Lire Developer’'s Manual

Joost van Baal
Egon L. Willighagen

Francis J. Lacoste

Lire Developer’'s Manual
by Joost van Baal, Egon L. Willighagen, and Francis J. Lacoste

Copyright © 2000, 2001, 2002, 2003 Stichting LogReport Foundation

This manual is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This is distributed in the hope that it will be useful, nithout any warrantywithout even the implied warranty afierchantabilityor fitness

for a particular purposeSee the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this manual (see COPYING); if not, check with
http://www.gnu.org/copyleft/gpl.html (http://www.gnu.org/copyleft/gpl.html) or write to the Free Software Foundation, Inc., 59 Temple

Place - Suite 330, Boston, MA 02111, USA.

Revision History

Revision 1.5 $Date: 2004/04/01 22:41:24 $
$ld: dev-manual.dbx,v 1.79 2004/04/01 22:41:24 wsourdeau Exp $

Table of Contents

L= = USSR i
What ThisS BOOK CONLAINS.........ccoiiieiicteciece et te sttt st e e et e e seesaeeseesbesaaesbesneensesaeeneeseesseens i
HOW IS ThiS BOOK OFQANIZEAZ......eceeiirieite ettt sttt s b e b s se e bbbt et e ebe e i
(7o) 0177 T o1 1 o] 0 FS3 U =1 =To ST i
If You Don'’t Find Something In ThisS ManUAL...........cccooiiiii e i

R 1 E SR N (o 11 C=Tod (B TSP PSS i
L. ATCIITECTUIE OVEIVIEWL. . .c.vitieeeetieteite sttt ettt sttt b et bttt h e b b se e e e ae e b e s beseese e s e e et eaeeb e b s 1

[SR D T T [o T T = 11 =T S 2
(ool 1 (I N[4 g g F= L= (o] o OSSOSO 2
[o N 4 F= 1= OSSOSO 3
[Ry=ToTe] A ©1=T g =T = 4o o PO OSSOSO 5
Report Formatting and Other POSt-PrOCESSING.ccoveirieirieerieesese e nees 6
GOING FUMNEE ...ttt bbb et st sttt st e naene s 7

[1. USING the Lire FIAMEWOIKc..cuiiiiiiiieiieiiie ettt bbbttt enennenan 1

2. WrItiNG & NEW DLF CONVEITRL......coiitiirieieiee ettt sttt s sttt et st st st eb e 2
PrEIEQUISITES. ...ttt ettt b e st b et b et b et b et e bt b 2

The commOon_SYSIOg LOG FOIMAL........cccoeiriiiiirierereeee et 2
Creating the DLF Converter SKEIELQN. ..ot 2
AAAING @ CONSITUCTOL. ...ttt b et bbb bt ss b e b et 3

The Meta-Data MEthOUS. ..o e et e e nesaeseeseens 4

The DLF CONVEIET NAIME........oiiiiiieieie ettt se et e e see e e e e e eneeneseeseees 4

Providing INfOrmMation TO USEIS........ccoveiiiirinereseese sttt 4

Providing Information to the Framewark............cocoieiieineineeeeseee e 5

The Conversion MENOUS..........cci it sre s resreens 5
Conversion INItIANIZALION...........occii e st s sre e 6

ConVversion FINAlIZAtIOMcvciiii ettt sre e 6

The DLF CONVEISION PrOCESS.......cciiieiiicieee sttt sttt sanesnesnean 6

File-Oriented CONVEISIQN. ..ot s see s 8

Registering Your DLF Converter with the Lire Framework...........ccoooeeoninene e 8

DLF CONVEITET APLL..... ettt e b et e b bt e e s b e s e seesbeene s b e ennenneenis 9
T[T Jr= B 0 T I o = o o = 10
Designing the ftpproto SCheMIA............cov e 10
Creating The SCheMA Fle.......ccoiiee et 10

Adding the Schema’s DeSCIPLQN.........cucveii e see e sreens 11

Defining the SChemMaA's FIeldS..........coiiiiiieieisece et 11

LI L= = o T Y o= SR 12

INStalling ThEe SCREMIA.......ccciiecee e st re e 14

VY1 (] T = WAL= =T o T AR 15
L1 C=T GRS o =T o] ToT= o) 15

[[]. DEVEIOPEI'S REFEIENCEottt st s b e st b ettt e et e bt se et e st et e seebeneebenea 16

5. LIME DALA TYPES vttt sttt sttt e b e e b et b et b et b bt s e bt e btk e b et bbb 17

Lire TeXtUal EIEMENLS........ooiie ettt sttt r et s e e neenesneneas 17
Profiling AWFDULE.......oeiie bbbt 17

L1 LI =1 (= 0 T o RS 17

[0 Tod 210 o] Q=1 =T 41T | €= S 18

description 111 0 0 1= 0) OSSR 18

6. Common Textual Elements to All XML FOrMALS........ccooiiiiinerereeeeee e 19
Lire Data Types Parameter ENHItIESot 19

BOOIEAN TYPB...ceieiieciei et bbb 19

LT CSTo [T A Y oL PTR PP 19
NUMDET TYPE. ..ttt b et b et bbbt ne e 19
U a0 T Y] o= TSSOSO TSPV ORTRSRU 19
TIMESTAMIP LY P .ttt b e et b et b e b st e bt se b e seebene b e e renea 20
I8 Ty P ettt b et bbbt b e e b et b et b et b e bt e bt se b e neeb e e b e re e 20

D= 1= Y/ 01UV UPTURRORPRO 20
(DU (o] o T Y] o L= OSSR 20

| Y/ 01T PO U PV SOPPTUPTURTPROR 21

0] (R Y/ o[OO U TS U PRV OPPTURORTPROR 21
HOSTNAIME TY PRttt b ettt et see b et e b e e ae e bt eaeeeesaeeneesaesneans 21

LU I 1Y/ o T SRS 21

0 0=V N Y/ 0TS ROS 21
(23T C=E ST Y/ 6 1= RSP URPRR 22

e 1T=T = U 1=] =SS 22

e =Y o T 17 o = SRS 22

U] 01T 6] Y/ (o= 1] o= S 22

(O g 1 A 1Y/ o1 T SRR 23
=] = L= To I 1Y/ 0T 23

7. The Lire Report Configuration Specification Markup Language.........c.ccooevevvevereeniesieneseeseeesenens 24
The Lire Report Configuration Specification Markup Language..........cccccveeeveerenerenesesenenenns 24
CONMIG-SPEC EIEBMEBNL.. ... eeiectecrectecee ettt st st be et e ebeeeesbeeneesbesreenbenbeeans 25
SUMMATY BIEIMENL.....ue ittt sttt et e et et e s reestesbeeasesbeebeebesbeeneesbesnsesbesreensenseeans 25
Parameter Specifiations EIEMENLS.........ccoiiriiiiirieer e 25
(70 40T 040 oI 411 01U] (== 26

DOO0IEAN BlEMENT ...t be et e beebeeneesreenees 26

g C=To [T =1 1= g1 o | 26

EY (g0 To =1 1= 0 0= o S 26
dif-converter CIEMEBNL......eee e e e e 27

dif-schema ElEMENL...........oci ettt sre e b s re e beenes 27
COMMANUEIEIMENTo et sre e s besbe b e beeaes 27

file BIEIMEBNL....oeieee e et neen 28

dIrECtOry EIEMENT ... bbb e 28

LYol 7 Lo LI =1 U= o 1 =T o R 28

EY][=Tod =1 (=T 0 0 U= o USSR 28

Lo oL AT = [T g1 o | 29

=] T 0 1= o | AU 29

o) oJ=Yod A = 1= 41T o | 29

(=YoTo] (o I =1 =T 0 0= o ST 30

(o]0 T 1 =1 1= 0 4= o | S 30

8. The Lire Report Configuration Markup LANQUAGE.........cceceeeeriieeere e steete s eee e 31
The Lire Report Configuration Markup Language.........cccocveceevereeiesesieesie e e 31
Fore) YT TR =1 1T 1= o | G 31

o [Lo] o T= V=111 41T o | S 32

[T =T I =1 [T 0 1T o) SRR 32

9. The Lire DLF Schema Markup LANQUAGE.ccerueeeeereeesesieeeeetesestestessesaesessesresteseesaessssssessesnens 33
The Lire DLF Schema Markup LANQUAGE.ccccueerereriseriereeeeeseseseessseeessessesse e saessssessesseses 33
Thedlf-schema ElEMENL ...t e 34
extended-schema ElEMENL........ccciiiir et s nne 34
derived-schema EIEMENL..........occiiere et nne 35

fIEld EIEMEBNL. ...ttt 36

10. The Lire Report Specification Markup LANQUAGE..........ccverriireiririreerieeseeieseseesieeseeeseeeseenes 38

TEPOI-SPEC ElEMIEBNT ..o sttt se e e nesnenne 39
global-filter-spec L2 1T 0 0 1= o) SR 39
diSplay-SPEC ElEMIENT ..ot et nna 40
PaAram-spPeC ElIEMENL.. ..ottt nn 40
[SE= Ve U0 g I=1 [T o 4 1=T o | ST P PRTRSTSRN 40
Filter eXpresSSion ElEMENLS.ottt e e ere e e 41
filter-spec (=1 1T 4 1T o S 41

172 (0TI = =T o =Y o O 42

LYo =1 1=T 0 01=]) O 42

a1 =T =T 0 T o ST 42

o LA =1 (=0 0= o 43

oS3 =1 (=0 01= | O 43

1= =T 0 V=T o U 43

LI =1 =T 0 V=T o U 43

L0 E= Lo T =T [T o =T o ST 43

a0 =111 1T o | SRS 44

2T I =Y 1= 0T o TSP 44

Lo G =111 1 0= o | S 44
Report Calculation EIEMENLS.........cccoviieieieeise e re e e 44
report-calc-spec CIEBMEBNL.....c.oi e et 45
(070 40T g0 0 I AN 411 01U] (== 45
OIOUP EIBMIEBNL....cei ettt sttt et s re e beebe et e ebeeaeesbesaeesbesbaenbenbeenns 46
tIMEGIOUP ElEMIENT ...t se e e neesenneneens 46
tMESIOt BIEMENT..c.eieecece et et s st e be b b enes a7

Voo oYU o =] [T o 4 1= o | P 48

fIeld BlEMENL.. ...ttt et b e et sae et e re b ereenes 49

SUM EIEIMEBNL. ...ttt sttt be et s ae e e e besbe e st e eaeeaeesaeeneesbesbeenbenteenns 50

oAV o =1 1= 0 0T | S 51

MAX CIEMIEBNL......eeete ettt e st et e e beeeesbeenaesbesbeenbeebeensesresanas 51

MIN BIEMIEBNL......eececeeeeee et st ae e b e s teeeesbeeaaesbesaeenseereeneesnesnnas 52

LTI =1 (=T 0 1 =Y o) OO RR SRR 52

T A=Y (=T 0 g1 o O RSTRTR 53
LoTo TN a1 A=Y (=T ¢ 1Y o SRR 54
(g=YoTo) (o R = [T 0 41T o1 SO 54

11. The Lire Report Markup LANQUAGE. ..ottt st st sre e 56
The Report Markup LANGQUAGE. ..ottt s bbb s e e sb e e 56
=Yoo A =1 1= o 0= o | SR 57
Meta-information EIEMENTS...........ccuii e ene s 57
Lo ST =1 (=T 0 =T o 57
L0 1Y o T AT =1 1= 0 1= o | O 58
NOSINAME EIEBMENL.......oei ettt e b e e re e b e e be e saeeeaneears 58
ANNOLALIONS EIEMENLS......oceee e e e renneens 58
g0 (Y =1 [T o 0= o U 59
g0 (o= [T g1 o | TS 59

0o (=Y L1] o U1 =TT 59

LY=ot 1o I =Y 1= 0 0 =Y o RN 59
L0 o= oo A A =1 (=T 4 0 1= o) OO 59
missing-subreport CIEBMEBNL ...ttt sre s 60
121] LT =Y (=T 0 T o T 61
table-info L2312 0 0= o T 61
o T(o 0T o 1 o B = 1= 0 0= o SR 62

Lot TaaT e Ta (o TR = (=] 1 11 | PP 62

group-sUMMAry ElEMENT.......ccci ittt re st e see e e e esesneneeas 63

o T(o U o= (=T 1= o | PP RSTRSN 64

o (VA= =T 1= o | PSSR 64

QT TN o g1 o | TSP 65

VaAIUE ElEIMEBNT... .ottt b et ae e e e neere e 66
Charts-related EIEMENLS........coc ittt se e ae e snea 66
TagF=Te LI = [T o 0= o ST 66

file BIBIMEBNL.. .ot b e e 67

12. SCHEMAS RETEIENCE. ... ceiieeeeeet et bbbt b e et e et ae b neas 68
Schemas for the database SUPEIrSEIVICE. ... 68
DLF Schema for Database SEIVICE.........cocuririieriese ettt 68
Extended Schemas for the database SUPEIrSEIVICE........covevevieierieseeeese e e 70
Query Type Extended Schema for Database SUperservice........cccoovveveveecvennnnne 70

Schemas for the dialup SUPEISEIVICE........ccve et eneas 70
DLF Schema for DIalUp SEIVICE.......cci ettt e e sae s eae e nneens 70
Schemas for the NS SUPEISEIVICE........cciieiiireri et sae et reeeesaeenees 72
DLF Schema fOr DNS SEIVICE......c.ccuiiiiriiirieereresie st 73
Schemas for the dNSZONE SUPEISEIVICE.........ccovverieeeire e e e sneneas 74
DLF Schema for DNS ZONE SEIVICE.......couirueirieirieisieesiseseseesiesesiesesee et sasse e sees 74
Schemas for the emalil SUPEISEIVICE.cccvvv et sne s 76
DLF Schema for EMail SEIVICE.........coviiriirieireenie e 76
Extended Schemas for the email SUPEISEIVICE.......ccoeveecveiriere e 80
Email Extended Schema for Email SEIVICE.........cooeveerivinenereeece e 80

Schemas for the firewall SUPEIrSEIVICE. ..ot e 81
DLF Schema for FIireWall SEIVICE.cuiireieieere et e 81
Schemas for the fP SUPEISEIVICE. ... e e 84
DLF SChema fOr FTP SEIVICE.....cci e seereeecee s ettt st e s ere e s 85
Schemas for the MSQGSIOre SUPEISEIVICE.........cci it 88
DLF Schema for MesSage StOre SEIVICE........ccoeireireiririneeesieesie et 88
Schemas for the Print SUPEISEIVICE. ..ot 91
DLF Schema for PriNt SEIVICE.........ooi ittt e 91
Extended Schemas for the print SUPErSEIVICEccviirrirriinerrees e 93
Sheet Count Extended Schema for Print SEIVICE........ccovviiieriiie e 93

Schemas for the ProXy SUPEISEIVICE.ccciiiiiiieeeee et e sae s 93
DLF Schema for ProXy SUPEISEIVICE.cccoiriiiiietinierie ettt sbe s 94
Schemas for the SYSI0Q SUPEISEIVICE.........ooiiiiieirere e e 99
DLF Schema for SYSIOg SUPEISEIVICE.cc.cuiiririireie et be e 99
Schemas for the WWW SUPEISEIVICE. ..ottt st eae 101
DLF Schema for WWW SEIVICE.........coiiiriieiieere ettt 101
Extended Schemas for the WWW SUPEISEIVICE........occeviieeve e 103
Attack Extended Schema for WWW SEIVICE.......ccooviiirereneieeesese e 104

Domain Extended Schema for WWW SEIVICE.........cccovirinieneneeieeenese e 104

Robot Extended Schema for WWW SEIVICE........cccccrrininiineeeeesiese e 105

Search Engine Extended Schema for WWW SErViCe.......ccoovvevevieeeeieceeie e 105

URL Extended Schema for WWW SEIVICE........ccuovirreirieirieesieeses e eeseens 106

User Agent Extended Schema for WWW SEIVICE.........ccovveveveeveeenesieseeseeeeenens 107

Derived Schemas for the WWW SUPEISEIVICE........vovriereeeeeeeresteseeeeese st eeenenes 107

User Session Derived Schema for WWW SErviCe.........cccveereereinieenncnsenenens 108

Vi

[V. Lire DeVEIOPErS’ CONVENTIONS........ccuiteiirieiireete sttt sttt sttt sttt sttt b et b et bbb s b et sesbe bt nbne 112

13. CoNntribULiNG COUE 10 LIMB......cueieieieieieiceriet ettt ebe e 113
14. DEVEIOPEIS’ TOOIDOX......eieeuiiitiieteieteeee ettt b e b ettt b b e b e b e 114
Required Tools To BUild From CVS........coieereeesees s 114
ACCESSING LIME'S CVS.... ettt b e e b e bbb bt sn b e b e 114

LAV AT o] 110 0= PSS 114

Yo U dod=] o] o =T TP P VPP TUPURTPRURPRN 115

Y =TT To TS £ SRR S 115

ST oo [1aTo IS r= g [0 F=T o L3N O U SST U RTTOSRRN 116
Shell CodiNg STANUAITS.......cocoiiriiee et s a e bbbt e e eae 116

Perl Coding STANUAIAS. ..ot b e b e e e 116

16. Making Lire “TeSt-INfECIEA ..o et ene s 117
UNIE TESES 1N LITE...ctieeieceiee ettt e 117
PEIMUNIL. ..o e et e s 117

KA Lo T =] €S 117

L L L 1T T T S =S 117
Some “Best Practices” on UNit TESHNG.......cciviieierieieeireiesieee e sre e saeeenens 118

T O o1 418 o[y Y/ 119
CVS BIANCRNES.....ceivtcii sttt 119
HaNAS-0N EXAMPIE.....c.e i e et st ne bt st e e e e enenes 119

Naming, What it I00KS lIKE........ccueveeeire e 119

Creating @ BranCh.........ococoreeece st 120
ACCESSING @ BranCh.........ooooi e 120

Merging Branches on the TruNK ... s 120

RS TR =211 o TSSO P PR TPTTTROROIN 122
19. MBKING @ REIEASE. ...ttt b e e bbbttt b b et e b e 123
Setting version in NEWS file, checking ChangeLlag........cocccvereinininninsereseese e 123
TAGING tNE CVS... e bbbt bbb et b et b et 123
Building The "Standard” Tarball............cccoeiirinie s 123
Building The "Full” Tarball.........coociiiiere e 124
Building The Debian PaCKAGE.cccuiriiiriiiriei e 125
Building The RPM PACKAJE.......c.cocuiiiiiriiirieirieireeit ettt 126
Making sure the FreeBSD port gets UPdated.........ccoeireirrinnirieerieereesee s 126
Uploading The REIEASE.......coc ottt e s 126

The LOGREPOIM WEDSEIVEL..... .ottt 126
AdVErtiSiNg THe REICASE........ooieeeet ettt ae e e 127

Yo Nl fol=T o] (o =TT U PR UR PRSPPSO 127
FrEeSNMEATNEL.......oiiieee et 127

20. WEDSIte MaAINTENANCE.coveireerireetirietei et b b bt e et nn b sn b n s s nneaes 129
Documentation on the LOgReport WEDSILE..........ccocviieiicece e 129
PUDIISNING the DTD S.....ccciiiceieseee ettt sttt e st sre e nae s reenaenseeneenes 129

P22 VAV LT To T Lo oW g 1= o = U o] o S PR 130
L PV =SSR 130
Perl’s Plain Old Documentation: maintaining ManpPages........cccccevereereneereesesseeseesessaesseseenes 130
Docbook XML: Reference Books and Extensive User Manuals...........c.coveeennrneeininnennes 130
LAY T I 1T Vo =0 T 131
UML EQItING 1ottt 131

[T Vo |- 10 T Y] 1= SR 131

Vii

V. IMPIEMENTALION DELAIIS.ceiiieeiieee bbbttt ettt b et 132

22. Report Generation: ASCIHDIE.........coiiie e 133
23. Adding a New Superservice in Lire’s DiStribDULION...........ccoeiriirrirercreeseesee s 134
24. 1SSUES With REPOI MEIGING.....c.eieeteietiietiist ettt et b e sneaes 135
25. OVEIVIEW OF LIFE SCIIPIS....cveuireetirietisietesist sttt 138
26. SOUICE TTEE LAYOUL.ottt ettt ettt b e ae et e s ae e e e saeeeesbesaeenbesbeeaeaseesaeeaeesbeensenbenneanns 140
L1 (01 IT= T OSSPSR 141

viii

List of Tables

L0-1. WEEKIY OVEIVIBWL ...ttt ettt ettt st e e e e et e bt e besbese e e emeeaeebesaeee e s e e eneeneebesbeseeseeneeneeneanesnens a7

List of Figures

1-1. Log Processing in the Lire's FrameWQLK............ccioiiirereieee st eaee ettt ese s sneen 1
1-2. The Log NOrmMaliSation PrOCESS.........cciieierieeeeriestestesieeeesestestes e seeseesessessesaessensesesseesessessessesssnessessesssssensen 3
1-3. ThE LOG ANAIYSIS PIrOCESSccuiieiiietiieii ettt et bbbttt ne bbbt 4
1-4. REPOIt GENETALION PrOCESS.....c.ciuiuirietiieiiirieesieestees ettt b ettt b et s et et e sttt es 5
1-5. XSLT Processing of the XML REPQAIL.........ciiiiiiirierieerees et 6
1-6. Processing of the XML Report USING The ARIS........o e 6

List of Examples

10-1. tiIMESIOt WL L UNIL....oeiieeieiceiie ettt et e e s e b e s st e e s s b e e s esb e s s saseessbbessbbessabeesssbeesenresssaneas 47
O 2 1] g T=T] (oL A 2 U R 48
I B L IS B T I (o= 1 o PP URRROTR 141

Preface

Log file analysis is both an essential and tedious part of system administration. It is essential because it's the best
way of profiling the usage of the service installed on the network. It's tedious because programs generate a lot of
data and tools to report on this data are often unavailable or incomplete. When such tools exist, they are
generally specific to one product, which means that you can’t compare e.g. your Qmail and Exim mail servers.

Lire is a software package developed by the Stichting LogReport Foundation to generate useful reports from raw
log files of various network programs. Multiple programs are supported for various types of network services.
Lire also supports various output formats for the generated reports.

What This Book Contains

This book is theLire Developer’'s Manuallts purpose is to present Lire as a log analysis framework. To this

ends, it describes the architecture and design of Lire and contains comprehensive instructions on how to use it.
Its intended audience is system administrators or programmers who want to extend Lire or want to understand its
internals.

There is another book, thare User's Manualwhich describes how to install, configure and use Lire, as a
“off-the-shelf” log analyzer. Its intended audience is system administrators who want to install and use Lire to
gather information about the services operating on their network.

How Is This Book Organized?

This book is divided in five part®art Igives an overview of the architecture and design of Lire.

You will find in Part llinformation on extending Lire. In this part, you will learn how to add a new DLF format
to Lire, write log file converters and add reports for a superservice.

