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Abstract

Expressions for the evaluation of the profiled log-likelihood or pro-
filed log-restricted-likelihood of a linear mixed model, the gradients
and Hessians of these criteria, and update steps for an ECME algo-
rithm to optimize these criteria are given in Bates and DebRoy (2004).
In this paper we generalize those formulae and describe the represen-
tation of mixed-effects models using sparse matrix methods available
in the Matrix package.

1 Introduction

General formulae for the evaluation of the profiled log-likelihood and profiled
log-restricted-likelihood in a linear mixed model are given in Bates and De-
bRoy (2004) and the use of a sparse matrix representation for such models
is described in Bates (2004). The purpose of this paper is to describe the
details of the implementation of this representation and those computational
methods in the lme4 package for R.

Because we concentrate on the computational methods and the represen-
tation, the order and style of presentation will be based on the sequence of
calculations, not on the sequence in which the results would be derived. We
will emphasize“what”and not“why”. For the“why”, refer to the papers cited
above.
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In §2 we describe the form and representation of the model. The calcu-
lation of the criteria to be optimized by the parameter estimates and related
quantities is discussed in §??. Details of the calculation of the ECME step
and the evaluation of the gradients of the criteria are given in §?? and those
of the Hessian in §??. In §?? we give the details of an unconstrained pa-
rameterization for the model and the transformation of our results to this
parameterization.

2 Form and representation of the model

We consider linear mixed models of the form

y = Xβ + Zb + ε ε ∼ N (0, σ2I), b ∼ N (0, σ2Σ−1), ε ⊥ b (1)

where y is the n-dimensional response vector, X is an n × p model matrix
for the p dimensional fixed-effects vector β, Z is the n× q model matrix for
the q dimensional random-effects vector b that has a Gaussian distribution
with mean 0 and relative precision matrix Ω (i.e., Ω is the precision of b
relative to the precision of ε), and ε is the random noise assumed to have
a spherical Gaussian distribution. The symbol ⊥ indicates independence of
random variables.

We will assume that X has full column rank and that Σ is positive
definite.

2.1 Structure of the variance-covariance matrix

Components of the random effects vector b and portions of its variance-
covariance matrix Σ are associated with k grouping factors fi, i = 1, . . . , k,
each of length n, and with the ni, i = 1, . . . , k levels of each of the grouping
factors. In general there are qi components of b associated with each of the
ni levels the grouping factor fi, i = 1, . . . , k. Thus

q =
k∑

i=1

niqi (2)

We assume that the components of b and the rows and columns of Σ are
ordered according to the k grouping factors and, within the block for the ith
grouping factor, according to the ni levels of the grouping factor.
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Random effects associated with different grouping factors are indepen-
dent. This implies that Σ is block-diagonal with k diagonal blocks of orders
niqi, i = 1, . . . , k.

Random effects associated with different levels of the same grouping factor
are independent. This implies that the ith (outer) diagonal block of Σ is itself
block diagonal in ni blocks of order qi. We say that the structure of Σ is
block/block diagonal.

Finally, the variance-covariance matrix within each of the qi-dimensional
subvectors of b associated with one of the ni levels of grouping factor fi, i =
1, . . . , k is a constant (but unknown) positive-definite symmetric qi×qi matrix
Σi, i = 1, . . . , k. This implies that each of the ni inner diagonal blocks of
order qi is a copy of Σi. We say that Σ has a repeated block/block diagonal
structure.

2.2 The relative precision matrix

Many of the computational formulae are more conveniently expressed in
terms of Σ−1, which is called the precision matrix of the random effects,
instead of Σ. In fact, the formulae are most conveniently expressed in terms
of the relative precision matrix σ2Σ−1 which we write as Ω. That is,

Ω = σ2Σ−1 (3)

This called the “relative” precision because it is precision of b (Σ−1) rel-
ative to the precision of ε (I/ (σ2)).

It is easy to establish that Ω will have a repeated block/block diagonal
structure like that of Σ. That is, Ω consists of k outer diagonal blocks of sizes
niqi, i = 1, . . . , k and the ith outer diagonal block is itself block diagonal with
ni inner blocks of size qi× qi. Furthermore, each of the inner diagonal blocks
in the ith outer block is a copy of the qi × qi positive-definite, symmetric
matrix Ωi.

