00001 // Multimap implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001, 2002, 2004, 2005 Free Software Foundation, Inc. 00004 // 00005 // This file is part of the GNU ISO C++ Library. This library is free 00006 // software; you can redistribute it and/or modify it under the 00007 // terms of the GNU General Public License as published by the 00008 // Free Software Foundation; either version 2, or (at your option) 00009 // any later version. 00010 00011 // This library is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 00016 // You should have received a copy of the GNU General Public License along 00017 // with this library; see the file COPYING. If not, write to the Free 00018 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 00019 // USA. 00020 00021 // As a special exception, you may use this file as part of a free software 00022 // library without restriction. Specifically, if other files instantiate 00023 // templates or use macros or inline functions from this file, or you compile 00024 // this file and link it with other files to produce an executable, this 00025 // file does not by itself cause the resulting executable to be covered by 00026 // the GNU General Public License. This exception does not however 00027 // invalidate any other reasons why the executable file might be covered by 00028 // the GNU General Public License. 00029 00030 /* 00031 * 00032 * Copyright (c) 1994 00033 * Hewlett-Packard Company 00034 * 00035 * Permission to use, copy, modify, distribute and sell this software 00036 * and its documentation for any purpose is hereby granted without fee, 00037 * provided that the above copyright notice appear in all copies and 00038 * that both that copyright notice and this permission notice appear 00039 * in supporting documentation. Hewlett-Packard Company makes no 00040 * representations about the suitability of this software for any 00041 * purpose. It is provided "as is" without express or implied warranty. 00042 * 00043 * 00044 * Copyright (c) 1996,1997 00045 * Silicon Graphics Computer Systems, Inc. 00046 * 00047 * Permission to use, copy, modify, distribute and sell this software 00048 * and its documentation for any purpose is hereby granted without fee, 00049 * provided that the above copyright notice appear in all copies and 00050 * that both that copyright notice and this permission notice appear 00051 * in supporting documentation. Silicon Graphics makes no 00052 * representations about the suitability of this software for any 00053 * purpose. It is provided "as is" without express or implied warranty. 00054 */ 00055 00056 /** @file stl_multimap.h 00057 * This is an internal header file, included by other library headers. 00058 * You should not attempt to use it directly. 00059 */ 00060 00061 #ifndef _MULTIMAP_H 00062 #define _MULTIMAP_H 1 00063 00064 #include <bits/concept_check.h> 00065 00066 namespace _GLIBCXX_STD 00067 { 00068 // Forward declaration of operators < and ==, needed for friend declaration. 00069 00070 template <typename _Key, typename _Tp, 00071 typename _Compare = std::less<_Key>, 00072 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > > 00073 class multimap; 00074 00075 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00076 inline bool 00077 operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00078 const multimap<_Key, _Tp, _Compare, _Alloc>& __y); 00079 00080 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00081 inline bool 00082 operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00083 const multimap<_Key, _Tp, _Compare, _Alloc>& __y); 00084 00085 /** 00086 * @brief A standard container made up of (key,value) pairs, which can be 00087 * retrieved based on a key, in logarithmic time. 00088 * 00089 * @ingroup Containers 00090 * @ingroup Assoc_containers 00091 * 00092 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00093 * <a href="tables.html#66">reversible container</a>, and an 00094 * <a href="tables.html#69">associative container</a> (using equivalent 00095 * keys). For a @c multimap<Key,T> the key_type is Key, the mapped_type 00096 * is T, and the value_type is std::pair<const Key,T>. 00097 * 00098 * Multimaps support bidirectional iterators. 