More on GNUstep Makefiles

Nicola Pero n.pero@mi.flashnet.it

November 2000 AD

1 Introduction

In this tutorial we will learn something more about the GNUstep makefile pack-
age. We will cover libraries, and aggregate projects.

2 Libraries

2.1 Compiling A Library

We start with a very simple example of a library. Our tiny library will contain
a single class, called HelloWorld, which has a method to print out a nice string.

The library has only one header file (called HelloWorld.h), which is the
following:

#ifndef _HELLOWORLD_H_
#define _HELLOWORLD_H_

#include <Foundation/Foundation.h>

Q@interface HelloWorld : NSObject
+ (void) printMessage;
Q@end

#endif /* _HELLOWORLD_H_ */

(This header file quite simply says that HelloWorld is a subclass of NSObject,
and implements a single class method printMessage [a class method is what
in java would be called a static method]; the #ifdefs are the standard way of
protecting a C header file from multiple inclusions).

The source code of our class is in the file HelloWorld.m, and is the following:

#include "HelloWorld.h"

@implementation HelloWorld
+ (void) printMessage
{

printf ("Hello World!\n");
}
@end



(This implements the printMessage class method for the class HelloWorld,
and all what this method does is printing out Hello World!.)
To compile our library, we create a GNUmakefile as follows:

include $(GNUSTEP_MAKEFILES)/common.make

LIBRARY_NAME = libHelloWorld

libHelloWor1ld _HEADER_FILES = HelloWorld.h
libHelloWorld_HEADER_FILES_INSTALL_DIR = /HelloWorld
libHelloWor1ld _OBJC_FILES = HelloWorld.m

include $(GNUSTEP_MAKEFILES)/library.make

The main differences with the GNUmakefile for a tool or an application are
that we include 1library.make instead of tool.make or application.make, and
that we set the xxx HEADER FILES variable to tell the make system which are
the library header files. This is quite important because the header files will be
installed with the library when the library is installed.

In order to do things cleanly, each library should install its headers in a dif-
ferent directory, so headers from different libraries don’t get mixed and confused;
this is why we specify that our header file has to be installed in a HelloWorld
directory:

libHelloWorld_HEADER_FILES_INSTALL_DIR = /HelloWorld

(the / at the beginning is only for compatibility with older versions of gnustep-
make, you can omit with newer ones). As a consequence, an application or a
tool which needs to use the library will include the header file by using

#include "HelloWorld/HelloWorld.h"

because we have installed it into the HelloWorld directory.
As usual, to compile type make and to install type make install.

2.2 Debugging version of a library

You can also make a debug version of the library, by using make debug=yes.
The debugging version of a library has _d automatically appended; for exam-
ple, when compiling 1ibHelloWorld with debugging enabled, you would get a
library called 1ibHelloWorld d. You can install both the debugging and the
not-debugging versions of a library at the same time.

2.3 Linking your app or tool against a GNUstep library

In our first example, we want to write a tiny tool which uses our 1ibHelloWorld.
The tool source code is in the file main.m, which is the following:

#include <Foundation/Foundation.h>
#include <HelloWorld/HelloWorld.h>

int main (void)
{
[HelloWorld printMessage];



return O;

}

(We invoke the printMessage method of the HelloWorld class, then exit.).
We write our usual GNUmakefile (but including GNUmakefile.preamble):

include $(GNUSTEP_MAKEFILES)/common.make

TOOL_NAME = HelloWorldTest
HelloWorldTest_OBJC_FILES = main.m

include GNUmakefile.preamble
include $(GNUSTEP_MAKEFILES)/tool.make

Then, here is the GNUmakefile.preamble, in which we tell the make package
about the library we want to link against:

HelloWorldTest_TOOL_LIBS += -1HelloWorld

If you have correctly installed the library HelloWorld, this is all you need
to do. If you needed to link against more than one library, you would simply
put them on the same line, as in:

HelloWorldTest_TOOL_LIBS += -1HelloWorld -1HelloMoon

which links against the two libraries HelloWorld and HelloMoon.
If HelloWorld were an application, you would need to use

HelloWorldTest_GUI_LIBS += -1HelloWorld

(the difference is GUI instead of TOOL).

