a GraphLayoutCacheEdit is created in addition to the
GraphModelEdit .Theseeditobjectsencapsulatethe changemade, holdinginformationabout
the attribute map changes made using the nested attribute parameter, changes to the group
structuremade using the parent map parameter and changes to the connection statesusing the
connectionsetparameter.

Some of the simplified edit calls in GraphLayoutCache do not offer all of these
parameters,but valuesforthem arecreatedinternallyand held in the editobjectasnecessary.The
editobjectcompletelydescribesthe change from the currentstateof thegraph to thenext stateand
in reverse and so isused to perform undo and redo functions. In fact, editing methods are
performed by creating the edit object and executing it, exactly the same as a redo command

functions.
4.4.2.1 Undo/Redo

Undo-support, that is, the storage of the changes that were executed so far, is typically
implemented on the application level.This means, JGraph itselfdoes not provide a running
history,itonly provides the classesand methods to support iton the application level.This is
because the historyrequiresmemory space,depending on how many stepsitstores(which isan
application parameter).Also, history isnot always implemented as some applications do not
requireit.

The GraphChange object issent to the UndoableEditListeners that have been
registeredwith themodel.The objectthereforeimplementsthe GraphChange interfaceand the
UndoableEdit interfaceThe latterisusedtoimplement undo-support,asitprovidesan undo
and a redo method. (The code to execute,undo and redo the change isstoredwithin the object,

and travelsalongto the listeners.)

4.4.2.1.1 Undo-support Relay

Aside from themodel, the graph view alsouses the code that themodel providesto notifyits
undo listenersof an undoablechange.This can be done becauseeach view typicallyhas a reference
to the model, whereas the model does not have references to itsviews. (The GraphModel
interfaceallowsrelayingUndoableEdits by useof the fourthargument totheeditmethod.)

The GraphLayoutCache class uses the model’s undo-support to pass the
UndoableEdits that it creates to the UndoableEditListeners that have been

Page 89

JGraph UserManual

registeredwith themodel.Again, the objectsthattravelto the listenerscontainthe code toexecute
thechangeon theview, and alsothecode toundo and redo thegivenchange.
Thishas the advantage that the GraphUndoManager must onlybe attached to themodel,

insteadof themodel and eachview.

4.4.2.1.2 GraphUndoManager

Separate geometries,which are stored independently of the model, lead to changes that are
possiblyonlyvisibleinone view (view-only),not affectingthe otherviews,or themodel.The other
viewsareunawareof thechange,and ifone of them callsindo, thishastobe taken intoaccount.

An extensionof Swing’sUndoManager inthe form of GraphUndoManager isavailable
toundo or redo such changesin the contextof multipleviews. GraphUndoManager adds the
undo and redo methodswith an additionalargument,which allows specifyingthe callingview as

a contextfortheundo/redo operation.The basiccode to createand setupa graph undo manageris:

undoManager = new GraphUndoManager () ;
// Register UndoManager with the Model
graph.getModel () .addUndoableEditListener (undoManager) ;

The parameter that ispassed to the GraphUndoManager's undo and redo method is
used to determine the lastor next relevant transactionwith respectto the callingview.Relevantin
thiscontextmeans visiblethatis,alltransactionsthatarenot visiblein the callingview areundone
or redone implicitlynntilthenextor lastvisibletransactionisfound forthe specifiedparameter.

As an exampleconsiderthe following situation:Two views sharethe same model and both have
at leastone view-localattribute.Thismeans, each view can change independently,and ifthemodel
changes,both viewsareupdated.The modelnotifiesitsviews ifcellsareadded or removed, or ifthe
group structureor connectivityof the graph ismodified,meaning thateitherthe sourceor target
portofone ormore edgeshave changed.

If the view-localattributesare only the pointsor bounds and ifcellsaremoved, resized,or if
pointsareadded, modifiedor removed foran edge, then thesechangesareview-only transactions.
Allviewsbut the sourceview areunawareof such view-onlytransactions,becausesuch transactions

areonlyvisibleinthe sourceview.

Page 90

JGraph UserManual

unda unda undo
wigw] W e W i3

rnovel

Froves

insert

Hllustration 51 : Undos across multiple views

In the above figure,the stateof the command historyisshown aftera cellinsertion into the
model, move by the second view, and subsequentmove by the firstview. Afterinsertionof the cell
intothemodel, the cell’position isthe same in allviews,namely the position thatwas passedto
theinsert callThe arrows illustratetheeditstobe undone by the GraphUndoManager for
the respectiveviews.In thecaseofview 3, which onlyseesthe insert.alleditsareundone.

As mentioned above, even if there are possibly many sources which notify the
GraphUndoManager,theimplementationof thisundo-supportexistsonlyonce,namelyinthe
graph’smodel.Thus, the GraphUndoManager must onlybe added to one globalentrypoint,
which istheGraphModel object.

4.5 Drag and Drop

Drag and drop refersto the action of a userina GUI of selectiona visualobject,usuallyby
clicking on the object and moving the mouse while holding the mouse button down. The
“dropping” part iswhere themouse button isreleased.InAWT and Swing thismeans selectinga
visualelement inone component and dropping itinanother.Ttyou havenot used DnD before,it
is worth reading about the standard Swing mechanism at
http://java.sun.com/docs/books/tutorial/uiswing/misc/dnd.html as JGraph ismostly compliant
with the standardmechanisms.

JGraph supports drag and drop in the same way most Swing and AWT components do,
dragging and dropping between JGraph instancesin supported in the core library.The methods
setDropEnabled () and setDragEnabled () on the JGraph objectcontrolwhether
these functionalitiesareavailableAs withmost components,by default,drop isenabledand drag

disabledaftercreatinga JGraph.

Information - From Java 1.4 onwards a high-level event listener called
TransferHandler was introduced to simply drag and drop. This is the only Java 1.4
specific feature in JGraph and the feature the build system swaps out when building for
Java 1.3. The Java 1.3 drag and drop framework was somewhat more complex to use and
will not be described in this manual.

Page 91

http://java.sun.com/docs/books/tutorial/uiswing/misc/dnd.html
http://java.sun.com/docs/books/tutorial/uiswing/misc/dnd.html
http://java.sun.com/docs/books/tutorial/uiswing/misc/dnd.html

JGraph UserManual

There aretwo important interfacesdefined in Swing relatingtodragand drop, Transferable
and TransferHandler. Transferable implementations describe the actual object(s)
beingtransferredWithina Transferable implementation (itisan interface)arereferenceda
number of DataFlavor instanceswhich describethe format thata Transferable's data
might take. Example flavors are sStringFlavor, imageFlavor and
javaFileListFlavor.

In the case of JGraph 0Org.Jjgraph.graph.GraphTransferable defines a
description of a graph transfer.It holds the cellsbeing transferred,a ConnectionSet of
connections between the cellsand a ParentMap describing the group structure. In addition
thereisa nested AttributeMap with the cellsattributesand thebounds of the collectivecells
as a rectangle.This information isenough to recreate the graph when dropped (usuallyin a
JGraph component).

The other important element in dragand drop isthe TransferHandler class.This class
handlesthe creationof Transferables,viathecreateTransferable () method, and
deals with their interpretation when dropped. When a TransferHandler receives a
Transferable objectitusesitscanImport () method to determine whether or not itis
capableof acceptingthe DataFlavor beingoffered.The importData () method dealswith
the actualprocessof accepting the drop and, in caseof a JGraph component, editingthe graph
appropriately. If you wish the change the default drop behaviour it is an overridden
importData () method whereyouwoulddo this.

JGraph has to subclassTransferHandler because of a non-Swing standard feature it
possesses. 0rg.jgraph.graph.GraphTransferHandler isthe default handler for
exporting and importing a graph. The reason this is necessary is that standard
TransferHandler transfersbean propertiesand the graph’sselectioncannot be implemented
asabean property.GraphTransferHandler understandsdrop from other JGraphs, but
not from other Swing componentsby default.A common question ishow to accepta drop ina
JGraph from a component otherthana JGraph .Therearetwo possibleways of doing this.

The firstistomake your graph understand otherimporteddata flavors.To do thisyou need to
create a sub class of GraphTransferHandler and override canImport () and
importData () to confirm that the objectcan be imported and then to properlyhandle the
import.importData () inthecoreGraphTransferHandler willgiveyou a reasonable
ideahow toperform JGraph operationsgivena particularimport.

The second method to adapt the TransferHandler of the exporting component,
specifically the createTransferable () method, so that it creates a
GraphTransferable that JGraph understandsby default.Thismechanism isonlyusefulif
theonlythingitsdatawillbe exportedtoisa JGraph,sinceno othercomponent understandhow
toimportagraph.

To setanew TransferHandler on agraphcall:

graph.setTransferHandler (new MyGraphTransferHandler ());

Page 92

JGraph UserManual

The Clipboard in Java needs a small mention, when you perform cut, copy or paste
operations drag and drop isperformed via a clipboard. In Java there is the system (operating
system) clipboardand any other instancesof clipboard you createwithin your application.These
storeTransferable objectsduringa datatransfer Ifyou use the shared system clipboardyour
datawillbe transferredto the nativeoperatingsystem clipboard, so you could transferdata to it
and stillhave itavailablein another JVM session. If thisisnot the behaviour you require then
createa Clipboard instanceonly foryour application.

One issueat occasionallycausesconfusion iswhen developerstry to write functionalitythat
accepts drops onto heavyweight cellson the graph. The problem isto do with the use of the
flyweight pattern for renderering (i.e.there isonly one renderer component shared between all
similar cell types). When you drop onto a heavyweight component, it doesn’t reallyhave a
component instance (except when editingbecause an editorcomponent instance isactiveat the
time),i.e.you’redropping onto somethingpaintedon the JGraph component.So your transfer
handleron the JGraph needs to handlethisdrop, thereisno cellcomponent theretohandle it.
You can use the getNextViewAt () method on JGraph to determine where the drop has
occurred. A sensiblenext step would be to pass the drop event to the component by calling
getRendererComponent () on that view to install the actual component for that
heavyweightand hand itthedrop eventtohandle.

