First Steps in GNUstep GUI Programming (2):
NSWindow, NSButton

Nicola Pero n.pero@mi.flashnet.it

July 2000 AD

In this tutorial you will learn how to create a window in your application.
We will put then a button in the window. Warning: You need GNUstep core
libraries version 0.6.6 or later to try out the examples.

1 Points, Sizes and Rectangles

The GNUstep base library defines some useful structs for dealing with two
dimensional geometry: NSPoint, NSSize and NSRect. It is worth to quickly
review them here, before beginning.

1.1 NSPoint

A NSPoint is defined as a struct with two members, the x and y coordinate of
the point:

typedef struct _NSPoint
{

float x;

float y;
} NSPoint;

So, to access the x and y coordinates of a NSPoint called myPoint, you just do
as in myPoint.x and myPoint.y. Please note that the coordinates of a NSPoint
are floats; so, they might be negative and/or fractionary.

To create a point with given x and y coordinates, you can use the function
(macro) NSMakePoint (), as in the following example:

NSPoint testPoint;

testPoint = NSMakePoint (10, 20);
NSLog (@"x coordinate: %f", testPoint.x); // 10
NSLog (@"y coordinate: %f", testPoint.y); // 20

It might be worth quoting the (predefined) constant NSZeroPoint, which is
a point with zero x coordinate and zero y coordinate.

1.2 NSSize
An NSSize is a struct describing the size of a rectangle, regardless of its position.

typedef struct _NSSize

{
float width;
float height;
} NSSize;

Using NSSize is completely analogous to using NSPoint, as in the following code
example:

NSSize testSize;

testSize = NSMakeSize (0.5, 51);
NSLog (@"x coordinate: %f", testSize.width); // 0.5
NSLog (@"y coordinate: %f", testSize.height); // 51

NSZeroSize is a constant equal to a size with zero width and zero height.

1.3 NSRect

An NSRect is a struct describing both the position and the size of a rectangle:

typedef struct _NSRect

{
NSPoint origin;
NSSize size;

} NSRect;

Using NSRect is similar to using NSPoint and NSSize:

NSRect testRect;

testRect = NSMakeRect (8.1, -3, 10, 15);

NSLog (@"x origin: %f", testRect.origin.x); // 8.1
NSLog (@"y origin: %f", testRect.origin.y); // -3
NSLog (@"width: %f", testRect.size.width); // 10
NSLog (@"height: %f", testRect.size.height); // 15

Note that you first access the origin, and then its coordinates, and similarly
for the size.

The constant NSZeroRect represents a rect with NSZeroPoint origin and
NSZeroSize size.

1.4 Geometry Functions

The GNUstep base library provides functions and macros to do all the most
common geometry operations on NSPoints, NSSizes and NSRects (such as de-
termining if a point is contained in a rectangle, computing the intersection of
two rectangles, etc). It would be off topic to discuss them here; please refer to
the base library documentation whenever you need to do some of these common
geometrical operations.

2 Adding a Window to your Application

2.1 Window Attributes

Windows are represented in GNUstep by NSWindow objects. We are mainly
interested in two attributes of a NSWindow object:

1. its content rect, which is a NSRect describing the rectangle covered by the
internal area of the windows; i.e., without all the decorations added by the
window manager (title bar, border, etc);

2. its style mask, which is an unsigned int describing the decorations of the
window. A zero style mask is also known as a NSBorderlessWindowMask,
and means that the window has no decorations at all. If the window needs
to have decorations, you need to set its style mask to a combination (OR)
of one or more of the following constants:

e NSTitledWindowMask = the window has a title bar;

e NSClosableWindowMask = the window can be closed by the user (it
has a close button);

e NSMiniaturizableWindowMask = the window can be miniaturized
by the user (it has a miniaturize button);

e NSResizableWindowMask = the window can be resized by the user.

For example, a window which has a title bar, is closable and miniaturizable
will have a style mask of:

unsigned int windowMask = NSTitledWindowMask
| NSClosableWindowMask
| NSMiniaturizableWindowMask;

where | is the C operator for the logical OR.

While you might freely change the content rect of your window after the
window has been created, you can only set the style mask when the window is
first created. You can not change the style mask of the window after creation.

2.2 Creating a Window

We are now ready to show an example of creating a window:

NSWindow *myWindow;
NSRect rect = NSMakeRect (100, 100, 200, 200);
unsigned int styleMask = NSTitledWindowMask

| NSMiniaturizableWindowMask;

myWindow = [NSWindow alloc];

myWindow = [myWindow initWithContentRect: rect
styleMask: styleMask
backing: NSBackingStoreBuffered
defer: NOJ;

(Please ignore the backing: and defer: arguments for now. The values given
in the example are appropriate in most cases). This window has an initial
content rect which has its origin (its lower left corner) positioned in the point of
coordinates (100, 100) in the screen coordinates. In GNUstep, all coordinates
system are by default Cartesian and the origin is always in the lower left corner
(this is only the default, because inside a GNUstep window you can then flip,
rotate and (more generally) transform coordinates at your wish). The window
has a title bar, and can be miniaturized by the user, but not resized or closed.

