" "y
< 0INC4,
NG\ Aqg

LORIA - UMR 7503 - (INRIA - CNRS - University Henri Poincaré)

Campus Scientifique, BP 239,
54506 Vandoeuvre-les-Nancy Cedex

FRANCE

Programmer’s Reference Manual

ZOISAA(C

Operating System

Lisaac V.0.2

The power of simplicity at work for Operating Systems
by

SONNTAG Benoit
BoOUTET Jérome

{bsonntag, boutet}@loria.fr

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Mis en page avec la classe thloria.

Contents

1 Introduction

1.1 Motivation e
1.2 The LISAAC compiler e
1.3 Why Using LISAAC o o e
1.4 Notations e

2 Quickstart - for beginners

2.1 LISAAC : a prototype based language
2.2 Notations e
2.3 Objects e e
2.4 Slots
2.4.1 Methods and functions
2.4.2 Local variables
2.5 Compilation and running L
2.6 How to write
2.6.1 Types e
2.6.2 My first LISAAC program
2.6.3 Howtoprint
264 Howtoread e
2.6.5 Conditionals: ifelse
26.6 Aloop: do_while
2.7 LISAAC : an object oriented language oL
2.7.1 Clone e
2.7.2 Inheritance

3 Language Reference

3.1 Lexical and syntax overviewo
3.1.1 Lexical overview
3.1.2 Syntax overview

o 1 o ot G

Ne]

10
10
11
11
16
16
17
17
18
18
18
19
20
20
21
23

Contents

3.2 Sections identifiers 30
3.2.1 The HEADER section 31
3.2.2 The INHERIT section 32
3.2.3 The MAPPING section 47
3.24 The INTERRUPT section 48
3.2.5 The EXTERNAL section 49
3.2.6 Other sections 50

3.3 Typenames e 55
3.3.1 Genericity 55
3.3.2 Invariant’s type control L oo 55
3.3.3 Particular type: SELF typeo 56
3.3.4 Default value of a slot according to its type. 58

3.4 Slots 58
3.4.1 Sharedslots e 58
3.42 Nonsharedslots 62
3.4.3 Expandedslots 64

3.5 Slot descriptors e e 70
3.5.1 Keywordslots e 70
3.5.2 Binary messages e e e e 71
3.50.3 Unary messageso i e e 72

3.6 Message send, late binding o oL 74

3.7 Assignment 74
3.7.1 Typing rules e 75
3.7.2 Implicit-receiver messageso 75
3.7.3 A particular assignment: 7= L o oo 76
3.74 Binary message send Lo 7
3.7.5 Unary message send o 7

3.8 Statement lists 77
3.8.1 Return valuesof lists 78
3.82 Useoflists e 79
3.8.3 Local variables in statement lists, 82

3.9 Statement blocks 83
3.9.1 Return values of blocks 84
3.92 Useofblocks e 84
3.9.3 Argument and local variables in statement blocks 86

3.10 Auto-cast 87

3.11 Tools for programming by contract 87

3.12

The
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

The
5.1

5.2

3.11.1 Requires and Ensures 0 0 89

3.11.2 Invariant 90
3.11.3 Resultand Old 91
3.11.4 Inheritance e 92
Externals e 93
3.12.1 Slot external 93
3.122 Ccodein Lisaac e 93
3.12.3 Lisaaccodein C e 95
3.12.4 Lisaac external 96
LisaAAc Library 97
OBJECT . . . e 97
NUMERIC e 98
CHARACTER e e 100
BOOLEAN e 100
BLOCK . . . e 102
NATIVE _ARRAY e 102
STRING e 103
FIXED ARRAY 105
STD INPUT e e e e 106
STD OUTPUT e e e e 107
COMMAND LINE e 107
Default values e 107
Lisaac World 109
Glossary of useful selectors 109
5.1.1 Assignment 109
51.2 Cloning e 109
5.1.3 CompariSons e e e 109
5.1.4 Numeric operations 110
5.1.5 Logical operations (BOOLEAN) (see 5.2.1) 110
5.1.6 Bitwise operations (INTEGER) v v v 110
51.7 Control 110
5.1.8 Debugging 111
Control Structures: Booleans and Conditionals 111
5.2.1 Booleans expression oo 111
5.2.2 Conditionals 112

Contents

9.3 Loops . . . e e 112
5.3.1 Pre-tested loopingo 112

5.3.2 Post-tested loopingo 113

5.3.3 Iterators looping 113

54 Collections e 113
5.4.1 List of collections e 113

54.2 Example e 113
Bibliography 115
Index 117

Chapter 0001b

Introduction

LisAAcC is the first object-oriented language based on prototype concepts really compiled, with
system programming facilities. Actually, two languages are at the origin of LiSAAC : the Self
language [US87] for its flexibility, the concept of dynamic inheritance and the Eiffel language
[Mey94] for its static typing and security (programming by contract). The LISAAC compiler
produce optimized C Ansi Code, which can then be compiled on every architecture with an
appropriate C Compiler (GCC or others), which made LISAAC a real multi-platform language.
Moreover, results of compiled objects show that it is possible to obtain executable from a high-
level prototype-based language that are as fast as C programs.

1.1 Motivation

The design as well as the implementation of the ISAAC ! operating system [Son00] led us to
design a new programming language named LISAAC .

LISAAC integrates communications protection mechanisms, system interruptions support as
well as drivers memory mapping. The use of prototypes and especially dynamic inheritance fit
a flexible operating system in the making.

The purpose of our project is to break with the internal rigidity of current operating systems
architecture that mainly depends, in our opinion, on the low-level languages that have been used
to write them.

Thus, our Isaac operating system has been fully written with a high-level prototype-based lan-

guage.

The evolution of programming languages currently fulfills nowadays data-processing needs
and constraints in terms of software conception and production.
Nevertheless, modern languages such as object-oriented languages have not brought a real al-
ternative to procedural programming languages like C in the development of modern operating
systems.

Historically, during the creation of an operating system, constraints related to the hardware
programming have been systematically fulfilled with a low-level language, such as the C lan-

guage.
This choice leads in general to a lack of flexibility that can be felt at the applicative layer.

'Tsaac:Object-oriented Operating System.

Chapter 1. Introduction

Our thoughts led us to design and implement a new object-oriented language with extra
facilities useful for the implementation of an operating system.
In order to achieve that goal, we started to look for an existing object-oriented language with
powerful characteristics in terms of flexibility and expressiveness.

Our language also comes from an experiment in the creation of an operating system based
on dynamic objects, whose possibilities are a subtle mix of Self with Eiffel, with the addition of
some low-level capabilities of the C language. From the Eiffel language, we borrowed a kind of
static typing form and programming by contract, using assertions to securise programming.

Our language LISAAC is the first compiled prototype-based language really usable. Compiled
objects remain objects with all their capacities, which preserved all the expressivity. Hardware
facilities are included in the native language, such as mapping capability or interrupt manage-
ment.

1.2 The LISAAC compiler

The LisAAC compiler produce optimized C Ansi Code, which can then be compiled on every
architecture with an appropriate C Compiler (GCC or others).

The compiler is fully written in LISAAC , the boostrap was done since 2004, january.
The mechanism of the bootstrap is explained in the following figure.

State 1: the first version of the LISAAC compiler is written in another language (here Eiffel),
and compiled as every other Eiffel code with the Eiffel Compiler. It produces an executable, the
first version of LISAAC compiler.

State 2: the code of the compiler is fully translated in LiISAAC . We use our LISAAC compiler
(version 1) to compile the code (as we can done for every program written in LISAAC). Tt
produces an executable, the second version of LISAAC compiler. In fact, if there is no error,
version 1 and version 2 operates equally. This compiler produce executable code from LISAAC |,
but it was built using Eiffel technology, so it is depend of Eiffel.

State 3: the code of the compiler, written in LISAAC and used at the state 2, is compiled
again, using the version 2 of our LISAAC compiler. It produces the version 3 of the LiSAAC
compiler.

Every iteration of the state 3 don’t change the produced executable, we are in a stable state.
Obviously, the code of the compiler must be sure with no error before starting the bootstrap
operation. The advantage of this boostrap is that we are now totally independent of another
language: the compiler is now written in LISAAC , with a usable version compiled with itself:
the compiler is built using only LISAAC technology.

1.3. Why Using LISAAC

2

% Lisaac

i 7
i

/\/ersi on 1,
YIPPPP7 PP

/ Execut abl e

Eiffel
Conpi | er

@ N Lisaac § ()Iglr;;?lagr
N Conpi | er
NN e

/ Execut abl e

Li saac

The compiler can be run on every architecture who have a C compiler.

Generic

Conpi | er

Architecture Specific

1.3 Why Using LISAAC

LisAAcC was first developped to implement ISAAC Operating System but became an independent
object oriented language, who can be used to write all kind of programs.

It deals with numerous advantages: it's a powerful high level language, based on prototype
concepts. Programming security was from the beginning a real aspect of LISAAC , with the
static typing and assertion management (programming by contract) such as Requires, Ensures
and Inwariant, and lot of verification during compilation.

Chapter 1. Introduction

Numerous high level optimizations give efficiency and speed to compiled code.

A large library, fully written in LISAAC , supply the programmer with a large scale of built-in
prototypes and functions, such as:

e Number (signed / unsigned 8, 16, 32, 64 bits integer; real; infinite accuracy integer)
e Collections: variable arrays, linked-lists, dictionary (associativity key-value), set

e Hash coding

e Memory management

e Input / Output

e File System (Unix / Linux ; Windows / Dos)

e Image format (bitmap; vectorial)

e Graphic (8, 15, 16, 24, 32 bits)

e Time and Date

1.4 Notations

In this document, you’ll find memory representation of objects. Here is the caption of the figures.

Pointer \

section nherit —» | | [+ parent @ >p[-index 5]
Integer value
] L EETN E1 s Father
Reference .
Section Public — | P [- y a E o— Embedded object (Expanded)
Sot > - sl ot _obj |
- P |+ count ||
- slot_obj2
Name of the object —» EXAMPLE \ obj ect 2
Indirection point

B

obj ect3

23

Chapter 0010b

Quickstart - for beginners

After the read of this chapter, you would be able to write simples programs in LISAAC .
The next chapter will give you more of LISAAC , allowing you to use all the capabilities and the
power of LISAAC .

2.1 LISAAC : a prototype based language

LisAAC is an object oriented language based on prototype concepts.

Class and prototype languages differs on few but important points. In a class language, you
have to instance an object from its description in order to make it alive.

In a prototype language, a description of object is already alive. In LISAAC you can use directly
the “master” object without instanciate it.

This particular object is written in capitals and can be use as any object.

Other objects are obtained by cloning the “master” object. The clone routine is not a hard-coded
function but a function from library.

I nstance
C ass

clone
— Prototype

With this property, we can see that inheritance is particular. Objects inherits from alive objects,
with their own live. It permits numerous variations from inheritance, depending of its type (
+ or -), as sharing parents between 2 cloned object, or dynamic inheritance (in changing the
reference on the parent). We will see this later.

Chapter 2. Quickstart - for beginners

Cl ass Pr ot ot ype

I nherit I nherit I nherit

I nstance clone

Objects are the fundamental entities in LISAAC ; every entity in a LISAAC program is represented
by one or several objects. Even control is handled by objects: blocks (3.9 page 83) are LISAAC
closures used to implement user-defined control structures. An object is composed of a set of
slots. A slot is a name-value pair. Slots may contain references to other objects. When a slot is
found during a message lookup (see section 3.2.2.0 page 44), the object in the slot is evaluated.

2.2 Notations

LISAAC is case sensitive, and respects the following constraints:
Variables and slots are written with small letters (z,counter,...).

Type of objects (or "master" name object / prototype) are in capital letters (INTEGER,BOOLEAN,. . .).

Keywords are written with small letters but starts with a capital letter (Section,HEADER,...).

Symbol := is an affectation. Be careful not to use symbol = which compares 2 objects and
returns a boolean.
You will see symbol —+ or - before the slots. It defines the type of the slot and is mandatory !
Its role will be explained in the following pages.

A sequence ends with ; .If not, the compiler continues to the following line.
You can define a list of sequence between (and). See section 3.8 on page 77 for more
information on instruction lists.

Comments begin with // and stops at the end of the line.
For comments on more than one line, start with /* and end at */.

2.3 Objects

In LisAAC , objects are the fundamental entities. Everything is represented by one or more
objects, from a simple Integer or Boolean to more complex entities like arrays or window.

One object is written in one and only one file, named with the name of the object and with the
extension .li .

For example, INTEGER.LI, BOOLEAN.LI,WINDOW.LI, ...

10

2.4. Slots

A source code of an object is divided in sections.
Section Header is needed. In this section, you define the name of the object and the category.
Here we use the APPLICATION category. For the use of other categories see later. Then you have
the Section Public, in which you will write the slot who will be executed (see next paragraph).

Section, Header and Public are keywords.

Example: file HELLO WORLD.LI

Section Header

+ name = HELLO WORLD; // Name is in capital letters

- category := APPLICATION; // Category is in capital letters
Section Public

VE Y

A Note that after Section xxxx there is no ;.

2.4 Slots

An object is composed by slots, which is a service given by the object.

A slot can be a data as well as code (function or method).

A slot is defined with a name. It can also add a static type for datas and functions.

A slot is prefixed by -+ or - sign, which give the type of slot (to simplify, with - value is shared
between objects, with 4 value is local to the object, we describe this later).

The type is defined with the sign : as prefix of the type.

Section Header

+ name = MY_OBJECT; // Name is in capital letters
- category := APPLICATION; // Category is in capital letters
Section Public
+ slot:INTEGER; // Value local to the object, init with INTEGER default va
- slot2:INTEGER := 3; // Value shared between objects, init with value ’3’

P| +sl ot (o]

-slot2 3
MY_OBJECT
P| +slot O

-slot2

O her object of type MY_OBJECT
All of this will be explain later.
2.4.1 Methods and functions

Simple slots

As said before, a slot can also be function or method.
Methods(or routines) are a fundamental notion in object-oriented languages, together with their

11

Chapter 2. Quickstart - for beginners

companion concept late binding (or message send, routine call, method call, dynamic dispatch,

).

There is 2 types of code slot: the first one is executed within the load of the object.
It’s defined as a default value of a variable.

+ slot :INTEGER
+ slot2:INTEGER

3+ 4 // Operation ’3 + 4’ ig evaluated at init
slot *x 2;

The second type is executed only on the call of the slot. It’s defined with the <- symbol.

+ slot :INTEGER := 3;
+ slot2 :INTEGER <- (5 + slot;) ; // Operation ’5 + slot’ evaluated when calling slot2

More complex code can be defined within parenthesis.

+ slot :INTEGER := 3;
+ slot2 :INTEGER := 4;
+ slot3 <- // Slot without return value
(
slot := slot + 3;
slot2 := slot + 5;
slot2 := slot2 * 3;
);

Note that you can write all your text on the same line, but it’s more easy to read to align
the code like that. The return value of a code is the value of the last code (without ;) before)

+ slot :INTEGER := 3;
+ slot2 :INTEGER <-
(
slot // Return Value, evaluated with call of codeb
);
+ slot3:INTEGER :=
(
slot := slot + 6;
slot := slot2 * 5;
slot // Return Value, evaluated during load of the object
);

A Be carefull, the type of return of the slot must be the same as the value of the type of
returned value.

+ slot :INTEGER := 3;
+ slot2 :INTEGER := 4;
+ slot3 :BOOLEAN <-
(
slot = slot2 // Returns TRUE if equal, FALSE if not

12

2.4. Slots

)3
+ slot4:INTEGER <-
(
slot3 // Error: type are differents
)3

Call of a slot

The call of a slot depends on when it happens.

File object1.li

Section Header
+ name := OBJECTI];
- category := APPLICATION;

Section Public
+ slot :INTEGER := 3;
+ slot2 :INTEGER <-
(
slot * 2 + 4 // Call of ’slot’ from the same object
);

An object is initialized with NULL value, and a call on it will fall in error. In a prototype
language (see 2.1 page 9), the 'master’ object (written in capital) is alive without need to in-
stanciate it. Other objects are created by cloning the 'master’ object using the clone slot. For
more information see 2.7 page 20.

File main _object.li

Section Header
+ name := MAIN OBJECT;
- category := APPLICATION;

Section Public
+ slot _object:0BJECTI1;
+ slot _object2 :INTEGER <-
(
slot _object := OBJECTI.clone; // clone of the OBJECT1 object.
slot _object.slot2 + 5 // Call of ’slot2’ on ’slot_object’ of OBJECT1 type
)3

The symbol . defines a call of a slot on another object.

Slots with arguments

You can also call a slot with parameters.

+ slot a:INTEGER :INTEGER <- // 1 parameter. You don’t need parenthesis

(

13

Chapter 2. Quickstart - for beginners

)

+ slot2 (a,b:INTEGER) :INTEGER <- // 2 parameters of the same type
(

a+b

)

+ slot3 (a:INTEGER,b:CHARACTER) :INTEGER <- // 2 parameters, type different
(

b.print;
a *x 3
)
+ slot4 :INTEGER <-
(
slot 3 + slot2 (2,3) + slot3 (4,’y’) // call of slots
)

You can define your own keywords to separate parameters.

+ slot a:INTEGER value b:INTEGER :INTEGER <- // value is my defined-keyword

(
a+bx 2

)

+ slot2 (a,b:INTEGER) write c:CHARACTER :INTEGER <-
(

c.print;

a*xb

)

+ slot3 a:INTEGER multiply b:INTEGER add c:INTEGER:INTEGER <-

(
a* (b + c)

)

+ slot4 :INTEGER <-
(

slot 3 + (slot2 (2,3) write ’c’) + (slot3 4 multiply 5 add 6) // call of slots
);

Assignment of slots

A Be carefull, you can’t assign a value to a slot outside the object, as defined in the following
example.

Section Header
+ name := OBJECT];

14

2.4. Slots

- category := APPLICATION;

Section Public
+ value:INTEGER := 3;

Section Header
+ name := MAIN _OBJECT;
- category := APPLICATION;

Section Public
+ slot _object:0BJECTI;

- method <-
(

slot_object := OBJECT].clone;

slot_object.value := 4; // The compiler will stop
)3

This is done to protect slots of objects. When you define an object, you must specify the
slots who can change by creating methods dedicated for that. You can find this tedious, but
it will insure that you have the total control of what is done with your object. Just imagine a
slot counter who can be modified by anybody working with your object, ... You can then define
conditions inside the method to protect more your object.

