LLVM API Documentation
00001 //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file was developed by the LLVM research group and is distributed under 00006 // the University of Illinois Open Source License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file defines the function verifier interface, that can be used for some 00011 // sanity checking of input to the system. 00012 // 00013 // Note that this does not provide full `Java style' security and verifications, 00014 // instead it just tries to ensure that code is well-formed. 00015 // 00016 // * Both of a binary operator's parameters are of the same type 00017 // * Verify that the indices of mem access instructions match other operands 00018 // * Verify that arithmetic and other things are only performed on first-class 00019 // types. Verify that shifts & logicals only happen on integrals f.e. 00020 // * All of the constants in a switch statement are of the correct type 00021 // * The code is in valid SSA form 00022 // * It should be illegal to put a label into any other type (like a structure) 00023 // or to return one. [except constant arrays!] 00024 // * Only phi nodes can be self referential: 'add int %0, %0 ; <int>:0' is bad 00025 // * PHI nodes must have an entry for each predecessor, with no extras. 00026 // * PHI nodes must be the first thing in a basic block, all grouped together 00027 // * PHI nodes must have at least one entry 00028 // * All basic blocks should only end with terminator insts, not contain them 00029 // * The entry node to a function must not have predecessors 00030 // * All Instructions must be embedded into a basic block 00031 // * Functions cannot take a void-typed parameter 00032 // * Verify that a function's argument list agrees with it's declared type. 00033 // * It is illegal to specify a name for a void value. 00034 // * It is illegal to have a internal global value with no initializer 00035 // * It is illegal to have a ret instruction that returns a value that does not 00036 // agree with the function return value type. 00037 // * Function call argument types match the function prototype 00038 // * All other things that are tested by asserts spread about the code... 00039 // 00040 //===----------------------------------------------------------------------===// 00041 00042 #include "llvm/Analysis/Verifier.h" 00043 #include "llvm/Assembly/Writer.h" 00044 #include "llvm/CallingConv.h" 00045 #include "llvm/Constants.h" 00046 #include "llvm/Pass.h" 00047 #include "llvm/Module.h" 00048 #include "llvm/ModuleProvider.h" 00049 #include "llvm/DerivedTypes.h" 00050 #include "llvm/InlineAsm.h" 00051 #include "llvm/Instructions.h" 00052 #include "llvm/Intrinsics.h" 00053 #include "llvm/PassManager.h" 00054 #include "llvm/SymbolTable.h" 00055 #include "llvm/Analysis/Dominators.h" 00056 #include "llvm/Support/CFG.h" 00057 #include "llvm/Support/InstVisitor.h" 00058 #include "llvm/ADT/StringExtras.h" 00059 #include "llvm/ADT/STLExtras.h" 00060 #include "llvm/Support/Visibility.h" 00061 #include <algorithm> 00062 #include <iostream> 00063 #include <sstream> 00064 #include <cstdarg> 00065 using namespace llvm; 00066 00067 namespace { // Anonymous namespace for class 00068 00069 struct VISIBILITY_HIDDEN 00070 Verifier : public FunctionPass, InstVisitor<Verifier> { 00071 bool Broken; // Is this module found to be broken? 00072 bool RealPass; // Are we not being run by a PassManager? 00073 VerifierFailureAction action; 00074 // What to do if verification fails. 00075 Module *Mod; // Module we are verifying right now 00076 ETForest *EF; // ET-Forest, caution can be null! 00077 std::stringstream msgs; // A stringstream to collect messages 00078 00079 /// InstInThisBlock - when verifying a basic block, keep track of all of the 00080 /// instructions we have seen so far. This allows us to do efficient 00081 /// dominance checks for the case when an instruction has an operand that is 00082 /// an instruction in the same block. 