Because Ω has a repeated block/block structure we define the entire ma-
trix if we specify the symmetric matrices Ωi, i = 1, . . . , k and, because of the
symmetry, Ωi has at most qi(qi + 1)/2 distinct elements. We will write θ
for a parameter vector of length at most

∑k
i=1 qi(qi + 1)/2 that determines

Ω. For example, we could use the non-redundant elements in the Ωi as the
components of θ. In fact we use a different, but equivalent, parameterization
for reasons to be discussed later.
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We only need to store the matrices Ωi, i = 1, . . . , k and the number of
levels in the grouping factors to be able create Ω. The matrices Ωi are stored
in the Omega slot of an object of class "lmer". The values of k and ni, i =
1, . . . , k can be determined from the list of the grouping factors themselves,
stored as the flist slot, or from the dimensions qi, i = 1, . . . , k, stored in the
nc slot, and the group pointers, stored in the Gp slot. Successive differences
of the group pointers are the total number of components of b associated
with the ith grouping factor. That is, these differences are niqi, i = 1, . . . , k.

2.3 Examples

Consider the fitted models
> Sm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
> data(Chem97, package = "mlmRev")
> Cm1 <- lmer(score ~ gcsescore + (1 | school) + (1 | lea), Chem97,
+ control = list(niterEM = 0, gradient = FALSE))
> data(star, package = "mlmRev")
> Mm1 <- lmer(math ~ gr + sx * eth + cltype + (yrs | id) + (1 |
+ tch) + (yrs | sch), star, control = list(niterEM = 0, gradient = FALSE))

Model Sm1 has a single grouping factor with 18 levels. The Omega slot is
a list of length one containing a 2× 2 symmetric matrix.
> str(Sm1@flist)

List of 1
$ Subject: Factor w/ 18 levels "308","309","310",..: 1 1 1 1 1 1 1 1 1 1 ...

> show(Sm1@Omega)

$Subject
2 x 2 Matrix of class "dpoMatrix"

(Intercept) Days
(Intercept) 1.0746247 -0.2942832
Days -0.2942832 18.7549595

> show(Sm1@nc)

Subject
2

> show(Sm1@Gp)

[1] 0 36

> diff(Sm1@Gp)/Sm1@nc

Subject
18

Model Cm1 has two grouping factors: the school factor with 2410 levels
and the lea factor (local education authority - similar to a school district
in the U.S.A.) with 131 levels. It happens that the school factor is nested
within the lea factor, a property that we discuss below. The Omega slot is a
list of length two containing two 1× 1 symmetric matrices.
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> str(Cm1@flist)

List of 2
$ school: Factor w/ 2410 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
$ lea : Factor w/ 131 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...

> show(Cm1@Omega)

$school
1 x 1 Matrix of class "dpoMatrix"

(Intercept)
(Intercept) 4.419673

$lea
1 x 1 Matrix of class "dpoMatrix"

(Intercept)
(Intercept) 349.0502

> show(Cm1@nc)

school lea
1 1

> show(Cm1@Gp)

[1] 0 2410 2541

> diff(Cm1@Gp)/Cm1@nc

school lea
2410 131

Model Mm1 has three grouping factor: id (the student) with 10732 levels,
tch (the teacher) with 1374 levels and sch (the school) with 80 levels. The
Omega slot is a list of length three containing two 2 × 2 symmetric matrices
and one 1× 1 matrix.
> str(Mm1@flist)

List of 3
$ id : Factor w/ 10732 levels "100017","100028",..: 1 2 3 3 3 4 5 5 6 6 ...
$ tch: Factor w/ 1374 levels "1","2","3","4",..: 476 889 695 698 703 1097 676 681 349 357 ...
$ sch: Factor w/ 80 levels "1","2","3","4",..: 28 52 41 41 41 64 40 40 22 22 ...

> show(Mm1@Omega)

$id
2 x 2 Matrix of class "dpoMatrix"

(Intercept) yrs
(Intercept) 0.3320393 0.4956234
yrs 0.4956234 8.1873779

$tch
1 x 1 Matrix of class "dpoMatrix"

(Intercept)
(Intercept) 1.425578

$sch
2 x 2 Matrix of class "dpoMatrix"

(Intercept) yrs
(Intercept) 3.289010 6.069119
yrs 6.069119 18.654882

> show(Mm1@nc)
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id tch sch
2 1 2

> show(Mm1@Gp)

[1] 0 21464 22838 22998

> diff(Mm1@Gp)/Mm1@nc

id tch sch
10732 1374 80

The last element of the Gp slot is the dimension of b. Notice that for model
Mm1 the dimension of b is 22,998. This is also the order of the symmetric
matrix Ω but the contents of the matrix are determined by θ which has a
length of 3 + 1 + 3 = 7 in this case.

3 Likelihood and restricted likelihood
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