Expression of a selfadjoint matrix from a triangular part of a dense matrix. More...
#include <SelfAdjointView.h>
Public Types | |
enum | { Mode } |
enum | |
typedef TriangularBase < SelfAdjointView > | Base |
typedef internal::traits < SelfAdjointView< MatrixType, UpLo > >::DenseMatrixType | DenseMatrixType |
typedef DenseMatrixType | DenseType |
typedef Matrix< RealScalar, internal::traits< MatrixType > ::ColsAtCompileTime, 1 > | EigenvaluesReturnType |
typedef MatrixType::Index | Index |
typedef internal::traits < SelfAdjointView > ::MatrixTypeNested | MatrixTypeNested |
typedef internal::traits < SelfAdjointView > ::MatrixTypeNestedCleaned | MatrixTypeNestedCleaned |
typedef MatrixType::PlainObject | PlainObject |
typedef NumTraits< Scalar >::Real | RealScalar |
typedef internal::traits < SelfAdjointView >::Scalar | Scalar |
The type of coefficients in this matrix. | |
typedef internal::traits < SelfAdjointView< MatrixType, UpLo > >::StorageKind | StorageKind |
Public Member Functions | |
const MatrixTypeNestedCleaned & | _expression () const |
void | addTo (Dest &dst) const |
void | applyThisOnTheLeft (Dest &dst) const |
void | applyThisOnTheRight (Dest &dst) const |
Scalar | coeff (Index row, Index col) const |
Scalar | coeff (Index row, Index col) const |
Scalar & | coeffRef (Index row, Index col) |
Scalar & | coeffRef (Index row, Index col) |
Index | cols () const |
SelfAdjointView< MatrixType, UpLo > & | const_cast_derived () const |
const SelfAdjointView < MatrixType, UpLo > & | const_derived () const |
void | copyCoeff (Index row, Index col, Other &other) |
SelfAdjointView< MatrixType, UpLo > & | derived () |
const SelfAdjointView < MatrixType, UpLo > & | derived () const |
EigenvaluesReturnType | eigenvalues () const |
Computes the eigenvalues of a matrix. | |
void | evalTo (Dest &dst) const |
void | evalTo (MatrixBase< DenseDerived > &other) const |
void | evalToLazy (MatrixBase< DenseDerived > &other) const |
Index | innerStride () const |
const LDLT< PlainObject, UpLo > | ldlt () const |
const LLT< PlainObject, UpLo > | llt () const |
const MatrixTypeNestedCleaned & | nestedExpression () const |
MatrixTypeNestedCleaned & | nestedExpression () |
Scalar | operator() (Index row, Index col) const |
Scalar & | operator() (Index row, Index col) |
template<typename OtherDerived > | |
SelfadjointProductMatrix < MatrixType, Mode, false, OtherDerived, 0, OtherDerived::IsVectorAtCompileTime > | operator* (const MatrixBase< OtherDerived > &rhs) const |
RealScalar | operatorNorm () const |
Computes the L2 operator norm. | |
Index | outerStride () const |
template<typename DerivedU , typename DerivedV > | |
SelfAdjointView & | rankUpdate (const MatrixBase< DerivedU > &u, const MatrixBase< DerivedV > &v, Scalar alpha=Scalar(1)) |
template<typename DerivedU > | |
SelfAdjointView & | rankUpdate (const MatrixBase< DerivedU > &u, Scalar alpha=Scalar(1)) |
Index | rows () const |
SelfAdjointView (MatrixType &matrix) | |
Index | size () const |
void | subTo (Dest &dst) const |
DenseMatrixType | toDenseMatrix () const |
Protected Member Functions | |
void | check_coordinates (Index row, Index col) const |
void | check_coordinates_internal (Index, Index) const |
Protected Attributes | |
MatrixTypeNested | m_matrix |
Friends | |
template<typename OtherDerived > | |
SelfadjointProductMatrix < OtherDerived, 0, OtherDerived::IsVectorAtCompileTime, MatrixType, Mode, false > | operator* (const MatrixBase< OtherDerived > &lhs, const SelfAdjointView &rhs) |
Expression of a selfadjoint matrix from a triangular part of a dense matrix.