4.6 Zooming

Within the JGraph classthe current scaleof the graph isstoredand may be alteredthrough
the setScale () method. The scaleisstoredasa doubletype and a valueof 1.0 isthe default,
unscaled condition.Values above 1.0 referto a scalingup of the graph (zooming in) and values
below 1.0 indicate the graph is zoomed out. Setting the scale to 2.0 corresponds to x2
magnification,4.0tox4 magnification,0.5tox0.5magnification (x2 reduction),and soon.

The setScale (double) method zooms leavingthe centerpointon the screenunchanged.
If the point around which the scaling is to take place is not the center point, use the
setScale (double, Point2D) method where the point isthe new centerof the graph.
This isuseful,forexample,when zooming to a particularmouse clickpoint or specifiedmarquee

area.

4.7 Summary

e Grouping ispart of the graph model structure and isrepresented through the parent/child
relationshipsbetween cells.

* The editingmethods can use parent maps and connection sets to describe a new stateof
grouping structureand connection states.

* The GraphLayoutCache can be made partialmeaning that some or any of the cellviews in it

Page93

JGraph UserManual

canbemade invisibleThistechnique isused forexpandingand collapsingcells.

* Cellviews may have view-local attributes,which override those in the corresponding graph
modelcellWhich attributesareview-localisdefinedintheGraphLayoutCache.

* Undo and redo isbuiltinto the editingmethods and follows the Swing standard. Some extra
functionalityisrequiredwhen dealingwithundos/redosinmultiple,independentviews.

* When amodel or layout cache change occurs,itispossibleto have a listenerdetectthischange
and obtaina change objecttoexamine thedetailsof thatchange.

* Mouse eventspassed intoMouseHandlerby defaultand from therearepassedonto a specific

handleror handlersforcontextspecifiprocessing.

Page 94

JGraph UserManual

5 Events

5.1 Graph Change Events and Listeners

The GraphModel definesmethods forthehandlingand registrationof two typesof listeners,
UndoableEditListeners and GraphModelListeners. Every notification of the
undo listenerisaccompanied by a notification of the model listener,since the view needs to be
updated and the displayrepainted.However,model eventsdo not triggerundo eventsforobvious
reasons.

Ifyou wish to have certainfunctionalitytriggeredupon the firingon a model event,you must
implement the GraphModellListener interface which specifies one method,
graphChanged (GraphModelEvent e) . The listener needs to be registered with the

model inorderto receivethoseevents:

graph.getModel () .addGraphModellListener (graphModellListener)

Once a change occursyou willbe ableto determine the detailsof the change by interrogating
theevent.

Both the graph model and the graph layout cache support thiseventmodel.The graph layout
cacheeventonlycontainsinformation specificto thatview, i.echangesto view-localattributeand
localvisibilitychanges.Ifthe graph layout cache isnot partialor no view-localattributesor states
change duringan edit,the graph layout cache eventwillbe empty and onlythe graph model event
contain any information. In thisway graph layout cache eventscan be used to determine what
happened onlyina view. The completepictureof what changed duringan editcan, therefore,be
determined by examining both the graph model event and the graph layout cache event. If your
graph layout cache isnot partialand has no view-localattributesthen only examining the graph
model eventwillsuffice.

GraphModelEvent and GraphlLayoutCacheEvent are both found in the
org.jgraph.event package.Within theseclassesaredefined the GraphModelChange
and GraphLayoutCacheChange respectivelyand theseinner change objectcan be obtained
using the getChange () method on the event interfaces.These changes are constructed for
insertion,removalor modificationsof cellsinthemodel.Note that theseobjectscontainboth the
descriptionand executionof thechange inone place.

The necessarygettermethods to extractinformation out of the GraphModelChange are
getConnectionSet, getPreviousConnectionSet, getParentMap and
getPreviousParentMap. The GraphLayoutCacheChange interface defines
getChanged, getInserted, getRemoved, getAttributes and
getPreviousAttributes. GraphModelChange extends
GraphLayoutCacheChange and soalsodefinesthemethods inthe second list.

From thenaming of themethods you willfairlyeasilybe ableto deduce how to accessthe pre-
editand posteditversionsof the objectthat storeeditstate,the parent map, the connection set

and the nested attributemap. getInserted returnsthose cellsthat were insertedin the edit,

Page 95

JGraph UserManual

getRemoved those thatwere removed in the editand getChanged returnsthose cellsthat
existedbothbeforeand aftertheedit but whose attributeschanged inthatedit.
Keep inmind thatafteryou a perform an undo, the previousand currentattributein the edit

areswopped around. Thisissothatthe redo functionworks correctly.

5.2 The GraphUI and handling mouse input

The org.jgraph.plaf.GraphUI interface provides the UI-delegate interface for
JGraph and inheritsfrom ComponentUI. The default implementation, BasicGraphUTI,
providesalltheusualmethods you expecttopaint,updateand returncomponent sizes.

However,themost common areaof difficultlyusersgetintowith JGraph isworkingout where
mouse evententerJGraph and how theyarepassedbetween thevariousmouse handlingfunctions.

BasicGraphUI defines the method createMouselListener () which installsa
mouse handlerinto the graph UI. Ifyou subclassBasicGraphUI and createyour own mouse
handler, remember to override createMouselistener () to createyour mouse handler.
The same idea appliesto any other custom functionalityyou add to your subclass,to callthe
createXXX () methodsavailableinBasicGraphUT.

Have a lookattheMouseHandler innerclassinBasicGraphUI .Thisiswhereallmouse
input events come into JGraph by default.It providesmousePressed, mouseDragged,
mouseMoved, mouseReleased,asyoumight expect.

InmousePressedthe firstthingthathappens ishandlerissettonull.This isthehandlerthatis
going to dealwith the mouse event.MouseHandler goes through a seriesof checks towork out
what wasunderthemouse when itwas pressed.

Slightlylowerdown you willfindthisline:

‘int s = graph.getTolerance() ;
5.2.1 MOUSE TOLERANCE

When a user triesto selecta cell,JGraph provides some assistance using the tolerance
variablein JGraph .When a mouse pressoccurs the defaultmouse handler createsa rectangle
around thepointwhere themouse eventhappened. The distancefrom the centerof thisrectangle
toany sideisthevaluereturned from getTolerance () .ItiswithinthisrectanglethatJGraph
willprocessavailablecells.If you find that you have overlapping cellsand the wrong cellisbeing

processeddue tothetolerancevalue,simplysetittoO.

The lineafterthegetTolerance callreads:

Rectangle2D r = graph.fromScreen (new Rectangle2D.Double (e.getX()- s,
e.get¥() - s, 2 * s, 2 * s8));

Page 96

JGraph UserManual

5.2.2 ZOOMING

JGraph usesthe Graphics2D classto implement itszoom. The framework isfeatureaware,
which means that it relieson the methods to scalea point or rectangleto screen or to model
coordinates,which in turn are provided by the JGraph object.This way, the client code is
independent of theactualzoom factor.

Because JGraph’szoom isimplementedon top of the Graphics2D class,thepaintingon the
graphicsobjectusesnon-scaledcoordinates(theactualscalingisdone by the graphicsobjectitself).
For thisreason,JGraph alwaysreturnsand expectsnon-scaledcoordinates.

For example,when implementinga MouseListener torespond tomouse clicks,theevent’s
pointwillhave tobe downscaledtomodel coordinatesusingthe fromScreen method inorder
to findthe correctcellthrough thegetFirstCellForLocation method.

On theotherhand, the originalpoint istypicallyused in the component’scontext,forexample
topop-up a menu under themouse pointer.Make sureto clone the point thatwillbe changed,
becausef romScreen modifiesthe argument inplace,i.ewithout creatinga clone of the object.
To scalefrom themodel to screen, forexample to find thepositionof a vertexon the component,

thetoScreen method isused.

Continuing furtherinthe sourcecode toBasicGraphUI.mousePressed thereisa call
toisForceMarqueeEvent.

5.2.3 MARQUEEHANDLER

The marquee in JGraph isthe rectangularselection (sometime called“rubberband” selection)
you getwhen you clickan empty areaof the JGraph and drag. The BasicMarqueeHandler
classisused to implement thistype of selection.From an architecturalpointof view, themarquee
handler isa “high-level”listener that iscalledby low-level listeners,such as the mouse listener,
which isinstalledintheUI-delegate.

With regardto itsmethods,themarquee handlerismore similarto the cellhandle,becausethe
margquee handlerdealswith mouse events,and allows additionalpainting and overlaying of the
marquee . (The marquee isa rectanglethatconstitutesthe tobe selectedregion.)

isForceMarqueeEvent checks to see if whatever mechanism there is in the current
marquee handlerisenabled to forcehandlingof the mouse event to be passed onto the marquee
handler.In thecaseof BasicMarqueeHandler thisiscausedby pressingand holdingthe ‘alt’

keyduringthemouse operation.
5.2.4 HANDLES

We mentioned handlesin Chapter 3, itiswithin the BasicGraphUI we actuallydirect
mouse eventsto thehandles.The BasicGraphUT storesthe current CellHandle inthe

Page 97

JGraph UserManual

handle variable.This isupdated in the updateHandle () method which createscell
handlesdependingon thecurrentselectionstateof thegraph.

For moving operations the mouse event willbe passed to RootHandle, which isanother
inner classof BasicGraphUI . For resizingoperationson verticesthe mouse event willbe
passedto SizeHandle,which isan innerclassof VertexView.And foredgemoving and

resizingfunctionsthemouse eventwillbe passedto EdgeHandle,which isan innerclassof

EdgeView.

