00001 // Map implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001, 2002, 2004, 2005 Free Software Foundation, Inc. 00004 // 00005 // This file is part of the GNU ISO C++ Library. This library is free 00006 // software; you can redistribute it and/or modify it under the 00007 // terms of the GNU General Public License as published by the 00008 // Free Software Foundation; either version 2, or (at your option) 00009 // any later version. 00010 00011 // This library is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 00016 // You should have received a copy of the GNU General Public License along 00017 // with this library; see the file COPYING. If not, write to the Free 00018 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 00019 // USA. 00020 00021 // As a special exception, you may use this file as part of a free software 00022 // library without restriction. Specifically, if other files instantiate 00023 // templates or use macros or inline functions from this file, or you compile 00024 // this file and link it with other files to produce an executable, this 00025 // file does not by itself cause the resulting executable to be covered by 00026 // the GNU General Public License. This exception does not however 00027 // invalidate any other reasons why the executable file might be covered by 00028 // the GNU General Public License. 00029 00030 /* 00031 * 00032 * Copyright (c) 1994 00033 * Hewlett-Packard Company 00034 * 00035 * Permission to use, copy, modify, distribute and sell this software 00036 * and its documentation for any purpose is hereby granted without fee, 00037 * provided that the above copyright notice appear in all copies and 00038 * that both that copyright notice and this permission notice appear 00039 * in supporting documentation. Hewlett-Packard Company makes no 00040 * representations about the suitability of this software for any 00041 * purpose. It is provided "as is" without express or implied warranty. 00042 * 00043 * 00044 * Copyright (c) 1996,1997 00045 * Silicon Graphics Computer Systems, Inc. 00046 * 00047 * Permission to use, copy, modify, distribute and sell this software 00048 * and its documentation for any purpose is hereby granted without fee, 00049 * provided that the above copyright notice appear in all copies and 00050 * that both that copyright notice and this permission notice appear 00051 * in supporting documentation. Silicon Graphics makes no 00052 * representations about the suitability of this software for any 00053 * purpose. It is provided "as is" without express or implied warranty. 00054 */ 00055 00056 /** @file stl_map.h 00057 * This is an internal header file, included by other library headers. 00058 * You should not attempt to use it directly. 00059 */ 00060 00061 #ifndef _MAP_H 00062 #define _MAP_H 1 00063 00064 #include <bits/functexcept.h> 00065 #include <bits/concept_check.h> 00066 00067 namespace _GLIBCXX_STD 00068 { 00069 /** 00070 * @brief A standard container made up of (key,value) pairs, which can be 00071 * retrieved based on a key, in logarithmic time. 00072 * 00073 * @ingroup Containers 00074 * @ingroup Assoc_containers 00075 * 00076 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00077 * <a href="tables.html#66">reversible container</a>, and an 00078 * <a href="tables.html#69">associative container</a> (using unique keys). 00079 * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the 00080 * value_type is std::pair<const Key,T>. 00081 * 00082 * Maps support bidirectional iterators. 00083 * 00084 * @if maint 00085 * The private tree data is declared exactly the same way for map and 00086 * multimap; the distinction is made entirely in how the tree functions are 00087 * called (*_unique versus *_equal, same as the standard). 00088 * @endif 00089 */ 00090 template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>, 00091 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > > 00092 class map 00093 { 00094 public: 00095 typedef _Key key_type; 00096 typedef _Tp mapped_type; 00097 typedef std::pair<const _Key, _Tp> value_type; 00098 typedef _Compare key_compare; 00099 typedef _Alloc allocator_type; 00100 00101 private: 00102 // concept requirements 00103 typedef typename _Alloc::value_type _Alloc_value_type; 00104 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00105 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00106 _BinaryFunctionConcept) 00107 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept) 00108 00109 public: 