00001 // Multiset implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001, 2002, 2004, 2005 Free Software Foundation, Inc. 00004 // 00005 // This file is part of the GNU ISO C++ Library. This library is free 00006 // software; you can redistribute it and/or modify it under the 00007 // terms of the GNU General Public License as published by the 00008 // Free Software Foundation; either version 2, or (at your option) 00009 // any later version. 00010 00011 // This library is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 00016 // You should have received a copy of the GNU General Public License along 00017 // with this library; see the file COPYING. If not, write to the Free 00018 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 00019 // USA. 00020 00021 // As a special exception, you may use this file as part of a free software 00022 // library without restriction. Specifically, if other files instantiate 00023 // templates or use macros or inline functions from this file, or you compile 00024 // this file and link it with other files to produce an executable, this 00025 // file does not by itself cause the resulting executable to be covered by 00026 // the GNU General Public License. This exception does not however 00027 // invalidate any other reasons why the executable file might be covered by 00028 // the GNU General Public License. 00029 00030 /* 00031 * 00032 * Copyright (c) 1994 00033 * Hewlett-Packard Company 00034 * 00035 * Permission to use, copy, modify, distribute and sell this software 00036 * and its documentation for any purpose is hereby granted without fee, 00037 * provided that the above copyright notice appear in all copies and 00038 * that both that copyright notice and this permission notice appear 00039 * in supporting documentation. Hewlett-Packard Company makes no 00040 * representations about the suitability of this software for any 00041 * purpose. It is provided "as is" without express or implied warranty. 00042 * 00043 * 00044 * Copyright (c) 1996 00045 * Silicon Graphics Computer Systems, Inc. 00046 * 00047 * Permission to use, copy, modify, distribute and sell this software 00048 * and its documentation for any purpose is hereby granted without fee, 00049 * provided that the above copyright notice appear in all copies and 00050 * that both that copyright notice and this permission notice appear 00051 * in supporting documentation. Silicon Graphics makes no 00052 * representations about the suitability of this software for any 00053 * purpose. It is provided "as is" without express or implied warranty. 00054 */ 00055 00056 /** @file stl_multiset.h 00057 * This is an internal header file, included by other library headers. 00058 * You should not attempt to use it directly. 00059 */ 00060 00061 #ifndef _MULTISET_H 00062 #define _MULTISET_H 1 00063 00064 #include <bits/concept_check.h> 00065 00066 namespace _GLIBCXX_STD 00067 { 00068 00069 // Forward declaration of operators < and ==, needed for friend declaration. 00070 template <class _Key, class _Compare = std::less<_Key>, 00071 class _Alloc = std::allocator<_Key> > 00072 class multiset; 00073 00074 template <class _Key, class _Compare, class _Alloc> 00075 inline bool 00076 operator==(const multiset<_Key, _Compare, _Alloc>& __x, 00077 const multiset<_Key, _Compare, _Alloc>& __y); 00078 00079 template <class _Key, class _Compare, class _Alloc> 00080 inline bool 00081 operator<(const multiset<_Key, _Compare, _Alloc>& __x, 00082 const multiset<_Key, _Compare, _Alloc>& __y); 00083 00084 /** 00085 * @brief A standard container made up of elements, which can be retrieved 00086 * in logarithmic time. 00087 * 00088 * @ingroup Containers 00089 * @ingroup Assoc_containers 00090 * 00091 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00092 * <a href="tables.html#66">reversible container</a>, and an 00093 * <a href="tables.html#69">associative container</a> (using equivalent 00094 * keys). For a @c multiset<Key> the key_type and value_type are Key. 00095 * 00096 * Multisets support bidirectional iterators. 00097 * 00098 * @if maint 00099 * The private tree data is declared exactly the same way for set and 00100 * multiset; the distinction is made entirely in how the tree functions are 00101 * called (*_unique versus *_equal, same as the standard). 