LLVM API Documentation
00001 //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file was developed by the LLVM research group and is distributed under 00006 // the University of Illinois Open Source License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file defines the function verifier interface, that can be used for some 00011 // sanity checking of input to the system. 00012 // 00013 // Note that this does not provide full `Java style' security and verifications, 00014 // instead it just tries to ensure that code is well-formed. 00015 // 00016 // * Both of a binary operator's parameters are of the same type 00017 // * Verify that the indices of mem access instructions match other operands 00018 // * Verify that arithmetic and other things are only performed on first-class 00019 // types. Verify that shifts & logicals only happen on integrals f.e. 00020 // * All of the constants in a switch statement are of the correct type 00021 // * The code is in valid SSA form 00022 // * It should be illegal to put a label into any other type (like a structure) 00023 // or to return one. [except constant arrays!] 00024 // * Only phi nodes can be self referential: 'add int %0, %0 ; <int>:0' is bad 00025 // * PHI nodes must have an entry for each predecessor, with no extras. 00026 // * PHI nodes must be the first thing in a basic block, all grouped together 00027 // * PHI nodes must have at least one entry 00028 // * All basic blocks should only end with terminator insts, not contain them 00029 // * The entry node to a function must not have predecessors 00030 // * All Instructions must be embedded into a basic block 00031 // * Functions cannot take a void-typed parameter 00032 // * Verify that a function's argument list agrees with it's declared type. 00033 // * It is illegal to specify a name for a void value. 00034 // * It is illegal to have a internal global value with no initializer 00035 // * It is illegal to have a ret instruction that returns a value that does not 00036 // agree with the function return value type. 00037 // * Function call argument types match the function prototype 00038 // * All other things that are tested by asserts spread about the code... 00039 // 00040 //===----------------------------------------------------------------------===// 00041 00042 #include "llvm/Analysis/Verifier.h" 00043 #include "llvm/Assembly/Writer.h" 00044 #include "llvm/Constants.h" 00045 #include "llvm/Pass.h" 00046 #include "llvm/Module.h" 00047 #include "llvm/ModuleProvider.h" 00048 #include "llvm/DerivedTypes.h" 00049 #include "llvm/Instructions.h" 00050 #include "llvm/Intrinsics.h" 00051 #include "llvm/PassManager.h" 00052 #include "llvm/SymbolTable.h" 00053 #include "llvm/Analysis/Dominators.h" 00054 #include "llvm/Support/CFG.h" 00055 #include "llvm/Support/InstVisitor.h" 00056 #include "llvm/ADT/STLExtras.h" 00057 #include <algorithm> 00058 #include <iostream> 00059 #include <sstream> 00060 using namespace llvm; 00061 00062 namespace { // Anonymous namespace for class 00063 00064 struct Verifier : public FunctionPass, InstVisitor<Verifier> { 00065 bool Broken; // Is this module found to be broken? 00066 bool RealPass; // Are we not being run by a PassManager? 00067 VerifierFailureAction action; 00068 // What to do if verification fails. 00069 Module *Mod; // Module we are verifying right now 00070 DominatorSet *DS; // Dominator set, caution can be null! 00071 std::stringstream msgs; // A stringstream to collect messages 00072 00073 /// InstInThisBlock - when verifying a basic block, keep track of all of the 00074 /// instructions we have seen so far. This allows us to do efficient 00075 /// dominance checks for the case when an instruction has an operand that is 00076 /// an instruction in the same block. 