Page 98

JGraph UserManual

6 1/0 and JGraph Applications
6.1 XML Persistence

Javal.4and laterprovidesthe XMLEncoder and XMLDecoder mechanisms toserializethe
objectsof your applicationina standardmanner.An exampleof what your encodingphasemight

look likeisshown below:

XMLEncoder enc = new XMLEncoder (out) ;
enc.setExceptionlListener (new ExceptionListener () {

public void exceptionThrown (Exception e) {

// Dealt with exception

}
s
// Configure persistence delegates here
enc.writeObject (object) ;
enc.close ()

Java uses the mechanism of persistence delegates to identify what data from certain
classes needs to be serialized. Note that it is not necessary to persist the JGraph object
using the writeObject method, most application need only persist their
GraphLayoutCache. This contains all the graph model and view geometry information:

‘enc .writeObject (graphLayoutCache) ;

Ifyou arenot familiarwith theuseof XML encodingand how tousepersistencedelegates,itis

worth reading the Sun articleon UsingXMILEncoder.Obviously,towritethe correctpersistence

delegatesfora custom applicationyou need to understand themechanism. The basicidea isthat
you createpersistencedelegatescorresponding to classconstructorsthatyou wish tobe calledwhen

the XML isdecoded lateron. The classesdescribedby the delegatesmust not be privatenor must
the constructorsbe. The classitselfmust not be an inner class,itneeds to be staticor existin its
own file.Also, the class member variables must follow the Bean properties design where

setXXX () and getXXX () methodsexistforeachvariableXx X thatistobe persisted.

As ageneralguidebelow areshown the typicaldelegatesthatwillenableyou to persista simple

JGraph baseapplication:

XMLEncoder encoder;
try |
encoder = new XMLEncoder (outputStream) ;

// Better debugging output, in case you need it
encoder.setExceptionListener (new ExceptionListener () {
public void exceptionThrown (Exception e) {
e.printStackTrace() ;

}

1)

Page 99

http://java.sun.com/products/jfc/tsc/articles/persistence4/
http://java.sun.com/products/jfc/tsc/articles/persistence4/
http://java.sun.com/products/jfc/tsc/articles/persistence4/

JGraph UserManual

encoder.setPersistenceDelegate (DefaultGraphModel.class,
new DefaultPersistenceDelegate (new String[] { "roots",
"attributes" }));
encoder.setPersistenceDelegate (GraphLayoutCache.class,
new DefaultPersistenceDelegate (new String[] { "model",
"factory", "cellViews", "hiddenCellViews",
"partial" 1}));
encoder.setPersistenceDelegate (DefaultGraphCell.class,
new DefaultPersistenceDelegate (
new String[] { "userObject" }));
encoder.setPersistenceDelegate (DefaultkEdge.class,
new DefaultPersistenceDelegate (
new String[] { "userObject" 1})):;
encoder.setPersistenceDelegate (DefaultPort.class,
new DefaultPersistenceDelegate (
new String[] { "userObject" 1}));
encoder.setPersistenceDelegate (AbstractCellView.class,
new DefaultPersistenceDelegate (new String[] { "cell",
"attributes" }));
encoder.setPersistenceDelegate (
DefaultEdge.DefaultRouting.class,
new PersistenceDelegate() {
protected Expression instantiate (
Object oldInstance, Encoder out) {
return new Expression (oldInstance,
GraphConstants.class,
"getROUTING SIMPLE", null);

}
b)) g

encoder.setPersistenceDelegate (DefaultEdge.LoopRouting.class,
new PersistenceDelegate() {
protected Expression instantiate (
Object oldInstance, Encoder out) {
return new Expression(oldInstance,
GraphConstants.class,
"getROUTING DEFAULT", null);

}
)

encoder.setPersistenceDelegate (ArrayList.class, encoder
.getPersistenceDelegate (List.class));
encoder.writeObject (graph.getGraphLayoutCache()) ;
encoder.close () ;
} catch (Exception e) {
JOptionPane.showMessageDialog (graph, e.getMessage (), "Error",
JOptionPane.ERROR MESSAGE) ;

Itshouldbe noted thatan output createdin thisway can be somewhat verboseforeven a small
graph.An techniquetoreducethe filesizeistheuseof thegetConnectionSet method of the
DefaultGraphModel .By usingthismethod, the redundancy between the port’sedge setand

the edge’ssource and target fieldcan be removed from files.To do this,the model’spersistence

delegatemust be changed to fetchthe connection setfrom the respectivemethod and passitto the

Page 100

JGraph UserManual
constructoratconstructiontime:

model .addPersistenceDelegate (JGraphpadGraphModel.class,
new DefaultPersistenceDelegate (new String[] { "roots",
"attributes", "connectionSet" 1}));

To avoid storing the respectivepropertiesof the cells,theymust be made transient (which is

done inthe staticinitializerintheprecedingstep):

JGraphEditorModel .makeTransient (DefaultPort.class, "edges");
JGraphEditorModel .makeTransient (DefaultEdge.class, "source");
JGraphEditorModel .makeTransient (DefaultEdge.class, "target");

The makeTransient method lookslikethis:

public static void makeTransient (Class clazz, String field) {
try |
BeanInfo info = Introspector.getBeanInfo(clazz);
PropertyDescriptor[] propertyDescriptors = info
.getPropertyDescriptors () ;
for (int i = 0; 1 < propertyDescriptors.length; ++i) {
PropertyDescriptor pd = propertyDescriptors[i];
if (pd.getName () .equals(field)) {
pd.setValue ("transient", Boolean.TRUE) ;
}
}
} catch (IntrospectionException e) {
// Dealt with exception
}

To read the XML back into your application you will need code similar to that below.

Remember thatyou objectwillbe of the type thatyou wroteout intheencodingphase.

XMLDecoder dec = new XMLDecoder (in) ;
if (dec != null) {
Object obj = dec.readObject ()
dec.close () ;
return obj;
}

return null;

Note thatthe GraphEdX examplethatcomes with allUser Manual distributionsdemonstrates

the functionalityto loadand savea graph usingXML encoding.

6.2 Image Exporting

Using the various image processing functionalityavailable in Java, it is relativelysimple to

Page 101

JGraph UserManual

produce an image of your graph in JPEG, bitmap (.bmp) or PortableNetwork Graphics (.png)
format.A utilitymethod, getImage () isprovided inthe JGraph classtomake exportinga
simpletask.getImage () takestwo parameters,the firstisthe background colorof the output
image and the second isany insettobe usearound everysideof image produced.

The background color,youmay wish tosimplybe thebackground colorof thegraph,but forthe
PNG output format thereisthe option of a transparent background. In the example below you
need to use your own graph, your own output stream and selectan appropriatebackground, but

otherwisethiscode shouldwork forallcases:

JGraph graph = getGraph(); // Replace with your own graph instance
OutputStream out = getOutputStream(); // Replace with your output stream
Color bg = null; // Use this to make the background transparent

bg = graph.getBackground(); // Use this to use the graph background
color

BufferedImage img = graph.getlImage (bg, inset);

ImagelIO.write (img, ext, out);

out.flush ()

out.close ()

6.3 SVG Export

Therearetwo methods thatmay be used toexporta JGraph toSVG format.The firstistouse
theApache Batiklibrarytoperform theexport,the second istonativelyproduce theSVG mark-up
within your application. The second method isemployed in SVG example you can find in the
examplespackage of the JGraph Layout Pro product.Nativelywritingthe SVG output provides
largeperformance improvements over the Batik library.The Batik libraryproduces output that
onlyusesveryprimitivegraphicselementsand sopostprocessingof theSVG output isnot possible
sincethegraph contextisnot discerniblefrom theoutput.The Batiklibrary,atthetime of writing,
also ismissing certainuseful features,such as the association of a Hyperlink with a cellor text

element.

The firstmethod isthe one currentlymost often used and the one thatwillbe describedhere.
The Batiklibrarymay be downloaded from itshome page,which alsoprovidesa number of useful
tutorialsregarding the use of the library.The basicprincipleisto createa SVGGraphics2D
objectand paint the graph to that,the bestexplanationof how todo thisisthe code itselfshown

below:

public static void writeSVG (JGraph graph, OutputStream out, int inset)
throws UnsupportedEncodingException, SVGGraphics2DIOException
{
Object[] cells = graph.getRoots /() ;
Rectangle2D bounds = graph.toScreen (graph.getCellBounds (cells))
if (bounds !'= null) {
// Constructs the svg generator used for painting the graph to

Page 102

http://xml.apache.org/batik
http://xml.apache.org/batik
http://xml.apache.org/batik

JGraph UserManual

DOMImplementation domImpl = GenericDOMImplementation
.getDOMImplementation () ;

Document document = domImpl.createDocument (null, "svg", null);

SVGGraphics2D svgGenerator = new SVGGraphics2D (document) ;

svgGenerator.translate (-bounds.getX () + inset, -bounds.getY ()
+ inset);

// Paints the graph to the svg generator with no double
// buffering enabled to make sure we get a vector image.
RepaintManager currentManager = RepaintManager

.currentManager (graph) ;
currentManager.setDoubleBufferingEnabled (false) ;
graph.paint (svgGenerator) ;

// Writes the graph to the specified file as an SVG stream
Writer writer = new OutputStreamWriter (out, "UTF-8");

svgGenerator.stream(writer, false);

currentManager.setDoubleBufferingEnabled (true) ;

Viewing the output may be performed using the Squiggle browser produced by Apache,
InternetExplorerwith theAdobe SVG plug-inor Firefox1.5or greater.In theauthor’sexperience

InternetExplorerwith theAdobe plug-inproducesthebestqualityoutputatthetime of writing.

6.4 Exporting in a Headless Environment

On *nix systems the architectureof the X Windows system means that Swing requiressome
kind of graphicsbuffertowriteto.When usinga 1.3versionof theJavaVirtualMachine (JVM) in
ordertoproduce exportedimageson such systems a framebufferisrequired,theabsenceof a buffer
towritetowould causea headlessexception tobe fired.Note thatWindows systems do not have
have thisissuesincetheydo not have the same client/serverseparation.With thepopularityof *nix
on the serverside, the common requirement of producing graph images on a server and then
streaming thoseimagestoa clientsidebrowsercouldbe non-trivial.

Previously,on *nix systems you would generallyeithersetup a VNC serveror run a virtual
framebufferiftherewas no X Windows serveravailableHaving tochange the serverenvironment
was oftennot acceptableand so from JVM 1.4 the concept of a headlessmode was introduced to
work around thisissue.By settingthe —Djava.awt.headless=true option in the JVM
argumentsitispossibleto createinstancesof lightweightcomponents.Sun providea usefultutorial

explainingthe use of headlessmode in Java.Both the core JGraph libraryand JGraph Layout Pro

aredesignedtowork correctlyinheadlessnode.

