
Basic GNUstep Base Library Classes

Nicola Pero n.pero@mi.flashnet.it

June 2000 AD

1 NSString

1.1 What is it

Instances of the NSString class represent strings composed of unicode charac-
ters. Unicode characters are described by a 16-bit integer; this type is called
unichar in GNUstep, but you will very rarely (if ever) need to work with it
directly. Unicode is a standard which supports the character sets of nearly all
human languages.

1.2 Static Instances

The easiest way to create a NSString is by creating a ‘static’ instance of it using
the @"..." construct. For example,

NSString *name = @"Nicola";

name will point then to a ‘static’ instance of NSString containing a unicode
representation of the ASCII string Nicola. A ‘static’ instance basically means
an instance which is allocated at compile time, whose instance variables are
fixed, and which can never be released.

1.3 stringWithFormat

The other main way of creating NSStrings is by means of the class method
+stringWithFormat:. This is a method of the class NSString; it accepts a
list of arguments which are processed in a way very similar to how the printf
function of the standard C library processes its arguments; the difference is that
the result of the method is not sent to the standard output, but rather it is put
in a NSString which is then returned as return value of the method.

Here is an example:

int age = 25;
NSString *message;

message = [NSString stringWithFormat: @"Your age is %d", age];

message will be a NSString containing ”Your age is 25”.
A special feature of stringWithFormat is that it recognises the %@ conversion

specification. You can use this to specify another NSString (in the same way
as you would use %s to specify another C string):

1



NSString *first;
NSString *second;

first = @"Nicola";
second = [NSString stringWithFormat: @"My name is %@", first];

this code will cause the second variable to be set to the string My name is
Nicola.

More generally, you can use the %@ specification to output a description of
an object (as returned by the NSObject’s -description). This is often useful
in debugging, as in:

NSObject *obj = [anObject someMethod];

NSLog (@"The method returned: %@", obj);

1.4 Converting to and from C strings

It is often useful to be able to create a NSString from a standard ASCII C
string (not fixed at compile time). Say for example that our program needs to
call a C library function

char *function (void);

which returns some useful information in a C string. We want to create a
NSString using the contents of the C string. The simplest way to do it is by
using the NSString’s class method +stringWithCString:, as follows:

char *result;
NSString *string;

result = function ();
string = [NSString stringWithCString: result];

Sometimes we need to do the reverse, i.e. to convert a NSString to a standard
C ASCII string. We can do it using the -cString method of the NSString
class, as in the following example:

char *result;
NSString *string;

string = @"Hello";
result = [string cString];

1.5 NSMutableString

NSStrings are immutable objects, that is, once you create an NSString, you
can not modify it. This allows the GNUstep libraries to optimise the NSString
code. If you need to be able to modify a string, you should use a special subclass
of NSString, called NSMutableString. Since NSMutableString is a subclass
of NSString, you can use a NSMutableString wherever a NSString could be
used. But, a NSMutableString responds to methods which allow you to modify
the string directly, a thing you can’t do with a generic NSString.

2



To create a NSMutableString, you can use +stringWithFormat:, as in the
following example:

NSString *name = @"Nicola";
NSMutableString *str;

str = [NSMutableString stringWithFormat: @"Hello, %@", name];

While NSString’s implementation of +stringWithFormat: returns a NSString,
NSMutableString’s implementation returns a NSMutableString. Static strings
created with the @"..." construct are always immutable.

In practice, NSMutableStrings are not used very often, because usually if
you want to modify a string you just create a new string derived from the one
you already have.

The most interesting method of the NSMutableString class is possibly the
method -appendString:. It takes as argument a NSString, and appends it to
the receiver.

For example, the following code:

NSString *name = @"Nicola";
NSString *greeting = @"Hello";
NSMutableString *s;

s = AUTORELEASE ([NSMutableString new]);
[s appendString: greeting];
[s appendString: @", "];
[s appendString: name];

(where we used new to create a new empty NSMutableString) produces the
same result as the following one:

NSString *name = @"Nicola";
NSString *greeting = @"Hello";
NSMutableString *s;

s = [NSMutableString stringWithFormat: @"%@, %@",
greeting, name];

1.6 Reading and Saving Strings to/from Files

We don’t have the time to describe all the string-related features of the GNUstep
base library; but it’s useful to have at least a quick look at how easy is writ-
ing/reading strings to/from files.