2.3 Setting the title of a window
To set the title of the window myWindow, you simply do something like:

[myWindow setTitle: @"This is a test window"];

2.4 Ordering Front a window

Creating a window does not make it visible. The window is ready to be used,
but it is not visible till you invoke the orderFront: method, as in:

[myWindow orderFront: nil];

Note that orderFront: takes an object argument so that it can be invoked as
an action from a button or a menu item, but the argument is usually ignored,
which is why we simply use nil for it.

If you want your window to be ordered front and to get the keyboard focus,
you do:

[myWindow makeKeyAndOrderFront: nil];

2.5 Integrating the window with your application

We now want to show a very simple example of an application creating a single
window. Our application will be useless if its only window is not visible; for this
reason, we do not add a close button to the window (following the NEXTSTEP
tradition, the user needs to select Quit from the main menu to quit the appli-
cation. To get the main menu, the user typically clicks the right button of his
mouse on one of the windows).

We can create the window in the same method

- (void) applicationWillFinishLaunching: (NSNotification *)not;

where we created the menu. This method contains initialization code to be run
before the application is launched.

But, we can’t order front (ie, make visible) windows before NSApp has become
active (which happens when the application is ‘launched’), so that ordering front
our window in applicationWillFinishLaunching: would not work, because
this method is called before the application finished launching.

To get around this problem, we implement in our application delegate also
another method, called:

- (void) applicationDidFinishLaunching: (NSNotification *)not;

This method (if implemented by the application’s delegate) is invoked by the
NSApp just after it finished launching. We order front our window in this method.

2.5.1 The organization of start-up code
The way we have organized the start-up of our application is as follows:
- (void) applicationWillFinishLaunching: (NSNotification *)not;

contains code for the initialization process of the application. This usually
means creating the application’s main objects; in our case, the menu and the
only application’s window. You can’t (and shouldn’t) display any window in
this method.

Instead, the method

- (void) applicationDidFinishLaunching: (NSNotification *)not;

contains a sequence of user-visible actions to be taken just after the application
became active: typically, popping up a window or a panel to the user.

It should be mentioned that this is not the only possible way of organizing
the start-up of an application.

2.6 Source Code
Here is the source code of our new application:

#include <Foundation/Foundation.h>
#include <AppKit/AppKit.h>

Q@interface MyDelegate : NSObject
{
NSWindow *myWindow;

- (void) createMenu;

- (void) createWindow;

- (void) applicationWillFinishLaunching: (NSNotification *)not;
- (void) applicationDidFinishLaunching: (NSNotification *)not;
Q@end

Q@implementation MyDelegate : NSObject
- (void) dealloc

{

RELEASE (myWindow) ;
}
- (void) createMenu
{

NSMenu *menu;
menu = AUTORELEASE ([NSMenu new]);
[menu addItemWithTitle: @"Quit"

action: @selector (terminate:)
keyEquivalent: @"q"];

[NSApp setMainMenu: menul];
}

- (void) createWindow
{
NSRect rect = NSMakeRect (100, 100, 200, 200);
unsigned int styleMask = NSTitledWindowMask
| NSMiniaturizableWindowMask;

myWindow = [NSWindow alloc];

myWindow = [myWindow initWithContentRect: rect
styleMask: styleMask
backing: NSBackingStoreBuffered
defer: NOJ;

[myWindow setTitle: @"This is a test window"];

(void) applicationWillFinishLaunching: (NSNotification *)not

[self createMenu];
[self createWindow];

(void) applicationDidFinishLaunching: (NSNotification *)not;

[myWindow makeKeyAndOrderFront: nil];

}
@end

int main (int argc, const char **argv)
{
[NSApplication sharedApplication];
[NSApp setDelegate: [MyDelegate new]l];

return NSApplicationMain (argc, argv);

}

To make the code easier to read and to understand, we have moved all the code
creating the menu into a createMenu method, and the code creating the window
into a createWindow method.

We have also implemented the dealloc method, which is quite useless in
this case, because we create only one MyDelegate object, which is only released
when the application quits (there is few interest in releasing memory when the
application is quitting, since all memory is going to be released anyway). But
it is good programming practice to always implement dealloc; this method
should release all the resources that the object was using. In this case, we only
need to release the window object. Please refer to the Memory Management
tutorial [yet to be written *grin*] for more information on the dealloc method.

The GNUmakefile is the usual one:

include $(GNUSTEP_MAKEFILES)/common.make

APP_NAME = WindowApp
WindowApp_OBJC_FILES = MyApp.m

include $(GNUSTEP_MAKEFILES)/application.make

3 Adding a Button in the Window

We are now going to add a button inside our window. But first, we need to
prepare the ground with a very short introduction to the wonderful NSView
class.

