gputils 0.13.0

James Bowman and Craig Franklin

January 3, 2005

Contents

1 Introduction

1.1

1.2
2 gpal

2.2

2.3

24

2.5

2.6

4
Tool Flows e e e e 4
1.1.1 Absolute AsmMode 4
1.1.2 Relocatable AsmMode 4
1.1.3 HLLMode e e e e e e 5
1.1.4 WhichTool Flowisbest?. i . 5
Supported processors e e e e 5

7
Introduction L e e 7
Running gpal e 7
22,1 Operations oo e e e e 8
222 Inputfiles o 8
Basics e e e 8
2.3.1 Free-format 8
2.3.2 Statement terminator e e e e e e e e e e 9
233 CommEntS v v i e e e e e e e e e e e e e e e e e 9
Types . . e 9
24.1 Builtin Types o o 9
242 AcCeSSTYPES e 9
243 ArrayS. e 9
244 Enumerated e e e e e 10
245 Records e e e 10
24.6 TypeAlias 10
EXpressions e e e e 11
25.1 Symbols 11
252 Attributes L e e 11
253 Numbers e e e e e 12
254 OPerators i i e e e e e e 12
2.5.5 Assignment e 13
256 Test e e e e e e 13
2.577 Label e e 13
Statements e e e e e e e e e e e 14
2.6.1 Assembly 14

CONTENTS 2

2.6.2 Case. . . . i e e e e 14

2.6.3 For e e 14

2.6.4 GO0 e e e e e 15

2.6.5 If . e e 15

2.6.6 Loop 16

2.6.7 Null e e 16

2.6.8 Pragma 16

2.6.9 Return. e e e e 16
2.6.10 While e e 17
2.6.11 With. e e 17

2.7 Declarations e e e e e e e e e e e e e e e 17
2.7.1 Variables e e e 17

272 COoNStants v v e e e e e e e e e e e e e e e e 17

273 AlIAas . ..o e e e e 18

2.8 Subprograms 18
2.8.1 Procedure e e 18

2.8.2 Function e e e e 18

2.9 Files e e e e e 18
2.9.1 Module e e 19

2.92 Public e e 19

2.10 VeCtors o e e e e e 19
2.10.1 Reset o e e e e e e e e 19
2,102 Interrupt. e e e 19

2.11 Code Generation v i i i i i e e e e e e e e e e e e 19
2.11.1 Phases. e e e e e 19
2.11.2 Expression Evaluation 20
2.11.3 COFF SECtiONS . . . v v v v o i e e i e e e e e e e e e e e e e 20
2.11.4 Namemangling e 20

2.12 Coding Suggestions e e e 21
2.12.1 Useuint8 types o v it e 21
2.12.2 Keepdataprivate oo e e e e e 21
2.12.3 Group related subprograms and datainonemodule 21
2.12.4 Name COFF SeCtions v v v v v e i e e e e e e e e e e e e e e e 21
2.12.5 Don’ tuse absolute SECtions e 21
2.12.6 Use multiple module implementations 22

3 gpasm 23
3.1 Runnin@ gpasm e e e e e e 23
3.1.1 Using gpasm with “make” 24

3.1.2 Dealing witherrors e e 25

32 SYNtax . . . oL .. e e e e 25
3.2.1 Flestructure e e e e e e 25

322 EXPressionso e 25

323 Numbers e e e e e 27

3.2.4 Preprocessor e e 28

3.2.5 Processorheaderfiles. 28

CONTENTS

33 DIrectives e e
33,1 Codegeneration e e e e
3322 Configuration L
3.3.3 Conditionalassemblyo oL
334 MACIOS . . v v i e e e e e e e
335 S
3.3.6 Suggestions for structuring yourcode
3.3.77 Directive SUMMAIY o o vttt e e e e e e
3.3.8 Highlevelextensions

34 InStructions oo e e e e e e e
3.4.1 Instruction Set SUMMATY« o v v vt vt e e e e

3.5 Errors/Warnings/Messagesot e e e e e e e
351 BIrors
352 Warnings e
353 MeSSAZES e e e e

4 gplink

4.1 Runninggplink

4.2 gplinkoutputso e e e e e

4.3 Linkerscripts

4.4 Stacks . ..o

5 gplib

5.1 Runninggplib

5.2 Creatinganarchive e

5.3 Othergpliboperations L e

5.4 Archiveformat e

6 Utilities

6.1 gpdasm L
6.1.1 Runninggpdasm
6.1.2 Commentson Disassembling

6.2 GPVC . . .
6.2.1 Running gpve L

6.3 GPVO . . L

6.3.1 Runninggpvo.

Chapter 1

Introduction

gputils is a collection of tools for Microchip (TM) PIC microcontrollers. It includes gpal, gpasm, gplink,
and gplib. Each tool is intended to be an open source replacement for a corresponding Microchip (TM)
tool. This manual covers the basics of running the tools. For more details on a microcontroller, consult
the manual for the specific PICmicro product that you are using.

This document is part of gputils.

gputils is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2, or (at your option) any
later version.

gputils is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with gputils; see the file
COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

1.1 Tool Flows

gputils can be used in three different ways: absolute asm mode, relocatable asm mode, and HLL mode.

1.1.1 Absolute Asm Mode

In absolute asm mode, an assembly language source file is directly converted into a hex file by gpasm.
This method is absolute because the final addresses are hard coded into the source file.

1.1.2 Relocatable Asm Mode

In relocatable asm mode, the microcontroller assembly source code is divided into separate modules.
Each module is assembled into an object using gpasm. That object can be placed “anywhere” in micro-
controller’s memory. Then gplink is used to resolve symbols references, assign final address, and to patch
the machine code with the final addresses. The output from gplink is an absolute executable object.

CHAPTER 1. INTRODUCTION 5

1.1.3 HLL Mode

In HLL (High Level Language) mode, the source code is written in a Ada like language. gpal then converts
that file into a relocatable assembly file. It then automatically invokes gpasm and gplink to generate an
absolute executable object.

1.1.4 Which Tool Flow is best?

Absolute mode is simple to understand and to use. It only requires one tool, gpasm. Most of the examples
on Microchip’s website use absolute mode. So why use relocatable mode?

e Code can be written without regard to addresses. This makes it easier to write and reuse.

e The objects can be archived to create a library, which also simplifies reuse.

e Recompiling a project can be faster, because you only compile the portions that have changed.
e Files can have local name spaces. The user chooses what symbols are global.

Most develpment tools use relocatable objects for these reasons. The few that don’t are generally micro-
controller tools. Their applications are so small that absolute mode isn’t impractical. For PICs, relocatable
mode has one big disadvantage. The bank and page control is a challenge. To overcome that, HLL. mode
can be used. It helps to hide these details from the user.

1.2 Supported processors

pl6cix ol plecd® plecdz3 o605 pl6c2
pl6cA plecsa Hl6c54o pl6c5Ae 0655 pl6c55a
pl6c554 pl6c557 016558 pl6c o6 pl6c57
pl6cSTe plecsa o655 plecsl pl6cs2 pl6ck2a
Hl65D pl6620 d6sXa pleal d6kla pleca2
d6s2a ple3 Hl6s® ol pl6ckla Bl60AA2
ol655 plecsEa Hl6sH 0l66 pl6c6a2 657
671 pl6cT10 plecTI1 pl6cT12 ol6cT15 pl6cT16
ol6cTL7 o6 ol6cTa ol6cT3 olecTR o6
pl6c7A plec745 Ol6cTAT plecTa ol6c 7o pl6cT6
pl6c765 pl6cT pl6cTI0 pl6cTTL pl6cTT3 pl6cT4
plecsl plecT ol6csa 06923 6094 0160925
0l6c9%6 pleee3 plecebd pleets 16cr54 plecra

CHAPTER 1. INTRODUCTION

pLefeo
pLefes7
plef 3
PLEETTT
plef8da
plef87a
plef87/a
plavH0
plIca2
plicrd3
PL8A0L
joiteinZ20)
pLef2431
pLee2s15
PL8E8
jolteinZeSin

Bl8E30
pl8e439
plars
Hl8F580
Bl8FA220
pl8F431
plafas15
plar4ss
plaraesL
B850
plarea2l
plaf672
Cl8rsA15
Hl8r8620
Hl8r8720
67 h

plefe 76
pLefe0
plef /6

Chapter 2

gpal

2.1 Introduction

gpal is a compiler for Microchip (TM) PIC microcontrollers. Unlike most of the other tools in gputils,
there is no corresponding Microchip tool that it replaces. It is a new tool and language specifically de-
signed to to simplify software development for PICs. The language to very similar to the Pascal family of
languages, specifically Ada.

gpal was inspired by Jal <http://jal.sourceforge.net>. That language was created by Wouter Van Ooi-
jen.