If you need to write the contents of a string into a file, you can use the
method -writeToFile:atomically:, as shown in the following example:

#include <Foundation/Foundation.h>

int
main (void)
{
NSAutoreleasePool *pool = [NSAutoreleasePool new];

3



NSString *name = @"This string was created by GNUstep";

if ([name writeToFile: @"/home/nico/testing" atomically: YES])
{
NSLog (@"Success");

}
else
{
NSLog (@"Failure");

}
return 0;

}

writeToFile:atomically returns YES upon success, and NO upon failure. If
the atomically flag is YES, then the library first writes the string into a file with
a temporary name, and, when the writing has been successfully done, renames
the file to the specified filename. This prevents erasing the previous version of
filename unless writing has been successful. Usually, this is a very good feature,
which you want to enable.

Reading the contents of a file into a string is easy too. You can simply
use +stringWithContentsOfFile:, as in the following example, which reads
@"/home/nicola/test":

#include <Foundation/Foundation.h>

int
main (void)
{

NSAutoreleasePool *pool = [NSAutoreleasePool new];
NSString *string;
NSString *filename = @"/home/nico/test";

string = [NSString stringWithContentsOfFile: filename];
if (string == nil)
{
NSLog (@"Problem reading file %@", filename);
// <missing code: do something to manage the error...>
// <exit perhaps ?>

}

/*
* <missing code: do something with string...>
*/

return 0;
}

4



2 NSArray

2.1 What is it

Instances of NSArray represent arrays of objects. That is, a NSArray is used to
store an ordered set of objects.

2.2 Comparison with Pure C Arrays

In a GNUstep tool or application, you can use pure C arrays as well, exactly
as you do in C. NSArrays have some advantages and disadvantages over pure
C arrays. The first advantage is that the programmer interface of NSArray is
slightly easier, which makes your code simpler to read, maintain and debug.
In particular, if you use arrays which can be modified (NSMutableArrays), the
GNUstep library shrinks or expands the array automatically for you as needed
when you add or remove objects, without you having to manually allocate or
resize the memory needed for the array. The second advantage of NSArrays is
that they provide facilities to do things which are not necessarily straightforward
to do with pure C arrays. In the last section of this tutorial we will be learning
about one of this facilities, the ability of saving an array of strings (and other
simple objects) into a plain text file, and automatically recreating the array by
reading the information from the file. The main disadvantage is that a NSArray
is slower than a pure C array, but you should not overestimate this problem,
which becomes important only when you need really fast code and have to
iterate over really big arrays. In most cases, using a C array or a NSArray does
not make any real difference on the performance; but of course there are cases
in which it does.

2.3 NSArrays are immutable

As in the case of strings, NSArrays are immutable; you can’t change them after
creation (this allows the GNUstep NSArray code to use some optimisations
which would be impossible otherwise). If you need an array that you can modify,
you can use a subclass of NSArray, called NSMutableArray. This happens quite
often, so we’ll discuss it in some details later on.

2.4 arrayWithObjects

To create an NSArray, you usually use the class method +arrayWithObjects:,
which takes as arguments a nil-terminated list of objects to put in the array:

NSArray *names;

names = [NSArray arrayWithObjects: @"Nicola", @"Margherita",
@"Luciano", @"Silvia", nil];

The last element in the list must be nil, to mark the end of the list. You can
put in the same array objects of different classes:

NSArray *objects;
NSButton *buttonOne;
NSButton *buttonTwo;

5



NSTextField *textField;

buttonOne = AUTORELEASE ([NSButton new]);
buttonTwo = AUTORELEASE ([NSButton new]);
textField = AUTORELEASE ([NSTextField new]);

objects = [NSArray arrayWithObjects: buttonOne, buttonTwo,
textField, nil];

but you can’t put nil inside an array. All objects in an array must be valid,
not-nil objects.

When an object is put in an array, the NSArray sends to it a -retain
message, to prevent it from being deallocated while it is still in the array. When
an object is removed from the array (because the array is a NSMutableArray so
objects can be removed from it, or because the array itself is deallocated), it is
sent a -release message.

