
First Steps in GNUstep GUI Programming:

NSApplication, NSMenu

Nicola Pero n.pero@mi.flashnet.it

July 2000 AD

This tutorial will introduce you to using NSApplication and NSMenu. Warn-
ing: You need GNUstep core libraries version 0.6.6 or later to try out the ex-
amples.

1 The shared application object

1.1 Creating the shared NSApplication instance

The class NSApplication, provided by the GNUstep GUI library, represents a
gui application. Each gui application has one (and only one) instance of this
class, which is shared by all the code; it keeps tracks of all the application win-
dows and panels, and manages the application’s run loop. You access this shared
instance by calling the +sharedApplication method of NSApplication, which
creates the instance of NSApplication representing your app the first time it
is invoked, and returns the previously created instance when called again. Cre-
ating the shared application is very important, because when it is first created
the gui library initializes the gnustep backend; in other words, you need to cre-
ate the shared application object before doing anything at all with the gui or
backend (xgps/xdps) library. So, we will start our first gui application with the
code:

NSApplication *myApplication;

myApplication = [NSApplication sharedApplication];

An interesting thing to know is that, after you have created an NSApplication
shared instance for your app, you can access it simply through the global variable
NSApp. So, many people simply discard the result of +sharedApplication, and
start their apps as follows:

/* The following line creates the shared application instance */
[NSApplication sharedApplication];

/* Then, use NSApp to access NSApplication’s shared instance */

1



1.2 Setting a delegate for the shared NSApplication in-
stance

Once you have learnt how to create your application’s shared instance, the
fastest way to develop an application is to set a delegate for your shared appli-
cation object. This is done by using the method -setDelegate:, as follows:

id myObject;

// <missing: create myObject>
[NSApp setDelegate: myObject];

A delegate is an object of your choice which can customize the behaviour of
your application by implementing some (predefined) methods. For example, if
you want your application to display a menu (all apps should), you just need to
implement in the delegate a method called

- (void) applicationWillFinishLaunching: (NSNotification *)not;

(ignore the argument for now) and put the code to create the menu inside this
method. Your shared application will check if the delegate of your choice has
implemented this method, and if so it will run the method just before entering
the main run loop. The documentation of NSApplication lists all the other
methods the delegate can implement to customize your application’s behaviour;
we’ll learn about some of them in other tutorials.

After you set the delegate of your application object, you need to run your
application; to do this, just invoke the function NSApplicationMain (), which
does all for you.

To sum up, here is the code we are going to use:

#include <Foundation/Foundation.h>
#include <AppKit/AppKit.h>

@interface MyDelegate : NSObject
- (void) applicationWillFinishLaunching: (NSNotification *)not;
@end

@implementation MyDelegate
- (void) applicationWillFinishLaunching: (NSNotification *)not
{
// TODO - Create the menu here.

}
@end

int main (int argc, const char **argv)
{
[NSApplication sharedApplication];
[NSApp setDelegate: [MyDelegate new]];

return NSApplicationMain (argc, argv);
}

2



1.3 The run loop of your application

When you call NSApplicationMain (), the GUI library “runs” your applica-
tion. When the application is running, the GUI library simply enters a loop
waiting for events from the user (such as the user clicking on a window, on a
menu, or on the application icon). It creates an autorelease pool at the begin-
ning of each loop, and empties it at the end; this means you don’t have to worry
about manually creating and emptying autorelease pools in your gui application
once it is running.

Of course, if you run an application without having created any windows
or menus, the application will wait indefinitely since the user has no means of
communicating with it.

1.4 Terminating your application

Whenever you want to terminate your application, you can do:

[NSApp terminate: nil];

This is usually done when the user selects the Quit entry in the main menu.
When you terminate your application, the gui library quits the run loop and
exits the program.

Btw, the argument of terminate: is of no importance, so we can pass any
argument (nil in this case); the only reason why this method takes an object
as argument is that it can then be set as the action of a gui control (discussed
below).

2 Setting your application’s icon

To set an icon for your app, you just need to define in your GNUmakefile the
variable xxx APPLICATION ICON, where xxx is the name of your application. For
example, if we put the source code for our application shown before (still to be
completed though) in the file MyApp.m, and the application icon in MyApp.png,
the GNUmakefile could be as follows:

include $(GNUSTEP_MAKEFILES)/common.make

APP_NAME = MyApplication
MyApplication_APPLICATION_ICON = MyApp.png
MyApplication_RESOURCE_FILES = MyApp.png
MyApplication_OBJC_FILES = MyApp.m

include $(GNUSTEP_MAKEFILES)/application.make

Please note that you need to list the image in the resource files because you
want it to be installed in the application directory (otherwise it can’t be found
by the app at run-time).

3 Menus

We are now going to add a menu to our tutorial application.

3



3.1 Creating a Menu

An NSMenu object represents a menu. You create a new menu simply with:

NSMenu *menu;

menu = AUTORELEASE ([NSMenu new]);

This is an empty menu. To add items to it, you do as follows:

[menu addItemWithTitle: @"Quit"
action: @selector (terminate:)
keyEquivalent: @"q"];

This adds to the menu menu an entry with title Quit (the title is the string
which is displayed to the user). It’s interesting to know that the method

addItemWithTitle:action:keyEquivalent:

actually returns a NSMenuItem object, which is the menu item object which was
added to the menu. We don’t need this return value in this example, so we
discard it. Later on, we will need it.