00110 class value_compare 00111 : public std::binary_function<value_type, value_type, bool> 00112 { 00113 friend class map<_Key, _Tp, _Compare, _Alloc>; 00114 protected: 00115 _Compare comp; 00116 00117 value_compare(_Compare __c) 00118 : comp(__c) { } 00119 00120 public: 00121 bool operator()(const value_type& __x, const value_type& __y) const 00122 { return comp(__x.first, __y.first); } 00123 }; 00124 00125 private: 00126 /// @if maint This turns a red-black tree into a [multi]map. @endif 00127 typedef typename _Alloc::template rebind<value_type>::other 00128 _Pair_alloc_type; 00129 00130 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>, 00131 key_compare, _Pair_alloc_type> _Rep_type; 00132 00133 /// @if maint The actual tree structure. @endif 00134 _Rep_type _M_t; 00135 00136 public: 00137 // many of these are specified differently in ISO, but the following are 00138 // "functionally equivalent" 00139 typedef typename _Pair_alloc_type::pointer pointer; 00140 typedef typename _Pair_alloc_type::const_pointer const_pointer; 00141 typedef typename _Pair_alloc_type::reference reference; 00142 typedef typename _Pair_alloc_type::const_reference const_reference; 00143 typedef typename _Rep_type::iterator iterator; 00144 typedef typename _Rep_type::const_iterator const_iterator; 00145 typedef typename _Rep_type::size_type size_type; 00146 typedef typename _Rep_type::difference_type difference_type; 00147 typedef typename _Rep_type::reverse_iterator reverse_iterator; 00148 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00149 00150 // [23.3.1.1] construct/copy/destroy 00151 // (get_allocator() is normally listed in this section, but seems to have 00152 // been accidentally omitted in the printed standard) 00153 /** 00154 * @brief Default constructor creates no elements. 00155 */ 00156 map() 00157 : _M_t(_Compare(), allocator_type()) { } 00158 00159 // for some reason this was made a separate function 00160 /** 00161 * @brief Default constructor creates no elements. 00162 */ 00163 explicit 00164 map(const _Compare& __comp, const allocator_type& __a = allocator_type()) 00165 : _M_t(__comp, __a) { } 00166 00167 /** 00168 * @brief Map copy constructor. 00169 * @param x A %map of identical element and allocator types. 00170 * 00171 * The newly-created %map uses a copy of the allocation object used 00172 * by @a x. 00173 */ 00174 map(const map& __x) 00175 : _M_t(__x._M_t) { } 00176 00177 /** 00178 * @brief Builds a %map from a range. 00179 * @param first An input iterator. 00180 * @param last An input iterator. 00181 * 00182 * Create a %map consisting of copies of the elements from [first,last). 00183 * This is linear in N if the range is already sorted, and NlogN 00184 * otherwise (where N is distance(first,last)). 00185 */ 00186 template <typename _InputIterator> 00187 map(_InputIterator __first, _InputIterator __last) 00188 : _M_t(_Compare(), allocator_type()) 00189 { _M_t.insert_unique(__first, __last); } 00190 00191 /** 00192 * @brief Builds a %map from a range. 00193 * @param first An input iterator. 00194 * @param last An input iterator. 00195 * @param comp A comparison functor. 00196 * @param a An allocator object. 00197 * 00198 * Create a %map consisting of copies of the elements from [first,last). 00199 * This is linear in N if the range is already sorted, and NlogN 00200 * otherwise (where N is distance(first,last)). 00201 */ 00202 template <typename _InputIterator> 00203 map(_InputIterator __first, _InputIterator __last, 00204 const _Compare& __comp, const allocator_type& __a = allocator_type()) 00205 : _M_t(__comp, __a) 00206 { _M_t.insert_unique(__first, __last); } 00207 00208 // FIXME There is no dtor declared, but we should have something generated 00209 // by Doxygen. I don't know what tags to add to this paragraph to make 00210 // that happen: 00211 /** 00212 * The dtor only erases the elements, and note that if the elements 00213 * themselves are pointers, the pointed-to memory is not touched in any 00214 * way. Managing the pointer is the user's responsibilty. 00215 */ 00216 00217 /** 00218 * @brief Map assignment operator. 00219 * @param x A %map of identical element and allocator types. 00220 * 00221 * All the elements of @a x are copied, but unlike the copy constructor, 00222 * the allocator object is not copied. 00223 */ 00224 map& 00225 operator=(const map& __x) 00226 { 00227 _M_t = __x._M_t; 00228 return *this; 00229 } 00230 00231 /// Get a copy of the memory allocation object. 