LLVM API Documentation

ExternalFunctions.cpp

Go to the documentation of this file.
00001 //===-- ExternalFunctions.cpp - Implement External Functions --------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file was developed by the LLVM research group and is distributed under
00006 // the University of Illinois Open Source License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 //  This file contains both code to deal with invoking "external" functions, but
00011 //  also contains code that implements "exported" external functions.
00012 //
00013 //  External functions in the interpreter are implemented by
00014 //  using the system's dynamic loader to look up the address of the function
00015 //  we want to invoke.  If a function is found, then one of the
00016 //  many lle_* wrapper functions in this file will translate its arguments from
00017 //  GenericValues to the types the function is actually expecting, before the
00018 //  function is called.
00019 //
00020 //===----------------------------------------------------------------------===//
00021 
00022 #include "Interpreter.h"
00023 #include "llvm/DerivedTypes.h"
00024 #include "llvm/Module.h"
00025 #include "llvm/System/DynamicLibrary.h"
00026 #include "llvm/Target/TargetData.h"
00027 #include <cmath>
00028 #include <csignal>
00029 #include <map>
00030 using std::vector;
00031 
00032 using namespace llvm;
00033 
00034 typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &);
00035 static std::map<const Function *, ExFunc> Functions;
00036 static std::map<std::string, ExFunc> FuncNames;
00037 
00038 static Interpreter *TheInterpreter;
00039 
00040 static char getTypeID(const Type *Ty) {
00041   switch (Ty->getTypeID()) {
00042   case Type::VoidTyID:    return 'V';
00043   case Type::BoolTyID:    return 'o';
00044   case Type::UByteTyID:   return 'B';
00045   case Type::SByteTyID:   return 'b';
00046   case Type::UShortTyID:  return 'S';
00047   case Type::ShortTyID:   return 's';
00048   case Type::UIntTyID:    return 'I';
00049   case Type::IntTyID:     return 'i';
00050   case Type::ULongTyID:   return 'L';
00051   case Type::LongTyID:    return 'l';
00052   case Type::FloatTyID:   return 'F';
00053   case Type::DoubleTyID:  return 'D';
00054   case Type::PointerTyID: return 'P';
00055   case Type::FunctionTyID:  return 'M';
00056   case Type::StructTyID:  return 'T';
00057   case Type::ArrayTyID:   return 'A';
00058   case Type::OpaqueTyID:  return 'O';
00059   default: return 'U';
00060   }
00061 }
00062 
00063 static ExFunc lookupFunction(const Function *F) {
00064   // Function not found, look it up... start by figuring out what the
00065   // composite function name should be.
00066   std::string ExtName = "lle_";
00067   const FunctionType *FT = F->getFunctionType();
00068   for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
00069     ExtName += getTypeID(FT->getContainedType(i));
00070   ExtName += "_" + F->getName();
00071 
00072   ExFunc FnPtr = FuncNames[ExtName];
00073   if (FnPtr == 0)
00074     FnPtr = 
00075       (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(ExtName);
00076   if (FnPtr == 0)
00077     FnPtr = FuncNames["lle_X_"+F->getName()];
00078   if (FnPtr == 0)  // Try calling a generic function... if it exists...
00079     FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
00080             ("lle_X_"+F->getName()).c_str());
00081   if (FnPtr != 0)
00082     Functions.insert(std::make_pair(F, FnPtr));  // Cache for later
00083   return FnPtr;
00084 }
00085 
00086 GenericValue Interpreter::callExternalFunction(Function *F,
00087                                      const std::vector<GenericValue> &ArgVals) {
00088   TheInterpreter = this;
00089 
00090   // Do a lookup to see if the function is in our cache... this should just be a
00091   // deferred annotation!
00092   std::map<const Function *, ExFunc>::iterator FI = Functions.find(F);
00093   ExFunc Fn = (FI == Functions.end()) ? lookupFunction(F) : FI->second;
00094   if (Fn == 0) {
00095     std::cout << "Tried to execute an unknown external function: "
00096               << F->getType()->getDescription() << " " << F->getName() << "\n";
00097     if (F->getName() == "__main")
00098       return GenericValue();
00099     abort();
00100   }
00101 
00102   // TODO: FIXME when types are not const!
00103   GenericValue Result = Fn(const_cast<FunctionType*>(F->getFunctionType()),
00104                            ArgVals);
00105   return Result;
00106 }
00107 
00108 
00109 //===----------------------------------------------------------------------===//
00110 //  Functions "exported" to the running application...