To displaylightweight components itisnecessaryto add them to a heavyweight component
such as a Window or a Frame, which cannot be used in a headlessenvironment. Instead of
creatinga Frame and callingpack () thereisa workaround where you may createa JPanel
and calladdNotify () to achievethe same effect.Although, addNotify () isnot strictly

Page 103

http://java.sun.com/developer/technicalArticles/J2SE/Desktop/headless/
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/headless/
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/headless/
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/headless/
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/headless/
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/headless/

JGraph UserManual

meant tobe calledby developers,thisisa widelyacceptedworkaround:

JGraph graph = getGraph(); // Replace with your graph instance

JPanel panel = new JPanel();

panel.setDoubleBuffered(false); // Always turn double buffering
off when exporting

panel.add(graph);

panel.setVisible(true);

panel.setEnabled(true);

panel.addNotify () ; // workaround to pack() on a JFrame

panel.validate () ;

Color bg = null; // Use this to make the background transparent

bg = graph.getBackground(); // Use this to use the graph
background color

BufferedImage img = graph.getImage (bg, 0);

Using the above workaround means that you can use JGraph the same way you would in a
desktop Swing application.There isanothermethod to use JGraph in that does not requirethe
creationof the JGraph Swing component, thisisdescribedin the sectionbelow entitled“*Working

without theSwing component”.

6.5 Working without the Swing component

The creationof the Swing component isnot alwaysrequired, forexample when an application
only createsa graph, appliesa layout and finallyextractsthe position resultsthrough the API. In
JGraph the GraphLayoutCache object must be created in order to obtain most of the
available functionality, as well as an implementation of the GraphModel interface. The
JGraph instanceperforms the task of adding the GraphLayoutCache as a listenerto the
GraphModel .wWwithout a JGraph instancebeing created, itisrecommended thisisdone by
creating a subclass of GraphlLayoutCache and making that subclass implement
GraphModellListener. This subclassshould add itselfas a listenerto the model and deal
with graph changesappropriately.

In the examples folder of the JGraph Layout Pro produce there is an example named
com.jgraph.layout.JGraphHeadlessLayoutExample which demonstrates a
graph simple graph being laid out without a JGraph instance being created. The
GraphLayoutCache subclass described above is implemented in the
com.jgraph.layout.DataGraphLayoutCache class.

6.6 JGraph in an Applet

JavaAppletapplicationscan be createdeasilyby extendingthe JApplet classand referencing

the appletin the html of a page. Java recommends againststaticreferencesto Ul components for

Page 104

JGraph UserManual

thisreason, but the flyweight pattern isa centralpart of the design of JGraph and so JGraph
requires certain static class references to be recreated if the applet is reloaded. The
org.jgraph.examples.GraphEd exampleisitselfan applet,refertothedestroy ()
method of thatclassThismethod resetsthe staticreferencestoUI componentsinJGraph.Note,if
your applicationhas additionalsuch references,they shouldbe recreatedin the same way toavoid

issueswhen appletsreload.

6.7 Printing

PrintinginbuiltintoSwing and with JDK 1.4the javax.print packageprovidesdetailed
control over the printing process.This package containsthe PrinterJob classwhich isthe
main printing controlclass.The basicmechanism to print isimplemented using the following

code:

PrinterJob printJob = PrinterJob.getPrinterJob () ;
printJob.setPrintable (graphPane); // where graphPane is a JScrollPane
with a graph in it, for example
if (printJob.printDialog()) {

printJob.print () ;

You requirea Swing container that implements the Printable interface.This container
needstoimplementaprint () method thatiscalledwhen aprintjobisinvoked.Thisistheonly
method the interfacedefinesand ittakesthreeparameters:graphics - thegraphicscontextto
paint the page on, pageFormat - a description of the sizeand orientation of the page and
pageIndex - theindexof thepage tobe drawn (startsfrom zero).

You use the standard Swing printingfunctionalityto setwhich Printable element istobe
printedand to starttheprint:

public int print (Graphics g, PageFormat printFormat, int page) {
Dimension pSize = graph.getPreferredSize(); // graph is a JGraph

int w = (int) (printFormat.getWidth () * pageScale)

int h = (int) (printFormat.getHeight () * pageScale);

int cols = (int) Math.max (Math.ceil ((double) (pSize.width - 5)
/ (double) w), 1);

int rows = (int) Math.max (Math.ceil ((double) (pSize.height - 5)

/ (double) h), 1);
if (page < cols * rows) {

// Configures graph for printing

RepaintManager currentManager =
RepaintManager.currentManager (this) ;

currentManager.setDoubleBufferingEnabled (false) ;

double oldScale = getGraph() .getScale()

getGraph () .setScale (1 / pageScale);

int dx = (int) ((page % cols) * printFormat.getWidth());
int dy = (int) ((page % rows) * printFormat.getHeight()):;

Page 105

JGraph UserManual

g.translate (-dx, -dy):;
g.setClip(dx, dy, (int) (dx + printFormat.getWidth()),
(int) (dy + printFormat.getHeight())):

// Prints the graph on the graphics.
getGraph () .paint (g) ;

// Restores graph
g.translate (dx, dy);
graph.setScale (oldScale) ;

currentManager.setDoubleBufferingEnabled (true) ;
return PAGE EXISTS;

} else {
return NO_ SUCH PAGE;

}

Page 106

JGraph UserManual

7 Layouts

7.1 Introduction

JGraph Layout Pro can be run on any system supportinga JavaRuntime Environment version
1.40r later.Sinceversion1.2.10f JGraph Layout Pro thissoftwarehasincludeda licenseto JGraph
and a complete JGraph distribution with source code and documentation at the appropriate
revision.Pleasenote thatJGraph Layout Pro isnot stand alone softwareand thatan understanding

of theuseof JGraph isrequiredinordertouse JGraph Layout Pro.

7.2 Installation and compilation

Thisversionof JGraph Layout Pro isdesigned forusewith version JGraph version5.8.3.2,this
version issuppliedwith JGraph Layout Pro. Use with laterversionsof JGraph should always be
possible.If you would likemore information about compatibilityfor a specificcombination of

productversions,pleaseemailJGraph support.

7.2.1 REQUIREMENTS

* Java 1.4 or later compatible virtual machine for your operating system. (Java 1.4.2 is

recommended.)Javal.b.xisknown towork correctly.

e CompilingJGraph Layout Pro requiresApache Ant, a platform independent buildtoolthat

usesJavaforitscommand implementation.

7.2.2 INSTALLATION

JGraph Layout Pro comes as a selfextractingjava file.If the .jarfileassociation for .jarfilesis
setup correctly,opening the fileina window manager should startthe installation.Otherwise,on

thecommand linetype:
java -Jjar jgraphlayout-1.3.0.9-src.jar

and the installationprocesswillbegin.You willbe requiredto agreeto the licenseunder which

the softwareisprovidedand tothen selectwhere to installthepackage.

7.2.2.1 Project structure and build options

Once Javaand Ant areinstalledlaunch thecommand prompt on windows, or shellterminalon

*nix or Mac, navigate to the root folderwhere you installed JGraph Layout Pro. Typing ant

Page 107

JGraph UserManual

command,where command isone of the targetsinthe antbuildfilewillperform the function of

thatcommand, asdescribedbelow.Missingout thecommand willbuildthedefaulttarget.all.

Page 108

JGraph UserManual

src/ Sourceroot
examples/ Examplesroot
build/ Buildenvironment

Table 1. ProjectDirectory Structure

all Clean up and produce alldistributions (*thedefaulttarget)
apidoc GeneratetheAPTI specification (javadoc)

build Run alltaskstocompletelypopulatethebuilddirectory
clean Deleteallgeneratedfilesand directories

compile Compilethebuildtree

dist Produce freshdistributions

distclean Clean up thedistributionfilesonly

doc Generatealldocumentation

init Initializethebuild

Jjar BuildallJavaarchives(JARs)

compileexample Compilethemain example

generate Generatethebuildtree

example Run themain example

Table 2. Ant command options

Forexample,tocompileand run theexampleUI typethe following:

ant example

Page 109

JGraph UserManual

7.3 The Design of JGraph Layout Pro

7.3.1 WHAT DOES JGRAPH LAYOUT PRO DO?

JGraph Layout Pro takesgraph structuresdefinedusingthe JGraph libraryand performs either

orboth of two specificfunctionson thatgraph structure:

1. Position the verticesof that graph using an algorithm(s) that attempts to fulfilcertain
aestheticrequirements,
2. Add and remove controlpointsof edgesinthegraph usingan algorithm(s)thatattemptsto

fulfilertainaestheticrequirements.

Exact what these aesthetic criteria are depend upon individual application or layouts
requirements. Generally, these might involve spreading out vertices evenly without them
overlapping each other, avoiding edges overlapping verticesand crossing other edges, clustering
connectedvertexneighboursand orderingverticesto reflectoverallgraph direction.

The standard facade in JGraph Layout Pro requiresa JGraph instancein order to operate.The
facade in JGraph Layout Pro extractsinformation from the GraphLayoutCache and graph model
attached to thisgraph instancesand storesitforprocessingby the layouts.The facadecan then be
passedtoone ormore layoutsand storethecompound resultwithin forcingthe resulttobe applied
back tothegraph.

From JGraph Layout Pro 1.3anew versionof the facade,JGraphModelFacade,was introduced.
This facade does not have any dependency on a JGraph object, instead the constructorstake a
GraphModel as a parameter.This means you are able to createa graph and applya layout to it

withouthavingto instantiatea JGraph, idealforserversidelayouting.

Some confusion can ariseas to whether a layout actsupon the GraphLayoutCache object (i.e.
the view of the graph as the application displaysit) or upon the filteredview produced by the
JGraphFacade. The layoutactsthe graph asthe facadedescribesitand thismay be differentto the
view providedby thecache.