00232 allocator_type 00233 get_allocator() const 00234 { return _M_t.get_allocator(); } 00235 00236 // iterators 00237 /** 00238 * Returns a read/write iterator that points to the first pair in the 00239 * %map. 00240 * Iteration is done in ascending order according to the keys. 00241 */ 00242 iterator 00243 begin() 00244 { return _M_t.begin(); } 00245 00246 /** 00247 * Returns a read-only (constant) iterator that points to the first pair 00248 * in the %map. Iteration is done in ascending order according to the 00249 * keys. 00250 */ 00251 const_iterator 00252 begin() const 00253 { return _M_t.begin(); } 00254 00255 /** 00256 * Returns a read/write iterator that points one past the last pair in 00257 * the %map. Iteration is done in ascending order according to the keys. 00258 */ 00259 iterator 00260 end() 00261 { return _M_t.end(); } 00262 00263 /** 00264 * Returns a read-only (constant) iterator that points one past the last 00265 * pair in the %map. Iteration is done in ascending order according to 00266 * the keys. 00267 */ 00268 const_iterator 00269 end() const 00270 { return _M_t.end(); } 00271 00272 /** 00273 * Returns a read/write reverse iterator that points to the last pair in 00274 * the %map. Iteration is done in descending order according to the 00275 * keys. 00276 */ 00277 reverse_iterator 00278 rbegin() 00279 { return _M_t.rbegin(); } 00280 00281 /** 00282 * Returns a read-only (constant) reverse iterator that points to the 00283 * last pair in the %map. Iteration is done in descending order 00284 * according to the keys. 00285 */ 00286 const_reverse_iterator 00287 rbegin() const 00288 { return _M_t.rbegin(); } 00289 00290 /** 00291 * Returns a read/write reverse iterator that points to one before the 00292 * first pair in the %map. Iteration is done in descending order 00293 * according to the keys. 00294 */ 00295 reverse_iterator 00296 rend() 00297 { return _M_t.rend(); } 00298 00299 /** 00300 * Returns a read-only (constant) reverse iterator that points to one 00301 * before the first pair in the %map. Iteration is done in descending 00302 * order according to the keys. 00303 */ 00304 const_reverse_iterator 00305 rend() const 00306 { return _M_t.rend(); } 00307 00308 // capacity 00309 /** Returns true if the %map is empty. (Thus begin() would equal 00310 * end().) 00311 */ 00312 bool 00313 empty() const 00314 { return _M_t.empty(); } 00315 00316 /** Returns the size of the %map. */ 00317 size_type 00318 size() const 00319 { return _M_t.size(); } 00320 00321 /** Returns the maximum size of the %map. */ 00322 size_type 00323 max_size() const 00324 { return _M_t.max_size(); } 00325 00326 // [23.3.1.2] element access 00327 /** 00328 * @brief Subscript ( @c [] ) access to %map data. 00329 * @param k The key for which data should be retrieved. 00330 * @return A reference to the data of the (key,data) %pair. 00331 * 00332 * Allows for easy lookup with the subscript ( @c [] ) operator. Returns 00333 * data associated with the key specified in subscript. If the key does 00334 * not exist, a pair with that key is created using default values, which 00335 * is then returned. 00336 * 00337 * Lookup requires logarithmic time. 00338 */ 00339 mapped_type& 00340 operator[](const key_type& __k) 00341 { 00342 // concept requirements 00343 __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>) 00344 00345 iterator __i = lower_bound(__k); 00346 // __i->first is greater than or equivalent to __k. 00347 if (__i == end() || key_comp()(__k, (*__i).first)) 00348 __i = insert(__i, value_type(__k, mapped_type())); 00349 return (*__i).second; 00350 } 00351 00352 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00353 // DR 464. Suggestion for new member functions in standard containers. 00354 /** 00355 * @brief Access to %map data. 00356 * @param k The key for which data should be retrieved. 00357 * @return A reference to the data whose key is equivalent to @a k, if 00358 * such a data is present in the %map. 00359 * @throw std::out_of_range If no such data is present. 00360 */ 00361 mapped_type& 00362 at(const key_type& __k) 00363 { 00364 iterator __i = lower_bound(__k); 00365 if (__i == end() || key_comp()(__k, (*__i).first)) 00366 __throw_out_of_range(__N("map::at")); 00367 return (*__i).second; 00368 } 00369 00370 const mapped_type& 00371 at(const key_type& __k) const 00372 { 00373 const_iterator __i = lower_bound(__k); 00374 if (__i == end() || key_comp()(__k, (*__i).first)) 00375 __throw_out_of_range(__N("map::at")); 00376 return (*__i).second; 00377 } 00378 00379 // modifiers 00380 /** 00381 * @brief Attempts to insert a std::pair into the %map. 00382 * @param x Pair to be inserted (see std::make_pair for easy creation of 00383 * pairs). 