00102 * @endif 00103 */ 00104 template <class _Key, class _Compare, class _Alloc> 00105 class multiset 00106 { 00107 // concept requirements 00108 typedef typename _Alloc::value_type _Alloc_value_type; 00109 __glibcxx_class_requires(_Key, _SGIAssignableConcept) 00110 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00111 _BinaryFunctionConcept) 00112 __glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept) 00113 00114 public: 00115 // typedefs: 00116 typedef _Key key_type; 00117 typedef _Key value_type; 00118 typedef _Compare key_compare; 00119 typedef _Compare value_compare; 00120 typedef _Alloc allocator_type; 00121 00122 private: 00123 /// @if maint This turns a red-black tree into a [multi]set. @endif 00124 typedef typename _Alloc::template rebind<_Key>::other _Key_alloc_type; 00125 00126 typedef _Rb_tree<key_type, value_type, _Identity<value_type>, 00127 key_compare, _Key_alloc_type> _Rep_type; 00128 /// @if maint The actual tree structure. @endif 00129 _Rep_type _M_t; 00130 00131 public: 00132 typedef typename _Key_alloc_type::pointer pointer; 00133 typedef typename _Key_alloc_type::const_pointer const_pointer; 00134 typedef typename _Key_alloc_type::reference reference; 00135 typedef typename _Key_alloc_type::const_reference const_reference; 00136 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00137 // DR 103. set::iterator is required to be modifiable, 00138 // but this allows modification of keys. 00139 typedef typename _Rep_type::const_iterator iterator; 00140 typedef typename _Rep_type::const_iterator const_iterator; 00141 typedef typename _Rep_type::const_reverse_iterator reverse_iterator; 00142 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00143 typedef typename _Rep_type::size_type size_type; 00144 typedef typename _Rep_type::difference_type difference_type; 00145 00146 // allocation/deallocation 00147 00148 /** 00149 * @brief Default constructor creates no elements. 00150 */ 00151 multiset() 00152 : _M_t(_Compare(), allocator_type()) { } 00153 00154 explicit 00155 multiset(const _Compare& __comp, 00156 const allocator_type& __a = allocator_type()) 00157 : _M_t(__comp, __a) { } 00158 00159 /** 00160 * @brief Builds a %multiset from a range. 00161 * @param first An input iterator. 00162 * @param last An input iterator. 00163 * 00164 * Create a %multiset consisting of copies of the elements from 00165 * [first,last). This is linear in N if the range is already sorted, 00166 * and NlogN otherwise (where N is distance(first,last)). 00167 */ 00168 template <class _InputIterator> 00169 multiset(_InputIterator __first, _InputIterator __last) 00170 : _M_t(_Compare(), allocator_type()) 00171 { _M_t.insert_equal(__first, __last); } 00172 00173 /** 00174 * @brief Builds a %multiset from a range. 00175 * @param first An input iterator. 00176 * @param last An input iterator. 00177 * @param comp A comparison functor. 00178 * @param a An allocator object. 00179 * 00180 * Create a %multiset consisting of copies of the elements from 00181 * [first,last). This is linear in N if the range is already sorted, 00182 * and NlogN otherwise (where N is distance(first,last)). 00183 */ 00184 template <class _InputIterator> 00185 multiset(_InputIterator __first, _InputIterator __last, 00186 const _Compare& __comp, 00187 const allocator_type& __a = allocator_type()) 00188 : _M_t(__comp, __a) 00189 { _M_t.insert_equal(__first, __last); } 00190 00191 /** 00192 * @brief %Multiset copy constructor. 00193 * @param x A %multiset of identical element and allocator types. 00194 * 00195 * The newly-created %multiset uses a copy of the allocation object used 00196 * by @a x. 00197 */ 00198 multiset(const multiset<_Key,_Compare,_Alloc>& __x) 00199 : _M_t(__x._M_t) { } 00200 00201 /** 00202 * @brief %Multiset assignment operator. 00203 * @param x A %multiset of identical element and allocator types. 00204 * 00205 * All the elements of @a x are copied, but unlike the copy constructor, 00206 * the allocator object is not copied. 00207 */ 00208 multiset<_Key,_Compare,_Alloc>& 00209 operator=(const multiset<_Key,_Compare,_Alloc>& __x) 00210 { 00211 _M_t = __x._M_t; 00212 return *this; 00213 } 00214 00215 // accessors: 00216 00217 /// Returns the comparison object. 