For example, the GraphLayoutCache may be set to not displayedges when theirconnected
verticesarenot visible However, the facade, through the edgePromotion flagmay promote those
edges to the firstvisibleparent.Thismeans the layoutswillact as though the edge isthere,even

though itisnot drawn.

7.4 Running a layout

There are two important classes required for configuring and running a layout,
JGraphLayout and JGraphFacade. Classesinheriting from JGraphLayout perform
the mathematical operations of producing the layout, whereas, JGraphFacade performs

filteringon the graph and providesvariousutilitymethods for the layout to extractinformation

Page 110

JGraph UserManual

about thegraph.The advantageof thismechanism isthattheexactdatatransferredto the layoutis
de-coupled from the layoutalgorithm itselfprovidingamore stableAPI duringthe lifetimeof the
packageasnew layoutsareintroduced.Italsomeans thatlayoutalgorithm isabletousetheoutput
of any other layout as itsinput, i.e.the facade ismanipulatedby one by layout and then passedto
another.

The firstthing to be done when running a layout isto create the facade object that stores
information about the graph tobe actedupon and itsconfiguration.The constructorsrequirean
instanceof JGraph so the facade knows which graph isbeing referenced in the layout.Ifa tree
layout is being used, the constructor must also be passed the root node(s) of the trees.
JGraphFacade has a number of switchesalso that enable the layout to act upon the correct
cellsin the graph. By setting these switches, the facade configureswhat it returns from certain
utilitymethods, againencapsulatingthe configurationof the layout in the facade.For example, by
defaultthe getNeighbours () method on the facade returns neighbour cellsregardlessof
theirvisibilitywhereaswith the ignoresHiddenCells flagsetto true,onlycellsvisiblein
the current graph view willbe returned. The layoutsare designed to accessinformation through

suchmethods inthe facade,performing statefulfiltering.The switcheson the facadeare:

+ ignoresHiddenCells - Storeswhetheror not the layout isto acton onlyvisiblecells
i.efrue meansonlyacton visiblecellsfalse acton cellsregardlessof theirvisibilityThe
defaultvalueistrue.

« ignoresUnconnectedCells -Storeswhetherornot the layoutistoacton onlycells
thathave at leastone connectededge. true means onlyacton connectedcells,false act

on cellsregardlessof theirconnections.The defaultvalueistrue.

+ 1gnoresCellsInGroups - Storeswhetheror not the layoutistoonlyacton rootcells
in themodel. true means onlyacton root cells,false means actupon rootsand their

children.The defaultvalueisfalse.

« directed - Storeswhether or not the graph isto be treatedas a directed graph. true
means follow edges in targetto sourcedirection, false means treatedgesas directionless.

The defaultvalueistrue.

The facade objectnot only storesthe input to the layout,but alsothe output.The resultof a
layout isnot automaticallyappliedto a graph in case the developerwishes to check the resultor
perform anotheralgorithm. To enablethisthe resultof the layout isstoredasa nestedmap of the
attributeswhere the graph cellisthe key to each pair,and an attributemap, detailingthe changes
made to that cell by the layout, is the value. This map may be obtained by a call to
getNestedMap () on the facadeand issuitableforsendingdirectlytotheedit () method on
the GraphLayoutCache or GraphModel .Below isa simpleexample showing the stepsof
settingthe objectsup, executingthe layoutand applyingthe layoutback tothegraph:

JGraphFacade facade = new JGraphFacade (graph); // Pass the facade
the JGraph instance

Page 111

JGraph UserManual

JGraphLayout layout = new JGraphFastOrganicLayout(); // Create an
instance of the appropriate layout

layout.run (facade); // Run the layout on the facade. Note that
layouts do not implement the Runnable interface, to avoid confusion

Map nested = facade.createNestedMap (true, true); // Obtain a map
of the resulting attribute changes from the facade

graph.getGraphLayoutCache () .edit (nested); // Apply the results to
the actual graph

The method toobtaina nestedmap of the resultsof the layout,createNestedMap, takes

two parameters:

« 1 gnoreGr id -whetherornot themap returned issnapped tothecurrentgrid

« flushOrigin - whether or not the bounds of the resultinggraph should be moved to
(0,0)

7.4.1 WRITING YOUR OWN LAYOUT

Any new layout created should conform to the JGraphLayout interface.A new layout is
complex to write,but mostlydue to the algorithm of the layout, the processof interfacingwith
JGraph issimple.

The run()method of any layoutmust determine the requiredinformation from the facadeas it
currentlyexists,perform the layout and finallyapply the resultsof the layout back to facade.
Remember, the facade isa statefulfilterof the graph. The reason foralwaysusing the facade and
not the graph model or graph layout cache,isthatmany layoutsmight be appliedin sequence and
the output of the lastlayout shouldbe the input of the next.Also, the facade flagsare taken into
account inthegraphmodel or view.

One of the firstthingsalllayoutsdo isobtainthepositionand sizeof the verticestobe laidout.
This isdone using the getBounds() method on the facade.Layoutsnormallystorea copy of the
bounds valueslocallywithin the layout class.An arrayof verticesispassed into the getBounds()
method, thisisobtainedusing facade.getVertices().toArray().

As well as the positioning of vertices,the connections between those verticeswillusuallybe
required. getNeighbours() is often used to determine this, also getEdgesBetween(),
getOutgoingEdges()and getIncomingEdges()areusefulinthisregard.

Finallyhavingappliedthe layoutalogrithm, the positionof the verticesafterthe layoutmust be
available. These are then set back on the facade using setLocation(). If the layout does this

correctlycallinginthemanner describedabovewillresultinthe layoutbeingappliedto thegraph.

Page 112

JGraph UserManual

7.4.2 EDGE CONTROL POINTS

Some of the layout algorithms are designed specificallyto manipulateand insert/remove edge
controlpointsinordertoprovidebetteredge routingintheend result Becauseroutingalgorithms
may be definedon a per edge basis,the layout algorithms onlyaltersthe controlpointsof edgesis
required by that algorithm. Therefore, if one algorithm changes an edge’scontrol points and
another layout isimmediatelyappliedthen the controlpointswillprobably look incorrectin the
new layout.Rather than try to second-guesswhether or not inserted controlpoint were added
purposefullyor accidentallyitisleftto the developerto dealwith the stateof controlpointsprior
to a layout being applied. The utility method resetControlPoints () on
JGraphFacade isavailableto clearallcontrolpointsshould you requirethistobe done before

any layoutisrun.

7.4.3 EXAMPLES

In the examplespackage of the JGraph Layout Pro product you willfind a seriesof examples
thatdemonstratesthe layout features,aswellas some additionalfeaturessuch asusingan overview
panel, exporting to SVG and implementing rich text label editiors. Note that the
JGraphLayoutExample requiresthe use of the external L2FProd common libraryto run. This
libraryisavailableunder the Apache Software License.The JGraph team have used it for several
yearsand found both the softwaretobe of high qualityand the leaddevelopertobe veryresponsive
tobug reports.

Page113

http://common.l2fprod.com/
http://common.l2fprod.com/
http://common.l2fprod.com/

JGraph UserManual

7.5 Using the layouts

7.5.1 THE TREE LAYOUTS

The treelayoutclassescurrentlyavailableinthe JGraph Layout Pro packageare:

« com.jgraph.layout.tree.JGraphTreelLayout
« com.jgraph.layout.tree.JGraphCompact TreelLayout

+ com.jgraph.tree.JGraphRadialTreelayout.

Note thatat leastone rootmust be specifiedforalltreelayoutsusingthe YOOt S parameterof
the facadeconstructors Note thatthesearethe rootsof the tree,not the rootsof the graphmodel.
Tree layoutswill follow edges from the root node(s) to determine the structure of the tree(s),
takingintoaccount the settingsof the facade.

Layout Pro alsosupportsthe conceptof layingout sub-treesas show intheexampleapplication.
Selection of any node and the execution of a tree layout willresultin only the child treenodes
being laidout as a treewith the selectednode as root.Note that the facade needs to be set to
directed (the defaultvalue), otherwisethe algorithm determining the treestructurewillprocess
the parentsof the sub-node. However, thistechnique can be used to change the root node of an
entiretree.

Here ishow youmight setup the facadetoprocessa treelayout:

Object roots = getRoots(); // replace getRoots with your own
Object array of the cell tree roots. NOTE: these are the root cell(s) of
the tree(s), not the roots of the graph model.

JGraphFacade facade = new JGraphFacade (graph, roots); // Pass the
facade the JGraph instance

JGraphLayout layout = new JGraphTreelLayout(); // Create an
instance of the appropriate layout

layout.run (facade); // Run the layout on the facade.

Map nested = facade.createNestedMap (true, true); // Obtain a map
of the resulting attribute changes from the facade

graph.getGraphLayoutCache () .edit (nested); // Apply the results to
the actual graph

7.5.1.1 Tree Layout

The treelayoutarrangesthe nodes, startingfrom a specifiednode(s),intoa treelikestructure.
The treemay by oriented in the four cardinal compass points options on the layout include
alignment of same-levelnodes selection,settingtheminimum distancebetween nodeson adjacent
levelsof the tree and setting the minimum distance between nodes on the same levels.The

performance of the treelayoutisO (I VI),i.eproportionaltonumber of nodesinthe layout.

Page 114

JGraph UserManual

7.5.1.1.1 Alignment

Alignment referstowhich partof verticeswillbe aligned forallverticeson a given level .Using
the setAlignment () method vyou can set the alignment of the
SwingConstants.TOP, SwingConstants.CENTER or
SwingConstants.BOTTOM.The literalvaluesof theseconstantsarel,0 and 3 respectivelyat

thetime of writing but thevariablenames shouldalwaysbe used.

graph to

12 13

18 18 20

a0 0 32
31

Hlustration 52 : SwingConstants. TOP

..(_

20

i v g

Lllustration 53 : SwingConstants. CENTER

3

Page 115

JGraph UserManual

12 13

18 19 20
it |

k.

