stl_vector.h

Go to the documentation of this file.
00001 // Vector implementation -*- C++ -*-
00002 
00003 // Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
00004 //
00005 // This file is part of the GNU ISO C++ Library.  This library is free
00006 // software; you can redistribute it and/or modify it under the
00007 // terms of the GNU General Public License as published by the
00008 // Free Software Foundation; either version 2, or (at your option)
00009 // any later version.
00010 
00011 // This library is distributed in the hope that it will be useful,
00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014 // GNU General Public License for more details.
00015 
00016 // You should have received a copy of the GNU General Public License along
00017 // with this library; see the file COPYING.  If not, write to the Free
00018 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
00019 // USA.
00020 
00021 // As a special exception, you may use this file as part of a free software
00022 // library without restriction.  Specifically, if other files instantiate
00023 // templates or use macros or inline functions from this file, or you compile
00024 // this file and link it with other files to produce an executable, this
00025 // file does not by itself cause the resulting executable to be covered by
00026 // the GNU General Public License.  This exception does not however
00027 // invalidate any other reasons why the executable file might be covered by
00028 // the GNU General Public License.
00029 
00030 /*
00031  *
00032  * Copyright (c) 1994
00033  * Hewlett-Packard Company
00034  *
00035  * Permission to use, copy, modify, distribute and sell this software
00036  * and its documentation for any purpose is hereby granted without fee,
00037  * provided that the above copyright notice appear in all copies and
00038  * that both that copyright notice and this permission notice appear
00039  * in supporting documentation.  Hewlett-Packard Company makes no
00040  * representations about the suitability of this software for any
00041  * purpose.  It is provided "as is" without express or implied warranty.
00042  *
00043  *
00044  * Copyright (c) 1996
00045  * Silicon Graphics Computer Systems, Inc.
00046  *
00047  * Permission to use, copy, modify, distribute and sell this software
00048  * and its documentation for any purpose is hereby granted without fee,
00049  * provided that the above copyright notice appear in all copies and
00050  * that both that copyright notice and this permission notice appear
00051  * in supporting documentation.  Silicon Graphics makes no
00052  * representations about the suitability of this  software for any
00053  * purpose.  It is provided "as is" without express or implied warranty.
00054  */
00055 
00056 /** @file stl_vector.h
00057  *  This is an internal header file, included by other library headers.
00058  *  You should not attempt to use it directly.
00059  */
00060 
00061 #ifndef _VECTOR_H
00062 #define _VECTOR_H 1
00063 
00064 #include <bits/stl_iterator_base_funcs.h>
00065 #include <bits/functexcept.h>
00066 #include <bits/concept_check.h>
00067 
00068 namespace _GLIBCXX_STD
00069 {
00070   /**
00071    *  @if maint
00072    *  See bits/stl_deque.h's _Deque_base for an explanation.
00073    *  @endif
00074   */
00075   template<typename _Tp, typename _Alloc>
00076     struct _Vector_base
00077     {
00078       struct _Vector_impl 
00079       : public _Alloc
00080       {
00081     _Tp*           _M_start;
00082     _Tp*           _M_finish;
00083     _Tp*           _M_end_of_storage;
00084     _Vector_impl(_Alloc const& __a)
00085     : _Alloc(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
00086     { }
00087       };
00088       
00089     public:
00090       typedef _Alloc allocator_type;
00091 
00092       allocator_type
00093       get_allocator() const
00094       { return *static_cast<const _Alloc*>(&this->_M_impl); }
00095 
00096       _Vector_base(const allocator_type& __a)
00097       : _M_impl(__a)
00098       { }
00099 
00100       _Vector_base(size_t __n, const allocator_type& __a)
00101       : _M_impl(__a)
00102       {
00103     this->_M_impl._M_start = this->_M_allocate(__n);
00104     this->_M_impl._M_finish = this->_M_impl._M_start;
00105     this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
00106       }
00107 
00108       ~_Vector_base()
00109       { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
00110               - this->_M_impl._M_start); }
00111 
00112     public:
00113       _Vector_impl _M_impl;
00114 
00115       _Tp*
00116       _M_allocate(size_t __n)
00117       { return _M_impl.allocate(__n); }
00118 
00119       void
00120       _M_deallocate(_Tp* __p, size_t __n)
00121       {
00122     if (__p)
00123       _M_impl.deallocate(__p, __n);
00124       }
00125     };
00126 
00127 
00128   /**
00129    *  @brief A standard container which offers fixed time access to
00130    *  individual elements in any order.
