FreeFem 3.5.x
Public Attributes
fem::FEM Class Reference

this class drives the resolution of the pde using the Finite Element Method. More...

#include <femSolver.hpp>

List of all members.

Public Member Functions

 DECLARE_TYPE (femMesh::femPoint, femPoint)
 Typedefs.
 DECLARE_TYPE (femMesh::femTriangle, femTriangle)
 DECLARE_TYPE (creal *, cmatptr)
 DECLARE_TYPE (float *, matptr)
 FEM (femMeshPtr=0, int quadra=0)
 Constructors, destructor and methods.
 ~FEM ()
 destructor
float solvePDE (fcts *param, int how)
 solve the PDE
creal deriv (int m, creal *f, int ksolv, int i)
creal convect (creal *f, creal *u1, creal *u2, float dt, int i)
creal rhsConvect (creal *f, creal *u1, creal *u2, float dt, int i)
creal fctval (creal *f, float x, float y)
int getregion (int k)
creal gfemuser (creal what, creal *f, int i)
creal P1ctoP1 (creal *f, int i)
creal prodscalar (creal *f, creal *g)
creal ginteg (int, int, int, creal *, creal *, int)
creal binteg (int, int, int, creal *, creal *, int)
void initvarmat (int how, int flagcomplexe, int N, fcts *param)
void assemble (int how, int flagcomplexe, int N, int k, creal *a, creal *b, fcts *param)
void solvevarpde (int N, fcts *param, int how)

Public Attributes

float * normlx
float * normly
int N

Detailed Description

this class drives the resolution of the pde using the Finite Element Method.

Author:
Christophe Prud'homme <Christophe.Prudhomme@ann.jussieu.fr>
See also:
femMesh
Version:
#$Id: femSolver.hpp,v 1.2 2001/07/12 14:11:57 prudhomm Exp $#

Constructor & Destructor Documentation

fem::FEM::FEM ( femMeshPtr  __t = 0,
int  quadra = 0 
)

Constructors, destructor and methods.

default constructor

  :
  __mesh( __t ),
  __quadra( quadra ),
  bug( 0 ),
  nhow( 0 ),
  nhow1( 0 ),
  nhow2( 0 ),
  a1c(),
  rhsQuadra( 0 )
{
  int             i, k, baux, nquad;
  
  ns = __mesh->getNumberOfPoints();
  nt = __mesh->getNumberOfCells();
  q = __mesh->rp;
  me = __mesh->tr;
  ng = __mesh->ng;
  ngt = __mesh->ngt;
  bdth = 0;
  nquad = __quadra ? 3 * nt : ns;
  for (k = 0; k < nt; k++)
    for (i = 0; i <= 2; i++)
       {
         baux = abss ((me[k][i] - me[k][next[i]]));
         bdth = (bdth > baux) ? bdth : baux;
       }
  a2.destroy();
  a2.init (nhowmax);

  for( int __i = 0; __i < nhowmax; __i++)
    {
      a1c[__i] = 0;
    }
  
  area = new float[nt];
  normlx = new float[nquad];
  normly = new float[nquad];
  for (i = 0;i < nquad;i++)
    {
      normlx[i] = 0.F;
      normly[i] = 0.F;
    } 
  nhow1 = 0;
  nhow2 = 0;
  connectiv ();
  flag.fem = 1;
  doedge ();
  buildarea();
}

Member Function Documentation

int fem::FEM::getregion ( int  k)
Returns:
the ngt of a femTriangle to which belongs vertex k
{
  return __mesh->ngt[listHead[i]];

}
float fem::FEM::solvePDE ( fcts param,
int  how 
)

solve the PDE

Parameters:
paramcontain all the possible data for computation
howdefines if the P1 quadrature
{
  long            nsl = ((long) ns) * (2 * ((long) bdth) + 1);
  int             factorize = 1;

  if (how > nhowmax)
    erreur ("Too many linear systems");
  if (how < 0)
     {
       factorize = 0;
       how = -how;
       if (((how > nhow1) && (N == 1)) || ((how > nhow2) && (N == 2)))
          {
            sprintf (errbuf, "solve(..,'-%d') refers to an inexistant system", how);
            erreur (errbuf);
          }
     }
  if (((how > nhow1) && (N == 1)) || ((how > nhow2) && (N == 2)))
     {
       switch (N)
          {
          case 1:
            if (flag.complexe)
              a1c[nhow1++] = new creal[nsl];
            else
              a1[nhow1++] = new float[nsl];

            break;
          case 2:
            a2[nhow2++].init (nsl);
            break;
          }
     }
  if (flag.complexe)
     {
       if (N == 1)
         return pdeian (a1c[how - 1], param->sol1c, param->f1c, param->g1c, param->p1c, param->b1c,
                        param->nuxx1c, param->nuxy1c, param->nuyx1c, param->nuyy1c, param->a11c,
                        param->a21c, param->c1c, factorize);
       else if (N == 2)
         return pdeian (a2[how - 1], param->sol2, param->f2, param->g2, param->p2, param->b2,
                        param->nuxx2, param->nuxy2, param->nuyx2, param->nuyy2, param->a12,
                        param->a22, param->c2, factorize); 
       else
         return -1.F;

     }
  else
     {
       if (N == 1)
         return pdeian (a1[how - 1], param->sol1, param->f1, param->g1, param->p1, param->b1,
                        param->nuxx1, param->nuxy1, param->nuyx1, param->nuyy1, param->a11,
                        param->a21, param->c1, factorize);
       else if (N == 2)
         return pdeian (a2[how - 1], param->sol2, param->f2, param->g2, param->p2, param->b2,
                        param->nuxx2, param->nuxy2, param->nuyx2, param->nuyy2, param->a12,
                        param->a22, param->c2, factorize); 
       else
         return -1.F;
     }
}

The documentation for this class was generated from the following files:

This is the FreeFEM reference manual
Provided by The KFEM project