Memory.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 // Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
7 // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
8 // Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
9 //
10 // This Source Code Form is subject to the terms of the Mozilla
11 // Public License v. 2.0. If a copy of the MPL was not distributed
12 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
13 
14 
15 /*****************************************************************************
16 *** Platform checks for aligned malloc functions ***
17 *****************************************************************************/
18 
19 #ifndef EIGEN_MEMORY_H
20 #define EIGEN_MEMORY_H
21 
22 // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
23 // http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
24 // This is true at least since glibc 2.8.
25 // This leaves the question how to detect 64-bit. According to this document,
26 // http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
27 // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
28 // quite safe, at least within the context of glibc, to equate 64-bit with LP64.
29 #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
30  && defined(__LP64__)
31  #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
32 #else
33  #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
34 #endif
35 
36 // FreeBSD 6 seems to have 16-byte aligned malloc
37 // See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
38 // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
39 // See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
40 #if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__)
41  #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
42 #else
43  #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
44 #endif
45 
46 #if defined(__APPLE__) \
47  || defined(_WIN64) \
48  || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
49  || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
50  #define EIGEN_MALLOC_ALREADY_ALIGNED 1
51 #else
52  #define EIGEN_MALLOC_ALREADY_ALIGNED 0
53 #endif
54 
55 #if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) \
56  && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
57  #define EIGEN_HAS_POSIX_MEMALIGN 1
58 #else
59  #define EIGEN_HAS_POSIX_MEMALIGN 0
60 #endif
61 
62 #ifdef EIGEN_VECTORIZE_SSE
63  #define EIGEN_HAS_MM_MALLOC 1
64 #else
65  #define EIGEN_HAS_MM_MALLOC 0
66 #endif
67 
68 namespace Eigen {
69 
70 namespace internal {
71 
72 inline void throw_std_bad_alloc()
73 {
74  #ifdef EIGEN_EXCEPTIONS
75  throw std::bad_alloc();
76  #else
77  std::size_t huge = -1;
78  new int[huge];
79  #endif
80 }
81 
82 /*****************************************************************************
83 *** Implementation of handmade aligned functions ***
84 *****************************************************************************/
85 
86 /* ----- Hand made implementations of aligned malloc/free and realloc ----- */
87 
91 inline void* handmade_aligned_malloc(size_t size)
92 {
93  void *original = std::malloc(size+16);
94  if (original == 0) return 0;
95  void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16);
96  *(reinterpret_cast<void**>(aligned) - 1) = original;
97  return aligned;
98 }
99 
101 inline void handmade_aligned_free(void *ptr)
102 {
103  if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
104 }
105 
111 inline void* handmade_aligned_realloc(void* ptr, size_t size, size_t = 0)
112 {
113  if (ptr == 0) return handmade_aligned_malloc(size);
114  void *original = *(reinterpret_cast<void**>(ptr) - 1);
115  original = std::realloc(original,size+16);
116  if (original == 0) return 0;
117  void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16);
118  *(reinterpret_cast<void**>(aligned) - 1) = original;
119  return aligned;
120 }
121 
122 /*****************************************************************************
123 *** Implementation of generic aligned realloc (when no realloc can be used)***
124 *****************************************************************************/
125 
126 void* aligned_malloc(size_t size);
127 void aligned_free(void *ptr);
128 
134 inline void* generic_aligned_realloc(void* ptr, size_t size, size_t old_size)
135 {
136  if (ptr==0)
137  return aligned_malloc(size);
138 
139  if (size==0)
140  {
141  aligned_free(ptr);
142  return 0;
143  }
144 
145  void* newptr = aligned_malloc(size);
146  if (newptr == 0)
147  {
148  #ifdef EIGEN_HAS_ERRNO
149  errno = ENOMEM; // according to the standard
150  #endif
151  return 0;
152  }
153 
154  if (ptr != 0)
155  {
156  std::memcpy(newptr, ptr, (std::min)(size,old_size));
157  aligned_free(ptr);
158  }
159 
160  return newptr;
