
GNUstep Distributed Objects

Nicola Pero n.pero@mi.flashnet.it

January 2002 AD

1 What are Distributed Objects (DO)

In this tutorial we introduce the reader to the world of GNUstep Distributed Objects. GNUstep
Distributed Objects are a collection of facilities offered by the GNUstep base library which
allow communication between different processes running on the same machine or on different
machines on the same network. Distributed Objects might also be used for communicating
between different threads in the same application.

The basic idea in GNUstep Distributed Objects is that of extending normal object oriented
programming by allowing objects in different processes to transparently call methods of each
other. The low level details of how this interprocess messaging is done are normally hidden inside
the GNU Objective-C runtime and the GNUstep base library; this allows you to concentrate on
a higher level of abstraction, designing a distributed application as composed of many objects
running in different processes, and intercommunicating between them using messaging. GNUstep
Distributed Objects provide you support for implementing this type of designs easily, cleanly,
and very quickly. The resulting code is natural and readable, which reduces the effort required
to maintain and extend the distributed application.

In practice, because the Objective-C language has built in support for remote messaging, you
do not need to use any special syntax or any additional programming tools to send a remote
message – you can just do it with the same code you use to send a normal message. As a
consequence, GNUstep Distributed Objects are very simple and natural to use, and they fit very
easily and very elegantly in an object oriented framework.

The name “GNUstep Distributed Objects” is often abbreviated GNUstep DO. In this tutorial
we will be even more brief, and refer to them as DO.

2 A basic program to show files

We start our tutorial with a very basic non-DO program – a command line tool which accepts
a filename as an argument, reads this file from disk, and prints it out to stdout. For example,
typing

Example Client.m

should display the contents of the file Client.m. Once we have this basic example in place, in
the next sections we’ll use DO to extend its capabilities.

Our basic tool is the following one:

#include <Foundation/Foundation.h>

1

/* This object does the job of fetching a file from
the hard disk */

@interface FileReader : NSObject
- (NSString *)getFile: (NSString *)fileName;
@end

@implementation FileReader
- (NSString *)getFile: (NSString *)fileName
{
return [NSString stringWithContentsOfFile: fileName];

}
@end

int
main (void)
{
NSAutoreleasePool *pool;
NSArray *args;
int count;
FileReader *reader;
NSString *filename;
NSString *file;

pool = [NSAutoreleasePool new];

/* Create our FileReader object */
reader = [FileReader new];

/* Get program arguments */
args = [[NSProcessInfo processInfo] arguments];

/* the first string in args is the program name;
get the second one if any */

if ([args count] == 1)
{
NSLog (@"Error: you should specify a filename");
exit (1);

}

filename = [args objectAtIndex: 1];

/* Ask the reader object to get the file */
file = [reader getFile: filename];

/* If the reader object could get the file, show it */
if (file != nil)
{

2

printf ("%s\n", [file lossyCString]);
}

else
{
NSLog (@"Error: could not read file ‘%@’", filename);
exit (1);

}

return 0;
}

To compile the program, you need a GNUmakefile, such as the following one:

include $(GNUSTEP_MAKEFILES)/common.make

TOOL_NAME = Example
Example_OBJC_FILES = example.m

include $(GNUSTEP_MAKEFILES)/tool.make

3 Extending the program to deal with files on the network

Now we want to modify our little program to retrieve files from other machines on our network,
and display them on the local machine.

Looking again at the source code of our tool, we see that we have a main function which
parses the command line arguments, and then calls the getFile: method of a FileReader
object to read the file; then it displays it. With the help of a bit of magic, you could simply
run the FileReader object on the remote machine, and the main function on the local machine,
without changing your code. The main function would parse the command line arguments, and
then call the getFile: method of the FileReader object (running on the remote machine), and
the FileReader object would read the file and return it to the main function (which is running
on the local machine) as the return value of the getFile: method; the main function would
print it.

GNUstep Distributed Objects allow you to do this kind of magic: calling methods of remote
objects precisely as if they were normal local objects.

The design of our modified example will be a server/client design: we have a server, and a
client. The server will contain the FileReader object; the client will connect to the server, and
send the getFile: message to the FileReader object in the server, getting in return a string
containing the file contents.

4 The server

We put the source code for the server in the Server.m file. Basically, the server consists of the
FileReader class, plus a new main function, which creates an instance of FileReader and vends
it to the network, that is, it exposes it to the network, allowing other remote processes to call
its methods via GNUstep Distributed Objects. Then, the server enters into a run-loop waiting
for something to happen.