00131    *
00132    *  @ingroup Containers
00133    *  @ingroup Sequences
00134    *
00135    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
00136    *  <a href="tables.html#66">reversible container</a>, and a
00137    *  <a href="tables.html#67">sequence</a>, including the
00138    *  <a href="tables.html#68">optional sequence requirements</a> with the
00139    *  %exception of @c push_front and @c pop_front.
00140    *
00141    *  In some terminology a %vector can be described as a dynamic
00142    *  C-style array, it offers fast and efficient access to individual
00143    *  elements in any order and saves the user from worrying about
00144    *  memory and size allocation.  Subscripting ( @c [] ) access is
00145    *  also provided as with C-style arrays.
00146   */
00147   template<typename _Tp, typename _Alloc = allocator<_Tp> >
00148     class vector : protected _Vector_base<_Tp, _Alloc>
00149     {
00150       // Concept requirements.
00151       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
00152 
00153       typedef _Vector_base<_Tp, _Alloc>         _Base;
00154       typedef vector<_Tp, _Alloc>           vector_type;
00155 
00156     public:
00157       typedef _Tp                    value_type;
00158       typedef typename _Alloc::pointer                   pointer;
00159       typedef typename _Alloc::const_pointer             const_pointer;
00160       typedef typename _Alloc::reference                 reference;
00161       typedef typename _Alloc::const_reference           const_reference;
00162       typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
00163       typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
00164       const_iterator;
00165       typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
00166       typedef std::reverse_iterator<iterator>        reverse_iterator;
00167       typedef size_t                     size_type;
00168       typedef ptrdiff_t                  difference_type;
00169       typedef typename _Base::allocator_type         allocator_type;
00170 
00171     protected:
00172       /** @if maint
00173        *  These two functions and three data members are all from the
00174        *  base class.  They should be pretty self-explanatory, as
00175        *  %vector uses a simple contiguous allocation scheme.  @endif
00176        */
00177       using _Base::_M_allocate;
00178       using _Base::_M_deallocate;
00179       using _Base::_M_impl;
00180 
00181     public:
00182       // [23.2.4.1] construct/copy/destroy
00183       // (assign() and get_allocator() are also listed in this section)
00184       /**
00185        *  @brief  Default constructor creates no elements.
00186        */
00187       explicit
00188       vector(const allocator_type& __a = allocator_type())
00189       : _Base(__a)
00190       { }
00191 
00192       /**
00193        *  @brief  Create a %vector with copies of an exemplar element.
00194        *  @param  n  The number of elements to initially create.
00195        *  @param  value  An element to copy.
00196        *
00197        *  This constructor fills the %vector with @a n copies of @a value.
00198        */
00199       vector(size_type __n, const value_type& __value,
00200          const allocator_type& __a = allocator_type())
00201       : _Base(__n, __a)
00202       {
00203     std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
00204                       this->get_allocator());
00205     this->_M_impl._M_finish = this->_M_impl._M_start + __n;
00206       }
00207 
00208       /**
00209        *  @brief  Create a %vector with default elements.
00210        *  @param  n  The number of elements to initially create.
00211        *
00212        *  This constructor fills the %vector with @a n copies of a
00213        *  default-constructed element.
00214        */
00215       explicit
00216       vector(size_type __n)
00217       : _Base(__n, allocator_type())
00218       {
00219     std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, value_type(),
00220                       this->get_allocator());
00221     this->_M_impl._M_finish = this->_M_impl._M_start + __n; 
00222       }
00223 
00224       /**
00225        *  @brief  %Vector copy constructor.
00226        *  @param  x  A %vector of identical element and allocator types.
00227        *
00228        *  The newly-created %vector uses a copy of the allocation
00229        *  object used by @a x.  All the elements of @a x are copied,
00230        *  but any extra memory in
00231        *  @a x (for fast expansion) will not be copied.