MatrixType | the type of the dense matrix storing the coefficients |
TriangularPart | can be either Lower or Upper |
This class is an expression of a sefladjoint matrix from a triangular part of a matrix with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() and most of the time this is the only way that it is used.
typedef TriangularBase<SelfAdjointView> Base |
|
inherited |
|
inherited |
typedef Matrix<RealScalar, internal::traits<MatrixType>::ColsAtCompileTime, 1> EigenvaluesReturnType |
Return type of eigenvalues()
typedef MatrixType::Index Index |
Reimplemented from TriangularBase< SelfAdjointView< MatrixType, UpLo > >.
typedef internal::traits<SelfAdjointView>::MatrixTypeNested MatrixTypeNested |
typedef internal::traits<SelfAdjointView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned |
typedef MatrixType::PlainObject PlainObject |
typedef NumTraits<Scalar>::Real RealScalar |
Real part of Scalar
typedef internal::traits<SelfAdjointView>::Scalar Scalar |
The type of coefficients in this matrix.
Reimplemented from TriangularBase< SelfAdjointView< MatrixType, UpLo > >.
|
inherited |
Reimplemented from EigenBase< SelfAdjointView< MatrixType, UpLo > >.
|
inherited |
|
inline |
|
inline |
|
inlineinherited |
|
inlineinherited |
|
inlineinherited |
References EigenBase< Derived >::derived().
References EigenBase< Derived >::derived().
|
inline |
Reimplemented from TriangularBase< SelfAdjointView< MatrixType, UpLo > >.
|
inlineinherited |
|
inlineinherited |
References EigenBase< Derived >::derived().
|
inlineinherited |
|
inlineinherited |
|
inline |
Computes the eigenvalues of a matrix.
This is defined in the Eigenvalues module.
This function computes the eigenvalues with the help of the SelfAdjointEigenSolver class. The eigenvalues are repeated according to their algebraic multiplicity, so there are as many eigenvalues as rows in the matrix.
Example:
Output:
The eigenvalues of the 3x3 matrix of ones are: -2.39e-16 8.66e-17 3
|
inlineinherited |
|
inherited |
Assigns a triangular or selfadjoint matrix to a dense matrix. If the matrix is triangular, the opposite part is set to zero.
|
inherited |
Assigns a triangular or selfadjoint matrix to a dense matrix. If the matrix is triangular, the opposite part is set to zero.
|
inline |
Reimplemented from TriangularBase< SelfAdjointView< MatrixType, UpLo > >.
|
inline |
This is defined in the Cholesky module.
*this
|
inline |
This is defined in the Cholesky module.
*this
|
inline |
|
inline |
|
inline |
Efficient self-adjoint matrix times vector/matrix product
|
inline |
Computes the L2 operator norm.
This is defined in the Eigenvalues module.
This function computes the L2 operator norm of a self-adjoint matrix. For a self-adjoint matrix, the operator norm is the largest eigenvalue.
The current implementation uses the eigenvalues of the matrix, as computed by eigenvalues(), to compute the operator norm of the matrix.
Example:
Output:
The operator norm of the 3x3 matrix of ones is 3
|
inline |
Reimplemented from TriangularBase< SelfAdjointView< MatrixType, UpLo > >.
SelfAdjointView< MatrixType, UpLo > & rankUpdate | ( | const MatrixBase< DerivedU > & | u, |
const MatrixBase< DerivedV > & | v, | ||
Scalar | alpha = Scalar(1) |
||
) |
Perform a symmetric rank 2 update of the selfadjoint matrix *this
:
*this
The vectors u and v
must be column vectors, however they can be a adjoint expression without any overhead. Only the meaningful triangular part of the matrix is updated, the rest is left unchanged.
References conj(), Eigen::Lower, Eigen::RowMajorBit, and Eigen::Upper.
SelfAdjointView< MatrixType, UpLo > & rankUpdate | ( | const MatrixBase< DerivedU > & | u, |
Scalar | alpha = Scalar(1) |
||
) |
Perform a symmetric rank K update of the selfadjoint matrix *this
: where u is a vector or matrix.
*this
Note that to perform you can simply call this function with u.adjoint().
|
inline |
Reimplemented from TriangularBase< SelfAdjointView< MatrixType, UpLo > >.
|
inlineinherited |
|
inlineinherited |
|
inlineinherited |
|
friend |
Efficient vector/matrix times self-adjoint matrix product
|
protected |