The code to vend the object to the network is quite simple: you get the defaultConnection
object:

3

NSConnection *conn = [NSConnection defaultConnection];

then you tell the connection which object you want to vend:

[conn setRootObject: reader];

and finally, you register it on the network with a certain name:

if (![conn registerName:@"FileReader"])
{
NSLog (@"Could not register us as FileReader");
exit (1);

}

the name is quite important – the client needs to know the name of the server to establish a
connection with it and access the vended object (which is the FileReader object in this case).

So, here is the full code for the server:

#include <Foundation/Foundation.h>

/* This object does the job of fetching a file from
the hard disk */

@interface FileReader : NSObject
- (NSString *)getFile: (NSString *)fileName;
@end

@implementation FileReader
- (NSString *)getFile: (NSString *)fileName
{
return [NSString stringWithContentsOfFile: fileName];

}
@end

int
main (void)
{
NSAutoreleasePool *pool;
FileReader *reader;
NSConnection *conn;

pool = [NSAutoreleasePool new];

/* Create our FileReader object */
reader = [FileReader new];

/* Get the default connection */
conn = [NSConnection defaultConnection];

/* Make the reader available to other processes */
[conn setRootObject: reader];

4

/* Register it with name ‘FileReader’ */
if (![conn registerName:@"FileReader"])
{
NSLog (@"Could not register us as FileReader");
exit (1);

}

NSLog (@"Server registered - waiting for connections...");

/* Now enter the run loop waiting forever for clients */
[[NSRunLoop currentRunLoop] run];

return 0;
}

5 The client

The client is implemented in the Client.m file; it is composed by the main function of the original
program, with some simple yet very interesting changes.

5.1 The FileReader protocol

Because the FileReader class is not compiled into the client (as we moved it into the server),
we can’t refer to the FileReader class in the client. And still, if we need to access the remote
FileReader object, we need a way to declare which methods it supports.

To manage this situation, we use a protocol. If you know Java, this is similar to an
interface in Java. A protocol declares some methods, leaving the implementation unspecified.
The language then allows you to declare that a certain object conforms to a certain protocol; this
means that the object implements the methods listed in the protocol. In our example, this allows
us to declare that we can send the getFile: method to the reader object, without actually
knowing the implementation of the method nor actually knowing the class of the reader object.

The declaration of the protocol is as follows:

@protocol FileReader
- (NSString *) getFile: (NSString *)fileName;
@end

This declares the protocol FileReader to have a single method, getFile:. Objects conform to
this protocol if and only if they have a getFile: method taking a NSString * argument, and
returning an NSString *.

The reader object, which we used to declare to be of class FileReader,

FileReader *reader;

is now declared more generically to conform to the FileReader protocol:

id <FileReader> reader;

id means a generic object; <FileReader> means that it must conform to the FileReader pro-
tocol; in this case this simply means that reader is an object and you can send the message
getFile: to it.

5

5.2 Accessing the remote FileReader object

To access the reader object, where we used to create it directly,

reader = [FileReader new];

we now ask the gnustep-base library to give us the object registered with the name FileReader
on a remote machine:

reader = (id <FileReader>)[NSConnection
rootProxyForConnectionWithRegisteredName: @"FileReader"
host: @"*"];

strictly speaking, reader is a local proxy to the remote object – but the whole thing is made
so that you can forget about this distinction, and think of reader simply as the remote object.
Using * for the host argument means that gnustep-base will look for an object registered with
name FileReader anywhere on the network; if you know the host on which you want to access
the FileReader object, you should better use your specific host name, such as localhost or
192.14.29.1.

We need a cast to id <FileReader> because the call to NSConnection returns a generic
object, while we know the FileReader object implements getFile:. A more robust applica-
tion could check at execution time that the remote object in the server actually can respond to
getFile: messages before doing the cast (for example by using the method respondsToSelector:);
we skip this little complication in this first example.

But we need to check that we have a real reader object – if it is nil, it is because for some
reason the gnustep-base library couldn’t connect to an object registered as FileReader on the
network. Usually this is because the server is not running; there is nothing we can do in the
client in these cases, so we simply print an error message and exit.

As promised, the rest of the function is unchanged; in particular, when we send the getFile:
method to the remote object, that starts a network connection to the server, and returns the
result – but the nice thing is that we don’t need to do anything special to perform this remote
call: we just call the method normally, as if the object were our old friendly local object.