3.1 A Quick Introduction to Views

NSView is a class whose objects represent a rectangular area in a window. Each
NSView has its own internal coordinate system; NSView provides a complete
framework for managing the rectangle represented by the view, its coordinate
system, and for drawing and getting user events inside the view’s rectangle.

Any object which can be displayed (and/or can accept user events) inside a
window (such as a button, a text field, a scroll view, a slider, etc) is actually an
instance of a subclass of NSView. The specific subclass (for example, NSButton)
implements a specific way of drawing and managing user events inside the view’s
rectangle. An unsubclassed NSView by default draws nothing and reacts to no
user events, even if it contains all the machinery (ready for subclasses to use)
to do both.

When you create a window, the library automatically creates an NSView
covering the whole content area of the window. This view is called the window’s
content view. You can replace the default content view (which is transparent
and reacts to no user events) with an NSView of your choice (which can be an
instance of a subclass of NSView, such as a NSButton or a NSScrollView), but
you should not change the rectangle it represents, which must always cover the
whole window.

If you want to have a view which covers only a part of a window, you need
to add it as a subview of the content view. We will explore subviews in a
forth-coming tutorial; in our first example, we will go for the simplest possible
solution avoiding use of subviews: we will create a single NSButton, make a
window to fit exactly our button, and then replace the default window’s content
view with our button. In this way we’ll get a window containing exactly our
button. In the next tutorial, we’ll learn how to enclose views one over the other
in a subview tree, so that we can put more things in a single window.

3.2 Creating a Button

Creating a button is quite easy:

NSButton *myButton;

myButton = AUTORELEASE ([NSButton new]);
[myButton setTitle: @"Print Hello!"];

[myButton sizeToFit];

setTitle: sets the title (string) to be displayed on the button; sizeToFit
resizes the button so that it fits the title it is displaying.
Next, we need to set target and action of the button:

[myButton setTarget: self];
[myButton setAction: @selector (printHello:)];

(self will refer to our custom object)

3.3 Putting the button in the window

We now need to modify our code to create the window so that it creates a
window exactly of the right size to contain our button. First, we need to get
the size of the button:

NSSize buttonSize;

buttonSize = [myButton frame].size;

frame is a method inherited by NSView which returns the rectangle enclosing the
button (or, more generally, the rectangle enclosing/represented by an NSView).
The origin of this rectangle is meaningless at this point; it is the size (which
was set by sizeToFit) what we want.

Then, we choose for the window a content rect with the size of the button,
and with an origin of our choice; (100, 100) in this example:

NSRect rect;

rect = NSMakeRect (100, 100,
buttonSize.width,
buttonSize.height) ;

At this point, we just create the window as before, but using this rectangle (full
code below). The last thing to do is then replacing the default window content
view with our button:

[myWindow setContentView: myButton];

3.4 Source Code
We are ready to show the whole source code (the GNUmakefile is the usual one):

#include <Foundation/Foundation.h>
#include <AppKit/AppKit.h>

Q@interface MyDelegate : NSObject
{
NSWindow *myWindow;

(void) printHello: (id)sender;
(void) createMenu;

- (void) createWindow;

- (void) applicationWillFinishLaunching: (NSNotification *)not;
- (void) applicationDidFinishLaunching: (NSNotification *)not;
Q@end

O@implementation MyDelegate : NSObject
- (void) dealloc

{
RELEASE (myWindow) ;

}
- (void) printHello: (id)sender

printf ("Hello!\n");

- (void) createMenu
NSMenu *menu;
menu = AUTORELEASE ([NSMenu new]);

[menu addItemWithTitle: @"Quit"
action: @selector (terminate:)
keyEquivalent: @"q"];

[NSApp setMainMenu: menu];

- (void) createWindow

NSRect rect;
unsigned int styleMask = NSTitledWindowMask
| NSMiniaturizableWindowMask;
NSButton *myButton;
NSSize buttonSize;

myButton = AUTORELEASE ([NSButton new]);
[myButton setTitle: @"Print Hello!"];
[myButton sizeToFit];

[myButton setTarget: self];

[myButton setAction: @selector (printHello:)];

buttonSize = [myButton frame].size;

rect = NSMakeRect (100, 100,
buttonSize.width,
buttonSize.height) ;

myWindow = [NSWindow alloc];
myWindow = [myWindow initWithContentRect: rect

styleMask: styleMask
backing: NSBackingStoreBuffered
defer: NOJ;
[myWindow setTitle: @"This is a test window"];
[myWindow setContentView: myButton];

- (void) applicationWillFinishLaunching: (NSNotification *)not

[self createMenu];
[self createWindow];

- (void) applicationDidFinishLaunching: (NSNotification *)mnot;
{
[myWindow makeKeyAndOrderFront: nil];

}
@end

int main (int argc, const char **argv)

{
[NSApplication sharedApplication];
[NSApp setDelegate: [MyDelegate new]];

return NSApplicationMain (argc, argv);

}

10