2.2 Running gpal

The general syntax for running gpal is
gal [ghas] irpasfiles

Where options can be one of:

CHAPTER 2. GPAL

| Option | Meaning
a Compile or assemble, then archive
c Compile or assemble, but don’t link
d Output debug messages
h Show the usage message
H Scan the specified processor header file

I <directory>

Specify an include directory

k”<options>"

Extra link or lib options

1

List supported processors

M Generate a Make compatible dependency list
o <file> Alternate name of hex output file

O<level> Optimization level

p<processor> | Select target processor

q Quiet

S Compile only, don’t assemble or link

t Do not delete intermediate files

\Y Print gpal version information and exit

2.2.1 Operations

gpal only converts .pal source files into .asm files. However, as a convience it can automatically invoke
gpasm to convert the .asm file into an object file with a .o extension. It can also invoke gplink to produce
a PIC executable or gplib to produce an archive of objects. The operations are selected using the options

-S, -a, and -c.

gpal will automatically remove any temporary file generated by its operation or by an tool it invokes.

That behavior can be controlled using the -t option.

Currently there is no difference between invoking gpal with a complete list of input files, verses in-
voking multiple times, once for each file. In the future, that will probably change.

2.2.2 Input files

gpal will attempt to compile any input file regardless of its name or extension. Typically two file exten-

sions, .pal and pub, are used.

2.3 Basics

2.3.1 Free-format

So this statement:

if ab ten
timer = 0;
ad if;

CHAPTER 2. GPAL 9

is equivalent to:
if &b ten timer = 0; ad if;
although not recommended.

2.3.2 Statement terminator

The semicolon is used to terminate all statements and subprograms.

2.3.3 Comments

Comments are proceeded by a double minus (-) and continue until the end of the current line.

2.4 Types

2.4.1 Builtin Types
The following table defines the built in types:

| Name | Size in bytes | Minimum Value | Maximum Value |

uint8 1 0 255

int8 1 -128 127
uint16 2 0 65,535
intl6 2 -32,768 32,767
uint24 3 0 16,777,215
int24 3 -8,388,608 8,388,607
uint32 4 0 4,294,967,295
int32 4 -2,147,483,648 2,147,483,647

None of the ranges are checked at run time. The user must ensure that any assignment expression
won’t overflow or underflow the type.
2.4.2 Access types
e <ae> is agess <gpee;

Will create an access type to <type>. This will allow indirect access to any variable of type <type>.

2.4.3 Arrays
e <ae> is aray <eoessiar> to <exoessiar of <gpe;
The following example will create an array type of 10 unsigned bytes:

e biffertype is axay 1 to 10 of uints;
vardole hifffer @ uffer Hpes;

CHAPTER 2. GPAL 10

2.4.4 Enumerated

e <ae is (<ae [, <ae]r);
The following code will create and enumerated type:

e meinstate is (INIT, [EAY, QJIRUD);

This will create a new type that can take on one of three values. Each symbol in the list is assigned a value
starting at 0. Each symbol value pair is added to the global symbol table. All enumerated types use the
uint8 size. So there for the maximum list size is 256 members.

2.4.5 Records
e <ae> is recod
[<ae> @ <G *

ad reoxd;

A record is an aggregate of declarations. It allows complex variable structures to be defined with a single
statement. It also allows that definition to be easily accessed.

tye moetyee is (IOE, ACINME, BERR);
type antrol type is recod

time @ uintB;
e ok Gee;
ad reoxd;

A variable could then be defined like this:
atrl : amcltpee = (0, IOE);
This variable “control” would be accessed in the body of a subprogram as follows:

artrol.time = 10;
antrol oce = ACTIVE;

2.4.6 Type Alias

Types can be given new names to suit the user’s preference.
e <ae is <gpe;
This example will create an alias of int16 with the name short.

e gat is irtle;

CHAPTER 2. GPAL 11

2.5 Expressions

2.5.1 Symbols

Symbols must match the following rule:
[.az] .0%z]*
All symbols are case insensitive. So the following two statements are equivalent.

Tirer = 0;
tInkr 0;

The only exception is symbols that used to generate filenames.
with tine;

This statement will open the file “time.pub”. If the host operating system uses a case sensitive file system,
the case of the with is important. To maintain portability across different operating systems, it is best to
keep the with statements and filenames lower case.

2.5.2 Attributes

Attributes provide a means to access the properties of symbols. They always use the tick symbol (*). They
are in the form:

<synool>’ <attrilbate>
Access

Indirectly access memory using the contents of the symbol as the address. This is only valid on symbols
that are declared as access types. Using it on any other symbol will cause an error to be generated.

Address

Generates relocation symbols for the address of the variable. Note that the address is generally not known
at compile time. It will be patched by the linker with the correct value after relocation.

First

Returns the index of the first element in an array. It is only valid on array symbols.

Last

Returns the index of the last element in an array. It is only valid on array symbols.

CHAPTER 2. GPAL 12

Range

Equivalent to:
<ymml>first T <synbol>last
Only available in the range statement of a FOR loop.

Size

Returns the size of a variable in bits.

2.5.3 Numbers

gpal uses decimal as its default radix. The following table summarizes other supported numeric formats.

| base | general syntax | 21 decimal written as |
decimal [0-9]* 21
hex 0x[0-F]* 0x15

2.5.4 Operators

gpal supports a full set of operators, based on the C operator set. The operators in the following table are
arranged in groups of equal precedence, but the groups are arranged in order of increasing precedence.
When gpal encounters operators of equal precedence, it always evaluates from left to right.

CHAPTER 2. GPAL

2.5.5 Assignment

<are>[[’

<eqyessiar>

Operator	Description
=	assignment
I	logical or
&&	logical and
& bitwise and
I bitwise or
A bitwise exclusive-or
< less than
> greater than
== equals
1= not equals
>= greater than or equal
<= less than or equal
<< left shift
>> right shift
+ addition
- subtraction
* multiplication
/ division
% modulo
- negation
! logical not
~ bitwise no
1R = <egpessiar;

13

Assignment statements can appear in any statement block. <name> must be a variable. If the bracket
enclosed expression is added it must be an array.

2.5.6 Test
<exessia>

[<oErdsn qeEator> <exaessiat]*;

Test statements can only appear in the expressions of if statements and while loops. They must evaluate

to a boolean.

2.5.7 Label

Labels must match the following rule:

[.az] .0-%5=z]*:

CHAPTER 2. GPAL 14

All labels are case insensitive. So the following two statements are equivalent.

MY TaBeL:
my 17F]:

Labels can only appear in the body of a subprogram. Labels are only valid within the subprogram that
they appear.

2.6 Statements
2.6.1 Assembly

agn
<agn statarets>

ad asny;

Unmodified <asm statements> are copied to the assembly file output. The syntax of <asm statements>
must be compatible with gpasm.

2.6.2 Case

B <|are> is

wWwen <castat> [| <axrstat> * =
<statarents>]*

Wen oders =

<statavets>]?

ad ca;

If <name> equals any of the <constants> the <statements> are executed. If none of the constants match
and an others is present, the others statements are executed. Here is an example:

Gaxe imt is
wen MMM | MNMM =

2.6.3 For

for <> in <start exoessia> to <ad eqyessiar
logp
<statarets>

ed lox;

CHAPTER 2. GPAL 15

<name> is set to <start_expression>. It is then incremented each time the block of statements are executed.
It continues until <name> reaches <end_expression>. Here is an example:

for i in 0 to 10
lop
biffer(i] = 0;
ed lox;

2.6.4 Goto
gto ldel>;

Branch progam flow to the address specified by <label>. <label> must occur with in the same subprogram
as the goto. <label> can appear before or after the goto statement.

The use of goto is discouraged in most languages, but most have them. They can aid in the creation
of complex state machines. For gpal, it is the mechanism for exiting infinite loops or exiting finite loops
early.

J=3+1
if 7 =10 ten
oo adof lox;

ed if;
The statements in each block are executed if the expression is true. Here is an example:

if 1 <10 ten

=25

elsif i > 12 ten
j = 10;

glsif i > 14 then
j =14

else

j=0;

ed if;

CHAPTER 2. GPAL 16

2.6.6 Loop

lop
<statarerts>

ed lox;

The statements in the block are executed in an infinite loop. Here is an example:

lop

j=3+1%
if 7 =10 ten
ream 0;
ad if;
ad lox;
2.6.7 Null
mull;

Execute a NOP. This is a little different from NULL statements in most languages. It is typically is used
in statement block that was intentionally left blank and no code is generated.