00083 std::set<Instruction*> InstsInThisBlock; 00084 00085 Verifier() 00086 : Broken(false), RealPass(true), action(AbortProcessAction), 00087 EF(0), msgs( std::ios::app | std::ios::out ) {} 00088 Verifier( VerifierFailureAction ctn ) 00089 : Broken(false), RealPass(true), action(ctn), EF(0), 00090 msgs( std::ios::app | std::ios::out ) {} 00091 Verifier(bool AB ) 00092 : Broken(false), RealPass(true), 00093 action( AB ? AbortProcessAction : PrintMessageAction), EF(0), 00094 msgs( std::ios::app | std::ios::out ) {} 00095 Verifier(ETForest &ef) 00096 : Broken(false), RealPass(false), action(PrintMessageAction), 00097 EF(&ef), msgs( std::ios::app | std::ios::out ) {} 00098 00099 00100 bool doInitialization(Module &M) { 00101 Mod = &M; 00102 verifySymbolTable(M.getSymbolTable()); 00103 00104 // If this is a real pass, in a pass manager, we must abort before 00105 // returning back to the pass manager, or else the pass manager may try to 00106 // run other passes on the broken module. 00107 if (RealPass) 00108 return abortIfBroken(); 00109 return false; 00110 } 00111 00112 bool runOnFunction(Function &F) { 00113 // Get dominator information if we are being run by PassManager 00114 if (RealPass) EF = &getAnalysis<ETForest>(); 00115 visit(F); 00116 InstsInThisBlock.clear(); 00117 00118 // If this is a real pass, in a pass manager, we must abort before 00119 // returning back to the pass manager, or else the pass manager may try to 00120 // run other passes on the broken module. 00121 if (RealPass) 00122 return abortIfBroken(); 00123 00124 return false; 00125 } 00126 00127 bool doFinalization(Module &M) { 00128 // Scan through, checking all of the external function's linkage now... 00129 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { 00130 visitGlobalValue(*I); 00131 00132 // Check to make sure function prototypes are okay. 00133 if (I->isExternal()) visitFunction(*I); 00134 } 00135 00136 for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 00137 I != E; ++I) 00138 visitGlobalVariable(*I); 00139 00140 // If the module is broken, abort at this time. 00141 return abortIfBroken(); 00142 } 00143 00144 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 00145 AU.setPreservesAll(); 00146 if (RealPass) 00147 AU.addRequired<ETForest>(); 00148 } 00149 00150 /// abortIfBroken - If the module is broken and we are supposed to abort on 00151 /// this condition, do so. 00152 /// 00153 bool abortIfBroken() { 00154 if (Broken) { 00155 msgs << "Broken module found, "; 00156 switch (action) { 00157 case AbortProcessAction: 00158 msgs << "compilation aborted!\n"; 00159 std::cerr << msgs.str(); 00160 abort(); 00161 case PrintMessageAction: 00162 msgs << "verification continues.\n"; 00163 std::cerr << msgs.str(); 00164 return false; 00165 case ReturnStatusAction: 00166 msgs << "compilation terminated.\n"; 00167 return Broken; 00168 } 00169 } 00170 return false; 00171 } 00172 00173 00174 // Verification methods... 00175 void verifySymbolTable(SymbolTable &ST); 00176 void visitGlobalValue(GlobalValue &GV); 00177 void visitGlobalVariable(GlobalVariable &GV); 00178 void visitFunction(Function &F); 00179 void visitBasicBlock(BasicBlock &BB); 00180 void visitPHINode(PHINode &PN); 00181 void visitBinaryOperator(BinaryOperator &B); 00182 void visitShiftInst(ShiftInst &SI); 00183 void visitExtractElementInst(ExtractElementInst &EI); 00184 void visitInsertElementInst(InsertElementInst &EI); 00185 void visitShuffleVectorInst(ShuffleVectorInst &EI); 00186 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 00187 void visitCallInst(CallInst &CI); 00188 void visitGetElementPtrInst(GetElementPtrInst &GEP); 00189 void visitLoadInst(LoadInst &LI); 00190 void visitStoreInst(StoreInst &SI); 00191 void visitInstruction(Instruction &I); 00192 void visitTerminatorInst(TerminatorInst &I); 00193 void visitReturnInst(ReturnInst &RI); 00194 void visitSwitchInst(SwitchInst &SI); 00195 void visitSelectInst(SelectInst &SI); 00196 void visitUserOp1(Instruction &I); 00197 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 00198 