Ezample: use of a 'setter’

Section Header
+ name 1= OBJECTI1;
- category := APPLICATION;

Section Public

+ value:INTEGER := 3;
- set value v:INTEGER <- // Define your own setter
(
(v > 0).if {
value := v;
} else {
value := 0;
};
)3
Section Header
+ name := MAIN _OBJECT;
- category := APPLICATION;

Section Public
+ slot_object:OBJECTI;

- method <-

(
slot_object := OBJECT].clone;
slot_object.set value 4;

)

15

Chapter 2. Quickstart - for beginners

2.4.2 Local variables

You can define local variable inside your slot. The syntax is the same as for a slot. A local
variable will be often not shared (4). The local variable is initialized with the default value of

its type.

+ slot a:INTEGER :INTEGER <-
(+ varl:INTEGER;

+ var2,var3:INTEGER;

+ result:INTEGER;

varl := a * 2;
var?2 := a + 4;
var3 := a - b5;
result := varl + var2 - vars3;

result

)

A Note that you must define all the variable in the first lines of your slot, without code
inside this definition list.

+ slot a:INTEGER :INTEGER <-
(+ varl:INTEGER;

+ var2:INTEGER;

+ result:INTEGER;

varl := a * 2;

var2 := a + 4;

+ var3:INTEGER; // The compiler will stop with error
var3 := a - b5;

result := varl + var2 - var3;

result

)

2.5 Compilation and running
To compile your LISAAC programs, you’ll have simply to type:
lisaac my object.li

It produces 2 files: my_object.c and my_object, who is an executable. By default LisaAcC
uses GCC to compile the C code produced.

Running an object

In your main object, you must have only one slot in the Section Public. It will be executed
at the run of your compiled file.

Section Header
+ name := OBJECT _TO_RUN;

24

2.6. How to write

- category := APPLICATION;
Section Public
+ value:INTEGER := 3;
- go <-
(
value.print;
);

When compiling this program there will be an error: 2 entry points. To correct this error, the
value slot must be written in a Section Private, which is a particular Section, visible only in
the current object.

Section Header

+ name := OBJECT _TO_RUN;

- category := APPLICATION;
Section Private

+ value:INTEGER := 3;
Section Public

- go < -

(

value. print;

)

For more information on slots, methods and method calls, see section 3.5 page 70 and section
3.6 page T4.

2.6 How to write

2.6.1 Types

There is no built-in types in LISAAC . Every type is from the library (you can check the source
code to see how it is implemented).
The base types you can use are :

e INTEGER with the arithmetic operations and lot of other (implemented in NUMERIC object,
parent of all number types)

Notations: 12, 12d: decimal value
1BAh, OFFh: hexadecimal value
01010b, 10b: binary value
140, 60: octal value
10KB, 10MB, 10GB: system facility

e BOOLEAN: you have 2 ’values’ for BOOLEAN: TRUE or FALSE. Each of this values are also
objects.

e CHARACTER: a simple character
Notations: ’a’, ’Z’°, ’}” simple character

"In’, |t 7|r” escape character
11017, \0AR| " code character

17

Chapter 2. Quickstart - for beginners

e STRING CONSTANT: composed by multiple characters, cannot be modified, defined be-

tween " "

Notations: "Hello World\n": simple string

e STRING: string to built with functions of the library
e FIXED ARRAY: an array with fixed lower bound, with lot of operations
e BLOCK: a block of code, defined between { and }

See chapter on the library for more details.

2.6.2 My first LISAAC program

Here is the classical “Hello World” program, that writes to the standard output:
Edit File HELLO _WORLD.LI

Section Header
+ name := HELLO WORLD;
- category := APPLICATION;

Section Public
- main := "Hello world !".print; // the slot executed

Compile with: lisaac hello world or lisaac hello world.li It produces an executable file called
hello world.

In this first LISAAC program, main is the root of the system, or beginning of execution (main
program). The name doesn’t matter, it would be “start”, “begin” or whatever you want.

The only instruction in the main program is evaluated (i.e. executed) immediately at program
startup.

Everything is object in LISAAC , as you can see in this example: the slot print is called on
the String object “Hello world !”.

See chapter 3 for more explanation.

2.6.3 How to print

As we see before, the method print is a library method in the STRING prototype. But there is
also the same method for NUMERIC types.

"Hello World !".print ;
3.print;
my_string.print; // object of STRING type (created before, of course)

2.6.4 How to read

Now, let’s also read from the standard input:

18

2.6. How to write

Section Header
- name := HOW_TO_ READ;
- category := APPLICATION;

Section Public
- main := // a multi-line main
(
"Enter your name : ".print;
10.read_string;
("Welcome, " + 10.last _string) .print;

)

last _string returns a reference to the last string that was entered from the standard output.
Note the use of the 10 predefined, initial prototype, for input-output.

2.6.5 Conditionals: if else

A basic control structure in many languages is the if - then - else construct. In LiSAAC ,
the then is omitted; the appropriate construction?. As we see before, everything is object, this
conditonal method deals with the same pattern: condition.if block true else block false
condition is a BOOLEAN object (true or false) on which you call the method if with 2 param-
eters: block true and block false (objects of type BLOCK), separated by the keyword else

Section Header
- name := [IF_ELSE;
- category := APPLICATION;

Section Public
- main :=
(+ gender:CHARACTER; // a local variable

10.put_string "Enter your gender (M/F) : ";
10.read_character;

gender := 10.last_character;
(gender == *M?).if { // conditional
10.put_string "Hello Mister !"; // then part
} else {
10.put_string "Hello Miss !"; // else part
s
)

Note that you can use "my_ string”.print or else 10.put _string "my_string”. It has the
same effect.

Note the use of a local variable gender to hold the user’s answer. See section 3.8.3 page 82
for local variable declaration in lists of instructions.

2if else in LISAAC is not a language construct per se, but a simple method call.

19

Chapter 2. Quickstart - for beginners

The conditional is made of a boolean expression (gender == ’M’) to which the message if
else is sent. See section 3.6 about message send, and section 3.9.2.0 page 85 about booleans
and conditionals.

Note that a list of instructions and an expression are the same syntactical construct, between
parentheses. See section 3.8.1 page 78 about return values in lists of instructions.

The { /* ... /* } define a list of instruction like a classic list, but its type is BLOCK and its
evaluation is delayed (see section 3.9 page 83).

2.6.6 A loop: do_while

Here is a conditional loop in LISAAC :

Section Header
- name := DO_WHILE;
- category := APPLICATION;

Section Public
- main :=
(+ gender:CHARACTER;

10.put_string "Enter your gender (M/F) : ";

{
10.read_character;
gender := 10.last_character;
}.do_while {(gender != ’M’) && {gender != ’F’}}; // conditional loop

(gender == M) .if {
10.put__string "Hello Mister !";
} else {
10.put__string "Hello Miss !";
};
)3

The input block is executed at least once, and continues as long as the loop condition remains
true. This kind of loops, as well as others, is explained in section 3.9.2.0, page 85.

2.7 LISAAC : an object oriented language

LISAAC is an object oriented language. You can build an application using more than one object,
it’s what is done when you call methods on library objects. The compiler automatically link all
of the needed objects to your main object (see compiler chapter for more informations).

When you run a program, only the 'master’ objects (written in capital) are alive. Others are
initialized with NULL and you can’t use them (there will be a compiler stop).

Section Header
+ name := OBJECTI1;

- category := APPLICATION;

20

2.7. LISAAC : an object oriented language

Section Public
+ slot <- /% ... %/

Section Header

+ name := MAIN _ OBJECT;
- category := APPLICATION;
Section Public

- main <-

(+ my_object:OBJECTI;
OBJECT]1 .slot; // No problem, you use the ’master’ object
my_object.slot; // Compiler will stop in error ’CALL ON NULL’

)

If you want to use an object you have to use the 'clone’ operation from the 'master’ object
(see 2.7.1).

The ’Self’ object

We call self the current living object. When you call a slot inside an object, it implicitly call the
slot of the self object. The keyword Self can be used to explicitly call the self object (like "this"
in Java and C++ or "Current" in Eiffel).

Section Header

+ name := EXAMPLE;

- category := APPLICATION;
Section Public

+ slot data:INTEGER := 3;

- main <-
(

Self.slot data.print; // produce exactly the same code as slot data.print;

)

A Note that the self is different between all the objects, even if they have the same type,
because Self is an object.

2.7.1 Clone

You can clone an object to create a new object of the same type. The method clone is defined
in the OBJECT type in the library.

The slot name must be defined with '+’ if you want to clone it. As we see before, you have
to use clone in order to work with an object.

Section Header

+ name := OBJECTI1;
- category := APPLICATION;
Section Public
+ slot <- /% ... %/

21

Chapter 2. Quickstart - for beginners

Section Header
+ name := MAIN _OBJECT;
- category := APPLICATION;
Section Public

- main <-
(+ my_object:OBJECT];
my_object := OBJECTL.clone;
my_object.slot; // No problem there, my_object is not Null

)

Ezample: memory representation (we don’t represent slots 'set x’ and ’set _count’ to simplify
the example, see later the real representation)

Section Header
+ name := FOO;
- category := APPLICATION;

Section Public
+ X :INTEGER;

- set x V:INTEGER <- (x := v;);

- count:INTEGER;

- set count V:INTEGER <- (count := v;);
Pl +x)
-count @
FOO
new_foo := FOO.clone;
Pl +x O
-count o]
FCO
Pl +x o
-count
new_foo : = FOO. cl one

new_foo.set_x 1;
new_foo.set count 2;

Pl +x (o]

-count 2
FOO
P| +x 1

-count

new_f oo

22

2.7. LISAAC : an object oriented language

2.7.2 Inheritance

You can define inheritance for objects. You can define as many parents as you want. A parent
is defined in a Section Inherit with slots following the same rules as other slots. A parent is
also an object on which you can send messages. If a slot called on an object is not found in this
object, the lookup algorithm search in the parents to find the correct slot. This algorithm do an
ordered search from the first declared slot in the inheritance section.

Ezample: Let us see an inheritance with the parent defined with ’-’

Object FATHER

Section Header

+ name := FATHER;

- category := APPLICATION;
Section Public

+ X ! INTEGER;

-inc_x <- (x:=x+1;);

- count:INTEGER;

- inc_count <- (count := count + 1;);

Object SON

Section Header

+ name := SON;

- category := APPLICATION;
Section Inherit

- parent:FATHER := FATHER; // name of the slot doesn’t matter

Section Public
- change parent p:FATHER <- (parent := p;);

P +x [o

-count @

FATHER

new_son := SON.clone;

P [+x [5)
-count @
A

FATHER

[oo J—9]

SON

[oo

new_son : = SON.cl one

Chapter 2. Quickstart - for beginners

new_son.inc Xx;
new_son.inc count;

Pl +x 1
-count @

FATHER

[oo J—19]

SON

[[paren_]

new_son

new_son.change parent (FATHER.clone);

P [+x [1
-count E
FATHER
Pl +x 1
[[paren__] count

SON FATHER. cl one

[oo

new_son

new_son.inc X;
new_son.inc count;

P| +x 1
-count

]

FATHER

P| +x 2
-count

[[paren_]

SON

[oo

new_son

FATHER. cl one

Ezxample 2: Let us see the same example with the parent defined with '+’

Object FATHER

Section Header

+ name := FATHER;
- category := APPLICATION;
Section Public
+ X INTEGER;
-inc_x <- (x :=x+1;);
- count:INTEGER;
- inc_count <- (count := count + 1;);

24

Section Header

2.7. LISAAC : an object oriented language

Object SON

o]

+ name := SON;
- category := APPLICATION;
Section Inherit
+ parent:FATHER := FATHER;
Section Public
- change parent p:FATHER <- (parent := p;);
P| +x (o)
-count
FATHER
II
SON
new_son := SON.clone;
P| +x o)
-count
FATHER 1
II
SON
II
new_son : = SON.cl one
new_son.inc_ x;
new_son.inc_count;
P| +x 1
-count
FATHER 1
II
SON
II

new_son.change parent

new_son

(FATHER.clone) ;

25

Chapter 2. Quickstart - for beginners

P| +x 1
- count E
FATHER
P| +x 1
- count
i [parent o] \
FATHER. cl one
SON
[Cpaen_of
new_son
new_son.inc Xx;
new_son.inc count;
Pl +x 1
-count @
FATHER
P| +x 2
-count
[Cpaen_of \
FATHER. cl one
SON

[[parent o]
new_son

26

Chapter 0011b

Language Reference

3.1 Lexical and syntax overview

Most features of the LiSAAC language come from Self. Like Self, LiISAAC does not have hard-coded
instructions for loops or hard-coded instructions for test statements.

The following syntax of LISAAC is described using “Extended Backus-Naur Form” (EBNF).
Terminal symbols are enclosed in single quotes or are written using lowercase letters. Non-
terminal are written using uppercase letters. The following table describes the semantic of
meta-symbols used:

‘ Symbol ‘ Function ‘ Description ‘
(/*...*/) | grouping a group of syntactic constructions
[/*...*/] | option an optional construction

{/*...*/ } | repetition | a repetition (zero or more times)
| alternative | separates alternative constructions
— production | separates the left and right hand
sides of a production

3.1.1 Lexical overview

The following rules draws up the list of the final syntactic elements of the grammar:

‘ Symbol ‘ Description ‘
section section identifier
identifier slot name, ...
operator unary or binary operator symbol
integer constant of type INTEGER
cap _identifier | type name: name of object or prototype
characters constant of type CHARACTER
string constant of type STRING
external external C code
affect symbol assignment slots
style clone comportement
type unary typing operation
result result identifier value

27

Chapter 3. Language Reference

section

identifier
operator
integer
cap _identifier
characters
string
external
affect
style

type
result
OP_CHAR

LOWER_CASE
UPPER_CASE
OCTAL_DIGIT
DECIMAL_DIGIT
HEXA_DIGIT
NORMAL_CHAR
ESCAPE_CHAR

NUMERIC_ESCAPE
NUMBER

Numbers

4

i R A S e A A A R A A A

"HEADER" | "INHERIT" | "PRIVATE" | "PUBLIC"
"MAPPING" | "INTERRUPT"

LOWER_CASE { (LOWER_CASE | DECIMAL_DIGIT | ’_’) }
OP_CHAR {OP_CHAR} ezcept affect symbol ="
NUMBER {"KB" | "MB" | "GB" }

UPPER_CASE { (UPPER_CASE | DECIMAL_DIGIT) | >_*}
**3 (NORMAL_CHAR | ESCAPE_CHAR) **?

>1> { NORMAL_CHAR | ESCAPE_CHAR } ">

»¢> { NORMAL_CHAR | ESCAPE_CHAR } *¢?

"e=n | ng_n | ne=n

140 | y_»

"Expanded" | "Separate"

"Result" {’_’ DECIMAL_DIGIT {DECIMAL_DIGITZ}}
7!7 |)@) |)#) | 7$7 |)%) | 7/\7 |)&) | 7<7 |)l)

)% | 14 | »_» |)=> | PR | 7/7 | Lhrdh) | 1> | 7\7
ad | b2 | ... | 0z

’A’|’B’|...|’Z’

RN I BN I L &

707|717|_._|797

00 | 010 | Sl a2 PA ... | R

any character except >\’ and **’

’\t’ | ’\b’ |)\n7 | 7\f) |)\r7 | ’\V’ | 7\a)
7\0) |)\\7 | 7\”| 7\--: | 7\?)
NUMERIC_ESCAPE

2\ Y integer?\?
OCTAL_DIGIT { OCTAL_DIGIT} ’0’
DECIMAL_DIGIT { DECIMAL_DIGIT} [’d’]
HEXA_DIGIT { HEXA_DIGIT} ’h’

Notation of numbers: 12, 12d: decimal value

1BAh, OFFh: hexadecimal value

01010b, 10b: binary value

140, 6o: octal value

10KB, 10MB, 10GB, 10hKB: system facility

Characters

Notations: ’a’, 'Z’, ’/’ simple character
In’, 7\t’, ’|r” escape character
11017, \0AhR|" code character

The complete list of escape sequence is:

\a : bell
\b : backspace
\f : formfeed

28

3.1. Lexical and syntax overview

\n : newline

\r : carriage return
\t : horizontal tab
\v : vertical tab

\ \ : backslash

You can define a number as a string between backslashes. You can specify the type of the
number (d or nothing for decimal, h for hexadecimal, o for byte, b for binary)
For example: "\123\’, ’\123d\’, "\4A3h\’,’\1010\’, \10010110b\’.

String
A STRING _CONSTANT is composed by multiple characters, and can’t be modified. It is defined

between " ".

Notations: "Hello World|n": simple string

For a better view of the source code, you can "cut" a string with the backslash character
following by the character ’space’, a tabulation or a Carry Return. The string will re-start on
the following backslash character.

For example: "This is \
\ an example for the \
\ string." will be transformated by the compiler in: "This is an example for the string"

3.1.2 Syntax overview

In order to clarify the presentation for human reading, the following grammar of LISAAC is
ambiguous. (Actually, the LISAAC parser use precedence and associativity rules to resolve ambi-
guities.)