29 30 537

Hllustration 54 : SwingConstants. BOTTOM

7.5.1.1.2 Orientation

Orientationrefersto the compassdirectioninwhich the rootnode(s)of the treewillbe located
relative to the rest of the tree.Using the setOrientation () method you can set the
orientation to SwingConstants.NORTH, SwingConstants.EAST,
SwingConstants.SOUTH or SwingConstants.WEST. The literal values of these

constantsare1, 3,5 and 7 atthetime of writing,but thevariablenames shouldalwaysbe used.

15 16 17

VAVERN R

27 28 29 3o L]

Hlustration 55 :
SwingConstants. NORTH

Page116

JGraph UserManual

27

N/

28

20 €—

30

e
o]
3

Hlustration 56 : SwingConstants.EAST

27 28 20 30 it |

v

15 16 17

Illustration 57 :

SwingConstants.SOUTH

Page 117

JGraph UserManual

27

/

28

30

7
Y
3

Illustration 58 :
SwingConstants. WEST
7.5.1.1.3 levelDistance and nodeDistance

levelDistance isthe distancebetween the lowestpoint of any vertexon one levelto the
highestpoint of any vertexon the next leveldown. nodeDistance istheminimum distance
between any two verticeson the same level Note that levelscloserto the root tend to be spaced a

furtherapartthan thisassuming thedensityof nodes islower towardsthe startof the tree.

7

30 31
‘nodeDistance

Illustration 59 : levelDistance and nodeDistance
definitions

Page 118

JGraph UserManual

7.5.1.1.4 combineLevelNodes

The combinelLevelNodes flagspecifieswhether or not to ensure thatnodes on the same
treelevelarealigned acrossthe entiretree.When nodesvaryinsizeitispossibleto save spaceon
sub-treeswith smallernodesby settingthisflagto false.However, thiscan make itdifficultto
determine visuallywhich nodes occupy the same levelon the tree.Ifthisflagissetto true, the
alignment variabledeterminesexactlywhich partofnodesof the same levelarealigned.

Page 119

JGraph UserManual

-
N\

11

10
LT
28 29 30

25

P —
tHitE

Hllustration 60 : combineLevelNodes = false

/
AN
E

27

11

A\]

1

0 21
/ \ 22
H 32 33 3

i]

Illustration 61 : combinelevelNodes = true

Page 120

26

T/
A A Ay

JGraph UserManual
7.5.1.1.5 positionMultipleTrees and treeDistance

positionMultipleTrees determineswhetherornot toseparatedistincttreesso thereis
no overlapbetween the trees.Each of the distincttreesto be separatedwould have to be specified
inthe rOoOts parameterof JGraphFacade.The distancebetween each of the treesisdefined
by thetreeDistance variable.

Lot o
[}

211 &

.

7 18
el
\lref

J1

o sra
a 20 xm
19| |20
3| |32

Hllustration 62 :
positionMultipleTrees =
false

Page 121

JGraph UserManual

Lot)

i1 o

e

17 18
: |
/& lv P12 ¢
E gy
28| |29 30 3 '{\

19 20
it 32
H

treeDistance |

Lllustration 63 : positionMultipleTrees =
true , treeDistance = 30

7.5.1.2 Compact Tree Layout

The Compact Tree Layout (formerlycalledthe Moen) isanother layout in the treefamily, it
makes some improvements over standard tree layouts.The Compact Tree takescellshapes into
account and concentrateson producing as compact a resultas possible.The Compact Tree also
describesmechanisms to compute deltasof the layout,so the entirecomputation doesnot have to
be performed on every layout. The exact mechanism for how to do this depends upon the
application.Ifyou requirethisperformance advantage,contactJGraph supportforinformationon
how toapplyitinyour application.The Compact Treemanagestocompactmore tightlythan the
standard treeby storingsub-treesaspolygons.In terms of performance the time to layout using

the layoutisO (1 V1),i.eproportiontothenumber of vertices.

7.5.1.3 Radial Tree Layout

Page 122

JGraph UserManual

= Eﬂfﬂﬂﬂﬂﬂﬂﬂn
Ia:““E'“““"“ﬂ F

Hlustration 64 : A Radial Tree Layout
The RadialTree Layout draws the rootnode of the treein the centreof the layoutand laysout

the other nodes in concentric rings around the focus node. Each node lieson the ring
corresponding to itsshortestnetwork distance from the root node. Immediate neighboursof the
root node lieon the smallestinner ring, theirneighbours lieon the second smallestringuntilthe
most distance nodes form the outermost rings.The angular position of a node on itsring is
determinedby the sectorof the ringallocatedto it Each node isallocateda sectorwithinthe sector

assigned to itsparent, with sizeproportional to the angularwidth of that node’ssubtree. The

En [l Ln ZEEEEFEFEF“E“—F
A = Hﬂmnguuud :IEE-I_'FF-
g H t?/ri?m
4] a "E [=] m;'ﬂ
E = n’ﬂg'}bu

performance of theradialtreeisO (1 V1),i.eproportiontothenumber of vertices.

Page 123

JGraph UserManual

7.5.2 ORGANIC LAYOUTS

7.5.2.1 Spring Embedded

I [
o
HE &
bW QE :nun
0 O o
= =
= HES EE o
[= L]
ChoaaH o L= E ."Hn
= [E
:l"'=I
B
[] : =] H g
el B o a o O
[2 = . S
55 g e L = - 3=
K 1 B1e 0 B =
B B [R
0 [L] L] o =
O 33 F [E el
LA By L B i :'nn
ol B|E
]
O
=1 =]
= B
o md
clliec 5 H.J
=it o= Dacs
nnhilu (] 0 -ﬂ]
L1
[l
= = H B @
:’u: == L H =
=] O g =
= B = (34|
(1 Ll = ;‘ﬂ H = ﬂnn e uﬂ
b B O e
BT CF= T - H.E'E
- —13 Ch—{
[o L] B BB
= o P B 0l R =
[a2 [-] -] TEEE T
= e = (-] =
EF-m I B O O B g
L [Eq B o o eE
== & e o B o U
= 1 -] “nn = 3 =la
CF [
= L
= L] 5]
= &L T =3
B L] =
B [=
cHe 3 E’: ==
L] [-]
EE) 55

The SpringLayout isa forcedirectedlayoutalgorithm designedto simulatea system of particles
eachwith some mass.The verticessimulatemass pointsrepellingeach otherand theedgessimulate
springs with attracting forces.The algorithm moves through a number of iteration trying to
minimizetheenergyof thisphysicalsystem. Thismeans a certainnumber of iterationsarerequired

to bring the system close to equilibrium, however, further iterations will perform very small

Hllustration 65 : A tree laid out by the Spring Layout

changesand simplywasteCPU time.

The performance of the Spring layout isO(1VI?), i.e.proportional to the number of vertices
squared.This time alsoneeds tobe multipliedby the number of iterationsin the layout to get the

fulltime worstcase.Generally,the spring isbest applied to smallergraphs with a more regular

structure.

The springs have a natural length, if compressed to lessthan this length they repulse the
attached nodes, ifextended to more than thislength they attractthe attached nodes. The force

withwhich theyactupon the attachednodes isproportionalto the differencebetween the current

Page 124

JGraph UserManual

spring length and itsnaturalspring length.The forcewith which each pairof nodes repulseeach
otherisproportionalto the inverseof thedistancebetween thenodessquared.

The keyvaluesinthe springlayoutarethe springlength,the springforceand the repulsiveforce.
The defaultvaluesof the layoutare settobehavewellfora generalgraph. Increasingor decreasing
the repulsiveforceonlytendstoaffectlocalclustersshapes.Highervaluesforthe springforcetends
to lead to instabilityand oscillationof clustersand even the whole graph. Spring length tends to
onlyaffectthedensityof thegraph,not theactuallayout formed.

The Spring layout actsfairlyslowlyand somany iterationsare requiredbeforean equilibrium
between thenodes isfound, thenumber of iterationstends to increasewith thenumber of nodesin
the layout. The spring layout constructor takes the number of iterationsto be performed as a
parameter.

The speedwith which the spring layout producesa pleasingresultcan depend upon the input
graph. Sometimes itisworth placing the nodes in random positionsbefore applying the spring
layout, or possiblyapplying the circlelayout first.The £tilt () method on JGraphFacade
provide random placements of specifiednodes.The example that shipswith Layout Pro applies
snap togridto thecellsIfthe springlayouthas shortspringlengthsand high springforces,thiscan

resultincellseingoverlaid.The springlayoutmightbe usedwithout snap togridinthiscase.

7.5.2.2 Fast Organic Layout

The two aestheticaims of the Fast Organic (FO) layout are that verticesconnected by edges
should be drawn close to one another and that verticesshould not be drawn to close to one
another. The attractiveand repulsive forces are simply variations on those used in the spring
embedded layout.Their formulae are intended to be easierto compute and betterat overcoming
localminima positions.The FO layoutadds the concept of temperature,whereby the maximum
distance that nodes can move decreasesover between each iteration.This isintended to reduce
instabilityinthe layoutand forcethe layoutto settleinitslaterstages.

The performance of the FO layoutisO(1VI?+IEl)periteration,i.eproportionaltothenumber
of verticessquared.This time alsoneeds tobe multipliedby the number of iterationsin the layout
to get the fulltime worstcase.Generally,the FO isbestappliedto smallergraphs with a more
regularstructure.

The FO layoutismuch likethe SpringEmbedded inthatitisa forcedirectedlayoutwith the
same top levelalgorithm. Each iteration consistsof taking each vertex in turn and calculatinga
forceupon itbasedon connectededge and theirdistanceto allothervertices.The FO layoutalso
introduced the idea of temperature, whereby the maximum move of any vertexdecreasingwith
each iteration,assistingthe layoutto "settle’.

The force repulsingverticesin the FO isproportionalto inverseof the distancebetween the
nodes and the attractiveforcesbetween connected nodes are proportionalsto the square of the
distance between them. The constant, k, also used in both equations is the distance at which

connected verticesare at equilibrium. The lack of a logarithmic calculation, as required in the

Page 125

JGraph UserManual

SpringEmbedded algorithm, make the FO one of the fasterforcedirectedlayouts.The number of
iterationsrequiredto produce a pleasingresultcannot be determined in advance,but the number

ofnodesinthegraph willaffectthisnumber.