00077 std::set<Instruction*> InstsInThisBlock; 00078 00079 Verifier() 00080 : Broken(false), RealPass(true), action(AbortProcessAction), 00081 DS(0), msgs( std::ios_base::app | std::ios_base::out ) {} 00082 Verifier( VerifierFailureAction ctn ) 00083 : Broken(false), RealPass(true), action(ctn), DS(0), 00084 msgs( std::ios_base::app | std::ios_base::out ) {} 00085 Verifier(bool AB ) 00086 : Broken(false), RealPass(true), 00087 action( AB ? AbortProcessAction : PrintMessageAction), DS(0), 00088 msgs( std::ios_base::app | std::ios_base::out ) {} 00089 Verifier(DominatorSet &ds) 00090 : Broken(false), RealPass(false), action(PrintMessageAction), 00091 DS(&ds), msgs( std::ios_base::app | std::ios_base::out ) {} 00092 00093 00094 bool doInitialization(Module &M) { 00095 Mod = &M; 00096 verifySymbolTable(M.getSymbolTable()); 00097 00098 // If this is a real pass, in a pass manager, we must abort before 00099 // returning back to the pass manager, or else the pass manager may try to 00100 // run other passes on the broken module. 00101 if (RealPass) 00102 abortIfBroken(); 00103 return false; 00104 } 00105 00106 bool runOnFunction(Function &F) { 00107 // Get dominator information if we are being run by PassManager 00108 if (RealPass) DS = &getAnalysis<DominatorSet>(); 00109 visit(F); 00110 InstsInThisBlock.clear(); 00111 00112 // If this is a real pass, in a pass manager, we must abort before 00113 // returning back to the pass manager, or else the pass manager may try to 00114 // run other passes on the broken module. 00115 if (RealPass) 00116 abortIfBroken(); 00117 00118 return false; 00119 } 00120 00121 bool doFinalization(Module &M) { 00122 // Scan through, checking all of the external function's linkage now... 00123 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { 00124 visitGlobalValue(*I); 00125 00126 // Check to make sure function prototypes are okay. 00127 if (I->isExternal()) visitFunction(*I); 00128 } 00129 00130 for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) 00131 visitGlobalValue(*I); 00132 00133 // If the module is broken, abort at this time. 00134 abortIfBroken(); 00135 return false; 00136 } 00137 00138 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 00139 AU.setPreservesAll(); 00140 if (RealPass) 00141 AU.addRequired<DominatorSet>(); 00142 } 00143 00144 /// abortIfBroken - If the module is broken and we are supposed to abort on 00145 /// this condition, do so. 00146 /// 00147 void abortIfBroken() { 00148 if (Broken) 00149 { 00150 msgs << "Broken module found, "; 00151 switch (action) 00152 { 00153 case AbortProcessAction: 00154 msgs << "compilation aborted!\n"; 00155 std::cerr << msgs.str(); 00156 abort(); 00157 case ThrowExceptionAction: 00158 msgs << "verification terminated.\n"; 00159 throw msgs.str(); 00160 case PrintMessageAction: 00161 msgs << "verification continues.\n"; 00162 std::cerr << msgs.str(); 00163 break; 00164 case ReturnStatusAction: 00165 break; 00166 } 00167 } 00168 } 00169 00170 00171 // Verification methods... 00172 void verifySymbolTable(SymbolTable &ST); 00173 void visitGlobalValue(GlobalValue &GV); 00174 void visitFunction(Function &F); 00175 void visitBasicBlock(BasicBlock &BB); 00176 void visitPHINode(PHINode &PN); 00177 void visitBinaryOperator(BinaryOperator &B); 00178 void visitShiftInst(ShiftInst &SI); 00179 void visitVANextInst(VANextInst &VAN) { visitInstruction(VAN); } 00180 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 00181 void visitCallInst(CallInst &CI); 00182 void visitGetElementPtrInst(GetElementPtrInst &GEP); 00183 void visitLoadInst(LoadInst &LI); 00184 void visitStoreInst(StoreInst &SI); 00185 void visitInstruction(Instruction &I); 00186 void visitTerminatorInst(TerminatorInst &I); 00187 void visitReturnInst(ReturnInst &RI); 00188 void visitSwitchInst(SwitchInst &SI); 00189 void visitSelectInst(SelectInst &SI); 00190 void visitUserOp1(Instruction &I); 00191 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 00192 void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI); 00193 00194 00195 void WriteValue(const Value *V) { 00196 if (!V) return; 00197 if (isa<Instruction>(V)) { 00198 msgs << *V; 00199 } else { 00200 WriteAsOperand (msgs, V, true, true, Mod); 00201 msgs << "\n"; 00202 } 00203 } 00204 00205 void WriteType(const Type* T ) { 00206 if ( !T ) return; 00207 WriteTypeSymbolic(msgs, T, Mod ); 00208 } 00209 00210 00211 // CheckFailed - A check failed, so print out the condition and the message 00212 // that failed. This provides a nice place to put a breakpoint if you want 00213 // to see why something is not correct. 