RationalSolver Class Template Reference
[p-adic lifting for linear system solutions.]

interface for the different specialization of p-adic lifting based solvers. More...

#include <rational-solver.h>

List of all members.

Public Member Functions

template<class IMatrix , class Vector1 , class Vector2 >
SolverReturnStatus solve (Vector1 &num, Integer &den, const IMatrix &A, const Vector2 &b, const bool, int maxPrimes=DEFAULT_MAXPRIMES) const
 Solve a linear system Ax=b over quotient field of a ring giving a random solution if the system is singular and consistent. giving the unique solution if the system is non-singular.
template<class IMatrix , class Vector1 , class Vector2 >
SolverReturnStatus solveNonsingular (Vector1 &num, Integer &den, const IMatrix &A, const Vector2 &b, int maxPrimes=DEFAULT_MAXPRIMES) const
 Solve a nonsingular linear system Ax=b over quotient field of a ring. giving the unique solution of the system.
template<class IMatrix , class Vector1 , class Vector2 >
SolverReturnStatus solveSingular (Vector1 &num, Integer &den, const IMatrix &A, const Vector2 &b, int maxPrimes=DEFAULT_MAXPRIMES) const
 Solve a singular linear system Ax=b over quotient field of a ring. giving a random solution if the system is singular and consistent.


Detailed Description

template<class Ring, class Field, class RandomPrime, class MethodTraits = DixonTraits>
class LinBox::RationalSolver< Ring, Field, RandomPrime, MethodTraits >

interface for the different specialization of p-adic lifting based solvers.

The following type are abstract in the implementation and can be change during the instanciation of the class:


Member Function Documentation

SolverReturnStatus solve ( Vector1 &  num,
Integer &  den,
const IMatrix &  A,
const Vector2 &  b,
const   bool,
int  maxPrimes = DEFAULT_MAXPRIMES 
) const [inline]

Solve a linear system Ax=b over quotient field of a ring giving a random solution if the system is singular and consistent. giving the unique solution if the system is non-singular.

Parameters:
num,Vector of numerators of the solution
den,The common denominator. 1/den * num is the rational solution of Ax = b.
A,Matrix of linear system
b,Right-hand side of system
maxPrimes,maximum number of moduli to try
Returns:
status of solution

SolverReturnStatus solveNonsingular ( Vector1 &  num,
Integer &  den,
const IMatrix &  A,
const Vector2 &  b,
int  maxPrimes = DEFAULT_MAXPRIMES 
) const [inline]

Solve a nonsingular linear system Ax=b over quotient field of a ring. giving the unique solution of the system.

Parameters:
num,Vector of numerators of the solution
den,The common denominator. 1/den * num is the rational solution of Ax = b.
A,Matrix of linear system
b,Right-hand side of system
maxPrimes,maximum number of moduli to try
Returns:
status of solution

SolverReturnStatus solveSingular ( Vector1 &  num,
Integer &  den,
const IMatrix &  A,
const Vector2 &  b,
int  maxPrimes = DEFAULT_MAXPRIMES 
) const [inline]

Solve a singular linear system Ax=b over quotient field of a ring. giving a random solution if the system is singular and consistent.

Parameters:
num,Vector of numerators of the solution
den,The common denominator. 1/den * num is the rational solution of Ax = b.
A,Matrix of linear system
b,Right-hand side of system
maxPrimes,maximum number of moduli to try
Returns:
status of solution


The documentation for this class was generated from the following file:

Generated on Wed Dec 10 07:17:33 2008 for linbox by  doxygen 1.5.7.1