161 }
162 
163 /*****************************************************************************
164 *** Implementation of portable aligned versions of malloc/free/realloc ***
165 *****************************************************************************/
166 
167 #ifdef EIGEN_NO_MALLOC
168 inline void check_that_malloc_is_allowed()
169 {
170  eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
171 }
172 #elif defined EIGEN_RUNTIME_NO_MALLOC
173 inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
174 {
175  static bool value = true;
176  if (update == 1)
177  value = new_value;
178  return value;
179 }
180 inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
181 inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
182 inline void check_that_malloc_is_allowed()
183 {
184  eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
185 }
186 #else
187 inline void check_that_malloc_is_allowed()
188 {}
189 #endif
190 
194 inline void* aligned_malloc(size_t size)
195 {
196  check_that_malloc_is_allowed();
197 
198  void *result;
199  #if !EIGEN_ALIGN
200  result = std::malloc(size);
201  #elif EIGEN_MALLOC_ALREADY_ALIGNED
202  result = std::malloc(size);
203  #elif EIGEN_HAS_POSIX_MEMALIGN
204  if(posix_memalign(&result, 16, size)) result = 0;
205  #elif EIGEN_HAS_MM_MALLOC
206  result = _mm_malloc(size, 16);
207 #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
208  result = _aligned_malloc(size, 16);
209  #else
210  result = handmade_aligned_malloc(size);
211  #endif
212 
213  if(!result && size)
214  throw_std_bad_alloc();
215 
216  return result;
217 }
218 
220 inline void aligned_free(void *ptr)
221 {
222  #if !EIGEN_ALIGN
223  std::free(ptr);
224  #elif EIGEN_MALLOC_ALREADY_ALIGNED
225  std::free(ptr);
226  #elif EIGEN_HAS_POSIX_MEMALIGN
227  std::free(ptr);
228  #elif EIGEN_HAS_MM_MALLOC
229  _mm_free(ptr);
230  #elif defined(_MSC_VER)
231  _aligned_free(ptr);
232  #else
233  handmade_aligned_free(ptr);
234  #endif
235 }
236 
242 inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
243 {
244  EIGEN_UNUSED_VARIABLE(old_size);
245 
246  void *result;
247 #if !EIGEN_ALIGN
248  result = std::realloc(ptr,new_size);
249 #elif EIGEN_MALLOC_ALREADY_ALIGNED
250  result = std::realloc(ptr,new_size);
251 #elif EIGEN_HAS_POSIX_MEMALIGN
252  result = generic_aligned_realloc(ptr,new_size,old_size);
253 #elif EIGEN_HAS_MM_MALLOC
254  // The defined(_mm_free) is just here to verify that this MSVC version
255  // implements _mm_malloc/_mm_free based on the corresponding _aligned_
256  // functions. This may not always be the case and we just try to be safe.
257  #if defined(_MSC_VER) && defined(_mm_free)
258  result = _aligned_realloc(ptr,new_size,16);
259  #else
260  result = generic_aligned_realloc(ptr,new_size,old_size);
261  #endif
262 #elif defined(_MSC_VER)
263  result = _aligned_realloc(ptr,new_size,16);
264 #else
265  result = handmade_aligned_realloc(ptr,new_size,old_size);
266 #endif
267 
268  if (!result && new_size)
269  throw_std_bad_alloc();
270 
271  return result;
272 }
273 
274 /*****************************************************************************
275 *** Implementation of conditionally aligned functions ***
276 *****************************************************************************/
277 
281 template<bool Align> inline void* conditional_aligned_malloc(size_t size)
282 {
283  return aligned_malloc(size);
284 }
285 
286 template<> inline void* conditional_aligned_malloc<false>(size_t size)
287 {
288  check_that_malloc_is_allowed();
289 
290  void *result = std::malloc(size);
291  if(!result && size)
292  throw_std_bad_alloc();
293  return result;
294 }
295 
297 template<bool Align> inline void conditional_aligned_free(void *ptr)
298 {
299  aligned_free(ptr);
300 }
301 
302 template<> inline void conditional_aligned_free<false>(void *ptr)
303 {
304  std::free(ptr);
305 }
306 
307 template<bool Align> inline void* conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size)
308 {
309  return aligned_realloc(ptr, new_size, old_size);
310 }
311 
312 template<> inline void* conditional_aligned_realloc<false>(void* ptr, size_t new_size, size_t)
313 {
314  return std::realloc(ptr, new_size);
315 }
316 
317 /*****************************************************************************
318 *** Construction/destruction of array elements ***
319 *****************************************************************************/
320 
324 template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size)
325 {
326  for (size_t i=0; i < size; ++i) ::new (ptr + i) T;
327  return ptr;
328 }
329 
333 template<typename T> inline void destruct_elements_of_array(T *ptr, size_t size)
334 {
335  // always destruct an array starting from the end.