Part lllis a reference section which gives comprehensive details about the various XML formats used by Lire
and gives in-depth descriptions of its various APIs.

Part IV is targeted at developers who want to participate in Lire’s development. It contains information about
CVS access, coding conventions, tools needed to build from CVS, release management and other aspects
important to those part of the Lire development team. Furthermore, it gives some information on how to
contribute code to Lire, as an external party.

Finally, Part V contains various implementation details that may be interesting to people wanting to learn more
about Lire internals.

Conventions Used

If You Don’t Find Something In This Manual

You can report typos, incorrect grammar or any other editorial problemisugs@Iogreport.org >. We

welcome reader’s feedback. If you feel that certain parts of this manual aren’t clear, are missing information or
lacking in any other aspect, please tell us. Of course, if you feel like writing the missing information yourself,
we'll very happily accept your patch. We will make our best effort to improve this manual.

Preface

Remember, that there is another manual Line User’'s Manualwhich contains comprehensive information on
how to install, use and configure Lire. It also contains reference information about all of Lire’s standard reports
and supported services.

There are various public mailing lists for Lire’s users. There is a general users’ discussion list where you can find
help on how to install and use Lire. You can subscribe to this list by sending an empty email with a subject of
subscribeto <questions-request@logreport.org >, Email for the list should be sent to
<questions@Iogreport.org >,

You can keep track of Lire’s new release by subscribing to the announcement mailing list. You can subscribe
yourself by sending an empty email with a subjecswobscribeo

<announcement-request@Ilogreport.org >,

Finally, if you're interested in Lire’s development, there is a development mailing list to which you can subscribe
by sending an empty email with a subjectsobscribeto <development-request@logreport.org >, Email

to the list should be sent tadevelopment@logreport.org >,

All posts on these lists are archived on a public website.

|. Lire Architecture

Chapter 1. Architecture Overview

From a developer’s point of view, Lire intends to be the universal log analysis framework. To this end, it provides
a reliable, complete, framework upon which to build log analysis and reporting solution. Lire, the tool, is a proof
of the versality and extendability of the framework as it is able to produce reports for many of the services that
run in today’s heterogeneous networks in a variety of output formats.

As a framework, Lire is the best choice to replace all those home-grown scripts developed to produce reports
from all the log files from the little-known products or custom-developed programs that run on your system.
Leveraging Lire framework will make those scripts a lot more versatile while not being really more complicated
to develop. It will be easier to add new reports or to support multiple report formats.

Figure 1-1. Log Processing in the Lire’s Framework

Normalisation

Analysis

Report
Generation

Formatting &
Post-Processing

Chapter 1. Architecture Overview

The Lire’s framework divides log analysis in four different processes. The figigiee 1-1shows those four
processes:

1. Log Normalisation. The first process normalise logs from different products into a generic format that can
be shared by all products that have similar functionality. For example, log files from products as different as
Apache and Microsoft Internet Information Server will be transformed into an identical format.

2.Log Analysis. In the analysis process, other information is created, inferred or extracted from the
normalised data. For example, an anlyser in the www superservice infers the browser used by the client
from the referrer information.

3. Report Generation. The third process generates a report from the normalised and analysed data. This
process is done by a generic report engine that computes the report based on specifications describing what
and how the information should appear in the report. The report is generated in a generic XML format.

4. Report Post-processing and FormattingThe last process converts the generic report into a specific format
like ASCII, PDF, HTML but other kind of post-processing (like charts generation) can also be accomplished
in this stage.

Before going into a more detailed description of each of these procesesses, we'll introduce some of the common
design’s patterns that you'll find throughout the Lire’s framework.

Lire’s Design Patterns

At the center of each of these processes is an XML based file format. Having things specified in data files makes
it easier to extend. For example, the reports are built using a generic report builder which finds the instructions
on how to build the reports in XML files. So this makes it easy to add new information to a report: you just have
to write an XML file. The fact that there are a lot of tools to process XML files is also an interesting aspect. For
example, emacs lovers will appreciate the help that its psgml module gives them in writing report specifications.

Another important aspects is that we tried to interoperate and to build upon other standards while defining our
XML formats . The best illustration of this is that in all the XML file formats that Lire use, a DocBook subset is
used for all elements related to narrative descriptions.

Another common aspect you'll encounter is that each of these processes and XML file formats come with an
API to manipulate them, making it easy to add functionalities at each processing stage. APIs are also a good
thing because, even if in theory an open file format somewhat constitutes an API, having libraries that provide
convenient access to the file formats makes it a lot easier to write new components providing new functionalities.

Chapter 1. Architecture Overview

Log File Normalisation

Figure 1-2. The Log Normalisation Process

Service Level

]

L]

1

. . L]
Native Log File !
1

L]

L]

DLF Converter
DLF Converter -
API

Superservice Level |
|

od}

o))

]

o

=}

[

&

o

)]

o

o))
w
Q
w
®
)
&
B
w0
Q
oy
®
3
@

The first process of the Lire log analysis framework is the log file normalisation process. That process is
summarized in th&igure 1-2figure. This process is centered arounditid- concept which is kind of a

universal log format. DLF stands for Distilled Log Format. The concept is that each product specific log file is
transformed into a log format that can be common to all the products providing similar functionalities. In Lire’s
terminology, a class of applications providing similar functionality (e.g. MTA's supplying email) is called a
superserviceStill in Lire’s terminology, theservicefrom which the super is derived (e.g. postfix or sendmail)
refers to the native log format that is converted in the superservice’s DLF. One can view the DLF as a table
where the rows are the logged events and the fields are logged information related to each event.

Since the information logged by an email server is totally different from a web server, each superservice should
have its own data models. In Lire, the data model is called a &iiifemaThe DLF schemas are defined in XML

files using the DLF Schema Markup Language. The schema describes what fields are available for each logged
events.

One interesting aspect of Lire, is that altough the email DLF is used by all email servers, the email DLF data
model isn't restricted to the lowest common denominator across the log formats supported by each email servers.
In the Lire’s architecture, the superservice’s schema can represent the information logged by the most
sophisticated product. When some part of the information isn’t available in one log format, the DLF log file will
contain this information and the reports that needs this information won’t be included.

This architecture means that to support a new service, i.e. a new log format, in Lire you just need to write a
plugin, called a DLF converter. This is just a simple perl module that parses the native log format and maps the
information according to the schema.

Chapter 1. Architecture Overview

Log Analysis

After normalisation, comes the analysis process. The analysis process responsability is to extracts, infers or
derives other information from the logged data. Since the superservice’s logged data is in a standard format, the
analysers are generic in the sense that they can operate for all the superservice’s supported log formats, if the
product’s was clever enough to log the information required by the analyser. The analysis process is shown in the
Figure 1-3figure.

Figure 1-3. The Log Analysis Process

=

Base DLF Data

Extended . Derived
—_——— Analysis API - ———
Analyser Analyser

Extended Derived

DLF Schema DLF Schema
Derived
DLF Data

Extended
DLF Data

Since each analyser can add information to or create a new DLF, each analyser will generate data according to
special kind of schemas.

Lire’s framework include two kind of analysers. The difference between the two resides in the mapping between
the source data and the new data they generate. Extended analysers generate new data for each DLF record
whereas derived analysers are used when the new data doesn’t have a one-to-one mapping with the source data.

The analysers produce data according to a data model which is specified in other DLF schemas. There are
extendedschemas anderivedschemas. An extended schema simply adds new fields to the base superservice’s
schema. For example, in the web superservice’s schema, a lot of information can be obtained from the referer
field. From this information, it is possible to guess the user’s browser, language or operating system. Those fields
are specified in the www-referer extended schema; one analyser is responsible for extracting this information
from the referer field.

But sometimes the analysis cannot just simply add information to each event record, an altogether different
schema is needed then. For those cases, there is the derived schema. An example of the use of such a schema in
the current Lire distribution is the analyser which creates user sessions based on the logged client IP address and
user agent. This analyser defines the www-session derived schema.

Chapter 1. Architecture Overview

Analysers are simple perl modules that receive the base superservice’s DLF records and output DLF records in
the extended or derived schema. The architecture supports cascading of schemas; this feature isn't used
anywhere now.

Report Generation

Once you have all this data, it's time to generate some useful reports out of it. Lire’'s framework includes a
generic report builder. What Lire callgreportis actually acollectionof what one may understand as reports;

Lire however speaks abousabreports For example, the proxy’s superservice report will contain subreports

about the top visited sites, another subreport on the cache hit ratio, as well as several others. The subreports are
defined using th&eport Specification Markup Languadéhis markup language contains elements for several
things: information regarding the schema on which it operates; descriptions that should be included in the
generated report to help in the interpretation of the data; parameters that can be used to modify the generated
report (for example, to generate a top 20 subreport instead of a top 10); a filter that selects the records that will be
used for the subreport; and finally the operations that make up the subreport: grouping, summing, counting, etc.
The report markup language covers most simple needs and there is an extension element as well as an API that
can be used to hook in more fancy computations. There are no subreport specifications in the current distribution
that make use of this feature yet, however. You can see an overview of this procesBiguitieel-4figure.

Figure 1-4. Report Generation Process

Report
- Specification

DLF Data

ASCII Implementation

Report Specification
APT] asasasssssssssssssssssssss==s .

XML Report

,_____,————‘-

Chapter 1. Architecture Overview

The actual computation of the subreport is delegated to another module of the framework. Presently, the DLF
concept is implemented as simple space delimited log files. This makes it very portable and very simple, but for
huge amounts of log data this isn't necessarily the best solution. But it would be easy to switch to a database
driven backend where the DLF records are hold in tables and the subreport specifications are mapped to SQL
queries.

The generated report is another XML file that uses another markup language, this time called the Lire’s Report
Markup Language. An actual report contains the help descriptions from the report specifications, information on
the subreport specifications used, as well as the actual subreport’s data.Using another intermediary XML file as
output format makes all sort of things possible in the formatting and post-processing stage.

Report Formatting and Other Post-Processing

The last process works with the generic XML report. Using a domain-specific XML format for the generated
format makes it easy for the framework to support multiple different formats. Supporting a new output format is
just a matter of writing a new module that processes the XML report file.

Figure 1-5. XSLT Processing of the XML Report

XML Report XML Report

XSLT XSLT
Stylesheet Stylesheet

DocBook XML HTML Report
Report

There are many ways to do this. Of course, there is the XSLT way which can be used to format the report using
stylesheets to convert to other XML formats. That's how we support the HTML, XHTML and PDF formats.
FigureFigure 1-5gives an example of such processing.

Chapter 1. Architecture Overview

Figure 1-6. Processing of the XML Report Using The APIs

XML Report XML Report

Chart Excel
_— Report API p— —
Generator Formatter

l

Chart || XML Report

As shown in theéFigure 1-6figure, you can also process the XML files using the APIs to the XML report format.
That's how charts generation and the Excel backend are implemented. There’s actually two APIs to process
XML reports; one is event based and the other is object based. That's making different styles of programming
possible. That's the equivalent of the SAX vs DOM model in the XML world.

Going Further

As you can see form this overview, the Lire framework provides a powerful architecture to use for your log
analysis needs. The architecture provides extensibility from log normalisation to post-processing of the reports.
Exactly how to use the framework is the topic of the next part.

ll. Using the Lire Framework

In this part, you'll learn how to leverage the Lire’s framework for your own log analysis need. The most common
use cases are developing a converter for a new log format and developping new reports.

The first chapteChapter Zexplains how to write a converter for a new log format.

The responsibility of the converter is to map the information contained in a log file to the data model of a specific
DLF schema. When developping a converter for a log format which doesn't fall in the domain one of the existing
DLF schema, you'll need to write a new one. This is the topic of the following ch&jtapter 3

The last chapter of this pa@hapter 4gives some notes on how to develop new reports.

Chapter 2. Writing a New DLF Converter

Before Lire can do various analysis and generate reports on the data contained in your various log files, it must
first be converted to a common data model. This is specifically the job of the DLF converter.

So if you want to generate the same reports for your RealServer log files (currently unsupported) than for you
web server, you only need to develop a DLF converter which maps the RealServer content to the www DLF
schema.

Note: If no existing DLF schemas represent correctly the domain of your application log file, it is easy to
develop a new one. Consult the chapter Chapter 3 for the whole story.

This chapter will show you through an example how to develop a new DLF converter for a kind of useless log
format: the common log format encapsulated in syslog. (It is useless because there is not many reasons to make
your web server logs it requests through syslog. And it would be probably be simpler to just agé the

command to remove the syslog header.)

Note: The doc/examples in the source distribution contains anoother commented example which could
serve as a starting point for your converters.

Prerequisites

Developing a new DLF converter requires some basic programming skills in perl. Altough not strictly
necessarily, you should be familiar with perl object-oriented programming model. If you aren’t, you should read
perltoot(1) before continuing.

The common_syslog Log Format

The log format supported by our DLF converter is simply the standard Common Log Format supported by most
web servers with a syslog header prepended to each line. Here is an example of what such a log file might
contain:

May 10 11:13:10 hibou httpd[12344]: Apache/1.3.26 (Unix) Debian GNU/Linux Embperl/1.3.3 PHP/4.1.2 mod_perl/1.26 cor
May 10 11:13:11 hibou httpd[12345]: 192.168.250.10 - - \
[10/May/2003:11:13:11 +0200] "GET /" HTTP/1.1 200 1523
May 10 11:13:12 hibou httpd[12346]: 192.168.250.10 - - \
[10/May/2003:11:13:11 +0200] "GET /images/logo.png" HTTP/1.1 200 1201
May 10 11:13:12 hibou httpd[12348]: 192.168.250.10 - - \
[10/May/2003:11:13:11 +0200] "GET /images/corner.png" HTTP/1.1 200 1021

Remember that the other layer is a syslog log file and could contains other things than only the web server’s
requests. The first line in the example isn’t a request record but really what usually ends up in the “error_log”
and is a message about the server starting.

Chapter 2. Writing a New DLF Converter

Creating the DLF Converter Skeleton

Put simply, a DLF converter is a perl object which implements a set of predefined methods (aka an “interface” in
the object-oriented jargon).

Since a DLF converter is a perl object, it must be instantiated from a class. Classes in perl are defined in
packages. We'll name the package which implements our converter
MyConverters::SyslogCommonConverter . To create such a package, you need to create a file named
MyConverters/SyslogCommonConverter.pm in a directory searched by perl.

» You can obtain perl’s default search list by running the command $ perl -V

« This search list can be modified by setting the PERL5LIB environment variables.

Here is a first cut of our DLF converter:

package MyConverters::SyslogCommonConverter;
use base qwiLire::DIfConverter/;

13

The first line declare that the code is in tllgConvertersw::SyslogCommonConverter package. The
second one specifies that objects in this package are subclassesioé tiidfConverterpackages. The last line
fullfill perl’s requirement that package returns a true value once they are initialized.

This is a complete DLF, altough useless, DLF Converter. In fact, it isn’t complete because if you tried to register
an instance of that class, you'll get “unimplemented method” errors. Besides, we don't even yet have a formal
way to create instance of our converter. This is our next task.

Adding a Constructor

The Lire framework doesn’t place any restrictions on your DLF converter constructor. In fact, the constructor
isn't used by the framework at all, it will only be used by your DLF converter registration stmgSection
calledRegistering Your DLF Converter with the Lire Framew)prk

We will follow perl's convention of using a method nameelv for our constructor and of using an hash
reference to hold our object’s data.

Here is our complete constructor:

use Lire::Syslog;

sub new {
my $pkg = shift;
my $self = bless {}, $pkg;

$self->{syslog_parser} = new Lire::Syslog();

Chapter 2. Writing a New DLF Converter

return $self;

Since our log format is based on syslog, we will reuse the syslog parsing code included in Lire. This is the
reason we instantiateldre::Syslog object and save a reference to it in our constructor.

The Meta-Data Methods

The Lire::DIfConverter interface requires two kinds of methods. First, it requires methods which provide
information to the framework on your converter. Second, it requires methods which will actually implement the
conversion process. It this the format that this section documents.

The DLF Converter Name

The methodchame() should returns the name of our DLF converter. It is this name that is passed to the
Ir_log2report command. This nhame must be unique among all the converters registered and it should be
restricted to alphanumerical characters (hyphens, period and underscores can also be used).

We will name our convertesommon_syslog :

sub name {
return “"common_syslog";

}

Providing Information To Users

The next two required methods are used to give more verbose information on your converter to the users. The
converter'sitle() anddescription() can be use to display information about your converter from the user
interface or to generate documentation.

Thetitle() should simply returns a string:

sub title {
return "Common Log Format embedded in Syslog DLF Converter";
}
Thedescription() method should returns a DocBook fragment describing your converter and the log formats

it support. If you don't know DocBook just restrict yourself to using paea elements to make paragraphs:

Chapter 2. Writing a New DLF Converter

sub description {

return <<EOD;
<para>This DLF Converter extracts web server's requests and error
information from a syslog file.
</para>
<para>The requests and errors should be logged under the
<literal>httpd</literal> program name. The errors are mapped to the
<type>syslog</type> schema, the requests are mapped to the
<type>www</type> schema.
</para>
<para>Syslog records from another program than
<literal>httpd</literal> are ignored.
</para>
EOF
}

Providing Information to the Framework

Two other meta-data methods are used by the framework itself. The first one specifies to what DLF schemas
your DLF converter is converting to:

sub schemas {
return ("www", "syslog");

}

In our case, we are converting to the syslog and www schemas. Like we described it in our converter’s
description, we will map the web server’s error message to the syslog schema and the request logs to the www
schema. Other alternatives would have been to only map the requests information to www schema or map all the
non-request records to the syslog schema. The rationale behind the current choice (besides this being an
example) is that it make it convenient to process one log file to obtain a report containing the requests and errors
from our web server. For that use case, it is best to ignore the non-web server related stuff.

The other method affects how the conversion process will be handled. Lire offers two mode of conversion, the
line oriented one and the file oriented one. (Both will be described in the next section). If your log file is
line-oriented (each lines is one log record) like most log files are, you should use the line-oriented conversion
mode:

sub handle_log_lines {
return 1;

}

Chapter 2. Writing a New DLF Converter

The Conversion Methods

The actual conversion process is handled through three methind#if converter ,
finish_conversion() and eitheiprocess_log_file() or process_log_line() depending on the
conversion mode (as determinedtiandle_log_lines() 's return value.

Conversion Initialization

The methodnit_dIf _converter() will be called once before the log file is processed. It should be use to
initialize the state of your converter. Since our DLF Converter doesn’t need any initialization and doesn’t need
any configuration, the method is simply empty:

sub init_dIf_converter {
my ($self, $process) = @_;

return;

The$process parameter which is passed to all the processing methods is an instance of
Lire::DIfConverterProcess . This is the object which is driving the conversion process and it defines
several methods which you will use in the actual conversion process.

Conversion Finalization

The methodinish_conversion() will be called once after the log file has been completely processed. This
method will be mostly of use to stateful converter, that is DLF converters which generates DLF records from
more than one line. Since this is not our case, we simply leave the method empty:

sub finish_conversion {
my ($self, $process) = @_;

return;

The DLF Conversion Process

Whether you are using the file-oriented or line-oriented conversion mode, the principles are the same. You
extract information from the log file and creates DLF records from it. Your DLF converter communicates with
the framework by calling methods on thiee::DIfConverterProcess object which is passed as parameter
to your methods.

Here is the complete code of our conversion method:

use Lire::Apache qw/parse_common/;

Chapter 2. Writing a New DLF Converter

sub process_log_line {
my ($self, $process, $line) = @_;

my $sys_rec = eval { $self->{syslog_parser}->parse($line) };
if ($@) {
$process->error($@, $line);
return;
} elsif ($sys_rec->{process} ne ’'httpd’) {
$process->ignore_log_line($line, "not an httpd record");
return;
} else {
my $common_dif = {};
eval { parse_common($sys_rec->{content}, $common_dIf) };
if ($@) {
$sys_rec->{message} = $sys_rec->{content};
$process->write_dIf("syslog”, $sys_rec);

} else {
$process->write_dIf("www", $common_dIf);

}

The first thing that should be noted is that in the line-oriented conversion mode, the method
process_log_line() will be called once for each line in the log file.

Secondly, the actual parsing of the line is done using two functjgmise_common andLire::Syslog 's
parse . These methods simply uses regular expressions to extract the appropriate information from the line and

put it in an hash reference. What is important is that these methods already uses as key names the schema’s field
names.

Finally, you can see that there are four different methods used dptbeess object to report different kind of
information:

Reporting Error

The example uses tlewal statement to trap errors during the syslog record parsing. If the line cannot be
parsed as a valid syslog record, it is an error and it is reported througirth@ method. The first
parameter is the error message and the second one is the line to which the error is associated. This last
parameter is optional.

Ignoring Information

When the syslog event doesn't come from kitigpd process, we ignore the line. Ignored line are reported to
the framework by using thignore_log_line() method. The first parameter is the line which is ignored.
The second optional parameter gives the reason why the line was ignored.

Creating DLF Records

Finally, DLF records are created by using théte_dIf() method. Its first parameter is the schema to
which the DLF record complies. This schema must be one that is listed by your convertierigas()
method. The second parameter is the DLF data contained in an hash reference. The DLF record will be

Chapter 2. Writing a New DLF Converter

created by taking for each field in the schema the value under the same name in the hash. (Since in the
syslog schema, the field which contains the actual log message is waisdge, this is the reason we are
assigning the content value to the message key.) Missing fields or fields whose valdef iswill contains

the speciaLR_NAmissing value marker. Keys in the hash that don't map to a schema’s field are simply
ignored.

In our example, we distinguish between the server’s error message (mapped to the syslog schema) and the
request information (mapped to the www schema) based on whattser common succeeded in parsing
the line.

Saving Log Line

Another possibility, not shown in our example, is to ask that the line be saved for a later processing. This is
mostly of use to converters who maitains state between lines. In the cases, it is quite the case that there are
related lines that are missing from the end of the log file. In that case, you save the line and they will
automatically seen by the next run of your converter on the same DLF store. This option is only available in
the line-oriented mode of conversion.

File-Oriented Conversion

The same principles apply when you are using the file-oriented mode of conversion. This mode will usually be
used for binary log formats or format which aren't line-oriented like XML.

For demonstration purpose, the following code could be added to transform our line-oriented converter into a
file-oriented one:

sub handle_log_lines {
return O;

}

sub process_log_file {
my ($self, $process, $th) = @_;

my $line;
while (defined($line = <$fh>) {
chomp $line;
$self->process_log_line($process, $line);

The difference between the above code and using the line oriented mode is that the framework won’t be aware of
the number of log lines processed and your converter might have troubles when processing log files which uses a
different line-ending convention than the host you are runnig on. Bottom line is that you should use the
line-oriented conversion mode when your log format is line oriented.