void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI); 00199 00200 void VerifyIntrinsicPrototype(Function *F, ...); 00201 00202 void WriteValue(const Value *V) { 00203 if (!V) return; 00204 if (isa<Instruction>(V)) { 00205 msgs << *V; 00206 } else { 00207 WriteAsOperand (msgs, V, true, true, Mod); 00208 msgs << "\n"; 00209 } 00210 } 00211 00212 void WriteType(const Type* T ) { 00213 if ( !T ) return; 00214 WriteTypeSymbolic(msgs, T, Mod ); 00215 } 00216 00217 00218 // CheckFailed - A check failed, so print out the condition and the message 00219 // that failed. This provides a nice place to put a breakpoint if you want 00220 // to see why something is not correct. 00221 void CheckFailed(const std::string &Message, 00222 const Value *V1 = 0, const Value *V2 = 0, 00223 const Value *V3 = 0, const Value *V4 = 0) { 00224 msgs << Message << "\n"; 00225 WriteValue(V1); 00226 WriteValue(V2); 00227 WriteValue(V3); 00228 WriteValue(V4); 00229 Broken = true; 00230 } 00231 00232 void CheckFailed( const std::string& Message, const Value* V1, 00233 const Type* T2, const Value* V3 = 0 ) { 00234 msgs << Message << "\n"; 00235 WriteValue(V1); 00236 WriteType(T2); 00237 WriteValue(V3); 00238 Broken = true; 00239 } 00240 }; 00241 00242 RegisterOpt<Verifier> X("verify", "Module Verifier"); 00243 } // End anonymous namespace 00244 00245 00246 // Assert - We know that cond should be true, if not print an error message. 00247 #define Assert(C, M) \ 00248 do { if (!(C)) { CheckFailed(M); return; } } while (0) 00249 #define Assert1(C, M, V1) \ 00250 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0) 00251 #define Assert2(C, M, V1, V2) \ 00252 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0) 00253 #define Assert3(C, M, V1, V2, V3) \ 00254 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0) 00255 #define Assert4(C, M, V1, V2, V3, V4) \ 00256 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) 00257 00258 00259 void Verifier::visitGlobalValue(GlobalValue &GV) { 00260 Assert1(!GV.isExternal() || GV.hasExternalLinkage(), 00261 "Global is external, but doesn't have external linkage!", &GV); 00262 Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 00263 "Only global variables can have appending linkage!", &GV); 00264 00265 if (GV.hasAppendingLinkage()) { 00266 GlobalVariable &GVar = cast<GlobalVariable>(GV); 00267 Assert1(isa<ArrayType>(GVar.getType()->getElementType()), 00268 "Only global arrays can have appending linkage!", &GV); 00269 } 00270 } 00271 00272 void Verifier::visitGlobalVariable(GlobalVariable &GV) { 00273 if (GV.hasInitializer()) 00274 Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(), 00275 "Global variable initializer type does not match global " 00276 "variable type!", &GV); 00277 00278 visitGlobalValue(GV); 00279 } 00280 00281 00282 // verifySymbolTable - Verify that a function or module symbol table is ok 00283 // 00284 void Verifier::verifySymbolTable(SymbolTable &ST) { 00285 00286 // Loop over all of the values in all type planes in the symbol table. 00287 for (SymbolTable::plane_const_iterator PI = ST.plane_begin(), 00288 PE = ST.plane_end(); PI != PE; ++PI) 00289 for (SymbolTable::value_const_iterator VI = PI->second.begin(), 00290 VE = PI->second.end(); VI != VE; ++VI) { 00291 Value *V = VI->second; 00292 // Check that there are no void typed values in the symbol table. Values 00293 // with a void type cannot be put into symbol tables because they cannot 00294 // have names! 00295 Assert1(V->getType() != Type::VoidTy, 00296 "Values with void type are not allowed to have names!", V); 00297 } 00298 } 00299 00300 // visitFunction - Verify that a function is ok. 00301 // 00302 void Verifier::visitFunction(Function &F) { 00303 // Check function arguments. 00304 const FunctionType *FT = F.getFunctionType(); 00305 unsigned NumArgs = F.getArgumentList().size(); 00306 00307 Assert2(FT->getNumParams() == NumArgs, 00308 "# formal arguments must match # of arguments for function type!", 00309 &F, FT); 00310 Assert1(F.getReturnType()->isFirstClassType() || 00311 F.getReturnType() == Type::VoidTy, 00312 "Functions cannot return aggregate values!", &F); 00313 00314 // Check that this function meets the restrictions on this calling convention. 