00099 * 00100 * @if maint 00101 * The private tree data is declared exactly the same way for map and 00102 * multimap; the distinction is made entirely in how the tree functions are 00103 * called (*_unique versus *_equal, same as the standard). 00104 * @endif 00105 */ 00106 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00107 class multimap 00108 { 00109 public: 00110 typedef _Key key_type; 00111 typedef _Tp mapped_type; 00112 typedef std::pair<const _Key, _Tp> value_type; 00113 typedef _Compare key_compare; 00114 typedef _Alloc allocator_type; 00115 00116 private: 00117 // concept requirements 00118 typedef typename _Alloc::value_type _Alloc_value_type; 00119 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00120 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00121 _BinaryFunctionConcept) 00122 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept) 00123 00124 public: 00125 class value_compare 00126 : public std::binary_function<value_type, value_type, bool> 00127 { 00128 friend class multimap<_Key, _Tp, _Compare, _Alloc>; 00129 protected: 00130 _Compare comp; 00131 00132 value_compare(_Compare __c) 00133 : comp(__c) { } 00134 00135 public: 00136 bool operator()(const value_type& __x, const value_type& __y) const 00137 { return comp(__x.first, __y.first); } 00138 }; 00139 00140 private: 00141 /// @if maint This turns a red-black tree into a [multi]map. @endif 00142 typedef typename _Alloc::template rebind<value_type>::other 00143 _Pair_alloc_type; 00144 00145 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>, 00146 key_compare, _Pair_alloc_type> _Rep_type; 00147 /// @if maint The actual tree structure. @endif 00148 _Rep_type _M_t; 00149 00150 public: 00151 // many of these are specified differently in ISO, but the following are 00152 // "functionally equivalent" 00153 typedef typename _Pair_alloc_type::pointer pointer; 00154 typedef typename _Pair_alloc_type::const_pointer const_pointer; 00155 typedef typename _Pair_alloc_type::reference reference; 00156 typedef typename _Pair_alloc_type::const_reference const_reference; 00157 typedef typename _Rep_type::iterator iterator; 00158 typedef typename _Rep_type::const_iterator const_iterator; 00159 typedef typename _Rep_type::size_type size_type; 00160 typedef typename _Rep_type::difference_type difference_type; 00161 typedef typename _Rep_type::reverse_iterator reverse_iterator; 00162 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00163 00164 // [23.3.2] construct/copy/destroy 00165 // (get_allocator() is also listed in this section) 00166 /** 00167 * @brief Default constructor creates no elements. 00168 */ 00169 multimap() 00170 : _M_t(_Compare(), allocator_type()) { } 00171 00172 // for some reason this was made a separate function 00173 /** 00174 * @brief Default constructor creates no elements. 00175 */ 00176 explicit 00177 multimap(const _Compare& __comp, 00178 const allocator_type& __a = allocator_type()) 00179 : _M_t(__comp, __a) { } 00180 00181 /** 00182 * @brief %Multimap copy constructor. 00183 * @param x A %multimap of identical element and allocator types. 00184 * 00185 * The newly-created %multimap uses a copy of the allocation object used 00186 * by @a x. 00187 */ 00188 multimap(const multimap& __x) 00189 : _M_t(__x._M_t) { } 00190 00191 /** 00192 * @brief Builds a %multimap from a range. 00193 * @param first An input iterator. 00194 * @param last An input iterator. 00195 * 00196 * Create a %multimap consisting of copies of the elements from 00197 * [first,last). This is linear in N if the range is already sorted, 00198 * and NlogN otherwise (where N is distance(first,last)). 00199 */ 00200 template <typename _InputIterator> 00201 multimap(_InputIterator __first, _InputIterator __last) 00202 : _M_t(_Compare(), allocator_type()) 00203 { _M_t.insert_equal(__first, __last); } 00204 00205 /** 00206 * @brief Builds a %multimap from a range. 00207 * @param first An input iterator. 00208 * @param last An input iterator. 00209 * @param comp A comparison functor. 00210 * @param a An allocator object. 00211 * 00212 * Create a %multimap consisting of copies of the elements from 00213 * [first,last). This is linear in N if the range is already sorted, 00214 * and NlogN otherwise (where N is distance(first,last)). 