29

Chapter 3. Language Reference

PROGRAM — {"Section" (section | TYPE_LIST) { SLOT } } [CONTRACT ’;’]
SLOT — style [>(? LOCAL *)° J TYPE_SLOT [?:? (TYPE | >(° TYPE_LIST ’)*)] [affect DEF_SLOT] °’
TYPE_SLOT — identifier [LOC_ARG { identifier LOC_ARG }]

| >\” operator >\’ [[("Left" | "Right") integer] LOC_ARG]
DEF_SLOT — [CONTRACT] EXPR [CONTRACT]
LOC_ARG — identifier>:’> TYPE

| >(>LOCAL?)°
LOCAL — {identifier [;> TYPE] *,° } identifier >:> TYPE
TYPE_LIST — TYPE{’,’TYPE}
TYPE — [type] PROTOTYPE
PROTOTYPE — cap_identifier [> [? TYPE_LIST { ¢dentifier TYPE_LIST} >]
EXPR — EXPR_PREFIX ([affect EXPR] | { operator EXPR_PREFIX})
EXPR_PREFIX — { operator} EXPR_MESSAGE
EXPR_MESSAGE — EXPR_BASE{ .’ SEND_MSG}
EXPR_BASE — EXPR_PRIMARY

| SEND_MSG

| "014d" identifier
EXPR_PRIMARY — "Self"

| PROTOTYPE

| result

| integer

| characters

| string

| (>GROUP?)?

| °{°> [LOC_ARG’;’]GROUP’}’

| external[?:> [1TYPE [>(? TYPE_LIST?)>1[?)’]]
GROUP — DEF_LOCAL{EXPR’;’} [EXPR{’,’> {EXPR’;’ }EXPR}]
CONTRACT — P [?DEF_LOCAL{ (EXPR’;’ |"...")}’]
DEF_LOCAL — {style LOCAL’;’ }
SEND_MSG — identifier [ARGUMENT { identifier ARGUMENT }]
ARGUMENT — EXPR_PRIMARY

|

identifier

3.2 Sections identifiers

The identifier of a section makes it possible to choose the interpretation of the slots which are
in this section. The interpretation of the slots relates to various aspects:

e heading and versioning information (cf. 3.2.1)

e the mode of application of the lookup mechanism: inheritance slot (see 3.2.2) or normal
message slot

e the exception mode (see 3.2.4)
e the data structure mapping mode (see 3.2.3)
e the link with C code mode (see 3.2.5)

e the classical code section (see 3.2.6)

30

3.2. Sections identifiers

3.2.1 The HEADER section

The HEADER section is mandatory. It is used to enumerate the general parameters of the pro-
totype. In this section, only the slots containing constants (character string, or numerical con-
stants) are authorized. This section must include the name slot which indicates the name of the
prototype itself.

Other optional slots can be added to comment on the prototype. The category slot indicates
the category of the prototype with respect to its level of protection related to the other prototypes.
There are 3 level of protection and a special level: KERNEL, DRIVER, APPLICATION and DOCILE.

e A KERNEL object can use only objects of KERNEL level.
e A DRIVER object can use objects of KERNEL or KERNEL level.

e An APPLICATION object can use objects of all levels.

A DOCILE object can be used by any other object and take the category of this object. Objects
of the library are DOCILE.

In addition, some conventions on the names of the slots have been fixed for the purpose of
maintenance and to ensure consistency of the information of the HEADER section.

You can’t modify any slot during the execution: imagine for example the consequences of
modifying the CATEGORY slot !

‘ Slot name ‘ Type ‘ Description ‘
‘name’ PROTOTYPE prototype’s name (mandatory)
‘category’ KERNEL, DRIVER protection level
APPLICATION,DOCILE | default is APPLICATION
'version’ REAL version number
"date’ STRING _CONSTANT release date
‘comment’ STRING _CONSTANT Comment
"author’ STRING _CONSTANT author’s name
'bibliography’ | STRING _CONSTANT programmer’s reference
'language’ STRING _CONSTANT encoding country language
'bug report’” | STRING CONSTANT bugs report list
‘type’ external C equivalent type (if any)
'default’ EXPRESSION Default value of the prototype (see 3.3.4)
‘external’ external C code which will be included in the C compiled file

Section Header

- name := MY_PROTOTYPE;

- category := APPLICATION;

- version := 1;

- date := "2004/06/05";

- comment := "An example";

- author := "Jerome Boutet";

- bibliography := "http://www.isaacos.com";
- language := "English";

- bug report := "None :-)";

- type := ‘unsigned long‘;
- default := 100;
- external := ‘#INCLUDE <STDIO.H>';

31

Chapter 3. Language Reference

Objects and clone
There are 3 kinds of objects, defined with the slot name.

e Slots defined with the the - symbol, like
- name := MY_NAME;

are non clonable. You can only use the MY NAME "master" object.

e Slots defined with the the - symbol, like
+ name := MY_NAME;

are clonable. You can use the MY NAME "master" object and every clone of it. Be carefull,
in this case the object must inherit an object containing the clone method (in most of the
cases object OBJECT).

e Slots defined with the the -+ symbol and the Expanded keyword, like
+ name := Expanded MY NAME;

are expanded ones. You don’t have to clone to use the object: every object of this type is
alive. In most of the cases expanded objects are simple objects, such as INTEGER, CHAR-
ACTER, BOOLEAN,. .. Usually you have to define the slot default and a type associated.

3.2.2 The INHERIT section

This section describes the inheritance slots of the object. Like in Self, a prototype can have
several parent slots (multiple inheritance is allowed). The only limitation is that parents and
sons must have the same CATEGORY. The slots of this section being mostly used by the lookup
mechanism, only slots without arguments are authorized.

Most of the time, a slot of the INHERIT section refers to another prototype, by simply indi-
cating its name. It is also possible to define a parent slot using an instruction list.

A It is not possible to define a parent slot using an instruction block, because that does
not have significance.

The assignment of a parent slot may occur at any time during execution to dynamically
change the ancestors of the prototype. A parent slot with no value at a given time (NULL) is
prohibited by the lookup algorithm (see section 3.2.2.0 page 44).

The number of inheritance slots is fixed in the source code. Adding a new inheritance slot
during the execution is not allowed in LISAAC .

Slots in the INHERIT section are not visible from outside of the object itself. Accessing a
parent slot simply returns the corresponding parent object (if any).

The order in which the slots are declared is very important for the lookup algorithm while
seeking a message. The inheritance slots are examined with respect to the order in which the
source text is written, in a depth-first way, without taking into account possible conflicts (see
lookup algorithm 3.2.2.0). If a slot called on an object is not found in this object, the lookup
algorithm search in the parents to find the correct slot and retourn the first found.

25

Section Header
+ name

- category :=

Section Public
+ slotl <- /%
+ slot2 <- /%

Section Header
+ name

- category :=

Section Public
+ slot2 <- /%
+ slot3 <- /%

Section Header
+ name

- category :=

Section Inherit

- parentl:FATHERI]
- parent2:FATHER2

Section Header
+ name

- category :=

Section Public
- main :=

FATHERI ;
APPLICATION ;

*/
*/

FATHER2 ;
APPLICATION ;

*/
*/

[FaTrERL

FATHER2

1= SON;

APPLICATION;

FATHERI ;
FATHER2 ;

TEST;
APPLICATION;;

(+ object_son:SON;

object_son

object_son.slotl;
object_son.slot2;
object_son.slot3;

:= SON.clone;

// From FATHERI
// From FATHERI
// From FATHERZ2

33

3.2. Sections identifiers

Chapter 3. Language Reference

You can also redefine slots in the sons. Slot must follow the same typing profile as its parent
(for parameters and result, see also 3.3.2 page 55) but you can change the kind of slot (+, - and

Expanded).

Section Header

+ name := FATHERI];

- category := APPLICATION;
Section Public

+ slotl v:INTEGER :INTEGER <- /* ... %/

+ slot2 <- /% ... %/
Section Header

+ name := FATHERZ2;

- category := APPLICATION;
Section Public

+ slot2 <- /% ... %/

+ slot3 t:INTEGER <- /* ... */
Section Header

+ name := SON;

- category := APPLICATION;
Section Inherit

- parentl:FATHER] := FATHERI;

- parent2:FATHER2 := FATHERZ2;
Section Public

- slotl v:INTEGER :INTEGER <- /* ... */

+ slot3 t:INTEGER <- /* ... %/
Section Header

+ name := TEST;

- category := APPLICATION;
Section Public

- main :=

(+ object_son:SON;

object_son := SON.clone;

object_son.slotl 4.print;
object_son.slot2;
object_son.slot3 5;

)3

// From SON
// From FATHERIL
// From SON

// slotl is now shared

(redefinition)

(redefinition)

The name of the inheritance slots doesn’t matter. We often named it “parent” but it’s for
more visibility, it’s not a reserved keyword. But it’s mandatory to precise the type of the parent,

as for any data slot.

34

3.2. Sections identifiers

As every slot in LISAAC , inheritance slots have 3 different behaviours.

Shared inheritance

A parent can be defined with the the - symbol:

Section Inherit
- parent:FATHER := FATHER;

In this case every clone of the object share the same parent object. If a son object change its
parent, every clone of this son have their parent changed.

Object FATHER

Section Header

+ name := FATHER;

- category := APPLICATION;
Section Public

+ X INTEGER;

-inc_x <- (x :=x+1;);

- count:INTEGER;

- inc_count <- (count := count + 1;);

Object SON

Section Header

+ name := SON;

- category := APPLICATION;
Section Inherit

- parent:FATHER := FATHER;

Section Public
- change parent p:FATHER <- (parent := p;);

P [+x [o

-count @

FATHER

new_son := SON.clone;

P [+x [5)
-count @
A

FATHER

[oo J—9]

SON

[oo

new_son : = SON.cl one

Chapter 3. Language Reference

new_son.inc Xx;
new_son.inc count;

P [+x 1
-count @
A

FATHER

[oo J—9]

SON

[oo

new_son

new_son.change parent (FATHER.clone);

P [+x [1
-count

[-]

FATHER

P| +x 1
-count

[[paren__]

SON

[oo

new_son

FATHER. cl one

new_son.inc X;
new_son.inc count;

Pl +x 1
-count

M

FATHER

Pl +x 2
-count

[oo

SON

[[parem__]

new_son

FATHER. cl one

Non shared inheritance
A parent can be defined with the the + symbol:

Section Inherit
+ parent:FATHER := FATHER;

In this case every clone of the object share the same parent object at its creation. If a son object
change its parent, other clones of this son haven’t their parent changed.

Object FATHER

36

Section Header

+ name := FATHER;

- category := APPLICATION;
Section Public

+ X ! INTEGER;

-inc_x <- (x:=x+1;);

- count:INTEGER;

- inc_count <- (count := count + 1;);

Object SON

Section Header

+ name := SON;

- category := APPLICATION;
Section Inherit

+ I)er(éllt :FATHER := FATHER;

Section Public

- change parent p:FATHER <- (parent := p;);

P +x [o
-count

FATHER

[oaren_of

SON

new_son := SON.clone;

P| +x [©)

-count

FATHER

[oaren_of

SON

new_son : = SON.cl one

:

new_son.inc Xx;
new_son.inc count;

P| +x 1
- count

FATHER

i Cparen o
i Coaren o

new_son

3.2. Sections identifiers

Chapter 3. Language Reference

new_son.change parent (FATHER.clone);

P [+x [1
-count

[-]

FATHER

P| +x 1
- count

)

SON

new_son

b FATHER cl one

:

new_son.inc X;
new_son.inc count;

P| +x 1
- count

]

FATHER

P | +x 2
- count

b FATHER ¢l one

f

new_son

Expanded inheritance

A parent can be defined with the the -+ symbol and the Expanded keyword:

Section Inherit
+ parent: Expanded FATHER;

A In this case, you don’t have to affect the value of the parent.
You have an "auto-clone" for parents: each time you clone a son, you have the clone of its
parents.

Object FATHER

Section Header
+ name := FATHER;
- category := APPLICATION;
Section Public
+ X INTEGER;
-inc_x <- (x :=x+1;);
- count:INTEGER;
inc_count <- (count

count + 1;);

Object SON

38

Section Header

+ name := SON;

- category := APPLICATION;
Section Inherit

+ parent: Expanded FATHER;
Section Public

- change parent p:FATHER <- (parent := p;);
P| +X - =0 Pl +x 1 =0
- count - count [¢]
FATHER FATHER. cl one

[parent_ 50]

3.2. Sections identifiers

SoN
new_son := SON.clone;
P| +x (o) P| +x (o) J_‘
-count -count &]
FATHER FATHER. cl one
p [+x 0
-count
|l
FATHER. cl one
SON
[
new_son
new_son.inc Xx;
new_son.inc count;
P| +x (o) Pl +x] J_‘
-count -count Lll
FATHER FATHER. cl one

P| +x 1
-count
|I + parent Exp
FATHER. cl one
SON
|I + parent Exp
new_son

new_son.change parent (FATHER.clone);

39

Chapter 3. Language Reference

P [+x o P +x [o
-count Lll

-count

FATHER FATHER. cl one

[[parent B 1

SON

+X
|I + parent Exp I P —count [O

new_son

FATHER: €l.ane-:

FATHER. cl one

new_son.inc Xx;
new_son.inc count;

p[+x [6) Pl +x 0
-count -count LZI

FATHER FATHER. cl one

[parent_ 50]

SON

P [+x [1
| |+ parent Ex |
| p P - count

new_son

FATHER: €l.ane-:

FATHER. cl one

Note: This kind of inheritance is similar to inheritance in object oriented languages based on
class.

A parent can also be defined with the the - symbol and the Expanded keyword. The parents
are now shared.

Section Inherit
- parent:Expanded FATHER;

The value of the parent is already initialised.

Object FATHER

Section Header

+ name := FATHER;
- category := APPLICATION;
Section Public
+ X INTEGER;
-inc_x <- (x :=x+1;);
- count:INTEGER;
- inc_count <- (count := count + 1;);

Object SON

40

Section Header
+ name := SON;
- category := APPLICATION;

Section Inherit
- parent:Expanded FATHER;

Section Public

3.2. Sections identifiers

- change parent p:FATHER <- (parent := p;);
P| +X] Pl +x (o]
-count -count
FATHER FATHER. cl one

[parent_ 50]

SON

new_son := SON.clone;

P| +x [e) Pl +x o

-count -count

FATHER FATHER. cl one

[parent 50]

SON

[Cparem 501

new_son

new_son.inc Xx;
new_son.inc count;

P| +x [¢) P| +x

[1

-count

-count

FATHER FATHER. cl one

|| - parent Exp

SON

|l [parent &xp_|H

new_son

new_son.change parent (FATHER.clone);

41

Chapter 3. Language Reference

P [+x o P +x [o
-count -count 1

FATHER FATHER. cl one

[parent B 1

SON

|l [parent &xp_|H

new_son

new_son.inc X;
new_son.inc count;

P| +x [o) P +x 1
- count - count 2

FATHER FATHER. cl one

[parent 50]

SON

[Cparem B0

new_son

Immediate/delayed evaluation

A The evaluation of the heritage slots depends on their order of declaration
e Evaluation after the loading of the prototype:

Section Inherit
+ parent:EXPR := EXPR;

e Evaluation every time the lookup algorithm reaches this slot (this should be avoided,
because it is obviously very expensive):

Section Inherit
- parent:OBJECT <- search parent;

Here, search_parent is a method to evaluate the parent.

Other example:
Section Inherit
- parent:OBJECT <-

(+ result:OBJECT;

42

(flag _depend) .if {

result := VALUE;
} else {

result := AFFECT;
};
result

)

3.2. Sections identifiers

A the flag depend slot must be present in the lower of the inheritance tree.

Static type and visibility of the slots

The static type of a slot parent must correspond to the first common ancestor of the parents

possible dynamics.

About the visibility of the slots, the static tree of heritage shows the slots accessible.

Section Header

+ name := A;

- category := APPLICATION;
Section Public

+ bar <- /% ... */

+ foo <- /% ... %/

Section Header

+ name := B;

- category := APPLICATION;
Section Inherit

+ parent:A := A;
Section Public

+ bar <- /% ... %/

+ toto <- /x ... %/

Section Header

+ name := C;

- category := APPLICATION;
Section Inherit

+ parent:A := A;
Section Public

+ titi <- /% ... %/

+ foo <- /x ... */

Section Header
+ name := D;
- category := APPLICATION;

43

Chapter 3. Language Reference

Section Inherit
+ parent:A <-

(
// code that can be dynamically B or C
)
Section Public
+ new <- /*x ... x/
+ toto <- /*x ... %/
|Prototype A |
sl ot "bar"
sl ot "foo"
% A
7,
7z,
7z,
/.
|Pr0t otype "B" |
sl ot "bar"

”
/7
/
/

N -< Sl ot Not accessible from Self.
l—‘_ll A | ible f | f
Prototype "D’ Sl ot accessible from Sel f.

- -] | m————— » Dynanic inheritance.
slot "new —) St atic inheritance.
slot "toto"

Sel f ——p

Section Header

+ name := TEST;
- category := APPLICATION;
Section Public
- main :=
(+ object_d:D;
object_d := D.clone;

object_d.bar; // 0k, from A or from B (dynamic inheritance)
object_d.foo; // Ok, from A or from C (dynamic inheritance)
object_d.new; // 0k, from D

object_d.toto; // Ok, from D (redefinition in D)
object_d.titi; // Error: slot not accessible

)

The lookup algorithm

The lookup algorithm is the name of the algorithm used to resolve message send (or dynamic
dispatch). It determines which precise method is called.

Let M be the complete name of the called method, with commas or keywords, if any (see slot
names in section 3.5 page 70). Let R be the receiver of the message send; in case the receiver is
implicit, R is self. Let T be the dynamic type of R.

The lookup algorithm works as follows:

44

3.2. Sections identifiers

1. Look for method M in the current prototype T, searching code slots.
Since there is no overloading in LISAAC , there should be at most one slot matching M.
If one was found, the lookup algorithm stops, the target method has been found and the
message send can proceed.
If none was found, continue with step 2.

2. Recursively look for method M in all the parents of the current prototype T', until one is
found or all parents have been examined.
If the matching method has been found, the lookup algorithm stops, the target method
has been found and the message send can proceed.
If none was found, which indicates an error from the developper, an error message is
emitted.

Note that at step 1, since there is no overloading in LISAAC , there should be at most one
slot matching M. The order of declaration of code slots in T is thus irrelevant.

Conversely, the order of declaration of parent slots is highly relevant. Indeed, during step 2,
parent slots are searched recursively, that is in depth-first manner. They are also examined in
the order of declaration in the source code (top to bottom). As a consequence, in case of multiple
inheritance, if n parent slots (2 < m) refer to prototypes that contain the searched method M,
it is the M contained in the first of those m parent slots that shall be called. Thus multiple
inheritance conflicts in LISAAC are solved in a (depth-first) “first come, first served” manner.