00111 //
00112 extern "C" {  // Don't add C++ manglings to llvm mangling :)
00113 
00114 // void putchar(sbyte)
00115 GenericValue lle_Vb_putchar(FunctionType *M, const vector<GenericValue> &Args) {
00116   std::cout << Args[0].SByteVal;
00117   return GenericValue();
00118 }
00119 
00120 // int putchar(int)
00121 GenericValue lle_ii_putchar(FunctionType *M, const vector<GenericValue> &Args) {
00122   std::cout << ((char)Args[0].IntVal) << std::flush;
00123   return Args[0];
00124 }
00125 
00126 // void putchar(ubyte)
00127 GenericValue lle_VB_putchar(FunctionType *M, const vector<GenericValue> &Args) {
00128   std::cout << Args[0].SByteVal << std::flush;
00129   return Args[0];
00130 }
00131 
00132 // void atexit(Function*)
00133 GenericValue lle_X_atexit(FunctionType *M, const vector<GenericValue> &Args) {
00134   assert(Args.size() == 1);
00135   TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
00136   GenericValue GV;
00137   GV.IntVal = 0;
00138   return GV;
00139 }
00140 
00141 // void exit(int)
00142 GenericValue lle_X_exit(FunctionType *M, const vector<GenericValue> &Args) {
00143   TheInterpreter->exitCalled(Args[0]);
00144   return GenericValue();
00145 }
00146 
00147 // void abort(void)
00148 GenericValue lle_X_abort(FunctionType *M, const vector<GenericValue> &Args) {
00149   raise (SIGABRT);
00150   return GenericValue();
00151 }
00152 
00153 // void *malloc(uint)
00154 GenericValue lle_X_malloc(FunctionType *M, const vector<GenericValue> &Args) {
00155   assert(Args.size() == 1 && "Malloc expects one argument!");
00156   return PTOGV(malloc(Args[0].UIntVal));
00157 }
00158 
00159 // void *calloc(uint, uint)
00160 GenericValue lle_X_calloc(FunctionType *M, const vector<GenericValue> &Args) {
00161   assert(Args.size() == 2 && "calloc expects two arguments!");
00162   return PTOGV(calloc(Args[0].UIntVal, Args[1].UIntVal));
00163 }
00164 
00165 // void free(void *)
00166 GenericValue lle_X_free(FunctionType *M, const vector<GenericValue> &Args) {
00167   assert(Args.size() == 1);
00168   free(GVTOP(Args[0]));
00169   return GenericValue();
00170 }
00171 
00172 // int atoi(char *)
00173 GenericValue lle_X_atoi(FunctionType *M, const vector<GenericValue> &Args) {
00174   assert(Args.size() == 1);
00175   GenericValue GV;
00176   GV.IntVal = atoi((char*)GVTOP(Args[0]));
00177   return GV;
00178 }
00179 
00180 // double pow(double, double)
00181 GenericValue lle_X_pow(FunctionType *M, const vector<GenericValue> &Args) {
00182   assert(Args.size() == 2);
00183   GenericValue GV;
00184   GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal);
00185   return GV;
00186 }
00187 
00188 // double exp(double)
00189 GenericValue lle_X_exp(FunctionType *M, const vector<GenericValue> &Args) {
00190   assert(Args.size() == 1);
00191   GenericValue GV;
00192   GV.DoubleVal = exp(Args[0].DoubleVal);
00193   return GV;
00194 }
00195 
00196 // double sqrt(double)
00197 GenericValue lle_X_sqrt(FunctionType *M, const vector<GenericValue> &Args) {
00198   assert(Args.size() == 1);
00199   GenericValue GV;
00200   GV.DoubleVal = sqrt(Args[0].DoubleVal);
00201   return GV;
00202 }
00203 
00204 // double log(double)
00205 GenericValue lle_X_log(FunctionType *M, const vector<GenericValue> &Args) {
00206   assert(Args.size() == 1);
00207   GenericValue GV;
00208   GV.DoubleVal = log(Args[0].DoubleVal);
00209   return GV;
00210 }
00211 
00212 // double floor(double)
00213 GenericValue lle_X_floor(FunctionType *M, const vector<GenericValue> &Args) {
00214   assert(Args.size() == 1);
00215   GenericValue GV;
00216   GV.DoubleVal = floor(Args[0].DoubleVal);
00217   return GV;
00218 }
00219 
00220 #ifdef HAVE_RAND48
00221 
00222 // double drand48()