00214 void CheckFailed(const std::string &Message, 00215 const Value *V1 = 0, const Value *V2 = 0, 00216 const Value *V3 = 0, const Value *V4 = 0) { 00217 msgs << Message << "\n"; 00218 WriteValue(V1); 00219 WriteValue(V2); 00220 WriteValue(V3); 00221 WriteValue(V4); 00222 Broken = true; 00223 } 00224 00225 void CheckFailed( const std::string& Message, const Value* V1, 00226 const Type* T2, const Value* V3 = 0 ) { 00227 msgs << Message << "\n"; 00228 WriteValue(V1); 00229 WriteType(T2); 00230 WriteValue(V3); 00231 Broken = true; 00232 } 00233 }; 00234 00235 RegisterOpt<Verifier> X("verify", "Module Verifier"); 00236 } // End anonymous namespace 00237 00238 00239 // Assert - We know that cond should be true, if not print an error message. 00240 #define Assert(C, M) \ 00241 do { if (!(C)) { CheckFailed(M); return; } } while (0) 00242 #define Assert1(C, M, V1) \ 00243 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0) 00244 #define Assert2(C, M, V1, V2) \ 00245 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0) 00246 #define Assert3(C, M, V1, V2, V3) \ 00247 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0) 00248 #define Assert4(C, M, V1, V2, V3, V4) \ 00249 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) 00250 00251 00252 void Verifier::visitGlobalValue(GlobalValue &GV) { 00253 Assert1(!GV.isExternal() || GV.hasExternalLinkage(), 00254 "Global is external, but doesn't have external linkage!", &GV); 00255 Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 00256 "Only global variables can have appending linkage!", &GV); 00257 00258 if (GV.hasAppendingLinkage()) { 00259 GlobalVariable &GVar = cast<GlobalVariable>(GV); 00260 Assert1(isa<ArrayType>(GVar.getType()->getElementType()), 00261 "Only global arrays can have appending linkage!", &GV); 00262 } 00263 } 00264 00265 // verifySymbolTable - Verify that a function or module symbol table is ok 00266 // 00267 void Verifier::verifySymbolTable(SymbolTable &ST) { 00268 00269 // Loop over all of the values in all type planes in the symbol table. 00270 for (SymbolTable::plane_const_iterator PI = ST.plane_begin(), 00271 PE = ST.plane_end(); PI != PE; ++PI) 00272 for (SymbolTable::value_const_iterator VI = PI->second.begin(), 00273 VE = PI->second.end(); VI != VE; ++VI) { 00274 Value *V = VI->second; 00275 // Check that there are no void typed values in the symbol table. Values 00276 // with a void type cannot be put into symbol tables because they cannot 00277 // have names! 00278 Assert1(V->getType() != Type::VoidTy, 00279 "Values with void type are not allowed to have names!", V); 00280 } 00281 } 00282 00283 // visitFunction - Verify that a function is ok. 00284 // 00285 void Verifier::visitFunction(Function &F) { 00286 // Check function arguments... 00287 const FunctionType *FT = F.getFunctionType(); 00288 unsigned NumArgs = F.getArgumentList().size(); 00289 00290 Assert2(FT->getNumParams() == NumArgs, 00291 "# formal arguments must match # of arguments for function type!", 00292 &F, FT); 00293 Assert1(F.getReturnType()->isFirstClassType() || 00294 F.getReturnType() == Type::VoidTy, 00295 "Functions cannot return aggregate values!", &F); 00296 00297 // Check that the argument values match the function type for this function... 00298 unsigned i = 0; 00299 for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I, ++i) { 00300 Assert2(I->getType() == FT->getParamType(i), 00301 "Argument value does not match function argument type!", 00302 I, FT->getParamType(i)); 00303 // Make sure no aggregates are passed by value. 