- lookup msg:STRING set visited v:SET[OBJECT] :BLOCK <-
(+ result:BLOCK;
+ 1:INTEGER;

(! v.has self).if {
// cycle detection.
v.add self;

// Search in current object.
i := list.lower;
{(i <= list.upper) && {result = NULL}}.while do {
(list.item i.name == msg).if {
// message found.
Result := list.item i.value;

(result = NULL).if {
// Search in parent object.

i := parent_list.lower;

{(i <= parent_list.upper) && {result = NULL}}.while do {
result := parent_list.item i.lookup msg set visited v;
i:=1+1;

};

s

45

Chapter 3. Language Reference

}s
result

)

Resending messages: The equivalent of super in Smalltalk or resend in Self.

A message call applied to some parent slot is the natural mechanism to achieve he equivalent of
super in Smalltalk or resend in Self. This means that the message is sent to the parent with the
current object context. You can bypass the lookup algorithm by precising the parent on which
you call the slot.

Section Header

- name := FATHERI;

- category := APPLICATION;
Section Public

- method <- /* ... %/

Section Header

- name := FATHERZ2;

- category := APPLICATION;
Section Public

- method <- /* ... %/

Section Header

- name := SON
Section Inherit
+ parentl := FATHERI;
+ parent2 := FATHERZ;
I [+parentl @ 'i P - nethod !H—Plcode |
+par ent 2 [EATHERL
SON
4
P| - et hod E—ﬂcode |
FATHER2
method;
| [+parent1 S :l P| - met hod ;‘—ﬂcode |
+par ent 2 @ EATHERL
ISO\‘ I nstruction Pointer
(’seIF)
- v
P - method g—,—-lcode |
FATHER2
parent2.method;

46

+parent 1 [4

3.2. Sections identifiers

+par ent 2 [

=i P - et hod g,-l—hlcode |

r=

-4
t self)

~

-

3.2.3 The MAPPING section

FATHERL

e
FATHER2

Instruction Pointer

The MAPPING section purpose is to format data slots description according to some fixed hard-
ware data structure.
In such a section, the compiler follows exactly the order and the description of slots as they are
written to map exactly the corresponding hardware data structure.

Thus, one is able to write data slots description according to the hardware to handle.

You can only define slots with the -+ symbol, and only datas (not code).

Otherwise, these attributes are used exactly as the others not in the mapping section (reading
or writting).

Section Mapping

+

+ + 4+ + + +

x1

:UINTEGER;
xX2:
x3:
x4:
x5:
X6:
x7:

USMALLINT;
SMALLINT;
USHORTINT;
UINTEGER;
SHORTINT;
USHORTINT;

// 4 bytes,
// 1 byte,

// 1 byte,

// 2 bytes,
// 4 bytes,
// 2 bytes,
// 2 bytes,

unsigned
unsigned
signed

unsigned
unsigned
signed

unsigned

These prototype match exactly a 16 byte physical structure.

+ x1: U NTEGER

+ x2:USNALLINT oc 6 | =
+ x3: SMALLI NT 08 NG

+ x4: USHORTI NT 0 @] a
+ x5: Ul NTEGER 00 X

+ X6: SHORTI NT

+ X7: USHORTI NT Merory

MAPPED_OBJECT

A Slots inside some MAPPING section are considered private for any other objects. Slots
can only be defined with the + property. No slot outside this section can be defined with the +

property.

Section Mapping
+ x1:USHORTINT;
- X2:UINTEGER;

// Compiler will stop in error

47

Chapter 3. Language Reference

Section Public
+ count:INTEGER := 3; // Compiler will stop in error
- slot:INTEGER <- /* ... %/ // 0k

The mapping can also be used to represent files.

3.2.4 The INTERRUPT section

The goal of the INTERRUPT section is to handle hardware interruptions.

In this section you can define methods (code slots) that will be executed only while there is an
interrupt associated.

Each slot is associated with one of the processor’s interruptions [Hum90].

These slots differ from others in their generated code. For example, their entry and exit codes
are related to the interrupt processing.

Their invocations are asynchronous and borrow the quantum of the current process.

Generally, these slots are little time consumers and they don’t require specific process’ context
for their executions.

It is thus necessary to be careful while programming such slots to ensure the consistency of the
interrupted process.

Define your method (without return value, because you don’t explicitly call it) as any other
classical method.
Then associate the adress of your method with the effective interrupt jump adress (it depends
of your architecture). This can be done using a system mapped object.
When your interrupt physically happends, there is the call of your associated method, which
returns a pointer on the code.
The compiler will not optimize local variables of your interrupt method because of its particu-
larity: the call depends of the context and cannot be anticipated during compilation.

Section Interrupt
- interrupt 01 <- /x ... */;

|E| - interrupt_01

| NTERRUPT_OBJECT

Int #02
I'nt #01
I'nt #0Q

Physical Interrupt table

You must define as C external (3.12 page 93) the following macros: _ BEGIN INTERRUPT _
and END_INTERRUPT . These macros will be executed every time an interrupt function
is activated. The code of these macros depends on the architecture. Example for X86 follows.

Section Header

- name := INTERRUPT _MANAGER;
- category™"":= KERNEL;
- external := ¢

48

3.2. Sections identifiers

#define __BEGIN_INTERRUPT__ volatile unsigned long eax;
volatile unsigned long ebx;
volatile unsigned long ecx;
volatile unsigned long edx;
volatile unsigned long esi;

volatile unsigned long edi;

asm volatile (
"/x BEGIN INTERRUPT x*/
movl %Y%eax,%0
movl %%ebx,%1
movl %Y%ecx,%2
movl %%edx,%3
movl %Y%esi,%4
movl %Y%edi,%5
/* BEGIN CODE */"
N=p" (eax) , N=p" (EbX) , N=p" (ecx) , N=p" (EdX) , N=p" (ESi) , N=p" (Edl)
: /* no input */
Ileaxll s Iledxll s HECX" s Ilebxll s Ilebpll s Ilesill s Iledill s Ilmemoryll) ;

#define __END_INTERRUPT__ asm volatile (
"/x END CODE */
movl %0, %%eax
movl %1,%%ebx
movl %2,%%ecx
movl %3,%%edx
movl %4,%hesi
movl %5,%%edi
movl %%ebp,%kesp
popl %kebp
iret
/* END INTERRUPT */"
: /* no output */
"m" (eax),"m" (ebx),"m" (ecx),"m" (edx),"m" (esi),"m" (edi)

"eaX" s "edX" s "eCX" s "ebX" s Ilebpll s Ilesill s Iledill s Ilmemoryll) ;

3.2.5 The EXTERNAL section

When a slot is define in LISAAC , its real name (the name of the slot after compilation) is different
in the produced C code because of the compiler (optimization, specialization, ...).

You can define a special section, Section External, which specified that the function here
define must keep their name after compilation.This capability is very useful when you want to
link the produced C code with existing code.

This section is more detailed in section 3.12 page 93.

49

Chapter 3. Language Reference

3.2.6 Other sections

Other sections shared the same objective: they all are section of code and datas. The difference
between these sections are only the visibility of their slot (method and datas). There is 3 kind
of sections of this type: the Private section, the Public section and the prototype list section.

Section Private
It’s the most restrictive section. The slots defined in it are only accessibles inside the current
object (the self) object) but not for its descendants.

Section Interrupt, Section Mapping and Section Inherit are considered Private.

Section SELF
The slots defined in it are only accessible inside the current object but also for its descendants.
Note that its the keyword SELF is written in capital, which is a different as other keywords.

Section prototype list

This section is defined with the keyword Section followed by a list of prototypes (in capital, sep-
arated by ,) which are allowed to call the slots (example: Section INTEGER,BOOLEAN,STRING).
The self object have also the right to call it.

Section Public
It’s the most permitive section. The slots defined in it are accessibles from all the objects.

You can define as many sections as you want.

Section Header

+ name := FIRST;

- category := APPLICATION;
Section Private

+ slot private <- /x ... %/
Section SELF

+ slot _self <- /x ... %/
Section FIRST

+ slot listl <- /% ... %/
Section FIRST,SECOND

+ slot list2 <- /% ... %/
Section Public

+ slot _public <- /* ... %/

20

3.2. Sections identifiers

Object | private | self | list1 | list2 | public |
self object only OK OK | OK | OK OK
Not its descendants
self object and X OK | OK | OK OK
its descendants
Type FIRST (‘master’ object FIRST X X | OK | OK OK
all its clones and descendants
Type SECOND (‘master’ object SECOND X X | OK | OK OK
all its clones and descendants
Any type except FIRST and SECOND X X X X OK

Examine this example in details:

Section Header

+ name := FIRST;

- category := APPLICATION;
Section Private

+ slot private <- /% ... x/
Section SELF

+ slot _self <- /x ... %/
Section FIRST

+ slot listl <- /% ... %/
Section FIRST,SECOND

+ slot list2 <- /% ... %/
Section Public

+ slot _public <- /x ... %/
+ slot _test <-
(

slot private;

slot _self;

slot list1;

slot list2;

slot public;
)3

// Allowed
// Allowed
// Allowed
// Allowed
// Allowed

+ slot test2 <-

(+ object_first:FIRST;
object_first := FIRST.clone;
object_first.slot private;
object_first.slot _self;
object_first.slot listl;
object_first.slot list2;
object_first.public;

)3

// Forbidden
// Forbidden
// Allowed
// Allowed
// Allowed

ol

Chapter 3. Language Reference

Section Header

+ name := SECOND;

- category := APPLICATION;
Section Public

+ slot test <-

(+ object_first:FIRST;

object_first := FIRST.clone;
object_first.slot private; // Forbidden
object_first.slot self; // Forbidden
object_first.slot listl; // Forbidden
object_first.slot list2; // Allowed
object_first.public; // Allowed

)

Section Header

+ name := OTHER;

- category := APPLICATION;
Section Public

+ slot test <-

(+ object_first:FIRST;

object_first := FIRST.clone;

object_first.slot private; // Forbidden
object_first.slot self; // Forbidden
object_first.slot listl; // Forbidden
object_first.slot list2; // Forbidden
object_first.public; // Allowed

)

A The call of a slot in Section Private or Section SELF is restricted to the implicit
call. You can’t use the Self object.

Section Header

+ name := FIRST;

- category := APPLICATION;
Section Private

+ slot private <- /x ... %/
Section SELF

+ slot_self <- /x ... %/
Section Public

+ slot test <-

(
slot _private; // Allowed
slot _self; // Allowed
self.slot private; // Forbidden
self.slot _self; // Forbidden

);

02

3.2. Sections identifiers

Accessibility and inheritance

Inheritance share the same accessibility between parents and sons. For example, if a slot is
defined in a Public section in a parent, it is also Public for its descendants. Note that a
Private slot is not visible from the descendants. If you define a visibility for a prototype, it is
also available for its descendants. Look at the accessibility as if the considered slot was effectively
in the current object and not in its parents.

Section Header

+ name := FATHER;

- category := APPLICATION;
Section Private

+ slot private <- /x ... %/
Section SELF

+ slot _self <- /x ... %/
Section FATHER

+ slot _listl <- /% ... x/
Section FIRST

+ slot _list2 <- /x ... x/

Section Header

+ name := SON;

- category := APPLICATION;
Section Inherit

+ parent:FATHER := FATHER;

Section Public
+ slot _test <-

(
slot private; // Forbidden
slot _self; // Allowed
slot _list1; // Allowed (FATHER and all its descendants)
slot list2; // Forbidden
);

+ slot test2 <-
(+ object_son:SON;

object_son := SON.clone;

object_son.slot private; // Forbidden
object_son.slot _self; // Forbidden
object_son.slot listl; // Allowed
object_son.slot list2; // Forbidden

)

Section Header

+ name := FIRST;

- category := APPLICATION;
Section Public

93

Chapter 3. Language Reference

+ slot _test <-
(+ object_son:SON;

object_son := SON.clone;

object_son.slot private; // Forbidden
object_son.slot self; // Forbidden
object_son.slot list1; // Forbidden
object_son.slot list2; // Allowed

)

Accessibility restricted to a prototype is also valid for its descendants. In the previous exam-
ple, call on slot list2 is allowed in all the objects of FIRST type and for all its descendants.

Section Header

+ name := SON_FIRST;

- category := APPLICATION;
Section Inherit

+ parent:FIRST := FIRST;
Section Public

+ slot test <-

(+ object_son:SON;

object_son := SON.clone;

object_son.slot private; // Forbidden
object_son.slot _self; // Forbidden
object_son.slot listl; // Forbidden
object_son.slot list2; // Allowed

)

You must also keep the same accesibility type when you redefine a slot in a son.

Section Header

+ name := FATHER;

- category := APPLICATION;
Section Private

+ slot private <- /% ... %/
Section FIRST

+ slot listl <- /% ... %/

Section Header

+ name := SON;
- category := APPLICATION;
Section Inherit
+ parent:FATHER := FATHER;
Section Private
+ slot private <- /% ... ¥/ // 0k, it respects the same accessibility
Section PUBLIC
+ slot listl <- /% ... %/ // Error: accessibility is different

// between FATHER and SON

54

3.3. Type names

3.3 Type names

Type names are noted with prototype names. A keyword in uppercase (capital letter) identify
them.

+ color:INTEGER;

3.3.1 Genericity

To ease the implementation of containers like arrays, linked lists and dictionaries for example,
we also added a form of genericity (parametric types) such as the one defined in Eiffel [Mey94].

+ array:ARRAY [CHARACTERI] ;

To define such a prototype using genericity, you’ll define between ’[" and ’|’ the abstract types
used, separated by commas ’,’ or by keywords. In the definitions of slots, you can use your
abstract type

Section Header
+ name := GENERICITY EXAMPLE[E,F];
- category := APPLICATION;
Section Public
- slot:F <-
(+ elt:E;
/*x ... %/
);

A The name of the prototype is the entire name, with ’[* and ’|’.

Section Header

+ name := TEST;
- category := APPLICATION;
Section Public

- slot <-

(+ gen:GENERICITY EXAMPLE; // Error: the type does not exist
+ gen2:GENERICITY EXAMPLE[STRING,INTEGER]; // OK
/* ... %/

);

Note that when you use the genericity-prototype, you have to precise the real types you want.

3.3.2 Invariant’s type control

The redefinition of a slot must have the same profile as her parent (standard type and name for
the arguments and the return value).

Section Header

- name := FATHER;

- category := APPLICATION;
Section Public

95

Chapter 3. Language Reference

+ to_string arg:INTEGER :STRING <- /* ... %/

Section Header
- name := SON;
- category := APPLICATION;
Section Inherit
- parent: FATHER:= FATHER;
Section Public
+ to_string arg:INTEGER :STRING <- /% ... %/ // Ok, follow the same profile

Section Header

- name := SON;
- category := APPLICATION;
Section Inherit
- parent:FATHER := FATHER;
Section Public
+ to_string arg:REAL :ARRAY|CHARACTER| <- /* ... %/ // Error: not the same profile

3.3.3 Particular type: SELF type

The type SELF represents a prototype which is exactly the same type as the current prototype.

Section Header

- name := EXAMPLE;

- category := APPLICATION;
Section Public

+ slot:SELF <- (/% ... %/);

Here the SELF type is exactly EXAMPLE.
Another example using inheritance:

Section Header
+ name := FATHER;
- category := APPLICATION;

Section Public
- create:SELF <-
(+ result:SELF;
result := SELF.clone;
result

)

Section Header

+ name := SON;

- category := APPLICATION;
Section Inherit

o6

3.3. Type names

- parent:FATHER := FATHER;

Section Header

- name := TEST;

- category := APPLICATION;
Section Public

- main:=

(+ object_father:FATHER;
+ object_son:SON;
object_father := FATHER.create; // Type FATHER
object_son := SON.create; // Type SON

)3

We can see with this last example that even if the slot who returns SELF type is defined in a
parent, it’s the current object who define the real type of SELF.

A SELF type is available only if the result is calculated. You can’t write
- slot:SELF;

Because if you have inheritance and the slot SELF in the parent, in the children the type is
different.

Section Header

+ name := FATHER;

- category := APPLICATION;
Section Public

- a:SELF;

Section Header

+ name := SON1;

- category := APPLICATION;
Section Inherit

- parent:FATHER := FATHER;

Section Public
- affect _a <- (a := SELF;); // Here SELF is SONI

Section Header

+ name := SON2;
- category := APPLICATION;
Section Inherit
- parent:FATHER := FATHER;
Section Public
- affect _a <- (a := SELF;); // Here SELF is SONI

Section Header
- name := TEST;

o7

Chapter 3. Language Reference

- category := APPLICATION;
Section Public
- main :=
(+ object_sonl:SONI;
+ object_son2:SON2;
object_sonl := SON1.clone;
object_son2 := SONZ2.clone;
object_sonl.affect a; // Ok
object_son2.affect a; // Error of typing, a is type SON1 and can’t be then SON2
)3

3.3.4 Default value of a slot according to its type.

A default value can also be defined in the slot default in the Section Header. It can be a value
or an expression evaluated at initialisation of the slot or the local slot (at start of execution of
the method).

Section Header
- name := EXAMPLE;
- category := APPLICATION;

- default:= NULL;

If you use the prototype without initializing it, its value will be NULL.

3.4 Slots

3.4.1 Shared slots

If the slot is preceded by the - character, its value is shared between all the clones of the prototype
(global slot).

Overview

Section Header

+ name := FOO;

- category := APPLICATION;
Section Public

- slot foo:INTEGER := 5;

Section Header

+ name := EXAMPLE;

- category := APPLICATION;
Section Public

- slotl:INTEGER := 3;

- slot2:FOO := FOO;

o8

=1
P| -slotl 131 -slotl | P
-slot2 -slot2
EXAVPLE =1 EXAMPLE. cl one

[P [Cslot _foo

3.4. Slots

The difference between slot1l and slot2 is that INTEGER is Expanded. We will see this in

section 3.4.3 page 64.

Note that the 2 objects shared the same pointer on the FOO object. So if you change the

pointer, it changes for all the clo

nes.

Non expanded objects have their default value set to NULL.