00384 * @return A pair, of which the first element is an iterator that points 00385 * to the possibly inserted pair, and the second is a bool that 00386 * is true if the pair was actually inserted. 00387 * 00388 * This function attempts to insert a (key, value) %pair into the %map. 00389 * A %map relies on unique keys and thus a %pair is only inserted if its 00390 * first element (the key) is not already present in the %map. 00391 * 00392 * Insertion requires logarithmic time. 00393 */ 00394 std::pair<iterator,bool> 00395 insert(const value_type& __x) 00396 { return _M_t.insert_unique(__x); } 00397 00398 /** 00399 * @brief Attempts to insert a std::pair into the %map. 00400 * @param position An iterator that serves as a hint as to where the 00401 * pair should be inserted. 00402 * @param x Pair to be inserted (see std::make_pair for easy creation of 00403 * pairs). 00404 * @return An iterator that points to the element with key of @a x (may 00405 * or may not be the %pair passed in). 00406 * 00407 * This function is not concerned about whether the insertion took place, 00408 * and thus does not return a boolean like the single-argument 00409 * insert() does. Note that the first parameter is only a hint and can 00410 * potentially improve the performance of the insertion process. A bad 00411 * hint would cause no gains in efficiency. 00412 * 00413 * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4 00414 * for more on "hinting". 00415 * 00416 * Insertion requires logarithmic time (if the hint is not taken). 00417 */ 00418 iterator 00419 insert(iterator position, const value_type& __x) 00420 { return _M_t.insert_unique(position, __x); } 00421 00422 /** 00423 * @brief A template function that attemps to insert a range of elements. 00424 * @param first Iterator pointing to the start of the range to be 00425 * inserted. 00426 * @param last Iterator pointing to the end of the range. 00427 * 00428 * Complexity similar to that of the range constructor. 00429 */ 00430 template <typename _InputIterator> 00431 void 00432 insert(_InputIterator __first, _InputIterator __last) 00433 { _M_t.insert_unique(__first, __last); } 00434 00435 /** 00436 * @brief Erases an element from a %map. 00437 * @param position An iterator pointing to the element to be erased. 00438 * 00439 * This function erases an element, pointed to by the given iterator, 00440 * from a %map. Note that this function only erases the element, and 00441 * that if the element is itself a pointer, the pointed-to memory is not 00442 * touched in any way. Managing the pointer is the user's responsibilty. 00443 */ 00444 void 00445 erase(iterator __position) 00446 { _M_t.erase(__position); } 00447 00448 /** 00449 * @brief Erases elements according to the provided key. 00450 * @param x Key of element to be erased. 00451 * @return The number of elements erased. 00452 * 00453 * This function erases all the elements located by the given key from 00454 * a %map. 00455 * Note that this function only erases the element, and that if 00456 * the element is itself a pointer, the pointed-to memory is not touched 00457 * in any way. Managing the pointer is the user's responsibilty. 00458 */ 00459 size_type 00460 erase(const key_type& __x) 00461 { return _M_t.erase(__x); } 00462 00463 /** 00464 * @brief Erases a [first,last) range of elements from a %map. 00465 * @param first Iterator pointing to the start of the range to be 00466 * erased. 00467 * @param last Iterator pointing to the end of the range to be erased. 00468 * 00469 * This function erases a sequence of elements from a %map. 00470 * Note that this function only erases the element, and that if 00471 * the element is itself a pointer, the pointed-to memory is not touched 00472 * in any way. Managing the pointer is the user's responsibilty. 00473 */ 00474 void 00475 erase(iterator __first, iterator __last) 00476 { _M_t.erase(__first, __last); } 00477 00478 /** 00479 * @brief Swaps data with another %map. 00480 * @param x A %map of the same element and allocator types. 00481 * 00482 * This exchanges the elements between two maps in constant time. 00483 * (It is only swapping a pointer, an integer, and an instance of 00484 * the @c Compare type (which itself is often stateless and empty), so it 00485 * should be quite fast.) 00486 * Note that the global std::swap() function is specialized such that 00487 * std::swap(m1,m2) will feed to this function. 