Chapter 2. Writing a New DLF Converter

Registering Your DLF Converter with the Lire Framework

We first said that DLF converters are pebjectswhich implements the Lire::DIfConverter interface. What we
did is write aclasswhich implements the said interface. Creating the object from that class is the responsability
of the DLF converter registration scriptThis is simply a snippet of perl code which instantiates your object:

use MyConverters::SyslogCommonConverter;

return MyConverters::SyslogCommonConverter->new();

That's all there is to it, really. You put this snippet in a file namgslog_common_init in one of the
directories listed in thé_converters_init_path configuration variable.

Note: Some other notes on this topic:

1. The file can actually be named anything you want, the name service _init just make it clear what is
the purpose of the file.

2. The initial value of the Ir_converters_init_path contains the directories
sysconfdir /lire/converters and HOMElire/converters . You can change this list by using the
lire tool.

3. Your registration script can return more than one objects and all of these will be registered with the
framework.

You can now generate a www report for log files in that format using the comindond2report
common_syslog < file.log

DLF Converter API

The complete DLF Converter APl documentation is included in POD format in the Lire distribution. It is usually
formatted as man pages. You can alway read it usingéhkeloc command.

The following packages documentation should be consulted: Lire::DIfConverter(3),
Lire::DIfConverterProcess(3) and Lire::DIfConverterManager(3).

Chapter 3. Writing a DLF Schema

If you want to develop a DLF converter for an application whose logging data model isn’'t adequately
represented by one of the existing DLF schema, you'll need to develop a new one.

If you are familiar with SQL, a DLF schema is similar to a table schema description. A DLF file can be seen as a
table, where each log record is represented by a table row. Each log record in the same DLF schema shares the
same fields.

Designing the ftpproto schema

In this chapter, we will create a new schema for logging of FTP session. That DLF schema could serve for an
improved DLF converter for log files generated by Microsoft Internet Information Server. Lire currently has a
DLF converter for these log files but the current ftp DLF schema is modelled after the xferlog log file which only
represents file transfers whereas the log generated by Microsoft Internet Information Server contains more
detailed information on the ftp session.

Here is an example of such a log file:

#Software: Microsoft Internet Information Server 4.0

#Version: 1.0

#Date: 2001-11-29 00:01:32

#Fields: time c-ip cs-method cs-uri-stem sc-status

00:01:32 10.0.0.1 [56]created spacedat/091001092951LGW_Data.zip 226
00:01:32 10.0.0.1 [56]created spacedat/html/bx01g01.gif 226

00:01:32 10.0.0.1 [56]created spacedat/html/catlogo.qgif 226

00:01:32 10.0.0.1 [56]QUIT - 226

00:03:32 10.0.0.1 [58]JUSER badm 331

00:03:32 10.0.0.1 [58]PASS - 230

As you can see, this log file contains other information beyond the simple upload/download represented in the
standard FTP schema. It a session identifier, the command executed, as well as the result code of the action. Our
new schema should be able to represent these things.

Creating The Schema File

To create a DLF schema, you have to create a XML file named after your schema idettifieto.xml
Schema name should be made of alphanumeric characters. This schema identifier is case sensitive. You schema
identifer shouldn’t contains hyphens)(or underscore characters)((The hyphen is used for a special purpose).

All DLF schemas starts and ends the same way:

<?xml version="1.0" encoding="ascii"?>

<IDOCTYPE lire:dlf-schema PUBLIC
"-//lLogReport.ORG//DTD Lire DLF Schema Markup Language V1.1//EN"
"http://www.logreport.org/LDSML/1.1/Idsml.dtd">

<lire:dIf-schema xmins:lire="http://www.logreport.org/LDSML/"

superservice=" ftpproto
timestamp="time "

>

10

Chapter 3. Writing a DLF Schema

<l-- Other elements will go here -->
</lire:dIf-schema>

The first lines contains the usual XML declaration and DOCTYPE declarations, you'll find in many XML
documents. The real stuff starts at tinedif-schema . What is important for your schema are the value of
thesuperservice andtimestamp attributes. The first one contains your schema identifier. It is called
“superservice” for historical reasons. The other one should contains the name of the field which order the record
by their event type. (Sethe Section calledhe Field Type$or more information.)

The last line in the above excerpt would be the last thing in the file and closée1tiieéschema element.

Adding the Schema’s Description

The next things that goes into the schema file are the schema’s title and description. Both are intended for
developers to read and should be informative of the scope of the schema:

<!l-- Starting lire:dlf-schema element was omitted -->
<lire:titte>DLF Schema for FTP Protocol</lire:title>

<lire:description>
<para>This DLF schema should be used for FTP servers that have
detailed information on the FTP connection in their log
files.
</para>
<para>Each record represents a command done by the client during
the FTP session.
</para>
</lire:description>

The content of théire:description elements are DocBook elements. If you don’t know DocBook, you just
need to know that paragraphs are delimited usingtihe elements.

Defining the Schema’s Fields

The only remaining things in the schema definitions are the field specifications. Here is the definition of the first
one:

<lire:field name="time" type="timestamp" label="Timestamp">
<lire:description>
<para>This field contains the timestamp at which the command was

issued.
</para>
</lire:description>
</lire:field>

11

Chapter 3. Writing a DLF Schema

As you can see, the fields are defined usindithsield element which has three attributes:

name
This attribute contains the name of the field. This name should contains only alphanumeric characters. It
can also make use of the underscore character.

type
This attribute contains the type of the field. The available types will described shortly.

label

This should contains the column label that should be used by default in your report for data coming from
this field. This label should be short but descriptive.

The field’s description is held in tHize:description element which contains DocBook markup. The field's
description should be descriptive enough so that someone implementing a DLF converter for this schema knows
what goes where.

The Field Types

The main types available for fields are:

timestamp

This should be use for field which contains a value to indicate a particular point in time. All timestamp
values are represented in the usual UNIX convention: number of seconds since January 1st 1970.

Each DLF schema must contains at least one field of this kind and its name should be in the
lire:dif-schema 's timestamp attribute.

hostname
This type should be used for fields which contains an hostrarnt address.

It is important to mark such fields, because it will possible eventually to resolve automatically IP addresses
to hostname.

bool

Type for boolean values.

number

Type for numeric values.

Important: You shouldn’t use this type when the values are limited in number and are semantically
related to an enumeration like result code. You should use the string type for this.

You should only use the number type for values which you’ll want to report in classes instead on the
individual values.

12

Chapter 3. Writing a DLF Schema

bytes

This type should be use for numeric values which are quantities in bytes. The more specific typing is useful
for display purpose.

duration

This type should be use for numeric values which are quantities of time. The more specific typing is useful
for display purpose.

string

This is the type which can be use for all other purpose.

Note: If you read the specifications, you'll find other types which are used. These additional types don't bring
anything over the basic ones defined above and you shouldn’t use them.

In addition to the time field defined above, here are the remaining field defintions which make our complete
ftpproto schema:

<lire:field name="sessid" type="string" label="Session">
<lire:description>
<para>This field should contains an identifier that can used
to related the commands done in the same FTP session. This
identifier can be reused, but shouldn't be while the FTP session
isn't closed.
</para>
</lire:description>

</lire:field>

<lire:field name="command" type="string" label="Command">
<lire:description>
<para>This field contains the FTP command executed. The FTP
protocol command names (STOR, RETR, APPE, USER, etc.) should be used.
</para>
</lire:description>
</lire:field>

<lire:field name="result" type="string" label="Result">
<lire:description>
<para>This should contains the FTP result code after executing
the command.
</para>
</lire:description>

</lire:field>

<lire:field name="cmd_args" type="string" label="Argument">
<lire:description>
<para>This field should contains the parameters to the FTP command.
</para>

13

Chapter 3. Writing a DLF Schema

</lire:description>
</lire:field>

<lire:field name="size" type="bytes" label="Bytes Transferred">
<lire:description>
<para>When the command involves a transfer like for the RETR or STOR
command, it should contains the number of bytes transferred.
</para>
</lire:description>
</lire:field>

<lire:field name="elapsed" type="duration" label="Elasped">
<lire:description>
<para>This field contains the number of seconds executing the
command took.
</para>
</lire:description>
</lire:field>

Installing The Schema

Making available the new schema to the Lire framework is pretty easy: just copy the file to one of the directories
setin ther_schemas_path configuration variable. By default, this variable contains the directories

datadir /lire/schemas andHOMElire/schemas . Like all other configuration variables, its value can be
changed using thiire tool.

Since we want our schema to be available for other users as well, we will install it in the system directory:

&root-prompt; install -m 644 ftproto.xml /usr/local/share/lire/schemas

(In this case, Lire was installed undesr/local

14

Chapter 4. Writing a New Report

Writing a new report involves writing a report specification, e.g.

Iservicel<superservice>/reports/top-foo-by-bar.xml , and adding this report along with possible
configuration parameters tservice>.cfy . E.g., to create a new report, based upon
email/from-domain.xml : copy the file/usr/local/etc/lire/email.cfg to

~/ lire/etc/email.cfg . Copy the file

/usr/local/share/lire/reports/email/top-from-domain.xml to e.g.

~/ lire/reports/reports/email/from-domain.xml . Edit the last file to your needs, and enable it by

listing it in your ~/.lire/etc/email.cfg

Beware! The name of the report generally consists of alphanumerics and '-’, but the name of parametaris may
contain any -’ characters. It generally consists of alphanumerics and’_’ characters.

Filter Specification

For now, you'll have to refer to the example filters as found in the current report specification files. We’'ll give
one other example here: specifying a time range.

Suppose you want to be able to report on only a specific time range. You could build a (possibly global and
reused) filter like:

<lire:filter-spec>
<lire:and>
<lire:ge argl="$timestamp" arg2="$period-start"/>
<lire:le argl="$period-end" arg2="$timestamp"/>
</lire:and>
</lire:filter-spec>

When trying your new filter, you could install it if.lireffilters/your-filter-name.xml . When
Ir_dIf2xml looks up a filter which was mentioned in the report configuration file, it looks first in
~[lireffilters/ , and then in../share/lireffilters/

15

lll. Developer's Reference

Chapter 5. Lire Data Types

Lire Textual Elements

This DTD module defines elements related that contains human-readable content in all the Lire DTDs.
This module will also imports some DocBook XML V4.1.2 elements for richer semantic tagging.
This module is also namespace aware and will honor the settihtR&f.pfx to scope its element

The latest version of that module is 2.0 and its public identifier is -//LogReport. ORG//ELEMENTS Lire Textual
Elements V2.0//EN.

<I--
Make sure LIRE.pfx is defined. This declaration will be

ignored if it was already defined.
>

<IENTITY % LIRE.pfx “lire:" >
<IENTITY % LIRE.title "%LIRE.pfx;title" >
<IENTITY % LIRE.description "%LIRE.pfx;description” >

Profiling Attribute

Textual content may be profiled to suit the intended reader background. This is achieved through the use of the
userlevel attribute which is available in all DocBook elements. This module restricts the set of values that this
attribute can contains to two valuesirmal andadvanced . You can tag paragraphs (or other elements) which
contains more technical (or advanced) information withatheanced userlevel and they will only appear in the
formatted report if the user asked for these.

<IENTITY % userlevel.enum "normal | advanced" >
<IENTITY % userlevel.default "normal” >

title element

Thetitle element contains a descriptive title.

This element represent some title in Lire. It can be used to give a title to a report specification or to specifify the
title of a report or subreport.

The content of this element should be localized.

This element doesn’t have any attribute.

<IELEMENT %LIRE.title; (#PCDATA) >

17

Chapter 5. Lire Data Types

DocBook Elements

The standargara , formalpara and admonition elementsadte , tip , warning , important andcaution)
are used as well as their content may be used.

<IENTITY % docbook-block.mix
"paralformalpara|warning|tip|important|caution|note">

<IENTITY % DocBookDTD PUBLIC
"-//OASIS//IDTD DocBook XML V4.1.2//[EN"
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd">
%DocBookDTD;

description element

Thedescription element is used to describe an element. It can be used to describe DLF fields, describe a
report specification or include descriptions in the generated reports.

This element can contains one or more of the block-level DocBook elements we use.
The content of this element should be localized.

This element doesn’t have any attributes.

<IELEMENT %LIRE.description; (%docbook-block.mix;)+>

18

Chapter 6. Common Textual Elements to All XML
Formats

Lire Data Types Parameter Entities

This module contains the parameter entity declarations for the data types used by all Lire DTDs.

All defined data types have<aype>.type parameter entity which defines their type as an XML type valid in
an attribute declaration and<dype>.name parameter entity that declare their name.

Additionally, this module declares <name>.types parameter entities that group related types together.

The latest version of that module is 1.0 and its public identifier is -//LogReport. ORG//ENTITIES Lire Data
Types V1.0//EN.

Boolean Type

The bool type. It contains a boolean value, eithet, f , t, false ortrue .

<IENTITY % bool.type "0 | 1] f]t] false | true | yes | no">
<IENTITY % bool.name "bool" >
Integer Type

The int type can contains positive or negative 32 bits integer.

<IENTITY % int.type "CDATA" >
<IENTITY % int.name "int" >
Number Type

The number type can contains any number either integral or floating point.

<IENTITY % number.type "CDATA" >
<IENTITY % number.name "number" >

19

Chapter 6. Common Textual Elements to All XML Formats

String Type

The string type contains any displayable text string.

<IENTITY % string.type "CDATA" >
<IENTITY % string.name "string" >
Timestamp type

The timestamp type contains a time representation which contains the date and time informations. It can be
represented in UNIX epoch time.

<IENTITY % timestamp.type "CDATA" >
<IENTITY % timestamp.name "timestamp" >
Time Type

The time type contains a time representation which contains only the time of the day, not the date. For example,
this data type can represent 12h00, 15:13:10, etc.

<IENTITY % time.type "CDATA" >
<IENTITY % time.name "time" >
Date Type

The date type contains a time representation which contains only a date.

<IENTITY % date.type "CDATA" >
<IENTITY % date.name "date" >

Duration Type

The duration type contains a quantity of time. For exampke, 30h, 2days , 3w, 2M, 1y. (The authoritive list of

supported duration types is coded.ire::DataTypes::duration2sec J)
<IENTITY % duration.type "CDATA" >
<IENTITY % duration.name "duration” >

20

Chapter 6. Common Textual Elements to All XML Formats

IP Type

The ip type contains an IPv4 address.

<IENTITY % ip.type "CDATA" >
<IENTITY % ip.name "ip" >
Port Type

The port type contains a port as used in the TCP to name the ends of logical connections. See also RFC 1700 and
http://www.iana.org/numbers.htm. Commonly found in /etc/services on Unix systems.

<IENTITY % port.type "CDATA" >
<IENTITY % port.name "port" >

Hostname Type

The hostname type contains an DNS hostname. (It can also contains the IPv4 address of the host).

<IENTITY % hostname.type "NMTOKEN" >
<IENTITY % hostname.name "hostname" >
URL Type

The url type represents URL.

<IENTITY % url.type "CDATA" >
<IENTITY % url.name "url" >

21

Chapter 6. Common Textual Elements to All XML Formats

Email Type

The email type can be used to represent an email address.

<IENTITY % email.type "CDATA" >
<IENTITY % email.name "email" >
Bytes Type

The bytes type can be used to represent quantity of datal2g , 300bytes, etc.)

<IENTITY % bytes.type "CDATA" >
<IENTITY % bytes.name "bytes" >

Filename Type

The filenametype can be used to Represent the name of a file or directory.

<IENTITY % filename.type "CDATA" >
<IENTITY % filename.name "filename" >
Field Type

Important: This type should be considered internal to Lire and shouldn’t be used as a parameter or DLF field
type.

The field type can contains a DLF field name. It is used in the parameter specification to represent a choice of
sort field for example.

<IENTITY % field.type "NMTOKEN" >
<IENTITY % field.name "field" >

22

Chapter 6. Common Textual Elements to All XML Formats

Superservice Type

Important: This type should be considered internal to Lire and shouldn’t be used as a parameter or DLF field
type.

<IENTITY % superservice.type "NMTOKEN" >
<IENTITY % superservice.name "superservice" >
Chart Type

Important: This type should be considered internal to Lire and shouldn’t be used as a parameter or DLF field
type.

<IENTITY % chart.type "bars | pie | histogram" >
<IENTITY % chart.name "chart" >
Related Types
<IENTITY % basic.types "%bool.name; | %int.name; |

%number.name; | %string.name;" >
<IENTITY % internet.types "%email.name; | %url.name; |

%ip.name; | %hostname.name; |

%port.name;" >
<IENTITY % misc.types "%filename.name; | %bytes.name; " >
<IENTITY % time.types "%date.name; | %time.name; |

%timestamp.name; | %duration.name;" >
<IENTITY % lire.types "%basic.types; | %time.types; |

%internet.types; | %misc.types;" >

23

Chapter 7. The Lire Report Configuration
Specification Markup Language

The Lire Report Configuration Specification Markup
Language
Document Type Definition for the Lire Report Configuration Specification Markup Language.

This DTD defines a grammar that is used to specify the configuration parameters used by the Lire framework.
Besides the framework parameters, this DTD can be used by extensions writers to register their parameters with
the framework. The configuration specifications are usually storpefix /share/lire/config-spec

Currently, Lire’s configuration namespace is flat, which means that two different specification documents cannot
define parameters of the same names.

Elements of this DTD uses the http://www.logreport.org/LRCSML/ namespace that is usually mapped to the
Ircsml prefix.

The latest version of that DTD is 1.0 and its public identifier is -//LogReport. ORG//DTD Lire Report
Specification Markup Language V1.0//EN. Its canonical system identifier is
http://www.logreport.org/LRCSML/1.0/Ircsml.dtd.

<l--
>

<l-- Namespace prefix for validation using the

DTD ->
<IENTITY % LIRE.xmIns.pfx "Ircsml” >
<IENTITY % LIRE.pfx "%LIRE.xmIns.pfx;:" >
<IENTITY % LIRE.xmins.attr.name "xmlIns:%LIRE.xmlns.pfx;" >

<IENTITY % LIRE.xmins.attr
"%LIRE.xmIns.attr.name; CDATA #FIXED 'http://www.logreport.org/LRCSML/">

This DTD uses the common lire-desc.mod module which is used to include a subset of DocBook in description
and text elements.

<IENTITY % lire-desc.mod PUBLIC
"-//LogReport. ORG//ELEMENTS Lire Description Elements V2.0//EN"
"lire-desc.mod">

%lire-desc.mod;

Each configuration specification is a XML document which hasaonéig-spec as its root element.

<IENTITY % LIRE.config-spec "%LIRE.pfx;config-spec” >
<IENTITY % LIRE.summary "%LIRE.pfx;summary" >

24

Chapter 7. The Lire Report Configuration Specification Markup Language

<IENTITY % LIRE.boolean "%LIRE.pfx;boolean" >
<IENTITY % LIRE.integer "%LIRE.pfx;integer" >
<IENTITY % LIRE.string "%LIRE.pfx;string" >
<IENTITY % LIRE.dIf-schema "%LIRE.pfx;dIf-schema" >
<IENTITY % LIRE.dIf-converter "%LIRE.pfx;dlf-converter" >
<IENTITY % LIRE.command "%LIRE.pfx;command" >
<IENTITY % LIRE.file "%LIRE.pfx;file" >
<IENTITY % LIRE.executable "%LIRE.pfx;executable" >
<IENTITY % LIRE.directory "%LIRE.pfx;directory” >
<IENTITY % LIRE.select "%LIRE.pfx;select" >
<IENTITY % LIRE.option "%LIRE.pfx;option” >
<IENTITY % LIRE.list "%LIRE.pfx;list" >
<IENTITY % LIRE.object "%LIRE.pfx;object" >
<IENTITY % LIRE.plugin "%LIRE.pfx;plugin” >
<IENTITY % LIRE.record "%LIRE.pfx;record" >
<IENTITY % LIRE.summary "%LIRE.pfx;summary" >
<IENTITY % types-spec "%LIRE.boolean;|%LIRE.integer;|

%LIRE.string;|%LIRE.dIf-schema;|
%LIRE.dIf-converter;|
%LIRE.command;|%LIRE.file;|
%LIRE.executable;|%LIRE.directory;|
%LIRE.select;|%LIRE.list;|%LIRE.object;|
%LIRE.plugin;|%LIRE.record;
">

<IENTITY % common.mix "(%LIRE.summary;)?,(%LIRE.description;)?">

config-spec element

Root element of a configuration specification document. It contains a list of parameter specifications..

This element doesn’t have any attributes.

<IELEMENT %LIRE.config-spec; ((%types-spec;)+) >
<IATTLIST %LIRE.config-spec;
%LIRE.xmIns.attr; >

summary element

This element is used for a short one description of the parameter’s purpose. dsectiygion element for
longer help text.

This element doesn’t have any attribute.

<IELEMENT %LIRE.summary; (#PCDATA) >

25

Chapter 7. The Lire Report Configuration Specification Markup Language

Parameter Specifiations Elements

Common Attributes

These attributes are common to all parameters specification elements:
name
Contains the name of the parameter to which this specification apply.

section

This attribute can be used to set a menu section which can be used by configuration frontends to group
parameters together.

summary

This attribute is equivalent to trmmary element.

<IENTITY % common.attr "

name NMTOKEN #REQUIRED
section CDATA #IMPLIED
summary CDATA #IMPLIED">

boolean element
This element is used to define a boolean parameter which can tgkesoano value.

This element doesn’t have any specific attributes.

<IELEMENT %LIRE.boolean; (Y%common.mix;) >
<IATTLIST %LIRE.boolean;
%common.attr;

integer element
This element is used to define an integer parameter.

This element doesn’t have any specific attributes.

<IELEMENT %LIRE.integer; (%common.mix;) >
<IATTLIST %LIRE.integer;
%common.attr;

26

Chapter 7. The Lire Report Configuration Specification Markup Language

string element
This element is used to define an string parameter. These parameters can contains any value.

This element doesn’t have any specific attributes.

<IELEMENT %LIRE.string; (%common.mix;) >
<IATTLIST %LIRE.string;
%common.attr;

dIf-converter element

This element is used to select a registered DIfConverter.

This element doesn’t have any specific attributes.

<IELEMENT %LIRE.dIf-converter; (%scommon.mix;) >
<IATTLIST %LIRE.dIf-converter;
%common.attr;

dif-schema element
This element is used to select an available DIfSchema.

This element doesn’t have any specific attributes.

<IELEMENT %LIRE.dIf-schema; (%common.mix;) >
<IATTLIST %LIRE.dIf-schema;
%common.attr;

commandelement

This element is used to define a command parameter. To be accepted as valid the parameter’s value must point to
an executable file or an executable file with the specified value must exist in a directory of the PATH
environment variable.

This element doesn’t have any specific attributes.

<IELEMENT %LIRE.command; (%common.mix;) >
<IATTLIST %LIRE.command;
%common.attr;

27

Chapter 7. The Lire Report Configuration Specification Markup Language

file element

This element is used to define a file parameter. To be accepted as valid, the parameter’s value must point to an
existing file.

This element doesn’t have any specific attributes.