00223 GenericValue lle_X_drand48(FunctionType *M, const vector<GenericValue> &Args) {
00224   assert(Args.size() == 0);
00225   GenericValue GV;
00226   GV.DoubleVal = drand48();
00227   return GV;
00228 }
00229 
00230 // long lrand48()
00231 GenericValue lle_X_lrand48(FunctionType *M, const vector<GenericValue> &Args) {
00232   assert(Args.size() == 0);
00233   GenericValue GV;
00234   GV.IntVal = lrand48();
00235   return GV;
00236 }
00237 
00238 // void srand48(long)
00239 GenericValue lle_X_srand48(FunctionType *M, const vector<GenericValue> &Args) {
00240   assert(Args.size() == 1);
00241   srand48(Args[0].IntVal);
00242   return GenericValue();
00243 }
00244 
00245 #endif
00246 
00247 // int rand()
00248 GenericValue lle_X_rand(FunctionType *M, const vector<GenericValue> &Args) {
00249   assert(Args.size() == 0);
00250   GenericValue GV;
00251   GV.IntVal = rand();
00252   return GV;
00253 }
00254 
00255 // void srand(uint)
00256 GenericValue lle_X_srand(FunctionType *M, const vector<GenericValue> &Args) {
00257   assert(Args.size() == 1);
00258   srand(Args[0].UIntVal);
00259   return GenericValue();
00260 }
00261 
00262 // int puts(const char*)
00263 GenericValue lle_X_puts(FunctionType *M, const vector<GenericValue> &Args) {
00264   assert(Args.size() == 1);
00265   GenericValue GV;
00266   GV.IntVal = puts((char*)GVTOP(Args[0]));
00267   return GV;
00268 }
00269 
00270 // int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make
00271 // output useful.
00272 GenericValue lle_X_sprintf(FunctionType *M, const vector<GenericValue> &Args) {
00273   char *OutputBuffer = (char *)GVTOP(Args[0]);
00274   const char *FmtStr = (const char *)GVTOP(Args[1]);
00275   unsigned ArgNo = 2;
00276 
00277   // printf should return # chars printed.  This is completely incorrect, but
00278   // close enough for now.
00279   GenericValue GV; GV.IntVal = strlen(FmtStr);
00280   while (1) {
00281     switch (*FmtStr) {
00282     case 0: return GV;             // Null terminator...
00283     default:                       // Normal nonspecial character
00284       sprintf(OutputBuffer++, "%c", *FmtStr++);
00285       break;
00286     case '\\': {                   // Handle escape codes
00287       sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
00288       FmtStr += 2; OutputBuffer += 2;
00289       break;
00290     }
00291     case '%': {                    // Handle format specifiers
00292       char FmtBuf[100] = "", Buffer[1000] = "";
00293       char *FB = FmtBuf;
00294       *FB++ = *FmtStr++;
00295       char Last = *FB++ = *FmtStr++;
00296       unsigned HowLong = 0;
00297       while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
00298              Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
00299              Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
00300              Last != 'p' && Last != 's' && Last != '%') {
00301         if (Last == 'l' || Last == 'L') HowLong++;  // Keep track of l's
00302         Last = *FB++ = *FmtStr++;
00303       }
00304       *FB = 0;
00305 
00306       switch (Last) {
00307       case '%':
00308         sprintf(Buffer, FmtBuf); break;
00309       case 'c':
00310         sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal); break;
00311       case 'd': case 'i':
00312       case 'u': case 'o':
00313       case 'x': case 'X':
00314         if (HowLong >= 1) {
00315           if (HowLong == 1 &&
00316               TheInterpreter->getModule().getPointerSize()==Module::Pointer64 &&
00317               sizeof(long) < sizeof(int64_t)) {
00318             // Make sure we use %lld with a 64 bit argument because we might be
00319             // compiling LLI on a 32 bit compiler.