Section Header

+ name := FOO;

- category := APPLICATION
Section Public

- slot foo:INTEGER := 5;

Section Header

+ name := EXAMPLE;

- category := APPLICATION
Section Public

- slotl:INTEGER;

- slot2:F00;

b

b

P| -slotl

-slot2

EXAMPLE

Assignment

Section Header

+ name := FOO;

- category := APPLICATION
Section Public

- slot foo:INTEGER := 5;

Section Header

+ name := EXAMPLE;

- category := APPLICATION
Section Public

- slotl:INTEGER;

- slot2:F00;

- inc_slotl <- (slotl :=

]

-slotl | P

-slot2

s

b

slotl + 1;);

29

EXAMPLE. cl one

Chapter 3. Language Reference

- set _slot2 f:Foo <- (slot2 := f;);

Section Header

+ name := TEST;

- category := APPLICATION;
Section Public

- main :=

(+ obj_examplel,obj_example2:EXAMPLE;
+ obj_fool,obj_f002:F0OO;

obj_examplel := EXAMPLE.clone;
obj_example2 := EXAMPLE.clone;
P|-slotl @ -slotl |P
-slot2 -slot2
obj _exanpl el =1 obj _exanpl e2
191
obj_examplel.inc slotl;
P[-slotl {1] -slotl | P
-slot2 -slot2
obj _exanpl el =1 obj _exanpl e2
181
obj_example2.inc slotl;
P[-slotl B -slotl | P
-slot2 -slot2
obj _exanpl el =1 obj _exanpl e2
181
obj_fool := FOO.clone;
obj_examplel.set slot2 obj_fool;
P|-slotl @ -slotl |P
-slot2 -slot2
obj _exanpl el =1 obj _exanpl e2
[p[siot ioo
obj _fool
obj_foo2 := FOO.clone;

obj_example2.set slot2 obj_foo2;

60

3.4. Slots

=1
P| -slotl 12} -slotl |P
-slot2 -slot2
obj _exanpl el {? obj _exanpl e2
R 5] -
P| -slot_foo 151 slot_foo [P
obj _fool obj _f 002

A You can assign an object only with an object of the same type of its descendants.

Section Header
+ name := FATHER;
- category := APPLICATION;

Section Header

+ name := SON;

- category := APPLICATION;
Section Inherit

- parent:FATHER := FATHER;

Section Header
+ name := OBJECT _OTHER;
- category := APPLICATION;

Section Header

+ name := TEST;

- category := APPLICATION;
Section Private

- slot:FATHER;
Section Public

- main :=
(+ s:S0N;
+ 0:0BJECT _OTHER;
0 := OBJECT OTHER.clone;
slot := o; // Error: not the same type
S := SON.clone;
slot := s; // Ok: descendant of FATHER

)

A For Expanded types, you must match exactly the same type (see 3.4.3 page 64).

61

Chapter 3. Language Reference

3.4.2 Non shared slots

If the slot is preceded by the + character, its value is not shared between all the clones of the

prototype.

Overview

Section Header

+ name := FOO;

- category := APPLICATION;
Section Public

- slot foo:INTEGER := 5;

Section Header

+ name := EXAMPLE;
- category := APPLICATION;
Section Public

+ slotl:INTEGER := 3;

+ slot2:FOO := FOO;
P| +slotl 3

+sl ot 2 [2

EXAMPLE

A4

3

+slotl [P

+sl ot 2

P|-slot_fool

EXAMPLE. cl one

+s| ot _f 002

3

FQO

5]

The difference between slot1l and slot2 is that INTEGER is Expanded. We will see this in

section 3.4.3 page 64.

You can think that the 2 objects shared the same object FOO. It’s false. They have
each other their own pointer on the same object, which is very different. The pointers refers to
the same object FOO because of its initialization. Examples come to illustrate this.

Non expanded objects have their default value set to NULL.

Section Header

+ name := FOO;

- category := APPLICATION;
Section Public

- slot fool:INTEGER := 5;

+ slot foo2:INTEGER := 3;

Section Header
+ name := EXAMPLE;

62

- category := APPLICATION;
Section Public

+ slotl:INTEGER;

+ slot2:F00;

P| +slotl [O
+sl ot 2 [
EXAMPLE
Assignment
Section Header
+ name := FOO;
- category := APPLICATION;

Section Public

- slot fool:INTEGER := 5;

+ slot foo2:INTEGER := 3;
Section Header

+ name := EXAMPLE;

- category := APPLICATION;

Section Public
+ slotl:INTEGER;
+ slot2:F00;
- inc_slotl <- (slotl := slotl + 1;);
- set_slot2 f:FoO <- (slot2 := f;);

Section Header

+ name := TEST;

- category := APPLICATION;
Section Public

- main :=

(+ obj_examplel,obj_example2:EXAMPLE;
+ obj_fool,obj_f002:F0O0;

obj_examplel := EXAMPLE.clone;
obj_example2 := EXAMPLE.clone;
P| +slotl [O
+sl ot 2 [
obj _exanpl el

obj_examplel.inc_slotl;

63

o] +slotl | p

[J +sl ot 2

EXAVPLE. cl one

o] +slotl | P
[J +sl ot 2
obj _exanpl e2

3.4. Slots

Chapter 3. Language Reference

Pl +slotl [1 o] +slotl | P
+sl ot 2 @ @ +sl ot 2
obj _exanpl el obj _exanpl e2

obj_example2.inc_slotl;

p[+slot1 [2 1] +slotl | P
+sl ot 2 [] [] +sl ot 2
obj _exanpl el obj _exanpl e2
obj_fool := FOO.clone;

obj_examplel.set slot2 obj_fool;

P[+slot1 [2 1] +slotl | P
+sl ot 2 [] [] +sl ot 2
obj _exanpl el obj _exanpl e2
v
P|-slot_fool E]
+sl ot _foo2 |3
obj _fool
obj_foo2 := r0OO.clone;

obj_example2.set slot2 obj_foo2;

P[+slot1l [1 1] +slotl | P
+sl ot 2 ® ® +sl ot 2
obj _exanpl el obj _exanpl e2
4 A
P|-slot_fool E -slot_fool|P
+sl ot _foo2 |3 3| +slot_foo2
obj _fool obj _f o002

3.4.3 Expanded slots

If the slots use the keyword Expanded, its value is cloned and embedded (in memory) in the
prototype. The keyword can be used either with + or -.

Overview
Let’s first see with Sharable slots.

Section Header
+ name := FOO;

26

- category := APPLICATION;
Section Public

- slot fool:INTEGER := 5;

+ slot foo2:INTEGER := 4;
Section Header

+ name := EXAMPLE;

- category := APPLICATION;

Section Public
- slotl:Expanded INTEGER
- slot2:Expanded FoOO;

= 3;

3.4. Slots

[w]

-slotl |P

P| -slotl
-slot2
EXAMPLE

-slot2

EXAMPLE. cl one

e

FQO. cl one

If the object is already EXPANDED, the use of the keyword Expanded for the slot don’t
change anything. It’s why for slot1 there is no difference with the non Expanded and Sharable
slot (3.4.1) (INTEGER is already EXPANDED). Note that you don’t have to initialise a slot with an
Expanded object, it is already cloned and have their default value. This is a major difference

with non Expanded slots.

It’s the same thing to define an EXPANDED object and assign it with a slot as defining a non
EXPANDED object and assign it with an EXPANDED slot.

Section Header
+ name := Expanded F0OO;
- category := APPLICATION;
Section Public

[w]

-slotl |P

- slot fool:INTEGER := 5;
+ slot foo2:INTEGER := 4;
Section Header
+ name := EXAMPLE;
- category := APPLICATION;
Section Public
- slotl:INTEGER := 3;
- slot2:F00;
P| -slotl
-slot2
EXAMPLE

-slot2

EXAMPLE. cl one

e

FQO. cl one

65

Chapter 3. Language Reference

Let’s now see with Non Sharable slots.

Section Header
+ name := FOO;
- category := APPLICATION;
Section Public
- slot fool:INTEGER := 5;
+ slot foo2:INTEGER :

1]
S

Section Header

+ name := EXAMPLE;

- category := APPLICATION;
Section Public

+ slotl:INTEGER := 3;

+ slot2: Expanded FoO;

o

+slotl Exp 3 3 +slotl Exp |P
+sl ot 2 Exp +sl ot 2 Exp

P|-slot_fool -slot_fool|P
+sl ot _foo2 |4 4| +sl ot _foo2

[a]

EXAMPLE EXAWPLE. cl one
The object FOO is directly embedded in the EXAMPLE object.

Assignment

A You can assign Expanded objects only with objects of exactly the same type (not descen-
dants, which defers from non Expanded objects). See also 3.7.1 page 75.

Section Header
+ name := FATHER;
- category := APPLICATION;

Section Header

+ name := SON;

- category := APPLICATION;
Section Inherit

- parent:FATHER := FATHER;

Section Header

+ name := TEST;

- category := APPLICATION;
Section Private

+ slot: Expanded FATHER; // slot value is not Null by default (clone of FATHER)
Section Public

66

- main :=
(+ f:FATHER;
+ f_exp:Expanded FATHER;

3.4. Slots

+ S:SON;
+ s_exp:Expanded SON;
slot := f_exp; // Ok, the 2 types are exactly the same
f := FATHER.clone; // f value is NULL by default
slot := f; // £ is copied into slot
slot := s_exp; // Error: not of the same type
// (even it inherits from FATHER)
S := SON.clone;
slot := s; // Error: s is not of the same type
slot := FATHER.clone; // FATHER.clone is copied into slot

)

To explain all this restrictions, remember that an Expanded object is embedded in another. So
you can replace it only by an object of the same size (in terms of memory).
Let see an example of assignment. It’s very important to notice that if you have a slot with

an Expanded parameter, this parameter is passed by copy.

Section Header
+ name := FOO;
- category := APPLICATION;
Section Public
- slot fool:INTEGER := 5;
- inc_fool <- (slot fool
+ slot foo2:INTEGER := 4;

slot _fool + 1;);

- inc_foo2 <- (slot foo2 := slot foo2 + 1;);
Section Header

+ name := EXAMPLE;

- category := APPLICATION;
Section Public

+ slotl:Expanded FOO;
slot2: Expanded FOO;
set slotl f:Expanded rFoo <- (slotl :
set slot2 f:Expanded rFOO <- (slot2 :=

Il
H Hh
~—

Section Header

+ name := TEST;

- category := APPLICATION;
Section Public

- main :=

(+ obj_examplel,obj_example2: EXAMPLE;
+ obj_fool,obj_foo2:Expanded FOO;
obj_examplel := EXAMPLE.clone;

67

// argument must be Expanded

Chapter 3. Language Reference

obj_example2 := EXAMPLE.clone;
P|-slot_fool -slot_fool|P
+slot_foo2 [4 4] +slot_foo2
obj _fool obj _foo2
P P
vstotl Bxp P|-slot_fool 5 -slot_fool|P *stotl Bxp
+slot_foo2 [4 4] +slot_foo2
-slot2 Exp -slot2 Exp
obj _exanpl el obj _exanpl e2

T

I _slot_fool]PpP
4| +sl ot _foo2

obj_fool.inc_fool;
obj_fool.inc_foo2;
obj_examplel.set slotl obj_fool; // obj_fool cloned when passed through SET_SLOTI

P|-slot_fool -slot_fool|P
+slot_foo2 |5 4] +sl ot _foo2
obj _fool obj _foo2
P[+slot1 Ex +slot1 Exp | P
P P|-slot_fool 6 -slot_fool|P P
+sl ot _f 002 [5 4] +sl ot _f 002
-slot2 Exp -slot2 Exp
obj _exanpl el obj _exanpl e2

I _siot_fool]p
4| +sl ot _foo2

obj_fool.inc_fool;
obj_fool.inc_foo2;
obj_example2.set slotl obj_fool;

P|-slot_fool -slot_fool|P
+slot_foo2 |6 4] +sl ot _foo2
obj _fool obj _foo2
P[+slot1 Ex +slot1 Exp | P
P P|-slot_fool 7 -slot_fool|P P
+sl ot _f 002 [5 5] +sl ot _f 002
-slot2 Exp -slot2 Exp
obj _exanpl el obj _exanpl e2

I _siot_fool]p
4| +sl ot _foo2

obj_foo2.inc_fool;
obj_foo2.inc_foo2;
obj_example2.set slot2 obj_foo2;

68

3.4. Slots

P|-slot_fool -slot_fool|P
+slot_foo2 |6 5] +sl ot _foo2
obj _fool obj _foo2
P[+slot1 Ex +slot1 Exp | P
P P|-slot_fool 8 -slot_fool|P P
+sl ot _f 002 [5 5] +sl ot _f 002
-slot2 Exp -slot2 Exp
obj _exanpl el obj _exanpl e2

I _siot_fool]p
5| +slot_foo2

obj_fool.inc_fool;
obj_fool.inc_foo2;
obj_examplel.set slot2 obj_fool;

P|-slot_fool -slot_fool|P
+slot_foo2 |7 5] +sl ot _foo2
obj _fool obj _foo2
P[+slot1 Ex +slot1 Exp | P
P P|-slot_fool 9 -slot_fool|P P
+sl ot _f 002 [5 5] +sl ot _f 002
-slot2 Exp -slot2 Exp
obj _exanpl el obj _exanpl e2

I _siot_fool]p
7| +slot_foo2

obj_examplel.slot2.inc_foo2;
obj_example2.slotl.inc_foo2;

P |-slot_fool -slot_fool|P
+slot_foo2 [7 5| +slot_foo2
obj _fool obj _foo2
P[+slot1 Ex +slotl Exp |P
P P|-slot_fool 9 -slot_fool|P P
+slot_foo2 [5 6| +slot_foo2
-slot2 Exp -slot2 Exp
obj _exanpl el obj _exanpl e2

I _slot_fool]PpP
8| +slot_foo2

A The object who will be use with the Expanded keyword must be defined clonable (use
of + in the name of the prototype).

69

Chapter 3. Language Reference

3.5 Slot descriptors

An object may hold any number of slots which must be in the section codes (see 3.2.6 page 50).
Slots can contain data (values and references) or methods (code).

3.5.1 Keyword slots

Code slot may have arguments, which are separated by lowercase keywords. Numbers and

7 7

the underscore are authorized for name of the slot and keywords (but the sequence '’ is
prohibited).
Here are the various way to identify a slot in LISAAC :

1. Argumentless slot definition without return value:

- init <- /* ... */

2. Argumentless slot definition with return value:

- get color:INTEGER <- /* ... */

This slot returns an integer value.

3. Definition of a slot with argument and no return value:

- make count:INTEGER <- /* ... %/

This slot takes an integer argument.

4. Definition of slot with argument and return value :

- gsort tab:ARRAY[CHARACTER] :BOOLEAN <- /% ... %/

5. Definition of slot with argument list and keywords without return value:
- gsort tab:ARRAY[CHARACTER] from low:INTEGER to high:INTEGER <-

/x ... %/

This slot has three arguments and no return value. Note how the keywords help understand
what the slot does.

6. Definition of slot with argument, keywords and return value :

- sort t:ARRAY[CHARACTER] from low:INTEGER to high:INTEGER :BOOLEAN <-
VAT ¥

70

3.5. Slot descriptors

A It’s important to notice that after keywords you have only one argument. But an
argument can be a vector argument, or LIST, as defined in 3.8 page 3.8.

- put_pixel (x,y:INTEGER) <- /* ... %/
- draw_line (x,y:INTEGER) to (x1,yl1:INTEGER) color (r,g,b:INTEGER) <- /* ...

A Arguments are read only ! you can’t modify an argument in a method, even if it is a
list.

A message (or method) is identified by taking into account the message name as well as its
keywords (if any). The names and positions of the keywords thus are very important.

- slot argl:INTEGER from arg2:INTEGER <- /* ... %/
- slot argl:INTEGER from arg2:INTEGER to arg3:INTEGER <- /* ... %/

The 2 slots defined in the previous example are considered different.

A Overloading is not allowed. Therefore, two messages can’t differ only by the type of
their arguments or the type of return. You can’t also have 2 slots who differs only with the
existence of a return value.

- slot argl:INTEGER from arg2:INTEGER <- /* ... */
- slot argl:BOOLEAN from arg2:INTEGER <- /* ... %/ // Forbidden !
- slot argl:INTEGER from arg2:INTEGER :INTEGER <- /x ... */ // Forbidden !

3.5.2 Binary messages

In LisAAcC , everything is object and even the simplest operation is done using messages. For
example, the binary operation * 2 + 3 7 is a call of the message ' + ’ on the object * 2 * using ’ 3
" as argument.

You can define binary operators in LISAAC as defined in the following. It is also possible
to chose the associativity and the priority of operators, like for example in the ELAN language
[PBy00].

To declare the associativity of an operator, the keywords left or right may be used.

Priorities are specified by a positive integer value. Priorities start at 1 (lowest priority) and
have no upper limit3

The default associativity is left, and the default priority is 1.

Here is for example the code for the ** (power) binary operator, that is left-associative and
has prioriy 150.

- "*% pight 150 exp:INTEGER :INTEGER <-
(+ result:INTEGER;

(exp == 0).if {
result := 1;
} else {
((exp & 1) == 0).if {
result := ((Self * Self) *x (exp / 2));

3Except the maximum allowed for 32 bits integers, of course.

71

*/

Chapter 3. Language Reference

} else {
result := (Self * (Self **x (exp-1)));
};
};
result
);
You can use it with:

a = 2 %xx 3;

Here is the possible code for an | binary operator that would be left-associative and have
priority 40 in INTEGER:

- | left 40 other:INTEGER :INTEGER <- !((!'Self) & ('other));
You can use it with:

a:=b | c;

- 4 left 80 other:SELF :SELF <- (Self - -other);
- "% left 90 other:SELF :SELF <- /% ... %/

In the expression
a =2+ 3 % 4;

the first operation done is 3 * 4 then the addition.

3 4

Note that you will find a list of the binary operator more used in the glossary (see 5.1 page 109).

A Operators > = 7 and ’ != 7 are reserved for reference comparisons. They have a right
associativity and and a priority of 50.

3.5.3 Unary messages

The only unary operators allowed are prefixed ones (put at the left of the the receiver).
A canonical example is the unary minus, whose code in INTEGER is:

- 22 INTEGER <- zero - Self;
You can use it with:

a := - 3;

72

3.5. Slot descriptors

Another common unary prefix operator in LISAAC is the question-mark '?’. It is used to
allow a rudimentary contract-programming mechanism, very much like the assert mechanism
of C or Java, but in a much less powerful way than the require/ensure Eiffel mechanism. See
also 3.11.1 page 89. Here is the code for the ? unary prefix operator define in BLOCK object:

- 27 <~
(
((_debug level > 0) && {! value }).if {
check crash;
};
)3

Note that _debug_level is a predefined flag set by the compiler according to the parameters
chosen by the developper at compile time. You can use it with:

? {a =3}; // You will see later that between {} you define a BLOCK object.