2.6.8 Pragma
g <aything;

Pragmas provide data to compiler which is outside of its legal syntax. The table below summarizes the
pragmas available:

| Name | Format | Description |
Code Address | code_address = <constant> | Make the code section absolute at address <constant>.
Code Section code_section = “<name>** Set the code section name to <name>.
Processor processor = “<name>* Set the processor name to <name>.
Data Address | data_address = <constant> | Make the data section absolute at address <constant>.
Data Section data_section= “<name>* Set the data section name to <name>.

2.6.9 Return
reim <exaessiar;

Evaluate the <expression>, place it in the return register, and return from the function.

CHAPTER 2. GPAL 17

2.6.10 While
while <egyessia»
lop
<statarets>

ed lop;
The statements in the block are executed while <expression> is true. Here is an example:
while § < 10
lop
J=3+15
ad lop;
2.6.11 With
with <are>;
The with statement tells the compiler to add the data from the public <name> to its symbol tables. This
will allow access to that module’s subprograms and data.

2.7 Declarations

2.7.1 Variables

Symbols whose values change during runtime are referred to as variables. Because variables change value
during run time they are stored in data memory. An expression specifies its initial value and the address
of the variable. A variable is declared as follows:

<ae> @ <O [= <egessiar]? [at <exessiar]?;
Here is an example:
gin : dot = 10 at X0;

As shown in the example above, the address of the variable can be specified. This feature is not available
for variables declared within a subprogram. This is available for global data. However, this should gener-
ally be avoided. Manually assigning addresses can interfere with optimial relocation of the data memory
sections. This could result in more bank switching and a more fragmented memory map.

2.7.2 Constants

Compile time symbols whose values do not change are referred to as constants. A constant is declared as
follows:

<ae> : aastat = <eaessiay;
Here is an example:

filter offset : arstat = K1434;

CHAPTER 2. GPAL 18

2.7.3 Alias

An alias can be created for complex expressions that that used often.
alias <alias rae> <egyessiar;
This example will create an alias of p16f877.porta with the name vdata.

alias whta plef87/.pxta;

2.8 Subprograms
2.8.1 Procedure

poedre <ae> ([<ag rae> o [injadt|inodt] <Gpeel*)? is
<Ceclaratias>

legin
<stataraits>

ad pocdre;

This creates a block of executable code that starts at <name>. The procedure can be called from other
subprograms within any statement block, but they can not be called from within an expression.

Permanent storage is allocated for each procedure argument. Data is passed to and from the procedure
through that storage. The calling subprogram puts data into the arguments and reads from the arguments
based the direction specified in the procedure definition. The direction is ignored by the procedure. All
the arguments can be read from and written to.

Local constants and variables are declared in <declarations>. Any variables declared in this region
may be permanent or overlayed with data from other subprograms.

2.8.2 Function

fuction <ae ([<ag e @ [injat|inod] <Geel*)? mum e is
<Ceclaratias>

legin

<statarets>

ad fuctiay

This creates a block of executable code that starts at <name>. The function can only be called from within
expressions.
Like procedures in many respects, except a value is returned. This value is used in the expression.

2.9 Files

Input files are text only. They can have any name or extension. The files are composed of modules and
publics. Any number of modules or publics can be in a single file.

CHAPTER 2. GPAL 19

2.9.1 Module

nmodule <are> is
<sdprogran - definitians [verigale definitias|arstarts| types>
ad modils;

The module defines a related group of subprograms and data that will be placed in the same page or bank.
Groups of modules are compiled and linked to gather to make the executable.

Each module will be written to one assembly file and subsequently result in one object file to be
generated. Typically, one module is placed in each .pal file. The filename will be the same as <name>
with the .pal extension added.

2.9.2 Public
phlic <ae> is
<sigograms. - ceclaratians[vardable declaratias|axstants | types>
ad pllic;
The public declares which portions of its module will be visible to other modules. It also provides infor-
mation about the interface to the module’s subprograms and data. Typically, one public is placed in each
.pub file. The filename will be the same as <name> with the .pub extension added. The <name> must also

match the <name> of its module if one exists. When the module is compiled, it will scan its public file to
verify that the declarations in the file match its subprograms and data.

2.10 Vectors
2.10.1 Reset

A reset vector and the associated startup code is generated on any procedure with the name “main”. It can
reside in any module, but there can be only one procedure with the name “main”.

2.10.2 Interrupt

An interrupt vector and the associated context saving code is generated on any procedure with the name
“isr”. It can reside in any module, but there can be only one procedure with the name “isr”.

2.11 Code Generation
2.11.1 Phases

Parse

The input files are parsed and stored in memory in a tree format. Constructs are replaced with com-
mon structures. For example, for and while loops are converted into conditional loops with initialization
statements and increment statements.

CHAPTER 2. GPAL 20

Analyze

The syntax and semantics of the tree are checked. Most of the errors are generated during this phase.

Optimize Tree

The tree is modified to generate better code. This is a high level optimization.

Code Generation

The icode is written to an asm file, so it can be assembled and linked.

2.11.2 Expression Evaluation

Most compilers are a stack machine, accumulator machine, or a register machine. Not all of the machines
are good for every target processor. Some options either won’t work or aren’t optimal. Because of the
limited resources on PICs, the absence of stack manipulation instructions, and the fact that some instruc-
tions can only target the Wreg. An accumulator machine is the best choice for PICs. It is the choice that
gpal uses. For example:

i=x+3 &4

will generate the following pseudo code:

Wy = x5
Wy = Weg + 3
Wey = & 4;
i = T=y;

If necessary, intermediate values are stored in data memory. For byte sized operations the Wreg is used.
For larger sized operations, a section of data memory is used as the accumulator.

2.11.3 COFF sections

All the executable code in a module is placed in one COFF section. This guarantees that code will be on
the same page, so no page switching is required. the code section name is specified using the code_section
pragma. If that pragma isn’t used a default name is used.

Similarly all data memory is placed in one COFF section. This too reduces the number of bank
switches when accessing local data.

2.11.4 Name mangling

gpal uses a hierarchical name space for all symbols and types. The module name is specified in all inter-
module accesses. So to write to memory “clock” in the local module:

clok = 0;

to write to memory “clock” in module “time”’:

CHAPTER 2. GPAL 21

tire.clak = 0;

To prevent collisions when compiling and linking all symbols are mangled in the asm output of gpal. It
takes the form:

<rcdule> <sigoragran>.<lacal cata>

So, local data “index” in procedure “pop_stack” in module “stack” is given the name “stack.pop_stack.index”.

2.12 Coding Suggestions

The following suggestions will help to generate smaller faster target code.

2.12.1 Use uint8 types

PICs are unsigned 8 bit machines. To do anything beyond that requires more memory and more instruction
cycles. So use uint8 for as many arguments and data as possible.

2.12.2 Keep data private

Any subprogram or data in the public will make the corresponding object public. When an object is public
fewer compile time optimizations can be done. For example, if public data is defined in a module, but not
used in that module, it can’t be removed. Another module may access that data. So put as few subprogram
and data declarations in the public file as possible.

2.12.3 Group related subprograms and data in one module

Any time data is accessed in another module, it could require a bank switch. Minimizing switches will
help to reduce code size and increase speed.

2.12.4 Name COFF sections

Before relocating sections, gplink will combine all like named sections into one larger section. Sections
can not cross page or bank boundaries, so inter section accesses don’t require bank or page switches. To
name the sections use the code_section and udata_section pragmas. This will group the code together. If
the code is needed on a specific page or bank, create a logical definition in your linker script.

2.12.5 Don’ t use absolute sections

gpal provides the ability to specify the address of the code or udata of the current module. The feature is
provided for a limited set of cases were the address must be known. Unfortunately, it limits the choices
the linker can make when relocating sections. At worst it may make the design not fit in the available
memory. It also requires extra effort on the part of the user.

CHAPTER 2. GPAL 22

2.12.6 Use multiple module implementations

The public file defines the interface to a module. The name of the public and its file must match, so it
can be found. There is no requirement of module name to match the file name. This makes it possible
for multiple modules with the same interface to exist. You select the module to use when the project is
linked. For example you could have math_fast.pal and math_small.pal that both contain a math module.
One written to execute fast and the other written to be small in memory.