00488 */ 00489 void 00490 swap(map& __x) 00491 { _M_t.swap(__x._M_t); } 00492 00493 /** 00494 * Erases all elements in a %map. Note that this function only erases 00495 * the elements, and that if the elements themselves are pointers, the 00496 * pointed-to memory is not touched in any way. Managing the pointer is 00497 * the user's responsibilty. 00498 */ 00499 void 00500 clear() 00501 { _M_t.clear(); } 00502 00503 // observers 00504 /** 00505 * Returns the key comparison object out of which the %map was 00506 * constructed. 00507 */ 00508 key_compare 00509 key_comp() const 00510 { return _M_t.key_comp(); } 00511 00512 /** 00513 * Returns a value comparison object, built from the key comparison 00514 * object out of which the %map was constructed. 00515 */ 00516 value_compare 00517 value_comp() const 00518 { return value_compare(_M_t.key_comp()); } 00519 00520 // [23.3.1.3] map operations 00521 /** 00522 * @brief Tries to locate an element in a %map. 00523 * @param x Key of (key, value) %pair to be located. 00524 * @return Iterator pointing to sought-after element, or end() if not 00525 * found. 00526 * 00527 * This function takes a key and tries to locate the element with which 00528 * the key matches. If successful the function returns an iterator 00529 * pointing to the sought after %pair. If unsuccessful it returns the 00530 * past-the-end ( @c end() ) iterator. 00531 */ 00532 iterator 00533 find(const key_type& __x) 00534 { return _M_t.find(__x); } 00535 00536 /** 00537 * @brief Tries to locate an element in a %map. 00538 * @param x Key of (key, value) %pair to be located. 00539 * @return Read-only (constant) iterator pointing to sought-after 00540 * element, or end() if not found. 00541 * 00542 * This function takes a key and tries to locate the element with which 00543 * the key matches. If successful the function returns a constant 00544 * iterator pointing to the sought after %pair. If unsuccessful it 00545 * returns the past-the-end ( @c end() ) iterator. 00546 */ 00547 const_iterator 00548 find(const key_type& __x) const 00549 { return _M_t.find(__x); } 00550 00551 /** 00552 * @brief Finds the number of elements with given key. 00553 * @param x Key of (key, value) pairs to be located. 00554 * @return Number of elements with specified key. 00555 * 00556 * This function only makes sense for multimaps; for map the result will 00557 * either be 0 (not present) or 1 (present). 00558 */ 00559 size_type 00560 count(const key_type& __x) const 00561 { return _M_t.find(__x) == _M_t.end() ? 0 : 1; } 00562 00563 /** 00564 * @brief Finds the beginning of a subsequence matching given key. 00565 * @param x Key of (key, value) pair to be located. 00566 * @return Iterator pointing to first element equal to or greater 00567 * than key, or end(). 00568 * 00569 * This function returns the first element of a subsequence of elements 00570 * that matches the given key. If unsuccessful it returns an iterator 00571 * pointing to the first element that has a greater value than given key 00572 * or end() if no such element exists. 00573 */ 00574 iterator 00575 lower_bound(const key_type& __x) 00576 { return _M_t.lower_bound(__x); } 00577 00578 /** 00579 * @brief Finds the beginning of a subsequence matching given key. 00580 * @param x Key of (key, value) pair to be located. 00581 * @return Read-only (constant) iterator pointing to first element 00582 * equal to or greater than key, or end(). 00583 * 00584 * This function returns the first element of a subsequence of elements 00585 * that matches the given key. If unsuccessful it returns an iterator 00586 * pointing to the first element that has a greater value than given key 00587 * or end() if no such element exists. 00588 */ 00589 const_iterator 00590 lower_bound(const key_type& __x) const 00591 { return _M_t.lower_bound(__x); } 00592 00593 /** 00594 * @brief Finds the end of a subsequence matching given key. 00595 * @param x Key of (key, value) pair to be located. 00596 * @return Iterator pointing to the first element 00597 * greater than key, or end(). 00598 */ 00599 iterator 00600 upper_bound(const key_type& __x) 00601 { return _M_t.upper_bound(__x); } 00602 00603 /** 00604 * @brief Finds the end of a subsequence matching given key. 00605 * @param x Key of (key, value) pair to be located. 00606 * @return Read-only (constant) iterator pointing to first iterator 00607 * greater than key, or end(). 