00304 Assert1(I->getType()->isFirstClassType(), 00305 "Functions cannot take aggregates as arguments by value!", I); 00306 } 00307 00308 if (!F.isExternal()) { 00309 verifySymbolTable(F.getSymbolTable()); 00310 00311 // Check the entry node 00312 BasicBlock *Entry = &F.getEntryBlock(); 00313 Assert1(pred_begin(Entry) == pred_end(Entry), 00314 "Entry block to function must not have predecessors!", Entry); 00315 } 00316 } 00317 00318 00319 // verifyBasicBlock - Verify that a basic block is well formed... 00320 // 00321 void Verifier::visitBasicBlock(BasicBlock &BB) { 00322 InstsInThisBlock.clear(); 00323 00324 // Ensure that basic blocks have terminators! 00325 Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 00326 00327 // Check constraints that this basic block imposes on all of the PHI nodes in 00328 // it. 00329 if (isa<PHINode>(BB.front())) { 00330 std::vector<BasicBlock*> Preds(pred_begin(&BB), pred_end(&BB)); 00331 std::sort(Preds.begin(), Preds.end()); 00332 PHINode *PN; 00333 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) { 00334 00335 // Ensure that PHI nodes have at least one entry! 00336 Assert1(PN->getNumIncomingValues() != 0, 00337 "PHI nodes must have at least one entry. If the block is dead, " 00338 "the PHI should be removed!", PN); 00339 Assert1(PN->getNumIncomingValues() == Preds.size(), 00340 "PHINode should have one entry for each predecessor of its " 00341 "parent basic block!", PN); 00342 00343 // Get and sort all incoming values in the PHI node... 00344 std::vector<std::pair<BasicBlock*, Value*> > Values; 00345 Values.reserve(PN->getNumIncomingValues()); 00346 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 00347 Values.push_back(std::make_pair(PN->getIncomingBlock(i), 00348 PN->getIncomingValue(i))); 00349 std::sort(Values.begin(), Values.end()); 00350 00351 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 00352 // Check to make sure that if there is more than one entry for a 00353 // particular basic block in this PHI node, that the incoming values are 00354 // all identical. 00355 // 00356 Assert4(i == 0 || Values[i].first != Values[i-1].first || 00357 Values[i].second == Values[i-1].second, 00358 "PHI node has multiple entries for the same basic block with " 00359 "different incoming values!", PN, Values[i].first, 00360 Values[i].second, Values[i-1].second); 00361 00362 // Check to make sure that the predecessors and PHI node entries are 00363 // matched up. 00364 Assert3(Values[i].first == Preds[i], 00365 "PHI node entries do not match predecessors!", PN, 00366 Values[i].first, Preds[i]); 00367 } 00368 } 00369 } 00370 } 00371 00372 void Verifier::visitTerminatorInst(TerminatorInst &I) { 00373 // Ensure that terminators only exist at the end of the basic block. 00374 Assert1(&I == I.getParent()->getTerminator(), 00375 "Terminator found in the middle of a basic block!", I.getParent()); 00376 visitInstruction(I); 00377 } 00378 00379 void Verifier::visitReturnInst(ReturnInst &RI) { 00380 Function *F = RI.getParent()->getParent(); 00381 if (RI.getNumOperands() == 0) 00382 Assert2(F->getReturnType() == Type::VoidTy, 00383 "Found return instr that returns void in Function of non-void " 00384 "return type!", &RI, F->getReturnType()); 00385 else 00386 Assert2(F->getReturnType() == RI.getOperand(0)->getType(), 00387 "Function return type does not match operand " 00388 "type of return inst!", &RI, F->getReturnType()); 00389 00390 // Check to make sure that the return value has necessary properties for 00391 // terminators... 00392 visitTerminatorInst(RI); 00393 } 00394 00395 void Verifier::visitSwitchInst(SwitchInst &SI) { 00396 // Check to make sure that all of the constants in the switch instruction 00397 // have the same type as the switched-on value. 