2.4 Debugging

If you compile your tool or application with debugging enabled, the make pack-
age will automatically search for debugging libraries. For example, if you com-
pile our HelloWorldTest with debugging enabled, it will automatically add _d
at the end of each library name, thus linking against HelloWorld_d and not
against HelloWorld.

2.5 Linking against an external library

If the library you want to link against is not a GNUstep library (ie, not managed
by the GNUstep make package), for example a C library you get from an external
source, you need to tell the GNUstep make package where the library can be
found. In this case, your GNUmakefile.preamble would look something like the
following:

HelloWorldTest_TOOL_LIBS += -1Nicola
HelloWorldTest_INCLUDE_DIRS += -I/opt/nicola/include/
HelloWorldTest_LIB_DIRS += -L/opt/nicola/libs/

where I am linking against the library libNicola, which is in the directory
/opt/nicola/libs/ and whose headers are in /opt/nicola/include/.



2.6 Linking a library against another library

You might need to build a shared library (for example called libNicola) which
depends on another library (for example on libHelloWorld), and requiring the
other library to be loaded automatically whenever your library is. We say that
your library (libNicola) depends on the other one (libHelloWorld).

This case is quite simple - you write a usual GNUmakefile for your library:

include $(GNUSTEP_MAKEFILES)/common.make

LIBRARY_NAME = 1libNicola
libNicola_OBJC_FILES = two.m

include GNUmakefile.preamble
include $(GNUSTEP_MAKEFILES)/library.make

and add a GNUmakefile.preamble in which you tell the make package that this
library depends on the library libHelloWorld:

1ibNicola_LIBRARIES_DEPEND_UPON += -1HelloWorld

3 Aggregate projects

A nice feature of the GNUstep make package is the support for aggregate
projects.

As an example, suppose that you are writing a networked game. Your source
code will probably contain two different subprojects: a gui application (the client
application game) and a command line tool (the server). The server keeps the
game map, and any information on the current state of the game; it allows to
save, load, reset a game; to set game options. To play, the players will start a
client each, and use it to connect to the server from machines on the network,
and play against each other. The server is a command line tool, while the
client application is a nice user-friendly gui application with lots of images and
mouse actions. Naturally enough, you want to develop and distribute the two
subprojects together. This is where GNUstep subprojects come handy.

Imagine that your game is called MyGame. You will have a top-level directory

MyGame
and two subdirectories

MyGame/Server
MyGame/Client

In MyGame/Server you keep the source code of your server tool, with its own
GNUmakefile. In MyGame/Client you keep the source code of your client appli-
cation, with its own GNUmakefile.

You can now you add the following GNUmakefile in the top-level directory:

include $(GNUSTEP_MAKEFILES)/common.make

PACKAGE_NAME = MyGame



SUBPROJECTS = Server Client

include $(GNUSTEP_MAKEFILES)/aggregate.make

This GNUmakefile simply tells to the make package that your project has two
subprojects, Server, and Client. Please note that the make package follows
the order you specify, so in this case Server is always compiled before Client
(this could be important if one of your subprojects is a library, and another
subproject is an application which needs to be linked against that library: then,
you always want the library to be compiled before the application, so the library
should come before the application in the list of subprojects).

In this example, we have two subprojects, but you can have any number of
subprojects.

At this point you are ready. For example, typing

make debug=yes

in the top-level directory will cause the make package to step into the Server
subdirectory, and run make debug=yes there, and then step into the Client
subdirectory, and run make debug=yes there.

The same will work with all the standard make commands, such as make
clean, make distclean, make install etc.

Subprojects can be nested, so that for example the Server project could be
itself composed of subprojects.