<IELEMENT %LIRE.file; (Y%scommon.mix;) >
<IATTLIST %LIRE.file;
%common.attr;

directory element

This element is used to define a directory parameter. To be accepted as valid, the parameter’s value must point to
an existing directory.

This element doesn’t have any specific attributes.

<IELEMENT %LIRE.directory; (%common.mix;) >
<IATTLIST %LIRE.directory;
%common.attr;

executable element

This element is used to define an executable parameter. To be accepted as valid, the parameter’s value must point
to an existing executable file.

This element doesn’t have any specific attributes.

<IELEMENT %LIRE.executable; (Y%common.mix;) >
<IATTLIST %LIRE.executable;
%common.attr;

28

Chapter 7. The Lire Report Configuration Specification Markup Language

select element

This element is used to define a parameter for which the value is selected among a set of options. The allowed set
of options is specified usingption elements.

This element doesn’t have any specific attributes.

<IELEMENT %LIRE.select; (%common.mix;,(%LIRE.option;)+) >
<IATTLIST %LIRE.select;
%common.attr;

option element
This element is used to define the valid values feelact parameter.

This element doesn’t have any specific attributes.

<IELEMENT %LIRE.option; (Yocommon.mix;) >
<IATTLIST %LIRE.option;
%common.attr;

list element

This element is used to define a parameter that can contains an ordered set of values. The type of values which
can be contained is specified using other parameters elements. Any number of parameters of the type specified
by the children elements can be contained by the defined parameter.

This element doesn’t have any specific attributes.

<I[ELEMENT %LIRE.list; (%common.mix;,(%types-spec;)+) >
<IATTLIST %LIRE.list;
%common.attr;

object element

This element is used to define a parameter that will instantiate an object. The object will be instantiated by
calling the "new_from_config()" class method defined in the package specified by the elettasst'sattribute.
The constructor will receive the hash instantiated from the parameter’s components as parameter.

Thelabel attribute can be used to specify the contained element that should be used to represent this object in
lists.

29

Chapter 7. The Lire Report Configuration Specification Markup Language

<I[ELEMENT %LIRE.object; (%ecommon.mix;,(%types-spec;)+) >
<IATTLIST %LIRE.object;
%common.attr;
class NMTOKEN #REQUIRED

label NMTOKEN #IMPLIED
>

record element
This element is used to define a parameter that holds record-like data.

Thelabel attribute can be used to specify the contained element that should be used to represent this record in
lists.

<IELEMENT %LIRE.record; (Yocommon.mix;,(%types-spec;)+) >
<IATTLIST %LIRE.record;
%common.attr;
label NMTOKEN #MPLIED

plugin element

This element is used to define a parameter for which the value is selected among a set of options. The allowed set
of options is specified usingption elements. The element will also contain additional parameters based on the
selected value. The available paramaters should be defineddard or similar specification named

name_properties . For example, the additional parameters wherotiten_1 option is selected will be

found in the specification namegtion_1_properties

This element doesn’t have any specific attributes.

<IELEMENT %LIRE.plugin; (%common.mix;,(%LIRE.option;)+) >
<IATTLIST %LIRE.plugin;
%common.attr;

30

Chapter 8. The Lire Report Configuration
Markup Language

The Lire Report Configuration Markup Language

Document Type Definition for the Lire Report Configuration Markup Language.

This DTD defines a grammar that is used to store the Lire configuration. The configuration is stored in one or
more XML files. Parameters set in later configuration files override the ones set in the formers. The valid
parameter names as well as their description and type are specified using configuration specification documents.

Elements of this DTD use the http://www.logreport.org/LRCML/ hamespace, which is usually mapped to the
Ircml prefix.

The latest version of the DTD is 1.0 and its public identifier is -//LogReport. ORG//DTD Lire Report
Specification Markup Language V1.0//EN. Its canonical system identifier is
http://www.logreport.org/LRCML/1.0/Ircml.dtd.

<l--
>

<l-- Namespace prefix for validation using the

DTD ->
<IENTITY % LIRE.xmlIns.pfx "Ircml” >
<IENTITY % xmins.colon >
<IENTITY % LIRE.pfx "%LIRE.xmIns.pfx;%xmins.colon;" >

<IENTITY % LIRE.xmins.attr.name "xmlIns%xmins.colon;%LIRE.xmins.pfx;" >
<IENTITY % LIRE.xmins.attr
"%LIRE.xmIns.attr.name; CDATA #FIXED 'http://www.logreport.org/LRCML/">

Each configuration specification is an XML document which hasconég as its root element.

<IENTITY % LIRE.config "%LIRE.pfx;config" >
<IENTITY % LIRE.global "%LIRE.pfx;global" >
<IENTITY % LIRE.param "%LIRE.pfx;param” >

config element

Root element of a configuration document. It contains presently onlglohal element which is used to hold
the global configuration parameters.

This element doesn’t have any attributes.

<IELEMENT %LIRE.config; (%LIRE.global;) >
<IATTLIST %LIRE.config;

31

Chapter 8. The Lire Report Configuration Markup Language

%LIRE.xmins.attr; >

global element

This element starts the global configuration data. (This is the only scope currently defined). It contains a list of
param elements.

<IELEMENT %LIRE.global; (%LIRE.param;)+ >

param element
This element contains the parameter’s value. The parameter’'s name is definedamétagtribute.
Thevalue attribute can be used to store scalar’s value.

When the parameter’s type is a list, the values are stored in chitdrem elements.

Warning

This element has a mixed content type. We should probably use a value attribute to hold scalar values.

<I[ELEMENT %LIRE.param; (#PCDATA|%LIRE.param;)* >
<IATTLIST %LIRE.param;
name NMTOKEN #REQUIRED
value CDATA #IMPLIED >

32

Chapter 9. The Lire DLF Schema Markup
Language

The Lire DLF Schema Markup Language

The Lire DLD Schema Markup Language (LDSML) is used describe the fields used by DLF records of a
specific schema like www, email or msgstore.

DLF schemas are defined in one XML document that should be installed in one of the directories that is included
in the schema path (usualyOMElire/schemas andprefix /share/lire/schemas). This document

must conforms to the LDSML DTD which is described here. Elements of that DTD are defined in the namespace
http://www.logreport.org/LDSML/ which will be usually mapped to the lire prefix (altough other prefixes may

be used).

The latest version of that DTD is 1.1 and its public identifier is -//LogReport. ORG//DTD Lire DLF Schema
Markup Language V1.1//EN. Its canonical system identifier is http://www.logreport.org/LDSML/1.1/Idsml.dtd.

<l-- Namespace prefix for validation using the

DTD >
<IENTITY % LIRE.xmIns.pfx "lire" >
<IENTITY % LIRE.pfx "%LIRE.xmIns.pfx;:" >
<IENTITY % LIRE.xmIns.attr.name "xmlIns:%LIRE.xmIns.pfx;" >

<IENTITY % LIRE.xmiIns.attr
"0LIRE.xmIns.attr.name; CDATA #FIXED
‘http://www.logreport.org/LDSML/"">

This DTD uses the common modules lire-types.mod which defines the data types recognized by Lire and
lire-desc.mod which is used to include a subset of DocBook in description and text elements.

<IENTITY % lire-types.mod PUBLIC
"-//lLogReport. ORG//ENTITIES Lire Data Types V1.0/EN"
"lire-types.mod">

%lire-types.mod;

<IENTITY % lire-desc.mod PUBLIC
"-//LogReport. ORG//ELEMENTS Lire Description Elements V2.0//EN"
"lire-desc.mod">

%lire-desc.mod;

The top-level element in XML documents describing a DLF schema will be eitbiésehema
extented-schema orderived-schema depending on the schema’s ty@.F schemasre used as base
schema for one superservice. For example, the DLF schema of the www superservice is named www. An
extended schema used to define additional fields which values are to be computed agapser

Extended schemas are named after the schema which they extend. For example, the www-attack extended
schema adds aattack field which contains, if any, the “attack” that was attempted in that request.

33

Chapter 9. The Lire DLF Schema Markup Language

Derived schemaare used by another type of analysers which defines an entirely different schema. Whereas in
the extended schema the new fields will be added to all the DLF records of the base schema, the derived schema
will create new DLF records based on the DLF records of the base schema. An example of this is the
www-session schema which computes users’ session information based on the web requests contained in the
www schema. Like for thextended-schema case, derived schemas are named after the base schema from

which they are derived.

The fields that makes each schema are defined tisldg elements.

<l-- Prefixed names declaration. -->
<IENTITY % LIRE.dIf-schema "%LIRE.pfx;dIf-schema" >
<IENTITY % LIRE.extended-schema "%LIRE.pfx;extended-schema" >
<IENTITY % LIRE.derived-schema "%LIRE.pfx;derived-schema” >
<IENTITY % LIRE.field "%LIRE.pfx;field" >

The dif-schema element

Thedlf-schema elementis used to define the base schema of a superservice. It should contains titfgtional
anddescription elements followed bfield elements describing the schema structure.

Thetitle is an optional text string that will be used to in the automatic documentation generation that can be
extracted from the schema definition. Tdweescription element should describe what is represented by each
DLF records (one web request, one email delivery, one firewall event, etc.)

dif-schema ’s attributes

superservice

This required attribute contains the name of the superservice described by this schema. This will also be
used as the base schema'’s identifier.

timestamp

This required attribute contains the name of the field which contains the official event’s timestamp. This
field will be used to sort the DLF records for timegroup and timeslot report operations.

<I[ELEMENT %LIRE.dIf-schema; ((%LIRE.title;)?, (%LIRE.description;)?,

(%LIRE. field;)+) >
<IATTLIST %LIRE.dIf-schema;
superservice Y%superservice.type; #REQUIRED
timestamp IDREF #REQUIRED
%LIRE.xmins.attr; >

34

Chapter 9. The Lire DLF Schema Markup Language

extended-schema element

This is the root element of an extended DLF Schema. Extended-schema defines additional fields that will be
added to the base schema. It contains an optional title, an optional description and one or more field
specifications.

dif-schema ’s attributes
id
This required attribute contains the identifier of that schema. This identifier should be composed of the
superservice’'s name followed by an hypehdnd then an word describing the extended schema.
base-schema

This required attribute contains the identifier of the schema that is extended.

required-fields

This optional attribute contains a space delimited list of field names that must be available in the base
schema for the analyser to do its job. If any of the listed field is missing in the DLF, extended fields for the
base schema cannot be computed.

module

This required attribute contains the name of the analyser that is used to compute the extended fields. This is
a perl module that should be installed in perl’s library path.

<IELEMENT %LIRE.extended-schema;
((%LIRE.title;)?, (%LIRE.description;)?,

(%LIRE. field;)+) >
<IATTLIST %LIRE.extended-schema;
id NMTOKEN #REQUIRED
base-schema NMTOKEN #REQUIRED
module NMTOKEN #REQUIRED
required-fields NMTOKENS #IMPLIED
%LIRE.xmins.attr; >

derived-schema element

This is the root element of a derived DLF Schema. The difference between a normal schema and a derived
schema is that the data is generated from another DLF instead of a log file.

derived-schema 's attributes
id

This required attribute contains the identifier of that schema. This identifier should be composed of the
superservice’s name followed by an hypehdnd then an word describing the derived schema.

35

Chapter 9. The Lire DLF Schema Markup Language

base-schema
This required attribute contains the identifier of the schema from which this derived schema’s data is
derived.

required-fields
This optional attribute contains a space delimited list of field names that must be available in the base
schema for the analyser to do its job. If any of the listed field is missing in the DLF, the derived records
cannot be computed.

module

This required attribute contains the name of the analyser that is used to compute the derived records. This is
a perl module that should be installed in perl’s library path.

timestamp

This required attribute contains the name of the field which contains the official event’s timestamp. This
field will be used to sort the DLF records for timegroup and timeslot report operations.

<IELEMENT %LIRE.derived-schema;
((%LIRE.title;)?, (%LIRE.description;)?,

(%LIRE. field;)+) >
<IATTLIST %LIRE.derived-schema;

id NMTOKEN #REQUIRED
base-schema NMTOKEN #REQUIRED
module NMTOKEN #REQUIRED
required-fields NMTOKENS #IMPLIED
timestamp IDREF #REQUIRED
%LIRE.xmins.attr; >

field element

Thefield is used to describe the fields of the schema. Each field is specified by its name and type. The field
element may contain an optiorddscription element which gives more information on the data contained in
the field. Description should be used to give better information to the DLF converter implementors on what
should appears in that field.

field s attributes

name

This required attribute contains the name of the field.

type
This required attribute contains the the field's type.

36

Chapter 9. The Lire DLF Schema Markup Language

default

Warning

This attribute is obsolete and will be removed in a future Lire release.

label

This optional attribute gives the label that should be used to display this field in reports. Defaults to the
field's name when omitted.

<I[ELEMENT %LIRE field; (%LIRE.description;)? >
<IATTLIST %LIRE field;
name ID #REQUIRED
type (%lire.types;) #REQUIRED
default CDATA #IMPLIED
label CDATA #IMPLIED >

37

Chapter 10. The Lire Report Specification Markup
Language

The Lire Report Specification Markup Language

Document Type Definition for the Lire Report Specification Markup Language.

This DTD defines a grammar that is used to specify reports that can be generated by Lire. Elements of this DTD
uses the http://www.logreport.org/LRSML/ namespace that is usually mappediite therefix.

The latest version of that DTD is 2.0 and its public identifier is -//LogReport. ORG//DTD Lire Report
Specification Markup Language V2.0//EN. Its canonical system identifier is
http://www.logreport.org/LRSML/2.0/Irsml.dtd.

<l--
-->
<l-- Namespace prefix for validation using the
DTD >
<IENTITY % LIRE.xmIns.pfx "lire" >
<IENTITY % LIRE.pfx "%LIRE.xmIns.pfx;:" >
<IENTITY % LIRE.xmIns.attr.name "xmlIns:%LIRE.xmIns.pfx;" >

<IENTITY % LIRE.xmlIns.attr
"%LIRE.xmIns.attr.name; CDATA #FIXED ’http://www.logreport.org/LRSML/">

This DTD uses the common modules lire-types.mod which defines the data types recognized by Lire and
lire-desc.mod which is used to include a subset of DocBook in description and text elements.

<IENTITY % lire-types.mod PUBLIC
"-//LogReport. ORG//ENTITIES Lire Data Types V1.0/EN"
"lire-types.mod">

%lire-types.mod,;

<IENTITY % lire-desc.mod PUBLIC
"-//LogReport. ORG//ELEMENTS Lire Description Elements V2.0//EN"
"lire-desc.mod">

%lire-desc.mod;

Each report specification is a XML document which has @pert-spec as its root element. This DTD can

also be used for filter specification which have giubal-filter-spec as root element.
<IENTITY % LIRE.report-spec "%LIRE.pfx;report-spec" >
<IENTITY % LIRE.global-filter-spec "%LIRE.pfx;global-filter-spec">

<IENTITY % LIRE.display-spec "%LIRE.pfx;display-spec" >

<IENTITY % LIRE.param-spec "%LIRE.pfx;param-spec" >

38

Chapter 10. The Lire Report Specification Markup Language

<IENTITY % LIRE.param "%LIRE.pfx;param" >
<IENTITY % LIRE.filter-spec "%LIRE.pfx;filter-spec” >
<IENTITY % LIRE.report-calc-spec "%LIRE.pfx;report-calc-spec” >

report-spec element

Root element of a report specification. It contains descriptive elements about the report specifitation (
description). It contains the display elements that will be in the generated regigptdy-spec).

It contains specification for the parameters that can be used to customize the report generated from this
specification (param-spec). Finally, it contains elements to specify a filter expression which can be used to select
a subset of the recordsilter-spec) and the expression to build the repaepprt-calc-spec).

report-spec s attributes

id
the name of the superservice for which this report is available : i.e. email, www, dns, etc.

schema
The DLF schema used by the report. This defaults to the superservice’'s schema, but can be one of its
derived or extended schema.

id

An unique identifier for the report specification

<IELEMENT %LIRE.report-spec;
(%LIRE title;, %LIRE.description;,
(%LIRE.param-spec;)?, %LIRE.display-spec;,
(%LIRE filter-spec;)?,
%LIRE.report-calc-spec;)

>

<IATTLIST %LIRE.report-spec;

id ID #REQUIRED

superservice Y%superservice.type; #REQUIRED

schema NMTOKEN #IMPLIED

charttype (%chart.type;) #IMPLIED

%LIRE.xmins.attr; >
global-filter-spec element

Root element of a filter specification. It contains descriptive elements about the filter specifitgdion,(

description). It contains the display elements that will be used when that filter is used in a generated report
(display-spec). It contains specification for the parameters that can be used to customize the filter generated
from this specificationgaram-spec). Finally, it contains element to specify the filter expression which can be
used to select a subset of the recoffdier-spec).

39

Chapter 10. The Lire Report Specification Markup Language

global-filter-spec 's attributes

superservice

the name of the superservice for which this filter is available : i.e. email, www, dns, etc.

schema

the DLF schema used by the report. This defaults to the superservice’s schema, but can be one of its derived
or extended schema.

An unique identifier for the filter specification

<IELEMENT %LIRE.global-filter-spec;
(%LIRE. title;, %LIRE.description;,
(%LIRE.param-spec;)?, %LIRE.display-spec;,
(%LIRE filter-spec;))

<IATTLIST %LIRE.global-filter-spec;

id ID #REQUIRED
superservice %superservice.type; #REQUIRED
schema NMTOKEN #IMPLIED
%LIRE.xmins.attr; >

display-spec element

This element contains the descriptive element that will appear in the generated report.
It contains one title and may contains one description which will be used as help message

This element has no attribute.

<IELEMENT %LIRE.display-spec; (%LIRE.title;, (%LIRE.description;)?) >

param-spec element

This element contains the parameters than can be customized in this report specification.

This element doesn’t have any attribute.

<IELEMENT %LIRE.param-spec; (%LIRE.param;)+ >

40

Chapter 10. The Lire Report Specification Markup Language

param element

This element contains the specification for a parameter than can be used to customize this report.
This element can containsiascription element which can be used to explain the parameter’s purpose.

It is an error to define a parameter with the same name than one of the superservice’s field.

param’s attributes

name

the name of the parameter.

type
the parameter’s data type

default

the parameter’s default value

<IELEMENT %LIRE.param; (%LIRE.description;)? >
<IATTLIST %LIRE.param;
name ID #REQUIRED
type (%lire.types;) #REQUIRED
default CDATA #IMPLIED >

Filter expression elements

<IENTITY % LIRE.eq "%LIRE.pfx;eq" >
<IENTITY % LIRE.ne "%LIRE.pfx;ne" >
<IENTITY % LIRE.gt "%LIRE.pfx;gt" >
<IENTITY % LIRE.ge "%LIRE.pfx;ge" >
<IENTITY % LIRE.It "%LIRE.pfx;It" >

<IENTITY % LIRE.le "%LIRE.pfx;le" >
<IENTITY % LIRE.and "%LIRE.pfx;and" >
<IENTITY % LIRE.or "%LIRE.pfx;or" >
<IENTITY % LIRE.not "%LIRE.pfx;not" >
<IENTITY % LIRE.match "%LIRE.pfx;match” >
<IENTITY % LIRE.value "%LIRE.pfx;value" >

<IENTITY % expr "%LIRE.eq; | %LIRE.ne; |
%LIRE.gt; | %LIRE.It; | %LIRE.ge; | %LIRE.le; |
%LIRE.and; | %LIRE.or; | %LIRE.not; |
%LIRE.match; | %LIRE.value;" >

41

Chapter 10. The Lire Report Specification Markup Language

filter-spec element

This element is used to select the subset of the records that will be used to generate the report. If this element is
missing, all records will be used to generate the report.

The content of this element are expression element which defines an expression which will evaluate to true or
false for each record. The subset used for to generate the report are all records for which the expression evaluates
to true.

The value used to evaluate the expressions are either literal, value of parameter or value of one of the field of the
record. Parameter and field starts with a $ followed by the name of the parameter or field. All other values are
interpreted as literals.

This element doesn’t have any attribute.

<IELEMENT %LIRE filter-spec; (%expr;) S

value element

This expression element to false if the 'value’ attribute is undefined, the empty string or O. It evaluate to true
otherwise.

value 's attributes

value

The value that should be evaluated for a boolean context.

<IELEMENT %LIRE.value; EMPTY >
<IATTLIST %LIRE.value;

value CDATA #REQUIRED >
eq element
<IELEMENT %LIRE.eq; EMPTY >
<IATTLIST %LIRE.eq;

argl CDATA #REQUIRED

arg2 CDATA #REQUIRED >
ne element
<IELEMENT %LIRE.ne; EMPTY >
<IATTLIST %LIRE.ne;

argl CDATA #REQUIRED

42

Chapter 10. The Lire Report Specification Markup Language

arg2 CDATA #REQUIRED >
gt element
<IELEMENT %LIRE.gt; EMPTY >
<IATTLIST %LIRE.gt;
argl CDATA #REQUIRED
arg2 CDATA #REQUIRED >
ge element
<IELEMENT %LIRE.ge; EMPTY >
<IATTLIST %LIRE.ge;
argl CDATA #REQUIRED
arg2 CDATA #REQUIRED >
It element
<IELEMENT %LIRE.It; EMPTY >
<IATTLIST %LIRE.It;
argl CDATA #REQUIRED
arg2 CDATA #REQUIRED >
le element
<IELEMENT %LIRE.le; EMPTY >
<IATTLIST %LIRE.le;
argl CDATA #REQUIRED
arg2 CDATA #REQUIRED >

match element

The match expression element tries to match a POSIX 1003.2 extended regular expression to a value and return
true if there is a match and false otherwise.

43

Chapter 10. The Lire Report Specification Markup Language

match 's attributes

value

the value which should matched

re

A POSIX 1003.2 extended regular expression.

case-sensitive

Is the regex sensitive to case. Defaults to true.