00232        */
00233       vector(const vector& __x)
00234       : _Base(__x.size(), __x.get_allocator())
00235       { this->_M_impl._M_finish =
00236       std::__uninitialized_copy_a(__x.begin(), __x.end(),
00237                       this->_M_impl._M_start,
00238                       this->get_allocator());
00239       }
00240 
00241       /**
00242        *  @brief  Builds a %vector from a range.
00243        *  @param  first  An input iterator.
00244        *  @param  last  An input iterator.
00245        *
00246        *  Create a %vector consisting of copies of the elements from
00247        *  [first,last).
00248        *
00249        *  If the iterators are forward, bidirectional, or
00250        *  random-access, then this will call the elements' copy
00251        *  constructor N times (where N is distance(first,last)) and do
00252        *  no memory reallocation.  But if only input iterators are
00253        *  used, then this will do at most 2N calls to the copy
00254        *  constructor, and logN memory reallocations.
00255        */
00256       template<typename _InputIterator>
00257         vector(_InputIterator __first, _InputIterator __last,
00258            const allocator_type& __a = allocator_type())
00259     : _Base(__a)
00260         {
00261       // Check whether it's an integral type.  If so, it's not an iterator.
00262       typedef typename std::__is_integer<_InputIterator>::__type _Integral;
00263       _M_initialize_dispatch(__first, __last, _Integral());
00264     }
00265 
00266       /**
00267        *  The dtor only erases the elements, and note that if the
00268        *  elements themselves are pointers, the pointed-to memory is
00269        *  not touched in any way.  Managing the pointer is the user's
00270        *  responsibilty.
00271        */
00272       ~vector()
00273       { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
00274               this->get_allocator());
00275       }
00276 
00277       /**
00278        *  @brief  %Vector assignment operator.
00279        *  @param  x  A %vector of identical element and allocator types.
00280        *
00281        *  All the elements of @a x are copied, but any extra memory in
00282        *  @a x (for fast expansion) will not be copied.  Unlike the
00283        *  copy constructor, the allocator object is not copied.
00284        */
00285       vector&
00286       operator=(const vector& __x);
00287 
00288       /**
00289        *  @brief  Assigns a given value to a %vector.
00290        *  @param  n  Number of elements to be assigned.
00291        *  @param  val  Value to be assigned.
00292        *
00293        *  This function fills a %vector with @a n copies of the given
00294        *  value.  Note that the assignment completely changes the
00295        *  %vector and that the resulting %vector's size is the same as
00296        *  the number of elements assigned.  Old data may be lost.
00297        */
00298       void
00299       assign(size_type __n, const value_type& __val)
00300       { _M_fill_assign(__n, __val); }
00301 
00302       /**
00303        *  @brief  Assigns a range to a %vector.
00304        *  @param  first  An input iterator.
00305        *  @param  last   An input iterator.
00306        *
00307        *  This function fills a %vector with copies of the elements in the
00308        *  range [first,last).
00309        *
00310        *  Note that the assignment completely changes the %vector and
00311        *  that the resulting %vector's size is the same as the number
00312        *  of elements assigned.  Old data may be lost.
00313        */
00314       template<typename _InputIterator>
00315         void
00316         assign(_InputIterator __first, _InputIterator __last)
00317         {
00318       // Check whether it's an integral type.  If so, it's not an iterator.
00319       typedef typename std::__is_integer<_InputIterator>::__type _Integral;
00320       _M_assign_dispatch(__first, __last, _Integral());
00321     }
00322 
00323       /// Get a copy of the memory allocation object.
00324       using _Base::get_allocator;
00325 
00326       // iterators
00327       /**
00328        *  Returns a read/write iterator that points to the first
00329        *  element in the %vector.  Iteration is done in ordinary
00330        *  element order.
00331        */
00332       iterator
00333       begin()
00334       { return iterator (this->_M_impl._M_start); }
00335 
00336       /**
00337        *  Returns a read-only (constant) iterator that points to the
00338        *  first element in the %vector.  Iteration is done in ordinary
00339        *  element order.
00340        */
00341       const_iterator
00342       begin() const
00343       { return const_iterator (this->_M_impl._M_start); }
00344 
00345       /**
00346        *  Returns a read/write iterator that points one past the last
00347        *  element in the %vector.  Iteration is done in ordinary
00348        *  element order.