00315 switch (F.getCallingConv()) { 00316 default: 00317 break; 00318 case CallingConv::C: 00319 break; 00320 case CallingConv::CSRet: 00321 Assert1(FT->getReturnType() == Type::VoidTy && 00322 FT->getNumParams() > 0 && isa<PointerType>(FT->getParamType(0)), 00323 "Invalid struct-return function!", &F); 00324 break; 00325 case CallingConv::Fast: 00326 case CallingConv::Cold: 00327 Assert1(!F.isVarArg(), 00328 "Varargs functions must have C calling conventions!", &F); 00329 break; 00330 } 00331 00332 // Check that the argument values match the function type for this function... 00333 unsigned i = 0; 00334 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I, ++i) { 00335 Assert2(I->getType() == FT->getParamType(i), 00336 "Argument value does not match function argument type!", 00337 I, FT->getParamType(i)); 00338 // Make sure no aggregates are passed by value. 00339 Assert1(I->getType()->isFirstClassType(), 00340 "Functions cannot take aggregates as arguments by value!", I); 00341 } 00342 00343 if (!F.isExternal()) { 00344 verifySymbolTable(F.getSymbolTable()); 00345 00346 // Check the entry node 00347 BasicBlock *Entry = &F.getEntryBlock(); 00348 Assert1(pred_begin(Entry) == pred_end(Entry), 00349 "Entry block to function must not have predecessors!", Entry); 00350 } 00351 } 00352 00353 00354 // verifyBasicBlock - Verify that a basic block is well formed... 00355 // 00356 void Verifier::visitBasicBlock(BasicBlock &BB) { 00357 InstsInThisBlock.clear(); 00358 00359 // Ensure that basic blocks have terminators! 00360 Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 00361 00362 // Check constraints that this basic block imposes on all of the PHI nodes in 00363 // it. 00364 if (isa<PHINode>(BB.front())) { 00365 std::vector<BasicBlock*> Preds(pred_begin(&BB), pred_end(&BB)); 00366 std::sort(Preds.begin(), Preds.end()); 00367 PHINode *PN; 00368 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) { 00369 00370 // Ensure that PHI nodes have at least one entry! 00371 Assert1(PN->getNumIncomingValues() != 0, 00372 "PHI nodes must have at least one entry. If the block is dead, " 00373 "the PHI should be removed!", PN); 00374 Assert1(PN->getNumIncomingValues() == Preds.size(), 00375 "PHINode should have one entry for each predecessor of its " 00376 "parent basic block!", PN); 00377 00378 // Get and sort all incoming values in the PHI node... 00379 std::vector<std::pair<BasicBlock*, Value*> > Values; 00380 Values.reserve(PN->getNumIncomingValues()); 00381 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 00382 Values.push_back(std::make_pair(PN->getIncomingBlock(i), 00383 PN->getIncomingValue(i))); 00384 std::sort(Values.begin(), Values.end()); 00385 00386 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 00387 // Check to make sure that if there is more than one entry for a 00388 // particular basic block in this PHI node, that the incoming values are 00389 // all identical. 00390 // 00391 Assert4(i == 0 || Values[i].first != Values[i-1].first || 00392 Values[i].second == Values[i-1].second, 00393 "PHI node has multiple entries for the same basic block with " 00394 "different incoming values!", PN, Values[i].first, 00395 Values[i].second, Values[i-1].second); 00396 00397 // Check to make sure that the predecessors and PHI node entries are 00398 // matched up. 00399 Assert3(Values[i].first == Preds[i], 00400 "PHI node entries do not match predecessors!", PN, 00401 Values[i].first, Preds[i]); 00402 } 00403 } 00404 } 00405 } 00406 00407 void Verifier::visitTerminatorInst(TerminatorInst &I) { 00408 // Ensure that terminators only exist at the end of the basic block. 