<I[ELEMENT %LIRE.match; EMPTY >
<IATTLIST %LIRE.match;
value CDATA #REQUIRED
re CDATA #REQUIRED
case-sensitive (%bool.type;) ‘true’ >
not element
<IELEMENT %LIRE.not; (Yoexpr;) >
and element
<IELEMENT %LIRE.and; (Yoexpr;)+ >
or element
<I[ELEMENT %LIRE.or; (Yoexpr;)+ >

Report Calculation Elements

<IENTITY % LIRE.timegroup "%LIRE.pfx;timegroup” >
<IENTITY % LIRE.group "%LIRE.pfx;group” >
<IENTITY % LIRE.rangegroup "%LIRE.pfx;rangegroup" >
<IENTITY % LIRE.timeslot "%LIRE.pfx;timeslot" >

44

Chapter 10. The Lire Report Specification Markup Language

<IENTITY % LIRE.field "%LIRE.pfx;field" >
<IENTITY % LIRE.sum "%LIRE.pfx;sum" >
<IENTITY % LIRE.avg "%LIRE.pfx;avg" >
<IENTITY % LIRE.min "%LIRE.pfx;min" >
<IENTITY % LIRE.max "%LIRE.pfx;max" >
<IENTITY % LIRE.first "%LIRE.pfx;first" >
<IENTITY % LIRE.last "%LIRE.pfx;last” >
<IENTITY % LIRE.count "%LIRE.pfx;count" >
<IENTITY % LIRE.records "%LIRE.pfx;records"” >
<!-- Empty group operator -->

<IENTITY % LIRE.empty-ops "%LIRE.sum; | %LIRE.avg; | %LIRE.count; |
%LIRE.min; | %LIRE.max; | %LIRE.first; |
%LIRE.last; | %LIRE.records;" >

<l-- Group operations that are also aggregators -->
<IENTITY % LIRE.nestable-aggr
"%LIRE.group; | %LIRE.timegroup; |
%LIRE.timeslot; | %LIRE.rangegroup;"” >

<l-- Group operations ->
<IENTITY % LIRE.group-ops "%LIRE.empty-ops;| %LIRE.nestable-aggr;" >

<l-- Containers for group operations >
<IENTITY % LIRE.aggregator "%LIRE.nestable-aggr;" >

report-calc-spec element
This element describes the computation needs to generate the report.
It contains one aggregator element.

This element doesn’t have any attributes.

<IELEMENT %LIRE.report-calc-spec; (%LIRE.aggregator;) >

Common Attributes

All elements which will create a column in the resulting report have a label attribute that will be used as the
column label. When this attribute is omitted, the name attribute content will be used as column label.

<IENTITY % label.attr "label CDATA #IMPLIED">

All operation elements may have a name attribute which can be used to reference that column. (It is required in
the case of aggrage functions). The primary usage is for controlling the sort order of the rows in the generated
report.

45

Chapter 10. The Lire Report Specification Markup Language

<IENTITY % name.attr "name 1D #IMPLIED">
<IENTITY % name.attr.req "name ID #REQUIRED">

group element

The group element generates a report where records are grouped by some field values and aggregate statistics are
computed on those group of records.

It contains the field that should be used for grouping and the statistics that should be computed.

The sort order in the report is controlled by the 'sort’ attribute.

group s attributes

name
An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute. If omitted a default name will be generated.

sort

whitespace delimited list of fields name that should used to sort the records. Field names can be prefixed by
- to specify reverse sort order, otherwise ascending sort order is used. The name can also refer to the name
attribute of the statistics element.

limit
limit the number of records that will be in the generated report. It can be either a positive integer or the
name of a user supplied param.

<IELEMENT %LIRE.group; ((%LIRE.field;)+, (%LIRE.group-ops;)+) >
<IATTLIST %LIRE.group;
%name.attr;
sort NMTOKENS #IMPLIED
limit CDATA #IMPLIED >

timegroup element

The timegroup element generates a report where records are grouped by time range (hour, day, etc.). Statistics
are then computed on these records grouped by period.

timegroup s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute. If omitted a default name will be generated.

46

Chapter 10. The Lire Report Specification Markup Language

label

Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

field

the name of the field which is used to group records. This should be a field which is of one of the time types
(timestamp, date, time). It defaults to the default timestamp field if unspecified.

period

This is the timeperiod over which records should be grouped. Valid period looks like (hour, day, 1h, 30m,
etc). It can also be the name of a user supplied param.

<IELEMENT %LIRE.timegroup; (%LIRE.group-ops;)+ >
<IATTLIST %LIRE.timegroup;
%name.attr;
%label.attr;
field NMTOKEN #IMPLIED
period CDATA #REQUIRED >

timeslot element

Thetimeslot element generates a report where records are grouped according to a cyclic unit of time. The
duration unit used won't fall over to the next higher unit. For example, this means that using a unit of 1d will
generate a report where the stats will be by day of the week, 8h will generate a report by third of day, etc. The
statistics are then computed over the records in the same timeslot.

Example 10-1. timeslot with 1d unit

Using a specification like:

<lire:timeslot unit="1d">

</lire:timeslot>

would generate a report like:

Table 10-1. weekly overview

Sunday
Monday

Tuesday

Saturday

where data will be summed over all Sunday’s, Monday's, ..., and Saturdays found in the log.

47

Chapter 10. The Lire Report Specification Markup Language

Example 10-2. timeslot with 2m unit

Specifyingunit="2m" would generate a line for each two months, giving a yearly view.

timeslot s attributes

name
An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute. If omitted a default name will be generated.

label
Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

field

the name of the field which is used to group records. This should be a field which is of one of the time types
(timestamp, date, time). It defaults to the default 'timestamp’ field if unspecified.

unit
This is the cyclic unit of time in which units the records are aggregated. It can be any duration value. (hour,
day, 1h, 30m, etc). It can also be the name of a user supplied param.

<IELEMENT %LIRE.timeslot; (%LIRE.group-ops;)+ >

<IATTLIST %LIRE.timeslot;
%name.attr;
%label.attr;
field NMTOKEN #IMPLIED
unit CDATA #REQUIRED >

rangroup element

Therangegroup element generates a report where records are grouped into distinct class delimited by a range.
This element can be used to aggregates continuous numeric values like duration or bytes. Statistics are then
computed on these records grouped in range class.

rangegroup s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute. If omitted a default name will be generated.

48

Chapter 10. The Lire Report Specification Markup Language

label

Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

field
the name of the field which is used to group records. This should be a field which is of a continuous numeric
type (bytes, duration, int, number). Time types aggregation should use the timegroup element or timeslot.
range-start

The starting index of the first class. Defaults to 0. This won't be used a the lower limit of the class. It is only
used to specify relatively at which values the classes delimitation start. For example, if the range-start is 1,
and the range-size is 5, a class ranging -4 to 0 will be created if values are in that range. It can be supplied in
any continuous unit (i.e 10k, 5m, etc.) This can also be the name of a user supplied param.

range-size

This is the size of class. It can be supplied in any continuous unit (i.e 10k, 5m, etc.) It can also be the name
of a user supplied param.

min-value

All value lower then this boundary value will be considered to be equal to this value. If this parameter isn’t
set, the ranges won't be bounded on the left side.

max-value

All value greater then this boundary value will be considered to be equal to this value. If this parameter isn’t
set, the ranges won’t be bounded on the right side.

size-scale

The rate at which the size scale from one class to another. If it is different then 1, this will create a
logarithmic distribution. For example, setting this to 2, each successive class will be twice larger then the
precedent : 0-9, 10-29, 30-69, etc.

<IELEMENT %LIRE.rangegroup; (%LIRE.group-ops;)+ >
<IATTLIST %LIRE.rangegroup;

%name.attr;

%label.attr;

field NMTOKEN #REQUIRED
range-start CDATA #IMPLIED
range-size CDATA #REQUIRED
min-value CDATA #IMPLIED
max-value CDATA #IMPLIED
size-scale CDATA #IMPLIED >

field element

This element reference a DLF field which value will be displayed in a separate column in the resulting report. Its
used to specify the grouping fields in th®up element and to specify the fields to output in theords
element.

49

Chapter 10. The Lire Report Specification Markup Language
field s attribute

name

The name of the DLF field that will be used as key for grouping.

label

Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

<IELEMENT %LIRE.field;, EMPTY >
<IATTLIST %LIRE.field;
name NMTOKEN #REQUIRED
%label.attr; >
sum element

Thesum element sums the value of a field in the group.

sum’s attributes

name
An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute.

label
Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

field

the field that should be summed.

ratio

This attribute can be used to display the sum as a ratio of the group or table total. If the attribute is set to
group the resulting value will be the ratio on the group’s total sum. If the attribute is satito , it will be
expressed as a ratio of the total sum of the table. The defaui®éswhich will not convert the sum to a
ratio.

weight

This optional attribute can be used to create a weighted sum. It should contain a numerical DLF field name.
The content of that field will be used to multiply each field value before summing them.

<IELEMENT %LIRE.sum; EMPTY >
<IATTLIST %LIRE.sum;
%name.attr.req;
%label.attr;
ratio (none | group |[table) ‘none’
field NMTOKEN #REQUIRED

50

Chapter 10. The Lire Report Specification Markup Language

weight NMTOKEN #IMPLIED >

avg element

The avg element calculate average of all value of a field in the group. The average will be computed either on the
number of records if the by-field attribute is left empty, or by the number of different values that there are in the
by-fields.

avg'’s attributes

name
An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute.

label
Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

field

the field that should be averaged. If left unspecified the number of record will be counted.

by-fields

the fields that will be used to dermine the count over which the average is computed.

weight

This optional attribute can be used to create a weighted average. It should contain a numerical DLF field
name. The content of that field will be used to multiply each field value before summing them. Its that
weighted sum that will be used to calculate the average.

<IELEMENT %LIRE.avg; EMPTY >
<IATTLIST %LIRE.avg;
%name.attr.req;
%label.attr;
field NMTOKEN #IMPLIED
by-fields NMTOKENS #IMPLIED
weight NMTOKEN #IMPLIED >

max element

The max element calculates the maximum value for a field in all the group’s records.

51

Chapter 10. The Lire Report Specification Markup Language

max’s attributes

name
An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute.

label
Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

field

the field for which the maximum value should found.

<IELEMENT %LIRE.max; EMPTY >
<IATTLIST %LIRE.max;
%name.attr.req;
%label.attr;
field NMTOKEN #REQUIRED >

min element

Themin element calculates the minimum value for a field in all the group’s records.

min’'s attributes

name
An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute.

label
Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

field

the field for which the minimum value should found.

<IELEMENT %LIRE.min; EMPTY >
<IATTLIST %LIRE.min;
%name.attr.req;
%label.attr;
field NMTOKEN #REQUIRED >

52

Chapter 10. The Lire Report Specification Markup Language

first element

Thefirst element will display the value of the value of one field of the first DLF record within its group. The
sort order is controlled through the sort attribute..

first s attributes

name
An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute.

label
Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

field
the DLF field which will be displayed.

sort

whitespace delimited list of fields name that should used to sort the records. Field names can be prefixed by
- to specify reverse sort order, otherwise ascending sort order is used. If this attribute is omitted, the records
will be sort in ascending order of the default timestamp field.

<IELEMENT %LIRE. first; EMPTY >
<IATTLIST %LIRE.first;
%name.attr.req;
%label.attr;
field NMTOKEN #REQUIRED
sort NMTOKENS #IMPLIED

last element

Thelast element will display the value of the value of one field of the last DLF record within its group. The
sort order is controlled through the sort attribute..

last 's attributes

name
An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute.

label
Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

field
the DLF field which will be displayed.

53

Chapter 10. The Lire Report Specification Markup Language

sort

whitespace delimited list of fields name that should used to sort the records. Field names can be prefixed by
- to specify reverse sort order, otherwise ascending sort order is used. If this attribute is omitted, the records
will be sort in ascending order of the default timestamp field.

<IELEMENT %LIRE.last; EMPTY >
<IATTLIST %LIRE.last;
%name.attr.req;
%label.attr;
field NMTOKEN #REQUIRED
sort NMTOKENS #IMPLIED

count element

Thecount element counts the number of records in the group if the fields attribute is left empty. Otherwise, it
will count the number of different values in the fields specified.

count s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute.

label

Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

fields

Which fields to count. If unspecified all records in the group are counted. If not, only different fields’ value
will be counted.

ratio

This attribute can be used to display the frequency as a ratio of the group or table total. If the attribute is set
to group the resulting value will be the ratio on the group’s total frequency. If the attribute is sei¢o ,

it will be expressed as a ratio of the total frequency of the table. The defautiséswhich will not convert

the frequency to a ratio.

<IELEMENT %LIRE.count; EMPTY >
<IATTLIST %LIRE.count;
%name.attr.req;
%label.attr;
ratio (none | group |table) ‘none’
fields NMTOKENS #IMPLIED >

54

Chapter 10. The Lire Report Specification Markup Language

records element

Therecords element will put the content of selected fields in the report. This can be used in reports that shows
events matching certain criteria. The fields that will be included in the report for each record is specified by the
field element.

records s attribute

fields

whitespace delimited list of fields name that should included in the report.

<IELEMENT %LIRE.records; EMPTY >
<IATTLIST %LIRE.records;
fields NMTOKENS #REQUIRED >

55

Chapter 11. The Lire Report Markup Language

The Report Markup Language

Document Type Definition for the XML Lire Report Markup Language as generatdd dlj2xml .

Elements of that DTD are defined in the namespace http://www.logreport.org/LRML/ which will be usually
mapped to the lire prefix.

The latest version of that DTD is 2.1 and its public identifier is -//LogReport. ORG//DTD Report Markup
Language V2.1//EN. Its canonical system identifier is http://www.logreport.org/LRML/2.1/Irml.dtd
(http://www.logreport.org/LDSML/2.1/Irml.dtd).

<l-- Namespace prefix for validation using the

DTD -->
<IENTITY % LIRE.xmIns.pfx "lire" >
<IENTITY % LIRE.pfx "%LIRE.xmins.pfx;:" >
<IENTITY % LIRE.xmins.attr.name "xmlIns:%LIRE.xmIns.pfx;" >

<IENTITY % LIRE.xmins.attr
"%LIRE.xmlIns.attr.name; CDATA #FIXED ’http://www.logreport.org/LRML/"">

This DTD uses the common modules lire-types.mod which defines the data types recognized by Lire and
lire-desc.mod which is used to include a subset of DocBook in description and text elements.

<l-- Include needed modules -->

<IENTITY % lire-types.mod PUBLIC
"-//LogReport. ORG//ENTITIES Lire Data Types V1.0/EN"
"lire-types.mod">

%lire-types.mod,;

<IENTITY % lire-desc.mod PUBLIC
"-//LogReport. ORG//ELEMENTS Lire Description Elements V2.0//EN"
"lire-desc.mod">

%lire-desc.mod;

Each report is an XML document of which the top-level element isg¢hert element. The report’s data is
contained irsubreport elements (these hold the results of each report specification that was used to generate
the report).

<l-- Parameter entities which defines qualified

names of the elements -->
<IENTITY % LIRE.report "%LIRE.pfx;report” >
<IENTITY % LIRE.section "%LIRE.pfx;section” >
<IENTITY % LIRE.subreport "%LIRE.pfx;subreport" >
<IENTITY % LIRE.missing-subreport "%LIRE.pfx;missing-subreport" >
<IENTITY % LIRE.table "%LIRE.pfx;table” >
<IENTITY % LIRE.table-info "%LIRE.pfx;table-info" >
<IENTITY % LIRE.group-info "%LIRE.pfx;group-info" >

56

Chapter 11. The Lire Report Markup Language

<IENTITY % LIRE.column-info "%LIRE.pfx;column-info" >
<IENTITY % LIRE.group-summary "%LIRE.pfx;group-summary” >
<IENTITY % LIRE.entry "%LIRE.pfx;entry" >
<IENTITY % LIRE.group "%LIRE.pfx;group" >
<IENTITY % LIRE.name "%LIRE.pfx;name" >
<IENTITY % LIRE.value "%LIRE.pfx;value" >
<IENTITY % LIRE.image "%LIRE.pfx;image” >
<IENTITY % LIRE.file "%LIRE.pfx;file" >
<IENTITY % LIRE.date "%LIRE.pfx;date” >
<IENTITY % LIRE.timespan "%LIRE.pfx;timespan" >
<IENTITY % LIRE.hostname "%LIRE.pfx;hostname" >
<IENTITY % LIRE.notes "%LIRE.pfx;notes" >
<IENTITY % LIRE.note "%LIRE.pfx;note" >
<l-- Parameter entities -->
<l-- Meta-information content mix -->

<IENTITY % meta-infos.mix
"%LIRE.title;?, %LIRE.date;?, %LIRE.timespan;?,
%LIRE.hostname;?, %LIRE.description;?,
%LIRE.notes;?" >

report element

A report starts with the report’s meta-informations: title, timespan, hostname and description.
The report’s actual data is contained in one or more subreports.
report s attributes

version

The version of the DTD to which this report complies. New report should use thealue.

superservice

If set contains the superservice used by all subreports.

<I[ELEMENT %LIRE.report; (%meta-infos.mix;, (%LIRE.section;)+) >
<IATTLIST %LIRE.report;
version %number.type; #REQUIRED
superservice Y%superservice.type; #IMPLIED
%LIRE.xmIns.attr; >

Meta-information elements

date element

Thedate element contains the date on which the report or subreport was generated.

57

Chapter 11. The Lire Report Markup Language

The content of this element should be the timestamp in a format suitable for display.

's attribute

time

The date in epoch time.

<I[ELEMENT %LIRE.date; (#PCDATA) >
<IATTLIST %LIRE.date;
time %number.type; #REQUIRED>

timespan element
Thetimespan element contains the starting and ending date which delimits the period of the report or subreport.

The content of this element should be formatted for display purpose. The starting and ending time of the
timespan can be read in epoch time in the attributes.

timespan ’s attributes

start

The start time of the timespan in epoch time.

end

The end time of the timespan in epoch time.

<IELEMENT %LIRE.timespan; (#PCDATA) >
<IATTLIST %LIRE.timespan;
start %number.type; #REQUIRED
end %number.type; #REQUIRED>

hostname element

Thehostname element contains the hostname for which the report or subreport was generated.

It doesn’t have any attributes.

<I[ELEMENT %LIRE.hostname; (#PCDATA) >

58

Chapter 11. The Lire Report Markup Language

Annotations Elements

Lire reports can be annoted through the useaé element that can be included imetes container.

notes element
Thenotes element can be used to add notes to a report. It contains one onmerelement.

It doesn’t have any attributes.

<IELEMENT %LIRE.notes; (%LIRE.note;)+ >

note element

Thenote element contains various annotation material. It contains one or more of the DocBook elements we
allow as block element.

note attribute

xref

This attribute can be used to attach the note to a particular data item of the report.

<IELEMENT %LIRE.note; (%docbook-block.mix;)+ >
<IATTLIST %LIRE.note;
xref IDREF #IMPLIED >

section element

Thesection element group common subreports together. The section’s description will usually contains
informations about the filters that were applied in this section.

It contains aitle , adescription if some global filters were applied and the section’s subreports.

This element doesn’t have any attribute.

<IELEMENT %LIRE.section; (%LIRE. title;, (%LIRE.description;)?,
(%LIRE.notes;)?, (%LIRE.subreport;|%LIRE.missing-subreport;)*) >

59

Chapter 11. The Lire Report Markup Language

subreport element

Thesubreport element contains data for a certain report.
It can contains meta-information elements, it they are different from the one of the report.

Example of subreports for the email superservice are :

« Message delay by relay in seconds.
« Per hour traffic summary.
« Top 10 messages delivery.

- etc.

The data is contains intable element.

If a chart was generated for the table’s data, its information iscontainediimega element.

subreport s attributes
id
A unique identifier that can be used to link to this element.

superservice

the name of the superservice from which the report’s data comes from : i.e. email, www, dns, etc.

type
This is the name of the report specification that was used to generated this subreport.

flags

A space delimited list of flags. The only currently defined flags is 'merged’ to signal that the this subreport
comes from merged data.

<I[ELEMENT %LIRE.subreport; (%ometa-infos.mix;, %LIRE.table;,
(%LIRE.image;)?)>
<IATTLIST %LIRE.subreport;

id ID #IMPLIED
superservice %superservice.type; #REQUIRED
type CDATA #REQUIRED
flags NMTOKENS #IMPLIED >
missing-subreport element
missing-subreport 's attributes

id

A unique identifier that can be used to link to this element.

60

Chapter 11. The Lire Report Markup Language

superservice

the name of the superservice from which the report’s data comes from : i.e. email, www, dns, etc.

type
This is the name of the report specification that was used to generated this subreport.

reason

The reason why this subreport is missing.

<IELEMENT %LIRE.missing-subreport; (EMPTY) >
<IATTLIST %LIRE.missing-subreport;
id ID #IMPLIED
superservice %superservice.type; #REQUIRED
reason CDATA #IMPLIED
type CDATA #REQUIRED >

table element

Thetable element contains the data of the subreport. It startsthgle-info element which contains
information on the columns defined in the subreport. Following the table structure, thep@igaummary
element which contains values computed over all the records.

Atable element can contains the subreport data directly or the data can be subdivided into groups.

An example of a subreport which would contains directly the data would be "messages per to-domain, top-10".
This would contains ten entries, one for each to-domain.

An example of a subreport which would contains data in group would be "deliveries to users, per to-domain, top
30, top 5 users". It would contain 30 groups (one per to-domain) and each group would contain 5 entries (one per
user).

Group can be nested to arbitrary depth (but logic don’t recommend to nest too much).

table 's attributes

charttype

being the type of chart which can be generated from the data is this table.

show

the number of entry to display. By default all entries should be displayed.

<IELEMENT %LIRE.table; (%LIRE.table-info;, %LIRE.group-summary;,
(%LIRE.entry;)*) >
<IATTLIST %LIRE.table;
charttype (%chart.type;) #IMPLIED
show %int.type; #IMPLIED >

61

Chapter 11. The Lire Report Markup Language

table-info element

Thetable-info element contains information on the table structure. It containgdoen-info element for
each columns defined. It will also contains @meup-info element for every grouping operation used in the
report specification.

This element doesn’t have any attribute.

<IELEMENT %LIRE.table-info; (%LIRE.column-info;|%LIRE.group-info;)+ >

group-info element

Thegroup-info element play a similar role to theble-info element. Its used to group the columns defined
by particular subgroup.

group-info s attribute

name

This attribute holds the name of the operation in the report specification which was responsible for the
creation of this group data.

row-idx

Specify the row index of the table header in which this group’s categorical labels should be displayed.

<IELEMENT %LIRE.group-info; (%LIRE.column-info;|%LIRE.group-info;)+ >
<IATTLIST %LIRE.group-info;

name NMTOKEN #REQUIRED

row-idx %int.type; #REQUIRED >

column-info element

Thecolumn-info element describes a column of the table. It holds information related to display purpose
(label, class, col-start, col-end, col-width) as well as information needed to use the content of the column as
input to other computation (type, name).

The col-start, col-end and col-width can be used to render the data in grid.

column-info s attributes

name

This attribute contains the name of the operation in the report specification which was used to generata data
in this column.

type
The Lire data type of this column.

62

Chapter 11. The Lire Report Markup Language

class
This attribute can either beategorical ornumerical . Categorical data is held imame element and
numerical data is held imalue element. Also, numerical column will hagelumn-summary element
associated to them.

label

This optional attribute contains the column’s label. If omitted, the name attribute’s content will be used.

col-start

The column number in which this column start. The first column being column 0.

col-end
The column number in which this column ends. The first column being column 0. Spans are used to cover
“padding columns” to indent grouped entries under their parent entry.

col-width

The suggested column width (in characters) to use for this column.

max-chars

The maximum entry’s length in that column (this includes the label).

avg-chars
The average entry’s length in that column (this includes the label). This value is rounded up to the nearest
integer.