Chapter 3

gpasm

3.1 Running gpasm

The general syntax for running gpasm is

gaan [cotias] asnfile

Where options can be one of:

23

CHAPTER 3. GPASM

| Option | Meaning
a <format> Produce hex file in one of four formats: inhx8m, inhx8s, inhx16, inhx32
(the default).
c Output a relocatable object
d Output debug messages
D symbol[=value] | Equivalent to “#define <symbol> <value>"
e [ONIOFF] Expand macros in listing file
g Use debug directives for COFF
h Display the help message

i

Ignore case in source code. By default gpasms to treats “fooYa” and
“FOOYA” as being different.

I <directory>

Specify an include directory

24

1 List the supported processors

L Ignore nolist directives

m Memory dump

n Use DOS style newlines (CRLF) in hex file. This option is disabled on
win32 systems.

o <file> Alternate name of hex output file

p<processor> Select target processor

q Quiet

r <radix> Set the radix, i.e. the number base that gpasm uses when interpreting
numbers.<radix> can be one of “oct”, “dec” and “hex” for bases eight,
ten, and sixteen respectively. Default is “hex”.

\Y Print gpasm version information and exit

w[0l112] Set the message level

y Enable 18xx extended mode

Unless otherwise specified, gpasm removes the “.asm” suffix from its input file, replacing it with
“lIst” and “.hex” for the list and hex output files respectively. On most modern operating systems case is
significant in filenames. For this reason you should ensure that filenames are named consistently, and that
the “.asm” suffix on any source file is in lower case.

gpasm always produces a “.Ist” file. If it runs without errors, it also produces a “.hex” file or a “.0”
file.

3.1.1 Using gpasm with “make”

On most operating systems, you can build a project using the make utility. To use gpasm with make, you
might have a “makefile” like this:

treeex: tee.agn treadef.inc
gaan tree.am

This will rebuild “tree.hex” whenever either of the “tree.asm” or “treedef.inc” files change. A more
comprehensive example of using gpasm with makefiles is included as examplel in the gpasm source
distribution.

CHAPTER 3. GPASM 25

3.1.2 Dealing with errors

gpasm doesn’t specifically create an error file. This can be a problem if you want to keep a record of
errors, or if your assembly produces so many errors that they scroll off the screen. To deal with this if your
shell is “sh”, “bash” or “ksh”, you can do something like:

gaan treeaan 261 | tee treeax

This redirects standard error to standard output (“2>&17), then pipes this output into “tee”, which copies
it input to “tree.err”, and then displays it.

3.2 Syntax

3.2.1 File structure

gpasm source files consist of a series of lines. Lines can contain a label (starting in column 1) or an
operation (starting in any column after 1), both, or neither. Comments follow a *“;” character, and are
treated as a newline. Labels may be any series of the letters A-z, digits 0-9, and the underscore (“_"); they
may not begin with a digit. Labels may be followed by a colon (*:”).

An operation is a single identifier (the same rules as for a label above) followed by a space, and a

comma-separated list of parameters. For example, the following are all legal source lines:

Blak lire

Idel ad goeeatim
Qoeration with 2 praweters
Qoeration with 1 ararveter

lop slep
ircf 0,1
goto lop

Ne Ne No o

3.2.2 [Expressions

gpasm supports a full set of operators, based on the C operator set. The operators in the following table
are arranged in groups of equal precedence, but the groups are arranged in order of increasing precedence.
When gpasm encounters operators of equal precedence, it always evaluates from left to right.

CHAPTER 3. GPASM

Any symbol appearing in column 1 may be assigned a value using the assignment operator (=) in the

Operator	Description
=	assignment
I	logical or
&&	logical and
& bitwise and
I bitwise or
A bitwise exclusive-or
< less than
> greater than
== equals
1= not equals
>= greater than or equal
<= less than or equal
<< left shift
>> right shift
+ addition
- subtraction
* multiplication
/ division
% modulo
UPPER upper byte
HIGH high byte
LOW low byte
- negation
! logical not
~ bitwise no

26

previous table. Additionally, any value previously assigned may be modified using one of the operators

in the table below. Each of these operators evaluates the current value of the symbol and then assigns a

new value based on the operator.

CHAPTER 3. GPASM 27

| Operator | Description |
= assignment
++ increment by 1
- decrement by 1
+= increment
-= decrement
*= multiply
/= divide
o= modulo
<<= left shift
>>= right shift
= bitwise and
= bitwise or
A= bitwise exclusive-or

3.2.3 Numbers

gpasm gives you several ways of specifying numbers. You can use a syntax that uses an initial character
to indicate the number’s base. The following table summarizes the alternatives. Note the C-style option
for specifying hexadecimal numbers.

| base | general syntax | 21 decimal written as |

binary B’[01]* B’10101°
octal O’[0-7]* 0’25’

decimal D’[0-9]* D21’
hex H’[0-F]*’ H’15’
hex 0x[0-F]* 0x15

When you write a number without a specifying prefix such as “45”, gpasm uses the current radix (base)
to interpret the number. You can change this radix with the RADIX directive, or with the “-r”” option on
gpasm’s command-line. The default radix is hexadecimal.

If you do not start hexadecimal numbers with a digit, gpasm will attempt to interpret what you’ve
written as an identifier. For example, instead of writing C2, write either 0C2, 0xC2 or H’C2’.

Case is not significant when interpreting numbers: Oca, 0CA, h’CA’ and H’ca’ are all equivalent.

Several legacy mpasm number formats are also supported. These formats have various shortcomings,

but are still supported. The table below summarizes them.

CHAPTER 3. GPASM 28

| base | general syntax | 21 decimal written as |

binary [01]*b 10101b
octal q’[0-7]* q’25°
octal [0-7]*0 250
octal [0-7]*q 25q
decimal 0-9]*d 21d
decimal [0-9]* 21
hex [0-F]*h 15h

You can write the ASCII code for a character X using *X’, or A’X’.

3.2.4 Preprocessor

A line such as:
irchce foo.irc

will make gpasm fetch source lines from the file “foo.inc” until the end of the file, and then return to the
original source file at the line following the include.

Lines beginning with a “#” are preprocessor directives, and are treated differently by gpasm. They
may contain a “#define”, or a “#undefine” directive.

Once gpasm has processed a line such as:

fiefire X Y
every subsequent occurrence of X is replaced with Y, until the end of file or a line
#fudefire X

appears.
The preprocessor will replace an occurance of #v(expression) in a symbol with the value of “expres-
sion” in decimal. In the following expression:

noer ep 5
lael #v((mber +) * 5) suffix epn KO

gpasm will place the symbol “label_30_suffix” with a value of 0x10 in the symbol table.

The preprocessor in gpasm is only like the C preprocessor; its syntax is rather different from that of
the C preprocessor. gpasm uses a simple internal preprocessor to implement “include”, “#define” and
“#undefine”.

3.2.5 Processor header files

gputils distributes the Microchip processor header files. These files contain processor specific data that is
helpful in developing PIC applications. The location of these files is reported in the gpasm help message.
Use the INCLUDE directive to utilize the appropriate file in your source code. Only the name of the file
is required. gpasm will search the default path automatically.

CHAPTER 3. GPASM 29

3.3 Directives

3.3.1 Code generation

In absolute mode, use the ORG directive to set the PIC memory location where gpasm will start assembling
code. If you don’t specify an address with ORG, gpasm assumes 0x0000. In relocatable mode, use the
CODE directive.

3.3.2 Configuration

You can choose the fuse settings for your PIC implementation using the _ CONFIG directive, so that
the hex file set the fuses explicitly. Naturally you should make sure that these settings match your PIC
hardware design.

The __ MAXRAM and _ BADRAM directives specify which RAM locations are legal. These direc-
tives are mostly used in processor-specific configuration files.

3.3.3 Conditional assembly

The IF, IFNDEF, IFDEF, ELSE and ENDIF directives enable you to assemble certain sections of code
only if a condition is met. In themselves, they do not cause gpasm to emit any PIC code. The example in
section 3.3.4 for demonstrates conditional assembly.

3.3.4 Macros

gpasm supports a simple macro scheme; you can define and use macros like this:

ay MECro Em

novlw Em
adn
ay 3B

A more useful example of some macros in use is:

; Shift =y left

slf eCcro rey
clrc
rlf reg,f
atn

; Sale Wy “factar”. Result in “r=f’, W udaroed.
sale eCcro rey, factar
if (fectar = 1)
nmomt reg ; 1 X is easy
else
sale rg, (factr / 2) ; W* (fackr / 2)
sift reg,f ; dble =y

CHAPTER 3. GPASM 30

adn

This recursive macro generates code to multiply W by a constant “factor”, and stores the result in “reg”.
So writing:

sale e, D107

is the same as writing:

ot tp ;o p =W

clrc

rlf o, £ ;o =2 %W

clrc

rlf tp,£ ;tp =4 %W

it tp,£ ;tp =4 *W) +W=5*W
clrc

rlf o, £ ; op =10 * W

335 $

$ expands to the address of the instruction currently being assembled. If it’s used in a context other than
an instruction, such as a conditional, it expands to the address the next instruction would occupy, since the
assembler’s idea of current address is incremented after an instruction is assembled. $ may be manipulated
just like any other number:

$
S+ 1
$-2

and can be used as a shortcut for writing loops without labels.

