
FreeFEM User ManualA language for the �nite element method

Olivier Pironneau1Christophe Prud'homme 2
Revised: 10/20/01

1pironneau@ann.jussieu.fr; Laboratoire d'analyse num�erique; Universit�ePierre et Marie Curie; 75005 Paris France2prudhomm@mit.eduMechanical Engineering Department; Massachussetts Insti-tute Of Technology; 77, Mass Ave Room 3-264; 02139 Cambridge USA

Copyright (c) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 ChristophePrud'homme and Olivier Pironneau.Permission is granted to copy, distribute and/or modify this documentunder the terms of the GNU Free Documentation License, Version 1.1 or anylater version published by the Free Software Foundation; with no InvariantSections, with no Front-Cover Texts, and with no Back-Cover Texts. A copyof the license is included in the section entitled "GNU Free DocumentationLicense".

1

Contents

1 Introduction 41.1 Conventions . 41.2 Software and Documentation 5
2 Installation 62.0.1 Con�gure script . 6
3 The Gory Details 83.1 Programs . 83.2 List of reserved words . 93.3 Building a mesh . 103.3.1 Triangulations . 103.3.2 Border(), buildmesh(), polygon() 103.3.3 Geometric variables, inner and region bdy, normal . . 123.3.4 Regions . 133.4 Functions . 133.4.1 Functions and scalars 133.4.2 Building functions . 153.4.3 Value of a function at one point 153.4.4 Special functions:dx(), dy(), convect() 163.5 Global operators . 173.6 Integrals . 173.7 Solving an equation . 193.7.1 Onbdy() . 193.7.2 Pde() . 193.7.3 Solve() . 203.7.4 2-Systems . 213.7.5 Boundary conditions at corners 223.7.6 Weak formulation . 22

2

3.8 Results . 243.8.1 plot, savemesh, save, load, loadmesh 243.8.2 Saveall() . 263.9 Other features . 283.9.1 Iter . 283.9.2 Complex numbers . 283.9.3 Scal() . 293.9.4 Wait, nowait, changewait 293.9.5 One Dimensional Plots 293.9.6 Precise . 303.9.7 Exec(), user(), how to link an external function to Gfem 303.10 Language internals . 31
4 Examples 334.1 Triangulations examples . 334.2 Scalar examples . 344.3 Complex number example . 384.4 2-system example . 38
5 GNU Free Documentation License 405.1 Applicability and De�nitions 415.2 Verbatim Copying . 425.3 Copying in Quantity . 425.4 Modi�cations . 435.5 Combining Documents . 455.6 Collections of Documents . 465.7 Aggregation With Independent Works 465.8 Translation . 465.9 Termination . 475.10 Future Revisions of This License 47

3

Chapter 1
Introduction
FreeFEM is an implementation of the Gfem language dedicated to the�nite element method. It provides you a way to solve Partial Di�erentialEquations (PDE) simply. Although you can solve quite complicated prob-lems can be solved also.In this manual we are going to describe the FreeFEM package:� Compilation step

� How to use the language
� A quick presentation of how it is done

1.1 Conventions
� A triangulation, T, is a set of triangles covering a domain referedlater as

� Each vertex has a number iv, a region reference number region, anda boundary reference number ib which is zero for internal points.
� An array-function is an array of values on the vertices of T. It rep-resents a piecewise linear continuous (or discontinuous if precise isused) function on
.
� In an integrated environment Gfem has the notion of Project: �lesshown on the desktop as documents with an icon like a triangulatedrectangle (on the Macintosh).
� A project contains a program, the last triangulation created and onearray function, namely the last function displayed.

4

1.2 Software and Documentation
FreeFEM is available on Internet. Check the following http site:

kfem.sourceforge.net
The tarball uses the following naming convetion: freefem-x.x.x.tar.gzOthers documentations are available on the FreeFEMWeb site. Thesemight provide further enlightment on the software.
AUTHORS The authors are, in alphabetical order:

� Dominique Bernardi <??>
� Frederic Hecht <Frederic.Hecht@inria.fr>
� Castro J. Manollo <castro@gamba.cie.uma.es>
� Pascal Parole <pascal@area-mundi.fr>
� Olivier Pironneau <pironneau@ann.jussieu.fr>
� Christophe Prud'homme <prudhomm@users.sourceforge.net>
If you are interested in FreeFEM have a look at the web site kfem.sourceforge.net.You can subscribe to various mailing lists and get the latest stu� from theFreeFEM world.

5

Chapter 2
Installation
The installation steps di�ers with the operating system. FreeFEM supportstwo kinds systems :

� Windows/Cygwin1 environment
� Linux/Unix systems

Both systems follows the POSIX standard. It is strongly recommended touse the configure script. It is much easier and should be platform inde-pendent, you don't have to know anything about your system. Everythingis done for you. However one suggests the use of make for the GNU Project:it is the best make utility and will work without problems with freefem.This utility is available at several ftp sites in France or in the USA.
� prep.mit.ai.edu
� ftp.lip6.fr

2.0.1 Con�gure scripttype:
configuremakemake install #if you want to install the software on a site

The binary freefem will be in the directory src.1http://www.cygwin.com

6

We use autoconf and automake in conjunction in order to be as generalas possible. These tools are not required to use or compile freeFEM but ifyou want to change the code you will need these.These tools are available on theGNU ftp site: ftp://prep.ai.mit.edu.You can get them in France at ftp://ftp.ibp.fr/pub/gnu.Type:
configuremakemake install #if you want to install the software on a site
Debugging By default freefem is compiled with the -O2
ags for optimiza-tion. If you want to debug the library, then USE the following configureoption --enable-debug. That is to say, type
configure --enable-debug
at the configure step of the installation.

7

Chapter 3
The Gory Details

3.1 Programs
Gfem is a small language which generally follows the syntax of the languagePascal. See the list below for the reserved words of this language.The reserved word begin can be replaced by f and end by g.C programmers: caution the syntax is "...g;" while most C constructsuse " ...;g"Example 1: Triangulates a circle and plot f = x � y

1 border(1,0,6.28,20)2 begin3 x:=cos(t);4 y:=sin(t);5 end;6 buildmesh(200);7 f=x*y; plot(f);
Example 2: on the circle solve the Dirichlet problem-�(u) = x � y with u = 0 on @

1 border(1,0,6.28,20)2 begin3 x:=cos(t);4 y:=sin(t);5 end;6 buildmesh(200);
8

7 solve(u) begin8 onbdy(1) u =0;9 pde(u) -laplace(u) = x*y ;10 end;11 plot(u);
3.2 List of reserved words

Keywords Explanationsbegin, f Begin a new blockend, g End a blockif, then, else, or, and,iter Conditionnals and Loopsx,y,t,ib,iv,region,nx,ny Mesh variableslog, exp, sqrt, abs, min, maxsin, asin, tan, atan, cos, acos Mathematical Functionscosh, sinh, tanhI, Re, Im Complex Numberscomplex Enter Complex Number Modebuildmesh, savemesh, loadmesh, adaptmesh Mesh related Functionsbuild, save , load and mesh adaptationone, scal, dx, dy, dxx, dyy, dxy, dyx, convect Mathematical operatorscan be called wherever you wantsolve Enter Solver Modepde, id, dnu laplace, div onbdy Solver Functionsplot, plot3d graphical functions: plot isolines in 2Dand Elevated Surface in 3Dsave, load, saveall Saving and Loading FunctionsChange the Wait State: if waitwait, nowait, changewait then the user must click inthe window to continueprecise, halt, include, evalfct, exec, user Miscellaneous Functions
Table 3.1: Gfem Keywords

9

3.3 Building a mesh
3.3.1 TriangulationsTo create a triangulation you must either

� Open a project
� Read an old triangulation stored in text format
� Execute a program which contains the keyword buildmesh
� Create one by hand drawing the boundary of
 and activate the menuTriangulate (Macintosh only).
In integrated environments, once created, triangulations can be dis-played, stored on disk in Gfem format or in text format or even a zoom ofits graphic display can be stored in Postscript format (to include it in a TeX�le for example).Gfem stores for each vertex its number and boundary identi�cationnumber and for each triangle its number and region identi�cation number.Edges number are not stored, but can be recovered by program if needed.