00398 const Type *SwitchTy = SI.getCondition()->getType(); 00399 for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) 00400 Assert1(SI.getCaseValue(i)->getType() == SwitchTy, 00401 "Switch constants must all be same type as switch value!", &SI); 00402 00403 visitTerminatorInst(SI); 00404 } 00405 00406 void Verifier::visitSelectInst(SelectInst &SI) { 00407 Assert1(SI.getCondition()->getType() == Type::BoolTy, 00408 "Select condition type must be bool!", &SI); 00409 Assert1(SI.getTrueValue()->getType() == SI.getFalseValue()->getType(), 00410 "Select values must have identical types!", &SI); 00411 Assert1(SI.getTrueValue()->getType() == SI.getType(), 00412 "Select values must have same type as select instruction!", &SI); 00413 visitInstruction(SI); 00414 } 00415 00416 00417 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 00418 /// a pass, if any exist, it's an error. 00419 /// 00420 void Verifier::visitUserOp1(Instruction &I) { 00421 Assert1(0, "User-defined operators should not live outside of a pass!", 00422 &I); 00423 } 00424 00425 /// visitPHINode - Ensure that a PHI node is well formed. 00426 /// 00427 void Verifier::visitPHINode(PHINode &PN) { 00428 // Ensure that the PHI nodes are all grouped together at the top of the block. 00429 // This can be tested by checking whether the instruction before this is 00430 // either nonexistent (because this is begin()) or is a PHI node. If not, 00431 // then there is some other instruction before a PHI. 00432 Assert2(&PN.getParent()->front() == &PN || isa<PHINode>(PN.getPrev()), 00433 "PHI nodes not grouped at top of basic block!", 00434 &PN, PN.getParent()); 00435 00436 // Check that all of the operands of the PHI node have the same type as the 00437 // result. 00438 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 00439 Assert1(PN.getType() == PN.getIncomingValue(i)->getType(), 00440 "PHI node operands are not the same type as the result!", &PN); 00441 00442 // All other PHI node constraints are checked in the visitBasicBlock method. 00443 00444 visitInstruction(PN); 00445 } 00446 00447 void Verifier::visitCallInst(CallInst &CI) { 00448 Assert1(isa<PointerType>(CI.getOperand(0)->getType()), 00449 "Called function must be a pointer!", &CI); 00450 const PointerType *FPTy = cast<PointerType>(CI.getOperand(0)->getType()); 00451 Assert1(isa<FunctionType>(FPTy->getElementType()), 00452 "Called function is not pointer to function type!", &CI); 00453 00454 const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType()); 00455 00456 // Verify that the correct number of arguments are being passed 00457 if (FTy->isVarArg()) 00458 Assert1(CI.getNumOperands()-1 >= FTy->getNumParams(), 00459 "Called function requires more parameters than were provided!",&CI); 00460 else 00461 Assert1(CI.getNumOperands()-1 == FTy->getNumParams(), 00462 "Incorrect number of arguments passed to called function!", &CI); 00463 00464 // Verify that all arguments to the call match the function type... 00465 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 00466 Assert3(CI.getOperand(i+1)->getType() == FTy->getParamType(i), 00467 "Call parameter type does not match function signature!", 00468 CI.getOperand(i+1), FTy->getParamType(i), &CI); 00469 00470 if (Function *F = CI.getCalledFunction()) 00471 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 00472 visitIntrinsicFunctionCall(ID, CI); 00473 00474 visitInstruction(CI); 00475 } 00476 00477 /// visitBinaryOperator - Check that both arguments to the binary operator are 00478 /// of the same type! 00479 /// 00480 void Verifier::visitBinaryOperator(BinaryOperator &B) { 00481 Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 00482 "Both operands to a binary operator are not of the same type!", &B); 00483 00484 // Check that logical operators are only used with integral operands. 