I0P: BIFSS flag,0x0

@O IaP
BIFSS flag, (400
@O $-1

3.3.6 Suggestions for structuring your code

Nested IF operations can quickly become confusing. Indentation is one way of making code clearer.
Another way is to add braces on IF, ELSE and ENDIF, like this:

T (this) ; {
HE Y

ENDIE N

CHAPTER 3. GPASM 31

After you’ve done this, you can use your text editor’s show-matching-brace to check matching parts of the
IF structure. In vi this command is “%”, in emacs it’s M-C-f and M-C-b.
3.3.7 Directive summary
__BADRAM
_ BV <egessia> [, <exession]*

Instructs gpasm that it should generate an error if there is any use of the given RAM locations. Specify a
range of addresses with <lo>-<hi>. See any processor-specific header file for an example.
See also: _ MAXRAM

_ CONFIG
_ QNG <exqoessia>

Sets the PIC processor’s configuration fuses.

__IDLOCS
_ O3S <egessia> a _ OOS <egessial>,<eqyessial’>

Sets the PIC processor’s identification locations. For 12 and 14 bit processors, the four id locations are set
to the hexadecimal value of expression. For 18cxx devices idlocation expressionl is set to the hexadecimal
value of expression2.

__ MAXRAM
_ MR <exqaessia>

Instructs gpasm that an attempt to use any RAM location above the one specified should be treated as an
error. See any processor specific header file for an example.
See also: _ BADRAM

BANKISEL
BAKTEL <ldde=l>

This directive generates bank selecting code for indirect access of the address specified by <label>. The
directive is not available for all devices. It is only available for 14 bit and 16 bit devices. For 14 bit
devices, the bank selecting code will set/clear the IRP bit of the STATUS register. It will use MOVLB or
MOVLR in 16 bit devices.

See also: BANKSEL, PAGESEL

CHAPTER 3. GPASM 32

BANKSEL
BNCGEL s>

This directive generates bank selecting code to set the bank to the bank containing <label>. The bank
selecting code will set/clear bits in the FSR for 12 bit devices. It will set/clear bits in the STATUS register
for 14 bit devices. It will use MOVLB or MOVLR in 16 bit devices. MOVLB will be used for enhanced
16 bit devices.

See also: BANKISEL, PAGESEL

CBLOCK
AHIK [<egessiar]
o <Jdeel>| <incravet>][,<ldel>| <incr aet>]

Marks the beginning of a block of constants <label>. gpasm allocates values for symbols in the block
starting at the value <expression> given to CBLOCK. An optional <increment> value leaves space after
the <label> before the next <label>.

See also: EQU

CODE
dael> OF <egyessiar

Only for relocatable mode. Creates a new machine code section in the output object file. <label> specifies
the name of the section. If <label> is not specified the default name “.code” will be used. <expression> is
optional and specifies the absolute address of the section.

See also: IDATA, UDATA

CONSTANT
QOBA <ldeel>=exaessiar [, <deel=exaessiar]*

Permanently assigns the value obtained by evaluating <expression> to thesymbol <label>. Similar to SET
and VARIABLE, except it can not be changed once assigned.
See also: EQU, SET, VARIABLE

DA
Jdaxl> A <exguessiar> [, <egaessin]*

Stores Strings in program memory. The data is stored as one 14 bit word representing two 7 bit ASCII
characters.
See also: DT

CHAPTER 3. GPASM

DATA
NA <exgessiar [, <egessian]*

Generates the specified data.
See also: DA, DB, DE, DW

DB
daxl> [B <exuessiar> [, <egyessian]*

Declare data of one byte. The values are packed two per word.
See also: DA, DATA, DE, DW

DE
daxl> [E <eguessia> [, <egxessian]*

Define EEPROM data. Each character in a string is stored in a separate word.

See also: DA, DATA, DB, DW

DT
[T <egyessiar> [, <exession]*

Generates the specified data as bytes in a sequence of RETLW instructions.
See also: DATA

DW
Jdael> DV <exquessia> [, <exaessioan]*

Declare data of one word.
See also: DA, DATA, DB, DW

ELSE

LS

Marks the alternate section of a conditional assembly block.
See also: IF, IFDEF, IFNDEEF, ELSE, ENDIF

END
END

Marks the end of the source file.

33

CHAPTER 3. GPASM 34

ENDC
ENOC

Marks the end of a CBLOCK.
See also: CBLOCK

ENDIF
ENDIE

Ends a conditional assembly block.
See also: IFDEF, IFNDEF, ELSE, ENDIF

ENDM
ENM

Ends a macro definition.
See also: MACRO

ENDW
ENOW

Ends a while loop.
See also: WHILE

EQU
<ldel> EU <eyessiar
Permanently assigns the value obtained by evaluating <expression> to the symbol <label>. Similar to SET
and VARIABLE, except it can not be changed once assigned.
See also: CONSTANT, SET
ERROR
FRRR <strirg>

Issues an error message.
See also: MESSG

CHAPTER 3. GPASM

ERRORLEVEL

Sets the types of messages that are printed.

| Setting | Affect |
0 Messages, warnings and errors printed.
1 Warnings and error printed.
2 Errors printed.

-<msgnum> | Inhibits the printing of message <msgnum>.
+<msgnum> | Enables the printing of message <msgnum>.

See also: LIST

EXTERN
EXIERN <sydmol> [, <spdol> J*

Only for relocatable mode. Delcare a new symbol that is defined in another object file.

See also: GLOBAL

EXITM
EXTIM

Immediately return from macro expansion during assembly.
See also: ENDM

EXPAND
EXEAND

Expand the macro in the listing file.
See also: ENDM

FILL
 FIL <egyessiar,<cornt>

35

Generates <count> occurrences of the program word or byte <expression>. If expression is enclosed by

parentheses, expression is a line of assembly.
See also: DATA DW ORG

CHAPTER 3. GPASM 36

GLOBAL
AEL <sbol> [, <sydol>]

Only for relocatable mode. Delcare a symbol as global.
See also: GLOBAL

IDATA
dael> THA <egyessiar

Only for relocatable mode. Creates a new initialized data section in the output object file. <label> specifies
the name of the section. If <label> is not specified the default name “.idata” will be used. <expression> is
optional and specifies the absolute address of the section. Data memory is allocated and the initialization
data is placed in ROM. The user must provide the code to load the data into memory.

See also: CODE, UDATA

IF

IF <eqoessiar>
Begin a conditional assembly block. If the value obtained by evaluating <expression> is true (i.e. non-
zero), code up to the following ELSE or ENDIF is assembled. If the value is false (i.e. zero), code is not

assembled until the corresponding ELSE or ENDIF.
See also: IFDEF, IFNDEEF, ELSE, ENDIF

IFDEF
TFOFF <syrol>

Begin a conditional assembly block. If <symbol> appears in the symbol table, gpasm assembles the
following code.
See also: IF, IFNDEF, ELSE, ENDIF

IFNDEF
TENEF <symol>

Begin a conditional assembly block. If <symbol>does not appear in the symbol table, gpasm assembles
the following code.
See also: IF, IFNDEF, ELSE, ENDIF

LIST
LIST <eqoessiar [, <exessiar] *
Enables output to the list (“.Ist”) file. All arguments are interpreted as decimal regardless of the current

radix setting. “list n=0" may be used to prevent page breaks in the code section of the list file. Other
options are listed in the table below:

CHAPTER 3. GPASM 37

| option | description |
b=nnn Sets the tab spaces
f=<format> Set the hex file format. Can be inhx8m, inhx8s, inhx16, or inhx32.
mm=[ONI|OFF] Memory Map on or off
n=nnn Sets the number of lines per page
p = <symbol> Sets the current processor
pe = <symbol> Sets the current processor and enables the 18xx extended mode
r=[oct | dec | hex] Sets the radix
st=[ON | OFF] Symbol table dump on or off
w=[0 111 2] Sets the message level.
x=[ONIOFF] Macro expansion on or off

See also: NOLIST, RADIX, PROCESSOR

LOCAL
IO <symol>[[=<eqressiar], [<syol>[=eqressiar]]*]

Declares <symbol> as local to the macro that’s currently being defined. This means that further occur-
rences of <symbol> in the macro definition refer to a local variable, with scope and lifetime limited to the
execution of the macro.