00409 Assert1(&I == I.getParent()->getTerminator(), 00410 "Terminator found in the middle of a basic block!", I.getParent()); 00411 visitInstruction(I); 00412 } 00413 00414 void Verifier::visitReturnInst(ReturnInst &RI) { 00415 Function *F = RI.getParent()->getParent(); 00416 if (RI.getNumOperands() == 0) 00417 Assert2(F->getReturnType() == Type::VoidTy, 00418 "Found return instr that returns void in Function of non-void " 00419 "return type!", &RI, F->getReturnType()); 00420 else 00421 Assert2(F->getReturnType() == RI.getOperand(0)->getType(), 00422 "Function return type does not match operand " 00423 "type of return inst!", &RI, F->getReturnType()); 00424 00425 // Check to make sure that the return value has necessary properties for 00426 // terminators... 00427 visitTerminatorInst(RI); 00428 } 00429 00430 void Verifier::visitSwitchInst(SwitchInst &SI) { 00431 // Check to make sure that all of the constants in the switch instruction 00432 // have the same type as the switched-on value. 00433 const Type *SwitchTy = SI.getCondition()->getType(); 00434 for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) 00435 Assert1(SI.getCaseValue(i)->getType() == SwitchTy, 00436 "Switch constants must all be same type as switch value!", &SI); 00437 00438 visitTerminatorInst(SI); 00439 } 00440 00441 void Verifier::visitSelectInst(SelectInst &SI) { 00442 Assert1(SI.getCondition()->getType() == Type::BoolTy, 00443 "Select condition type must be bool!", &SI); 00444 Assert1(SI.getTrueValue()->getType() == SI.getFalseValue()->getType(), 00445 "Select values must have identical types!", &SI); 00446 Assert1(SI.getTrueValue()->getType() == SI.getType(), 00447 "Select values must have same type as select instruction!", &SI); 00448 visitInstruction(SI); 00449 } 00450 00451 00452 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 00453 /// a pass, if any exist, it's an error. 00454 /// 00455 void Verifier::visitUserOp1(Instruction &I) { 00456 Assert1(0, "User-defined operators should not live outside of a pass!", &I); 00457 } 00458 00459 /// visitPHINode - Ensure that a PHI node is well formed. 00460 /// 00461 void Verifier::visitPHINode(PHINode &PN) { 00462 // Ensure that the PHI nodes are all grouped together at the top of the block. 00463 // This can be tested by checking whether the instruction before this is 00464 // either nonexistent (because this is begin()) or is a PHI node. If not, 00465 // then there is some other instruction before a PHI. 00466 Assert2(&PN.getParent()->front() == &PN || isa<PHINode>(PN.getPrev()), 00467 "PHI nodes not grouped at top of basic block!", 00468 &PN, PN.getParent()); 00469 00470 // Check that all of the operands of the PHI node have the same type as the 00471 // result. 00472 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 00473 Assert1(PN.getType() == PN.getIncomingValue(i)->getType(), 00474 "PHI node operands are not the same type as the result!", &PN); 00475 00476 // All other PHI node constraints are checked in the visitBasicBlock method. 00477 00478 visitInstruction(PN); 00479 } 00480 00481 void Verifier::visitCallInst(CallInst &CI) { 00482 Assert1(isa<PointerType>(CI.getOperand(0)->getType()), 00483 "Called function must be a pointer!", &CI); 00484 const PointerType *FPTy = cast<PointerType>(CI.getOperand(0)->getType()); 00485 Assert1(isa<FunctionType>(FPTy->getElementType()), 00486 "Called function is not pointer to function type!", &CI); 00487 00488 const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType()); 00489 00490 // Verify that the correct number of arguments are being passed 00491 if (FTy->isVarArg()) 00492 Assert1(CI.getNumOperands()-1 >= FTy->getNumParams(), 00493 "Called function requires more parameters than were provided!",&CI); 00494 else 00495 Assert1(CI.getNumOperands()-1 == FTy->getNumParams(), 00496 "Incorrect number of arguments passed to called function!", &CI); 00497 00498 // Verify that all arguments to the call match the function type... 00499 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 00500 Assert3(CI.getOperand(i+1)->getType() == FTy->getParamType(i), 00501 "Call parameter type does not match function signature!", 00502 CI.getOperand(i+1), FTy->getParamType(i), &CI); 00503 00504 if (Function *F = CI.getCalledFunction()) 00505 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 00506 visitIntrinsicFunctionCall(ID, CI); 00507 00508 visitInstruction(CI); 00509 } 00510 00511 /// visitBinaryOperator - Check that both arguments to the binary operator are 00512 /// of the same type! 00513 /// 00514 void Verifier::visitBinaryOperator(BinaryOperator &B) { 00515 Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 00516 "Both operands to a binary operator are not of the same type!", &B); 00517 00518 // Check that logical operators are only used with integral operands. 