00218 key_compare 00219 key_comp() const 00220 { return _M_t.key_comp(); } 00221 /// Returns the comparison object. 00222 value_compare 00223 value_comp() const 00224 { return _M_t.key_comp(); } 00225 /// Returns the memory allocation object. 00226 allocator_type 00227 get_allocator() const 00228 { return _M_t.get_allocator(); } 00229 00230 /** 00231 * Returns a read/write iterator that points to the first element in the 00232 * %multiset. Iteration is done in ascending order according to the 00233 * keys. 00234 */ 00235 iterator 00236 begin() const 00237 { return _M_t.begin(); } 00238 00239 /** 00240 * Returns a read/write iterator that points one past the last element in 00241 * the %multiset. Iteration is done in ascending order according to the 00242 * keys. 00243 */ 00244 iterator 00245 end() const 00246 { return _M_t.end(); } 00247 00248 /** 00249 * Returns a read/write reverse iterator that points to the last element 00250 * in the %multiset. Iteration is done in descending order according to 00251 * the keys. 00252 */ 00253 reverse_iterator 00254 rbegin() const 00255 { return _M_t.rbegin(); } 00256 00257 /** 00258 * Returns a read/write reverse iterator that points to the last element 00259 * in the %multiset. Iteration is done in descending order according to 00260 * the keys. 00261 */ 00262 reverse_iterator 00263 rend() const 00264 { return _M_t.rend(); } 00265 00266 /// Returns true if the %set is empty. 00267 bool 00268 empty() const 00269 { return _M_t.empty(); } 00270 00271 /// Returns the size of the %set. 00272 size_type 00273 size() const 00274 { return _M_t.size(); } 00275 00276 /// Returns the maximum size of the %set. 00277 size_type 00278 max_size() const 00279 { return _M_t.max_size(); } 00280 00281 /** 00282 * @brief Swaps data with another %multiset. 00283 * @param x A %multiset of the same element and allocator types. 00284 * 00285 * This exchanges the elements between two multisets in constant time. 00286 * (It is only swapping a pointer, an integer, and an instance of the @c 00287 * Compare type (which itself is often stateless and empty), so it should 00288 * be quite fast.) 00289 * Note that the global std::swap() function is specialized such that 00290 * std::swap(s1,s2) will feed to this function. 00291 */ 00292 void 00293 swap(multiset<_Key, _Compare, _Alloc>& __x) 00294 { _M_t.swap(__x._M_t); } 00295 00296 // insert/erase 00297 /** 00298 * @brief Inserts an element into the %multiset. 00299 * @param x Element to be inserted. 00300 * @return An iterator that points to the inserted element. 00301 * 00302 * This function inserts an element into the %multiset. Contrary 00303 * to a std::set the %multiset does not rely on unique keys and thus 00304 * multiple copies of the same element can be inserted. 00305 * 00306 * Insertion requires logarithmic time. 00307 */ 00308 iterator 00309 insert(const value_type& __x) 00310 { return _M_t.insert_equal(__x); } 00311 00312 /** 00313 * @brief Inserts an element into the %multiset. 00314 * @param position An iterator that serves as a hint as to where the 00315 * element should be inserted. 00316 * @param x Element to be inserted. 00317 * @return An iterator that points to the inserted element. 00318 * 00319 * This function inserts an element into the %multiset. Contrary 00320 * to a std::set the %multiset does not rely on unique keys and thus 00321 * multiple copies of the same element can be inserted. 00322 * 00323 * Note that the first parameter is only a hint and can potentially 00324 * improve the performance of the insertion process. A bad hint would 00325 * cause no gains in efficiency. 00326 * 00327 * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4 00328 * for more on "hinting". 00329 * 00330 * Insertion requires logarithmic time (if the hint is not taken). 00331 */ 00332 iterator 00333 insert(iterator __position, const value_type& __x) 00334 { return _M_t.insert_equal(__position, __x); } 00335 00336 /** 00337 * @brief A template function that attemps to insert a range of elements. 00338 * @param first Iterator pointing to the start of the range to be 00339 * inserted. 