00608 */ 00609 const_iterator 00610 upper_bound(const key_type& __x) const 00611 { return _M_t.upper_bound(__x); } 00612 00613 /** 00614 * @brief Finds a subsequence matching given key. 00615 * @param x Key of (key, value) pairs to be located. 00616 * @return Pair of iterators that possibly points to the subsequence 00617 * matching given key. 00618 * 00619 * This function is equivalent to 00620 * @code 00621 * std::make_pair(c.lower_bound(val), 00622 * c.upper_bound(val)) 00623 * @endcode 00624 * (but is faster than making the calls separately). 00625 * 00626 * This function probably only makes sense for multimaps. 00627 */ 00628 std::pair<iterator, iterator> 00629 equal_range(const key_type& __x) 00630 { return _M_t.equal_range(__x); } 00631 00632 /** 00633 * @brief Finds a subsequence matching given key. 00634 * @param x Key of (key, value) pairs to be located. 00635 * @return Pair of read-only (constant) iterators that possibly points 00636 * to the subsequence matching given key. 00637 * 00638 * This function is equivalent to 00639 * @code 00640 * std::make_pair(c.lower_bound(val), 00641 * c.upper_bound(val)) 00642 * @endcode 00643 * (but is faster than making the calls separately). 00644 * 00645 * This function probably only makes sense for multimaps. 00646 */ 00647 std::pair<const_iterator, const_iterator> 00648 equal_range(const key_type& __x) const 00649 { return _M_t.equal_range(__x); } 00650 00651 template <typename _K1, typename _T1, typename _C1, typename _A1> 00652 friend bool 00653 operator== (const map<_K1, _T1, _C1, _A1>&, 00654 const map<_K1, _T1, _C1, _A1>&); 00655 00656 template <typename _K1, typename _T1, typename _C1, typename _A1> 00657 friend bool 00658 operator< (const map<_K1, _T1, _C1, _A1>&, 00659 const map<_K1, _T1, _C1, _A1>&); 00660 }; 00661 00662 /** 00663 * @brief Map equality comparison. 00664 * @param x A %map. 00665 * @param y A %map of the same type as @a x. 00666 * @return True iff the size and elements of the maps are equal. 00667 * 00668 * This is an equivalence relation. It is linear in the size of the 00669 * maps. Maps are considered equivalent if their sizes are equal, 00670 * and if corresponding elements compare equal. 00671 */ 00672 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00673 inline bool 00674 operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00675 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00676 { return __x._M_t == __y._M_t; } 00677 00678 /** 00679 * @brief Map ordering relation. 00680 * @param x A %map. 00681 * @param y A %map of the same type as @a x. 00682 * @return True iff @a x is lexicographically less than @a y. 00683 * 00684 * This is a total ordering relation. It is linear in the size of the 00685 * maps. The elements must be comparable with @c <. 00686 * 00687 * See std::lexicographical_compare() for how the determination is made. 00688 */ 00689 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00690 inline bool 00691 operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00692 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00693 { return __x._M_t < __y._M_t; } 00694 00695 /// Based on operator== 00696 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00697 inline bool 00698 operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00699 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00700 { return !(__x == __y); } 00701 00702 /// Based on operator< 00703 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00704 inline bool 00705 operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00706 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00707 { return __y < __x; } 00708 00709 /// Based on operator< 00710 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00711 inline bool 00712 operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00713 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00714 { return !(__y < __x); } 00715 00716 /// Based on operator< 00717 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00718 inline bool 00719 operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00720 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00721 { return !(__x < __y); } 00722 00723 /// See std::map::swap(). 00724 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00725 inline void 00726 swap(map<_Key, _Tp, _Compare, _Alloc>& __x, 00727 map<_Key, _Tp, _Compare, _Alloc>& __y) 00728 { __x.swap(__y); } 00729 } // namespace std 00730 00731 #endif /* _MAP_H */