00519 if (B.getOpcode() == Instruction::And || B.getOpcode() == Instruction::Or || 00520 B.getOpcode() == Instruction::Xor) { 00521 Assert1(B.getType()->isIntegral() || 00522 (isa<PackedType>(B.getType()) && 00523 cast<PackedType>(B.getType())->getElementType()->isIntegral()), 00524 "Logical operators only work with integral types!", &B); 00525 Assert1(B.getType() == B.getOperand(0)->getType(), 00526 "Logical operators must have same type for operands and result!", 00527 &B); 00528 } else if (isa<SetCondInst>(B)) { 00529 // Check that setcc instructions return bool 00530 Assert1(B.getType() == Type::BoolTy, 00531 "setcc instructions must return boolean values!", &B); 00532 } else { 00533 // Arithmetic operators only work on integer or fp values 00534 Assert1(B.getType() == B.getOperand(0)->getType(), 00535 "Arithmetic operators must have same type for operands and result!", 00536 &B); 00537 Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint() || 00538 isa<PackedType>(B.getType()), 00539 "Arithmetic operators must have integer, fp, or packed type!", &B); 00540 } 00541 00542 visitInstruction(B); 00543 } 00544 00545 void Verifier::visitShiftInst(ShiftInst &SI) { 00546 Assert1(SI.getType()->isInteger(), 00547 "Shift must return an integer result!", &SI); 00548 Assert1(SI.getType() == SI.getOperand(0)->getType(), 00549 "Shift return type must be same as first operand!", &SI); 00550 Assert1(SI.getOperand(1)->getType() == Type::UByteTy, 00551 "Second operand to shift must be ubyte type!", &SI); 00552 visitInstruction(SI); 00553 } 00554 00555 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 00556 Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0), 00557 EI.getOperand(1)), 00558 "Invalid extractelement operands!", &EI); 00559 visitInstruction(EI); 00560 } 00561 00562 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 00563 Assert1(InsertElementInst::isValidOperands(IE.getOperand(0), 00564 IE.getOperand(1), 00565 IE.getOperand(2)), 00566 "Invalid insertelement operands!", &IE); 00567 visitInstruction(IE); 00568 } 00569 00570 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 00571 Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 00572 SV.getOperand(2)), 00573 "Invalid shufflevector operands!", &SV); 00574 Assert1(SV.getType() == SV.getOperand(0)->getType(), 00575 "Result of shufflevector must match first operand type!", &SV); 00576 00577 // Check to see if Mask is valid. 00578 if (const ConstantPacked *MV = dyn_cast<ConstantPacked>(SV.getOperand(2))) { 00579 for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) { 00580 Assert1(isa<ConstantUInt>(MV->getOperand(i)) || 00581 isa<UndefValue>(MV->getOperand(i)), 00582 "Invalid shufflevector shuffle mask!", &SV); 00583 } 00584 } else { 00585 Assert1(isa<UndefValue>(SV.getOperand(2)) || 00586 isa<ConstantAggregateZero>(SV.getOperand(2)), 00587 "Invalid shufflevector shuffle mask!", &SV); 00588 } 00589 00590 visitInstruction(SV); 00591 } 00592 00593 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 00594 const Type *ElTy = 00595 GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(), 00596 std::vector<Value*>(GEP.idx_begin(), GEP.idx_end()), true); 00597 Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP); 00598 Assert2(PointerType::get(ElTy) == GEP.getType(), 00599 "GEP is not of right type for indices!", &GEP, ElTy); 00600 visitInstruction(GEP); 00601 } 00602 00603 void Verifier::visitLoadInst(LoadInst &LI) { 00604 const