00340 * @param last Iterator pointing to the end of the range. 00341 * 00342 * Complexity similar to that of the range constructor. 00343 */ 00344 template <class _InputIterator> 00345 void 00346 insert(_InputIterator __first, _InputIterator __last) 00347 { _M_t.insert_equal(__first, __last); } 00348 00349 /** 00350 * @brief Erases an element from a %multiset. 00351 * @param position An iterator pointing to the element to be erased. 00352 * 00353 * This function erases an element, pointed to by the given iterator, 00354 * from a %multiset. Note that this function only erases the element, 00355 * and that if the element is itself a pointer, the pointed-to memory is 00356 * not touched in any way. Managing the pointer is the user's 00357 * responsibilty. 00358 */ 00359 void 00360 erase(iterator __position) 00361 { _M_t.erase(__position); } 00362 00363 /** 00364 * @brief Erases elements according to the provided key. 00365 * @param x Key of element to be erased. 00366 * @return The number of elements erased. 00367 * 00368 * This function erases all elements located by the given key from a 00369 * %multiset. 00370 * Note that this function only erases the element, and that if 00371 * the element is itself a pointer, the pointed-to memory is not touched 00372 * in any way. Managing the pointer is the user's responsibilty. 00373 */ 00374 size_type 00375 erase(const key_type& __x) 00376 { return _M_t.erase(__x); } 00377 00378 /** 00379 * @brief Erases a [first,last) range of elements from a %multiset. 00380 * @param first Iterator pointing to the start of the range to be 00381 * erased. 00382 * @param last Iterator pointing to the end of the range to be erased. 00383 * 00384 * This function erases a sequence of elements from a %multiset. 00385 * Note that this function only erases the elements, and that if 00386 * the elements themselves are pointers, the pointed-to memory is not 00387 * touched in any way. Managing the pointer is the user's responsibilty. 00388 */ 00389 void 00390 erase(iterator __first, iterator __last) 00391 { _M_t.erase(__first, __last); } 00392 00393 /** 00394 * Erases all elements in a %multiset. Note that this function only 00395 * erases the elements, and that if the elements themselves are pointers, 00396 * the pointed-to memory is not touched in any way. Managing the pointer 00397 * is the user's responsibilty. 00398 */ 00399 void 00400 clear() 00401 { _M_t.clear(); } 00402 00403 // multiset operations: 00404 00405 /** 00406 * @brief Finds the number of elements with given key. 00407 * @param x Key of elements to be located. 00408 * @return Number of elements with specified key. 00409 */ 00410 size_type 00411 count(const key_type& __x) const 00412 { return _M_t.count(__x); } 00413 00414 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00415 // 214. set::find() missing const overload 00416 //@{ 00417 /** 00418 * @brief Tries to locate an element in a %set. 00419 * @param x Element to be located. 00420 * @return Iterator pointing to sought-after element, or end() if not 00421 * found. 00422 * 00423 * This function takes a key and tries to locate the element with which 00424 * the key matches. If successful the function returns an iterator 00425 * pointing to the sought after element. If unsuccessful it returns the 00426 * past-the-end ( @c end() ) iterator. 00427 */ 00428 iterator 00429 find(const key_type& __x) 00430 { return _M_t.find(__x); } 00431 00432 const_iterator 00433 find(const key_type& __x) const 00434 { return _M_t.find(__x); } 00435 //@} 00436 00437 //@{ 00438 /** 00439 * @brief Finds the beginning of a subsequence matching given key. 00440 * @param x Key to be located. 00441 * @return Iterator pointing to first element equal to or greater 00442 * than key, or end(). 00443 * 00444 * This function returns the first element of a subsequence of elements 00445 * that matches the given key. If unsuccessful it returns an iterator 00446 * pointing to the first element that has a greater value than given key 00447 * or end() if no such element exists. 00448 */ 00449 iterator 00450 lower_bound(const key_type& __x) 00451 { return _M_t.lower_bound(__x); } 00452 00453 const_iterator 00454 lower_bound(const key_type& __x) const 00455 { return _M_t.lower_bound(__x); } 00456 //@} 00457 00458 //@{ 00459 /** 00460 * @brief Finds the end of a subsequence matching given key. 00461 * @param x Key to be located. 