<IELEMENT %LIRE.column-info; EMPTY >

<IATTLIST %LIRE.column-info;
name NMTOKEN #REQUIRED

class (categorical|numerical) #REQUIRED

type (%lire.types;) #REQUIRED
label CDATA #IMPLIED
col-start %int.type; #REQUIRED
col-end %int.type; #REQUIRED
col-width %int.type; #IMPLIED
max-chars %int.type; #IMPLIED
avg-chars %int.type; #IMPLIED >

group-summary element

Thegroup-summary contains onealue element for all the columns that contains numerical data. These
elements will contains the statistics computed over all the DLF records which were processed by the group or the
subreport.

group-summary s attribute

nrecords

The number of DLF records that were processed by this group or subreport.

63

Chapter 11. The Lire Report Markup Language

missing-cases

This attribute contains the numberldRE_NOTAVAIL values found when computing the statistic. This
number represents the number of records which didn’t have the required information to group the records
appropriately. If ommited or equals to 0O, it means that all records had all the required information.

row-idx

Specify the row index in the table at which the group’s sumnvalye should be displayed. If this is
attribute is omitted, the summary values won't be displayed.

<IELEMENT %LIRE.group-summary; (%LIRE.value;)* >
<IATTLIST %LIRE.group-summary;
nrecords %int.type; #REQUIRED
missing-cases %int.type; #IMPLIED
row-idx %int.type; #IMPLIED >

group element

Thegroup element can be used to subdivide logically a report. It's used for aggregate reports like message per
user per domain.

It contains agroup-summary element which contains the group’s values for the whole group followed by the
entries that makes the group.

Groups can be nested more than once, but too much nesting augments information clutter and isn’'t useful for the
user.

group 's attributes

id

A unique identifier that can be used to link to this element.
show

the number of entry to display. By default all entries should be displayed.
<IELEMENT %LIRE.group; (%LIRE.group-summary;, (%LIRE.entry;)*)>
<IATTLIST %LIRE.group;

id ID #IMPLIED
show %int.type; #IMPLIED >

entry element

Theentry contains the data from the report. It is similar to a row in a table altough one entry may represents
several rows when it includes nested groups.

Thename elements contain categorical items of data like user name, email, browser type, url. Note that numeric
ranges (like time period for example) are also considered categorical data items.

64

Chapter 11. The Lire Report Markup Language

Thevalue elements contain numericical data which are the result of a descriptive statistical operation: message
count, bytes transferred, average delay, etc.

entry ’s attribute
id

A unique identifier that can be used to link to this element.
row-idx

Specify the row index in the table at which this entmylsne andvalue elements should be rendered. If
this is attribute is omitted, the entry won't be displayed.

<l--
>
<IELEMENT %LIRE.entry; (%LIRE.name;,
(%LIRE.name;|%LIRE.value;|%LIRE.group;)+)>
<IATTLIST %LIRE.entry;
id ID #IMPLIED
row-idx %int.type; #IMPLIED >

name element

Thename elements contains categorical data column value. Its also used for numerical values that represents a
class of values (like produced by thengegroup or timegroup operations for example.)

name’s attributes

id
A unique identifier that can be used to link to this element.
col
The column’s name. It should be the same than the one in the correspentimg-info element.
value
When the displayed format is different from the DLF representation, this attribute contains the DLF
representation.
range
In some cases (like in report generated bytiinegroup , timeslot or rangegroup specification), this
attribute will contains the range’s length from the starting value which is in the 'value’ attribute.
<IELEMENT %LIRE.name; (#PCDATA) >
<IATTLIST %LIRE.name;
id ID #IMPLIED
col NMTOKEN #REQUIRED
value CDATA #IMPLIED

65

Chapter 11. The Lire Report Markup Language

range %number.type; #IMPLIED >

value element

The value element contains numerical column value..

value 's attributes

id

A unique identifier that can be used to link to this element.
col

The column’s name. It should be the same than the one in the correspentimg-info element.
value

contains the value in numeric format. This is used when the value was scaled (1k, 5M, etc.)
total

for average value, this contains the total used to compute the average.
n

for average value, this contains the n value that was used to compute the average.

missing-cases

This attribute contains the numberldRE_NOTAVAIL values found when computing the statistic. When
omitted, its assume to have a value of 0, i.e. that the value was defined in each DLF record.

<IELEMENT %LIRE.value; (#PCDATA) >
<IATTLIST %LIRE.value;
id ID #IMPLIED
col NMTOKEN #REQUIRED
missing-cases %int.type; #IMPLIED
value %number.type; #IMPLIED
total %number.type; #IMPLIED
n %number.type; #IMPLIED >

Charts-related elements

image element
Theimage element contains information about a chart which was generated from the table data of the subreport.
It can contains &itle which should be displayed for the chart.

Thename of the generated file is contained in the file element.

66

Chapter 11. The Lire Report Markup Language

Theimage element doesn’t have any attributes.

<IELEMENT %LIRE.image; (WLIRE. title;)?, %LIRE file;) >

file element
Thefile element contains the name of the file which contains the chart's image.
file ’s attribute

format

Contains the file type.

<IELEMENT %LIRE file; (#PCDATA) >
<IATTLIST %LIRE file;
format CDATA #REQUIRED >

67

Chapter 12. Schemas Reference

This chapter documents the available schemas in the standard Lire suite. For each superservice, the base schema
is explained, followed by any extended and derived schemas.

Schemas for the database Superservice

DLF Schema for Database service

Schema ID: database
Timestamp Field: time

A record in the database DLF schema represents one event in the database. This may be a connection from a
client, a SQL query, etc.

Fields in the Schema

time

Type: timestamp
Defaults: 0

The time at which the event occured.

user

Type: string
Defaults: -

The name of the user who executed the command.

remote_host

Type: hostname
Defaults: -

The host from which the user executed the command.

68

Chapter 12. Schemas Reference

action

Type: string
Defaults: -

The command that was executed. Commands you are likely to encountenaeet , disconnect
shutdown andquery .

database

Type: string
Defaults: -

The database name on which the command was executed.

query

Type: string
Defaults: -

When thecommandfield is aquery , this field contains the actual SQL query that was executed.

Success

Type: bool
Defaults: -

Did the command succeeded?

result

Type: string
Defaults: -

When thesuccess field isfalse , i.e. when the command failed, this field should contains the logged
error message.

69

Chapter 12. Schemas Reference
connection_id

Type: int
Defaults: 0

An "appropriate" "connection label" for the backend that can be used for session analysis in conjunction
with thetimestamp , username anddatabase fields. This can be a connection identifier, a PID, a real
session ID or whatever makes sense in the particular backend.

Extended Schemas for the database Superservice

Query Type Extended Schema for Database Superservice
Schema ID: database-querytype
Base Schema: database

Module: Lire::Extensions::Database::DatabaseSchema
Required Fields: query

An extended schema for the database superservice which extracts the query type from the query that was made.
Fields in the Schema

querytype

Type: string
Defaults: -

The type of SQL query that was made. This will be usually be somethin@Ek&ECT, INSERT, UPDATE
DELETEoOr other administrative commands. In the case of nested queries, this will be the type of the
outer-most query.

Schemas for the dialup Superservice

DLF Schema for Dialup service

Schema ID: dialup
Timestamp Field: time

The dialup DLF schema represents each connection attempt with one DLF record.

70

Chapter 12. Schemas Reference

Fields in the Schema

time

Type: timestamp
Defaults: 0

The time at which the dial up connection started.

local_number

Type: string
Defaults: -

Telephone number of the local telephone.

telephone_number

Type: string
Defaults: -

Telephone number which is being called.

connection_time

Type: duration
Defaults: 0

The duration of the dial up connection.

direction

Type: string
Defaults: -

Direction of the connectiorninbound connections are those in which is machine on which the log is
recorded is called, while iautbound connections the machine makes the call.

71

Chapter 12. Schemas Reference

connection_type

Type: string
Defaults: -

The type of the connectiospeech ordata .

connect_status

Type: string
Defaults: -

The status of the connectiobusy , ring , failed or connected . A failed connection happens when the
dialed telephone number does not exist (is unallocated).

hangup_status

Type: string
Defaults: -

The status of the connectiomo_answer , unallocated ~ or normal . An unallocated telephone number is
a number that does not exist.

cost

Type: number
Defaults: 0

The total cost of the dial up connection.

cost_currency

Type: string
Defaults: -

The currency in which the cost is expressed.

72

Chapter 12. Schemas Reference

Schemas for the dns Superservice

DLF Schema for DNS service

Schema ID: dns
Timestamp Field: time

Each records in the DNS DLF schema represents a query that was made to the DNS server, zone transfers or
other types of administrative information isn't represented in the schema.

Fields in the Schema

time

Type: timestamp
Defaults: 0

The time at which the query was processed by the server.

requesting_host

Type: hostname
Defaults: -

The host that made the request.

request

Type: hostname
Defaults: -

The content of the DNS request. DNS queries are usually about an hostname.

type

Type: string
Defaults: -

The record type that was requested. Common DNS record types are PTR, A, CNAME, etc.

73

Chapter 12. Schemas Reference

resolver

Type: string
Defaults: -

This field containsecurs if the requests was recursive, that is probably made by a client for which we are
configured as primary DNS server. Otherwise this field contaonscurs to denotes that the request

wasn'’t recursive. Non-recursive requests are usually made by a DNS server which is processing a recursive
request from one client.

Schemas for the dnszone Superservice

DLF Schema for DNS Zone service

Schema ID: dnszone
Timestamp Field: time

This DLF file is adequate to represent most common information about dnszone operations: approved/denied
AXFR requests, completed zone transfers, loaded master and slave zones and denied dynamic DNS updates. See
also the bind8_named2dIf manpage for some more info on the dnszone DLF format.

Fields in the Schema

server

Type: hostname
Defaults: -

Name of the DNS server.
time

Type: timestamp
Defaults: 0

The time of the event.

74

axfr_host

Type: ip
Defaults: -

IP address of the host requesting the AXFR.

axfr_zone

Type: hostname
Defaults: -

Name of the zone being requested. E.g. foo.example.com.

axfr_what

Type: string
Defaults: -

Either approved, denied or axfr.

loaded_zone

Type: hostname
Defaults: -

Name of the zone just loaded. E.g. foo.example.com.

loaded_serial

Type: number
Defaults: 0

Chapter 12. Schemas Reference

Serial of the zone just loaded, as in the DNS SOA record. E.g. 2002071301 or 1024654055.

75

Chapter 12. Schemas Reference

loaded_role

Type: string
Defaults: -

Either master or slave.

updatedenied_host

Type: ip
Defaults: -

IP address of the host requesting the update.

updatedenied_zone

Type: hostname
Defaults: -

Name of the zone being updated.

Schemas for the email Superservice

DLF Schema for Email service

Schema ID: email
Timestamp Field: time

The email DLF schema represents delivery done by an mail transfer agent betwesrecempient. Each DLF

record contains the information related to the process of delivering between one sender and one recipient. Each
exchange between one sender and one recipient will resudtseimnd only on®LF record. If one sender is

sending to multiple recipients, the DLF file should contains one record for each recipient.

Warning

This DLF schema is different from the other ones because it contains pre-analysed data. It is currently
in redesign and will become something that will more closely resemble what you can usually find in an
email log file. Different information for each phase of the mail delivery process.

That schema will probably become a derived schema from the new base schema.

76

Chapter 12. Schemas Reference
Fields in the Schema

time

Type: timestamp
Defaults: 0

The time of the first event regarding that delivery. That should be the time the email enter the delivery
process.

logrelay

Type: hosthame
Defaults: -

The hostname on which the MTA is running.

Warning

That original intent of that field was to analyse email servers’ farm which used syslog to
centralize their logs. This method of analysis for multiple servers was never actually used
and is considerd obsolete.

gueueid

Type: string
Defaults: -

The queue identifier. This should be the identifier that can be used to reconstitute the delivery process from
the native log file regarding the delivery that this DLF record represents.

msgid

Type: string
Defaults: -

The content of the Message-ID header of the delivered message.

77

Chapter 12. Schemas Reference

from_user

Type: string
Defaults: -

The local part of the sender’s email address.

from_domain

Type: hostname
Defaults: -

The hostname of the sender’s email address.

from_relay_host

Type: hostname
Defaults: -

The hostname from which the email was received. For email submitted vsztttkmailinterface or other
similar mechanism, this should balhost

from_relay_ip

Type: ip
Defaults: Sending Relay IP

The ip address from which the email was received. For email submitted vietttnailinterface or other
similar mechanism, this should he7.0.0.1

size

Type: bytes
Defaults: -

The size of the message.

78

Chapter 12. Schemas Reference

delay

Type: duration
Defaults: 0

The time that it took to deliver the message. This should be equivalent to the time of the delivery event
minus the value of théme field.

xdelay

Type: duration
Defaults: 0

Warning

This field was never actually used and is obsolete.

to_user

Type: string
Defaults: -

The local part of the recipient’s email address.

to_domain

Type: hostname
Defaults: -

The hostname of the recipient’s email address.

to_relay host

Type: hostname
Defaults: -

The hostname to which the email was delivered. If the recipient is a local user and this was the "final"
delivery, this should b&calhost

79

Chapter 12. Schemas Reference

to_relay_ip

Type: ip
Defaults: -

The ip address to which the email was delivered. If the recipient is a local user and this was the "final"
delivery, this should b&27.0.0.1

stat

Type: string
Defaults: -

The status code of the delivery. Only standardized codeemte which is used when the delivery
succeeded without error anddferred for when the email still wasn'’t delivered at the end of the log file.
Other values are specific to each service.

xstat

Type: string
Defaults: Status

The complete native status message related to the email’s delivery.

Extended Schemas for the email Superservice

Email Extended Schema for Email service

Schema ID: email-email

Base Schema: email

Module: Lire::Extensions::Email::EmailSchema

Required Fields: from_userfrom_domainto_userto_domain

This is an extended schema for the Email service which adds fields containing the complete email.

80

Chapter 12. Schemas Reference

Fields in the Schema

from_email

Type: email
Defaults: -

The sender’s email address. That value isftben_user joined to thefrom_domain by an@

to_email

Type: email
Defaults: -

The recipient’s email address. That value istiheuser joined to theto_domain by an@

Schemas for the firewall Superservice

DLF Schema for Firewall service
Schema ID: firewall

Timestamp Field: time

The firewall schema can be used for three types of logs: packet filtering firewall, intrusion detection system
events and packet accounting devices.

Fields in the Schema

time

Type: timestamp
Defaults: 0

The time of the event.

action

Type: string
Defaults: -

81

Chapter 12. Schemas Reference

What action was associated with that packet. Eitleied or permitted

protocol

Type: string
Defaults: -

The procotol of the packet. Common protocols are TCP, UDP or ICMP. This should be the IP protocol not
higer-level application protocol.

from_ip

Type: ip
Defaults: -

The source ip address on the packet.

from_port

Type: port
Defaults: -

The source port (in the case of the TCP or UDP) protocol. This should be the ICMP type when the protocol
is ICMP.

from_host

Type: hostname
Defaults: -

The hostname associated with the source IP.

rcv_intf

Type: string
Defaults: -

82

Chapter 12. Schemas Reference

The receiving interface. That should be the network interface on which the packet was received. That field
should contains the logical name or type of the interface.

rcv_hwaddr

Type: string
Defaults: -

The hardware address of the receiving interface. That’s the MAC address in the case of an ethernet device.

to_ip

Type: ip
Defaults: -

The destination ip address on the packet.

to_port

Type: port
Defaults: -

The destination port (in the case of the TCP or UDP) protocol. This should be the ICMP code when the
protocol is ICMP.

to_host

Type: hosthame
Defaults: -

The hostname associated with the destination IP.

snt_intf

Type: string
Defaults: Send Intf

83

Chapter 12. Schemas Reference

The sending interface. That should be the network interface on which the packet was sent (i.e. the outgoing
interface).

length

Type: bytes
Defaults: -

The packet length (that is the header and payload length). This should be the total length of the stream when
the event represent multiple packets, for example, in the case of packet accounting done on streams.

rule

Type: string
Defaults: -

The rule that triggered that packet to be logged, denied, permitted, etc.

msg

Type: string
Defaults: -

A message associated with that packet. This could be an attack signature detected by a Network Intrusion
Detection System or anything of similar nature.

count

Type: int
Defaults: 1

The number of packets described by this event. This will be 1 in the case of a single packet. It can be higher
in the case where multiple packets are compressed into one event. Remember that the length values should
reflect the length of all those packets.

84

Chapter 12. Schemas Reference

Schemas for the ftp Superservice

DLF Schema for FTP service

Schema ID: ftp
Timestamp Field: time

This DLF file is adequate to represent most common informations about ftp transfers. It has the equivalent
information of the xferlog format supported by many ftp servers.

Each DLF record in the FTP schema reprensents one FTP transfer, this schema isn’t adequate to represents
complete FTP session.

Fields in the Schema

time

Type: timestamp
Defaults: 0

The time at which the transfer started.

transfer_time

Type: duration
Defaults: 0

The time taken by the transfer.

remote_host

Type: hostname
Defaults: -

The hostname of the client that initiated the transfer.

file_size

Type: bytes
Defaults: -

The number bytes transferred.

85

Chapter 12. Schemas Reference

filename

Type: filename
Defaults: -

The filename that was transferred.

transfer_type

Type: string
Defaults: -

The method used for the transfer. This vedcii when ASCII conversion is used during the transfer and
binary otherwise.

special_action_flag

Type: string
Defaults: -

A code used to represent special action accomplished by the server during the transfer. Valid codes besides
the default areompress , uncompress andtar .

direction

Type: string
Defaults: -

This should baipload for incoming transfer andowload for outgoing transfer.

access_mode

Type: string
Defaults: -

The type of authentication used. Valid values amenymous when the use used anonymous logjaest
for guest login ancwuthenticated for when the user was authenticated through valid credentials.

86

Chapter 12. Schemas Reference

username

Type: string
Defaults: -

The name of the authenticated user. In the case of guest or anonymous logins, this should be the email
address or other identifier given by the user on logon.

service_name

Type: string
Defaults: -

That's the name through which the service was invoked. This will usually be FTP.

auth_method

Type: string
Defaults: -

Additional authentication that was done on the connection. The only defined value besides the default is
ident for the case when the connection was authenticated through RFC1931 authentication.

auth_user_id

Type: string
Defaults: -

The user identification related to theth_method mode of authentication.

completion_status

Type: string
Defaults: -

This will be complete when the transfer completed successfully medmplete when the transfer was
aborted before it completes.

87

Chapter 12. Schemas Reference

Schemas for the msgstore Superservice

DLF Schema for Message Store service

Schema ID: msgstore
Timestamp Field: time

Each DLF records in the msgstore schema represents one command on the server. Not all fields will be
meaningful for every type of action.

Fields in the Schema

time

Type: timestamp
Defaults: 0

The timestamp of the event.

localserver

Type: hostname
Defaults: -

The hostname on which the message store is running. In the case of message store proxies, this will be the
target server.

client_name

Type: hostname
Defaults: -

The host name of the client related to the event.

client_ip

Type: ip

88

Chapter 12. Schemas Reference

Defaults: -

The ip address of the client related to the event.

user

Type: string
Defaults: -

The user name of the authenticated user associated with the connection.

protocol

Type: string
Defaults: -

The protocol used to access the message store. This will be usually poye of imap .

prot_cmd

Type: string
Defaults: -

The command executed by the client. Defined commandsgire , badlogin , select

session

Type: string
Defaults: -

, Create , etc.

A session identifier used to relate the different records to one sesssion. Session identifier can be reused.

messages_downloaded

Type: int
Defaults: 0

89

Number of messages downloaded.

bytes _downloaded

Type: bytes
Defaults: -

Number of bytes downloaded messages.

stored_messages

Type: int
Defaults: 0

Number of messages stored on the server.

stored_size

Type: bytes
Defaults: -

Size of the messages stored on the server.

session_duration

Type: duration
Defaults: 0

The length of the session.

Chapter 12. Schemas Reference

Note: FIXME: When this field should be defined. On all events or only on the quit event?

90

Chapter 12. Schemas Reference

status

Type: string
Defaults: -

The status of the event. This includes the error messages or other success information (like an MMP
redirection).

Schemas for the print Superservice

DLF Schema for Print service

Schema ID: print
Timestamp Field: time

Each record in a the print schema contains the information about one print job.

Fields in the Schema

time

Type: timestamp
Defaults: 0

The time at which the print job started printing.

duration

Type: duration
Defaults: 0

The time the print job took to print.

client_host

Type: hosthame
Defaults: -

91

Chapter 12. Schemas Reference

The client hostname (or ip address) that requested the print job.

user

Type: string
Defaults: -

The name of the user who requested the print job.

job-id

Type: string
Defaults: -

The identifier assigned to the job by the printing system. No uniqueness constraint are placed on this field.
For example, it is possible for a printing system to reset the job identifiers after each restart of the system.

printer

Type: string
Defaults: -

The printer's name on which the job was printed.

num_copies

Type: int
Defaults: 1

The number of copies of the job that were printed.

num_pages

Type: int
Defaults: 0

The number of pages contained in the requested primigolzounting the copigs.e. the number of pages
in one copies of the print job.

92

Chapter 12. Schemas Reference

size

Type: bytes
Defaults: -

The size of requested print job.
billing

Type: string
Defaults: -

An identifier used to relate the job to an billing account.

Extended Schemas for the print Superservice

Sheet Count Extended Schema for Print service

Schema ID: print-sheets

Base Schema: print

Module: Lire::Extensions::Print::PrintSchema
Required Fields: nhum_pages

This is an extended schema for the Print service which adds a field that gives the number of physical sheets
printed for a job.

Fields in the Schema

num_sheets

Type: int
Defaults: 1

The total number of pages printed in the print job. That isrthe_copies timesnum_pages.

93

Chapter 12. Schemas Reference

Schemas for the proxy Superservice

DLF Schema for Proxy superservice

Schema ID: proxy
Timestamp Field: time

This DLF file is adequate to represent most common informations about web proxy events. It has the same
information as found in most proxy-like servers log files.

This schema is adequate for proxy servers beyond web proxys servers. It can be used for socks and other types of
connection-level proxies.

The DLF schema was designed by studying the WebTrends Enhanced Log Format, squid log files and thinking
about SOCKS type of server.