336  if(ptr)
337  while(size) ptr[--size].~T();
338 }
339 
340 /*****************************************************************************
341 *** Implementation of aligned new/delete-like functions ***
342 *****************************************************************************/
343 
344 template<typename T>
345 EIGEN_ALWAYS_INLINE void check_size_for_overflow(size_t size)
346 {
347  if(size > size_t(-1) / sizeof(T))
348  throw_std_bad_alloc();
349 }
350 
355 template<typename T> inline T* aligned_new(size_t size)
356 {
357  check_size_for_overflow<T>(size);
358  T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
359  return construct_elements_of_array(result, size);
360 }
361 
362 template<typename T, bool Align> inline T* conditional_aligned_new(size_t size)
363 {
364  check_size_for_overflow<T>(size);
365  T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
366  return construct_elements_of_array(result, size);
367 }
368 
372 template<typename T> inline void aligned_delete(T *ptr, size_t size)
373 {
374  destruct_elements_of_array<T>(ptr, size);
375  aligned_free(ptr);
376 }
377 
381 template<typename T, bool Align> inline void conditional_aligned_delete(T *ptr, size_t size)
382 {
383  destruct_elements_of_array<T>(ptr, size);
384  conditional_aligned_free<Align>(ptr);
385 }
386 
387 template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pts, size_t new_size, size_t old_size)
388 {
389  check_size_for_overflow<T>(new_size);
390  check_size_for_overflow<T>(old_size);
391  if(new_size < old_size)
392  destruct_elements_of_array(pts+new_size, old_size-new_size);
393  T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
394  if(new_size > old_size)
395  construct_elements_of_array(result+old_size, new_size-old_size);
396  return result;
397 }
398 
399 
400 template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t size)
401 {
402  check_size_for_overflow<T>(size);
403  T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
404  if(NumTraits<T>::RequireInitialization)
405  construct_elements_of_array(result, size);
406  return result;
407 }
408 
409 template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, size_t new_size, size_t old_size)
410 {
411  check_size_for_overflow<T>(new_size);
412  check_size_for_overflow<T>(old_size);
413  if(NumTraits<T>::RequireInitialization && (new_size < old_size))
414  destruct_elements_of_array(pts+new_size, old_size-new_size);
415  T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
416  if(NumTraits<T>::RequireInitialization && (new_size > old_size))
417  construct_elements_of_array(result+old_size, new_size-old_size);
418  return result;
419 }
420 
421 template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *ptr, size_t size)
422 {
423  if(NumTraits<T>::RequireInitialization)
424  destruct_elements_of_array<T>(ptr, size);
425  conditional_aligned_free<Align>(ptr);
426 }
427 
428 /****************************************************************************/
429 
446 template<typename Scalar, typename Index>
447 static inline Index first_aligned(const Scalar* array, Index size)
448 {
449  typedef typename packet_traits<Scalar>::type Packet;
450  enum { PacketSize = packet_traits<Scalar>::size,
451  PacketAlignedMask = PacketSize-1
452  };
453 
454  if(PacketSize==1)
455  {
456  // Either there is no vectorization, or a packet consists of exactly 1 scalar so that all elements
457  // of the array have the same alignment.