00320             unsigned Size = strlen(FmtBuf);
00321             FmtBuf[Size] = FmtBuf[Size-1];
00322             FmtBuf[Size+1] = 0;
00323             FmtBuf[Size-1] = 'l';
00324           }
00325           sprintf(Buffer, FmtBuf, Args[ArgNo++].ULongVal);
00326         } else
00327           sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal); break;
00328       case 'e': case 'E': case 'g': case 'G': case 'f':
00329         sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
00330       case 'p':
00331         sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
00332       case 's':
00333         sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
00334       default:  std::cout << "<unknown printf code '" << *FmtStr << "'!>";
00335         ArgNo++; break;
00336       }
00337       strcpy(OutputBuffer, Buffer);
00338       OutputBuffer += strlen(Buffer);
00339       }
00340       break;
00341     }
00342   }
00343 }
00344 
00345 // int printf(sbyte *, ...) - a very rough implementation to make output useful.
00346 GenericValue lle_X_printf(FunctionType *M, const vector<GenericValue> &Args) {
00347   char Buffer[10000];
00348   vector<GenericValue> NewArgs;
00349   NewArgs.push_back(PTOGV(Buffer));
00350   NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
00351   GenericValue GV = lle_X_sprintf(M, NewArgs);
00352   std::cout << Buffer;
00353   return GV;
00354 }
00355 
00356 static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1,
00357                                  void *Arg2, void *Arg3, void *Arg4, void *Arg5,
00358                                  void *Arg6, void *Arg7, void *Arg8) {
00359   void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 };
00360 
00361   // Loop over the format string, munging read values as appropriate (performs
00362   // byteswaps as necessary).
00363   unsigned ArgNo = 0;
00364   while (*Fmt) {
00365     if (*Fmt++ == '%') {
00366       // Read any flag characters that may be present...
00367       bool Suppress = false;
00368       bool Half = false;
00369       bool Long = false;
00370       bool LongLong = false;  // long long or long double
00371 
00372       while (1) {
00373         switch (*Fmt++) {
00374         case '*': Suppress = true; break;
00375         case 'a': /*Allocate = true;*/ break;  // We don't need to track this
00376         case 'h': Half = true; break;
00377         case 'l': Long = true; break;
00378         case 'q':
00379         case 'L': LongLong = true; break;
00380         default:
00381           if (Fmt[-1] > '9' || Fmt[-1] < '0')   // Ignore field width specs
00382             goto Out;
00383         }
00384       }
00385     Out:
00386 
00387       // Read the conversion character
00388       if (!Suppress && Fmt[-1] != '%') { // Nothing to do?
00389         unsigned Size = 0;
00390         const Type *Ty = 0;
00391 
00392         switch (Fmt[-1]) {
00393         case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p':
00394         case 'd':
00395           if (Long || LongLong) {
00396             Size = 8; Ty = Type::ULongTy;
00397           } else if (Half) {
00398             Size = 4; Ty = Type::UShortTy;
00399           } else {
00400             Size = 4; Ty = Type::UIntTy;
00401           }
00402           break;
00403 
00404         case 'e': case 'g': case 'E':
00405         case 'f':
00406           if (Long || LongLong) {
00407             Size = 8; Ty = Type::DoubleTy;
00408           } else {
00409             Size = 4; Ty = Type::FloatTy;
00410           }
00411           break;
00412 
00413         case 's': case 'c': case '[':  // No byteswap needed
00414           Size = 1;
00415           Ty = Type::SByteTy;
00416           break;
00417 
00418         default: break;
00419         }
00420 
00421         if (Size) {
00422           GenericValue GV;
00423           void *Arg = Args[ArgNo++];
00424           memcpy(&GV, Arg, Size);
00425           TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty);
00426         }
00427       }
00428     }
00429   }
00430 }
00431 
00432 // int sscanf(const char *format, ...);
00433 GenericValue lle_X_sscanf(FunctionType *M, const vector<GenericValue> &args) {
00434   assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
00435 
00436   char *Args[10];
00437   for (unsigned i = 0; i < args.size(); ++i)
00438     Args[i] = (char*)GVTOP(args[i]);
00439 
00440   GenericValue GV;
00441   GV.IntVal = sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
00442                      Args[5], Args[6], Args[7], Args[8], Args[9]);
00443   ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4],
00444                        Args[5], Args[6], Args[7], Args[8], Args[9], 0);
00445   return GV;
00446 }
00447 
00448 // int scanf(const char *format, ...);
00449 GenericValue lle_X_scanf(FunctionType *M, const vector<GenericValue> &args) {
00450   assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
00451 
00452   char *Args[10];
00453   for (unsigned i = 0; i < args.size(); ++i)
00454     Args[i] = (char*)GVTOP(args[i]);
00455 
00456   GenericValue GV;
00457   GV.IntVal = scanf(Args[0], Args[1], Args[2], Args[3], Args[4],
00458                     Args[5], Args[6], Args[7], Args[8], Args[9]);
00459   ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4],
00460                        Args[5], Args[6], Args[7], Args[8], Args[9]);
00461   return GV;
00462 }
00463 
00464 
00465 // int clock(void) - Profiling implementation
00466 GenericValue lle_i_clock(FunctionType *M, const vector<GenericValue> &Args) {
00467   extern unsigned int clock(void);
00468   GenericValue GV; GV.IntVal = clock();
00469   return GV;
00470 }
00471 
00472 
00473 //===----------------------------------------------------------------------===//
00474 // String Functions...