Here is an illustration of the use of ? to implement a kind of routine pre- and post-conditions:

- gcd other:INTEGER :INTEGER <-
// Great Common Divisor of ‘self’ and ‘other’
(+ result:INTEGER;
? {Self >=0}; // a precondition
? {other>=0}; // a second one
(other == 0).if {

result := Self;
} else {
result := other.gcd (Self % other);
s
? {result == other.gcd Self}; // a postcondition
result

)

- factorial : INTEGER <-
(+ result:INTEGER;
? {Self>=0};

// factorial
(self == 0).if {

result := 1;
} else {

result := (Self * (self - 1).factorial;
};
result

)

Note that once the object code has been tested and debugged, the developper can switch off
these assertions in the final delivery version by using a simple compile-time option.

73

Chapter 3. Language Reference

3.6 Message send, late binding

The syntax of message calls in LISAAC strongly looks like message calls in Self.

‘ Message kind ‘ # of Arguments ‘ Precedence ‘ Associativity ‘

keyword >=0 highest left-to-right
unary 0 medium | right
binary 1 lowest left or right*

* Default associativity for binary messages is left, but it can be changed, because associativity
is defined at the time of the slot declaration (see section 3.5.2 page 71).

A The priority defined by a integer for the binary expressions apply only between the
binary operators.

Arguments may be separated by commas or may use keywords as well (the method name is
splitted into words to separate arguments), as seen in section 3.5.1 page 70.

3.7 Assignment

The declaration of a slot defines its evaluation mode: immediate or delayed. The slots with
immediate evaluation will be evaluated in the order of their declarations (order of the lookup,
see 3.2.2.0). They are evalueted at the load time of the object in memory. The starting point of
a program will thus naturally be defined by a slot of this type.

e Definition with ’:=’ : immediate evaluation The slot is evaluated immediately, that is
automatically, when the prototype is loaded :

- max_character:INTEGER := (2 ** 8) - 1;

The main slot containing the program is declared this way and is thus evaluated as the
initial root prototype is loaded :

- main :=
(10.put_string "Hello world !";) ;

e Definition with 7=’ : immediate evaluation The slot is evaluated immediately, that is
automatically, when the prototype is loaded :

- to_value if possible:VvALUE 7= Self;

If the result is bad type then the result is NULL. See more in the section 3.7.3 page 76.

e Definition with ’<-’ : delayed evaluation Slots declared this way are evaluated only when
explicitly requested by a message send:

74

3.7. Assignment

- display <-
(10.put_string "Hello world !";);

A normal slot method is declared this way. In order to trigger the evaluation of display,
it has to be called, like in the following program:

- main :=

(display;); // explicit call

3.7.1 Typing rules

Assignment follows strict rules in order to respect typing. Examine all the possible cases of the
assignment A := B.

B TYPE SELF Expanded | Separate | Expanded | Separate

A TYPE TYPE SELF SELF
TYPE B.sub A | B.sub A FALSE FALSE FALSE FALSE
SELF A== A=B FALSE FALSE FALSE FALSE

Expanded | A== B | A==18B A=B FALSE A==8B FALSE
TYPE | (Copy B) | (Copy B) | (Copy B) (Copy B)

Separate FALSE FALSE FALSE B.sub A FALSE B.sub A
TYPE

Expanded | A==B | A==B | A==1B FALSE A=B FALSE
seLF | (Copy B) | (Copy B) | (Copy B) (Copy B)

Separate FALSE FALSE FALSE A== FALSE A=B
SELF

Notes: 'B.sub A’ means that B has the same type as A or of its descendants (B is sub type of
A). 'A = B’ means that A and B have the same reference (pointer).
that A and B have the same structure (deep equal).

'A == B’ means

3.7.2 Implicit-receiver messages

Keyword messages are frequently written without an explicit receiver. Such messages use the
current living object (named Self) as the implied receiver. When you call a slot inside an object,
it implicitly call the slot of the self object. The keyword Self can be used to explicitly call the
self object.

Section Header

+ name := EXAMPLE;

- category := APPLICATION;
Section Public

+ slot data:INTEGER := 3;

75

Chapter 3. Language Reference

- main <-
(

Self.slot data.print; // produce exactly the same code as slot data.print;
)3
A Note that the self is different between all the objects, even if they have the same type.
A Unary and binary messages do not accept the implicit receiver, they require an explicit

one.

3.7.3 A particular assignment: 7=

We see that we can assign an object slot with an object of the same type or of its descendants.

FRU T

APPLE | ORANGE

+ f:FRUIT;
+ a:APPLE;
a := APPLE;
f := a;

But you can’t assign an object with one of its parents.

+ f:FRUIT;
+ a:APPLE;
f := FRUIT;
a :=f; // Error: static type FRUIT is invalid with static type APPLE

You can use the assignment defined with ?= to assign an object with an other object of the
same dynamic type. During compilation, the static type can be different but it don’t stop with
error.

+ f:FRUIT;

+ a:APPLE;

(test).if { f := APPLE; }
else { f := ORANGE; };
a 7= f;

During the compilation, the dynamic type of f is not known at the time of assignment but there
is no typing error because static type of f is FRUIT, of which inherits APPLE, static type of a.

The results depends of the dynamic type of f. If the dynamic type of f is exactly the same
as a, the assignment is done as a standard assignment. If the dynamic types are different, the
receiver a is assigned with NULL.

76

3.8. Statement lists

3.7.4 Binary message send

Here is a series of examples to illustrate the above precedence rules:

‘ Source code ‘ 18 interpreted as ‘
2 + "25".to integer + 5 (2+ ("25".to integer)) + 5)
object.set value 2+2 ((object.set value 2) + 2)
2+2 .to_string (2+ (2.to string))

3.7.5 Unary message send

‘ Source code ‘ 18 interpreted as ‘
object.set value -2 ((object.set value) - (2))
—2.t0_stri?1g (- (2.to_str_ing))

-+ -2 (-C+C-2)))

Other example:

? {array != NULL};

3.8 Statement lists

A statement list, or simply “list”, is a sequence of one or several statements, contained between
parentheses '(’ ... ’)’. Statements are both considered as instructions (doing something) and
expressions (having a value), at the same time. Consecutive statements are separated by a
semicolon ’;’. If you want a return value, the result must be the last expression, without ending
by ’;’. You can return multiple values, as a vector of values (values separated with a comma ’,”,

respecting the order).

Without return value With one return value With N return value
(local, (local, (local,

exprl; exprl; exprl;

expr’; expr’; expr’;

exprs; exprs; result,

erpry; result result?

)))

A list is immediately evaluated when reached by the execution flow. Thus, a routine whose
argument is the (single-statement) list (3 + 2)’ receives as argument the result of the evaluation,
5, not the list itself*.

- make count:INTEGER <- /* ... */
/* ... %/

make (3 + 2);

make 5;

/x ... x/

You can also have code and return value for arguments:

“This is the contrary for statement blocks, see section 3.9 page 83.

7

Chapter 3. Language Reference

make ("Here is the call with a list !".print; 3 + 2);

/x ... x/

Consequently, there is absolutely no difference between a one-statement list in LISAAC and
an expression as classically defined in most programming languages.

3.8.1 Return values of lists

The type and return value of a list are determined by the last expression (statement) of the list,
after the last semicolon ’;’ and right before the closing parenthesis ’)’.
For example, the following list returns an INTEGER value:

(
a := foo;
5.factorial // INTEGER value returned

Note that there is no semicolon after the call to factorial.
This list also quite intuitively returns an INTEGER:

(2 * (5 + 3)) // two nested lists, both returning INTEGER
This list can returns more complex objects, such as BOOLEAN:

(al (b&c)) // two nested lists, both returning BOOLEAN
or whichever object:

(

"Here we create a clone of EXAMPLE object".print;
EXAMPLE. clone

As said before, you can return multiple values by separating results with commas ?,’.
(3, 5) // two INTEGER value returns

Return values don’t need to have the same type.

(
(al (b&c)),
8
) // two return values, a BOOLEAN and an INTEGER

Lists could have code and multiple return values:

(
"Multiple return values'.print;
EXAMPLE.clone,
(a | (&),
6

78

3.8. Statement lists

A You can put code between results, but you can’t mix result and not results as explained
in the following example:

(
"Hello".print;
3,
"Ok".print; // Error: there is a result before, you must end with a result

)3
(

"Hello".print;

3,

"0k".print;

0 // 0Ok
)3

A list may also have no return value at all:

a := foo;
5.factorial; // void return

)

In this example, there was a semicolon after the call to factorial. Intuitively, since there is
nothing between the last semicolon et the closing parenthesis (or an “empty statement” only),
nothing is returned from the list after it has been evaluated.

3.8.2 Use of lists
Expressions

It’s the classical use of a LIST which one can find in other languages.

(2+4) 7 // list with a single return value

Methods

From the beginning of this manual, we define methods using lists.

- slot <-
(

"Hello !".print; // List with no return value

)

Functions with one result

We see that the result must be the last expression before the end of the list, without using the
semicolon. The definition of the return type is done after :.

79

Chapter 3. Language Reference

- 7ero:INTEGER <-
(

"Call zero function !".print;
0

)

Functions with multiple results

The results are separated by a comma, at the end of the list. The definition of the return types
is done after :, separated by commas.

- coord: (INTEGER,INTEGER) <-

(
"Call coord function !".print;
X,
y

);

You can also return different types.

- SlOt:INTEGER,BOOLEAN <-

(
"Call slot function !".print;
count,
(count > 0)

);

Arguments

Slots accept only one argument as defined in 3.5. But an argument can be a vector.

- put_pixel (coord_x,coord_y:INTEGER) <-
(

X
y :

coord_x;
coord_y;

)

- put_pixel (coord_x,coord_y:INTEGER) color (r,g,b:INTEGER) <-
(

X := coord_x;

y := coord_y;

red :=r;

green := g;

blue := b;

)

Arguments in a list don’t have to be of the same type, as we can imagine reading the previous
examples. It’s simply more readable to put keywords to separate arguments of different types.

- slot (value:INTEGER,condition:BOOLEAN,text:STRING) <- /* ... %/

80

3.8. Statement lists

Call of slots

If a slot is defined with a list-argument, you must use a list to call this slot.

- put_ pixel (coord_x,coord_y:INTEGER) <-
(

X
y

coord_x;
coord_y;

)

You call this slot with:
put pixel (x,y);
You can also call it using a function returning a list:

- coord:INTEGER,INTEGER <-

(
X,

y
)

The call of the slot can be:

put pixel coord;

A You can’t transform a call with keywords in a call with list.
- slot value:INTEGER from low:INTEGER to high <- /% ... %/
Call slot (3,4 ,5);is forbidden, it represents a slot defined with

- slot (value,low,high:INTEGER) <- /* ... %/

Assignment

You can assign a list only with a list.

(3, 7);

(a,b)
(x coord;

, V)

You can also redefine a function (a liste assigned with delayed evaluation ’<-’)

- msg_error msg:STRING <-

(
"Error : ".print;
msg.print;

)3
- debug mode <-

(

msg error msg <- // you don’t have to precise the type of the argument

81

Chapter 3. Language Reference

(
"Error : ".print;
msg.print;
display stack;
)3
)3

A The redefinition of a function must respect the same profile for arguments.

Special case: receiver of message is a list

You can define a list as a receiver for a message.

- (b:BOOLEAN) slot a:INTEGER to c:INTEGER <- /* ... */
The call is done on the double result list:

(self, TRUE) .slot 1 to 2;

The receiver of the message is the first element of the vector.

3.8.3 Local variables in statement lists

A list has its own environment and scoping. It is possible to declare variables that are local to
the list and thus accessible from any statement inside the list but not from outside.

(+ j,k:INTEGER;
+ array:ARRAY [STRING];
/* ... %/

Locals in lists have to be declared at the beginning or the list, before the first statement.
Therefore, the following declaration is incorrect in LISAAC :

(+ j,k:INTEGER; // declaration, 0K
some method call; // statement, OK
+ array:ARRAY[STRING]; // INVALID declaration !!
/* ... %/

)

Local variables declared with -’ preserves their values with each call (variable persistent), as
for the keyword ’static’ for locals in C.

(+ j,k:INTEGER; // declaration, OK
- counter_call:INTEGER;
VA T ¥
counter_call := counter_call + 1;

)

82

3.9. Statement blocks

3.9 Statement blocks

Statement blocks, or simply “blocks”, have a number of similarities with lists (see section 3.8
page 77).

A block is a sequence of one or several semicolon-separated statements (instructions), con-
tained between braces '{’ ... '}’. A block is an instance of prototype BLOCK.

Blocks are LiSAAC closures like a list. Their evaluation is carried out in their definition
environment. Contrary to lists, blocks are evaluated only when explicitly sent a value message.
When a block receives an acceptable value message, its statements are executed in the context
of the current activation of the method in which the block is declared. This allows the statements
in the block to access variables that are local to the block’s enclosing method and any enclosing
blocks in that method. This set of variables comprises the lexical scope of the block. It also
means that within the block, Self refers to the receiver of the message that activated the method,
not to the block object itself.

A block can take an arbitrary number of arguments and can have its own local variables, as
well as having access to the local variables of its enclosing method.

On of the common uses of blocks in LISAAC is to implement library-defined control structures
(see section 3.9.2.0 page 85).

Here, an example of a current use of a block.

(1ist = NuULL).if {
"List is empty !".print;
};

The block (if’ first’s argument) is evaluated only if conditional is true.

As for lists, you can have no return value or one or multiple return.

Without return value With one return value With N return value
{ local; { local; { local;

exprl; exprl; exprl;

expr?; expra; exprs;

exprs; exprs; result,

erprs; result result?

} } }

A block is equivalent with a list when you call the value message on it.

(local;
exprl;
expr?;
exprd;
eTpPrs;

)

is equivalent with

{ local;
exprl;
expr?;

83

Chapter 3. Language Reference

erprs;
erpry;

}.value
3.9.1 Return values of blocks

The value returned by a block is determined exactly like that of a list (see section 3.8.1 page 78).
The following examples thus are quite straight forward.
The following block returns an INTEGER value:

{
a := foo;
5.factorial // integer value returned

¥

There is no semicolon after the call to factorial.
The right-hand-side of the || operator is a single-statement block that returns a boolean:

test := (j < upper) || {result != NULL};
A block may also have no return value at all:

{
a := foo;
5.factorial; // void return

¥

There was a semicolon after the call to factorial. Since there is nothing between the last
semicolon et the closing curly braket (or an “empty statement” only), nothing is returned from
the block after it has been evaluated.

3.9.2 Use of blocks

When using a block as an argument, it’s not the result of the block that is passed (as for lists)
but the block itself. This property has an incidence on the way you declare the slots.

- slot b:BLOCK <- /x ... x/
The call must be with a slot object:

slot {/* ... x/};

A You must ensure that what is defined in the block is independent from the context.
Let’s see an example.

- my_block:BLOCK;

- slot <-
(+ a:INTEGER;

my block := { a }; // Forbidden !
);

84

3.9. Statement blocks

When the evaluation of the return block (with the message value), the local variable 'a’ don’t
exist ! the result can’t be evaluated.
An example of correct use:

- slot <-

(+ a:BLOCK;
a := { "World!".print; };
"Hello ".print;
a.value;

)

Blocks are used in library to define conditionnals, loops and iterations. You will find more in the
section Library (see 4).

Expressions

(a != NULL) && { b = 3}

In the definition of the binary slot && you find the evaluation of the block. In the FALSE
prototype:

- '&&’ left 20 other:BLOCK :BOOLEAN <- FALSE;
In the TRUE prototype:

- '&&’ left 20 other:BLOCK :BOOLEAN <- other.value;

Conditionals

(a>b) .if {"Yes!".print;} else {"No!".print;};

In the definition of the slot if ... else you find the evaluation of the block. In the FALSE
prototype:
- if true_block:BLOCK else false_block:BLOCK <-
(
false_block.value;
)3

In the TRUE prototype:

- if true_block:BLOCK else false_block:BLOCK <-
(
true_block.value;

)

Loops
Do While

{j:=3j+1; j.print;}.do_while {j<10};

85

Chapter 3. Language Reference

The slot do_while is defined directly in the BLOCK object:

- do_while test:BLOCK <-

(
value; // call of value on BLOCK self
test.value.if {
do_while test; // Defined recursively
};
);
Iterator

1.to 10 do {"Hello!".print;};
The slot to ... do is defined in the NUMERIC object:

- to limit_up:SELF do blc:BLOCK <-
(
(self<=limit_up) .if {
blc.value self;
(self + 1).to limit_up do blc;
s
);

3.9.3 Argument and local variables in statement blocks

Locals in blocks are declared like locals in lists (see section 3.8.3 page 82):

my_block := { + j,k:INTEGER; // Locals list.
+ array:ARRAY [STRING];
/* .. %/
};
VAT Vi

my_block.value;

You can also call a slot with an argument. It’s defined as local variables, but without sign
before.

my_block := { arg:INTEGER; /! Argument
+ 1,j:INTEGER; // Locals list.
VAT V)
s
/% ... %/

my_block.value 3;

An argument can also be a vector of arguments.

86

3.10. Auto-cast

my_block := { (argl:INTEGER, arg2:STRING); // Argument list.
+ j,k:INTEGER;
VAR Y
¥
/* */

my_block.value (3,"0k !");

The same restrictions as for locals in lists also apply: local have to be declared before any
statement and after possible the arguments.

3.10 Auto-cast

Sometimes you want to transform an object in another object, especially for the numbers. This
can be done with the "Auto-cast" facility. In the HEADER section, in the slot name, you can
define the prototypes in which the object can be "auto-casted" with the ->’ symbol.

Section Header
+ name := PROTO1 -> PROTO2,PROTO3;
- category := APPLICATION;
Section Public
- to_proto2:proto2 <- (/*...%/)
- to_proto3:protod <- (/*...%/)

A In the public section, you must define functions called to _name_ of _type (here to_proto2
and to_ proto3) which are automatically called when there is an autocast. These function must
return the corresponding type.