Fields in the Schema

time

Type: timestamp
Defaults: 0

The time at which the request was initiated.

client_ip

Type: ip
Defaults: -

The IP address of the client.

client_host

Type: hostname
Defaults: -

The hostname of the client.

user

Type: string
Defaults: -

94

Chapter 12. Schemas Reference

If the client was authenticated, this field should contains the authenticated username.

duration

Type: duration
Defaults: 0

The time taken by the connection.

cache_result

Type: string
Defaults: -

Result code for the cache TCP_MISS, TCP_HIT, etc. List is available on Squid page, and in
squid_access2dIf(1). All DLF converter should map their native value to the squid’s one which is very
complete and exhaustive.

req_result

Type: int
Defaults: 0

HTTP result of the request. e.g. 200 or 404.

protocol

Type: string
Defaults: -

The protocol of the proxied request: ftp, http, https, telnet, etc.

transport

Type: string
Defaults: -

95

Chapter 12. Schemas Reference

The protocol used between the client and the proxy server. This is probably TCP, but can be UDP in some
case (like SOCKS or ICP).

dst_ip

Type: ip
Defaults: -

The ip address of the destination.

dst_host

Type: hostname
Defaults: -

The hostname of the destination. In the case of web proxy, that will be the website

dst_port

Type: port
Defaults: -

Port of the destination used in IP session

operation

Type: string
Defaults: -

This field should only be defined in the case of web proxy requests. This should contains the HTTP method
requested lik&SETor POST.

requested_url

Type: url
Defaults: -

96

Chapter 12. Schemas Reference

This field should only be defined in the case of web proxy request. It should contains the URL requested on
the remote server.

bytes

Type: bytes
Defaults: -

The number of bytes transferred from proxy server to the client

type

Type: string
Defaults: -

This field should only be defined for web proxy servers, it should contains the MIME type of the HTTP
request’s result (e.g. text/html or image/jpeg).

rule

Type: string
Defaults: -

This field contains the configuration rule’s name that was used to accept or deny to request.

useragent

Type: string
Defaults: -

The useragent used by the client. E.g. 'Mozilla/4.0 (compatible; MSIE 5.0; Win32)' or 'Outlook
Express/5.0 (MSIE 5.0; Windows 98; DigEXxt)’

result_src_code

Type: string
Defaults: -

97

Chapter 12. Schemas Reference

Code qualifying the next two fields. (i.e. NONE, DIRECT, PARENT_HIT, etc.) All DLF converter should
map their native value to the squid’s one which is very complete and exhaustive.

result_src_ip

Type: ip
Defaults: -

The IP address of the server which handled the request, i.e. destination or other cache

result_src_host

Type: hostname
Defaults: -

The hostname of the server that handled the request and gave the result.

result_src_port

Type: port
Defaults: -

Port on referring host used in IP session.

cat_action

Type: string
Defaults: -

This field contains either the valiock or pass . It is used when access control is based on content
filtering.

cat_site

Type: string
Defaults: -

98

Chapter 12. Schemas Reference

If the proxy server is doing content analysis, this field should contains the category for the requested
website.

catlevel_site

Type: int
Defaults: 0

Level can be 1 or 2. 1 meaning "no no" categories. 2 meaning "family fun" categories. This was taken from
the WELF specification.

cat_page

Type: string
Defaults: -

Like cat_site , but for the actual page.

catlevel _page

Type: int
Defaults: 0

Like catlevel_site , but for the actual page.

Schemas for the syslog Superservice

DLF Schema for Syslog superservice

Schema ID: syslog
Timestamp Field: timestamp

This is a DLF schema that can be used to represent most messages logged through syslog-like daemon.

99

Chapter 12. Schemas Reference
Fields in the Schema

timestamp

Type: timestamp
Defaults: 0

The timestamp of the logged event.

hostname

Type: hostname
Defaults: localhost

The hostname or ip address from which the message was received.

process

Type: string
Defaults: -

The "process" that logged the event.

pid

Type: int
Defaults: 0

The PID of the originating process that was included in the message.

facility

Type: string
Defaults: -

The syslog facility kern , mail , local7 , etc.) to which the message was logged. This information isn'’t
present in all syslog file formats.

100

Chapter 12. Schemas Reference

level

Type: string
Defaults: -

The syslog leveldmerg, notice , debug, etc.) to which the message was logged. This information isn’t
present in all syslog file formats.

message

Type: string
Defaults: -

The logged event message (after pnecess andpid parts are removed).

Schemas for the www Superservice

DLF Schema for WWW service

Schema ID: www
Timestamp Field: time

In this DLF schema, each record represents a request to the web server. It has the equivalent information than the
common log format supported by most web servers.

Fields in the Schema

client_host

Type: hostname
Defaults: -

The hostname (or ip address) of the clients that made the request.

who

Type: string
Defaults: -

101

Chapter 12. Schemas Reference

If the request was authenticated, this field should contains the name of the authenticated user. Not that there
is no indication of which authentication method was used (RFC1531, WWW authentication, etc.).

http_result

Type: string
Defaults: -

The numeric result code of the request. That2d8, 301, etc.

requested_page_size

Type: bytes
Defaults: -

The number of bytes sent to the client during the request.

http_action

Type: string
Defaults: -

The method used by the client for the request. That is usually o6& 9HEAD POST, etc.

requested_page

Type: url
Defaults: -

The URL that was requested by the client.

http_protocol

Type: string
Defaults: -

The protocol used by the client. It should usually be one©fP/1.0 or HTTP/1.1 .

102

Chapter 12. Schemas Reference

time

Type: timestamp
Defaults: 0

The time of the request.

referer

Type: string
Defaults: -

The content of th&eferer header that was sent along the request. That usually represents the referring
URL, that’s the URL which the user was browsing when this URL was requested.

useragent

Type: string
Defaults: -

The content of th&Jser-Agent header that was sent along the request. That usually contains information
the web browser used by the client.

gzip_result

Type: string
Defaults: -

When automatic compression is used, this should contains the result code from the compression submodule.

compression

Type: int
Defaults: 0

When automatic compression of the results is used, this field should contains the compression ratio
achieved.

103

Chapter 12. Schemas Reference

Extended Schemas for the www Superservice

Attack Extended Schema for WWW service

Schema ID: www-attack

Base Schema: www

Module: Lire::Extensions::WWW::AttackSchema
Required Fields: requested_page

This is an extended schema for the WWW service which tries to find common web attack based on the requested
URL.

Fields in the Schema

attack

Type: string
Defaults: Unknown/No Attack

The type of attack that this request represents.

Domain Extended Schema for WWW service

Schema ID: www-domain

Base Schema: www

Module: Lire::Extensions::WWW::DomainSchema
Required Fields: client_host

This is an extended schema for the WWW service which adds a country and client_domain fields based on the
client host.

Fields in the Schema

client_domain

Type: hostname
Defaults: -

The domain of the client host.

country

Type: string
Defaults: Unknown

104

Chapter 12. Schemas Reference

The country of the client host as determined by the top-level domain.

Robot Extended Schema for WWW service

Schema ID: www-robot

Base Schema: www

Module: Lire::Extensions::WWW::RobotSchema
Required Fields: None

This is an extended schema for the WWW service which adds a robot field based on information from the
domain name or theser_agent string.

Fields in the Schema

robot

Type: string
Defaults: Unknown/No Robot

The name of the robot that made the request.

Search Engine Extended Schema for WWW service

Schema ID: www-search

Base Schema: www

Module: Lire::Extensions::WWW::SearchSchema
Required Fields: referer

This is an extended schema for the WWW service which analyze the referrals. It extract the referring sites and it
also determines if it was a request from a search engine.

Fields in the Schema

referring_site

Type: string
Defaults: -

The site which reffered that request. This is usually an hostname, but it can dlsokoearks for when
the user used a bookmark.

105

Chapter 12. Schemas Reference

search_engine

Type: string
Defaults: -

The name of the search engine, when the request was referred through a search engine.

keywords

Type: string
Defaults: -

The search phrase used when the request was referred through a search engine.

URL Extended Schema for WWW service
Schema ID: www-url
Base Schema: www

Module: Lire::Extensions::WWW::URLSchema
Required Fields: requested_page

This is an extended schema for the WWW service which parses the requested URL and adds several fields based
on this information.

Fields in the Schema

requested_file

Type: filename
Defaults: -

The portion of the requested URL that represents a filename. That is everything that comes béfore the
which starts th&QUERY_STRING

requested_page_ext

Type: string
Defaults: -

The extension of the requested file.

106

Chapter 12. Schemas Reference

directory

Type: filename
Defaults: -

The directory portion of the URL.

User Agent Extended Schema for WWW service

Schema ID: www-user_agent

Base Schema: www

Module: Lire::Extensions::WWW::UserAgentSchema
Required Fields: useragent

This is an extended schema for the WWW service which adds fields to access information from the
user_agent field.

Fields in the Schema

browser

Type: string
Defaults: Unknown

The browser that was probably used to make the request as guessed fisarthegent field.

0s

Type: string
Defaults: Unknown

The client’s operating system as guessed fronuder_agent field.

lang

Type: string
Defaults: Unknown

The client’'s language as guessed from the locale’s information containedusé¢heagent field.

107

Chapter 12. Schemas Reference

Derived Schemas for the www Superservice

User Session Derived Schema for WWW service

Schema ID: www-user_session

Base Schema: www

Module: Lire::Extensions::WWW::UserSessionSchema
Required Fields:time, client_host

Timestamp Field: session_start

This is a derived schema for the WWW service which represents user session. User sessions tracks the traversal
of users through the web site. Users are tracked using their IP address and their user agent information. This is
not a full proof method. For one thing, it clearly fails in the case of users having an homogeneous environment
and browsing from behing a proxy server.

Possible enhancements would be to use tracking information from a cookie.

The session represent all the consequential requests made by a user. The session will end after 30 minutes where
no requests was made by the user.

Fields in the Schema

session_id

Type: string
Defaults: -

This field contains an arbitrary session identifier.

session_start

Type: timestamp
Defaults: 0

The time at which the session started.

session_end

Type: timestamp
Defaults: 0

The time of the last request in the session.

108

Chapter 12. Schemas Reference

session_length

Type: duration
Defaults: 0

The length elapsed between the first and last requests.

page_count

Type: int
Defaults: 0

The number of pages requested by the user in this session. (This excludes requests emdingjipy |,
Jjpeg ,.gif and.css .)

reg_count

Type: int
Defaults: 0

This gives the number of requests by the user

first_page

Type: filename
Defaults: -

The first page requested by the user. (See page_count for exlusion.)

page_2

Type: filename
Defaults: -

The 2nd page requested by the user.

109

Chapter 12. Schemas Reference

page_3

Type: filename
Defaults: -

The 3rd page requested by the user.

page_4

Type: filename
Defaults: -

The 4th page requested by the user.

page_5

Type: filename
Defaults: -

The 5th page requested by the user.

last_page

Type: filename
Defaults: -

The last page requested by the user.

completed

Type: bool
Defaults: -

Was this session completed? A completed session is one that we know for sure that if the user made another
request, it would have been in a new sesssion. Concretely, all requests made in the last 30 minutes of the
period covered by the log file will be part of uncompleted sessions.

110

Chapter 12. Schemas Reference

visit_number

Type: int
Defaults: 0

This starts at 1 for the first session of a user in the log file and will be incremented for each new session
started by that user in the same log file.

111

IV. Lire Developers’ Conventions

Chapter 13. Contributing Code to Lire

The LogReport team invites you to contribute code to Lire. We're very happy with any code contributions which
work for you: it'll very likely will make life easier for other people too! We ask you to consider some points,
when writing code to get distributed with Lire.

When adding new scripts, or extending and improving current Lire code, make sure you're working with the
current Lire code. (When working with old code, the bug you're working on might be fixed already by somebody
else.) You can get the current code by fetching our CVS from SourceForge, using the anonymously accessible
pserver:

cvs -d:pserver.anonymous@cvs.logreport.sourceforge.net:/cvsroot/logreport login

When prompted for a password for anonymous, simply press the Enter key.

cvs -z3 -d:pserver.anonymous@cvs.logreport.sourceforge.net:/cvsroot/logreport co service

See also the instructions on the SourceForge website (http://sourceforge.net/cvs/?group_id=5049). Alternatively,
you can peek at the Lire CVS (http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/logreport/) using your webbrowser.

When you'd like to change e.gusr/local/bin/Ir_log2report , you'll have to hack on
cvs/sourceforge/logreport/service/all/script/Ir_log2report.in . This file will get converted
toIr_log2report by running./configure . Of course, when adding scripts or extending scripts, be sure to

update the scripts’ manpage too.

If you'd like the LogReport team to distribute your contribution, be sure to offer it to the team under a suitable
software license. Refer to the Licensing section inltiie FAQ for details.

Once you've tested your script, you can send it too the LogReport development list on
development@logreport.org. The LogReport team will be happy to ship your contribution with the next Lire
release.

113

Chapter 14. Developers’ Toolbox

Required Tools To Build From CVS

In order to be able to build the program from the CVS tree and make a tarball distribution the following tools are
needed:

« DocBook XML 4.1.2 (http://www.0asis-open.org/docbook/)
« DocBook DSSSL stylesheets (http://docbook.sourceforge.net/projects/dsssl/)
+ autotools

« Jade (http://www.jclark.com/jade/) or OpenJade

« lynx (http://lynx.isc.org/)

« GNU make

+ Perl's XML::Parser module

. dia

 epsffit

« epstopdf

« Xsltproc

« xmllint

For Debian woody the packages are: docbook-utils (http://packages.debian.org/testing/text/docbook-utils.html),
docbook-xml-stylesheets, autoconf (http://packages.debian.org/testing/devel/autoconf.html), automakel.4
(http://packages.debian.org/testing/devel/automake.html), autotools-dev
(http://packages.debian.org/testing/devel/autotools-dev.html), jade
(http://packages.debian.org/testing/text/jade.html), lynx (http://packages.debian.org/testing/web/lynx.html),
make (http://packages.debian.org/testing/devel/make.html) and libxml-parser-perl.

You need automake version 1.4. Building using automake 1.7 will very likely not work.

Accessing Lire’'s CVS

Make sure you've got an account @ourceForgdhttp://www.sourceforge.net). Get yourself added to the
logreport project. (Joost van Baal joostvb@Iogreport.org can do this for you.) Make sure your ssh public key is
on the sourceforge server.

A full backup of the complete LogReport CVS as hosted on SourceForge is made weekly and written to
hibou:/data/backup/cvs/

CVS primer

If you have a Unix like system, make sure you have this

CVSROOT=:ext:cvs.logreport.sourceforge.net:/cvsroot/logreport

114

Chapter 14. Developers’ Toolbox

CVS_RSH=ssh

in your shell environment.

Of course, you could do something like

$ eval ‘ssh-agent’
$ ssh-add

to get a nice ssh-agent running.

Now do something like

$ cd ~/cvs-sourceforge/logreport
$ cvs co service

There are also repositories called 'docs’ and 'package’. In the former the webpages are located and in the latter
the package files for Debian GNU/Linux and other distributions are kept.

Files can then be edited and commited:

$ vi somefile
$ cvs commit somefile

and get flamed ;)

Subscribe yourself to the commit list (commit-request@logreport.org), to get all commit messages, along with
unified diffs.

SourceForge

Mailing Lists

115

Chapter 15. Coding Standards

Indentation should be four spaces. No tabs please.

See also Message-Id: <1028238571.1085.185.camel@Arendt.Contre.COM> on the development mailing list for
some rationale on coding standards.

Shell Coding Standards

Shell scripts should run -e. Shell script should be portable. Refer to
http://doc.mdcc.cx/doc/autobook/html/autobook _208.html
(http://doc.mdcc.cx/doc/autobook/html/autobook_208.html).

Perl Coding Standards

Perl scripts should use strict, and run -w. Documentation should come in .pod format, documentation about
script internals should be in perl comments.

No & in function call unless necessary.
Split long lines using hard return; try to respect the 72th column margin (this is kind of a soft limit).

Refer to the Lire::Program manpage for more details.

116

Chapter 16. Making Lire “Test-infected”

Soon after the release of Lire 1.2.1, unit tests were introduced in the source tree. Unit tests helps development in
several way the most important one being that you can make changes to code and run the unit tests to make sure
that nothing was broken by that changes.

You can find helpful resources on Unit testing on the PerlUnit home page (http://perlunit.sourceforge.net/) as
well as on the JUnit home page (http://perlunit.sourceforge.net/) from which it was inspired.

Unit Tests in Lire

PerlUnit

Unit tests are written using the PerlUnit framework. You'll to install version 0.24 or later of the Test::Unit to run
the unit tests.

Note: Unfortunately, PerlUnit needs version 5.6.0 or later of perl. So you can'’t run the unit tests on previous
version of perl, altough Lire should be able to run under 5.00503.

Writing Tests

General information on using the PerlUnit framework can be found in the Test::Unit man page. Information on
writing individual test cases can be found in the Test::Unit::TestCase man page.

Tests for individual modules should be defined in testedule Test package. You can omit the Lire:: prefix and

you can inline intermediary package names. For example, the unit tests of the Lire::ExtendedDIlfSchema module
are in the tests::ExtendedDIfSchemaTest package and the tests of the Lire::AsciiDIf:: Timegroup module are in
the tests::AsciiDIfTimegroupTest package.

The Lire::Tests namespace is reserved for extensions to the PerlUnit framework that will be used to provide
“fixtures” and “assertions” that are of general use for common Lire extensions.

Note: This section will be expanded as common patterns for writing unit test for DLF converters, analyzers
and other common Lire extension are developped.

Running Tests

To run tests, you use thestRunner.pl script included with the PerlUnit distribution. You'll need to add the
directory containing the Lire libraries to perl library path. For example, if you Aa@gRunner.plin your
~/bin directory, you can run a test case from the top level source directory like this:

$ perl -lall/lib ~/bin/TestRunner.pl tests::ExtendedDIfSchemaTest

117

Chapter 16. Making Lire “Test-infected”

tests::ExtendedDIfSchemaTest can be replaced by your TestCase module.

Some “Best Practices” on Unit Testing

This section lists some effectice tips on how to make effective use of Unit tests in common development
situations on Lire.

Changing interface/implementation.Before changing a module interface or implementation, make sure that
this module has test cases and that it passes its tests before changing the implementation. This way you can know
that you changes didn’t break anything.

Debugging.A good opportunity for writing tests is when bug are reported. Before trying to chase the bug using
the debugger or addingint statement, write a test case that will fail as long as th bug isn't fixed. This

achieves two purpose: first, you'll know when the bug is fixed as soon as the test pass; secondly, we now have a
test case that will warn us if we regress and the bug reappears.

118

Chapter 17. Commit Policy

Make sure your changes run on your own platform before committing. Try not to break things for other
platforms though. Currently, Lire supported platforms are GNU/Linux (Debian GNU/Linux, Red Hat Linux,
Mandrake Linux), FreeBSD, OpenBSD and Solaris.

Documentation should be updated ASAP, in case it's obsolete or incomplete by new commits.

CVS Branches

When doing major architectural changes to Lire, branches in CVS are created to make it possible to continue to
fix bugs and to add small enhancements to the stable version while development continues on the unstable
version. This applies mainly to the service repository. The doc and package repositories generally don’t need
branching.

BTW: A nice CVS tutorial is available in the Debian cvsbook package.

Hands-on example

A branching gets announced. Be sure to have all your pending changes commited before the branching occurs.
After a branch has been made, one can do this:

$ cd ~/cvs-sourceforge/logreport

$ mv service service-HEAD

$ cvs co -r lire-20010924 service
$ mv service service-lire-20010924

or (with the same result)

$ mv service service-HEAD
$ cvs co -r lire-20010924 -d service-lire-20010924 service

Now, when working on stuff which should be shipped in the coming release, one should work in
service-lire-20010924. When working on stuff which is rather fancy and experimental, and which needs a lot of
work to get stabilized, one should work in service-HEAD.

Naming, what it looks like

Here is what branches schematically look like:

release-20010629_1 ---> lire-unstable-20010703 ---> HEAD
\
\
lire-20010630 ---> lire-stable-20010701

119

Chapter 17. Commit Policy

In this diagram a branch namé-20010630 was created from theelease-20010629_1 tag.
lire-unstable-20010703 is another tag on thieunk (thetrunk is the main branchHEADisn't a real tag, it
always points to latest version on the trunk.

Creating a Branch

To create a branch, one runs the commewsl rtag -b -r release-tag branch-name module

Note that this command doesn’t need a checkout version of the repository. For example, to create the
release-20010629_1-bugfixes branch in the service repository, e.g. to backport bugfixes to version
20010629 _1, one would uses rtag -b -r release-20010629 1

release-20010629_1-bugfixes service . When ready for release, this could get tagged as
release-20010629 2

Therelease-tag should exist before creating the branch. In case you want to branch from HEAB, use
HEADE.g.cvs rtag -b -r HEAD release_1_1-branch service . Once Lire 1.1 gets released,
tag it asrelease_1_1

Accessing a Branch

To start working on a particular branch, youdes update -r branch-name . For example, to work on
therelease_1_1-branch branch, you do in your checked out versioas update -r

release_1 1-branch . This will update your copy to the versioalease_1_1-branch and will commit
all future changes on that branch.

Alternatively, you can also specify a branch when checking out a module egingo -r branch-name
module . For example, you could checkout the stable version of Lire by usisgco -r
release_1 1-branch service

To see if you are working on a particular branch, you can useubestatus file command. For example,
runningcvs status NEWS could show:

File: NEWS Status: Up-to-date

Working revision: 1.74

Repository revision: 1.74 /cvsroot/logreport/service/NEWS,v
Sticky Tag: lire-stable

Sticky Date: (none)

Sticky Options: (none)

The branch is indicated by tticky Tag: keyword. If its value ignone) you are working on thelEAD
branch.

To work on theHEAD you remove the sticky tag by using the commard update -A

Merging Branches on the Trunk

You can bring bug fixes and small enhancements that were made on a branch into the unstable version on the
trunk by doing a merge. You do a merge by using the comneasdupdate - branch-to-merge in

120

Chapter 17. Commit Policy

your working directory of the trunk. Conflicts are resolved in the usual CVS way. For example, to merge the
changes of the stable branch in the development branch, you woutdsisepdate -j lire-stable

You should tag the branch after each successful merge so that future changes can be easily merged. For example,
after merging, you do in a checked out copy of lirestable branch:cvs tag

lire-stable-merged-20010715 . In this way, one week later we can merge the week’s changes of the

stable branch into the unstable branch by daing update -j lire-stable-merged-20010715

-j lire-stable

121

Chapter 18. Testing

One week before release the software should be tested on all supported platforms. In between releases the
system gets tested on various platforms on an ad hoc basis. When testing, use the to-be-released tarball. Run
make dist to generate such a tarball. Releases are done about every month.

Especially when changes to the Lire core have been made, the "test" superservice can be handy, for easy setting
up of tests of your code.

122

Chapter 19. Making a Release

Before making an official Lire release, it should have been tested on all supported platforms. A release shouldn’t
be made unless Lire builds, installs and generates an ASCII report from all supported log files on all supported
platforms. If this is not the case, the release should be delayed untill this is fixed.

Making a new release of Lire involves many steps:

Writing the final version number in NEWS.
Tagging the CVS tree.

Building the "Standard" Lire tarball.

Building the "Full" Lire tarball.

Building the Debian GNU/Linux package.
Building the RPM package.

Making sure the FreeBSD package gets updated.

Uploading the tarballs and making packages available.

© © N o g M w0 N PRE

Advertising the release.