3.3.2 Border(), buildmesh(), polygon()Use it to triangulate domain de�ned by its boundary. The syntax is
1 border(ib,t_min,t_max,nb_t)2 begin3 ...x:=f(t);4 ...y:=g(t)...5 end;6 buildmesh(nb_max);
where each line with border could be replaced by a line with polygon

1 polygon(ib,'file_name'[,nb_t]);
where f,g are generic functions and the [...] denotes an optional addition.The boundary is given in parametric form. The name of the parametermust be t and the two coordinates must be x and y . When the parametergoes from t_min to t_max the boundary must be scanned so as to have
 on its left, meaning counter clockwise if it is the outer boundary and

10

clockwise if it is the boundary of a hole. Boundaries must be closed butthey may be entered by parts, each part with one instruction border , andhave inner dividing curves; nb_t points are put on the boundary with valuest = tmin + i � (tmax � tmin)=(nbt � 1) where i takes integer values from 0 tonb_t-1 .The triangulation is created by a Delaunay-Voronoi method with nb_maxvertices at most. The size of the triangles is monitored by the size of the near-est boundary edge. Therefore local re�nement can be achieved by addinginner arti�cial boundaries.Triangulation may have boundaries with several connected components.Each connected component is numbered by the integer ib .Inner boundaries (i.e. boundaries having the domain on both sides) canbe useful either to separate regions or to monitor the triangulation by forcingvertices and edges in it. They must be oriented so that they leave
 on theirright if they are closed. If they do not carry any boundary conditions theyshould be given identi�cation number ib=0 .The usual if... then ... else statement can be used with the com-pound statement: begin...end . This allows piecewise parametric de�ni-tions of complicated or polygonal boundaries.The boundary identi�cation number ib can be overwritten.For example:
1 border(2,0,4,41) begin2 if(t<=1)then { x:=t; y:=0 };3 if((t>1)and(t<2))then { x:=1; y:=t-1; ib=1 };4 if((t>=2)and(t<=3))then { x:=3-t; y:=1 };5 if(t>3)then { x:=0; y:=4-t }6 end;7 buildmesh(400);

Recall that begin and { is the same and so is end and }. Here one sideof the unit square has ib=1. The 3 other sides have ib=2.The keyword polygon causes a sequence of boundary points to be readfrom the �le file_name which must be in the same directory as the program.All points must be in sequential order and describing part of the boundarycounter clockwise; the last one should be equal to the �rst one for a closedcurve.The format is
1 x[0] y[0]2 x[1] y[1]

11

3
each being separated by a tab or a carriage return. The last parameter nb_tis optional; it means that each segment will be divided into nb_t1+ equalsegments (i.e. nb_t points are added on each segments).For example

1 polygon(1,'mypoints.dta',2);2 buildmesh(100);
with the �le mypoints.dta containing

1 0. 0.2 1. 0.3 1. 1.4 0. 1.5 0. 0.
triangulates the unit square with 4 points on each side and gives ib=1 to itsboundary. Note that polygon(1,'mypoints.dta') is like polygon(1,'mypoints.dta',0).
buildmesh and domain decompositionThere is a problem with buildmesh when doing domain decomposition: bydefaultGfem swap the diagonals at the corners of the domain if the trianglehas two boundary edges. This will lead to bad domain decomposition at thesub-domain interfaces.To solve this, there is a new
ag for buildmesh which is optional:

buildmesh(<max number of vertices>, <flag>)where <flag> =
� = 0 classic way: do diagonal swaping= 1 domain decomposition: no diagonal swaping

3.3.3 Geometric variables, inner and region bdy, normal
� x,y refers to the coordinates in the domain
� ib refers to the boundary identi�cation number; it is zero inside thedomain.

12

� nx and ny refer to the x-y components of the normal on the boundaryvertices; it is zero on all inner vertices.
� region refers to the domain identi�cation number which is itself basedon an internal number, ngt, assigned to each triangle by the triangu-lation constructor.
Inner boundaries which divide the domain into several simply connectedcomponents are useful to de�ne piecewise discontinuous functions such asdielectric constants, Young modulus...Inner boundaries may meet other boundaries only at their vertices. Suchinner boundaries will split the domain in several sub-domains.

3.3.4 RegionsA sub-domain is a piece of the domain which is simply connected and de-limited by boundaries.Each sub-domain has a region number assigned to it. This is done byGfem, not by the user. Every time border is called, an internal numberngt is incremented by 1. Then when the key word border is invoked thelast edge of this portion of boundary assigns this number to the trianglewhich lies on its left. Finally all triangles which are in this subdomain arereassigned this number.At the end of the triangulation process, each triangle has a well de�nednumber ngt. The number region is a piecewise linear continuous interpo-lation at the vertices of ngt. To be exact, the value of region at a vertex(x0; y0) is the value of ngt at (x0; y0 � 10�6), except if precise is set inwhich case region is equal to ngt.
3.4 Functions
3.4.1 Functions and scalarsFunctions are either read or created.

� Functions can be read from a �le if its values at the vertices of thetriangulation are stored in text format. (Open a .dta example with atext editor to see the format).
� Functions can be created by executing a program. An instruction likef=x*y really means that f(x; y) = x � y

13

for all x and y. Here x and y refer to the coordinates in the domainrepresented by the triangulation.
� Functions can be created with other previously de�ned functions suchas in g=sin(x*y); f=exp(g); .
� Four other variables can be used besides x, y, iv, t : nx, ny, ib, region.
Most usual functions can be used:

1 max, min, abs, atan, sqrt,2 cos, sin, tan, acos, asin, one,3 cosh, sinh, tanh, log, exp
one(xy<0)+ for instance means 1 if xy<0+ and 0 otherwise.Operators:

1 and, or, < , <=, < , >=, ==, +, -, *, /, ^2 x^2 means x*x
Functions created by a program are displayed only if the key word plot()or plot3d() is used (here plot(f)).Derivatives of functions can be created by the keywords dx() and dy(). Unless precise is set, they are interpolated so the results is also contin-uous piecewise linear (or discontinuous when precise is set). Similarly theconvection operator convect(f,u1,u2,dt) de�nes a new function which isapproximately

f(x� u1(x; y)dt; y � u2(x; y)dt)Scalars are also helpful to create functions. Since no data array is at-tached to a scalar the symbol := is useful to create them, as in
1 a:= (1+sqrt(5))/2;2 f= x*cos(a*pi*y);
Here f is a function, a is a scalar and pi is a (prede�ned) a scalar.It is possible to evaluate a function at a point as in a:=f(1,0) Here thevalue of a will be 1 because f(1,0) means f at x=1 and y=0 .