00215 */ 00216 template <typename _InputIterator> 00217 multimap(_InputIterator __first, _InputIterator __last, 00218 const _Compare& __comp, 00219 const allocator_type& __a = allocator_type()) 00220 : _M_t(__comp, __a) 00221 { _M_t.insert_equal(__first, __last); } 00222 00223 // FIXME There is no dtor declared, but we should have something generated 00224 // by Doxygen. I don't know what tags to add to this paragraph to make 00225 // that happen: 00226 /** 00227 * The dtor only erases the elements, and note that if the elements 00228 * themselves are pointers, the pointed-to memory is not touched in any 00229 * way. Managing the pointer is the user's responsibilty. 00230 */ 00231 00232 /** 00233 * @brief %Multimap assignment operator. 00234 * @param x A %multimap of identical element and allocator types. 00235 * 00236 * All the elements of @a x are copied, but unlike the copy constructor, 00237 * the allocator object is not copied. 00238 */ 00239 multimap& 00240 operator=(const multimap& __x) 00241 { 00242 _M_t = __x._M_t; 00243 return *this; 00244 } 00245 00246 /// Get a copy of the memory allocation object. 00247 allocator_type 00248 get_allocator() const 00249 { return _M_t.get_allocator(); } 00250 00251 // iterators 00252 /** 00253 * Returns a read/write iterator that points to the first pair in the 00254 * %multimap. Iteration is done in ascending order according to the 00255 * keys. 00256 */ 00257 iterator 00258 begin() 00259 { return _M_t.begin(); } 00260 00261 /** 00262 * Returns a read-only (constant) iterator that points to the first pair 00263 * in the %multimap. Iteration is done in ascending order according to 00264 * the keys. 00265 */ 00266 const_iterator 00267 begin() const 00268 { return _M_t.begin(); } 00269 00270 /** 00271 * Returns a read/write iterator that points one past the last pair in 00272 * the %multimap. Iteration is done in ascending order according to the 00273 * keys. 00274 */ 00275 iterator 00276 end() 00277 { return _M_t.end(); } 00278 00279 /** 00280 * Returns a read-only (constant) iterator that points one past the last 00281 * pair in the %multimap. Iteration is done in ascending order according 00282 * to the keys. 00283 */ 00284 const_iterator 00285 end() const 00286 { return _M_t.end(); } 00287 00288 /** 00289 * Returns a read/write reverse iterator that points to the last pair in 00290 * the %multimap. Iteration is done in descending order according to the 00291 * keys. 00292 */ 00293 reverse_iterator 00294 rbegin() 00295 { return _M_t.rbegin(); } 00296 00297 /** 00298 * Returns a read-only (constant) reverse iterator that points to the 00299 * last pair in the %multimap. Iteration is done in descending order 00300 * according to the keys. 00301 */ 00302 const_reverse_iterator 00303 rbegin() const 00304 { return _M_t.rbegin(); } 00305 00306 /** 00307 * Returns a read/write reverse iterator that points to one before the 00308 * first pair in the %multimap. Iteration is done in descending order 00309 * according to the keys. 00310 */ 00311 reverse_iterator 00312 rend() 00313 { return _M_t.rend(); } 00314 00315 /** 00316 * Returns a read-only (constant) reverse iterator that points to one 00317 * before the first pair in the %multimap. Iteration is done in 00318 * descending order according to the keys. 00319 */ 00320 const_reverse_iterator 00321 rend() const 00322 { return _M_t.rend(); } 00323 00324 // capacity 00325 /** Returns true if the %multimap is empty. */ 00326 bool 00327 empty() const 00328 { return _M_t.empty(); } 00329 00330 /** Returns the size of the %multimap. */ 00331 size_type 00332 size() const 00333 { return _M_t.size(); } 00334 00335 /** Returns the maximum size of the %multimap. */ 00336 size_type 00337 max_size() const 00338 { return _M_t.max_size(); } 00339 00340 // modifiers 00341 /** 00342 * @brief Inserts a std::pair into the %multimap. 00343 * @param x Pair to be inserted (see std::make_pair for easy creation 00344 * of pairs). 00345 * @return An iterator that points to the inserted (key,value) pair. 00346 * 00347 * This function inserts a (key, value) pair into the %multimap. 00348 * Contrary to a std::map the %multimap does not rely on unique keys and 00349 * thus multiple pairs with the same key can be inserted. 