00462 * @return Iterator pointing to the first element 00463 * greater than key, or end(). 00464 */ 00465 iterator 00466 upper_bound(const key_type& __x) 00467 { return _M_t.upper_bound(__x); } 00468 00469 const_iterator 00470 upper_bound(const key_type& __x) const 00471 { return _M_t.upper_bound(__x); } 00472 //@} 00473 00474 //@{ 00475 /** 00476 * @brief Finds a subsequence matching given key. 00477 * @param x Key to be located. 00478 * @return Pair of iterators that possibly points to the subsequence 00479 * matching given key. 00480 * 00481 * This function is equivalent to 00482 * @code 00483 * std::make_pair(c.lower_bound(val), 00484 * c.upper_bound(val)) 00485 * @endcode 00486 * (but is faster than making the calls separately). 00487 * 00488 * This function probably only makes sense for multisets. 00489 */ 00490 std::pair<iterator, iterator> 00491 equal_range(const key_type& __x) 00492 { return _M_t.equal_range(__x); } 00493 00494 std::pair<const_iterator, const_iterator> 00495 equal_range(const key_type& __x) const 00496 { return _M_t.equal_range(__x); } 00497 00498 template <class _K1, class _C1, class _A1> 00499 friend bool 00500 operator== (const multiset<_K1, _C1, _A1>&, 00501 const multiset<_K1, _C1, _A1>&); 00502 00503 template <class _K1, class _C1, class _A1> 00504 friend bool 00505 operator< (const multiset<_K1, _C1, _A1>&, 00506 const multiset<_K1, _C1, _A1>&); 00507 }; 00508 00509 /** 00510 * @brief Multiset equality comparison. 00511 * @param x A %multiset. 00512 * @param y A %multiset of the same type as @a x. 00513 * @return True iff the size and elements of the multisets are equal. 00514 * 00515 * This is an equivalence relation. It is linear in the size of the 00516 * multisets. 00517 * Multisets are considered equivalent if their sizes are equal, and if 00518 * corresponding elements compare equal. 00519 */ 00520 template <class _Key, class _Compare, class _Alloc> 00521 inline bool 00522 operator==(const multiset<_Key, _Compare, _Alloc>& __x, 00523 const multiset<_Key, _Compare, _Alloc>& __y) 00524 { return __x._M_t == __y._M_t; } 00525 00526 /** 00527 * @brief Multiset ordering relation. 00528 * @param x A %multiset. 00529 * @param y A %multiset of the same type as @a x. 00530 * @return True iff @a x is lexicographically less than @a y. 00531 * 00532 * This is a total ordering relation. It is linear in the size of the 00533 * maps. The elements must be comparable with @c <. 00534 * 00535 * See std::lexicographical_compare() for how the determination is made. 00536 */ 00537 template <class _Key, class _Compare, class _Alloc> 00538 inline bool 00539 operator<(const multiset<_Key, _Compare, _Alloc>& __x, 00540 const multiset<_Key, _Compare, _Alloc>& __y) 00541 { return __x._M_t < __y._M_t; } 00542 00543 /// Returns !(x == y). 00544 template <class _Key, class _Compare, class _Alloc> 00545 inline bool 00546 operator!=(const multiset<_Key, _Compare, _Alloc>& __x, 00547 const multiset<_Key, _Compare, _Alloc>& __y) 00548 { return !(__x == __y); } 00549 00550 /// Returns y < x. 00551 template <class _Key, class _Compare, class _Alloc> 00552 inline bool 00553 operator>(const multiset<_Key,_Compare,_Alloc>& __x, 00554 const multiset<_Key,_Compare,_Alloc>& __y) 00555 { return __y < __x; } 00556 00557 /// Returns !(y < x) 00558 template <class _Key, class _Compare, class _Alloc> 00559 inline bool 00560 operator<=(const multiset<_Key, _Compare, _Alloc>& __x, 00561 const multiset<_Key, _Compare, _Alloc>& __y) 00562 { return !(__y < __x); } 00563 00564 /// Returns !(x < y) 00565 template <class _Key, class _Compare, class _Alloc> 00566 inline bool 00567 operator>=(const multiset<_Key, _Compare, _Alloc>& __x, 00568 const multiset<_Key, _Compare, _Alloc>& __y) 00569 { return !(__x < __y); } 00570 00571 /// See std::multiset::swap(). 00572 template <class _Key, class _Compare, class _Alloc> 00573 inline void 00574 swap(multiset<_Key, _Compare, _Alloc>& __x, 00575 multiset<_Key, _Compare, _Alloc>& __y) 00576 { __x.swap(__y); } 00577 00578 } // namespace std 00579 00580 #endif /* _MULTISET_H */