14

3.4.2 Building functionsThere are 6 prede�ned functions: x,y,ib,region, nx, ny .
� The coordinate x is horizontal and y is vertical.
� ib = � 0 inside
> 0 on @
On @
 it is equal to the boundary identi�cation number.The usual if... then ... else statement can be used with an im-portant restriction on the logical expression which must return a scalarvalue:

1 if(logical expression) then2 {3 statement;4;5 statement;6 }7 else8 {910 };
The logical expression controls the if by its return being 0 or >0, it isevaluated only once (i.e. with x, y being the coordinates of the �rst vertex,if there are functions inside the logical expression). Auxiliary variables canbe used.In order to minimize the memory the symbol := tells the compiler notto allocate a data array to this variable. Thus v=sin(a*pi*x); generatesan array for v but no array is assigned to a in the statement a:=2 .
3.4.3 Value of a function at one pointIf f has been de�ned earlier then it is possible to write a:=f(1.2,3.1);Then a has the value of f at x=1.2 and y=3.1 .It is also allowed to do

1 x1:=1.2;2 y1:=1.6;3 a:=f(x1,2*y1);4 save('a.dta',a);
15

Remark: Recall that ,a being a scalar, its value is appended to the �lea.dta.
3.4.4 Special functions:dx(), dy(), convect()
dx(f) is the partial derivative of f with respect to x ; the result is piecewiseconstant when precise is set and interpolated with mass lumping as a thepiecewise linear function when precise is not set.Note that dx() is a non local operator so statements like f=dx(f) wouldgive the wrong answer because the new value for f is place before the endof the use of the old one.The Finite Element Method does not handle convection terms properlywhen they dominate the viscous terms: upwinding is necessary; convectprovides a tool for Lagrangian upwinding. By g=convect(f,u,v,dt)Gfemconstruct an approximation of

f(x� u1(x; y)dt; y � u2(x; y)dt)Recall that when
@f@t +u@f@x+v@f@y = limdt!0 f(x; y; t)� f(x� u(x; y)dt; y � v(x; y)dt; t� dt)dtThus to solve

@f@t + u@f@x + v@f@y � div(�gradf) = g;
in a much more stable way that if the operator dx(.) and dy(.) wereuse, the following scheme can be used:

1 iter(n) begin2 id(f)/dt - laplace(f)*mu =g + convect(oldf,u,v,dt)/dt;3 oldf = f4 end;
Remark: Note that convect is a nonlocal operator. The statement f= convect(f,u,v,dt) would give an incorrect result because it modi�es fat some vertex where the old value is still needed later. It is necessary to do

1 g=convect(f,u,v,dt);2 f=g;
16

3.5 Global operators
It is important to understand the di�erence between a global operator suchas dx() and a local operator such as sin() .To compute dx(f) at vertex q we need f at all neighbors of q. Thereforeevaluation of dx(2*f) require the computation of 2*f at all neighbor verticesof q before applying dx() ; but in which memory would the result be stored?Therefore Gfem does not allow this and forces the user to declare a functiong =2*f before evaluation of dx(g) ; Hence in

1 g = 2*f;2 h = dx(g) * dy(f);
the equal sign forces the evaluation of g at all vertices, then when thesecond equal signs forces the evaluation of the expression on the right of hat all vertices , everything is ready for it.Global operators are

1 dx(), dy(), convect(), intt[], int()[]
Example of forbidden expressions:

1 intt[f+g], dx(dy(g)), dx(sin(f)), convect(2*u...)
3.6 Integrals

� e�ect:
intt returns a complex or real number, an integral with respect tox,y int returns a complex or real number, an integral on a curve

� syntax:
intt[f] or intt(n1)[f] or intt(n1,n2)[f] or intt(n1,n2,n3)[f]int(n1)[f] or int(n1,n2)[f] or int(n1,n2,n3)[f]where n1,n2,n3 are boundary or subdomain identi�cation numbersand where f is an array function.

1 border(1)... end; /* a border has number 1 */2 ... buildmesh(...);3
17

4 f = 2 * x;56 /*7 * nx,ny are the components of the boundary normal8 */9 g = f * (nx + ny);1011 /*12 * can't do r:= int[2*x]13 */14 r:= int[f];15 s:=int(1)[g];1617 /*18 * this is the only way to display the result19 */20 save('r.dta',r);21 save('s.dta',s);
� Restrictions:
int and intt are global operators, so the values of the integrands areneeded at all vertices at once, therefore you can't put an expressionfor the integrand, it must be a function.Be careful to check that the region number are correct when you useintt(n)[f] .Unfortunately freefem does not store the edges numbers. Hence thereare ambiguities at vertices which are at the intersections of 2 bound-aries. The following convention is used: int(n)[g] computes the inte-gral of g on all segments of the boundary (both ends have id boundarynumber !=0) with one vertex boundary id number = n. (Rememberthat you can control the boundary id number of the boundary endsby the order in which you place the corresponding border call or byan extra argument in border)

18

3.7 Solving an equation
3.7.1 Onbdy()Its purpose is to de�ne a boundary condition for a Partial Di�erential Equa-tion (PDE).The general syntax is

1 onbdy(ib1, ib2,...) id(u)+<expression>*dnu(u) = g2 onbdy(ib1, ib2,...) u = g
where ib's are boundary identi�cation numbers, <expression> is a genericexpression and g a generic function.The term id(u) may be absent as in -dnu(u)=g . dnu(u) represents theconormal of the PDE, i.e. �~ru:nwhen the PDE operator is

a � u� ~r:(�~ru)
3.7.2 Pde()The syntax for pde is

1 pde(u) [+-] op1(u)[*/]exp1 [+-] op2(u)[*/]exp2...=exp3
It de�nes a partial di�erential equation with non constant coe�cientswhere op is one of the operator:
� id()
� dx()
� dy()
� laplace()
� dxx()
� dxy()
� dyx()
� dyy()

19

and where [*/] means either a * or a / and similarly for �. Note that theexpressions are necessarily AFTER the operator while in practice they arebetween the 2 di�erentiations for laplace...dyy . Thus laplace(u)*(x+y)meansr:((x+ y)ru).Similarly dxy(u)*f means@f @u@y@x .
3.7.3 Solve()The syntax for a single unknown function u solution of a PDE is

1 solve(u)2 begin3 onbdy()...;4 onbdy()...;5 ...;6 pde(u)...7 end;
For 2-systems and the use of solve(u,v), see the section 2-Systems . Itde�nes a PDE and its boundary conditions. It will be solved by the FiniteElement Method of degree 1 on triangles and a Gauss factorization.Once the matrix is built and factorized solve may be called again bysolve(u,-1)...; then the matrix is not rebuilt nor factorized and only asolution of the linear system is performed by an up and a down sweep inthe Gauss algorithm only. This saves a lot of CPU time whenever possible.Several matrices can be stored and used simultaneously, in which case thesequence is

1 solve(u,i)...;2 ...3 solve(u,-i)...;
where i is a scalar variable (not an array function).However matrices must be constructed in the natural order: i=1 �rstthen i=2.... after they can be re-used in any order. One can also re-usean old matrix with a new de�nition, as in

1 solve(u,i)...;2 ...
20

3 solve(u,i)...;4 solve(u,\pm i)...;
Notice that solve(u) is equivalent to solve(u,1) .Remark: 2-Systems have their own matrices, so they do not count inthe previous ordering.
3.7.4 2-SystemsBefore going to systems make sure that your 2 pde's are indeed coupled andthat no simple iteration loop will solve it, because 2-systems are signi�cantlymore computer intensive than scalar equations.Systems with 2 unknowns can be solved by

1 solve(u,v)2 begin3 onbdy(..) ...dnu(u)...=.../* defines a bdy condition for u */4 onbdy(..) u =... /* defines a bdy conditions for v */5 pde(u) ... /* defines PDE for u */6 onbdy(..)<v=... or ...dnu(v)...> /* defines bdy conditions for v */7 pde(v) ... /* defines PDE for u */8 end;
The syntax for solve is the same as for scalar PDEs; so solve(u,v,1) isok for instance. The equations above can be in any orders; several onbdy()can be used in case of multiple boundaries...The syntax for onbdy is the same as in the scalar case; either Dirichletor mixed-Neumann, but the later can have more than one id() and onlyone dnu() .Dirichlet is treated as if it was mixed Neumann with a small coe�cient.For instance u=2 is replaced by dnu(u)+1.e10*u=2.e10 , with quadratureat the vertices.Conditions coupling u,v are allowed for mixed Neumann only, such asid(u)+id(v)+dnu(v)=1. (As said later this is an equation for v).In solve(u,v,i) begin .. end; when i>0 the linear system is builtfactorized and solved. When i<0 , it is only solved; this is useful when onlythe right hand side in the boundary conditions or in the equations havechange. When i<0, i refers to a linear system i>0 of SAME TYPE, sothat scalar systems and 2-systems have their own count.Remark: saveall('filename',u,v) works also.