Type *ElTy = 00605 cast<PointerType>(LI.getOperand(0)->getType())->getElementType(); 00606 Assert2(ElTy == LI.getType(), 00607 "Load result type does not match pointer operand type!", &LI, ElTy); 00608 visitInstruction(LI); 00609 } 00610 00611 void Verifier::visitStoreInst(StoreInst &SI) { 00612 const Type *ElTy = 00613 cast<PointerType>(SI.getOperand(1)->getType())->getElementType(); 00614 Assert2(ElTy == SI.getOperand(0)->getType(), 00615 "Stored value type does not match pointer operand type!", &SI, ElTy); 00616 visitInstruction(SI); 00617 } 00618 00619 00620 /// verifyInstruction - Verify that an instruction is well formed. 00621 /// 00622 void Verifier::visitInstruction(Instruction &I) { 00623 BasicBlock *BB = I.getParent(); 00624 Assert1(BB, "Instruction not embedded in basic block!", &I); 00625 00626 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 00627 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); 00628 UI != UE; ++UI) 00629 Assert1(*UI != (User*)&I || 00630 !EF->dominates(&BB->getParent()->getEntryBlock(), BB), 00631 "Only PHI nodes may reference their own value!", &I); 00632 } 00633 00634 // Check that void typed values don't have names 00635 Assert1(I.getType() != Type::VoidTy || !I.hasName(), 00636 "Instruction has a name, but provides a void value!", &I); 00637 00638 // Check that the return value of the instruction is either void or a legal 00639 // value type. 00640 Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType(), 00641 "Instruction returns a non-scalar type!", &I); 00642 00643 // Check that all uses of the instruction, if they are instructions 00644 // themselves, actually have parent basic blocks. If the use is not an 00645 // instruction, it is an error! 00646 for (User::use_iterator UI = I.use_begin(), UE = I.use_end(); 00647 UI != UE; ++UI) { 00648 Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!", 00649 *UI); 00650 Instruction *Used = cast<Instruction>(*UI); 00651 Assert2(Used->getParent() != 0, "Instruction referencing instruction not" 00652 " embeded in a basic block!", &I, Used); 00653 } 00654 00655 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 00656 Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I); 00657 00658 // Check to make sure that only first-class-values are operands to 00659 // instructions. 00660 Assert1(I.getOperand(i)->getType()->isFirstClassType(), 00661 "Instruction operands must be first-class values!", &I); 00662 00663 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 00664 // Check to make sure that the "address of" an intrinsic function is never 00665 // taken. 00666 Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)), 00667 "Cannot take the address of an intrinsic!", &I); 00668 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 00669 Assert1(OpBB->getParent() == BB->getParent(), 00670 "Referring to a basic block in another function!", &I); 00671 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 00672 Assert1(OpArg->getParent() == BB->getParent(), 00673 "Referring to an argument in another function!", &I); 00674 } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) { 00675 BasicBlock *OpBlock = Op->getParent(); 00676 00677 // Check that a definition dominates all of its uses. 00678 if (!isa<PHINode>(I)) { 00679 // Invoke results are only usable in the normal destination, not in the 00680 // exceptional destination. 00681 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) 00682 OpBlock = II->getNormalDest(); 00683 else if (OpBlock == BB) { 00684 // If they are in the same basic block, make sure that the definition 00685 // comes before the use. 00686 Assert2(InstsInThisBlock.count(Op) || 00687 !EF->dominates(&BB->getParent()->getEntryBlock(), BB), 00688 "Instruction does not dominate all uses!", Op, &I); 00689 } 00690 00691 // Definition must dominate use unless use is unreachable! 