458  return 0;
459  }
460  else if(size_t(array) & (sizeof(Scalar)-1))
461  {
462  // There is vectorization for this scalar type, but the array is not aligned to the size of a single scalar.
463  // Consequently, no element of the array is well aligned.
464  return size;
465  }
466  else
467  {
468  return std::min<Index>( (PacketSize - (Index((size_t(array)/sizeof(Scalar))) & PacketAlignedMask))
469  & PacketAlignedMask, size);
470  }
471 }
472 
473 
474 // std::copy is much slower than memcpy, so let's introduce a smart_copy which
475 // use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
476 template<typename T, bool UseMemcpy> struct smart_copy_helper;
477 
478 template<typename T> void smart_copy(const T* start, const T* end, T* target)
479 {
480  smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
481 }
482 
483 template<typename T> struct smart_copy_helper<T,true> {
484  static inline void run(const T* start, const T* end, T* target)
485  { memcpy(target, start, std::ptrdiff_t(end)-std::ptrdiff_t(start)); }
486 };
487 
488 template<typename T> struct smart_copy_helper<T,false> {
489  static inline void run(const T* start, const T* end, T* target)
490  { std::copy(start, end, target); }
491 };
492 
493 
494 /*****************************************************************************
495 *** Implementation of runtime stack allocation (falling back to malloc) ***
496 *****************************************************************************/
497 
498 // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
499 // to the appropriate stack allocation function
500 #ifndef EIGEN_ALLOCA
501  #if (defined __linux__)
502  #define EIGEN_ALLOCA alloca
503  #elif defined(_MSC_VER)
504  #define EIGEN_ALLOCA _alloca
505  #endif
506 #endif
507 
508 // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
509 // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
510 template<typename T> class aligned_stack_memory_handler
511 {
512  public:
513  /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
514  * Note that \a ptr can be 0 regardless of the other parameters.
515  * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization).
516  * In this case, the buffer elements will also be destructed when this handler will be destructed.
517  * Finally, if \a dealloc is true, then the pointer \a ptr is freed.
518  **/
519  aligned_stack_memory_handler(T* ptr, size_t size, bool dealloc)
520  : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
521  {
522  if(NumTraits<T>::RequireInitialization && m_ptr)
523  Eigen::internal::construct_elements_of_array(m_ptr, size);
524  }
525  ~aligned_stack_memory_handler()
526  {
527  if(NumTraits<T>::RequireInitialization && m_ptr)
528  Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
529  if(m_deallocate)
530  Eigen::internal::aligned_free(m_ptr);
531  }
532  protected:
533  T* m_ptr;
534  size_t m_size;
535  bool m_deallocate;
536 };
537 
538 } // end namespace internal
539 
555 #ifdef EIGEN_ALLOCA
556 
557  #ifdef __arm__
558  #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+16)) & ~(size_t(15))) + 16)
559  #else
560  #define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA
561  #endif
562 
563  #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
564  Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
565  TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
566  : reinterpret_cast<TYPE*>( \
567  (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
568  : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \
569  Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
570 
571 #else
572 
573  #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
574  Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
575  TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \
576  Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
577 
578 #endif
579 
580 
581 /*****************************************************************************
582 *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] ***
583 *****************************************************************************/
584 
585 #if EIGEN_ALIGN
586  #ifdef EIGEN_EXCEPTIONS
587  #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
588  void* operator new(size_t size, const std::nothrow_t&) throw() { \
589  try { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
590  catch (...) { return 0; } \
591  return 0; \
592  }
593  #else
594  #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
595  void* operator new(size_t size, const std::nothrow_t&) throw() { \
596  return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
597  }
598  #endif
599 
600  #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
601  void *operator new(size_t size) { \
602  return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
603  } \
604  void *operator new[](size_t size) { \
605  return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
606  } \
607  void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
608  void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
609  /* in-place new and delete. since (at least afaik) there is no actual */ \
610  /* memory allocated we can safely let the default implementation handle */ \
611  /* this particular case. */ \
612  static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \
613  void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \
614  /* nothrow-new (returns zero instead of std::bad_alloc) */ \
615  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
616  void operator delete(void *ptr, const std::nothrow_t&) throw() { \
617  Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
618  } \
619  typedef void eigen_aligned_operator_new_marker_type;
620 #else
621  #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
622 #endif
623 
624 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
625 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
626  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0)))
627 
628 /****************************************************************************/
629 
646 template<class T>
648 {
649 public:
650  typedef size_t size_type;
651  typedef std::ptrdiff_t difference_type;
652  typedef T* pointer;
653  typedef const T* const_pointer;
654  typedef T& reference;
655  typedef const T& const_reference;
656  typedef T value_type;
657 
658  template<class U>
659  struct rebind
660  {
661  typedef aligned_allocator<U> other;
662  };
663 
664  pointer address( reference value ) const
665  {
666  return &value;
667  }
668 
669  const_pointer address( const_reference value ) const
670  {
671  return &value;
672  }
673 
675  {
676  }
677 
679  {
680  }
681 
682  template<class U>
684  {
685  }
686 
688  {
689  }
690 
691  size_type max_size() const
692  {
693  return (std::numeric_limits<size_type>::max)();
694  }
695 
696  pointer allocate( size_type num, const void* hint = 0 )
697  {
698  EIGEN_UNUSED_VARIABLE(hint);
699  internal::check_size_for_overflow<T>(num);
700  return static_cast<pointer>( internal::aligned_malloc( num * sizeof(T) ) );
701  }
702 
703  void construct( pointer p, const T& value )
704  {
705  ::new( p ) T( value );
706  }
707 
708  // Support for c++11
709 #if (__cplusplus >= 201103L)
710  template<typename... Args>
711  void construct(pointer p, Args&&... args)
712  {
713  ::new(p) T(std::forward<Args>(args)...);
714  }
715 #endif
716 
717  void destroy( pointer p )
718  {
719  p->~T();
720  }
721 
722  void deallocate( pointer p, size_type /*num*/ )
723  {
724  internal::aligned_free( p );
725  }
726 
727  bool operator!=(const aligned_allocator<T>& ) const
728  { return false; }
729 
730  bool operator==(const aligned_allocator<T>& ) const
731  { return true; }
732 };
733 
734 //---------- Cache sizes ----------
735 
736 #if !defined(EIGEN_NO_CPUID)
737 # if defined(__GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
738 # if defined(__PIC__) && defined(__i386__)
739  // Case for x86 with PIC
740 # define EIGEN_CPUID(abcd,func,id) \
741  __asm__ __volatile__ ("xchgl %%ebx, %%esi;cpuid; xchgl %%ebx,%%esi": "=a" (abcd[0]), "=S" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
742 # else
743  // Case for x86_64 or x86 w/o PIC
744 # define EIGEN_CPUID(abcd,func,id) \
745  __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id) );
746 # endif
747 # elif defined(_MSC_VER)
748 # if (_MSC_VER > 1500) && ( defined(_M_IX86) || defined(_M_X64) )
749 # define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
750 # endif
751 # endif
752 #endif
753 
754 namespace internal {
755 
756 #ifdef EIGEN_CPUID
757 
758 inline bool cpuid_is_vendor(int abcd[4], const char* vendor)
759 {
760  return abcd[1]==(reinterpret_cast<const int*>(vendor))[0] && abcd[3]==(reinterpret_cast<const int*>(vendor))[1] && abcd[2]==(reinterpret_cast<const int*>(vendor))[2];
761 }
762 
763 inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
764 {
765  int abcd[4];
766  l1 = l2 = l3 = 0;
767  int cache_id = 0;
768  int cache_type = 0;
769  do {
770  abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
771  EIGEN_CPUID(abcd,0x4,cache_id);
772  cache_type = (abcd[0] & 0x0F) >> 0;
773  if(cache_type==1||cache_type==3) // data or unified cache
774  {
775  int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5]
776  int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
777  int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
778  int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0]
779  int sets = (abcd[2]); // C[31:0]
780 
781  int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
782 
783  switch(cache_level)
784  {
785  case 1: l1 = cache_size; break;
786  case 2: l2 = cache_size; break;
787  case 3: l3 = cache_size; break;
788  default: break;
789  }
790  }
791  cache_id++;
792  } while(cache_type>0 && cache_id<16);
793 }
794 
795 inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
796 {
797  int abcd[4];
798  abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
799  l1 = l2 = l3 = 0;
800  EIGEN_CPUID(abcd,0x00000002,0);
801  unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
802  bool check_for_p2_core2 = false;
803  for(int i=0; i<14; ++i)
804  {
805  switch(bytes[i])
806  {
807  case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines
808  case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines
809  case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines
810  case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
811  case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
812  case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines
813  case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines
814  case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
815  case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