Section Header

+ name := TEST;

- category := APPLICATION;
Section Public

- main :=

(+ a:PROTO1;
+ b:PROTO2;

/* ... %/
b := a; // similar to: b := a.to_proto2;
/* . */

)

A Auto-cast is not transitive: if A can be auto-casted into B, and B into C, A can’t be
auto-casted in C. You must explicitly precise the auto-cast of A into C if you need this.

A Auto-cast is not inherited.

3.11 Tools for programming by contract

Compiler furnishes 2 native functions :

87

Chapter 3. Language Reference

- debug level:NUMERIC // Flag indicating the level of debug mode
- print_runtime stack // Print the stack (only if debug mode is on)

Ezample: output with print runtime stack

BOTTOM
Line #00015 Column #00011 in ESSAI.
Line #00154 Column #00010 in STRING.
Line #00233 Column #00008 in NUMERIC.
Line #00089 Column #00017 in BLOCK.
Line #00056 Column #00023 in OBJECT.
TOP

One example of use of this 2 functions is assertions. Assertions are code conditions who are
verified during execution when the object is compiled with the debug option. There is 2 types
of assertions: first is a unary message of BLOCK.

- 0?0 <
(
((debug_level > 0) && {! value }).if {
check crash;
};
);
The block condition must return one BOOLEAN value. In OBJECT prototype the check crash
code is defined:

- check crash <-

(
print _runtime stack;
die _with code exit failure code;

);
- exit failure code:INTEGER := 1;

- die_with code code:INTEGER <- SYSTEM.exit code;

The exit slot of SYSTEM depends of the architecture on which you run the program.
For example, for UNIX, the slot exit is defined as following:

- exit code:INTEGER <- ‘exit(Qcode)‘; // External, see 3.12.2

The assertions can be put wherever you want in the code.

J* ... code ... ¥/

7
"We verified your code".print;
j>a0

s

J* ... code ... */

The second type of assertion is a binary message of NUMERIC: This type of assertion depends
of the level of debug set while compiling.

88

3.11.

’?7 b:BLOCK <-

(

((debug_level > Self) && {! b.value }).if {
check crash;

};

)3

This kind of assertion can be put anywhere in the code:

/¥ ... code ... */

57 {
"Debug test level 5".print;
j>0

s

37
"Debug test level 3".print;
j < 10

s

174
"Debug test level 1".print;
i>0

s

/¥ .. code ... */

Tools for programming by contract

If you compile using the level 4 for debug, only the 2 last assertions will be verified. Using this

kind of assertions let you assign priorities into verifications.

The stack is written from bottom to top, it indicates the way the program follow during
execution. You can then easily find where the condition is false.

3.11.1 Requires and Ensures

To securise programming, you can put code requires, ensure and invariant in code: conditions
who have to be verified each time you call a message. Before the call, the conditions are called

Require, and after the call Ensure.

I* oo00*

a.sl ot =————» Require

Ensure

code of slot

Require and Ensure are defined between [and]|. The Require is written between the slot header

and the code.

- slot <-

89

Chapter 3. Language Reference

[

// Require
]
(

// Code
)
[

// Ensure
1;

In Require or Ensure section you can hen write your code as for any other method. You
can define local variables, but their visibility is limited in the Require or in the Ensure (a local
variable defined in the Require is not visible in the code or in the Ensure). Local variables defined
in the code are also only limited to the code section.

- slot <-
[
+ a:INTEGER;
a := 3;
? {count > a};
]
(+ b:INTEGER;
b := a; // Error: ’a’ is not defined in the Code section
b :=b *x 3;
)
[
? {count > a}; // Error: ’a’ is not defined in the Ensure section
? {count < b}; // Error: ’b’ is not defined in the Ensure section
1;

In the Require and Ensure section, you can define as many assertions as you want.

3.11.2 Invariant

You can define at the end of code invariant conditions, who must be verified each time you call
a message on an object. The invariant is defined between [and |.

Section Header

- name := /* ... %/
/* ... %/
Section Public
/* ... %/
[
? {lower <= upper + 1};
1;

The invariant is verified each time you call a message with the explicit receiver, before and
after the call.

90

3.11. Tools for programming by contract
QUTSI DE a

1
1
:
RNy ;
a. sl ot —:> I nvari ant
1= .0 0% : Require
: code of slot
: Ensure
1

I nvari ant
|

If the call is done inside the living object, the invariant is not verified.

INSIDE a '
1
1
1
1
* *
[A .
sl ot —:> Require

1= .0 % code of slot

|
|
|

Ensure

A If inside the living object, you explicitly call the Self object, the invariant will be verified.

I NSI DE a

|
|
|
|
|
* *
I* .00 |
Self.slot:—> I nvari ant
1* .00 % : Require
: code of slot
: Ensure
|

I nvari ant
|

3.11.3 Result and Old

You can use the keywords Old and Result _z to add more verifications. The keyword Old can
be used in Ensures and Invariant, and is written before a function to indicate the value of this
slot before the call of the current slot.

- slot <-
(
count := count + 1;
)
[
? {count = Old count + 1};
1

91

Chapter 3. Language Reference

A You can use Old only with slots with no arguments.
The keyword Result _z represents the result of the function and can be used only in Ensures.
If there is only one result, use simply the keyword Result.

- slot:INTEGER <-
(+ a:INTEGER;

a := count;
(a > 0).if {
a:=a+1;
} else {
a :=1;
};
a
)
[
? { Result >= 1 };
13

- slot2:INTEGER,INTEGER <-
(

count + 1,

count - 1

? { Result_1 >=1 };
? { Result 2 > 0 };
1;

3.11.4 Inheritance

Objects inherit invariants from their parents, following the lookup algorithm.

FATHER FATHER
A lnvariant A Allnvariant A

equivalent to =

SON SON

Invariant A

If an invariant is defined in an object, it replace those of its static parent.

| FATHER
“ll nvariant A

| SON
|I nvariant B

92

3.12. Externals

An object can also inherit invariant from its parent and add its own invariant. This is done by
using dots (...). The invariant of the parent is inserted where the dots are written.

[

? {count > 0};

1;

FATHER FATHER
A|lnvariant A Allnvariant A

equivalent to =

SON SON
L Invariant A
Invariant B I nvariant B

It’s the same pattern for Require and Ensures. If an object has a slot with no Require or/and
Ensure, this slot inherits of the Require / Ensure of the slot of the parent of the object (if any).
The Require / Ensure defined in a slot replace those of the parent of the object, and the dots
are the way to insert in an existing Require / Ensure the conditions of the parent.

3.12 Externals

To include C code in LiSAAC language, there is two way, the slot external in the Section
Header or directly in the LiSAAC code as following. The C code is defined between °.

3.12.1 Slot external

All the C code defined in the slot external is directly included in the code. You can define
includes, functions, macros, ...

Section Header

- name := EXAMPLE;
- category := APPLICATION;
- external := ‘#include <stdio.h>

// Hardware ’print_char’
int print_char(char car)

{
fputc(car,stdout);
1

A This C code is NOT verified by the LISAAC compiler.

3.12.2 C code in Lisaac

Anywhere in the code (in the definition of a slot, even in Require / Ensure or Invariant) you can
insert C code.

93

Chapter 3. Language Reference

- slot <-
(+ a:INTEGER;
a := count;
‘fputc(’Y’,stdout) ¢;
);

You can use LISAAC local variable or argument with Q" before the variable.

- slot <-

(+ a:CHARACTER;
‘fputc(Qa,stdout) ¢;

)

A Global variable (slots) are not permitted in the external, if you have to work with it, use
a local variable.

- data:CHARACTER := ’Y?;
- slot <-
(
‘fputc(@data,stdout) ¢; // Forbidden !
);

A Variable used in external are read-only.

- slot <-
(+ a:INTEGER;

‘Qa ++°¢; // Forbidden !
)

You can assign a variable with the result of an external, but you have to precise the return type
after :.

- slot <-
(+ a:INTEGER;

a := ‘Qa + 1‘:INTEGER;
);

You can also precise the dynamic type of the return, if any, as a list of types between parenthesis.

- slot <-
(+ a,b:INTEGER;
+ C:BOOLEAN;

a := count;
b := size;
c := ‘@a == @b‘:BOOLEAN(TRUE,FALSE) ;

)3
A The compiler optimize the code by deleting variables that are not used and the code of
the external if the result is not used (dead code). It can be hazardous if you don’t use the return

value of a C function but if you really need the function to be executed.

94

3.12. Externals

- slot <-
(+ a:CHARACTER;

a := ‘getchar() ‘:CHARACTER;
)

If you don’t use ’a’, the variable and the assignment will be simply deleted ! You can force an
external to be persistent by using parenthesis around the result type.

- slot <-
(+ a:CHARACTER;

a := ‘getchar()‘: (CHARACTER) ; // persistent external
)

In this case, the result is precised as optionally used and the compiler will not optimize the code
and don’t delete the external, even if the result is not used.

3.12.3 Lisaac code in C

As explained in 3.2.5, the Section External is reserved to define slots which keep their LiSAAC
name in the generated C code. You can then link the produced C code with other programs
keeping the name of the functions.

For example, a slot defined as:

Section Public
- slot v:INTEGER :INTEGER <- /* ... %/

could be compiled and produce a C function
static int slot__H8(unsigned long v__GGC) // code is an internal coding of the compiler
If you define the slot in a Section External you keep the name:

Section External
- slot v:INTEGER :INTEGER <- /% ... %/

This code will be compiled in:
int slot (unsigned long v_UCC) // It keeps the name of the function

You can’t define function with keywords. If an external function must have multiple arguments
use a list:

Section External
- slot (a,b:INTEGER,c:CHARACTER) :INTEGER <- /% ... %/

Which will be compiled in:
int slot (a__EDC,b__UFC:integer,c__CCD:character)

Note that in this case, the function is not static, and can be accessed by other programs (not
inlined).

95

Chapter 3. Language Reference

3.12.4 Lisaac external

Externals composed with a simple integer are LISAAC externals (compiler native functions).

Example:
J 2 J ;
These externals are used for example to define basis operations.

- 2>’ right 60 other:SELF :BOOLEAN <- ‘1¢;
- 72 Jeft 80 other:SELF :SELF <- 2%,
/x ... %/

96

Chapter 0100b

The LISAAC Library

In this chapter you will find the description of some prototypes and functions, some of them are
at the core of the library, other are the most commonly used.

4.1 OBJECT

OBJECT is the base prototype who contains all the core functions needed to program efficiently.
All the prototypes of the library inherits, directly or not, of this prototype. When defining your
own prototypes, don’t forget to inherit of OBJECT if you want to use its functions.

The most commonly slots are:

//

// Compiler consideration.

//

- object size:INTEGER // size of the current prototype (in bytes)

- is_debug mode:BOOLEAN // indicates if the object was compiled using
// the debug option

//

// Control Error.

//

- is_clonable:BOOLEAN // indicates if object is clonable (name defined with ’+’)
- print_runtime stack // print stack as defined in 3.11

- die_with code code:INTEGER // Terminate execution with exit status code

- crash with message msg:ABSTRACT _STRING // Terminate execution writing msg
//

// Common Function.

//

- ’==7 right 60 other:SELF :BOOLEAN // TRUE if objects are equal
// (to redefine in each object)
- ?!==? right 60 other:SELF :BOOLEAN
clone:SELF // clone of the object
to pointer:POINTER // return a pointer on this object

97

Chapter 4. The LISAAC Library

4.2 NUMERIC

All the numbers inherits of the NUMERIC prototype. There are facilities of conversion between

the types, as you can see on the following figure.

NUMERI C

[] L]
| I
| I
| I:
| I
C -11:
' .
H | USVALLT NT }, SVALLT NT I : 8hits
. . .
." et T .:.
: r- — ’\ _.-_l :
H | USHORTI NT }. SHORTI NT I - 16 bits
L] . L]
." et T .:.
: r- — ’\ _.-_l :
H | U NTEGER }, T NTEGER I = 32 bits
| HE HE I :
E I ’n\ R I
oty o] G osesies
FRRCIN R CR S PR
HC T R FIRT N
ULARGEI NT pesenn== LARGEI NT n bits

- =p Auto cast with range control.
-==p Auto cast without range control.
— | nheritance.

Not all the types and conversions are drawned here for
sinmplification needs.

For example, a USMALLINT can be converted to a SHORTINT without range control, using
auto-cast.

+ a:SHORTINT;
+ b:USMALLINT;
/* */

a b;

When you explicit a value, this value is NUMERIC. The conversion is done by the assignment.

+ a:INTEGER;
/* */

a 3;

// 3 is NUMERIC, auto-casted to INTEGER, with range control.

NUMERIC and all its sons are expanded types, already living.
The slots most commonly used are:

//
// Arithmetic operations
//
’+> left 80 other:SELF :SELF // add
- -2 Jeft 80 other:SELF :SELF // substract
- ?x? left 100 other:SELF :SELF // multiply

98

4.2. NUMERIC

- ?/? left 100 other:SELF :SELF // divide
- %%’ left 100 other:SELF :SELF // modulo
- %%’ right 120 exp:SELF :SELF // power
- 747 :SELF // positive (unary message)
- ?-? :SELF // negative (unary message)
//
// Bitwise operations
//
&’ left 100 other:SELF :SELF // bitwise and
- 7|’ left 80 other:SELF :SELF // bitwise or
- 7 left 80 other:SELF :SELF // bitwise xor
-’77 :SELF // bitwise complement (unary message)
- ?2>>? left 100 other:NUMERIC :SELF // logical shift right
- <<’ left 100 other:NUMERIC :SELF // logical shift left
//
// Comparisons :
//

- ’= right 60 other:SELF :BOOLEAN
- 1=’ right 60 other:SELF :BOOLEAN
- >’ right 60 other:SELF :BOOLEAN
- ’<? right 60 other:SELF :BOOLEAN
- ’<=’ right 60 other:SELF :BOOLEAN
- >=7 right 60 other:SELF :BOOLEAN
//

// Loops

//

to limit_up:SELF do blc:BLOCK // iterate forward from Self to limit up
downto limit_down:SELF do blc:BLOCK // iterate backward from Self to limit down

to limit_up:SELF by step:SELF do blc:BLOCK // iterate forward with step
downto limit_down:SELF by step:SELF do blc:BLOCK // iterate backward with step

//

// Print

//

- to _hexadecimal: STRING // return a string with the hexadecimal value
- pr;ﬁt // print the value to the standard output

//

// Debug

//

- 7?7 b:BLOCK // assertion, see 3.11

99

Chapter 4. The LISAAC Library

Ezxample: use of loops

1.to 10 do { i:INTEGER; // 1 is the argument of the block
i.print;

s

16.downto 0 by 2 do { i:INTEGER;

i.print;

};

4.3 CHARACTER

CHARACTER is an expanded prototype, represented by one byte, with a character value. It can
be autocasted in smallint without range control. Here is a few commonly used slot:

//

// Conversions

//

- code:SMALLINT // ASCII Code

- to__upper:CHARACTER // return the equivalent character in upper case
- to_lower:CHARACTER // return the equivalent character in lower case
//

// Tests

//

- is_letter:BOOLEAN // Is it a letter (a’ .. ’z’ or ’A’ .. ?Z2°) 7
- is_ digit:BOOLEAN // Belongs to ’0°..7°97°.

7

A character is defined between .
+ C:CHARACTER;

c = z7%;
’z’.is_letter.if /x ... x/

4.4 BOOLEAN

BOOLEAN is an expanded type from which inherits TRUE and FALSE. By default a BOOLEAN is
dynamically FALSE. Conditionnals methods are declared in BOOLEAN but their real definition
stand in TRUE or FALSE, the dynamic types of BOOLEAN.

For example, the if ... else method is declared deferred (to be redefine) in BOOLEAN.

- if b_true:BLOCK else b_false:BLOCK <- deferred;

100

4.4. BOOLEAN

In TRUE the slot is redefine:
- if b_true:BLOCK else b_false:BLOCK <- b_true.value;
In FALSE the slot is redefine:
- if b_true:BLOCK else b_false:BLOCK <- b_false.value;
Just examine the following call:
(a > b).if { "Yes!".print; } else { "No!".print; };

The list (a > b) returns a boolean, which will dynamically be TRUE or FALSE. Then the eval-
uation of the slot if ... else will be done in the corresponding prototype and returns the real
result by late binding.

e (a > b) returns TRUE : the code evaluated is b_true.value so { "Yes!".print; }
e (a > b) returns FALSE: the code evaluated is b_ false.value so { "No!".print; }

All the functions of BOOLEAN follow the same pattern using late binding.

//
// Logical operations :
//
>12:BOOLEAN // not (unary slot)
- 2%’ left 20 other:BOOLEAN :BOOLEAN // and (strict, total evaluation)
- 7|2 left 10 other:BOOLEAN :BOOLEAN // or (strict, total evaluation)
- %%’ left 20 other:BLOCK :BOOLEAN // and then (semi strict)
- ||’ left 10 other:BLOCK :BOOLEAN // or else (semi strict)
- 277 left 10 other:BOOLEAN :BOOLEAN // xor
’->’right 25 other:BOOLEAN :BOOLEAN // imply
//
// Conditionals
//

- if true_block:BLOCK :BOOLEAN

- if true_block:BLOCK else false_block:BLOCK

- elseif cond:BLOCK then block:BLOCK :BOOLEAN

- elseif cond:BLOCK then block:BLOCK else block_else:BLOCK

Here is a few examples of using BOOLEAN.

+ a,b,c,d,e:BOOLEAN;

/* .. %/

e :=(a | b) && { ¢ -> d};

/* .. %/

(a =~ ¢).if { "Ok!".print; } // return a BOOLEAN

.elseif { d } then { "Ko!".print; } else { "Maybe!".print; };
/* ... x/

101

Chapter 4. The LISAAC Library

4.5 BLOCK

BLOCK is a particular prototype because it is implicitly constructed using braces { and }. For
more informations about blocks see 3.9. Here is some functions defined in the BLOCK prototype.