Here is the source code:

#include <Foundation/Foundation.h>

/* This tells us how the reader object behaves */

@protocol FileReader
- (NSString *)getFile: (NSString *)fileName;
@end

int
main (void)
{
NSAutoreleasePool *pool;
NSArray *args;
int count;
id <FileReader> reader;
NSString *filename;
NSString *file;

6

pool = [NSAutoreleasePool new];

/* Create our FileReader object */
reader = (id <FileReader>)[NSConnection

rootProxyForConnectionWithRegisteredName:
@"FileReader"

host: @"*"];

if (reader == nil)
{
NSLog (@"Error: could not connect to server");
exit (1);

}

/* From now on the code is the same, whether reader is
in the local process or in a remote one */

/* Get program arguments */
args = [[NSProcessInfo processInfo] arguments];

/* the first string in args is the program name;
get the second one if any */

if ([args count] == 1)
{
NSLog (@"Error: you should specify a filename");
exit (1);

}

filename = [args objectAtIndex: 1];

/* Ask the reader object to get the file */
file = [reader getFile: filename];

/* If the reader object could get the file, show it */
if (file != nil)
{
printf ("%s\n", [file lossyCString]);

}
else
{
NSLog (@"Error: could not read file ‘%@’", filename);
exit (1);
}

return 0;
}

7

6 Putting them together

For the sake of completeness, here is the GNUmakefile:

include $(GNUSTEP_MAKEFILES)/common.make

TOOL_NAME = Server Client

Server_OBJC_FILES = Server.m
Client_OBJC_FILES = Client.m

include $(GNUSTEP_MAKEFILES)/tool.make

After you compile the two tools, you have definitely to play with them because it’s real fun.
Start the server:

./obj/Server

Now open another shell (on another machine on the same network if you are so lucky that you
can play on the network), and start the client from there:

./obj/Client Client.m

this should display you the Client.m file, as fetched by the Server program.
On my machine it works so simply, immediately and nicely that it is even difficult to realize

that the client has actually opened a network connection to the server, asked for the file, and the
server has sent it back through the connection! To get more feeling of what is happening,you
might want to modify the FileReader class in the server to display a log each time it sends a
file:

@implementation FileReader
- (NSString *)getFile: (NSString *)fileName
{
NSLog (@"A client asked for file %@", fileName);
return [NSString stringWithContentsOfFile: fileName];

}
@end

7 A modified client which accesses both local and remote
files

The previous sections introduced you to the black magic of DO: we replaced a local object with
a remote one, and we still called a method of the object in the usual way. We didn’t need to
use a special syntax to send messages to the remote object: we just did as if it still were our
old little object in the local process; the language and the libraries managed silently all the rest.
Now we want to push it even further: we do the replacement at execution time.

We want to extend the client so that it can access both local and remote files; it will decide
what to do depending on the command line arguments which are used to call it. When called
with a single argument, for example README,

Client README

8

it will display the file README from the local machine; when called with a filename and a host
name, for example README and didone.gnustep.it,

Client README didone.gnustep.it

it will display the file README fetched from the server running on the host called didone.gnustep.it.
The server is the same; we only change the client. We declare the usual FileReader protocol

because we now want to have a reader object which might be local or remote, and the only thing
we know is that we can send the getFile: message to it, which is expressed in Objective-C by
saying that the reader object conforms to the FileReader protocol.

Then, we implement a LocalFileReader class, which reads a file (from the local machine). I
called it LocalFileReader rather than FileReader to avoid confusion, but technically there is
nothing preventing you from calling it FileReader. It is the usual class, which implements the
facility of reading a local file. But the class declaration has an interesting modification:

@interface LocalFileReader : NSObject <FileReader>
- (NSString *)getFile: (NSString *)fileName;
@end

in this declaration, LocalFileReader inherits from NSObject, and conforms to the FileReader
protocol. We declare that the class implements the protocol because that allows us to cast any
LocalFileReader object to id <FileReader>.

When the client is run, it examines its arguments to decide whether it needs to create a local
or a remote reader object:

/* Get program arguments */
args = [[NSProcessInfo processInfo] arguments];

/* If there is a second argument, read it as a hostname
to fetch files from */

if ([args count] > 2)
{
NSString *host = [args objectAtIndex: 2];

/* Create our remote FileReader object */
reader = (id <FileReader>)
[NSConnection

rootProxyForConnectionWithRegisteredName: @"FileReader"
host: host];

if (reader == nil)
{
NSLog (@"Error: could not connect to server on host %@",

host);
exit (1);

}
}

else /* No second argument - read local file */
{
reader = [LocalFileReader new];

}

9

and that’s it; the code which follows is the usual one. Notice how both the remote and the local
object conform to the FileReader protocol, which makes it possible for the code to contact the
local and the remote object in an opaque way.

