
GNUstep GUI Library (OpenStep AppKit)

Programming Manual

Adam Fedor (fedor@gnu.org)
Nicola Pero (n.pero@mi.
ashnet.it)

Copyright c
 2001 Free Software Foundation

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modi�ed versions.

i

Table of Contents

1 Introduction . 1
1.1 Overview . 1
1.2 Implementation Details . 1

1.2.1 Drag and Drop . 1
1.2.2 NSWorkspace. 2

1.3 Contributing . 3

2 Basic Classes . 5
2.1 NSView . 5
2.2 NSCell . 5
2.3 NSControl . 5

Concept Index . 7

ii GNUstep GUI, Programming Manual

Chapter 1: Introduction 1

1 Introduction

This manual documents some con�guration and installation issues with the GNUstep GUI
Library and also di�erences between the GUI Library and libraries that implement the
OpenStep AppKit speci�cation and the MacOS-X AppKit implementation.

1.1 Overview

The GNUstep GUI Library is a library of objects useful for writing graphical applications.
For example, it includes classes for drawing and manipulating graphics objects on the
screen: windows, menus, buttons, sliders, text �elds, and events. There are also many
peripheral classes that o�er operating-system-independent interfaces to images, cursors,
colors, fonts, pasteboards, printing. There are also workspace support classes such as data
links, open/save panels, context-dependent help, spell checking.

It provides functionality that aims to implement the `AppKit' portion of the OpenStep
standard. However the implementation has been written to take advantage of GNUstep
enhancements wherever possible.

The GNUstep GUI Library is divided into a front and back-end. The front-end contains the
majority of implementation, but leaves out the low-level drawing and event code. Di�erent
back-ends will make GNUstep available on various platforms. The default GNU back-
end currently runs on top of the X Window System and uses only Xlib calls for graphics.
Another backend uses a Display Postscript Server for graphics. Much work will be saved by
this clean separation between front and back-end, because it allows di�erent platforms to
share the large amount of front-end code. Documentation for how the individual backends
work is coverered in a separate document.

1.2 Implementation Details

Following are some implementation details of the GUI library. These will mostly be of
interest to developers of the GUI library itself.

1.2.1 Drag and Drop

The drag types info for each view is kept in a global map table (protected by locks) and
can be accessed by the backend library using the function -

NSArray *GSGetDragTypes(Nsview *aView);

Drag type information for each window (a union of the drag type info for all the views in
the window) is maintained in the graphics context. The backend can get this information
(as a counted set) using -

- (NSCountedSet*) _dragTypesForWindow: (int)winNum;

Whenever a DnD aware view is added to, or removed from a window, the type information
for that view is added to/removed from the type information for the window, altering the
counted set. If the alteration results in a change in the types for the window, the method
making the change returns YES.

- (BOOL) _addDragTypes: (NSArray*)types toWindow: (int)winNum;
- (BOOL) _removeDragTypes: (NSArray*)types fromWindow: (int)winNum;

The backend library should therefore override these methods and call 'super' to handle
the update. If the call to the super method returns YES, the backend should make any

2 GNUstep GUI, Programming Manual

changes as appropriate (in the case of the xdnd protocol this means altering the XdndAware
property of the X window).

You will notice that these methods use the integer window number rather than the NSWin-
dow object - this is for the convenience of the backend library which should (eventually)
use window numbers for everything

1.2.2 NSWorkspace

Here is (I think) the current state of the code (largely untested) -

The make services tool examines all applications (anything with a .app, .debug, or .pro�le
su�x) in the system, local, and user Apps Directories.

In addition to the cache of services information, it builds a cache of information about
known applications (including information about �le types they handle).

NSWorkspace reads the cache and uses it to determine which application to use to open a
document and which icon to use to represent that document.

The NSWorkspace API has been extended to provide methods for �nding/setting the
preferred icon/application for a particular �le type. NSWorkspace will use the 'best'
icon/application available.

To determine the executable to launch, if there was an Info-gnustep.plist/Info.plist in the
app wrapper and it had an NSExecutable �eld - use that name. Otherwise, try to use the
name of the app - eg. foo.app/foo The executable is launched by NSTask, which handles
the addition of machine/os/library path components as necessary.

To determine the icon for a �le, use the value from the cache of icons for the �le extension,
or use an 'unknown' icon.

To determine the icon for a folder, if the folder has a '.app', '.debug' or '.pro�le' extension
- examine the Info.plist �le for an 'NSIcon' value and try to use that. If there is no value
speci�ed - try foo.app/foo.ti�' or 'foo.app/.dir.ti�'

If the folder was not an application wrapper, just try the .dir.ti� �le.

If no icon was available, use a default folder icon or a special icon for the root directory.

The information about what �le types an app can handle needs to be in
the MacOS-X format in the Info-gnustep.plist/Info.plist for the app - see
http://developer.apple.com/techpubs/macosxserver/System/Documentation/Developer/YellowBox/ReleaseNotes/InfoPlist.html.

In the NSTypes �elds, I used NSIcon (the icon to use for the type) NSUnixExtensions
(a list of �le extensions corresponding to the type) and NSRole (what the app can do
with documents of this type). In the AppList cache, I generate a dictionary, keyed by �le
extension, whose values are the dictionaries containing the NSTypes dictionaries of each of
the apps that handle the extension.