00475 //===----------------------------------------------------------------------===//
00476 
00477 // int strcmp(const char *S1, const char *S2);
00478 GenericValue lle_X_strcmp(FunctionType *M, const vector<GenericValue> &Args) {
00479   assert(Args.size() == 2);
00480   GenericValue Ret;
00481   Ret.IntVal = strcmp((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]));
00482   return Ret;
00483 }
00484 
00485 // char *strcat(char *Dest, const char *src);
00486 GenericValue lle_X_strcat(FunctionType *M, const vector<GenericValue> &Args) {
00487   assert(Args.size() == 2);
00488   return PTOGV(strcat((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
00489 }
00490 
00491 // char *strcpy(char *Dest, const char *src);
00492 GenericValue lle_X_strcpy(FunctionType *M, const vector<GenericValue> &Args) {
00493   assert(Args.size() == 2);
00494   return PTOGV(strcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
00495 }
00496 
00497 static GenericValue size_t_to_GV (size_t n) {
00498   GenericValue Ret;
00499   if (sizeof (size_t) == sizeof (uint64_t)) {
00500     Ret.ULongVal = n;
00501   } else {
00502     assert (sizeof (size_t) == sizeof (unsigned int));
00503     Ret.UIntVal = n;
00504   }
00505   return Ret;
00506 }
00507 
00508 static size_t GV_to_size_t (GenericValue GV) {
00509   size_t count;
00510   if (sizeof (size_t) == sizeof (uint64_t)) {
00511     count = (size_t)GV.ULongVal;
00512   } else {
00513     assert (sizeof (size_t) == sizeof (unsigned int));
00514     count = (size_t)GV.UIntVal;
00515   }
00516   return count;
00517 }
00518 
00519 // size_t strlen(const char *src);
00520 GenericValue lle_X_strlen(FunctionType *M, const vector<GenericValue> &Args) {
00521   assert(Args.size() == 1);
00522   size_t strlenResult = strlen ((char *) GVTOP (Args[0]));
00523   return size_t_to_GV (strlenResult);
00524 }
00525 
00526 // char *strdup(const char *src);
00527 GenericValue lle_X_strdup(FunctionType *M, const vector<GenericValue> &Args) {
00528   assert(Args.size() == 1);
00529   return PTOGV(strdup((char*)GVTOP(Args[0])));
00530 }
00531 
00532 // char *__strdup(const char *src);
00533 GenericValue lle_X___strdup(FunctionType *M, const vector<GenericValue> &Args) {
00534   assert(Args.size() == 1);
00535   return PTOGV(strdup((char*)GVTOP(Args[0])));
00536 }
00537 
00538 // void *memset(void *S, int C, size_t N)
00539 GenericValue lle_X_memset(FunctionType *M, const vector<GenericValue> &Args) {
00540   assert(Args.size() == 3);
00541   size_t count = GV_to_size_t (Args[2]);
00542   return PTOGV(memset(GVTOP(Args[0]), Args[1].IntVal, count));
00543 }
00544 
00545 // void *memcpy(void *Dest, void *src, size_t Size);
00546 GenericValue lle_X_memcpy(FunctionType *M, const vector<GenericValue> &Args) {
00547   assert(Args.size() == 3);
00548   size_t count = GV_to_size_t (Args[2]);
00549   return PTOGV(memcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count));
00550 }
00551 
00552 //===----------------------------------------------------------------------===//
00553 // IO Functions...
00554 //===----------------------------------------------------------------------===//
00555 
00556 // getFILE - Turn a pointer in the host address space into a legit pointer in
00557 // the interpreter address space.  This is an identity transformation.