00349        */
00350       iterator
00351       end()
00352       { return iterator (this->_M_impl._M_finish); }
00353 
00354       /**
00355        *  Returns a read-only (constant) iterator that points one past
00356        *  the last element in the %vector.  Iteration is done in
00357        *  ordinary element order.
00358        */
00359       const_iterator
00360       end() const
00361       { return const_iterator (this->_M_impl._M_finish); }
00362 
00363       /**
00364        *  Returns a read/write reverse iterator that points to the
00365        *  last element in the %vector.  Iteration is done in reverse
00366        *  element order.
00367        */
00368       reverse_iterator
00369       rbegin()
00370       { return reverse_iterator(end()); }
00371 
00372       /**
00373        *  Returns a read-only (constant) reverse iterator that points
00374        *  to the last element in the %vector.  Iteration is done in
00375        *  reverse element order.
00376        */
00377       const_reverse_iterator
00378       rbegin() const
00379       { return const_reverse_iterator(end()); }
00380 
00381       /**
00382        *  Returns a read/write reverse iterator that points to one
00383        *  before the first element in the %vector.  Iteration is done
00384        *  in reverse element order.
00385        */
00386       reverse_iterator
00387       rend()
00388       { return reverse_iterator(begin()); }
00389 
00390       /**
00391        *  Returns a read-only (constant) reverse iterator that points
00392        *  to one before the first element in the %vector.  Iteration
00393        *  is done in reverse element order.
00394        */
00395       const_reverse_iterator
00396       rend() const
00397       { return const_reverse_iterator(begin()); }
00398 
00399       // [23.2.4.2] capacity
00400       /**  Returns the number of elements in the %vector.  */
00401       size_type
00402       size() const
00403       { return size_type(end() - begin()); }
00404 
00405       /**  Returns the size() of the largest possible %vector.  */
00406       size_type
00407       max_size() const
00408       { return size_type(-1) / sizeof(value_type); }
00409 
00410       /**
00411        *  @brief  Resizes the %vector to the specified number of elements.
00412        *  @param  new_size  Number of elements the %vector should contain.
00413        *  @param  x  Data with which new elements should be populated.
00414        *
00415        *  This function will %resize the %vector to the specified
00416        *  number of elements.  If the number is smaller than the
00417        *  %vector's current size the %vector is truncated, otherwise
00418        *  the %vector is extended and new elements are populated with
00419        *  given data.
00420        */
00421       void
00422       resize(size_type __new_size, const value_type& __x)
00423       {
00424     if (__new_size < size())
00425       erase(begin() + __new_size, end());
00426     else
00427       insert(end(), __new_size - size(), __x);
00428       }
00429 
00430       /**
00431        *  @brief  Resizes the %vector to the specified number of elements.
00432        *  @param  new_size  Number of elements the %vector should contain.
00433        *
00434        *  This function will resize the %vector to the specified
00435        *  number of elements.  If the number is smaller than the
00436        *  %vector's current size the %vector is truncated, otherwise
00437        *  the %vector is extended and new elements are
00438        *  default-constructed.
00439        */
00440       void
00441       resize(size_type __new_size)
00442       { resize(__new_size, value_type()); }
00443 
00444       /**
00445        *  Returns the total number of elements that the %vector can
00446        *  hold before needing to allocate more memory.
00447        */
00448       size_type
00449       capacity() const
00450       { return size_type(const_iterator(this->_M_impl._M_end_of_storage)
00451              - begin()); }
00452 
00453       /**
00454        *  Returns true if the %vector is empty.  (Thus begin() would
00455        *  equal end().)
00456        */
00457       bool
00458       empty() const
00459       { return begin() == end(); }
00460 
00461       /**
00462        *  @brief  Attempt to preallocate enough memory for specified number of
00463        *          elements.
00464        *  @param  n  Number of elements required.
00465        *  @throw  std::length_error  If @a n exceeds @c max_size().
00466        *
00467        *  This function attempts to reserve enough memory for the
00468        *  %vector to hold the specified number of elements.  If the
00469        *  number requested is more than max_size(), length_error is
00470        *  thrown.
00471        *
00472        *  The advantage of this function is that if optimal code is a
00473        *  necessity and the user can determine the number of elements
00474        *  that will be required, the user can reserve the memory in
00475        *  %advance, and thus prevent a possible reallocation of memory
00476        *  and copying of %vector data.