00350 * 00351 * Insertion requires logarithmic time. 00352 */ 00353 iterator 00354 insert(const value_type& __x) 00355 { return _M_t.insert_equal(__x); } 00356 00357 /** 00358 * @brief Inserts a std::pair into the %multimap. 00359 * @param position An iterator that serves as a hint as to where the 00360 * pair should be inserted. 00361 * @param x Pair to be inserted (see std::make_pair for easy creation 00362 * of pairs). 00363 * @return An iterator that points to the inserted (key,value) pair. 00364 * 00365 * This function inserts a (key, value) pair into the %multimap. 00366 * Contrary to a std::map the %multimap does not rely on unique keys and 00367 * thus multiple pairs with the same key can be inserted. 00368 * Note that the first parameter is only a hint and can potentially 00369 * improve the performance of the insertion process. A bad hint would 00370 * cause no gains in efficiency. 00371 * 00372 * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4 00373 * for more on "hinting". 00374 * 00375 * Insertion requires logarithmic time (if the hint is not taken). 00376 */ 00377 iterator 00378 insert(iterator __position, const value_type& __x) 00379 { return _M_t.insert_equal(__position, __x); } 00380 00381 /** 00382 * @brief A template function that attemps to insert a range of elements. 00383 * @param first Iterator pointing to the start of the range to be 00384 * inserted. 00385 * @param last Iterator pointing to the end of the range. 00386 * 00387 * Complexity similar to that of the range constructor. 00388 */ 00389 template <typename _InputIterator> 00390 void 00391 insert(_InputIterator __first, _InputIterator __last) 00392 { _M_t.insert_equal(__first, __last); } 00393 00394 /** 00395 * @brief Erases an element from a %multimap. 00396 * @param position An iterator pointing to the element to be erased. 00397 * 00398 * This function erases an element, pointed to by the given iterator, 00399 * from a %multimap. Note that this function only erases the element, 00400 * and that if the element is itself a pointer, the pointed-to memory is 00401 * not touched in any way. Managing the pointer is the user's 00402 * responsibilty. 00403 */ 00404 void 00405 erase(iterator __position) 00406 { _M_t.erase(__position); } 00407 00408 /** 00409 * @brief Erases elements according to the provided key. 00410 * @param x Key of element to be erased. 00411 * @return The number of elements erased. 00412 * 00413 * This function erases all elements located by the given key from a 00414 * %multimap. 00415 * Note that this function only erases the element, and that if 00416 * the element is itself a pointer, the pointed-to memory is not touched 00417 * in any way. Managing the pointer is the user's responsibilty. 00418 */ 00419 size_type 00420 erase(const key_type& __x) 00421 { return _M_t.erase(__x); } 00422 00423 /** 00424 * @brief Erases a [first,last) range of elements from a %multimap. 00425 * @param first Iterator pointing to the start of the range to be 00426 * erased. 00427 * @param last Iterator pointing to the end of the range to be erased. 00428 * 00429 * This function erases a sequence of elements from a %multimap. 00430 * Note that this function only erases the elements, and that if 00431 * the elements themselves are pointers, the pointed-to memory is not 00432 * touched in any way. Managing the pointer is the user's responsibilty. 00433 */ 00434 void 00435 erase(iterator __first, iterator __last) 00436 { _M_t.erase(__first, __last); } 00437 00438 /** 00439 * @brief Swaps data with another %multimap. 00440 * @param x A %multimap of the same element and allocator types. 00441 * 00442 * This exchanges the elements between two multimaps in constant time. 00443 * (It is only swapping a pointer, an integer, and an instance of 00444 * the @c Compare type (which itself is often stateless and empty), so it 00445 * should be quite fast.) 00446 * Note that the global std::swap() function is specialized such that 00447 * std::swap(m1,m2) will feed to this function. 00448 */ 00449 void 00450 swap(multimap& __x) 00451 { _M_t.swap(__x._M_t); } 00452 00453 /** 00454 * Erases all elements in a %multimap. Note that this function only 00455 * erases the elements, and that if the elements themselves are pointers, 00456 * the pointed-to memory is not touched in any way. Managing the pointer 00457 * is the user's responsibilty. 