21

The syntax for pde() is the same as for the scalar case. Deciding whichequation is an equation for u or v is important in the resolution of the linearsystem (which is done by Gauss block factorization) because some blockmay not be de�nite matrices if the equations are not well chosen.
� A boundary condition like onbdy(...) ... dnu(u) ... = ...; isa boundary condition associated to u, even if it contains id(v) .
� Obviously a boundary condition like onbdy(...) u...=...; is alsoassociated with u (the syntax forbids any v -operator in this case).
� If u is the array function in a pde(u) then what follows is the PDEassociated to u .

3.7.5 Boundary conditions at cornersCorners where boundary conditions change from Neumann to Dirichlet areambiguous because Dirichlet conditions are assigned to vertices while Neu-mann conditions should be assigned to boundary edges; yet Gfem does notgive access to edge numbers. Understanding how these are implementedhelps overcome the di�culty.All boundary conditions are converted to mixed Fourier/Robin condi-tions:
1 id(u) a + dnu(u) b = c;

For Dirichlet conditions a is set to 1.0e12 and c is multiplied by thesame; for Neumann a=0 . Thus Neumann condition is present even whenthere is Dirichlet but the later overrules the former because of the largepenalty number. Functions a,b,c are piecewise linear continuous, or dis-continuous if precise is set.In case of Dirichlet-Neumann corner (with Dirichlet on one side andNeumann on the other) it is usually better to put a Dirichlet logic at thecorner. But if �ne precision is needed then the option precise can guaranteethat the integral on the edge near the corner on the Neumann side is properlytaken into account because then the corner has a Dirichlet value and aNeumann value by the fact that functions are discontinuous.
3.7.6 Weak formulationThe new keyword varsolve allows the user to enter PDEs in weak form.Syntax:

22

1 varsolve(<unknown function list>;<test function list>2 ,<<int>>) <<instruction>> : <expression>>;
where
� <unknown function list> and
� <test function list> are one or two function names separated bya comma.
� <int> is a positive or negative integer
� instruction is one instruction or more if they are enclosed within beginend or fg
� <expression> is an expression returning a real or complex number
We have used the notation << >> whenever the entities can be omitted.Examples

1 varsolve(u;w) /* Dirichlet problem -laplace(u) =x*y */2 begin3 onbdy(1) u = 0;4 f = dx(u)*dx(w) + dy(u)*dy(w)5 g = x*y;6 end : intt[f] - intt[g,w];78 varsolve(u;w,-1) /* same with prefactorized matrix */9 begin10 onbdy(1) u = 0;11 f = dx(u)*dx(w) + dy(u)*dy(w)12 g = x*y;13 end : intt[f] - intt[g,w];1415 varsolve(u;w) /* Neuman problem u-laplace(u) = x*y */16 begin17 f = dx(u)*dx(w) + dy(u)*dy(w) -x*y;18 g = x;19 end : intt[f] + int[u,w] - int(1)[g,w];2021 varsolve(u,v;w,s) /* Lame's equations */
23

22 begin23 onbdy(1) u=0;24 onbdy(1) v=0;25 e11 = dx(u);26 e22 = dy(v);27 e12 = 0.5*(dx(v)+dy(u));28 e21 = e12;29 dive = e11 + e22;30 s11w=2*(lambda*dive+2*mu*e11)*dx(w);31 s22s=2*(lambda*dive+2*mu+e22)*dy(s);32 s12s = 2*mu*e12*(dy(w)+dx(s));33 s21w = s12s;34 a = s11w+s22s+s12s+s21w +0.1*s;35 end : intt[a];
How does it works The interpreter evaluates the expression after the":" for each triangle and for each 3 vertices; if there is an instruction priorthe ":" it is also evaluated similarly. Each evaluation is done with one ofthe unknown and one of the test functions being 1 at one vertices and zeroat the 2 others. This will give an element of the contribution of the triangleto the linear system of the problem. The right hand side is constructed byhaving all unknowns equal to zero and one test function equal to one atone vertex. whenever integrals appear they are computed on the currenttriangle only.Note that varsolve takes longer than solve because derivatives likedx(u) are evaluated 9 times instead of once.

3.8 Results
3.8.1 plot, savemesh, save, load, loadmeshWithin a program the keyword plot(u) will display u .Instruction save('filename',u) will save the data array u on disk. Ifu is a scalar variable then the (single) value of u is appended to the �le (thisis useful for time dependent problems or any problem with iteration loop.).Instruction savemesh('filename') will save the triangulation on disk.Similarly for reading data with load('filename',u) and loadmesh('filename').The �le must be in the default directory, else it won't be found. The �leformat is best seen by opening them with a text editor. For a data array fit is:

24

1 ns2 f[0]34 f[ns-1]
(ns is the number of vertices)If f is a constant, its single value is appended to the end of the �le; thisis useful for time dependent problems or any problem with iteration loop.If precise is set still the function stored by save is interpolated on thevertices as the P 1 continuous function given by mass lumping (see above).For triangulations the �le format is (nt = number of triangles):

1 ns nt2 q[0].x q[0].y ib[i]3 ...4 q[n-1].x q[n-1].y ib[n-1]5 me[0][0] me[0][1] me[0][2] ngt[0]6 ...7 me[n-1][0] me[n-1][1] me[n-1][2] ngt[n-1]
Remark: Gfem uses the Fortran standard for me[][] and numbers thevertices starting from number 1 instead of 0 as in the C-standard. Thus inC-programs one must use me[][]-1 .
Remark: Other formats are also recognized by freefem via their �le nameextensions for our own internal use we have de�ned .amdba and .am_fmt.You can do the same if your format is not ours.

1 loadmesh('mesh.amdba'); /* amdba format (Dassault aviation) */2 loadmesh('mesh.am_fmt'); /* am_fmt format of MODULEF */
Remark: There is an optional arguments for the functions load, save,loadmesh, savemesh. This is the 2nd or 3rd argument of these functions.Here are the prototypes:

1 save(<filename>, <function name>2 [,<variable counter: integer or converted to integer>])3 load(<filename>, <function name>
25

4 [,<variable counter: integer or converted to integer>])5 savemesh(<filename>[,<variable counter:6 integer or converted to integer>])7 loadmesh(<filename>[,<variable counter:8 integer or converted to integer>])
As an example see nsstepad.pde which use this feature to save the meshand the solution at each adaptation of the mesh. This special feature allowsyou to save or load a generic �lename with a counter, the �nal �lename isbuilt like this '<generic filename>-<counter>'.

3.8.2 Saveall()The purpose is to solve all the data for a PDE or a 2-system with only oneinstruction. It is meant for those who want to write their own solvers.The syntax is:
1 saveall('file_name', var_name1,...)
The syntax is exactly the same as that of solve(,) except that the �rstparameter is the �le name. The other parameters are used only to indicateto the interpreter which is/are the unknown function.The �le format for the scalar equation (laplace is decomposed on nuxx,nuyy)

1 u=p if Dirichlet2 c u+dnu(u)=g if Neumann3 b u-dx(nuxx dx(u))-dx(nuxy dy(u))-dy(nuyx dx))-dy(nuyy dy(u))4 + a1 dx(u) + a2 dy(u) =f
is that each line has all the values for x,y being a vertex: f, g, p, b, c,a1, a2, nuxx, nuxy, nuyx, nuyy.The actual routine is in C++

1 int saveparam(fcts *param, triangulation* t, char *filename, int N)2 {3 int k, ns = t->np;4 ofstream file(filename);5 file<<ns<<" "<<N<<endl;6 for(k=0; k<ns; k++)
26

7 {8 file << (param)->f[k]<<" " ; file<<" ";9 file << (param)->g[k]<<" " ; file<<" ";10 file << (param)->p[k]<<" " ; file<<" ";11 file << (param)->b[k]<<" " ; file<<" ";12 file << (param)->c[k]<<" " ; file<<" ";13 file << (param)->a1[k]<<" " ; file<<" ";14 file << (param)->a2[k]<<" " ; file<<" ";15 file << (param)->nuxx[k]<<" " ; file<<" ";16 file << (param)->nuxy[k]<<" " ; file<<" ";17 file << (param)->nuyx[k]<<" " ; file<<" ";18 file << (param)->nuyy[k]<<" " ; file<<" ";19 file << endl;20 }21 }
The same function is used for complex coe�cients, by overloading the oper-ator <<:

1 friend ostream& operator<<(ostream& os, const complex& a)2 {3 os<<a.re<<" " << a.im<<" ";4 return os;5 }
For 2-systems also the same is used with

1 ostream& operator<<(ostream& os, cvect& a)2 {3 for(int i=0; i<N;i++)4 os<<a[i]<<" ";5 return os;6 }7 ostream& operator<<(ostream& os, cmat& a)8 {9 for(int i=0; i<N;i++)10 for(int j=0; j<N;j++)11 os<<a(i,j)<<" ";12 return os;13 }
27

where N=2 .A Dirichlet condition is applied whenever p[k](?). (Dirichlet conditionswith value 0 are changed to value 1e-10)
3.9 Other features
Gfem supports other interesting features:
3.9.1 IterThe syntax is:

1 iter(j){....}
where j refers to the number of loops; j can be the result of an expression(as in iter(i*k)).Imbedded loops are not allowed. You can use iter with the adaptationfeatures of Gfem.
3.9.2 Complex numbers
Gfem can handle complex coe�cients with 4 dedicated keywords:

� complex : to tell Gfem that complex number will be used. When itis used it must be located at the beginning of the program before anyfunction declarations, otherwise the results will be incorrect. It canappear more than once in the program but only the �rst occurrencecounts.
� I: for sqrt(-1) .
� Re : for the real part.
� Im : for the imaginary part.
There is purposely no conjug function but barz=Re(z)-I*Im(z) will do.By default all graphics display the real part. To display the imaginarypart do plot(Im(f)).The functions implemented for complex numbers are:
� cos
� sin

28

� zx where z is complex and x is a
oat
The linear systems for the PDE are solved by a Gauss complex LUfactorization.WARNING: failure to declare complex in the program implies all com-putation will be done in real, even if I is used.

3.9.3 Scal()The instruction a:=scal(f,g); does
a = Z

 f(x; y)g(x; y)dxdy
where
 is the triangulated domain.
3.9.4 Wait, nowait, changewaitWhenever there is a plot command, Gfem stops to let the user see theresult. By using nowait no stop will be made;

� wait turns back the stop option on.
� changewait toggles the option from on to o� or o� to on.
Remark under X11: If you click the right button in the window, thenext time the solver will give the hand to the plotter the program will stop.

3.9.5 One Dimensional PlotsThis function is only available under integrated environments.The last function de�ned by the keyword plot is displayed. It can bevisualized in several fashion, one of which being a one dimensional plotalong any segment de�ned by the mouse. Selection of this menu bringscauses Gfem to waits for the user input which should be the line segment onwhich the function is to be displayed. Thus one should press the mouseat the beginning point then drag the mouse and release the buttonat the �nal pointIt is safe to click in the window after to check that the function displayis correct. What is seen is a
t! f(x(t); y(t))

29

Plot where [x(t); y(t)]t is the segment drawn by the user and f is the lastfunction displayed in the plot window.The abscissa is the distance with the beginning point.
3.9.6 PreciseThis keyword warns Gfem that precise quadrature formula must be used.Hence array-functions are discretized as piecewise linear discontinuousfunctions on the triangulation. Then all integrals are computed with 3 innerGauss points slightly inside each triangle.This option consumes more memory (3nt instead of ns per functions,i.e. 9 times more approximately, but still it is nothing compared with thememory that a matrix of the linear system of a PDE requires) because eacharray-function is stored by 3 values on each triangles.It is a good idea to use it in conjunction with convect and/or discon-tinuous nonlinear terms.
3.9.7 Exec(), user(), how to link an external function toGfem
exec('prog_name') will launch the application prog_name . It is useful toexecute an external PDE solver for instance especially under Unix. It isnot implemented for Macintosh because there is no simple way to return toMacGfem after progname has ended. The same can be achieved manuallyby a suitable combination of saveall, wait and load and simultaneousexecution under multi�nder.user(what,f) calls the C++ function in a j-loop:

1 for (int j=0; j<nquad, j++)2 creal gfemuser(creal what, creal* f, int j)
� creal is a scalar (float) or a complex number if complex has beenset; nquad=3*nt if precise is set and ns otherwise.
� what is intended for users who need several such functions. Thenall can be put in the super function user and selection is by an ifstatement on what .
� Within gfemuser access to all global variables are of course possible:the triangulation (ns,nt, me, q, ng,ngt, area...) ... refer to the�le fem.C for more details.

30

Remark: An example of such gfemuser function is in fem.C ; if youwish to put your own you must compile and link it. Under Unix, it is easy.Under the Macintosh system, either you use freefem, which is Gfem's kernel,or you must ask us a library version of MacGfem.
3.10 Language internals

� Like most interpreters it has a lexical and a syntaxic part. In the lexicalpart the source is broken into tokens and recognized as symbols (seethe enum symbol in the source �le lexical.h). For instance if the �rstcharacter is a digit then it is a number and the symbol type associatedis cste. This job is done by function nextsym.In addition it constructsa table of constants and variables (which for convenience contains alsothe reserved words of the language).
� The lexical analyzer is a function called by the syntax analyzer. Hencethe second is the main routine in the program except for a few initial-ization; it's name is instruction .The syntax analysis is driven by thesyntax rules because the language is LL(1). Thus there is C-functionfor each non-terminal.
� The program does not generate an object code but a tree. For example,parsing x * y would generate a tree with root * and two branches xand y . Trees are C-struct with four pointers for the 4 branches (heretwo would point to NULL) and a symbol for the operator. The C-function which builds trees is called plante . In the end the programis transformed into a full tree and to execute the program there is onlyone thing to do: evaluate the operator at the root of the tree.
� The evaluation of the program is done by the C-function eval . Itlooks at the root symbol and perform the corresponding operation.Here it would do: return "value pointed by L1"*"value pointed by L2"

if L1 and L2 where the addresses of the two branches.
� The art of the game is to associate a tree to each operation. Forexample when the value of the variable x is required, this is also doneby a tree which has the operator "oldvar" as root. The trickiest of allis the compound instruction {...;....}; . Here { is considered as anoperator with one branch on the current instruction and one branchon the next one. Similarly for the if...then... else instruction.

31

Suppose one wants to add an instruction to freefem, here is what mustbe done:
� Make sure the syntax is LL(1) and does not con
ict with the old one.
� Add reserved words to the table with installe . As there will be anew Symbol, update the list of symbols (an enum structure). Add theC-functions for the syntax analysis according to the diagrams. Modifyeval by adding to the switch the new case.
Here is the very simple structure we used for the nodes of the tree:

1 typedef struct noeud2 {3 Symbol symb;4 creal value;5 ident *name;6 long junk;7 char *path;8 struct noeud *l1, *l2, *l3, *l4;9 } noeud, *arbre;

32

Chapter 4
Examples

4.1 Triangulations examples
� A UNIT RING (INNER RADIUS IS 0.25)
1 twopi := 2*pi;2 border(1,0,twopi,60) { x := cos(t); y := sin(t) };3 border(2,0,twopi,20) { x := 0.25*cos(-t); y := 0.25*sin(-t) };4 buildmesh(400);
� THE RECTANGLE [(0,0),(0,2),(2,1),(0,10)]
1 border(1,0,2,20) { x:= t; y:= 0 };2 border(1,0,1,10) { x:= 1; y:= t };3 border(1,0,2,20) { x:= 2-t; y:= 1 };4 border(1,0,1,10) { x:= 0; y:= 1-t };
� A SQUAREWITHWELL IDENTIFIED SIDES AND CON-TROL OF IB AT CORNERS
1 border(1,0,4,41)2 {3 if(t<=1) then { x:=t; y:=0 };4 if((t>1)and(t<2)) then { x:=1; y:=t-1; ib:= 2 };5 if((t>=2)and(t<=3)) then { x:=3-t; y:=1; ib:= 3 };6 if(t>3) then { x:=0; y:=4-t; ib:= 4 }7 };8 buildmesh(400);