See also: MACRO, ENDM
MACRO

<ldml> MRO [<gnol> [, <syol> J*]

Declares a macro with name <label>. gpasm replaces any occurrences of <symbol>in the macro definition
with the parameters given at macro invocation.
See also: LOCAL, ENDM
MESSG
MS5 <strirng>
Writes <string> to the list file, and to the standard error output.
See also: ERROR
NOEXPAND
NEERD

Turn off macro expansion in the list file.
See also: EXPAND

CHAPTER 3. GPASM 38

NOLIST
NCLIST

Disables list file output.
See also: LIST

ORG

@G <egaessiar
Sets the location at which instructions will be placed. If the source file does not specify an address with
ORG, gpasm assumes an ORG of zero.

PAGE
|26l

Causes the list file to advance to the next page.
See also: LIST

PAGESEL
PGS <lael>

This directive will generate page selecting code to set the page bits to the page containing the designated
<label>. The page selecting code will set/clear bits in the STATUS for 12 bit and 14 bit devices. For
16 bit devices, it will generate MOVLW and MOVWF to modify PCLATH. The directive is ignored for
enhanced 16 bit devices.

See also: BANKISEL, BANKSEL

PROCESSOR
FRIESSR <symol>
Selects the target processor. See section ?? for more details.
See also: LIST
RADIX
ROIX <synkol>

Selects the default radix from “oct” for octal, “dec” for decimal or “hex” for hexadecimal. gpasm uses
this radix to interpret numbers that don’t have an explicit radix.
See also: LIST

CHAPTER 3. GPASM 39

RES
RES <em units>

Causes the memory location pointer to be advanced <mem_units>. Can be used to reserve data storage.
See also: FILL, ORG

SET
dael> IFT <exaessiar

Temporarily assigns the value obtained by evaluating <expression> to the symbol <label>.
See also: SET

SPACE
FAF <exgaessiar
Inserts <expression> number of blank lines into the listing file.
See also: LIST
SUBTITLE

This directive establishes a second program header line for use as a subtitle in the listing output. <string>
is an ASCII string enclosed by double quotes, no longer than 60 characters.
See also: TITLE

TITLE
TIME <strirg>

This directive establishes a program header line for use as a title in the listing output. <string> is an ASCII
string enclosed by double quotes, no longer than 60 characters.
See also: SUBTITLE

UDATA
dael> UNRA <egyessiar

Only for relocatable mode. Creates a new uninitialized data section in the output object file. <label>
specifies the name of the section. If <label> is not specified the default name “.udata” will be used.
<expression> is optional and specifies the absolute address of the section.

See also: CODE, IDATA, UDATA_ACS, UDATA_OVR, UDATA_SHR

CHAPTER 3. GPASM 40

UDATA_ACS
<ldel> URNRAAS <egessiar

Only for relocatable mode. Creates a new uninitialized accessbank data section in the output object file.
<label> specifies the name of the section. If <label> is not specified the default name “.udata_acs” will be
used. <expression> is optional and specifies the absolute address of the section.

See also: CODE, IDATA, UDATA

UDATA_OVR
<dael> UNAOR <egyessia>

Only for relocatable mode. Creates a new uninitialized overlaid data section in the output object file.
<label> specifies the name of the section. If <label> is not specified the default name “.udata_ovr” will be
used. <expression> is optional and specifies the absolute address of the section.

See also: CODE, IDATA, UDATA

UDATA_SHR
dael> UNA IR <sgyessia>

Only for relocatable mode. Creates a new uninitialized sharebank data section in the output object file.
<label> specifies the name of the section. If <label> is not specified the default name “.udata_shr” will be
used. <expression> is optional and specifies the absolute address of the section.

See also: CODE, IDATA, UDATA

VARIABLE
VARRIAHE <ldeD[=eqyessiar, <ldel>[=exessiar] [*

Delcares variable with the name <label>. The value of <label> may later be reassigned. The value of
<label> does not have to be assigned at declaration.
See also: CONSTANT

WHILE
WHIE <exaessiar

Performs loop while <expression> is true.
See also: ENDW

3.3.8 High level extensions

gpasm supports several directives for use with high level languages. These directives are easily identified
because they start with “.”. They are only available in relocatable mode.

These features are advanced and require knowledge of how gputils relocatable objects work. These
features are intended to be used by compilers. Nothing prevents them from being used with assembly.

CHAPTER 3. GPASM 41

.DEF
IFE <syndol> [, <eqaessiar> 1*

Create a new COFF <symbol>. Options are listed in the table below:

| option | description |
absolute Absolute symbol keyword
class=nnn Sets the symbol class (byte sized)
debug Debug symbol keyword
extern External symbol keyword
global Global symbol keyword
size=nnn | Reserve words or bytes for the symbol
static Static Symbol keyword
type=nnn Sets the symbol type (short sized)
value=nnn Sets the symbol value

This directive gives the user good control of the symbol table. This control is necessary, but if used
incorrectly it can have many undesirable consequences. It can easily cause errors during linking or in-
valid machine code. The user must fully understand the operation of gputils COFF symbol table before
modifying its contents.

For best results, only one of the single keywords should be used. The keyword should follow the
symbol name. The keyword should then be followed by any expressions that directly set the values. Here
is an example:

.def global_clock, global, type = T_ULONG, size = 4

See also: .DIM

.DIM
DM <syol>, <nder>, <egyessiar> [, <exessiar] *

Create <number> auxiliary symbols, attached to <symbol>. Fill the auxilary symbols with the values
specified in <expression>. The expressions must result in byte sized values when evaluated or be strings.
The symbol must be a COFF symbol.

This directive will generate an error if the symbol already has auxiliary symbols. This prevents the
user from corrupting automatically generated symbols.

Each auxiliary symbol is 18 bytes. So the contents specified by the expressions must be less than or
equal to 18 * <number>.

gpasm does not use auxilary symbols. So the contents have no effect on its operation. However, the
contents may be used by gplink or a third party tool.

See also: .DEF

DIRECT
JRCT <comand>, <strrng>

CHAPTER 3. GPASM 42

Provides a mechanism for direct communication from the program to the debugging environment. This
method has no impact on the executable. The symbols will appear in both the COFF files and the COD
files.

Each directive creates a new COFF symbol “.direct”. An auxilary symbol is attached that contains
<command> and <string>. The string must be less than 256 bytes. The command must have a value 0
to 255. There are no restrictions on the content, however these messages must conform to the debugging
environment. The typical values are summarized in the table below:

| ASCII command | description |
a User defined assert
A Assembler/Compiler defined assert
e User defined emulator commands
E Assembler/Compiler defined emulator commands
f User defined printf
F Assembler/Compiler defined printf
1 User defined log command
L Assembler/Compiler/Code verification generated log command

The symbols also contain the address where the message was inserted into the assembly. The symbols,
with the final relocated addresses, are available in executable COFF. The symbols are also written to the
COD file. They can be viewed using gpvc.

See also: .DEF, .DIM

.EOF
Rio%

This directive causes an end of file symbol to be placed in the symbol table. Normally this symbol is
automatically generated. This directive allows the user to manually generate the symbol. The directive is
only processed if the “-g” command line option is used. When that option is used, the automatic symbol
generation is disabled.

See also: .EOF, .FILE, .LINE

FILE
JIE <string>

This directive causes a file symbol to be placed in the symbol table. Normally this symbol is automatically
generated. This directive allows the user to manually generate the symbol. The directive is only processed
if the “-g” command line option is used. When that option is used, the automatic symbol generation is
disabled.

See also: .EOF, .FILE, .LINE

CHAPTER 3. GPASM 43

JDENT
JOENT <strro

Creates an .ident COFF symbol and appends an auxiliary symbol. The auxiliary symbol points to an entry
in the string table. The entry contains <string>. It is an ASCII comment of any length. This symbol has
no impact on the operation of gputils. It is commonly used to store compiler versions.

See also: .DEF, .DIM

.LINE
INE <exoessiar>

This directive causes and COFF line number to be generated. Normally they are automatically generated.
This directive allows the user to manually generate the line numbers. The directive is only processed if the
“-g” command line option is used. When that option is used, the automatic symbol generation is disabled.
The <expression> is always evaluated as decimal regardless of the current radix setting.