2.5 Accessing Objects in a NSArray

To access an object in an NSArray, you use the -objectAtIndex: method, as
in the following example:

NSArray *numbers;
NSString *string;

numbers = [NSArray arrayWithObjects: @"One", @"Two", @"Three",
nil];

string = [numbers objectAtIndex: 2]; // @"Three"

Of course, you have to be careful not to ask for an object at an index which is
negative or bigger than the size of the array; if you do, an NSRangeException
is raised (we’ll learn more about exceptions in another tutorial).

To get the length of an array, you use the method -count, as in:

NSArray *numbers;
int i;

numbers = [NSArray arrayWithObjects: @"One", @"Two", @"Three",
nil];

i = [numbers count]; // 3

2.6 Describing an Array

It is sometime useful for debugging to have a look at what is stored inside
an NSArray. Nothing easier with the GNUstep base library: all methods and
functions taking format arguments (in the way +stringWithFormat: does)
recognise the conversion specification %@, which describes an object. So, to
describe the NSArray called array, you can just do:

NSLog (@"Array: %@", array);

For example, an array created with

6



NSArray *array;

array = [NSArray arrayWithObjects: @"Hi", @"Hello",
AUTORELEASE ([NSLock new]),
nil];

will be described by the previous NSLog call as:

Jun 08 08:50:38 Test[16808] Array: (Hi, Hello, <NSLock: 8081f98>)

You may note that it is not as easy to get a full description of a pure C
array.

2.7 Iterating over Array Elements

2.7.1 First Way - Using objectAtIndex

To iterate over the elements of an array, you may simply use a C-like approach,
as in the following debugging routine which prints out the description of all the
elements in an NSArray:

void
describeArray (NSArray *array)
{

int i, count;

count = [array count];
for (i = 0; i < count; i++)
{
NSLog (@"Object at index %d is: %@",

i, [array objectAtIndex: i]);
}

}

Of course, this code is in a certain sense useless, because you can just get the
complete description of the array in a single NSLog call, as shown in the previous
section; but it fulfils its purpose, which is to show a concrete example of how to
iterate on array elements.

2.7.2 Second Way - Using objectEnumerator

There is another very important way to iterate over the elements of an array,
and it is by using the -objectEnumerator method. This method returns an
object of class NSEnumerator, which can be used to enumerate the objects in
the array. The only real thing you need to know about NSEnumerator is that it
has a method called -nextObject. The first time you invoke it, it returns the
first object in the array. The second time you invoke it, it returns the second
element on the array, and so on till there are no more objects in the array; at
this point, the NSEnumerator returns nil. In the following example, the code
to describe an array is rewritten in this second way:

void
describeArray (NSArray *array)

7



{
NSEnumerator *enumerator;
NSObject *obj;

enumerator = [array objectEnumerator];

while ((obj = [enumerator nextObject]) != nil)
{
NSLog (@"Next Object is: %@", obj);

}
}

}

This second way is generally slightly faster than the first one but has a very im-
portant restriction: you should not modify the array (if it is a NSMutableArray)
while enumerating its elements in this way. Be careful about this problem, be-
cause it is easy to forget this condition - this would introduce subtle bugs.

2.8 Searching for an Object

If you want to check whether an NSArray contains a certain object or not, you
should use the -containsObject: method, as in the following example:

NSArray *array;

array = [NSArray arrayWithObjects: @"Nicola", @"Margherita",
@"Luciano", @"Silvia", nil];

if ([array containsObject: @"Nicola"]) // YES
{
// Do something

}

-containsObject: compares the objects using -isEqual:, which is usually
what you want: eg, two NSString objects containing the same UNICODE char-
acters would be considered equal, even if they are not the same object.