//

// Conditional :

//

- ||’ left 10 other:BLOCK :BOOLEAN // or else

- &%’ left 20 other:BLOCK :BOOLEAN // and then

//

// Loop :

//

- while do body:BLOCK // while self is TRUE, evaluate body
- do_while test:BLOCK // evaluate self while test is TRUE
- until _do body:BLOCK // until self is TRUE, evaluate body
- do_until test:BLOCK // evaluate self until test is TRUE
//

// Debug

//

- // assertion, see 3.11

Example: using loops

+ j:INTEGER;

{j <10 }.while do { j.print; j := j + 1; };
j = 0;

{ j.print; j := j + 1; }.do_until { j >= 10 };

4.6 NATIVE ARRAY

NATIVE _ARRAY is a particular collection prototype using genericity. It’s an expanded type who
have the particularity to be directly matched on memory datas. This prototype is at the core of
all the collections (arrays).

A Be careful when using a NATIVE _ARRAY, there is no bound control, it’s equivalent to
a variable defined with (void *) in C. The use of NATIVE _ARRAY is reserved to experts because
of its low level. If you want more informations about the use, watch the code of this prototype
and how it is used in collections.

102

4.7. STRING

e T e 1T e T e]
NATI VE_ARRAY[E]

v y A\ v
Pl+ stot1 [a]||P[+ stot1 [2]||P[+ stot1 [3]||P[+ slot1 [4
+ slot2 |5 + slot2 |8 + slot2 |1 + slot2 |2

E. cl one E. cl one E. cl one E. cl one
E is not an Expanded Object

Pl+ siot1 |7 Pl+ stot1 [a]|]|P[+ slot1 [
+ slot2 |2 + slot2 |1 + slot2 |4

NATI VE_ARRAY[Expanded E]

|| 1 | 120
NATI VE_ARRAY[| NTEGER]

0 [25 | 8 |

I NTEGER i s an Expanded Obj ect

4.7 STRING

There 3 type of string in the library: ABSTRACT _STRING, STRING _CONSTANT and STRING.
ABSTRACT _STRING is an abstract prototype, who define the standard operations on a string.
STRING _CONSTANT inherits of ABSTRACT STRING. A STRING CONSTANT can’t be modi-

fied after being created. You can create it as following:

+ a:STRING CONSTANT := "Hello world !";

b

STRING also inherits of ABSTRACT _STRING. This object can be modified in many ways.
This 3 prototypes are similar in their internal representation.

Section Header

- name := ABSTRACT_STRING -> STRING; // can be autocast in STRING
- category := DOCILE;
VA B ¥
Section ABSTRACT _STRING // ABSTRACT STRING and its descendants

+ storage:NATIVE ARRAY [CHARACTER] ;

Section Public

/x ... x/

s [eorase o[l T [o]
P Goont__[5]

ABSTRACT_STRI NG

In ABSTRACT _ STRING you can find the following slots (visible from STRING and STRING _ CONSTANT,
because of the inheritance.

//
// Features

//

103

Chapter 4. The LISAAC Library

+ count:INTEGER // Number of elements of storage

- lower:INTEGER := 1; // The elements are numbered from 1 to count

- upper:INTEGER // Number of the last element

- capacity :INTEGER // Number of reserved elements for storage

//

// Access

//

- item index:INTEGER :CHARACTER // Element number index

- ’==7 left 40 other:ABSTRACT_STRING :BOOLEAN // True if strings have the same text
- same _as other:ABSTRACT_STRING :BOOLEAN // Case insensitive ’==’

//

// Testing

//

- has ch:CHARACTER :BOOLEAN // True if ‘ch’ is present

- has substring other:ABSTRACT _STRING :BOOLEAN // True if ‘other’ is present
//

// Operations

//

- 7+’ other:ABSTRACT STRING :STRING // New STRING, concatenation of Self and other.
- substring start_index:INTEGER to end_index:INTEGER :STRING // Create a substring

A STRING _CONSTANT is particular because it can’t be modified.
- to_string:STRING // create a STRING object from a STRING CONSTANT

A STRING object is not an expanded prototype so it must be cloned from the 'master’ object.

//
// Creation

//

- create needed_capacity:NUMERIC :SELF // Create with needed_capacity but empty
- create from string str:ABSTRACT_STRING :SELF // Create with a copy of sir

//

// Modifications

//

- clear // Count is reseted, but capacity remain identical
- append other:ABSTRACT STRING // Append other to Self

- prepend other:ABSTRACT STRING // Prepend other to Self

104

4.8. FIXED ARRAY

put ch:CHARACTER to index:INTEGER// Put ch at position index

- add _last ch:CHARACTER // Append ch to Self
- to_lower // Convert all the characters to lower case
- to_upper // Convert all the characters to upper case

4.8 FIXED ARRAY

FIXED _ARRAY is an array with a fixed lower bound using genericity. You can define a FIXED ARRAY
of any object. As for STRING, FIXED _ARRAY has a storage:

+ storage:NATIVE _ARRAY|E|; // Internal access to storage location
+ count:INTEGER; // Number of elements of the array

Example: FIXED ARRAY of an expanded object

p[+storage @ sz o [ws)

+count 3

FI XED_ARRAY[| NTEGER]

Ezample: FIXED _ARRAY of an non expanded object

p[+storage @ :I|.|Q|0|Q|
+count 4 *
FI XED_ARRAY[STRI NG A 4’| (s ly [e |

p[eount 5]
A
Ao o —{[CT [Talalc]

p[eont 5]
\
Alstorage @f——[e[[[o]
p[reount___[]
//
// Features
//
- lower:INTEGER := 0; // The elements are numbered from O to count - 1
- upper:INTEGER // Number of the last element
- capacity:INTEGER // Number of reserved elements for storage
//
// Creation
//

105

Chapter 4. The LISAAC Library

- create new_count:numeric :SELF // Create an array of mew count elements
// initialized to the default of ’E’

- create_with capacity new_count:numeric :SELF // Create an empty array
// of mew count elements reserved

//

// Access

//

- item index:INTEGER :E // Element number index

//

// Testing

//

- ?== right 60 other:SELF :BOOLEAN // TRUE if objects have the same elements
//

// Modifications

//

- subarray min:NUMERIC to max:NUMERIC :SELF // Create a subarray

- append other:SELF // Append other array

- add last element:E // Append element

- put element:E to i:NUMERIC // Put element at position 1

- clear // Count is reseted, but not capacity

4.9 STD_ INPUT

STD _INPUT is used to modelize the standard input for the program. You can use directly the
master object STD _INPUT when calling slots. Clone of this prototype is useful only if you have
multi inputs.

- read character:CHARACTER // return the character read

- read line in str:STRING // put the line read in sir (must be not NULL)
- last _integer // last integer read

- read integer // read integer and put result to last integer

Ezxamples: use of functions

+ C:CHARACTER;
c := STD_INPUT.read character;

106

4.10. STD _OUTPUT

4.10 STD OUTPUT

STD_OUTPUT is used to modelize the standard output for the program. You can use directly
the master object STD _OUTPUT when calling slots. Clone of this prototype is useful only if you
have multi outputs.

- put_character c:CHARACTER // write a single character on the output
- put_string s:ABSTRACT_STRING // write a string
- put_new _line // write a new line

Ezxamples: use of output

STD_OUTPUT.put character ’Y’;
STD_OUTPUT.put _string "Hello world !";

4.11 COMMAND LINE

COMMAND _LINE represents the command line of the call of the executable. If you have to get
arguments of the command, use this prototype.

- count:INTEGER // number of arguments

- item idx:INTEGER :STRING CONSTANT // argument number idz
// name of the executable is O,
// first argument is 1

Ezxample: use of functions

COMMAND _LINE.item 1.print;

4.12 Default values

‘ Type ‘ Value
NUMERIC 0
CHARACTER | "\0’
BOOLEAN | FALSE
FALSE FALSE
nothing () or voiD
other object | NULL

107

Chapter 4. The LISAAC Library

108

Chapter 0101b

The LisaAAC World

5.1 Glossary of useful selectors

This glossary lists some useful selectors. It is by no means exhaustive.

Name: Arity: Associativity: Semantics:

5.1.1 Assignment

= binary right Assignment with value

7= binary right Assignment with value or NULL if bad type
<- binary right Assignment with code

5.1.2 Cloning

clone create a clone

5.1.3 Comparisons

= binary left reference identity

I= binary left not equal (reference)

== binary left structural equality (first level)
== binary left not equal (structural)

< binary left less than

> binary left greater than

<= binary left less than or equal

>= binary left greater than or equal

hash code hash value

109

Chapter 5. The LisaAac World

5.1.4 Numeric operations

+ binary
- binary
binary
/ binary
% binary
ok binary
+ unary
- unary

left
left
left
left
left
left
right
right

add
subtract
multiply
divide
modulus
exponential
positive
negative

5.1.5 Logical operations (BOOLEAN) (see 5.2.1)

& binary
&& binary
| binary
N binary
A or AA binary
-> binary
=> binary
! unary

left
left
left
left
left
left
left
right

and (strict, total evaluation)
and then (semi-strict)

or (strict, total evaluation)
or else (semi-strict)

xor

imply

imply a block

not (negation)

5.1.6 Bitwise operations (INTEGER)

binary
binary
binary
unary
binary
binary

VAL>—F

VvV A

5.1.7 Control

left
left
left
right
left
left

Conditonal (see 5.2.2)

Aif true B
Alif false B
Aif B

Aif B else C

A if B.elseif C then D

A if B.elseif C then D else E

bitwise and

bitwise or

bitwise xor

bitwise complement

logical left shift (filled low bits by zero)
logical right shift (filled high bits by zero)

evaluate B if A is True, no return value

evaluate B if A is False, no return value

evaluate B if A is True, result is receiver A

evaluate B if A is True, C if A is False

evaluate first arg if False, if arg is True then second arg
is evaluate, result is the first arg evaluation

evaluate first arg if False, if arg is True then second arg
is evaluate, else the third arg is evaluate

110

5.2. Control Structures: Booleans and Conditionals

A.when V then B once the receiver is equal to first
argument, the second one is evaluated
A.when V1 to V2 then B if the receiver is in the interval V1-V2,
the last argument is evaluated
A.when V1 or V2 then B if the receiver is V1 or V2, the last argument is evaluated

Basic looping (BLOCK) (see 5.3)

loop repeat the block forever

pre-tested looping (BLOCK) (see 5.3.1)

A.while _do B while receiver A evaluates to True, repeat the block B argument
A.until_do B while receiver A evaluates to False, repeat the block B argument

post-tested looping (BLOCK) (see 5.5.2)

B.do_while A repeat the receiver block B while the argument A evaluates to True
B.do until A repeat the receiver block B until the argument A evaluates to True

Iterators (INTEGER) (see 5.3.3)

V1.to V2 do B iterate forward

V1.to V2 by Sdo B iterate forward, with stride
V1.downto V2 do B iterate backward

V1.downto V2 by S do B iterate backward, with stride

5.1.8 Debugging

! unary right crash if argument expression is False (BLOCK)
7B binary crash if block is False and level of debug higher (NUMERIC)

5.2 Control Structures: Booleans and Conditionals

5.2.1 Booleans expression

The boolean expression occurs by sending of message to TRUE or FALSE object.

111

Chapter 5. The LisaAac World

test := ((a | b) & ¢) -> d;
test2 := ((i>3) | (j<=20));

In this example, all the expressions are evaluated.
Typically, there is a “or” and “and” operators which evaluates that by need the right part of the
expression.

test := (a || {! b}) && {c -> testl};
// If a is False then ’! b’ is evaluate.
// If (a || ! b) is True then ’c -> test’ is evaluate.

test2 := ((i>3) || {j<=20}1);
// If (i>3) is False ’j<=20’ is evaluate.
5.2.2 Conditionals

A fundamental control structure in LISAAC , like in many languages, is the conditional. In

LisaAc , the behavior of conditionals is defined by two unique boolean objects, TRUE and FALSE.

Boolean objects respond to the if else message by evaluating the appropriate BLOCK argument.
For example, TRUE implements if else this way:

- if true_block:BLOCK else false_block:BLOCK <- true_block.value;

That is, when TRUE is sent the if else message, it evaluates the first block and ignores the second.
Conversely, the if else implementation in FALSE is:

- if true_block:BLOCK else false_block:BLOCK <- false_block.value;

5.3 Loops

The numerous ways to do loops in LISAAC , enumerated in section 5.1 above, are best illustrated
by examples.
5.3.1 Pre-tested looping

Here are two loops that test for their termination condition at the beginning of the loop:

{ conditional expression }.while do { /* ... x/ };

{ conditional expression }.until do { /* ... */ };

In each case, the block that receives the message repeatedly evaluates itself and, if the termi-
nation condition is not met yet, evaluates the argument block. The value returned by both loop
expressions is void. while do tests the condition and loops while it is true, whereas until _do
tests the condition and loops until it is true. In both case, since the test is done before any
looping, the loop block may not be executed at all.

For illustration purposes, here is the implementation of the while do message in BLOCK:

- while do loop_body:BLOCK <-
(? {loop_body != NULL};

112

5.4. Collections

Self.value.if {
loop_body.value;
Self.while do loop_body;

s

)3

Of course, self is optional.

5.3.2 Post-tested looping

It is also possible to put the termination test at the end of the loop, ensuring that the loop body
is executed at least once:

{ /% ... ¥/ }.do_while { conditional expression };

{ /% ... x/ }.do_until { conditional expression };

5.3.3 [Iterators looping

1.to 10 do { i:INTEGER;
/x ... x/
}s

10.downto 1 do { i:INTEGER;
/x ... x/
}s

The i’ argument of the block of execution contains the current value of the iteration.

5.4 Collections

5.4.1 List of collections

ARRAY : 1-dimension resizable array
ARRAY2: 2-dimension resizable array
ARRAY3: 3-dimension resizable array
FIXED ARRAY : l-dimension fixed array
FIXED ARRAY2: 2-dimension fixed array
FIXED _ARRAY3: 3-dimension fixed array
LINKED _LIST : 1 way linked list

LINKED2 LIST: 2 ways linked list

SET: mathematical set of hashable objects
DICTIONNAY: associative memory

5.4.2 Example

+ a:FIXED ARRAY[INTEGER];
+ b:INTEGER;

113

Chapter 5. The LisaAac World

a := FIXED ARRAY[INTEGER].create 10;
a.put 5 to O;
a.put 2 to 1;
b := a.item O;

114

Bibliography

[Hum90] R. Hummel. Interruption and exception. In Intel{86 Microprocessor Family Program-

[Mey94|

[PBy00]

[Son00]

[US87]

mer’s Reference Manual, pages 83-104, 1990.
Bertrand Meyer. Fiffel, The Language. Prentice Hall, 1994.

H. Dubois ... P. Borovansk y, H. Cirstea. Library reference manual. In ELAN, pages
20-24, 2000.

B. Sonntag. http://www.isaac0S.com. Site web: Isaac (Object Operating System).,
2000.

D. Ungar and R. Smith. Self: The Power of Simplicity. In 2nd Annual ACM Conference
on Object-Oriented Programming Systems, Languages and Applications (OOPSLA’87),
pages 227-241. ACM Press, 1987.

115

Bibliography

116

Index

=, 74 Escape sequence, 28
7,88, 111 Evaluation, delayed, 74
7=,74, 76 Evaluation, immediate, 74
<-, 74 Expression, 79, 85

External, 49, 93
Argument, 13

Argument, list, 80 Final elements, grammar, 27
Assertion, 88 FIXED ARRAY, prototype, 105
Assignment, 14, 74, 109 Function, 79, 80

Assignment, list, 81
Assignment, slot, 59, 63, 66
Auto cast, 87

Genericity, 55
Grammar, 30

if else, 19, 112

Inheritance, 23, 32

Inheritance, accessibility, 52

Inheritance, evaluation of parents, 42
Inheritance, expanded, 38

Inheritance, non shared, 24, 36
Inheritance, programming by contract, 92
Inheritance, shared, 23, 35

Binary message, 71

Bitwise operation, 110
Block, 83

BLOCK, prototype, 102
Block, return value, 84
Boolean, expression, 111
BOOLEAN, prototype, 100

C Code, 93, 95 inter?uption, 48- -
Call of a slot, 13 nvar%ant, condition, 90
Call of slot, 81 Invariant, type, 55

Character, 28 Iterator, 111, 113

CHARACTER, prototype, 100 Keyword, 70

Class, 9

Clone, 21, 32, 109 Late binding, 74

Collection, 113 Library, 97

COMMAND _LINE, prototype, 107 Lisaac external, 96

Comparison, 109 List, 77

Compilation, 16 List, argument, 80

Conditional, 19, 85, 110, 112 List, assignment, 81

Contract, programming by, 87 List, local variable, 82
List, return value, 78

Default value, 58, 107 Local variable, 16, 82, 86

do until, 113 Logical operation, 110

do while, 20, 85, 113 Lookup algorithm, 44
Loop, 20, 85, 111, 112

Eiffel, 5

Ensure, 89 Mapping, 47

117

Index

Message, binary, 71, 77
Message, implicit-receiver, 75
Message, resend, 46
Message, send, 74

Message, unary, 72, 77
Method, 79

NATIVE ARRAY, prototype, 102
Number, 28

Numeric operation, 110
NUMERIC, prototype, 98

Object, 9, 10

Object Oriented Language, 20
OBJECT, prototype, 97

Old, keyword, 91

Operation, bitwise, 110
Operation, logical, 110
Operation, numeric, 110

Print, function, 18
Private, section, 50
Prototype, 9
Public, 50

Read, function, 18
Require, 89

Result, keyword, 91
Run, 16

Section External, 49
Section Header, 31
Section identifier, 30
Section Inherit, 32
Section Interrupt, 48
Section Mapping, 47
Section Private, 50
Section Public, 50
Section SELF, 50
Section prototype list, 50
Section, other, 50

self, object, 21

SELF, prototype, 56
SELF, section, 50
Semantic, 27

Slot, 11, 58, 70

Slot, argument, 13

Slot, assignment, 14, 59, 63, 66
Slot, call, 13, 81

Slot, expanded, 64

Slot, external, 93

Slot, keyword, 70

Slot, non shared, 62

Slot, redefinition, 34

Slot, shared, 58

Slot, simple, 11

Slot, visibility, 43

STD _INPUT, prototype, 106
STD OUTPUT, prototype, 107
String, 29

STRING, prototype, 103
Syntax, 29

Type, 17, 55
Type, invariant, 55
Typing rules, 75

until do, 112
Variable, local, 16, 82, 86

while do, 112

118