00477        */
00478       void
00479       reserve(size_type __n);
00480 
00481       // element access
00482       /**
00483        *  @brief  Subscript access to the data contained in the %vector.
00484        *  @param n The index of the element for which data should be
00485        *  accessed.
00486        *  @return  Read/write reference to data.
00487        *
00488        *  This operator allows for easy, array-style, data access.
00489        *  Note that data access with this operator is unchecked and
00490        *  out_of_range lookups are not defined. (For checked lookups
00491        *  see at().)
00492        */
00493       reference
00494       operator[](size_type __n)
00495       { return *(begin() + __n); }
00496 
00497       /**
00498        *  @brief  Subscript access to the data contained in the %vector.
00499        *  @param n The index of the element for which data should be
00500        *  accessed.
00501        *  @return  Read-only (constant) reference to data.
00502        *
00503        *  This operator allows for easy, array-style, data access.
00504        *  Note that data access with this operator is unchecked and
00505        *  out_of_range lookups are not defined. (For checked lookups
00506        *  see at().)
00507        */
00508       const_reference
00509       operator[](size_type __n) const
00510       { return *(begin() + __n); }
00511 
00512     protected:
00513       /// @if maint Safety check used only from at().  @endif
00514       void
00515       _M_range_check(size_type __n) const
00516       {
00517     if (__n >= this->size())
00518       __throw_out_of_range(__N("vector::_M_range_check"));
00519       }
00520 
00521     public:
00522       /**
00523        *  @brief  Provides access to the data contained in the %vector.
00524        *  @param n The index of the element for which data should be
00525        *  accessed.
00526        *  @return  Read/write reference to data.
00527        *  @throw  std::out_of_range  If @a n is an invalid index.
00528        *
00529        *  This function provides for safer data access.  The parameter
00530        *  is first checked that it is in the range of the vector.  The
00531        *  function throws out_of_range if the check fails.
00532        */
00533       reference
00534       at(size_type __n)
00535       {
00536     _M_range_check(__n);
00537     return (*this)[__n]; 
00538       }
00539 
00540       /**
00541        *  @brief  Provides access to the data contained in the %vector.
00542        *  @param n The index of the element for which data should be
00543        *  accessed.
00544        *  @return  Read-only (constant) reference to data.
00545        *  @throw  std::out_of_range  If @a n is an invalid index.
00546        *
00547        *  This function provides for safer data access.  The parameter
00548        *  is first checked that it is in the range of the vector.  The
00549        *  function throws out_of_range if the check fails.
00550        */
00551       const_reference
00552       at(size_type __n) const
00553       {
00554     _M_range_check(__n);
00555     return (*this)[__n];
00556       }
00557 
00558       /**
00559        *  Returns a read/write reference to the data at the first
00560        *  element of the %vector.
00561        */
00562       reference
00563       front()
00564       { return *begin(); }
00565 
00566       /**
00567        *  Returns a read-only (constant) reference to the data at the first
00568        *  element of the %vector.
00569        */
00570       const_reference
00571       front() const
00572       { return *begin(); }
00573 
00574       /**
00575        *  Returns a read/write reference to the data at the last
00576        *  element of the %vector.
00577        */
00578       reference
00579       back()
00580       { return *(end() - 1); }
00581       
00582       /**
00583        *  Returns a read-only (constant) reference to the data at the
00584        *  last element of the %vector.
00585        */
00586       const_reference
00587       back() const
00588       { return *(end() - 1); }
00589 
00590       // [23.2.4.3] modifiers
00591       /**
00592        *  @brief  Add data to the end of the %vector.
00593        *  @param  x  Data to be added.
00594        *
00595        *  This is a typical stack operation.  The function creates an
00596        *  element at the end of the %vector and assigns the given data
00597        *  to it.  Due to the nature of a %vector this operation can be
00598        *  done in constant time if the %vector has preallocated space
00599        *  available.
00600        */
00601       void
00602       push_back(const value_type& __x)
00603       {
00604     if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
00605       {
00606         this->_M_impl.construct(this->_M_impl._M_finish, __x);
00607         ++this->_M_impl._M_finish;
00608       }
00609     else
00610       _M_insert_aux(end(), __x);
00611       }
00612 
00613       /**
00614        *  @brief  Removes last element.