To get the index of an object, you can use -indexOfObject:, which returns
the index of the object (better, of an object equal to the argument), or the
constant NSNotFound if no object equal to the argument can be found in the
array, as in the following example:

NSArray *array;
int i, j;

array = [NSArray arrayWithObjects: @"Nicola", @"Margherita",
@"Luciano", @"Silvia", nil];

i = [array indexOfObject: @"Margherita"]) // 1
j = [array indexOfObject: @"Luca"]) // NSNotFound

8



2.9 NSMutableArray

If you need to add, remove or replace objects in an array, then you should use
a NSMutableArray. Generally, you create NSMutableArrays by simply using

NSMutableArray *array;

array = [NSMutableArray new];

(you then need to AUTORELEASE it if needed). This creates an NSMutableArray
containing no elements.

2.9.1 Adding an Object

To add an element at the end of the array, you can use addObject, as in:

NSMutableArray *array;

array = [NSMutableArray new];
[array addObject: anObject];

Assuming anObject is an NSObject (but not nil, remember, you can’t put a
nil object into an NSArray). As usual, anObject is RETAINed when it is added
to the array.

If you want to insert an object into an array at a certain position, you can
use insertObject:atIndex::

NSMutableArray *array;

array = [NSMutableArray new];
[array addObject: @"Michele"];
[array addObject: @"Nicola"];
[array insertObject: @"Alessia" atIndex: 1];

/* Now the array contains Michele, Alessia, Nicola. */

2.9.2 Removing an Object

To remove an object, you can use removeObjectAtIndex:, as in

NSMutableArray *array;

array = [NSMutableArray new];
[array addObject: @"Michele"];
[array addObject: @"Nicola"];
[array insertObject: @"Alessia" atIndex: 1];

/* Now the array contains Michele, Alessia, Nicola. */

[array removeObjectAtIndex: 0];

/* Now the array contains Alessia, Nicola. */

9



When an object is removed from the array, it receives a release message. This
balances the retain which was sent to the object when it was first added to the
array, and allows the object to be deallocated, if needed.

2.9.3 Replacing an Object

To replace an object, you can use replaceObjectAtIndex:withObject:, as in

NSMutableArray *array;

array = [NSMutableArray new];
[array addObject: @"Alessia"];
[array addObject: @"Michele"];

/* Now the array contains Alessia, Michele. */

[array replaceObjectAtIndex: 1 withObject: @"Nicola"];

/* Now the array contains Alessia, Nicola. */

The object which is removed from the array (because it is being replaced) re-
ceives a release message; the object which is added to the array (because it
replaces the other object) receives a retain message.

3 NSDictionary

3.1 What is it

An instance of NSDictionary contains a set of keys, and for each key, an asso-
ciate value. Both keys and values must be objects; the keys must all be different
from each other, and must not be nil; the values must not be nil.

An example of NSDictionary may be represented as follows:

{
Luca = "/opt/picture.png";
"Birthday Photo" = "/home/nico/birthday.png";
"Birthday Image" = "/home/nico/birthday.png";
"My Sister" = "/home/marghe/pic.jpg";

}

In this example, for each key (Luca, etc), which is a string (an image name),
there is associated a value (/opt/picture.png), which is a string (the full path
of the file containing the image). Note that different keys may have the same
values. In this case, the same actual graphic file can be accessed using two
different names.

In this example, all the objects were strings, but that not need be always
the case; keys and values may be arbitrary objects (and not necessarily of the
same class). A basic difference between NSArray and NSDictionary is that the
elements contained in an NSArray are lined up in a precise order, while the
couples key/value contained in a NSDictionary are not ordered at all. You
usually access an object in an array by specifying its position in the array (its

10



index); in a dictionary instead, you rather ask for the value associated with a
certain key. So, while arrays are useful to maintain an ordered list of objects,
dictionaries are useful to maintain mappings between certain keys and certain
values. In other contexts, dictionaries are called hash tables.

3.2 Creating a NSDictionary

To create a NSDictionary, you can use the method

+dictionaryWithObjectsAndKeys:

which takes as argument a list of objects (to be considered in couples; the
first one is the value, the second is the key); the list is terminated by nil.
The following example creates the dictionary used as example in the previous
section:

NSDictionary *dict;

dict = [NSDictionary dictionaryWithObjectsAndKeys:
@"/opt/picture.png", @"Luca",
@"/home/nico/birthday.png", @"Birthday Photo",
@"/home/nico/birthday.png", @"Birthday Image",
@"/home/marghe/pic.jpg", @"My Sister", nil];

Please note the the keys follow their values rather than preceding them.