00692 Assert2(EF->dominates(OpBlock, BB) || 00693 !EF->dominates(&BB->getParent()->getEntryBlock(), BB), 00694 "Instruction does not dominate all uses!", Op, &I); 00695 } else { 00696 // PHI nodes are more difficult than other nodes because they actually 00697 // "use" the value in the predecessor basic blocks they correspond to. 00698 BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1)); 00699 Assert2(EF->dominates(OpBlock, PredBB) || 00700 !EF->dominates(&BB->getParent()->getEntryBlock(), PredBB), 00701 "Instruction does not dominate all uses!", Op, &I); 00702 } 00703 } else if (isa<InlineAsm>(I.getOperand(i))) { 00704 Assert1(i == 0 && isa<CallInst>(I), 00705 "Cannot take the address of an inline asm!", &I); 00706 } 00707 } 00708 InstsInThisBlock.insert(&I); 00709 } 00710 00711 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways. 00712 /// 00713 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { 00714 Function *IF = CI.getCalledFunction(); 00715 Assert1(IF->isExternal(), "Intrinsic functions should never be defined!", IF); 00716 00717 #define GET_INTRINSIC_VERIFIER 00718 #include "llvm/Intrinsics.gen" 00719 #undef GET_INTRINSIC_VERIFIER 00720 } 00721 00722 /// VerifyIntrinsicPrototype - TableGen emits calls to this function into 00723 /// Intrinsics.gen. This implements a little state machine that verifies the 00724 /// prototype of intrinsics. 00725 void Verifier::VerifyIntrinsicPrototype(Function *F, ...) { 00726 va_list VA; 00727 va_start(VA, F); 00728 00729 const FunctionType *FTy = F->getFunctionType(); 00730 00731 // Note that "arg#0" is the return type. 00732 for (unsigned ArgNo = 0; 1; ++ArgNo) { 00733 int TypeID = va_arg(VA, int); 00734 00735 if (TypeID == -1) { 00736 if (ArgNo != FTy->getNumParams()+1) 00737 CheckFailed("Intrinsic prototype has too many arguments!", F); 00738 break; 00739 } 00740 00741 if (ArgNo == FTy->getNumParams()+1) { 00742 CheckFailed("Intrinsic prototype has too few arguments!", F); 00743 break; 00744 } 00745 00746 const Type *Ty; 00747 if (ArgNo == 0) 00748 Ty = FTy->getReturnType(); 00749 else 00750 Ty = FTy->getParamType(ArgNo-1); 00751 00752 if (Ty->getTypeID() != TypeID) { 00753 if (ArgNo == 0) 00754 CheckFailed("Intrinsic prototype has incorrect result type!", F); 00755 else 00756 CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is wrong!",F); 00757 break; 00758 } 00759 00760 // If this is a packed argument, verify the number and type of elements. 00761 if (TypeID == Type::PackedTyID) { 00762 const PackedType *PTy = cast<PackedType>(Ty); 00763 if (va_arg(VA, int) != PTy->getElementType()->getTypeID()) { 00764 CheckFailed("Intrinsic prototype has incorrect vector element type!",F); 00765 break; 00766 } 00767 00768 if ((unsigned)va_arg(VA, int) != PTy->getNumElements()) { 00769 CheckFailed("Intrinsic prototype has incorrect number of " 00770 "vector elements!",F); 00771 break; 00772 } 00773 } 00774 } 00775 00776 va_end(VA); 00777 } 00778 00779 00780 //===----------------------------------------------------------------------===// 00781 // Implement the public interfaces to this file... 00782 //===----------------------------------------------------------------------===// 00783 00784 FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) { 00785 return new Verifier(action); 00786 } 00787 00788 00789 // verifyFunction - Create 00790 bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) { 00791 Function &F = const_cast<Function&>(f); 00792 assert(!F.isExternal() && "Cannot verify external functions"); 00793 00794 FunctionPassManager FPM(new ExistingModuleProvider(F.getParent())); 00795 Verifier *V = new Verifier(action); 00796 FPM.add(V); 00797 FPM.run(F); 00798 return V->Broken; 00799 } 00800 00801 /// verifyModule - Check a module for errors, printing messages on stderr. 00802 /// Return true if the module is corrupt. 00803 /// 00804 bool llvm::verifyModule(const Module &M, VerifierFailureAction action, 00805 std::string *ErrorInfo) { 00806 PassManager PM; 00807 Verifier *V = new Verifier(action); 00808 PM.add(V); 00809 PM.run((Module&)M); 00810 00811 if (ErrorInfo && V->Broken) 00812 *ErrorInfo = V->msgs.str(); 00813 return V->Broken; 00814 } 00815 00816 // vim: sw=2