33

� MULTI-REGIONS CIRCLE
1 border(1,0,2,17) {x:= cos(pi*t); y:= sin(pi*t)};2 border(0,-1,1,7) { x:= t; y:=0; };3 border(0,0,1,4) { x:=0;y:=t };4 buildmesh(300);5 /* observe the value of "region" by using "show triangle numbers */

4.2 Scalar examples
� ELECTROSTATIC CONDENSOR
1 /* a circle of radius 5 centered at (0,0) */2 border(1,0,2*pi,60) begin x := 5 * cos(t); y := 5 * sin(t) end ;3 /* The rectangle on the right */4 border(2,0,1,4) begin x:=1+t; y:=3 end ;5 border(2,0,1,24) begin x:=2; y:=3-6*t end ;6 border(2,0,1,4) begin x:=2-t; y:=-3 end ;7 border(2,0,1,24) begin x:=1; y:=-3+6*t end ;8 /* The rectangle on the left */9 border(3,0,1,4) begin x:=-2+t; y:=3 end ;10 border(3,0,1,24) begin x:=-1; y:=3-6*t end ;11 border(3,0,1,4) begin x:=-1-t; y:=-3 end ;12 border(3,0,1,24) begin x:=-2; y:=-3+6*t end ;13 buildmesh(800);1415 /* Boundary conditions and PDE */16 solve(v)17 begin18 onbdy(1) v = 0;19 onbdy(2) v = 1;20 onbdy(3) v = -1;21 pde(v) -laplace(v) =0;22 end;23 plot(v);
� HEAT CONDUCTION AND RADIATION
1 border(1,0,22,89)2 begin

34

3 if(t<=10)then begin x:= t; y:=0 ; ib:=3 end;4 if((t>10)and(t<11))then begin x:=10; y:=t-10; ib:=2 end;5 if((t>=11)and(t<=21))then begin x:=21-t; y:=1; ib:=4 end;6 if(t>21)then begin x:=0; y:=22-t end;7 end;8 buildmesh(800);910 changewait;11 t0 := 10; t1 := 100; te := 25; b=0.1; c = 5.0e-8;12 w = (b + 2*c * (te+546)*(te+273)*(te+273));13 solve(v,1)14 begin15 onbdy(1) v=t0; onbdy(2) v = t1; onbdy(3) dnu(v)=0;16 onbdy(4) id(v) * w + dnu(v) = te * w;17 pde(v) -laplace(v) * y =0;18 end;19 iter(10)20 begin u=v;21 w = (b + c * (u+te + 546)*((u+273)*(u+273) + (te+273)*(te+273)));22 solve(v,-1) begin23 onbdy(1) v=t0; onbdy(2) v = t1;24 onbdy(3) dnu(v)=0; onbdy(4) id(v)*w + dnu(v)= te * w;25 pde(v) -laplace(v) * y =0; plot(v);26 end;27 end
� HEAT: NON HOMOGENEOUS MATERIAL
1 r0 := 1.0; r1 := 2.0;2 border(1,0,22,89)3 begin4 region :=1;5 if(t<10)then begin x:= t; y:=0 ; ib:=3 end;6 if((t>=10)and(t<=11))then begin x:=10; y:=r1*(t-10); ib:=2 end;7 if((t>11)and(t<21))then begin x:=21-t; y:=r1; ib:=4 end;8 if(t>=21)then begin x:=0; y:=r1*(22-t) end;9 end;10 border(0,0,10,41) begin x:= t; y:=r0 end;11 buildmesh(800);12

35

13 t0 = 10; t1 = 100; te := 25; kappa =0.01 + max(y-1,0)/(y-1.0001);14 solve(v)15 begin16 onbdy(1) v=t0;17 onbdy(2) v = t1;18 onbdy(4) dnu(v)=0.2;19 onbdy(3) dnu(v)=0;20 pde(v) -laplace(v)*kappa*y +id(v)*kappa*y =0;21 plot(v);22 end;
� COMPRESSIBLE POTENTIAL FLOW
1 changewait;/* gamma = 1.4, outer circle radius is 5 */2 mach1 := 1/sqrt(6); machinfty = 0.85*mach1;3 rhoinfty=sqrt((1-machinfty^2)^5);4 solve(phi) begin5 onbdy(1) dnu(phi) = rhoinfty*machinfty*x/5; onbdy(2) dnu(phi) = 0;6 pde(phi) id(phi)*0.0001-laplace(phi) = 0;7 end;8 u1 = dx(phi); u2 = dy(phi); rho=sqrt((1-(u1^2+ u2^2))^5); plot(phi);910 iter(5)11 begin12 solve(phi)13 onbdy(1) dnu(phi) =rhoinfty*machinfty*x/5; onbdy(2) dnu(phi) = 0;14 pde(phi) id(phi)*0.0001-laplace(phi)*rhop=0;15 end;16 u1 = dx(phi); u2 = dy(phi); rho=sqrt((1-(u1^2+ u2^2))^5);17 rhop = convect(rho,u1,u2,0.1); plot(rho)18 end;19 plot(sqrt((u1^2+u2^2))/mach1);
� NAVIER STOKES EQUATIONS
1 /* Poor but better than none algorithm*/2 changewait;3 border(1,0,1,6) begin x:=0; y:=1-t end;4 border(2,0,1,15) begin x:=2*t; y:=0 end;5 border(2,0,1,10) begin x:=2; y:=-t end;

36

6 border(2,0,1,20) begin x:=2+3*t; y:=-1 end;7 border(2,0,1,35) begin x:=5+15*t; y:=-1 end;8 border(3,0,1,10) begin x:=20; y:=-1+2*t end;9 border(4,0,1,35) begin x:=5+15*(1-t); y:=1 end;10 border(4,0,1,40) begin x:=5*(1-t);y:=1 end;11 buildmesh(900);1213 nu = 0.002; dt := 0.4;1415 /* initial pressure */16 solve(p,1)17 onbdy(1)dnu(p) =-2*nu;18 onbdy(3) p=0; onbdy(2,4) dnu(p) = 0;19 pde(p) - laplace(p)= 0;20 end;21 /* initial horizontal velocity */22 solve(u,2) begin23 onbdy(1) u = y*(1-y);24 onbdy(3) dnu(u) = 0; onbdy(2,4) u = 0;25 pde(u) id(u)/dt-laplace(u)*nu = -min(y*y-y,0)/dt;26 end;27 /* initial vertical velocity */28 solve(v,3)begin29 onbdy(1,3)v = 0; onbdy(2,4) v = 0;30 pde(v) id(v)/dt-laplace(v)*nu =0;31 end;32 un = u; vn = v;33 iter(80)34 begin f=convect(un,u,v,dt); g=convect(vn,u,v,dt);35 /*Horizontal velocity*/36 solve(u,-2) begin37 onbdy(1) u = y*(1-y); onbdy(2,4) u = 0;38 onbdy(3)dnu(u)=0;39 pde(u) id(u)/dt-laplace(u)*nu = f/dt -dx(p);40 end;41 plot(u);42 /* Vertical velocity */43 solve(v,-3) begin44 onbdy(1,2,3,4) v = 0;45 pde(v) id(v)/dt-laplace(v)*nu = g/dt -dy(p);
37

46 end;47 /* Pressure */48 solve(p,-1) begin49 onbdy(1)dnu(p) =-2*nu;50 onbdy(3) p=0; onbdy(2,4) dnu(p) = 0;51 pde(p) -laplace(p)= -(dx(f) + dy(g))/dt;52 end;53 un = u; vn = v;54 end ;55 save('u.dta',u); save('v.dta',v); save('p.dta',p); plot(u);
4.3 Complex number example

1 complex; nowait;2 border(1,0,1,10) begin x:=t; y:=0; end;3 border(1,0,1,10) begin x:=1; y:=t; end;4 border(2,0,1,10) begin x:=1-t; y:=1; end;5 border(1,0,1,10) begin x:=0; y:=1-t; end;6 buildmesh(200);78 solve(u) /* observe than Re(u) = Im(u) */9 begin10 onbdy(1,2) u=0;11 pde(u) id(u)-laplace(u)=1+I ;12 end;13 v=Im(u);14 plot(u);plot(v);plot(u-v);
4.4 2-system example