00458 */ 00459 void 00460 clear() 00461 { _M_t.clear(); } 00462 00463 // observers 00464 /** 00465 * Returns the key comparison object out of which the %multimap 00466 * was constructed. 00467 */ 00468 key_compare 00469 key_comp() const 00470 { return _M_t.key_comp(); } 00471 00472 /** 00473 * Returns a value comparison object, built from the key comparison 00474 * object out of which the %multimap was constructed. 00475 */ 00476 value_compare 00477 value_comp() const 00478 { return value_compare(_M_t.key_comp()); } 00479 00480 // multimap operations 00481 /** 00482 * @brief Tries to locate an element in a %multimap. 00483 * @param x Key of (key, value) pair to be located. 00484 * @return Iterator pointing to sought-after element, 00485 * or end() if not found. 00486 * 00487 * This function takes a key and tries to locate the element with which 00488 * the key matches. If successful the function returns an iterator 00489 * pointing to the sought after %pair. If unsuccessful it returns the 00490 * past-the-end ( @c end() ) iterator. 00491 */ 00492 iterator 00493 find(const key_type& __x) 00494 { return _M_t.find(__x); } 00495 00496 /** 00497 * @brief Tries to locate an element in a %multimap. 00498 * @param x Key of (key, value) pair to be located. 00499 * @return Read-only (constant) iterator pointing to sought-after 00500 * element, or end() if not found. 00501 * 00502 * This function takes a key and tries to locate the element with which 00503 * the key matches. If successful the function returns a constant 00504 * iterator pointing to the sought after %pair. If unsuccessful it 00505 * returns the past-the-end ( @c end() ) iterator. 00506 */ 00507 const_iterator 00508 find(const key_type& __x) const 00509 { return _M_t.find(__x); } 00510 00511 /** 00512 * @brief Finds the number of elements with given key. 00513 * @param x Key of (key, value) pairs to be located. 00514 * @return Number of elements with specified key. 00515 */ 00516 size_type 00517 count(const key_type& __x) const 00518 { return _M_t.count(__x); } 00519 00520 /** 00521 * @brief Finds the beginning of a subsequence matching given key. 00522 * @param x Key of (key, value) pair to be located. 00523 * @return Iterator pointing to first element equal to or greater 00524 * than key, or end(). 00525 * 00526 * This function returns the first element of a subsequence of elements 00527 * that matches the given key. If unsuccessful it returns an iterator 00528 * pointing to the first element that has a greater value than given key 00529 * or end() if no such element exists. 00530 */ 00531 iterator 00532 lower_bound(const key_type& __x) 00533 { return _M_t.lower_bound(__x); } 00534 00535 /** 00536 * @brief Finds the beginning of a subsequence matching given key. 00537 * @param x Key of (key, value) pair to be located. 00538 * @return Read-only (constant) iterator pointing to first element 00539 * equal to or greater than key, or end(). 00540 * 00541 * This function returns the first element of a subsequence of elements 00542 * that matches the given key. If unsuccessful the iterator will point 00543 * to the next greatest element or, if no such greater element exists, to 00544 * end(). 00545 */ 00546 const_iterator 00547 lower_bound(const key_type& __x) const 00548 { return _M_t.lower_bound(__x); } 00549 00550 /** 00551 * @brief Finds the end of a subsequence matching given key. 00552 * @param x Key of (key, value) pair to be located. 00553 * @return Iterator pointing to the first element 00554 * greater than key, or end(). 00555 */ 00556 iterator 00557 upper_bound(const key_type& __x) 00558 { return _M_t.upper_bound(__x); } 00559 00560 /** 00561 * @brief Finds the end of a subsequence matching given key. 00562 * @param x Key of (key, value) pair to be located. 00563 * @return Read-only (constant) iterator pointing to first iterator 00564 * greater than key, or end(). 00565 */ 00566 const_iterator 00567 upper_bound(const key_type& __x) const 00568 { return _M_t.upper_bound(__x); } 00569 00570 /** 00571 * @brief Finds a subsequence matching given key. 00572 * @param x Key of (key, value) pairs to be located. 