3.3 Retrieving a value with objectForKey:

To retrieve the value associated with a given key, you may use the method
-objectForKey:, as in the following example:

NSDictionary *dict;
NSString *path;

dict = [NSDictionary dictionaryWithObjectsAndKeys:
@"/opt/picture.png", @"Luca",
@"/home/nico/birthday.png", @"Birthday Photo",
@"/home/nico/birthday.png", @"Birthday Image",
@"/home/marghe/pic.jpg", @"My Sister", nil];

// Following will set path to /home/nico/birthday.png
path = [dict objectForKey: @"Birthday Image"];

If the key is not in the dictionary, -objectForKey: will return nil, for example

// Following will set path to nil
path = [dict objectForKey: @"My Mother"];

(assuming dict is the one created in the previous example). In real life ap-
plications, in most cases you don’t know if the key is in the dictionary or not
until you try retrieving the value associated with it. In these cases, you need
to check the result of objectForKey: to make sure it’s not nil before using it.
For example, assuming that dict is a dictionary, you would normally do –

11



NSString *imageName = @"My Father";
NSString *path;

path = [dict objectForKey: imageName];

if (path == nil)
{
// This means the dictionary does not contain it
NSLog (@"Don’t know the path to the image ’%@’", imageName);

}
else
{
// Do something with path

}

This is also the standard way to check that a key is contained in a dictionary –
you call objectForKey: and compare the result with nil.

3.4 Enumerating all the Keys and Values

Sometime, you need to iterate over all the key/value pairs in a dictionary. To
do this, you use the method -allKeys to retrieve an array of all the keys in the
dictionary; this array contains all the keys, in no particular (ie random) order.
You can then cycle over this array, and for each key retrieve its value. The
following example prints out all the key-values in a dictionary:

void
describeDictionary (NSDictionary *dict)
{
NSArray *keys;
int i, count;
id key, value;

keys = [dict allKeys];
count = [keys count];
for (i = 0; i < count; i++)
{
key = [keys objectAtIndex: i];
value = [dict objectForKey: key];
NSLog (@"Key: %@ for value: %@", key, value);

}
}

As usual, this code is just an example of how to enumerate all the entries in a
dictionary; in real life, to get a description of a NSDictionary, you just do NSLog
(@"%@", myDictionary);.

3.5 NSMutableDictionary

An NSDictionary is immutable. If you need a dictionary which you can change,
then you should use NSMutableDictionary.

12



NSMutableDictionary is a subclass of NSDictionary, so that you can do
with an NSMutableDictionary everything which you can do with a simple
NSDictionary plus, you can modify it.

To set the value of a key in a dictionary, you can use -setObject:forKey:.
If the key is not yet in the dictionary, it is added with the given value. If the key
is already in the dictionary, its previous value is removed from the dictionary
(which has the important side-effect that it is sent a -release message), and
the new one is is put in its place (the new one receives a -retain message when
it is added, as usual). You should note that, while values are retained, keys are
instead copied.

So, if you use a NSMutableDictionary, you can create our usual dictionary
as follows:

NSMutableDictionary *dict;

dict = [NSMutableDictionary new];
AUTORELEASE (dict);
[dict setObject: @"/opt/picture.png"

forKey: @"Luca"];
[dict setObject: @"/home/nico/birthday.png"

forKey: @"Birthday Photo"];
[dict setObject: @"/home/nico/birthday.png"

forKey: @"Birthday Image"];
[dict setObject: @"/home/marghe/pic.jpg"

forKey: @"My Sister"];

To remove a key and its associated value, you can just use the method
-removeObjectForKey::

[dict removeObjectforKey: @"Luca"];

this will remove the key @"Luca" and its associated value from the mutable
dictionary.

4 Property Lists

As promised, in this last section we are going to have a quick look at a very
interesting feature of GNUstep: the support for property lists.