See also: .EOF, .FILE, .LINE

.TYPE

TR <symol>, <exaessiay>

This directive modifies the COFF type of an existing <symbol>. The symbol must be defined. The type
must be 0 to Oxffff. Common types are defined in coff.inc.

COFF symbol types default to NULL in gpasm. Although the type has no impact linking or generating
an executable, it does help in the debug environment.

See also: .DEF

3.4 Instructions

CHAPTER 3. GPASM

3.4.1 Instruction set summary
12 bit Devices (PIC12C5XX)

| Syntax | Description
ADDLW <imm8> Add immediate to W
ADDWEF <f>,<dst> | Add W to <f>, result in <dst>
ANDLW <imm8> And W and literal, result in W
ANDWEF <f>,<dst> | And W and <f>, result in <dst>
BCF <f>,<bit> Clear <bit> of <f>
BSF <f>,<bit> Set <bit> of <f>

BTFSC <f>,<bit>

Skip next instruction if <bit> of <f> is clear

BTESS <f>,<bit>

Skip next instruction if <bit> of <f> is set

CALL <addr> Call subroutine

CLRF <f>,<dst> Write zero to <dst>

CLRW Write zero to W

CLRWDT Reset watchdog timer

COMF <f>,<dst> Complement <f>, result in <dst>
DECEF <f>,<dst> Decrement <f>, result in <dst>
DECFSZ <f>,<dst> | Decrement <f>, result in <dst>, skip if zero
GOTO <addr> Go to <addr>

INCF <f>,<dst> Increment <f>, result in <dst>
INCFSZ <f>,<dst> | Increment <f>, result in <dst>, skip if zero
IORLW <imm8> Or W and immediate

IORWF <f>,<dst> Or W and <f>, result in <dst>
MOVF <f>,<dst> Move <f> to <dst>

MOVLW <imm8> Move literal to W

MOVWEF <f> Move W to <f>

NOP No operation

OPTION

RETLW <imm8> Load W with immediate and return
RLF <f>,<dst> Rotate <f> left, result in <dst>

RRF <f>,<dst> Rotate <f> right, result in <dst>
SLEEP Enter sleep mode

SUBWEF <f>,<dst> | Subtract W from <f>, result in <dst>
SWAPF <f>,<dst> Swap nibbles of <f>, result in <dst>
TRIS

XORLW Xor W and immediate

XORWF

Xor W and <f>, result in <dst>

44

CHAPTER 3. GPASM

14 Bit Devices (PIC16CXX)

| Syntax | Description
ADDLW <imm8> Add immediate to W
ADDWEF <f>,<dst> | Add W to <f>, result in <dst>
ANDLW <imm8> And immediate to W
ANDWEF <f>,<dst> | And W and <f>, result in <dst>
BCF <f>,<bit> Clear <bit> of <f>
BSF <f>,<bit> Set <bit> of <f>

BTFSC <f>,<bit>

Skip next instruction if <bit> of <f> is clear

BTEFSS <f>,<bit>

Skip next instruction if <bit> of <f> is set

CALL <addr> Call subroutine

CLRF <f>,<dst> Write zero to <dst>

CLRW Write zero to W

CLRWDT Reset watchdog timer

COMF <f>,<dst> Complement <f>, result in <dst>
DECEF <f>,<dst> Decrement <f>, result in <dst>
DECFSZ <f>,<dst> | Decrement <f>, result in <dst>, skip if zero
GOTO <addr> Go to <addr>

INCF <f>,<dst> Increment <f>, result in <dst>
INCFSZ <f>,<dst> | Increment <f>, result in <dst>, skip if zero
IORLW <imm8> Or W and immediate

IORWF <f>,<dst> Or W and <f>, result in <dst>
MOVF <f>,<dst> Move <f> to <dst>

MOVLW <imm8> Move literal to W

MOVWEF <f> Move W to <f>

NOP No operation

OPTION

RETFIE Return from interrupt

RETLW <imm8> Load W with immediate and return
RETURN Return from subroutine

RLF <f>,<dst> Rotate <f> left, result in <dst>

RRF <f>,<dst> Rotate <f> right, result in <dst>
SLEEP Enter sleep mode

SUBLW Subtract W from literal

SUBWEF <f>,<dst> | Subtract W from <f>, result in <dst>
SWAPF <f>,<dst> Swap nibbles of <f>, result in <dst>
TRIS

XORLW Xor W and immediate

XORWF

Xor W and <f>, result in <dst>

45

CHAPTER 3. GPASM

Ubicom Processors

46

For Ubicom (Scenix) processors, the assembler supports the following instructions, in addition to those
listed under “12 Bit Devices” above.

| Syntax

| Description |

BANK <imm3>

IREAD

MODE <imm4>

MOVMW

MOVWM

PAGE <imm3>

RETI

RETIW

RETP

RETURN

Special macros

There are also a number of standard additional macros. These macros are:

| Syntax Description
ADDCEF <f>,<dst> | Add carry to <f>, result in <dst>
B <addr> Branch
BC <addr> Branch on carry
BZ <addr> Branch on zero
BNC <addr> Branch on no carry
BNZ <addr> Branch on not zero
CLRC Clear carry
CLRZ Clear zero
SETC Set carry
SETZ Set zero
MOVFW <f> Move file to W
NEGF <f> Negate <f>
SKPC Skip on carry
SKPZ Skip on zero
SKPNC Skip on no carry
SKPNZ Skip on not zero
SUBCEF <f>,<dst> | Subtract carry from <f>, result in <dst>
TSTF <f> Test <f>

3.5 Errors/Warnings/Messages

gpasm writes every error message to two locations:

e the standard error output

o the list file (“.Ist”)

CHAPTER 3. GPASM 47

The format of error messages is:
Frar <scfile> <> @ <coe> <descriptian>
where:

<src-file> is the source file where gpasm encountered the error
<line> is the line number
<code> is the 3-digit code for the error, given in the list below

<description> is a short description of the error. In some cases this contains further information about
the error.

Error messages are suitable for parsing by emacs’ “compilation mode”. This chapter lists the error mes-
sages that gpasm produces.

3.5.1 Errors
101 ERROR directive

A user-generated error. See the ERROR directive for more details.
114 Divide by zero

gpasm encountered a divide by zero.

115 Duplicate Label

Duplicate label or redefining a symbol that can not be redefined.
124 Tllegal Argument

gpasm encountered an illegal argument in an expression.

125 Illegal Condition

An illegal condition like a missing ENDIF or ENDW has been encountered.
126 Argument out of Range

The expression has an argument that was out of range.

127 Too many arguments

gpasm encountered an expression with too many arguments.

128 Missing argument(s)

gpasm encountered an expression with at least one missing argument.

CHAPTER 3. GPASM

129 Expected

Expected a certain type of argument.
130 Processor type previously defined
The processor is being redefined.

131 Undefined processor

The processor type has not been defined.

132 Unknown processor

The selected processor is not valid. Check the processors listed in section ??.

133 Hex file format INHX32 required
An address above 32K was specified.
135 Macro name missing

A macro was defined without a name.
136 Duplicate macro name

A macro name was duplicated.

145 Unmatched ENDM

ENDM found without a macro definition.
159 Odd number of FILL bytes

In PIC18CXX devices the number of bytes must be even.

3.5.2 Warnings
201 Symbol not previously defined.

The symbol being #undefined was not previously defined.
202 Argument out of range

The argument does not fit in the allocated space.

211 Extraneous arguments

Extra arguments were found on the line.

215 Processor superseded by command line

48

CHAPTER 3. GPASM 49

The processor was specified on the command line and in the source file. The command line has prece-
dence.

216 Radix superseded by command line
The radix was specified on the command line and in the source file. The command line has precedence.
217 Hex format superseded by command line

The hex file format was specified on the command line and in the source file. The command line has
precedence.

218 Expected DEC, OCT, HEX. Will use HEX.
gpasm encountered an invalid radix.
219 Invalid RAM location specified.

gpasm encountered an invalid RAM location as specified by the __ MAXRAM and __ BADRAM direc-
tives.

222 Error messages can not be disabled

Error messages can not be disabled using the ERRORLEVEL directive.
223 Redefining processor

The processor is being reselected by the LIST or PROCESSOR directive.
224 Use of this instruction is not recommanded

Use of the TRIS and OPTION instructions is not recommended for a PIC16CXX device.

3.5.3 Messages

301 User Message

User message, invoked with the MESSG directive.

303 Program word too large. Truncated to core size.

gpasm has encounter a program word larger than the core size of the selected device.
304 ID Locations value too large. Last four hex digits used.