00485 if (B.getOpcode() == Instruction::And || B.getOpcode() == Instruction::Or || 00486 B.getOpcode() == Instruction::Xor) { 00487 Assert1(B.getType()->isIntegral(), 00488 "Logical operators only work with integral types!", &B); 00489 Assert1(B.getType() == B.getOperand(0)->getType(), 00490 "Logical operators must have same type for operands and result!", 00491 &B); 00492 } else if (isa<SetCondInst>(B)) { 00493 // Check that setcc instructions return bool 00494 Assert1(B.getType() == Type::BoolTy, 00495 "setcc instructions must return boolean values!", &B); 00496 } else { 00497 // Arithmetic operators only work on integer or fp values 00498 Assert1(B.getType() == B.getOperand(0)->getType(), 00499 "Arithmetic operators must have same type for operands and result!", 00500 &B); 00501 Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint() || 00502 isa<PackedType>(B.getType()), 00503 "Arithmetic operators must have integer, fp, or packed type!", &B); 00504 } 00505 00506 visitInstruction(B); 00507 } 00508 00509 void Verifier::visitShiftInst(ShiftInst &SI) { 00510 Assert1(SI.getType()->isInteger(), 00511 "Shift must return an integer result!", &SI); 00512 Assert1(SI.getType() == SI.getOperand(0)->getType(), 00513 "Shift return type must be same as first operand!", &SI); 00514 Assert1(SI.getOperand(1)->getType() == Type::UByteTy, 00515 "Second operand to shift must be ubyte type!", &SI); 00516 visitInstruction(SI); 00517 } 00518 00519 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 00520 const Type *ElTy = 00521 GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(), 00522 std::vector<Value*>(GEP.idx_begin(), GEP.idx_end()), true); 00523 Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP); 00524 Assert2(PointerType::get(ElTy) == GEP.getType(), 00525 "GEP is not of right type for indices!", &GEP, ElTy); 00526 visitInstruction(GEP); 00527 } 00528 00529 void Verifier::visitLoadInst(LoadInst &LI) { 00530 const Type *ElTy = 00531 cast<PointerType>(LI.getOperand(0)->getType())->getElementType(); 00532 Assert2(ElTy == LI.getType(), 00533 "Load result type does not match pointer operand type!", &LI, ElTy); 00534 visitInstruction(LI); 00535 } 00536 00537 void Verifier::visitStoreInst(StoreInst &SI) { 00538 const Type *ElTy = 00539 cast<PointerType>(SI.getOperand(1)->getType())->getElementType(); 00540 Assert2(ElTy == SI.getOperand(0)->getType(), 00541 "Stored value type does not match pointer operand type!", &SI, ElTy); 00542 visitInstruction(SI); 00543 } 00544 00545 00546 /// verifyInstruction - Verify that an instruction is well formed. 00547 /// 00548 void Verifier::visitInstruction(Instruction &I) { 00549 BasicBlock *BB = I.getParent(); 00550 Assert1(BB, "Instruction not embedded in basic block!", &I); 00551 00552 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 00553 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); 00554 UI != UE; ++UI) 00555 Assert1(*UI != (User*)&I || 00556 !DS->dominates(&BB->getParent()->getEntryBlock(), BB), 00557 "Only PHI nodes may reference their own value!", &I); 00558 } 00559 00560 // Check that void typed values don't have names 00561 Assert1(I.getType() != Type::VoidTy || !I.hasName(), 00562 "Instruction has a name, but provides a void value!", &I); 00563 00564 // Check that the return value of the instruction is either void or a legal 00565 // value type. 00566 Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType(), 00567 "Instruction returns a non-scalar type!", &I); 00568 00569 // Check that all uses of the instruction, if they are instructions 00570 // themselves, actually have parent basic blocks. If the use is not an 00571 // instruction, it is an error! 00572 for (User::use_iterator UI = I.use_begin(), UE = I.use_end(); 00573 UI != UE; ++UI) { 00574 Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!", 00575 *UI); 00576 Instruction *Used = cast<Instruction>(*UI); 00577 Assert2(Used->getParent() != 0, "Instruction referencing instruction not" 00578 " embeded in a basic block!", &I, Used); 00579 } 00580 00581 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 00582 // Check to make sure that the "address of" an intrinsic function is never 00583 // taken. 