3.1.1 Action and Target

A menu item behaves as most controls in the GNUstep gui library: it has an
action and a target. The typical example of such a control is a button. Say, for
example, that you have created a button called myButton. You want something
to happen when the user clicks on the button - to do it, you need to specify
an action and a target for the button. For example, if you want the method
terminate: of NSApp (the application shared object) to be invoked when the
user clicks the button, you do as follows:

NSButton *myButton;
id myObject;

// <missing code: create myButton, myObject etc>

[myButton setAction: @selector (terminate:)];
[myButton setTarget: NSApp];

When the user presses myButton, the gui library sends the terminate: message
to the object NSApp, passing as argument myButton, executing the equivalent
of the following code:

[NSApp terminate: myButton];

This way, when the user clicks the button, the application quits.
The button which was clicked is passed as an argument to the action so

that the receiving object can determine (if needed) which button was actually
pressed, so that the same method may be used for more than one button. In
our case, NSApp simply discards the argument of terminate:.

In brief, the action is the method to be invoked when the user clicks on the
button; the target is the object on which to invoke the method. action should

4



be a selector for a method returning void and taking a single argument (of type
id, a generic object). The button which was clicked is passed as an argument
to the invocation of action on the target.

The case of a menu item is completely similar. When the user selects this
menu item, the gui library performs the menu item action (terminate: in this
case) on the menu item target. The argument passed to terminate: is the
menu item which was selected.

Usually, no target is specified for a menu item, as in our code

[menu addItemWithTitle: @"Quit"
action: @selector (terminate:)
keyEquivalent: @"q"];

which only specifies that the action is terminate:. When no target is specified,
the gui library tries to determine an appropriate target dynamically at run-time.
For now the only important thing to know is that the gui library will try to send
the action to certain objects (roughly, the objects inside a window which have
the input focus) and, failing these objects, it will try to send the action to NSApp,
and as a last resort to NSApp’s delegate. In our example, we want the action
terminate: to be sent to NSApp (thus terminating the application when the
user selects the Quit menu item), so this automatic mechanism works just fine
for us (actually, you will soon discover that this automatic mechanism works
fine extremely often). So, we don’t need to set explicitly a target for our menu
item.

3.2 Setting the Application Menu

Once you have created an NSMenu called, say, myMenu, to set it as the application
menu you just invoke:

[NSApp setMainMenu: myMenu];

3.3 Our First Application

We are ready now to create our first gui application:

#include <Foundation/Foundation.h>
#include <AppKit/AppKit.h>

@interface MyDelegate : NSObject
- (void) applicationWillFinishLaunching: (NSNotification *)not;
@end

@implementation MyDelegate : NSObject
- (void) applicationWillFinishLaunching: (NSNotification *)not
{
NSMenu *menu;

menu = AUTORELEASE ([NSMenu new]);
[menu addItemWithTitle: @"Quit"

action: @selector (terminate:)

5



keyEquivalent: @"q"];
[NSApp setMainMenu: menu];

}
@end

int main (int argc, const char **argv)
{
[NSApplication sharedApplication];
[NSApp setDelegate: [MyDelegate new]];

return NSApplicationMain (argc, argv);
}

Put this code for example into a file called MyApp.m, and use the following
GNUmakefile for it:

include $(GNUSTEP_MAKEFILES)/common.make

APP_NAME = MyFirstApp
MyFirstApp_OBJC_FILES = MyApp.m

# Uncomment the following if you have an icon
#MyFirstApp_APPLICATION_ICON = MyApp.png
#MyFirstApp_RESOURCE_FILES = MyApp.png

include $(GNUSTEP_MAKEFILES)/application.make

Compile it, then run it using openapp MyFirstApplication.app (see the GNU-
makefile mini-tutorial for further information on writing GNUmakefiles).

3.4 Fun with NSMenuItem’s target

The next step in our tutorial is to add to the menu an item which prints Hello!
to the user when the user selects the item.

So, we add a new menu item to our menu, invoking the printHello: action
(which we’ll implement in our custom object):

[menu addItemWithTitle: @"Print Hello"
action: @selector (printHello:)
keyEquivalent: @"h"];

Since our custom object is the application’s delegate, we don’t need to set
explicitly the target: the library can determine it at run-time. In other cases it
could be necessary to set a different target, as in:

NSMenuItem *menuItem;
id myObject;

// <missing code: create myObject etc>

menuItem = [menu addItemWithTitle: @"Print Hello"
action: @selector (printHello:)

6



keyEquivalent: @"h"];
[menuItem setTarget: myObject];

But in this case, we don’t need to set the target explicitly, and the code is
simply:

#include <Foundation/Foundation.h>
#include <AppKit/AppKit.h>

@interface MyDelegate : NSObject
- (void) printHello: (id)sender;
- (void) applicationWillFinishLaunching: (NSNotification *)not;
@end