Setting version in NEWS file, checking ChangelLog

Inbetween releases, the NEWS file generally reads "version in cvs". This should of course be changed to e.g.
"version 20011205".

Since August 25, we maintain our ChangeLog file. Make sure the ChangeLog in the toplevel directory is not too
big. If needed, split off a chunk and move it to doc/. The ChangelLog is autogenerated from the CVS commits,
using thecvs2cltool. One could e.g. ruavs2cl --prune --stdout -l "-d \>yesterday" -U

../ICVSROOT/users

Tagging the CVS

Run e.gcvs tag release-20011017

Building The "Standard" Tarball

The "Standard" tarball is the one that contains only the code needed to build and install Lire. It doesn’t contain
required libraries like expat or XML::Parser. There is also a "Full" version of the tarball that includes those
libraries.

1. Startfrom a fresh copy by running the commandke maintainer-clean-recursive in the
directory where you checked out Lire’s source code.

a. Make sure that there are no tarballs in #xe@ras subdirectory.

2. Setthe version and prepare the source tree by running the comrbantstrap . (You can overwrite
the pre-cooked version by doing e.gecho ‘date +%Y%m%d'-R-f-jvb-1 > VERSION . Make

123

Chapter 19. Making a Release

sure your version hasn’t got too many characters. Non-GNU tar chokes if pathnames in the archive are too
long.)
3. Generate Makefiles

a. Run./configure

4. Build Lire and create the tarball by running the commamake distcheck

This will build a tarballlire- version .tar.,gz and then make sure that the content of this tarball can be
built and installed. If that command fails, Lire isn’t ready to be released. Fix the errors before making the
release.

5. Sign Lire’s tarball with your public key. To do this with GhuPG, rgpg --detach-sign --armor
lire- version .tar.gz

Afile lire- version .tar.gz.asc will be created. Publish this file together with the tarball. Now, people
downloading the tarball can verify its integrity by downloading the .asc as well as your public key, and
runninggpg --verify lire- version .tar.gz.asc

Building The "Full" Tarball

The "Full" tarball is the one that contains the required Perl and XML libraries along with Lire’s source code.
This tarball should be calldite-full- version .tar.gz

1. If you built the "Standard" tarball, you should move it someplace else along with its signature, because this
procedure will overwrite it.

2. Start from a fresh copy by running the commandke maintainer-clean-recursive in the
directory where you checked out Lire’s source code.

3. Add the tarballs of the required libraries in tbetras subdirectory. These tarballs can be downloaded
usingwget
a. wget
http://www.cpan.org/modules/by-module/XML/XML-Parser.2.30.tar.gz
b. wget http://prdownloads.sourceforge.net/expat/expat-1.95.2.tar.gz
4. Setthe version and prepare the source tree by running the comrbhantstrap
Build Lire.

a. Run./configure
b. Runmake
6. Create the tarball by running the commaneke followed by the commanchake distcheck

This will build a tarball and then make sure that the content of this tarball can be built and installed. If that
command fails, Lire isn't ready to be released. Fix the errors before making the release.

7. Rename the generated tarballite-full- version .tar.gz

8. Sign Lire’s tarball with your public key. To do this with GnuPG, rgpg --detach-sign --armor
lire-full- version .tar.gz
A file lire-full- version .tar.gz.asc will get created. Publish this file, together with the tarball. Now,
people downloading the tarball can verify its integrity by downloading the .asc along with it, as well as your
public key and runningpg --verify lire-full- version .tar.gz.asc

124

Chapter 19. Making a Release

Building The Debian Package
This is a raw unformatted dump of what we did to build and upload the Lire .deb.

$ cd ~/cvs-sourceforge/logreport/package/debian
$ vi changelog

r !date --rfc

$ cd /usr/local/src/debian/lire/debian/20010219

Run something like 'DIB_V=20020214 DIB_P-=lire DIB_TARDIR=../archive/ ./debian-install-build’. This does:

$ cd /usr/local/src/debian/lire/debian/20010219
$cp\
~/cvs-sourceforge/logreport/service/lire-20010219.tar.gz .

tar zxf lire-20010219.tar.gz
cd lire/20010418
mv lire-20010418 lire-20010418.0rig
tar zxf lire-20010418.tar.gz
cd lire-20010418
mkdir debian
$cp\
~/cvs-sourceforge/logreport/package/debian/[*"C]* debian/

LR o A

Export the shell environment variable EMAIL, it should hold your email address, as it is to appear in the
maintainers field of the package. (One could use 'dh_make --copyright gpl -s’ on first time debianizing.) Build
the .deb by running:

$ debuild 2>&1 | tee /tmp/build

Check the .deb:

$ debc | less

You might also want to test wether the Debianized sources build fine on other machines: copy diff.gz, orig.tar.gz
and .dsc. Then do

$ dpkg-source -x lire_*.dsc
$ cd lire-version
$ dpkg-buildpackage -rfakeroot

After havingreally tested it (dpkg -i, purge, etc.), optionally install it on any local apt-able websites you might
have (Joost has one on http://mdcc.cx/debian/) and upload it to hibou’s apt-able archive:

$ scp lire_20010418-1_all.deb \
hibou.logreport.org:/var/www/logreport.org/pub/debian/dists/local/contrib/binary-all/admin/

$ scp lire_20010418*.gz \
hibou.logreport.org:/var/www/logreport.org/pub/debian/dists/local/contrib/source/admin/
$ scp lire_20010418**s* \
hibou.logreport.org:/var/www/logreport.org/pub/debian/dists/local/contrib/source/admin/

125

Chapter 19. Making a Release

Move the old debian stuff on hibou to hibou:/pub/archive/debian/ . Update the Packages file by running

$ cd /var/www/logreport.org/pub/debian
$ make

To upload it to the official debian mirrors:

vanbaal@gelfand:/usr...src/debian/lire/20010418% date; \
dupload lire_20010418-1_i386.changes

Thu Apr 19 14:27:38 CEST 2001

Uploading (ftp) to ftp.uk.debian.org:debian/UploadQueue/

[job lire_20010418-1_i386 from lire_20010418-1_i386.changes New dpkg-dev, announcement will NOT be sent
lire_20010418.orig.tar.gz, md5sum ok
lire_20010418-1.diff.gz, md5sum ok
lire_20010418-1_all.deb, md5sum ok
lire_20010418-1.dsc, md5sum ok
lire_20010418-1_i386.changes ok]

Uploading (ftp) to uk (ftp.uk.debian.org)
lire_20010418.orig.tar.gz 163.1 kB , ok (12 s, 13.59 kB/s)
lire_20010418-1.diff.gz 32.6 kB , ok (3 s, 10.88 kB/s)
lire_20010418-1_all.deb 222.4 kB , ok (16 s, 13.90 kB/s)
lire_20010418-1.dsc 0.6 kB , ok (0 s, 0.60 kB/s)
lire_20010418-1_i386.changes 1.2 kB , ok (1 s, 1.22 kB/s)]

check ftp://ftp.uk.debian.org/debian/UploadQueue/

Building The RPM Package

Making sure the FreeBSD port gets updated

Since August 21, 2002, Lire is in the FreeBSD ports collection. Edwin Groothuis has build a FreeBSD port. Ask
him if he’s available for updating his port. Alternatively, Cédric Gross might be able to help. If not, the
LogReport team should take care of it, and submit a Problem Report to the FreeBSD system, asking for
inclusion of the updated port.

Uploading The Release

To release a new distribution, publish the tarball on various places and send an announcement to the
<announcement@logreport.org > mailinglist, stating the most interesting new features. Furthermore, add a
newsitem to the news list of the website. We’ll describe how to upload the tarball to various places.

126

Chapter 19. Making a Release

The LogReport Webserver

Upload the tarball to the pub area on the LogReport server. The area is mirrored automagically by the
download.logreport.org servers; updates are done every 6 hours. Upload like this:

$ scp lire-20001211.tar.gz hibou.logreport.org:/var/www/logreport.org/pub/
On hibou, do:

$ cd /var/wwwi/logreport.org/pub
$ chown .www lire-20010525.tar.gz
chmod g+w lire-20010525.tar.gz

©*

tar zxf lire-20001211.tar.gz

rm current && In -s lire-20001211 current

rm current.tar.gz && In -s lire-20001211.tar.gz current.tar.gz
rm -rf lire-20001205

mv lire-20001205.tar.gz archive

R R i

Update theREADME.txt file: Run

$ cd /var/www/logreport.org/pub
$ (echo \
‘current is the latest official release’; echo; Is -IF c¢*) > README.txt

Check the symlink to the documentation stuff in the tarball.

Check if the stuff in http://logreport.org/pub/docs is still up to date.

Advertising The Release

SourceForge

In order to release a distribution on SourceForge (SF), you login with your SF account on the SF website. Once
logged in you go to the project webpage (https://sourceforge.net/projects/logreport/) andAtiodsdown at

the bottom of that page is a/Bdit/Add File Released]nk (click it
(https://sourceforge.net/project/admin/editpackages.php?group_id=5049)).

You are able to edit packages, like the Lire package in the LogReport project. To add a new releasdAckibose
Release]As a release name uses the date, like 20010407, assign it to the Lire package and the@Gesgdhe
This Releasbutton to makes it effective.

The next page shows 4 steps of which only one (step 2) is not straightforward. In that step you assign files to a
release (.tar.gz, .deb, .rpm). These files should be uploaded to SF's Upload anonymous FTP site at
ftp://lupload.sourceforge.net/incoming/. Make sure the file is placed ifindwening directory. ClickRefresh

Viewin Step 2 to add the files you uploaded to the FTP site. Check the files belonging to the release and Click
Add Files In step 3, set Processor to any. Set file type to .deb and source.gz. Click update/refresh. Step 4: send
notice. Done.

127

Chapter 19. Making a Release

Freshmeat.net

On Freshmeat.net, releases are not released, but get announced only. These announcements attract a lot of
attention. The webpage for the Lire package can be found at http://freshmeat.net/projects/lire/.

To announce a new release go to Lire - development branch (http://freshmeat.net/branches/14593/) webpage.
ChooseAdd Releasérom the Project pull down menu in the light blue area. The rest is very straightforward.

128

Chapter 20. Website Maintenance

We give hints on how to upgrade the website: installing stuff from current CVS on http://logreport.org
(http://Nlogreport.org/).

Commits to the CVS tree of the website are automatically propagated to hibou. For more information on the
markup language of the website, see the WIML documentation (http://logreport.org/doc/wjml/).

Documentation on the LogReport Website

Be sure the links to stuff undégsub/current are still alive. E.g. the fileSODQdev-manual.html and
user-manual.html are linked to.

Publishing the DTD’s

The DTD's are published as HTML on the website by using
hibou:/usr/local/src/dtdparse/dtdparse-2.0b2-LogReportPatched.tar.gz , Which is a patched
version of Norman Walsh’s dtdparse utility. Before the utility is run, make sure that the DocBook DTD is not
included in the parsing process, because the DocBook DTD should not be published. This is done by changing
the line:

<IENTITY % load.docbookx "INCLUDE" >
into:
<IENTITY % load.docbookx "IGNORE" >

The webpages are then generated with;

perl ~/dtdparse-2.0b2-patched/dtdparse.pl --titte "XML Lire Report Markup Language" --output lire.xml lire.dtd
perl ~/dtdparse-2.0b2-patched/dtdformat.pl --html lire.xml

The resultindire directory can be tar-ed, gziped and unpacked again on hibou in the directory
Ivar/lwww/logreport.org/pub/docs/dtd/

The other two DTD’s are HTML-ized similarly, but remember to change the title when ruitdpgrse.pl.

129

Chapter 21. Writing Documentation

Documentation which comes with the Lire tarball is maintained in four formats: plain text, Perl POD, DocBook
XML and UML diagrams. We'll talk about all four of these here.

Plain Text

Small files likeREADMENEWSAUTHORSdoc/BUGS, anddoc/TODO are traditionally maintained in plain text
format. We adhere to this common practice.

Perl’'s Plain Old Documentation: maintaining manpages

We use Perl’s pod (plain old documentation) for manpages. Every file installed with Lirsrfisin/ must

have a manpage. Every file installediisr/share/perl5/Lire/ and/usr/lib/lire/ should have a
manpage. It would be nice if the files fetc/lire/ were documented in manpages too. And perhaps for some
files in/usr/share/lire/xml/ , lusr/share/lire/reports/ , lusr/sharellireffilters/ and
{usr/share/lire/schemas/ manpages could be useful.

Since the files irusr/bin/ are commands, ran by Lire users, the manpages describing these should focus on
the user perspective. Describing the inner workings and implementations of the commands is less important than
describing why someone would want to run the specific command. If there’s need to make some remarks on the
internals of these scripts, a section called DEVELOPERS could be added to the manpage. The perl modules
installed infusr/share/perl5/Lire/ and the commands iasr/lib/lire/ are not intended as interfaces

for the user. Only people wanting to change or study the operation of Lire itself will interact with these files;
therefore, the manpages should explain the inner workings and implementations of these files. The configuration
files in/etc/lire/ might be changed by users. These should be properly documented: in manpages or in the
Lire User's Manual

Docbook XML: Reference Books and Extensive User
Manuals

The main documentation of the Lire project is done in DocBook XML 4.1.2. E.g. this document is maintained in
DocBook XML, as is the ire User's Manualand thelLire FAQ. TheLire User's Manualhas more information
about DocBook.

After editing theLire Developer’'s Manuabr thelLire User’'s Manuaj you should ruimake check-xml to
make sure the document is still a valid DocBook document. You should fix any errors before committing your
changes.

If everything went right, documentation is built in txt, tex, html and pdf format by runnmiagge dist , or just
make in doc/ . We give some hints which might be helpful in case you have to build the documentation
manually.

To generate PDF:

$ jade -t tex -d /path/to/DSSSL/docbook/print/docbook.dsl roadmap.xml
$ pdfjadetex roadmap.tex

The last step is actually done two or three times to resolve page numbers.

130

Chapter 21. Writing Documentation

To generate HTML:

$ jade -t sgml -d html.dsl roadmap.xml

And now you can use th&ml.dsl inthedoc/source directory. (If necessary, adjust it to reflect the location
of your DSSSL stylesheets). Use lynx to generate TXT output from HTML with:

$ lynx -nolist -dump roadmap.html > roadmap.txt

UML Diagrams

The Unified Modelling Language (UML) is a set of definitions on how design diagrams are composed. These
diagrams will help to document and understand the internals of Lire, and are used as such in this manual.

UML Editing

Several UML editors are available, but few are open source. Among these are Dia (general diagram editor for
Gnome), ArgoUML (written in Java) and UML Modeler (http://uml.sf.net/) (UML specific editor for KDE). The
latter was used to draw the diagrams found in G%Svice/doc/uml-diagrams

Diagram Types

UML supports several diagram types. Two important onekass diagramsindsequence diagram$he
former is used to depict the relations and associations between classes. Classes can be programs or modules. The
latter is used to show how certain tasks are performed in time, and can be used to model the sequence of events.

131

V. Implementation Detalls

Chapter 22. Report Generation: AsciiDIf

Report generation is done by thige::AsciiDIf package. The internal APl is documented in the
Lire::AsciiDIf::ReportOperator(3) man page.

133

Chapter 23. Adding a New Superservice in Lire’s
Distribution

Integrating a new superservice in the Lire’s several things:

1. Making new directories in CVS:

.

/service/<superservice>/
/service/<superservice>/script/

[service/<superservice>/reports/

2. Adding several files:

/service/<superservice>/Makefile.am
[service/<superservice>/reports/Makefile.am
/service/<superservice>/script/Makefile.am
Iservice/<superservice>/<superservice>.cfg

/service/< superservice>/<superservice>.xml This file specifies the DLF format of the
superservice. ldeally, it should offer a place for each and every snippet of information which will ever be
found in a logfile from a program which offers functionality defined by the superservice. This file should
have documentation embedded; this will show up in this manual.

3. Writing service plugins (2dIf scripts):

[service/<superservice>/script/<service>2dIf.in

4. Adapting several files:

Iservice/configure.in (add the Makefiles and 2dIf script to AC_OUTPUT, to get them converted
from <service>2dlIf.in to <service>2dlIf.)

Iservice/Makefile.am (add the superservice directory to SUBDIRS, so that make gets run there too,
when called from the root source directory.)

[service/all/etc/address.cf (to make the new service known as a member of a superservice.)

5. Update Documentation:

User Manual: Chapter "Supported Applications".
Add manpages for scripts

This document: add a referal to the superservice-schemas.dbx file, which gets build from
superservice.xml.

The User Manual: add referals to superservice-reports-infos.dbx and superservice-filters-infos.dbx.

6. Update the configuration by writing a custom config spec or extended the current one as well as by added
default values to the defaults configuration files.

134

Chapter 24. Issues with Report Merging

In some cases, a merged report doesn't display the right information. We outline some worst case scenarios, and

justify our implementation.

Suppose log file 1 (“requests” with “sizes”) looks like:

request size
A 12
B 11
C 10
while log file 2 looks like:

request size
D 3

E 2

F 1

We report on the top 2 biggest requests, so the report from log 1 looks like:

request Size
A 12
B 11
while the report from log 2 would look like:

request size
D 3

E 2

Now we change the superservice.cfq file to list the top-4 biggest items. A naive merge would lead to:

request Size
A 12
B 11
D 3

E 2
Of course, this should've been:

request size
A 12
B 11
C 10

135

Chapter 24. Issues with Report Merging

request size
D 3

This effect does not occur when keeping the top-limit to the same value. However, when we’re not reporting on
distinct values in the log, but are summing, more horrible things might happen. Consider this: We want to report
on the total size by client. Logs look like:

client Size
a 12
b 11
(o 10
and

client Size
d 4

e 4

(o 3

Reports from these logs would look like:

client size
a 12
b 11
client size
d 4

e 4

After naively merging, one would get:

client Size
a 12
b 11

In fact, the complete report should look like:

client Size
(o 13
a 12

Luckily, the Lire merging algorithm is ndhis naive: in fact, the XML reports store a little more records than
actually needed. This heuristic trick leads to sane merged reports in most cases. However, since this is merely a
heuristic trick, it is no waterproof guarantee.

136

Chapter 24. Issues with Report Merging

See the description of the guess_extra_entries routine in the Lire::AsciiDIf::Group manpage for more
implementation details.

137

Chapter 25. Overview of Lire scripts

An overview of the main scripts involvett. spoold is the engine behind a Lire Online Responder.
Ir_log2report is the main Lire command line interface. Thelog2xml command is a helper scripts. The
Ir_xml2report command can be used by the user to merge XML reportsliTegl2report is not yet fully

integrated in the Lire system. Tl rawmail2mail command manages a Lire client setup. Theron is fired

of by cron, in a cron-driven setup.

Ir_spoold

I
_ Ir_check_service
_ Ir_spool
I
_ Ir_processmail
_ Ir_getbody
I
_ Ir_log2mail
I
_ Ir_inflate
_ Ir_log2xml
_ Ir_mail
I
.

Ir_xml2mail

_ Ir_xml2report

_ Ir_mail

Ir_log2report

_ Ir_inflate

_ Ir_log2xml
_ Ir_xml2report
Ir_log2xml

_ Ir_store

_ Ir_dif2xml
_ (Ir_dif2sql)

Ir_xml2report

_ Ir_xml_merge

_ Ir_xmI2<OUTPUTFORMAT>
_ Ir_xml2chart

Ir_sql2report

_ Ir_sqgl2dIf

_ Ir_dif2xml

_ Ir_xml2report

Ir_rawmail2mail
_ Ir_getbody
_ Ir_deanonymize

_ Ir_xmI2mail

Ir_cron
_ Ir_log2mail

138

Chapter 25. Overview of Lire scripts

Ir_spoold monitors a Maildir spool for each responder address. Ir_processmail processes an email message with
a compressed log file attached. Refer to the manpages for the gory details.

139

Chapter 26. Source Tree Layout

Service specific scripts should reside in $CVSROOT/service/<service>/script/. Configuration data should be in
<service>/etc/. Service specific documentation in <service>/doc/.

Furthermore, in each subdirectory there should be a Makefile.am.

140

Glossary

Definitions of particular terms used in Lire.

DLF
SeeDistilled Log Format

Distilled Log Format
Example 1. DNS DLF Excerpts

1010912574 10.0.0.2 121.68.134.195.in-addr.arpa PTR recurs
1010912574 10.0.0.2 121.68.134.195.in-addr.arpa PTR recurs
1010912592 10.0.0.2 120.67.123.212.in-addr.arpa PTR recurs
1010912600 10.0.0.2 207.7.178.212.in-addr.arpa PTR recurs
1010912600 10.0.0.2 trl6.kennisnet.nl A recurs

1010912616 10.0.0.2 120.67.123.212.in-addr.arpa PTR recurs
1010912630 10.0.0.2 207.7.178.212.rbl.maps.vix.com ANY recurs
1010912630 10.0.0.2 NLnet.nl ANY recurs

This is the generic log format used by Lire to normalise the log files from different products.

Currenlty, this normalised log is a simple ASCII format where each event is represented by one line. The
information about the event is represented by fields separated by spaces. All non-printable ASCII characters
are replaced by. Spaces in a field’s value are replaced bian underscore). Each line must have the same
number of fields. A DLF file doesn’t contain any header informatiExample 1shows an excerpt of a DNS

DLF file.

See AlsoSuperserviceDLF Schema
DLF Schema

Information about the order of the fields in a DLF file, their types and what they represent is specified in the
DLF's schema. Schemas are defined in XML files using the Lire DLF Schema Markup Language
(LDSML). Lire’s offers an API (only in Perl for now) to programmatically access the information of a
schema.

Log files of many different products can share a common DLF schema that makesé¢jrertsseasily
comparable.

Report

A report is what is generated by Lire. It consists of seveulreportsThose subreports can be grouped into
sections. The report is computed from the DLF file (and not the native log file) based on a configuration file
which describes the subreports that make up the final report along with their parameters. (Cohsat the
User’'s ManualsectionCustomizing Lirdor more information.)

141

Glossary
Service

Put simply, a service is a specific application that produces log files. It is usually the case that one
application will be equivalent to one service. For example, the mysqgl service is used to process MySQL'’s
log files.

But more precisely, a service is a specific log format. For example, the common service can be used for all
web servers that support the Common Log Format. Similarly, the welf service can be used to process
firewall log files written using WebTrends Enhanced Log Format.

In order to generate r@porton it, the native log will be converted to the approprisigerservice DLF
schema

Subreport

A subreport is a particular view on the DLF log’s data. Subreports are defined in XML files using the Lire
Report Specification Markup Language (LRSML). (Although it defines subreports, it is called a Report
Specification because a report is made up out of several subreports.) Example of a subreport would be
Requests by Hours of the Day

Subreports are defined for a particuldtF schema

Superservice

A superservice is a collection of services that share the €irtkeschemaandreport It is used to group
together applicationsérvice} that offer the same kind of functionality.

Lire currently supports eight superservices: database, dns, email, firewall, ftp, print, proxy, and www.

142