The full client source code is:

#include <Foundation/Foundation.h>

/* This tells us how the reader object behaves */

@protocol FileReader
- (NSString *)getFile: (NSString *)fileName;
@end

/* A local file reader conforms to the FileReader protocol
and reads files locally */

@interface LocalFileReader : NSObject <FileReader>
- (NSString *)getFile: (NSString *)fileName;
@end

@implementation LocalFileReader
- (NSString *)getFile: (NSString *)fileName
{
return [NSString stringWithContentsOfFile: fileName];

}
@end

int
main (void)
{
NSAutoreleasePool *pool;
NSArray *args;
int count;
id <FileReader> reader;
NSString *filename;
NSString *file;

pool = [NSAutoreleasePool new];

/* Get program arguments */
args = [[NSProcessInfo processInfo] arguments];

/* If there is a second argument, read it as a hostname
to fetch files from */

if ([args count] > 2)
{
NSString *host = [args objectAtIndex: 2];

/* Create our remote FileReader object */

10

reader = (id <FileReader>)
[NSConnection
rootProxyForConnectionWithRegisteredName:

@"FileReader"
host: host];

if (reader == nil)
{
NSLog
(@"Error: could not connect to server on host %@",
host);

exit (1);
}

}
else /* Local file */
{
reader = [LocalFileReader new];

}

/* From now on the code is the same, whether reader is
in the local process or in a remote one */

/* the first string in args is the program name;
get the second one if any */

if ([args count] == 1)
{
NSLog (@"Error: you should specify a filename");
exit (1);

}

filename = [args objectAtIndex: 1];

/* Ask the reader object to get the file */
file = [reader getFile: filename];

/* If the reader object could get the file, show it */
if (file != nil)
{
printf ("%s\n", [file lossyCString]);

}
else
{
NSLog (@"Error: could not read file ‘%@’", filename);
exit (1);
}

return 0;
}

NB: If you play with this client, and if you want to pass * as host name to have it look in all the

11

network, make sure you escape the * to prevent it being expanded by the shell:

./obj/Client Client.m *

At this point we probably need to say a few words about why and how this magic is possible.
In other words, it’s time for a bit of sane religious praise of our beloved Objective-C language
:-).

The whole magic is in the method invocation

file = [reader getFile: filename];

which invokes the method getFile: of the object reader, no matter if reader is a local or a
remote object; the type of the reader object is determined only at execution time, depending on
the command line arguments which were passed to the tool. The example is impressive because
it shows that the language allows you to replace any local object in your application with a
remote object at execution time, without recompiling or restarting your code, and everything
will still work, assuming of course that the remote object can respond to the methods the
local object could. This is possible because Objective-C provides dynamic binding of method
invocations, which means that the method invocation is bound to the method implementation
only at runtime. This allows many powerful object oriented designs which wouldn’t be possible
otherwise (Distributed Objects are an example of such a design); typically designs in which
objects are dynamically and cleanly replaced with other objects at runtime, or designs in which
an object encapsulates some functionality, but the actual class or implementation of the object
is not known till execution time.

Objective-C is the fastest language available which supports this kind of advanced object
oriented designs; Objective-C code is normally as fast as C because it is C code, except in
method invocations (which C doesn’t have) which on average take three times more than the
time required by a function invocation. It’s practically impossible for a fully object oriented
language to go faster than that; Objective-C performs nearly as fast as C++, but yet provides
you with dynamic binding and many other very advanced and flexible object oriented features
(such as categories, or access to the runtime internals) which C++ doesn’t provide. Some of
these features are missing even in Java.

8 Error checking - timeout exceptions

Up to now, this tutorial has ignored error checking; but to build robust applications, your code
needs to be able to manage problems in the network connections, both in the server and in the
client.

In this section we examine the simplest problem: when a problem occurs during invocation
of a remote method, typically a time-out on the network connection, and an exception is raised.
If your client code is to use remote objects in a robust way, you need to be prepared to catch
and manage these exceptions in the relevant sections of code.