00615        *
00616        *  This is a typical stack operation. It shrinks the %vector by one.
00617        *
00618        *  Note that no data is returned, and if the last element's
00619        *  data is needed, it should be retrieved before pop_back() is
00620        *  called.
00621        */
00622       void
00623       pop_back()
00624       {
00625     --this->_M_impl._M_finish;
00626     this->_M_impl.destroy(this->_M_impl._M_finish);
00627       }
00628 
00629       /**
00630        *  @brief  Inserts given value into %vector before specified iterator.
00631        *  @param  position  An iterator into the %vector.
00632        *  @param  x  Data to be inserted.
00633        *  @return  An iterator that points to the inserted data.
00634        *
00635        *  This function will insert a copy of the given value before
00636        *  the specified location.  Note that this kind of operation
00637        *  could be expensive for a %vector and if it is frequently
00638        *  used the user should consider using std::list.
00639        */
00640       iterator
00641       insert(iterator __position, const value_type& __x);
00642 
00643       /**
00644        *  @brief  Inserts a number of copies of given data into the %vector.
00645        *  @param  position  An iterator into the %vector.
00646        *  @param  n  Number of elements to be inserted.
00647        *  @param  x  Data to be inserted.
00648        *
00649        *  This function will insert a specified number of copies of
00650        *  the given data before the location specified by @a position.
00651        *
00652        *  Note that this kind of operation could be expensive for a
00653        *  %vector and if it is frequently used the user should
00654        *  consider using std::list.
00655        */
00656       void
00657       insert(iterator __position, size_type __n, const value_type& __x)
00658       { _M_fill_insert(__position, __n, __x); }
00659 
00660       /**
00661        *  @brief  Inserts a range into the %vector.
00662        *  @param  position  An iterator into the %vector.
00663        *  @param  first  An input iterator.
00664        *  @param  last   An input iterator.
00665        *
00666        *  This function will insert copies of the data in the range
00667        *  [first,last) into the %vector before the location specified
00668        *  by @a pos.
00669        *
00670        *  Note that this kind of operation could be expensive for a
00671        *  %vector and if it is frequently used the user should
00672        *  consider using std::list.
00673        */
00674       template<typename _InputIterator>
00675         void
00676         insert(iterator __position, _InputIterator __first,
00677            _InputIterator __last)
00678         {
00679       // Check whether it's an integral type.  If so, it's not an iterator.
00680       typedef typename std::__is_integer<_InputIterator>::__type _Integral;
00681       _M_insert_dispatch(__position, __first, __last, _Integral());
00682     }
00683 
00684       /**
00685        *  @brief  Remove element at given position.
00686        *  @param  position  Iterator pointing to element to be erased.
00687        *  @return  An iterator pointing to the next element (or end()).
00688        *
00689        *  This function will erase the element at the given position and thus
00690        *  shorten the %vector by one.
00691        *
00692        *  Note This operation could be expensive and if it is
00693        *  frequently used the user should consider using std::list.
00694        *  The user is also cautioned that this function only erases
00695        *  the element, and that if the element is itself a pointer,
00696        *  the pointed-to memory is not touched in any way.  Managing
00697        *  the pointer is the user's responsibilty.
00698        */
00699       iterator
00700       erase(iterator __position);
00701 
00702       /**
00703        *  @brief  Remove a range of elements.
00704        *  @param  first  Iterator pointing to the first element to be erased.
00705        *  @param  last  Iterator pointing to one past the last element to be
00706        *                erased.
00707        *  @return  An iterator pointing to the element pointed to by @a last
00708        *           prior to erasing (or end()).
00709        *
00710        *  This function will erase the elements in the range [first,last) and
00711        *  shorten the %vector accordingly.
00712        *
00713        *  Note This operation could be expensive and if it is
00714        *  frequently used the user should consider using std::list.
00715        *  The user is also cautioned that this function only erases
00716        *  the elements, and that if the elements themselves are
00717        *  pointers, the pointed-to memory is not touched in any way.
00718        *  Managing the pointer is the user's responsibilty.
00719        */
00720       iterator
00721       erase(iterator __first, iterator __last);
00722 
00723       /**
00724        *  @brief  Swaps data with another %vector.
00725        *  @param  x  A %vector of the same element and allocator types.