7.5.2.3 Inverted Self Organising Map

Although not strictlya forcedirectedlayout,the ISOM layoutusesthe ideaof fillingthe space
evenly with verticesand of causing connected vertices to attract each other. Rather actually
calculating forcesto be appliedto vertices,the ISOM layout usesan heuristicto achieveitsaim.
The algorithm involvesselectinga random pointinthegraph areaand pickingthe vertexclosestto
thatpoint.Thisvertexismoved towardsthatpointsaswellasallverticesconnected to thatinitial
vertexby up toa setnumber of edge steps.The amount by which the verticesaremoved decreases
the greaterthe number of edges in the shortestpath between the current and initialvertex.The
initialnumber of edge stepsisdecreasedduring the layout so that the laterstepsform localclusters
of connectedvertices.

The computationaleffortper iterationislinear,O(INI).Thiscomes from the effortof finding
the closestnode to therandom point.When JGraph implementsa spatialindex structurethiswill
improve toO(loglINIl).Only a selectionof nodes aremoved per iterationand so a greaternumber
of iterations are required for larger graphs. Generally, the number of iterations required is
proportionalto the number of verticesand so the computationaleffort,including the number of
iterations,willalwaysbe O (1VI).The paperdescribes500 iterationsasbeingenough for25 nodes,
thusmaxIterationsMultiple which definesthe verticesto number of iterationsfactor,defaultsto
20.The ISOM isthe fastestof the forcedirectedfamilyof layoutsinthispackage.

The two importantdatato setup inan ISOM layout are the radiusand the bounds of graph.
The bounds determineswithin which area the random positionswillbe located and so the area
withinwhich thenodeswillbe distributed.Ifyou preferto justspecifyan averagedensityof nodes,
usedensityFactor todo thisThe moveRadius fielddeterminesthenumber of neighbour
nodes,inadditionto the closestnode to the random position,thataremoved towardsthatpoint.
Itdefinesthe actualnumber of edgeslimitthatwillbe traversedto findnode tomove. Changing

thisvalueaffectsthe clusteringbehaviourof the layout.

Page 126

JGraph UserManual
7.5.2.4 Organic Layout

Thislayoutisan implementationof a simulatedannealinglayout,which describesthe following
criteriaas being favourable in a graph layout: (1) distributing nodes evenly, (2) making edge-
lengthsuniform, (3) minimizingcrosscrossings,and (4) keepingnodes from coming too closeto
edges. These criteriaare translated into energy cost functions in the layout.Nodes or edges
breaking thesecriteriacreatea largercost function, the totalcostthey contributeisrelatedto the
extentthattheybreak it.The ideaof thealgorithm istominimisethe totalsystem energy.Factors
are assigned to each of the criteriadescribinghow important thatcriteriais.Higher factorsmean
that those criteriaare deemed to be relativelypreferablein the finallayout.Most of the criteria
conflictwith each otherto some extent,the defaultvaluesselectedarea broadbalancebetween the
criteriathough notethatthe factorsarenot normalizedand sotheirvaluesvarysomewhat.

In addition to the four aestheticcriteriathe concept of a border linewhich inducesan energy
costtonodes inproximityto the graph bounds isintroduced to attempt to restrainthe graph.All
of the b factorscanbe switchedon or offwithinthe layout.

Simulated Annealing isthe most expensive layout in thispackage computationally(when all
criteriaswitchedon),but itcan produce good resultsovera range of graphs.Layoutslikethe spring
layout only factorin edge length and internode distancebeing the factorsthat provide themost
aestheticgain relativeto theircomputationalintensity.The additional factorsare relativelymore
expensivebut can have veryattractiveresultsThe performance of the SimulatedAnnealinglayout
isO (I VI?IEl)per iterationintheworstcase.

In the configurationdetailsthat follow, thereareexamplesof the differentresultsproduced by
the annealinglayoutusing the differentsettings Note thatthe same input graph was used foreach
example and that the 1sDeterministic flagwas setto true, i.e.therewere no random
elementsinthe layoutprocess.

Sincetheannealinglayoutisthemost costlycomputationallya good approach,where improved
performance isrequired,isto perform an ISOM layout followed by the annealingjustin the fine

tuningstage.

Page 127

JGraph UserManual
7.5.2.4.1 isOptimizeNodeDistribution and nodeDistributionCostFactor

isOptimizeNodeDistribution determineswhether or not to attempt to distribute
nodes evenly around the available space. If 1sOptimizeNodeDistribution isset to
true thennodeDistributionCostFactor isthe factorby which the costof a particular
node distribution ismultipliedby to make an energy cost contribution to the totalenergy of a
particulargraph layout.Increasingthisvaluetends to resultina betterdistributionof nodesacross

theavailablespace,atthepartialcostof othergraph aestheticsinparticularedge lengths.

Hllustration 66 : nodeDistributionCost = 10,000

Hllustration 67 : The same graph with nodeDistributionCost = 500,000

Page 128

JGraph UserManual
7.5.2.4.2 isOptimizeEdgeLength and edgeLengthCostFactor

isOptimizeEdgelLength determines whether or not to attempt to minimise edge
lengths.IfisOptimizeEdgeLength issetto true thenedgelLengthCostFactor is
the factorby which the costof a particularsetof edge lengthsismultipliedby tomake an energy
cost contribution to the totalenergy of a particulargraph layout. Increasing thisvalue tends to
resultin shorteroveralledge lengths,at thepartialcostof othergraph aesthetics,inparticularmode
distribution.

Hllustration 68 : edgeLengthCostFactor = 0.01

Page 129

JGraph UserManual

Hllustration 69 : The same graph with
EdgeLengthCostFactor = 0.1
7.5.2.4.3 isOptimizeEdgeCrossing and edgeCrossingCostFactor

isOptimizeEdgeCrossing determines whether or not to attempt to minimise the
number of edgescrossingthatappearinthe laidout graph. If1sOptimizeEdgeCrossing is
settotrue thenedgeCrossingCostFactor isthe factorby which the costof instanceof
an edge crossing ismultipliedby to make an energy cost contribution to the totalenergy of a
particulargraph layout.Increasingthisvaluetends to resultin few edge crossing,at the partialcost
of other graph aesthetics,usuallyedge length.A number of typesof graph do not work wellwith
aggressivelyhigh valuesforedgeCrossingCostFactor.Thisisbecausetryingtoavoidedge
crossingresultsin nodes being spread out to avoidedge overlapand thisresultsin longeredges.If
thegraph cannot be laidout inaway thatavoida number of overlaps,the longeredgescan resultin

an increaseinthenumber of edgecrossing,asshown intheexamplebelow.

Page 130

JGraph UserManual

Hllustration 70 : edgeCrossingCostFactor = 500

Page 131

JGraph UserManual

Hlustration 71 : The same graph with edgeCrossingCostFactor = 500,000

Page 132

JGraph UserManual
7.5.2.4.4 isOptimizeEdgeDistance, edgeDistanceCostFactor, isFineTuning and fineTuningRadius

isOptimizeEdgeDistance determineswhetheror not to attempt tomove nodes away
from edges that passcloseby to them. IfisOptimizeEdgeDistance issetto true then
edgeDistanceCostFactor isthe factorby which the costof a particularset of edge to
nodes distances ismultipliedby to make an energy cost contribution to the totalenergy of a
particulargraph layout.Increasingthisvaluetendsto resultinnodesbeingmoved away from edges,
atthepartialcostof othergraph aestheticsusuallynode distributionand edge length.

Optimizingedge tonode distanceto computationalexpensiveand pointlessuntiltheend of an
annealinglayout.For thisreason,itisdeemed a finetuningmechanism tobe performed inthe final
stagesof the layout.1 sFineTuning determineswhetheror not any finetuningwilltakeplace.
Ifitissetto false then the isOptimizeEdgeDistance value isignored. If itissetto
true, then fine tuning will start when the current moveRadius (see the section on
moveRadius) reachesthevalueheldby fineTuningRadius.

In summary, edge to node distancewillonlybe taken intoaccount ifisFineTuning and
isOptimizeEdgeDistance are both set to true, which are their default values.The
radiuswithinwhich new testpositionsfor cellsthat are candidatesformoving decreasesthrough
each layout iteration.When itreaches fineTuningRadius, the edge to node distance cost

factorwillstarttobe usedand continueuntilthe layoutterminates.

Hlustration 72 : No fine tuning - no edge to node distance
cost factor used

Page 133

JGraph UserManual

Page 134

JGraph UserManual

Hllustration 73 : The same graph with edgeDistanceCostFactor = 4000

Page 135

JGraph UserManual
7.5.2.4.5 isOptimizeBorderLine, borderLineCostFactor and averageNodeArea

isOptimizeBorderlLine determines whether or not to attempt to restrainthe nodes
within a set boundary. If 1sOptimizeBorderLine is set to true then
borderLineCostFactor isthe factorby which the cost of a particularset of node to
boundary distancesismultipliedby tomake an energy costcontribution to the totalenergyof a
particulargraph layout.Increasingthisvaluetends to resultinnodes stayingwithin theboundary,
atthepartialcostof othergraph aestheticsuusuallynode distributionifthe graph isdenselypacked.
Tt isnot impossiblethat a node might escape thisboundary, though thisbecomes lesslikelythe
higherthevaluegivento thisfactor.

There are three ways of setting the boundary within which nodes are attempted to be
constrained.The firstmethod istosetaverageNodeArea beforecallingthe run () method.
This variabledefines the average area that each node willbe given and using thisand the total
number of nodes the totalareaof theboundaryiscalculated.Note thattheboundarywillbe square
shaped. This isa good way to keep the node densityreasonablyconstantwithout havingtoworry
about the sizeof the graph. Settingthisvariableto a non-zero positivevalue overridesany other
method of settingtheboundary forthislayout.

The secondmechanism istousethe constructorof the annealinglayoutthatacceptsa rectangle.
The setsup theboundary forthe lifetime of the layout objectinstance,unlessoverridden by setting
averageNodeArea.