A timeout means that your client sent the method invocation to the server, but it didn’t
get a response in a reasonable time. After waiting for 15 seconds (FIXME - this was the
old default for gnustep-base, it’s probably changed now), the gnustep base library raises a
NSPortTimeOutException, which you need to catch if you want to write robust code.

In our example, we need to catch exceptions thrown when getting the file from the FileReader:

NS_DURING
{

12

file = [reader getFile: filename];
}

NS_HANDLER
{
NSLog (@"Got exception while reading file: %@",

localException];
exit (1);

}
NS_ENDHANDLER

this example is not particularly brilliant because the only thing we do when we catch the exception
is printing out the description of the exception and quitting the program – which is the same
thing which the gnustep-base library does for us if we don’t catch the exception... but it should
give you a clear example of how to catch and manage timeouts.

9 Error checking - connection died

The other typical error which can occur is that a connection dies. As an example, suppose that
we had a modified client, in which we get a remote reader object, and then loop waiting for the
user to input a filename. When the user inputs a filename, we ask to the remote object to get
that file, and we print it out, then we go back into the loop waiting for the user to input another
filename.

In that situation, it might happen that the remote server is up and running, but at a certain
point, while we are in our loop waiting for the user to input a filename, the remote server becomes
unavailable (for example, because of a hardware crash, or because the network connection goes
down, or because the server crashed with a segmentation fault during some operation). If the
gnustep base library detects this problem, it invalidates the proxy to the remote object (which
in plain words means that the reader object is no longer useful, and you should no longer
use it), and posts the NSConnectionDidDieNotification notification. If we are observing that
notification, we can be informed immediately that this problem has occurred, and we might
manage it – we might want to exit the application immediately, or try to connect to another
server, or inform the user that because the remote server is down, we will only fetch files locally
till we can connect to the remote server again, or something else. In any case, the notification
gives us an opportunity to release our reader object – which is no longer useful because the
connection has died – and, if we want and if we can, to take some corrective measures. Here is
the simple code needed to observe the notification:

[[NSNotificationCenter defaultCenter]
addObserver: myObserver

selector: @selector(methodToExecuteWhenTheConnectionDies:)
name: NSConnectionDidDieNotification

object: [(NSDistantObject *)reader connectionForProxy]];

Calling this code after the reader object is created will cause the methodToExecuteWhenTheConnectionDies:
of the myObserver object to be called when the connection to the server goes down.

Here is an example Client.m code which you can use as a starting point for playing with
dying connections –

#include <Foundation/Foundation.h>

13

@protocol FileReader
- (NSString *)getFile: (NSString *)fileName;
@end

@interface Observer : NSObject
- (void)connectionDied: (NSNotification *)not;
@end

@implementation Observer
- (void)connectionDied: (NSNotification *)not
{
NSLog (@"Connection to server died! - exiting");
exit (1);

}
@end

int
main (void)
{
NSAutoreleasePool *pool;
NSArray *args;
int count;
id <FileReader> reader;
NSString *filename;
NSString *file;

pool = [NSAutoreleasePool new];

/* Get program arguments */
args = [[NSProcessInfo processInfo] arguments];

/* Create our remote FileReader object */
reader = (id <FileReader>)
[NSConnection
rootProxyForConnectionWithRegisteredName: @"FileReader"
host: @"*"];

if (reader == nil)
{
NSLog (@"Error - could not connect to FileReader Server");
exit (1);

}
else
{
NSLog (@"Connected");

}

14

/* Register Observer -connectionDied: to be informed if the connection
to the server dies. */

[[NSNotificationCenter defaultCenter]
addObserver: [Observer new]
selector: @selector(connectionDied:)
name: NSConnectionDidDieNotification
object: [(NSDistantObject *)reader connectionForProxy]];

/* Ok - now we enter the main run loop. In this example, we just do
nothing in the main run loop as I’m too lazy to code it to do
something -- but you should imagine that this is a server doing
a lot of stuff in the run loop, and using the ’reader’ to fetch
files from the remote server when its activity in the run loop
requires it. */

[[NSRunLoop currentRunLoop] run];

return 0;
}

You can play by running the server in an xterm, then running the client in another xterm, then
killing the server in the first xterm (for example by pressing Control-C): the client in the second
xterm should be immediately notified that the connection to the server is dead!

10 For further information

This tutorial introduced you to the basics of Distributed Objects, but there are many more
interesting things to explore. A good starting point for more fun with distributed objects is the
NSConnection documentation. A very complete (but maybe quite complex) example is the gdnc
tool in the gnustep base library Tools directory.

15