00726        *
00727        *  This exchanges the elements between two vectors in constant time.
00728        *  (Three pointers, so it should be quite fast.)
00729        *  Note that the global std::swap() function is specialized such that
00730        *  std::swap(v1,v2) will feed to this function.
00731        */
00732       void
00733       swap(vector& __x)
00734       {
00735     std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
00736     std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
00737     std::swap(this->_M_impl._M_end_of_storage,
00738           __x._M_impl._M_end_of_storage);
00739       }
00740 
00741       /**
00742        *  Erases all the elements.  Note that this function only erases the
00743        *  elements, and that if the elements themselves are pointers, the
00744        *  pointed-to memory is not touched in any way.  Managing the pointer is
00745        *  the user's responsibilty.
00746        */
00747       void
00748       clear()
00749       { erase(begin(), end()); }
00750 
00751     protected:
00752       /**
00753        *  @if maint
00754        *  Memory expansion handler.  Uses the member allocation function to
00755        *  obtain @a n bytes of memory, and then copies [first,last) into it.
00756        *  @endif
00757        */
00758       template<typename _ForwardIterator>
00759         pointer
00760         _M_allocate_and_copy(size_type __n,
00761                  _ForwardIterator __first, _ForwardIterator __last)
00762         {
00763       pointer __result = this->_M_allocate(__n);
00764       try
00765         {
00766           std::__uninitialized_copy_a(__first, __last, __result,
00767                       this->get_allocator());
00768           return __result;
00769         }
00770       catch(...)
00771         {
00772           _M_deallocate(__result, __n);
00773           __throw_exception_again;
00774         }
00775     }
00776 
00777 
00778       // Internal constructor functions follow.
00779 
00780       // Called by the range constructor to implement [23.1.1]/9
00781       template<typename _Integer>
00782         void
00783         _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
00784         {
00785       this->_M_impl._M_start = _M_allocate(__n);
00786       this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
00787       std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
00788                     this->get_allocator());
00789       this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
00790     }
00791 
00792       // Called by the range constructor to implement [23.1.1]/9
00793       template<typename _InputIterator>
00794         void
00795         _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
00796                    __false_type)
00797         {
00798       typedef typename iterator_traits<_InputIterator>::iterator_category
00799         _IterCategory;
00800       _M_range_initialize(__first, __last, _IterCategory());
00801     }
00802 
00803       // Called by the second initialize_dispatch above
00804       template<typename _InputIterator>
00805         void
00806         _M_range_initialize(_InputIterator __first,
00807                 _InputIterator __last, input_iterator_tag)
00808         {
00809       for (; __first != __last; ++__first)
00810         push_back(*__first);
00811     }
00812 
00813       // Called by the second initialize_dispatch above
00814       template<typename _ForwardIterator>
00815         void
00816         _M_range_initialize(_ForwardIterator __first,
00817                 _ForwardIterator __last, forward_iterator_tag)
00818         {
00819       const size_type __n = std::distance(__first, __last);
00820       this->_M_impl._M_start = this->_M_allocate(__n);
00821       this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
00822       this->_M_impl._M_finish =
00823         std::__uninitialized_copy_a(__first, __last,
00824                     this->_M_impl._M_start,
00825                     this->get_allocator());
00826     }
00827 
00828 
00829       // Internal assign functions follow.  The *_aux functions do the actual
00830       // assignment work for the range versions.
00831 
00832       // Called by the range assign to implement [23.1.1]/9
00833       template<typename _Integer>
00834         void
00835         _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
00836         {
00837       _M_fill_assign(static_cast<size_type>(__n),
00838              static_cast<value_type>(__val));
00839     }
00840 
00841       // Called by the range assign to implement [23.1.1]/9
00842       template<typename _InputIterator>
00843         void
00844         _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
00845                __false_type)
00846         {
00847       typedef typename iterator_traits<_InputIterator>::iterator_category
00848         _IterCategory;
00849       _M_assign_aux(__first, __last, _IterCategory());
00850     }
00851 
00852       // Called by the second assign_dispatch above
00853       template<typename _InputIterator>
00854         void
00855         _M_assign_aux(_InputIterator __first, _InputIterator __last,
00856               input_iterator_tag);
00857 
00858       // Called by the second assign_dispatch above
00859       template<typename _ForwardIterator>
00860         void
00861         _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
00862               forward_iterator_tag);
00863 
00864       // Called by assign(n,t), and the range assign when it turns out
00865       // to be the same thing.