00573 * @return Pair of iterators that possibly points to the subsequence 00574 * matching given key. 00575 * 00576 * This function is equivalent to 00577 * @code 00578 * std::make_pair(c.lower_bound(val), 00579 * c.upper_bound(val)) 00580 * @endcode 00581 * (but is faster than making the calls separately). 00582 */ 00583 std::pair<iterator, iterator> 00584 equal_range(const key_type& __x) 00585 { return _M_t.equal_range(__x); } 00586 00587 /** 00588 * @brief Finds a subsequence matching given key. 00589 * @param x Key of (key, value) pairs to be located. 00590 * @return Pair of read-only (constant) iterators that possibly points 00591 * to the subsequence matching given key. 00592 * 00593 * This function is equivalent to 00594 * @code 00595 * std::make_pair(c.lower_bound(val), 00596 * c.upper_bound(val)) 00597 * @endcode 00598 * (but is faster than making the calls separately). 00599 */ 00600 std::pair<const_iterator, const_iterator> 00601 equal_range(const key_type& __x) const 00602 { return _M_t.equal_range(__x); } 00603 00604 template <typename _K1, typename _T1, typename _C1, typename _A1> 00605 friend bool 00606 operator== (const multimap<_K1, _T1, _C1, _A1>&, 00607 const multimap<_K1, _T1, _C1, _A1>&); 00608 00609 template <typename _K1, typename _T1, typename _C1, typename _A1> 00610 friend bool 00611 operator< (const multimap<_K1, _T1, _C1, _A1>&, 00612 const multimap<_K1, _T1, _C1, _A1>&); 00613 }; 00614 00615 /** 00616 * @brief Multimap equality comparison. 00617 * @param x A %multimap. 00618 * @param y A %multimap of the same type as @a x. 00619 * @return True iff the size and elements of the maps are equal. 00620 * 00621 * This is an equivalence relation. It is linear in the size of the 00622 * multimaps. Multimaps are considered equivalent if their sizes are equal, 00623 * and if corresponding elements compare equal. 00624 */ 00625 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00626 inline bool 00627 operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00628 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00629 { return __x._M_t == __y._M_t; } 00630 00631 /** 00632 * @brief Multimap ordering relation. 00633 * @param x A %multimap. 00634 * @param y A %multimap of the same type as @a x. 00635 * @return True iff @a x is lexicographically less than @a y. 00636 * 00637 * This is a total ordering relation. It is linear in the size of the 00638 * multimaps. The elements must be comparable with @c <. 00639 * 00640 * See std::lexicographical_compare() for how the determination is made. 00641 */ 00642 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00643 inline bool 00644 operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00645 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00646 { return __x._M_t < __y._M_t; } 00647 00648 /// Based on operator== 00649 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00650 inline bool 00651 operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00652 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00653 { return !(__x == __y); } 00654 00655 /// Based on operator< 00656 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00657 inline bool 00658 operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00659 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00660 { return __y < __x; } 00661 00662 /// Based on operator< 00663 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00664 inline bool 00665 operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00666 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00667 { return !(__y < __x); } 00668 00669 /// Based on operator< 00670 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00671 inline bool 00672 operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00673 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00674 { return !(__x < __y); } 00675 00676 /// See std::multimap::swap(). 00677 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00678 inline void 00679 swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00680 multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00681 { __x.swap(__y); } 00682 } // namespace std 00683 00684 #endif /* _MULTIMAP_H */