816  case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
817  case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
818  case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
819  case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
820  case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
821  case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
822  case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
823  case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
824  case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
825  case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
826  case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
827  case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
828  case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
829  case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core)
830  case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
831  case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
832  case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
833  case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
834  case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
835  case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
836  case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
837  case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
838  case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
839  case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
840  case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
841  case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
842  case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
843  case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
844  case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
845  case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
846  case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
847  case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
848  case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
849  case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
850  case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
851  case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
852  case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
853  case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
854  case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
855  case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
856  case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
857  case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
858  case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
859  case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
860  case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
861  case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
862  case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
863  case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
864 
865  default: break;
866  }
867  }
868  if(check_for_p2_core2 && l2 == l3)
869  l3 = 0;
870  l1 *= 1024;
871  l2 *= 1024;
872  l3 *= 1024;
873 }
874 
875 inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
876 {
877  if(max_std_funcs>=4)
878  queryCacheSizes_intel_direct(l1,l2,l3);
879  else
880  queryCacheSizes_intel_codes(l1,l2,l3);
881 }
882 
883 inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
884 {
885  int abcd[4];
886  abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
887  EIGEN_CPUID(abcd,0x80000005,0);
888  l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
889  abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
890  EIGEN_CPUID(abcd,0x80000006,0);
891  l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
892  l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
893 }
894 #endif
895 
898 inline void queryCacheSizes(int& l1, int& l2, int& l3)
899 {
900  #ifdef EIGEN_CPUID
901  int abcd[4];
902 
903  // identify the CPU vendor
904  EIGEN_CPUID(abcd,0x0,0);
905  int max_std_funcs = abcd[1];
906  if(cpuid_is_vendor(abcd,"GenuineIntel"))
907  queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
908  else if(cpuid_is_vendor(abcd,"AuthenticAMD") || cpuid_is_vendor(abcd,"AMDisbetter!"))
909  queryCacheSizes_amd(l1,l2,l3);
910  else
911  // by default let's use Intel's API
912  queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
913 
914  // here is the list of other vendors:
915 // ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
916 // ||cpuid_is_vendor(abcd,"CyrixInstead")
917 // ||cpuid_is_vendor(abcd,"CentaurHauls")
918 // ||cpuid_is_vendor(abcd,"GenuineTMx86")
919 // ||cpuid_is_vendor(abcd,"TransmetaCPU")
920 // ||cpuid_is_vendor(abcd,"RiseRiseRise")
921 // ||cpuid_is_vendor(abcd,"Geode by NSC")
922 // ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
923 // ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
924 // ||cpuid_is_vendor(abcd,"NexGenDriven")
925  #else
926  l1 = l2 = l3 = -1;
927  #endif
928 }
929 
932 inline int queryL1CacheSize()
933 {
934  int l1(-1), l2, l3;
935  queryCacheSizes(l1,l2,l3);
936  return l1;
937 }
938 
941 inline int queryTopLevelCacheSize()
942 {
943  int l1, l2(-1), l3(-1);
944  queryCacheSizes(l1,l2,l3);
945  return (std::max)(l2,l3);
946 }
947 
948 } // end namespace internal
949 
950 } // end namespace Eigen
951 
952 #endif // EIGEN_MEMORY_H