I tested the code brie
y with the FileViewer app, and it seemed to provide the icons as
expected.

With this model the software doesn't need to monitor loads of di�erent �les, just register to
recieve noti�cations when the defaults database changes, and check an appropriate default
value. At present, there are four hidden �les used by the software:

`~/GNUstep/Services/.GNUstepAppList'
Cached information about applications and �le extensions.

http://developer.apple.com/techpubs/macosxserver/System/Documentation/Developer/YellowBox/ReleaseNotes/InfoPlist.html

Chapter 1: Introduction 3

`~/GNUstep/Services/.GNUstepExtPrefs'
User preferences for which apps/icons should be used for each �le extension.

`~/GNUstep/Services/.GNUstepServices'
Cache of services provides by apps and services daemons

`~/GNUstep/Services/.GNUstepDisabled'
User settings to determine which services should not appear in the services
menu.

Each of these is a serialized property list.

Almost forgot - Need to modify NSApplication to understand '-GSOpenFile ...' as an
instruction to open the speci�ed �le on launching. Need to modify NSWorkspace to supply
the appropriate arguments when launching a task rather than using the existing mechanism
of using DO to request that the app opens the �le. When these changes are made, we can
turn any program into a pseudo-GNUstep app by creating the appropriate app wrapper.
An app wrapper then need only contain a shell-script that understands the -GSOpenFile
argument and uses it to start the program - though provision of a GNUstep-info.plist and
various icons would obviously make things prettier.

For instance - you could set up xv.app to contain a shellscript 'xv' that would start the
real xv binary passing it a �le to open if the -GSOpenFile argument was given. The Info-
gnustep.plist �le could look like this:

{

NSExecutable = "xv";

NSIcon = "xv.tiff";

NSTypes = (

{

NSIcon = "tiff.tiff";

NSUnixExtensions = (tiff, tif);

},

{

NSIcon = "xbm.tiff";

NSUnixExtensions = (xbm);

}

);

}

1.3 Contributing

Contributing code is not di�cult. Here are some general guidelines:

� FSF must maintain the right to accept or reject potential contributions. Generally,
the only reasons for rejecting contributions are cases where they duplicate existing
or nearly-released code, contain unremovable speci�c machine dependencies, or are
somehow incompatible with the rest of the library.

� Acceptance of contributions means that the code is accepted for adaptation into
libgnustep-gui. FSF must reserve the right to make various editorial changes in
code. Very often, this merely entails formatting, maintenance of various conventions,

4 GNUstep GUI, Programming Manual

etc. Contributors are always given authorship credit and shown the �nal version for
approval.

� Contributors must assign their copyright to FSF via a form sent out upon acceptance.
Assigning copyright to FSF ensures that the code may be freely distributed.

� Assistance in providing documentation, test �les, and debugging support is strongly
encouraged.

Extensions, comments, and suggested modi�cations of existing libgnustep-gui features are
also very welcome.

Chapter 2: Basic Classes 5

2 Basic Classes

This is a simple introduction to the major classes in the GNUstep GUI library API. If you
know nothing about the OpenStep AppKit, it could be a good idea to read this before you
start reading the reference documentation.

I am very interested in comments regarding this text, particularly from people who are
new to the OPENSTEP AppKit API. Send comments and/or suggestions to Nicola Pero
(n.pero@mi.
ashnet.it).

2.1 NSView

NSView is the class of objects representing a rectangular area (usually in a window) with its
own coordinate system. Views have methods to draw inside the view, to change the view's
coordinate system, and to place the view with arbitrary position and size inside another
view. When you place a view inside another view, you are technically making the smaller
view a subview of the bigger view. The whole drawable area inside the window
itself is represented by a view, called the content view. All the visible views in
a window are then subviews of the content view of that window (or of the content view's
subviews etc). This gives rise to what is called the "view tree" of the window.

2.2 NSCell

NSCell is the class of objects representing a single amount of displayable data. For example,
a cell could represent a number, or a string, or an image. Cells have methods to draw the
data they represent in a view, to change the way the data is to be drawn (eg the font for a
string or the border for an image), and to let the user interact directly (eg editing the data)
with the data in a view.

2.3 NSControl

NSControl is the class of objects representing a view (i.e., a rectangular area in a window)
used to manage one or more cells (i.e., some displayable data). This class is usually designed
to work with a subclass of NSCell, called NSActionCell, through a system of tar-
get/action. Each actioncell has a target - an object - and an action -
a selector - both of which can be arbitrarily set. The control can then ask the cell to send its
action to its target (ie, to invoke the method of the target object identi�ed by the selector)
as a consequence of user actions in the control. The typical example is a button: a button
is a control with a corresponding cell; when the user presses the button, the buttoncell
sends its action to its target. Controls are the high-level objects the you usually deal with
when designing everyday-life user interfaces. You do not usually need to bother about cells,
because the controls manage the cells for you.

6 GNUstep GUI, Programming Manual

Concept Index 7

Concept Index

NSCell class . 5

NSControl class. 5

NSView class . 5

8 GNUstep GUI, Programming Manual

	Introduction
	Overview
	Implementation Details
	Drag and Drop
	NSWorkspace

	Contributing

	Basic Classes
	NSView
	NSCell
	NSControl

	Concept Index