1 /* This is a 2-system example for which the solution is know2 analytically, thus the precision of Gfem can be checked */3 nowait;4 ns:=40;5 border(1,0,2*pi,2*ns) begin x:= 3*cos(t); y:= 2*sin(t); end;6 border(2,0,2*pi,ns) begin x:= cos(-t); y:= sin(-t); end;7 buildmesh(ns*ns);8
38

9 ue= sin(x+y);10 ve = ue;11 p = ue;12 nx = -x;13 ny =- y;14 dxue = cos(x+y);1516 c = 0.2;17 a1 = y;18 a2 =x;19 nu = 1;20 nu11 = 1;21 nu22 = 2;22 nu21 =0.3;23 nu12 =0.4;24 b=1;2526 dnuue=dxue*(nu*(nx+ny) +27 (nu11 + nu12)*nx + (nu21+ nu22)*ny);28 g = ue*c+dnuue;29 f = b*ue+dxue*(a1+a2) +ue*(2*nu+nu11+nu12+nu21+nu22);3031 solve(u,v) begin32 onbdy(1) u = p;33 onbdy(1) v = p;34 onbdy(2)35 id(u)*c/2 + id(v)*c/2 + dnu(u) = g;36 onbdy(2) id(v)*c + dnu(v) = g;37 pde(u) id(u)*b + dx(u)*a1 + dy(u)*a238 -laplace(u)*nu - dxx(u)*nu11 -39 dxy(u)*nu12 - dyx(u)*nu21 - dyy(u)*nu22 =f;4041 pde(v) id(v)*b/2+id(u)*b/242 + dx(v)*a1 + dy(v)*a2 -laplace(v)*nu43 - dxx(v)*nu11 - dxy(v)*nu12 -44 dyx(v)*nu21 - dyy(v)*nu22 =f;45 end;4647 plot(abs(u-ue) + abs(v-ve));

39

Chapter 5
GNU Free Documentation
License
Version 1.1, March 2000

Copyright c
 2000 Free Software Foundation, Inc.59 Temple Place, Suite 330, Boston, MA 02111-1307 USAEveryone is permitted to copy and distribute verbatim copies of this licensedocument, but changing it is not allowed.
Preamble
The purpose of this License is to make a manual, textbook, or other writtendocument \free" in the sense of freedom: to assure everyone the e�ectivefreedom to copy and redistribute it, with or without modifying it, eithercommercially or noncommercially. Secondarily, this License preserves forthe author and publisher a way to get credit for their work, while not beingconsidered responsible for modi�cations made by others.This License is a kind of \copyleft", which means that derivative worksof the document must themselves be free in the same sense. It complementsthe GNU General Public License, which is a copyleft license designed forfree software.We have designed this License in order to use it for manuals for freesoftware, because free software needs free documentation: a free programshould come with manuals providing the same freedoms that the softwaredoes. But this License is not limited to software manuals; it can be usedfor any textual work, regardless of subject matter or whether it is published

40

as a printed book. We recommend this License principally for works whosepurpose is instruction or reference.
5.1 Applicability and De�nitions
This License applies to any manual or other work that contains a noticeplaced by the copyright holder saying it can be distributed under the termsof this License. The \Document", below, refers to any such manual or work.Any member of the public is a licensee, and is addressed as \you".A \Modi�ed Version" of the Document means any work containing theDocument or a portion of it, either copied verbatim, or with modi�cationsand/or translated into another language.A \Secondary Section" is a named appendix or a front-matter section ofthe Document that deals exclusively with the relationship of the publishersor authors of the Document to the Document's overall subject (or to relatedmatters) and contains nothing that could fall directly within that overallsubject. (For example, if the Document is in part a textbook of mathematics,a Secondary Section may not explain any mathematics.) The relationshipcould be a matter of historical connection with the subject or with relatedmatters, or of legal, commercial, philosophical, ethical or political positionregarding them.The \Invariant Sections" are certain Secondary Sections whose titles aredesignated, as being those of Invariant Sections, in the notice that says thatthe Document is released under this License.The \Cover Texts" are certain short passages of text that are listed, asFront-Cover Texts or Back-Cover Texts, in the notice that says that theDocument is released under this License.A \Transparent" copy of the Document means a machine-readable copy,represented in a format whose speci�cation is available to the general public,whose contents can be viewed and edited directly and straightforwardlywith generic text editors or (for images composed of pixels) generic paintprograms or (for drawings) some widely available drawing editor, and thatis suitable for input to text formatters or for automatic translation to avariety of formats suitable for input to text formatters. A copy made inan otherwise Transparent �le format whose markup has been designed tothwart or discourage subsequent modi�cation by readers is not Transparent.A copy that is not \Transparent" is called \Opaque".Examples of suitable formats for Transparent copies include plain ASCIIwithout markup, Texinfo input format, LATEX input format, SGML or XML

41

using a publicly available DTD, and standard-conforming simple HTMLdesigned for human modi�cation. Opaque formats include PostScript, PDF,proprietary formats that can be read and edited only by proprietary wordprocessors, SGML or XML for which the DTD and/or processing tools arenot generally available, and the machine-generated HTML produced by someword processors for output purposes only.The \Title Page" means, for a printed book, the title page itself, plussuch following pages as are needed to hold, legibly, the material this Licenserequires to appear in the title page. For works in formats which do not haveany title page as such, \Title Page" means the text near the most prominentappearance of the work's title, preceding the beginning of the body of thetext.
5.2 Verbatim Copying
You may copy and distribute the Document in any medium, either commer-cially or noncommercially, provided that this License, the copyright notices,and the license notice saying this License applies to the Document are re-produced in all copies, and that you add no other conditions whatsoever tothose of this License. You may not use technical measures to obstruct orcontrol the reading or further copying of the copies you make or distribute.However, you may accept compensation in exchange for copies. If you dis-tribute a large enough number of copies you must also follow the conditionsin section 3.You may also lend copies, under the same conditions stated above, andyou may publicly display copies.
5.3 Copying in Quantity
If you publish printed copies of the Document numbering more than 100, andthe Document's license notice requires Cover Texts, you must enclose thecopies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover.Both covers must also clearly and legibly identify you as the publisher ofthese copies. The front cover must present the full title with all words ofthe title equally prominent and visible. You may add other material on thecovers in addition. Copying with changes limited to the covers, as long asthey preserve the title of the Document and satisfy these conditions, can betreated as verbatim copying in other respects.

42

If the required texts for either cover are too voluminous to �t legibly,you should put the �rst ones listed (as many as �t reasonably) on the actualcover, and continue the rest onto adjacent pages.If you publish or distribute Opaque copies of the Document numberingmore than 100, you must either include a machine-readable Transparentcopy along with each Opaque copy, or state in or with each Opaque copy apublicly-accessible computer-network location containing a complete Trans-parent copy of the Document, free of added material, which the generalnetwork-using public has access to download anonymously at no charge us-ing public-standard network protocols. If you use the latter option, youmust take reasonably prudent steps, when you begin distribution of Opaquecopies in quantity, to ensure that this Transparent copy will remain thusaccessible at the stated location until at least one year after the last timeyou distribute an Opaque copy (directly or through your agents or retailers)of that edition to the public.It is requested, but not required, that you contact the authors of theDocument well before redistributing any large number of copies, to givethem a chance to provide you with an updated version of the Document.
5.4 Modi�cations
You may copy and distribute a Modi�ed Version of the Document under theconditions of sections 2 and 3 above, provided that you release the Modi�edVersion under precisely this License, with the Modi�ed Version �lling therole of the Document, thus licensing distribution and modi�cation of theModi�ed Version to whoever possesses a copy of it. In addition, you mustdo these things in the Modi�ed Version:

� Use in the Title Page (and on the covers, if any) a title distinct fromthat of the Document, and from those of previous versions (whichshould, if there were any, be listed in the History section of the Docu-ment). You may use the same title as a previous version if the originalpublisher of that version gives permission.
� List on the Title Page, as authors, one or more persons or entitiesresponsible for authorship of the modi�cations in the Modi�ed Version,together with at least �ve of the principal authors of the Document(all of its principal authors, if it has less than �ve).
� State on the Title page the name of the publisher of the Modi�edVersion, as the publisher.