00558 #define getFILE(ptr) ((FILE*)ptr)
00559 
00560 // FILE *fopen(const char *filename, const char *mode);
00561 GenericValue lle_X_fopen(FunctionType *M, const vector<GenericValue> &Args) {
00562   assert(Args.size() == 2);
00563   return PTOGV(fopen((const char *)GVTOP(Args[0]),
00564                      (const char *)GVTOP(Args[1])));
00565 }
00566 
00567 // int fclose(FILE *F);
00568 GenericValue lle_X_fclose(FunctionType *M, const vector<GenericValue> &Args) {
00569   assert(Args.size() == 1);
00570   GenericValue GV;
00571   GV.IntVal = fclose(getFILE(GVTOP(Args[0])));
00572   return GV;
00573 }
00574 
00575 // int feof(FILE *stream);
00576 GenericValue lle_X_feof(FunctionType *M, const vector<GenericValue> &Args) {
00577   assert(Args.size() == 1);
00578   GenericValue GV;
00579 
00580   GV.IntVal = feof(getFILE(GVTOP(Args[0])));
00581   return GV;
00582 }
00583 
00584 // size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
00585 GenericValue lle_X_fread(FunctionType *M, const vector<GenericValue> &Args) {
00586   assert(Args.size() == 4);
00587   size_t result;
00588 
00589   result = fread((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
00590                  GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
00591   return size_t_to_GV (result);
00592 }
00593 
00594 // size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream);
00595 GenericValue lle_X_fwrite(FunctionType *M, const vector<GenericValue> &Args) {
00596   assert(Args.size() == 4);
00597   size_t result;
00598 
00599   result = fwrite((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
00600                   GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
00601   return size_t_to_GV (result);
00602 }
00603 
00604 // char *fgets(char *s, int n, FILE *stream);
00605 GenericValue lle_X_fgets(FunctionType *M, const vector<GenericValue> &Args) {
00606   assert(Args.size() == 3);
00607   return GVTOP(fgets((char*)GVTOP(Args[0]), Args[1].IntVal,
00608                      getFILE(GVTOP(Args[2]))));
00609 }
00610 
00611 // FILE *freopen(const char *path, const char *mode, FILE *stream);
00612 GenericValue lle_X_freopen(FunctionType *M, const vector<GenericValue> &Args) {
00613   assert(Args.size() == 3);
00614   return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]),
00615                        getFILE(GVTOP(Args[2]))));
00616 }
00617 
00618 // int fflush(FILE *stream);
00619 GenericValue lle_X_fflush(FunctionType *M, const vector<GenericValue> &Args) {
00620   assert(Args.size() == 1);
00621   GenericValue GV;
00622   GV.IntVal = fflush(getFILE(GVTOP(Args[0])));
00623   return GV;
00624 }
00625 
00626 // int getc(FILE *stream);
00627 GenericValue lle_X_getc(FunctionType *M, const vector<GenericValue> &Args) {
00628   assert(Args.size() == 1);
00629   GenericValue GV;
00630   GV.IntVal = getc(getFILE(GVTOP(Args[0])));
00631   return GV;
00632 }
00633 
00634 // int _IO_getc(FILE *stream);
00635 GenericValue lle_X__IO_getc(FunctionType *F, const vector<GenericValue> &Args) {
00636   return lle_X_getc(F, Args);
00637 }
00638 
00639 // int fputc(int C, FILE *stream);
00640 GenericValue lle_X_fputc(FunctionType *M, const vector<GenericValue> &Args) {
00641   assert(Args.size() == 2);
00642   GenericValue GV;
00643   GV.IntVal = fputc(Args[0].IntVal, getFILE(GVTOP(Args[1])));
00644   return GV;
00645 }
00646 
00647 // int ungetc(int C, FILE *stream);
00648 GenericValue lle_X_ungetc(FunctionType *M, const vector<GenericValue> &Args) {
00649   assert(Args.size() == 2);
00650   GenericValue GV;
00651   GV.IntVal = ungetc(Args[0].IntVal, getFILE(GVTOP(Args[1])));
00652   return GV;
00653 }
00654 
00655 // int ferror (FILE *stream);
00656 GenericValue lle_X_ferror(FunctionType *M, const vector<GenericValue> &Args) {
00657   assert(Args.size() == 1);
00658   GenericValue GV;
00659   GV.IntVal = ferror (getFILE(GVTOP(Args[0])));
00660   return GV;
00661 }
00662 
00663 // int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output
00664 // useful.