The third method isused automaticallyif neither of the firsttwo are. This just sets the
boundarytothebounds of the graph beforethe layoutisapplied.

Hllustration 74 : Bounds set using constructor
and borderLineCostFactor = 500

Page 136

JGraph UserManual

[]

Hllustration 75 : The same graph with isOptimizeBorderLine = false

Page 137

JGraph UserManual
7.5.2.4.6 minMoveRadius, initialMoveRadius and radiusScaleFactor

At each iterationeach cellhasanumber of positionsaround itselectedascandidatepositionsto
move to,inan attempt to decreasethe totalsystem energy.Those candidatespositionsareat fixed
anglesaround theperimeterof a circlethathasthenode asitscentre.The radiusof thatcirclestarts
at initialMoveRadius and decreases with each iteration by being multiplied by
radiusScaleFactor.The valueof initialMoveRadius isdetermined by the layout,
thereisno need tooverrideitunlessfora specificreason.radiusScaleFactor isadouble
between 0.0and 1.0,lower valuesimprove performance but raisingittowards 1.0 can improve the
resulting graph aesthetics. When the radius hits the minimum move radius defined,
minMoveRadius, the layout terminates,unlessthemaximum number of iterationsisreached
firstThe minimum move radiusshouldbe seta valuewhere themove distanceistoominor tobe

of interest.

32

.

21

20 —— 23{———’

3 4

i i

Illustration 76 : radiusScaleFactor = 0.5

Page 138

JGraph UserManual

Page 139

JGraph UserManual

Hlustration 77 : The same graph with radiusScaleFactor = 0.9

7.5.2.4.7 maxlIterations

maxIterations isthe maximum number of layout iterations that can take place.Layouts can
terminatebeforethisvalue isreached becausetheminimum radiusvaluehasbeen reached, or the

layouthasbeen unchanged fora certainnumber of rounds.

7.5.2.4.8 unchangedEnergyRoundTermination

If,attheend of an iterationitisdetermined whetherany changesweremade. Ifnot, the count
of number of rounds where no change has taken place is incremented. If this count reaches
unchangedEnergyRoundTermination the layoutterminates.Ifnothing isbeingmoved
afteranumber of rounds itisassumed a good layouthasbeen found. In additionto thisifno nodes
are moved during an iteration the move radius ishalved, presuming that a finer granularityis

required.

7.5.2.4.9 isDeterministic

The isDeterministic flagdefineswhether or not the annealing layout should produce
the same resultfora given input graph and settings.The annealinglayoutusesrandom valuesina
few placesto attempt to improve the output. SettingisDeterministic to true degrades
the output onlymarginally,ifatall,and isusefulifyou would liketo experiment with the layout

settingsknowing thatconstantsettingsvaluesproduce a constantoutput.

Page 140

JGraph UserManual

7.5.2.5 Hierarchical Layout

Page 141

45

LI
33 10
49 17
14
53 32
54 1

20

29

5

7

41
([
59 46 50
\
25 3o
27

Illustration 78 : A Hierarchical layout applied to a random graph

JGraph UserManual

The hierarchicallayout isdesigned towork on directedgraphsthathave an overallflow, thatis,
some startpoint(s),some end point(s)and some overallflow between thosepoints.Often graphs
that have become too complex for a tree layout require the use of a hierarchicallayout. These
layouts are commonly applied to workflows, processmodelling diagrams, software engineering
diagrams and processesdatabasedvisualizationand otherdirectedmodels.

The graph should have some distinctstartand end node(s),that isat leastone node with no
incoming edgesand at leastone node with no outgoingnodes, respectivelyThe rootsof the layout

may be setexplicitlyalternativelyby passingthem inthrough the constructor:

Object roots = getRoots(); // replace getRoots with your own
Object array of the hierarchical roots. NOTE: these are the root cell (s)
of the tree(s), not the roots of the graph model.

JGraphFacade facade = new JGraphFacade (graph, roots); // Pass the
facade the JGraph instance

JGraphLayout layout = new JGraphHierarchicallLayout(); // Create an
instance of the hierarchical layout

layout.run (facade); // Run the layout on the facade.

Map nested = facade.createNestedMap (true, true); // Obtain a map
of the resulting attribute changes from the facade

graph.getGraphLayoutCache () .edit (nested); // Apply the results to
the actual graph

It should be noted that the hierarchicallayout might insertcontrolpointsin certainedgesto
route them correctly.This should be taken into account when performing additional editing
without applying the layout again. The JGraphFacade provides a method
resetControlPoints to assistwith removing control points. Calling thismethod will

remove alladditionalcontrolpointsfrom theedgespassedintothenext layoutapplied.

7.5.2.5.1 Orientation

Orientation refersto the compass direction in which the root node(s) of the layout willbe
locatedrelativeto the restof the tree.Using the setOrientation () method you can setthe
orientation to SwingConstants.NORTH, SwingConstants.EAST,
SwingConstants.SOUTH or SwingConstants.WEST. The literal values of these

constantsare1, 3,5 and 7 atthetime of writing,but thevariablenames shouldalwaysbe used.

7.5.2.5.2 Intra Node Distance and Inter Rank Cell Spacing

interRankCellSpacing isthe distancebetween the lowestpoint of any vertexon one
layer of the layout to the highest point of any vertex on the next level down.

intraCellSpacing istheminimum distancebetween any two verticeson thesame level.

7.5.2.5.3 isDeterministic

The isDeterministic flagdefineswhetheror not the hierarchicallayout shouldproduce

Page 142

JGraph UserManual

the same resultfor a given input graph and settings.The hierarchicallayout does not assurethat
layerwillbe ordered in the order as provided by the graph model unlessthis flagisset.Setting
isDeterministic to true may degrade the output somewhat for larger graphs, since it

introducesa component withperformance somewherebetween linearand square.

Page 143

JGraph UserManual

7.5.3 EDGE ROUTING
7.5.3.1 Orthogonal Edge Routing

OrthogonallinkRouter isa global edge router designed to avoid the overlap of edges with
verticesby constructing the edges in verticaland horizontalsegments.The routerisrun likeany

standard layout,itsperformancemeans itisnot a good candidatefordisplayingduringa preview.

Cell 1
Cell 7
|
|
: Cell 0 Al
Ceil 8 L
Celi 10
e Cell 6
cell 5
Cell 2
Cell 0 Cell 4

Hllustration 79: The Orthogonal Edge Router

Page 144

JGraph UserManual

7.5.4 SIMPLE LAYOUTS

7.5.4.1 Circle Layout

The circle layout arranges all the node into a circle,with constant spacing between each
neighbour node. The performance of thislayout isproportionalto the number of verticesin the
circleAlthough, circlelayoutsarenot commonly used by themselves,ithas been noted that some
non-deterministiclayouts (forcedirectedmainly) produce a betterresultif separated out by a
circlelayout first.Ifa betterresultisnot produce, often the same qualityof resultcan be obtained
quicker (through lessiterationsof a forcedirectedlayout) then without the initialcircleapplied.
There isn’ta separateclassfor thislayout as itisa trivialimplementation. Instead, the method,
circle(List vertices), ispart of the facade.Below isan example of using the circle
layout:

JGraphFacade facade = new JGraphFacade (graph); // Pass the facade
the JGraph instance

JGraphLayout layout = new
JGraphSimpleLayout (JGraphSimpleLayout.TYPE CIRCLE); // Create an
instance of the circle layout

layout.run (facade); // Run the layout on the facade.

Map nested = facade.createNestedMap (true, true); // Obtain a map
of the resulting attribute changes from the facade

graph.getGraphLayoutCache () .edit (nested); // Apply the results to
the actual graph

Page 145

JGraph UserManual

7.6 Using the Example Source Code

7.6.1 THE PROGRESS METER

Some of the layouts are more CPU intensive than others and so require some graphical
indication than the application isstillperforming processingand has not crashed. The standard
way to do this is using a progress meter. A custom progress meter class is provided,
JGraphlLayoutProgress, thatmay be used on layoutsthat implement the Stoppable
interfacedefinedinJGraphlLayout thatenablestheuserto stop the layout runningand return
to the previous graph ifthe layout takes too long. Layouts supporting the progressmeter firea
property change event to set the maximum wvalue of the progressmeter has well each time a
significantchange to thevalueof theprogressoccurs.

The maximum valueof theprogressmeter isseteitherasa constructorparameter,or passedinto
thereset () method. Layoutscallthe setProgress () method during the running of the
layouttoupdatetheprogress.

To implement a progress meter 1in an application, base it on the example in
JGraphExampleLayoutCache.layout () . Here, a PropertyChangelListener
is created that processes the possible event types. These event types are, specifically,
JGraphLayoutProgress.PROGRESS PROPERTY foranew valueof the progressmeter
and JGraphLayoutProgress.MAXIMUM PROPERTY to set the maximum progress
value.A standard ProgressMonitor canbe usedand implement cancellationfunctionalityas

shown intheexamplecode.

Page 146

JGraph UserManual

Appendix A — Definitions

self-loop -an edgewithboth endpointsattached to the same vertex,alsoknown asa reflexive

edge.

Hlustration 80: A
self-loop edge

paralleledges - more than one edge connectinga pairof vertices.

N

Hllustration 81: A number of parallel edges

directed edge - isan edgewith a specificdirection,likea vector.Directed edgeshave source
cellsand targetcellsat theirendpointsto indicatethedirection.Note thatalledgesin JGraph
have a direction internally.It isup to an application whether to take edge direction into

accountor todraw edgearrows.

hyperedge -an edge thathasmore than two endpointsand socannotbe representedby justa

line.

incident - 1fan edge connectstoa vertexitisdescribedasincidentof thatvertex.
degree— The degreeof a vertexisthenumber of edgesincidentupon it.

simple graph — A graph thathasno loopsand no paralleledges

directed graph — alledges of the graph are directed.Exchanging allthe directed edges for
undirectededgesprovidestheunderlyinggraph.

oriented graph — adirectedgraph whose underlyinggraph issimple.

Page 147

JGraph UserManual

- hypergraph - a graph with hyperedges

Page 148