43

� Preserve all the copyright notices of the Document.
� Add an appropriate copyright notice for your modi�cations adjacentto the other copyright notices.
� Include, immediately after the copyright notices, a license notice givingthe public permission to use the Modi�ed Version under the terms ofthis License, in the form shown in the Addendum below.
� Preserve in that license notice the full lists of Invariant Sections andrequired Cover Texts given in the Document's license notice.
� Include an unaltered copy of this License.
� Preserve the section entitled \History", and its title, and add to it anitem stating at least the title, year, new authors, and publisher of theModi�ed Version as given on the Title Page. If there is no sectionentitled \History" in the Document, create one stating the title, year,authors, and publisher of the Document as given on its Title Page,then add an item describing the Modi�ed Version as stated in theprevious sentence.
� Preserve the network location, if any, given in the Document for pub-lic access to a Transparent copy of the Document, and likewise thenetwork locations given in the Document for previous versions it wasbased on. These may be placed in the \History" section. You mayomit a network location for a work that was published at least fouryears before the Document itself, or if the original publisher of theversion it refers to gives permission.
� In any section entitled \Acknowledgements" or \Dedications", pre-serve the section's title, and preserve in the section all the substanceand tone of each of the contributor acknowledgements and/or dedica-tions given therein.
� Preserve all the Invariant Sections of the Document, unaltered in theirtext and in their titles. Section numbers or the equivalent are notconsidered part of the section titles.
� Delete any section entitled \Endorsements". Such a section may notbe included in the Modi�ed Version.
� Do not retitle any existing section as \Endorsements" or to con
ict intitle with any Invariant Section.

44

If the Modi�ed Version includes new front-matter sections or appendicesthat qualify as Secondary Sections and contain no material copied from theDocument, you may at your option designate some or all of these sectionsas invariant. To do this, add their titles to the list of Invariant Sections inthe Modi�ed Version's license notice. These titles must be distinct from anyother section titles.You may add a section entitled \Endorsements", provided it containsnothing but endorsements of your Modi�ed Version by various parties { forexample, statements of peer review or that the text has been approved byan organization as the authoritative de�nition of a standard.You may add a passage of up to �ve words as a Front-Cover Text, anda passage of up to 25 words as a Back-Cover Text, to the end of the list ofCover Texts in the Modi�ed Version. Only one passage of Front-Cover Textand one of Back-Cover Text may be added by (or through arrangementsmade by) any one entity. If the Document already includes a cover text forthe same cover, previously added by you or by arrangement made by thesame entity you are acting on behalf of, you may not add another; but youmay replace the old one, on explicit permission from the previous publisherthat added the old one.The author(s) and publisher(s) of the Document do not by this Licensegive permission to use their names for publicity for or to assert or implyendorsement of any Modi�ed Version.
5.5 Combining Documents
You may combine the Document with other documents released under thisLicense, under the terms de�ned in section 4 above for modi�ed versions,provided that you include in the combination all of the Invariant Sectionsof all of the original documents, unmodi�ed, and list them all as InvariantSections of your combined work in its license notice.The combined work need only contain one copy of this License, andmultiple identical Invariant Sections may be replaced with a single copy.If there are multiple Invariant Sections with the same name but di�erentcontents, make the title of each such section unique by adding at the endof it, in parentheses, the name of the original author or publisher of thatsection if known, or else a unique number. Make the same adjustment tothe section titles in the list of Invariant Sections in the license notice of thecombined work.In the combination, you must combine any sections entitled \History"

45

in the various original documents, forming one section entitled \History";likewise combine any sections entitled \Acknowledgements", and any sec-tions entitled \Dedications". You must delete all sections entitled \En-dorsements."
5.6 Collections of Documents
You may make a collection consisting of the Document and other documentsreleased under this License, and replace the individual copies of this Licensein the various documents with a single copy that is included in the collection,provided that you follow the rules of this License for verbatim copying ofeach of the documents in all other respects.You may extract a single document from such a collection, and distributeit individually under this License, provided you insert a copy of this Licenseinto the extracted document, and follow this License in all other respectsregarding verbatim copying of that document.
5.7 Aggregation With Independent Works
A compilation of the Document or its derivatives with other separate and in-dependent documents or works, in or on a volume of a storage or distributionmedium, does not as a whole count as a Modi�ed Version of the Document,provided no compilation copyright is claimed for the compilation. Such acompilation is called an \aggregate", and this License does not apply to theother self-contained works thus compiled with the Document, on account oftheir being thus compiled, if they are not themselves derivative works of theDocument.If the Cover Text requirement of section 3 is applicable to these copiesof the Document, then if the Document is less than one quarter of theentire aggregate, the Document's Cover Texts may be placed on covers thatsurround only the Document within the aggregate. Otherwise they mustappear on covers around the whole aggregate.
5.8 Translation
Translation is considered a kind of modi�cation, so you may distribute trans-lations of the Document under the terms of section 4. Replacing InvariantSections with translations requires special permission from their copyrightholders, but you may include translations of some or all Invariant Sections

46

in addition to the original versions of these Invariant Sections. You may in-clude a translation of this License provided that you also include the originalEnglish version of this License. In case of a disagreement between the trans-lation and the original English version of this License, the original Englishversion will prevail.
5.9 Termination
You may not copy, modify, sublicense, or distribute the Document exceptas expressly provided for under this License. Any other attempt to copy,modify, sublicense or distribute the Document is void, and will automaticallyterminate your rights under this License. However, parties who have receivedcopies, or rights, from you under this License will not have their licensesterminated so long as such parties remain in full compliance.
5.10 Future Revisions of This License
The Free Software Foundation may publish new, revised versions of the GNUFree Documentation License from time to time. Such new versions will besimilar in spirit to the present version, but may di�er in detail to addressnew problems or concerns. See http://www.gnu.org/copyleft/.Each version of the License is given a distinguishing version number. Ifthe Document speci�es that a particular numbered version of this License"or any later version" applies to it, you have the option of following theterms and conditions either of that speci�ed version or of any later versionthat has been published (not as a draft) by the Free Software Foundation.If the Document does not specify a version number of this License, youmay choose any version ever published (not as a draft) by the Free SoftwareFoundation.
ADDENDUM: How to use this License for your
documents
To use this License in a document you have written, include a copy of theLicense in the document and put the following copyright and license noticesjust after the title page:

Copyright c
 YEAR YOUR NAME. Permission is granted tocopy, distribute and/or modify this document under the terms of
47

the GNU Free Documentation License, Version 1.1 or any laterversion published by the Free Software Foundation; with theInvariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts beingLIST. A copy of the license is included in the section entitled\GNU Free Documentation License".
If you have no Invariant Sections, write \with no Invariant Sections"instead of saying which ones are invariant. If you have no Front-CoverTexts, write \no Front-Cover Texts" instead of \Front-Cover Texts beingLIST"; likewise for Back-Cover Texts.If your document contains nontrivial examples of program code, we rec-ommend releasing these examples in parallel under your choice of free soft-ware license, such as the GNU General Public License, to permit their usein free software.

48

Bibliography

49

Index
array-function, 4
border, 10buildmesh, 10, 12
complex, 28convect, 14, 16, 30
diagonal swaping, 12domain decomposition, 12dx, 16dy, 16
exec, 30
http, 5
iter, 28
loadmesh, 24, 25
Mesh formatsambda, 25gfem, 25am_fmt, 25
polygon, 10, 12precise, 30project, 4
savemesh, 24, 25scal, 29solve, 20, 21, 26
triangulation, 4

user, 30
vertex, 4

50