00665 GenericValue lle_X_fprintf(FunctionType *M, const vector<GenericValue> &Args) {
00666   assert(Args.size() >= 2);
00667   char Buffer[10000];
00668   vector<GenericValue> NewArgs;
00669   NewArgs.push_back(PTOGV(Buffer));
00670   NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
00671   GenericValue GV = lle_X_sprintf(M, NewArgs);
00672 
00673   fputs(Buffer, getFILE(GVTOP(Args[0])));
00674   return GV;
00675 }
00676 
00677 } // End extern "C"
00678 
00679 
00680 void Interpreter::initializeExternalFunctions() {
00681   FuncNames["lle_Vb_putchar"]     = lle_Vb_putchar;
00682   FuncNames["lle_ii_putchar"]     = lle_ii_putchar;
00683   FuncNames["lle_VB_putchar"]     = lle_VB_putchar;
00684   FuncNames["lle_X_exit"]         = lle_X_exit;
00685   FuncNames["lle_X_abort"]        = lle_X_abort;
00686   FuncNames["lle_X_malloc"]       = lle_X_malloc;
00687   FuncNames["lle_X_calloc"]       = lle_X_calloc;
00688   FuncNames["lle_X_free"]         = lle_X_free;
00689   FuncNames["lle_X_atoi"]         = lle_X_atoi;
00690   FuncNames["lle_X_pow"]          = lle_X_pow;
00691   FuncNames["lle_X_exp"]          = lle_X_exp;
00692   FuncNames["lle_X_log"]          = lle_X_log;
00693   FuncNames["lle_X_floor"]        = lle_X_floor;
00694   FuncNames["lle_X_srand"]        = lle_X_srand;
00695   FuncNames["lle_X_rand"]         = lle_X_rand;
00696 #ifdef HAVE_RAND48
00697   FuncNames["lle_X_drand48"]      = lle_X_drand48;
00698   FuncNames["lle_X_srand48"]      = lle_X_srand48;
00699   FuncNames["lle_X_lrand48"]      = lle_X_lrand48;
00700 #endif
00701   FuncNames["lle_X_sqrt"]         = lle_X_sqrt;
00702   FuncNames["lle_X_puts"]         = lle_X_puts;
00703   FuncNames["lle_X_printf"]       = lle_X_printf;
00704   FuncNames["lle_X_sprintf"]      = lle_X_sprintf;
00705   FuncNames["lle_X_sscanf"]       = lle_X_sscanf;
00706   FuncNames["lle_X_scanf"]        = lle_X_scanf;
00707   FuncNames["lle_i_clock"]        = lle_i_clock;
00708 
00709   FuncNames["lle_X_strcmp"]       = lle_X_strcmp;
00710   FuncNames["lle_X_strcat"]       = lle_X_strcat;
00711   FuncNames["lle_X_strcpy"]       = lle_X_strcpy;
00712   FuncNames["lle_X_strlen"]       = lle_X_strlen;
00713   FuncNames["lle_X___strdup"]     = lle_X___strdup;
00714   FuncNames["lle_X_memset"]       = lle_X_memset;
00715   FuncNames["lle_X_memcpy"]       = lle_X_memcpy;
00716 
00717   FuncNames["lle_X_fopen"]        = lle_X_fopen;
00718   FuncNames["lle_X_fclose"]       = lle_X_fclose;
00719   FuncNames["lle_X_feof"]         = lle_X_feof;
00720   FuncNames["lle_X_fread"]        = lle_X_fread;
00721   FuncNames["lle_X_fwrite"]       = lle_X_fwrite;
00722   FuncNames["lle_X_fgets"]        = lle_X_fgets;
00723   FuncNames["lle_X_fflush"]       = lle_X_fflush;
00724   FuncNames["lle_X_fgetc"]        = lle_X_getc;
00725   FuncNames["lle_X_getc"]         = lle_X_getc;
00726   FuncNames["lle_X__IO_getc"]     = lle_X__IO_getc;
00727   FuncNames["lle_X_fputc"]        = lle_X_fputc;
00728   FuncNames["lle_X_ungetc"]       = lle_X_ungetc;
00729   FuncNames["lle_X_fprintf"]      = lle_X_fprintf;
00730   FuncNames["lle_X_freopen"]      = lle_X_freopen;
00731 }
00732