00866       void
00867       _M_fill_assign(size_type __n, const value_type& __val);
00868 
00869 
00870       // Internal insert functions follow.
00871 
00872       // Called by the range insert to implement [23.1.1]/9
00873       template<typename _Integer>
00874         void
00875         _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
00876                __true_type)
00877         {
00878       _M_fill_insert(__pos, static_cast<size_type>(__n),
00879              static_cast<value_type>(__val));
00880     }
00881 
00882       // Called by the range insert to implement [23.1.1]/9
00883       template<typename _InputIterator>
00884         void
00885         _M_insert_dispatch(iterator __pos, _InputIterator __first,
00886                _InputIterator __last, __false_type)
00887         {
00888       typedef typename iterator_traits<_InputIterator>::iterator_category
00889         _IterCategory;
00890       _M_range_insert(__pos, __first, __last, _IterCategory());
00891     }
00892 
00893       // Called by the second insert_dispatch above
00894       template<typename _InputIterator>
00895         void
00896         _M_range_insert(iterator __pos, _InputIterator __first,
00897             _InputIterator __last, input_iterator_tag);
00898 
00899       // Called by the second insert_dispatch above
00900       template<typename _ForwardIterator>
00901         void
00902         _M_range_insert(iterator __pos, _ForwardIterator __first,
00903             _ForwardIterator __last, forward_iterator_tag);
00904 
00905       // Called by insert(p,n,x), and the range insert when it turns out to be
00906       // the same thing.
00907       void
00908       _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
00909 
00910       // Called by insert(p,x)
00911       void
00912       _M_insert_aux(iterator __position, const value_type& __x);
00913     };
00914 
00915 
00916   /**
00917    *  @brief  Vector equality comparison.
00918    *  @param  x  A %vector.
00919    *  @param  y  A %vector of the same type as @a x.
00920    *  @return  True iff the size and elements of the vectors are equal.
00921    *
00922    *  This is an equivalence relation.  It is linear in the size of the
00923    *  vectors.  Vectors are considered equivalent if their sizes are equal,
00924    *  and if corresponding elements compare equal.
00925   */
00926   template<typename _Tp, typename _Alloc>
00927     inline bool
00928     operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
00929     { return (__x.size() == __y.size()
00930           && std::equal(__x.begin(), __x.end(), __y.begin())); }
00931 
00932   /**
00933    *  @brief  Vector ordering relation.
00934    *  @param  x  A %vector.
00935    *  @param  y  A %vector of the same type as @a x.
00936    *  @return  True iff @a x is lexicographically less than @a y.
00937    *
00938    *  This is a total ordering relation.  It is linear in the size of the
00939    *  vectors.  The elements must be comparable with @c <.
00940    *
00941    *  See std::lexicographical_compare() for how the determination is made.
00942   */
00943   template<typename _Tp, typename _Alloc>
00944     inline bool
00945     operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
00946     { return std::lexicographical_compare(__x.begin(), __x.end(),
00947                       __y.begin(), __y.end()); }
00948 
00949   /// Based on operator==
00950   template<typename _Tp, typename _Alloc>
00951     inline bool
00952     operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
00953     { return !(__x == __y); }
00954 
00955   /// Based on operator<
00956   template<typename _Tp, typename _Alloc>
00957     inline bool
00958     operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
00959     { return __y < __x; }
00960 
00961   /// Based on operator<
00962   template<typename _Tp, typename _Alloc>
00963     inline bool
00964     operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
00965     { return !(__y < __x); }
00966 
00967   /// Based on operator<
00968   template<typename _Tp, typename _Alloc>
00969     inline bool
00970     operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
00971     { return !(__x < __y); }
00972 
00973   /// See std::vector::swap().
00974   template<typename _Tp, typename _Alloc>
00975     inline void
00976     swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
00977     { __x.swap(__y); }
00978 } // namespace std
00979 
00980 #endif /* _VECTOR_H */

Generated on Sat Apr 2 13:54:44 2005 for libstdc++ source by  doxygen 1.4.0