@implementation MyDelegate : NSObject
- (void) printHello: (id)sender
{
printf ("Hello!\n");

}

- (void) applicationWillFinishLaunching: (NSNotification *)not
{
NSMenu *menu;

menu = AUTORELEASE ([NSMenu new]);

[menu addItemWithTitle: @"Print Hello"
action: @selector (printHello:)
keyEquivalent: @""];

[menu addItemWithTitle: @"Quit"
action: @selector (terminate:)
keyEquivalent: @"q"];

[NSApp setMainMenu: menu];
}
@end

int main (int argc, const char **argv)
{
[NSApplication sharedApplication];
[NSApp setDelegate: [MyDelegate new]];

return NSApplicationMain (argc, argv);
}

The GNUmakefile is the same. I hope you appreciate how easy and simple is
coding in GNUstep; I encourage you to try it out and enjoy all the fun you of
selecting the Print Hello menu item and see the program print out Hello!.

7



3.5 Creating sub-menus

Creating sub-menus is quite easy. For example, to add an Info... sub-menu
to your main application menu, you first create a menu representing it:

NSMenu *infoMenu;

infoMenu = AUTORELEASE ([NSMenu new]);
[infoMenu addItemWithTitle: @"Info Panel..."

action: @selector (orderFrontStandardInfoPanel:)
keyEquivalent: @""];

[infoMenu addItemWithTitle: @"Help..."
action: @selector (orderFrontHelpPanel:)
keyEquivalent: @"?"];

Then, you create an item in the main menu for your info menu, but instead
of setting an action and a target for that item, you set the infoMenu as the
sub-menu corresponding to that item:

NSMenuItem *menuItem;

menuItem = [menu addItemWithTitle: @"Info..."
action: NULL
keyEquivalent: @""];

[menu setSubmenu: infoMenu forItem: menuItem];

3.6 Creating a standard info panel

You may have noticed that in our previous example with the Info... sub-
menu, we have used orderFrontStandardInfoPanel: as the action for the
Info menu entry. The Info menu entry is usually supposed to display an “Info
Panel” (also called “About Panel” on Microsoft Windows), with the title of
the program, the version, the author, the copyright info. In this case, we use
orderFrontStandardInfoPanel:, which is implemented by NSApplication (it
is a GNUstep extension), and which displays a standard info panel. The infor-
mation on what to display in the panel is taken from the Info-gnustep.plist
file in the application’s main bundle. This file is created automatically for you
at compile time by the GNUstep make system; but you can insert your own
entries in this file as follows.

If your application name is, for example, MyFirstApp, then you need to
create a file called MyFirstAppInfo.plist in your source directory (you do not
need to add anything to your GNUmakefile; the make system looks for this file
automatically). Here is an example of such a file:

{
ApplicationName = "My First Application";
ApplicationDescription = "An Example of how to use NSMenu";
ApplicationRelease = "0.1";
Authors = ("Nicola Pero <n.pero@mi.flashnet.it>",

"John <john@john.it>");
Copyright =
"Copyright (c) 2000 Nicola Pero <n.pero@mi.flashnet.it>";

8



CopyrightDescription =
"This program is released under the GNU GPL";

}

You should of course edit this example filling in with the information appropriate
for your own app. The file is in a format called “property list” (that is why it
has extension plist; see the Basic Foundation Classes GNUstep Mini Tutorial
for more information on property lists). The entries should be self-explanatory;
note that Authors should be equal to an array of names. If you want to omit
some of the entries, you may safely do it.

Here is the full listing of our latest app source code, containing an info
submenu able to display the Info Panel:

#include <Foundation/Foundation.h>
#include <AppKit/AppKit.h>

@interface MyDelegate : NSObject
- (void) printHello: (id)sender;
- (void) applicationWillFinishLaunching: (NSNotification *)not;
@end

@implementation MyDelegate : NSObject
- (void) printHello: (id)sender
{
printf ("Hello!\n");

}

- (void) applicationWillFinishLaunching: (NSNotification *)not
{
NSMenu *menu;
NSMenu *infoMenu;
NSMenuItem *menuItem;

menu = AUTORELEASE ([NSMenu new]);

infoMenu = AUTORELEASE ([NSMenu new]);

[infoMenu addItemWithTitle: @"Info Panel..."
action: @selector (orderFrontStandardInfoPanel:)
keyEquivalent: @""];

[infoMenu addItemWithTitle: @"Help..."
action: @selector (orderFrontHelpPanel:)
keyEquivalent: @"?"];

menuItem = [menu addItemWithTitle: @"Info..."
action: NULL
keyEquivalent: @""];

[menu setSubmenu: infoMenu forItem: menuItem];

9



[menu addItemWithTitle: @"Print Hello"
action: @selector (printHello:)
keyEquivalent: @""];

[menu addItemWithTitle: @"Quit"
action: @selector (terminate:)
keyEquivalent: @"q"];

[NSApp setMainMenu: menu];
}
@end

int main (int argc, const char **argv)
{
[NSApplication sharedApplication];
[NSApp setDelegate: [MyDelegate new]];

return NSApplicationMain (argc, argv);
}

10