The ID locations value specified is too large.

305 Using default destination of 1 (file).

No destination was specified so the default location was used.

308 Warning level superseded by command line

The warning level was specified on the command line and in the source file. The command line has
precedence.

309 Macro expansion superseded by command line

Macro expansion was specified on the command line and in the source file. The command line has
precedence.

Chapter 4

gplink

gplink relocates and links gpasm COFF objects and generates an absolute executable COFF.

4.1 Running gplink

The general syntax for running gplink is

oulirk [gedas] [dojcts] [lilxardes]
Where options can be one of:

| Option Meaning |

a Produce hex file in one of four formats: inhx8m, inhx8s, inhx16, inhx32
(the default)

c Output an executable object
d Display debug messages
f <value> Fill unused unprotected program memory with <value>
h Show the help message

I <directory>

Specify an include directory

Disable the list file output

m Output a map file

o <file> Alternate name of hex output file

q Quiet

r Attempt to relocate unshared data sections to shared memory if reloca-
tion fails

s <file> Specify linker script

-t <value> Create a stack section

v Print gplink version information and exit

50

CHAPTER 4. GPLINK 51

4.2 gplink outputs

gplink creates an absolute executable COFF. From this COFF a hex file and cod file are created. The
executable COFF is only written when the “-c¢” option is added. This file is useful for simulating the
design with mpsim. The cod file is used for simulating with gpsim.

gplink can also create a map file. The map file reports the final addresses gplink has assigned to the
COFF sections. This is the same data that can be viewed in the executable COFF with gpvo.

4.3 Linker scripts

gplink requires a linker script. This script tells gplink what memory is available in the target processor.
A set of Microchip generated scripts are installed with gputils. These scripts were intended as a starting
point, but for many applications they will work as is.

If the user does not specify a linker script, gplink will attempt to use the default script for the processor
reported in the object file. The default location of the scripts is reported in the gplink help message.

4.4 Stacks

gplink can create a stack section at link time using a stack directive in the linker script. The same feature
can be utilized with a -t option on the command line. gplink will create the section and two symbols.
_stack points to the beginning of the stack section and _stack_end points to the end.

Chapter 5

gplib

gplib creates, modifies and extracts COFF archives. This allows a related group of objects to be combined
into one file. Then this one file is passed to gplink.

5.1 Running gplib

The general syntax for running gplib is
galib [gooas] lbary [matder]

Where options can be one of:

Option | Meaning

Create a new library

Delete member from library

Show the help message

Don’t add the symbol index

Quiet mode

Add or replace member from library
List global symbols in libary

List member in library

Print gplib version information and exit
Extract member from library

M l<| e (m|lo|B |50

5.2 Creating an archive
The most common operation is to create a new archive:

glib - math.a milt.o ad.o sdb.o

52

CHAPTER 5. GPLIB 53

This command will create a new archive “math.a” that contains “mult.o add.o sub.o”.

The name of the archive “math.a” is arbitrary. The tools do not use the file extension to determine file
type. It could just as easily been “math.lib” or “math”.

When you use the library, simply add it to the list of object passed to gplink. gplink will scan the library
and only extract the archive members that are required to resolve external references. So the application
won’t necessarily contain the code of all the archive members.

5.3 Other gplib operations

Most of the other are useful , but will be used much less often. For example you can replace individual
archive members, but most people elect to delete the old archive and create a new one.

5.4 Archive format

The file format is a standard COFF archive. A header is added to each member and the unmodified object
is copied into the archive.

Being a standard archive they do include a symbol index. It provides a simple why to determine which
member should be extract to resolve external references. This index is not included in mplib archives. So
using gplib archives with Microchip Tools will probably cause problems unles the “-n” option is added
when the archive is created.

Chapter 6
Utilities

6.1 gpdasm

gpdasm is a disassembler for gputils. It converts hex files generated by gpasm and gplink into disassem-
bled instructions.

6.1.1 Running gpdasm

The general syntax for running gpdasm is
guban [gdias] hexfile

Where options can be one of:

| Option | Meaning
c Decode special mnemonics
h Display the help message
i Display hex file information
1 List supported processors
m Memory dump hex file
p<processor> | Select processor
S Print short form output
v Print gpdasm version information and exit
y Enable 18xx extended mode

gpdasm doesn’t specifically create an output file. It dumps its output to the screen. This helps to
reduce the risk that a good source file will be unintentionally overwritten. If you want to create an output
file and your shell is “sh”, “bash” or “ksh”, you can do something like:

gaban test.hex > test.dis

This redirects standard output to the file “test.dis”.

54

CHAPTER 6. UTILITIES 55

6.1.2 Comments on Disassembling

e The gpdasm only uses a hex file as an input. Because of this it has no way to distinguish between
instructions and data in program memory.

e If gpdasm encounters an unknown instruction it uses the DW directive and treats it as raw data.

o There are DON’T CARE bits in the instruction words. Normally, this isn’t a problem. It could be,
however, if a file with data in the program memory space is disassembled and then reassembled.
Example: gpdasm will treat 0x0060 in a 14 bit device as a NOP. If the output is then reassembled,
gpasm will assign a 0x0000 value. The value has changed and both tools are behaving correctly.

6.2 gpvc

gpvc is cod file viewer for gputils. It provides an easy way to view the contents of the cod files generated
by gpasm and gplink.

6.2.1 Running gpvc

The general syntax for running gpvc is

g [gddas] adAfile

Where options can be one of:

Option | Meaning

Display all information

Display directory header

Display symbols

Show the help message.

Display ROM

Display source listing

Display debug message area

Print gpvc version information and exit

<[B|T||F|e|&l*

gpve doesn’t specifically create an output file. It dumps its output to the screen. If you want to create
an output file and your shell is “sh”, “bash” or “ksh”, you can do something like:

g test.ad > test.dup

This redirects standard output to the file “test.dump”.

6.3 gpvo

gpvo is COFF object file viewer for gputils. It provides an easy way to view the contents of objects
generated by gpasm and gplink.

CHAPTER 6. UTILITIES 56

6.3.1 Running gpvo

The general syntax for running gpvo is

go [gas] dopctfile

Where options can be one of:

Option | Meaning

Binary data

Decode special mnemonics

File header

Show the help message

Suppress filenames

Section data

Symbol data

Print gpvo version information and exit
Enable 18xx extended mode

<< e |85 oo

gpvo doesn’t specifically create an output file. It dumps its output to the screen. If you want to create
an output file and your shell is “sh”, “bash” or “ksh”, you can do something like:

gwo test.doj > test.dnp

This redirects standard output to the file “test.dump”.

Index

.DEF, 41
.DIM, 41
.DIRECT, 41
.EOF, 42
.FILE, 42
IDENT, 43
.LINE, 43
.TYPE, 43

Archive format, 53
ASCII, 28

BADRAM, 31

BANKISEL, 31
BANKSEL, 32
bash, 25, 54-56

case, 24
CBLOCK, 32
character, 28
CODE, 32
comments, 25
CONFIG, 31
CONSTANT, 32

Creating an archive, 52

DA, 32
DATA, 33
DB, 33
DE, 33
DT, 33
DW, 33

ELSE, 33
END, 33
ENDC, 34
ENDIF, 34
ENDM, 34

57

ENDW, 34

EQU, 34

ERROR, 34

error file, 25
ERRORLEVEL, 35
EXITM, 35
EXTERN, 35

FILL, 35

GLOBAL, 36
GNU, 4

gpal options, 7
gpasm options, 23
gpdasm, 54

gpve, 55

gpvo, 55

hex file, 24

IDATA, 36
IDLOCS, 31
IF, 36
IFDEF, 36
IFNDEE, 36
include, 28

ksh, 25, 54-56

labels, 25
License, 4
LIST, 36
LOCAL, 37

MACRO, 37
make, 24
MAXRAM, 31
MESSG, 37

INDEX

NO WARRANTY, 4
NOEXPAND, 37
NOLIST, 38

operators, 25
ORG, 38
Other gplib operations, 53

PAGE, 38
PAGESEL, 38
PROCESSOR, 38

RADIX, 38

radix, 24, 27

RES, 39

Running gpdasm, 54
Running gplib, 52
Running gplink, 50
Running gpvc, 55
Running gpvo, 56

SET, 39

sh, 25, 54-56
SPACE, 39
SUBTITLE, 39

tee, 25
TITLE, 39

UDATA, 39

UDATA ACS, 40
UDATA OVR, 40
UDATA SHR, 40

VARIABLE, 40

WHILE, 40

58