00584 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 00585 Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)), 00586 "Cannot take the address of an intrinsic!", &I); 00587 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 00588 Assert1(OpBB->getParent() == BB->getParent(), 00589 "Referring to a basic block in another function!", &I); 00590 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 00591 Assert1(OpArg->getParent() == BB->getParent(), 00592 "Referring to an argument in another function!", &I); 00593 } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) { 00594 BasicBlock *OpBlock = Op->getParent(); 00595 00596 // Check that a definition dominates all of its uses. 00597 if (!isa<PHINode>(I)) { 00598 // Invoke results are only usable in the normal destination, not in the 00599 // exceptional destination. 00600 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) 00601 OpBlock = II->getNormalDest(); 00602 else if (OpBlock == BB) { 00603 // If they are in the same basic block, make sure that the definition 00604 // comes before the use. 00605 Assert2(InstsInThisBlock.count(Op) || 00606 !DS->dominates(&BB->getParent()->getEntryBlock(), BB), 00607 "Instruction does not dominate all uses!", Op, &I); 00608 } 00609 00610 // Definition must dominate use unless use is unreachable! 00611 Assert2(DS->dominates(OpBlock, BB) || 00612 !DS->dominates(&BB->getParent()->getEntryBlock(), BB), 00613 "Instruction does not dominate all uses!", Op, &I); 00614 } else { 00615 // PHI nodes are more difficult than other nodes because they actually 00616 // "use" the value in the predecessor basic blocks they correspond to. 00617 BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1)); 00618 Assert2(DS->dominates(OpBlock, PredBB) || 00619 !DS->dominates(&BB->getParent()->getEntryBlock(), PredBB), 00620 "Instruction does not dominate all uses!", Op, &I); 00621 } 00622 } 00623 } 00624 InstsInThisBlock.insert(&I); 00625 } 00626 00627 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways. 00628 /// 00629 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { 00630 Function *IF = CI.getCalledFunction(); 00631 const FunctionType *FT = IF->getFunctionType(); 00632 Assert1(IF->isExternal(), "Intrinsic functions should never be defined!", IF); 00633 unsigned NumArgs = 0; 00634 00635 // FIXME: this should check the return type of each intrinsic as well, also 00636 // arguments! 00637 switch (ID) { 00638 case Intrinsic::vastart: 00639 Assert1(CI.getParent()->getParent()->getFunctionType()->isVarArg(), 00640 "llvm.va_start intrinsic may only occur in function with variable" 00641 " args!", &CI); 00642 NumArgs = 0; 00643 break; 00644 case Intrinsic::vaend: NumArgs = 1; break; 00645 case Intrinsic::vacopy: NumArgs = 1; break; 00646 00647 case Intrinsic::returnaddress: 00648 case Intrinsic::frameaddress: 00649 Assert1(isa<PointerType>(FT->getReturnType()), 00650 "llvm.(frame|return)address must return pointers", IF); 00651 Assert1(FT->getNumParams() == 1 && isa<ConstantInt>(CI.getOperand(1)), 00652 "llvm.(frame|return)address require a single constant integer argument", 00653 &CI); 00654 NumArgs = 1; 00655 break; 00656 00657 // Verify that read and write port have integral parameters of the correct 00658 // signed-ness. 00659 case Intrinsic::writeport: 00660 Assert1(FT->getNumParams() == 2, 00661 "Illegal # arguments for intrinsic function!", IF); 00662 Assert1(FT->getParamType(0)->isIntegral(), 00663 "First argument not unsigned int!", IF); 00664 Assert1(FT->getParamType(1)->isUnsigned(), 00665 "First argument not unsigned int!", IF); 00666 NumArgs = 2; 00667 break; 00668 00669 case Intrinsic::writeio: 00670 Assert1(FT->getNumParams() == 2, 00671 "Illegal # arguments for intrinsic function!", IF); 00672 Assert1(FT->getParamType(0)->isFirstClassType(), 00673 "First argument not a first class type!", IF); 00674 