As we saw, it is very easy to save/read a string to/from a file. GNUstep
goes well beyond this. You can save/read any object to/from a file, using the
archiving/dearchiving facilities; these facilities are great, but save/read objects
in a binary format. For arrays and dictionaries containing only strings, GNUstep
provides other facilities (the ones we are interested on here) to save/read them
from files in a human-readable (and human-modifiable) format, called a property
list. Actually, the set of objects which you can save and read in this way is much
more general:

1. Any string can be saved/read as a property list.

2. Any array or dictionary containing only objects which can be saved/read
as a property list can be also saved/read as a property list.

13



In practice, any array or dictionary which contains other arrays and dictionaries
can be saved/read provided that in the end all the ’final’ objects are strings.

To save or read a dictionary or an array of the correct type, you write or
read them to/from file in the same way as you do with strings, that is, you
use the method -writeToFile:atomically: to write them to files, and the
method +dictionaryWithContentsOfFile: (for dictionaries) or the method
+arrayWithContentsOfFile: (for arrays) to read them from files.

For example, the following code creates a dictionary which is used to store,
for each person, some info; then it saves it to a file in the form of a property
list:

#include <Foundation/Foundation.h>

int
main (void)
{
NSAutoreleasePool *pool = [NSAutoreleasePool new];
NSMutableDictionary *dict;
NSDictionary *dict2;

dict = [NSMutableDictionary new];
AUTORELEASE (dict);

dict2 = [NSDictionary dictionaryWithObjectsAndKeys:
@"Nicola", @"Name",
@"Pero", @"Surname",
@"n.pero@mi.flashnet.it", @"Email", nil];

[dict setObject: dict2 forKey: @"Nicola"];

dict2 = [NSDictionary dictionaryWithObjectsAndKeys:
@"Ettore", @"Name",
@"Perazzoli", @"Surname",
@"ettore@helixcode.com", @"Email", nil];

[dict setObject: dict2 forKey: @"Ettore"];

dict2 = [NSDictionary dictionaryWithObjectsAndKeys:
@"Richard", @"Name",
@"Frith-Macdonald", @"Surname",
@"richard@brainstorm.co.uk", @"Email", nil];

[dict setObject: dict2 forKey: @"Richard"];

if ([dict writeToFile: @"/home/nico/testing" atomically: YES])
{
NSLog (@"Success");

}
else
{
NSLog (@"Failure");

}

14



return 0;
}

I tried it on my machine (I encourage you to do the same on yours) and it wrote
the following into my /home/nico/testing file:

{
Ettore = {

Email = "ettore@helixcode.com";
Name = Ettore;
Surname = Perazzoli;

};
Nicola = {

Email = "n.pero@mi.flashnet.it";
Name = Nicola;
Surname = Pero;

};
Richard = {

Email = "richard@brainstorm.co.uk";
Name = Richard;
Surname = "Frith-Macdonald";

};
}

As you see, it is a very simple format, and very nice to read and edit manually.
The ” (speech-marks) are used whenever a string contains spaces or special
characters; they are omitted for simple strings. Dictionaries are saved as in

{
Email = "richard@brainstorm.co.uk";
Name = Richard;
Surname = "Frith-Macdonald";

}

(Note that they use curly brackets, and each key/value pairs is followed by a
; (semicolon), even the last one). Arrays (not shown in the previous example)
are saved as in

(
"Nicola Pero",
"Ettore Perazzoli",
"Richard Frith-Macdonald"
)

(they use round brackets, and each entry is followed by a comma, except the
last one). You can find other examples of this format by looking inside your
/GNUstep directory.

One of the advantages of this format is that it is very general, but still very
portable and simple. It is so easy and simple (unless XML) that you can write a
complete parser/unparser for a new platform in one or two days.

Once you have saved the data to a file in the form of a property list, you
can easily retrieve it from the same file. The following code retrieves the data
from the file /home/nico/testing, and prints out the Email of Ettore:

15



#include <Foundation/Foundation.h>

int
main (void)
{
NSAutoreleasePool *pool = [NSAutoreleasePool new];
NSDictionary *dict;
NSDictionary *dict2;
NSString *email;

dict = [NSDictionary dictionaryWithContentsOfFile:
@"/home/nico/testing"];

dict2 = [dict objectForKey: @"Ettore"];
email = [dict2 objectForKey: @"Email"];

NSLog (@"Ettore’s Email is: %@", email);

return 0;
}

16


