Writing GNUstep Makefiles

Nicola Pero n.pero@mi.flashnet.it

June 2000 AD

1 What is it

The GNUstep make package is aimed at providing a simple and automatic
way to manage compilation of GNUstep projects on different machines and
environments. Your project will remain completely portable to any platform
running GNUstep without the need to (explicitly) use complex packages such
as autoconf or automake.

2 A First Tool

Let’s try it out by making a little command line tool using the GNUstep make
package. Let’s start by creating a directory to hold our project. In this directory,
type the following extremely simple program in a file called say source.m.

#import <Foundation/Foundation.h>

int

main (void)

{
NSLog (@"Executing");
return O;

}

The function NSLog simply outputs the string to stderr, flushing the output
before continuing. To compile this little program as a command line tool called
LogTest, add in the same directory a file called GNUmakefile, with the following
contents:

include $(GNUSTEP_MAKEFILES)/common.make

TOOL_NAME = LogTest
LogTest_0OBJC_FILES = source.m

include $(GNUSTEP_MAKEFILES)/tool.make

And that’s it. At this point, you have all the usual standard GNU make options:
typically make, make clean, make install, make distclean. For example, typing
make in the project directory should compile our little tool. It should create a
single executable LogTest, and put it in the subdirectory



shared_obj/ix86/1linux-gnu/gnu-gnu-gnu-xgps

(or in a similar one, according to your system). To install the tool, simply
type make install; you usually need to be root to install the tool on a system
directory. If you want to have it installed in your own user GNUstep directory
(eg, /home/nicola/GNUstep), which doesn’t require you to be root and could
be a better place for testing, you just need to add the line

GNUSTEP_INSTALLATION_DIR = $(GNUSTEP_USER_ROOT)
after including common .make, as follows:

include $(GNUSTEP_MAKEFILES)/common.make
GNUSTEP_INSTALLATION_DIR = $(GNUSTEP_USER_ROQOT)

TOOL_NAME = LogTest
LogTest_0OBJC_FILES = source.m

include $(GNUSTEP_MAKEFILES)/tool.make

I usually do this when testing my own code and programs, and it is very handy.

3 Enabling Debugging

To compile this tool with debugging enabled, type in:
make debug=yes

This will create an executable with debugging symbols (i.e., compiled with the
-g option), useful for debugging it with gdb; it will also compile the tool using
the -DDEBUG compiler flag, which defines the preprocessor symbol DEBUG during
the compilation. In this way, you may isolate code to be executed only when
compiling with the debug option typically as follows:

#ifdef DEBUG
/* Code compiled in only when debug=yes */
#endif

The debugging executable will be placed in:
shared_debug_obj/ix86/1linux-gnu/gnu-gnu-gnu-xgps

this allows you to keep both the debugging and the not-debugging executables,
since they are in different trees. To install the debugging version, type make
debug=yes install (note: this will overwrite the not-debugging version, if
any, in the installation directory; only one can be installed at a time). To clean
the debugging version, type make debug=yes clean.

4 A first App

Let’s try now to compile an application. Modify our source file source.m to
read



#import <Foundation/Foundation.h>
#import <AppKit/AppKit.h>

int
main (void)
{

NSAutoreleasePool *pool;
pool = [NSAutoreleasePool new];
[NSApplication sharedApplication];

NSRunAlertPanel (@"Test", @"Hello from the GNUstep AppKit",
nil, nil, nil);

return 0;

}

(Ignore the autorelease pool code for now - we’ll cover autorelease pools in
detail later). The line containing sharedApplication initializes the GNUstep
GUI library; then, the following line runs an alert panel. To compile it, we
rewrite the GNUmakefile as follows:

include $(GNUSTEP_MAKEFILES)/common.make

APP_NAME = PanelTest
PanelTest_0OBJC_FILES = source.m

include $(GNUSTEP_MAKEFILES)/application.make

And that’s it. To compile, type in make. The result is slightly different from
a command line tool. When building an application, the application usually
has a set of resources (images, text files, sound files, bundles, etc) which comes
with the application. In the GNUstep framework, these resources are stored
with the application executable in an ’application directory’, named after the
application, with app appended. In this case, after compilation the directory
PanelTest.app should have been created. Our executable file is inside this
directory; but the correct way to run the executable is through the openapp
tool, in the following way:

openapp PanelTest.app

(openapp should be in your path; if it is not, you should check that GNUstep
is properly installed on your system).

5 Debugging an Application

Debugging an application is quite simple. You compile it with debugging en-
abled, as in

make debug=yes



The application directory is then created with a different name: debug is
appended instead of app (again, this allows you to keep both the debug and
not-debug versions at the same time). In the example, the application directory
would be called PanelTest .debug.

To debug the application, use debugapp instead of openapp:

debugapp PanelTest.debug

This will run gdb (the GNU debugger) on the executable setting everything
ready for debugging.

6 Preamble and Postamble

You may happen to need to pass additional flags to the compiler (in order to
link with additional libraries, for example) or to be willing to perform some
additional actions after compilation or installation. The standard way of doing
this is as follows: add a file called GNUmakefile.preamble to your project
directory. An example of a GNUmakefile.preamble is the following:

ADDITIONAL_OBJCFLAGS += -Wall

This simply adds the -Wall flag when compiling (by the way, it is good practice
to always use this flag). In general, you would use a GNUmakefile.preamble to
add any additional flags you need (to tell the compiler /linker to search additional
directories upon compiling/linking, to link with additional libraries, etc).

Now, you would want your GNUmakefile to include the contents of your
GNUmakefile.preamble before any processing. This is usually done as follows:

include $(GNUSTEP_MAKEFILES)/common.make

APP_NAME = PanelTest
PanelTest_0OBJC_FILES = source.m

include GNUmakefile.preamble
include $(GNUSTEP_MAKEFILES)/application.make

The most important thing to notice is that the GNUmakefile.preamble is
included before application.make. That is why is called a preamble.
Sometimes you also see people using

-include GNUmakefile.preamble

(with a hyphen, -, prepended). The hyphen before include tells the make tool
not to complain if the file GNUmakefile.preamble is not found. If you want to
make sure that the GNUmakefile.preamble is included, you should better not
use the hyphen.

If you want to perform any special operation after the GNUmakefile package
has done its work, you usually put them in a GNUmakefile.postamble file. The
GNUmakefile.postamble is included after application.make; that is why is
called a postamble:



include $(GNUSTEP_MAKEFILES)/common.make

APP_NAME = PanelTest
PanelTest_0OBJC_FILES = source.m

include GNUmakefile.preamble
include $(GNUSTEP_MAKEFILES)/application.make
include GNUmakefile.postamble

Here is a concrete example of a GNUmakefile.postamble:

after-install::
$ (MKDIRS) /home/nicola/Tools; \
cd $(GNUSTEP_OBJ_DIR); \
$(INSTALL) myTool /home/nicola/Tools;

(make sure you start each indented line with TAB). This will install the tool
myTool in the directory /home/nicola/Tools after compilation.

You rarely need to use GNUmakefile.postambles, and they were mentioned
mainly to give you a complete picture.

7 Further Reading

For further examples and information on GNUmakefiles, you may want to have
a look at the various test apps and tools in the GNUstep core library.