Assert1(isa<PointerType>(FT->getParamType(1)), 00675 "Second argument not a pointer!", IF); 00676 NumArgs = 2; 00677 break; 00678 00679 case Intrinsic::readport: 00680 Assert1(FT->getNumParams() == 1, 00681 "Illegal # arguments for intrinsic function!", IF); 00682 Assert1(FT->getReturnType()->isFirstClassType(), 00683 "Return type is not a first class type!", IF); 00684 Assert1(FT->getParamType(0)->isUnsigned(), 00685 "First argument not unsigned int!", IF); 00686 NumArgs = 1; 00687 break; 00688 00689 case Intrinsic::readio: { 00690 const PointerType *ParamType = dyn_cast<PointerType>(FT->getParamType(0)); 00691 const Type *ReturnType = FT->getReturnType(); 00692 00693 Assert1(FT->getNumParams() == 1, 00694 "Illegal # arguments for intrinsic function!", IF); 00695 Assert1(ParamType, "First argument not a pointer!", IF); 00696 Assert1(ParamType->getElementType() == ReturnType, 00697 "Pointer type doesn't match return type!", IF); 00698 NumArgs = 1; 00699 break; 00700 } 00701 00702 case Intrinsic::isunordered: 00703 Assert1(FT->getNumParams() == 2, 00704 "Illegal # arguments for intrinsic function!", IF); 00705 Assert1(FT->getReturnType() == Type::BoolTy, 00706 "Return type is not bool!", IF); 00707 Assert1(FT->getParamType(0) == FT->getParamType(1), 00708 "Arguments must be of the same type!", IF); 00709 Assert1(FT->getParamType(0)->isFloatingPoint(), 00710 "Argument is not a floating point type!", IF); 00711 NumArgs = 2; 00712 break; 00713 00714 case Intrinsic::setjmp: NumArgs = 1; break; 00715 case Intrinsic::longjmp: NumArgs = 2; break; 00716 case Intrinsic::sigsetjmp: NumArgs = 2; break; 00717 case Intrinsic::siglongjmp: NumArgs = 2; break; 00718 00719 case Intrinsic::gcroot: 00720 Assert1(FT->getNumParams() == 2, 00721 "Illegal # arguments for intrinsic function!", IF); 00722 Assert1(isa<Constant>(CI.getOperand(2)), 00723 "Second argument to llvm.gcroot must be a constant!", &CI); 00724 NumArgs = 2; 00725 break; 00726 case Intrinsic::gcread: NumArgs = 2; break; 00727 case Intrinsic::gcwrite: NumArgs = 3; break; 00728 00729 case Intrinsic::dbg_stoppoint: NumArgs = 4; break; 00730 case Intrinsic::dbg_region_start:NumArgs = 1; break; 00731 case Intrinsic::dbg_region_end: NumArgs = 1; break; 00732 case Intrinsic::dbg_func_start: NumArgs = 1; break; 00733 case Intrinsic::dbg_declare: NumArgs = 1; break; 00734 00735 case Intrinsic::memcpy: NumArgs = 4; break; 00736 case Intrinsic::memmove: NumArgs = 4; break; 00737 case Intrinsic::memset: NumArgs = 4; break; 00738 00739 case Intrinsic::not_intrinsic: 00740 assert(0 && "Invalid intrinsic!"); NumArgs = 0; break; 00741 } 00742 00743 Assert1(FT->getNumParams() == NumArgs || (FT->getNumParams() < NumArgs && 00744 FT->isVarArg()), 00745 "Illegal # arguments for intrinsic function!", IF); 00746 } 00747 00748 00749 //===----------------------------------------------------------------------===// 00750 // Implement the public interfaces to this file... 00751 //===----------------------------------------------------------------------===// 00752 00753 FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) { 00754 return new Verifier(action); 00755 } 00756 00757 00758 // verifyFunction - Create 00759 bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) { 00760 Function &F = const_cast<Function&>(f); 00761 assert(!F.isExternal() && "Cannot verify external functions"); 00762 00763 FunctionPassManager FPM(new ExistingModuleProvider(F.getParent())); 00764 Verifier *V = new Verifier(action); 00765 FPM.add(V); 00766 FPM.run(F); 00767 return V->Broken; 00768 } 00769 00770 /// verifyModule - Check a module for errors, printing messages on stderr. 00771 /// Return true if the module is corrupt. 00772 /// 00773 bool llvm::verifyModule(const Module &M, VerifierFailureAction action) { 00774 PassManager PM; 00775 Verifier *V = new Verifier(action); 00776 PM.add(V); 00777 PM.run((Module&)M); 00778 return V->Broken; 00779 } 00780 00781 // vim: sw=2