eCryptfs v0.2 Design Document

Michael A. Halcrow
August 25, 2006

Contents
1 Introduction 1
2 Threat Model 1
3 Functional Overview 2
3.1 VFSObjects 2
3.2 VFS Operations 3
3.21 Mount 3
322 FileOpen 3
323 PageRead 5
3.24 PageWrite oo 5
3.2.5 File Truncation 5
326 FileClose 5
4 Cryptographic Properties 6
4.1 Key Managemento 6
4.1.1 Passphrase Authentication Tokens 7
4.1.2 Public Key Authentication Tokens 8
4.2 Cryptographic Confidentiality Enforcement 8
4.3 File Format 10
4.3.1 Marker 12
4.4 Kernel-userspace Communication Protocol 12
4.5 Deployment Considerations 13
4.6 Cryptographic Summary 13

1 Introduction

This document details the design for eCryptfs'. eCryptfs is a POSIX-compliant
enterprise-class stacked cryptographic filesystem for Linux. It is derived from
Erez Zadok’s Cryptfs, implemented through the FiST framework for generating
stacked filesystems. eCryptfs stores cryptographic metadata in the header of

1To obtain eCryptfs, visit http://ecryptfs.sf.net

each file written, so that encrypted files can be copied between hosts; the file
will be decryptable with the proper key, and there is no need to keep track of
any additional information aside from what is already in the encrypted file itself.

eCryptfs is currently a native Linux filesystem included in the Linux -mm
tree (starting from 2.6.17). Mounting eCryptfs requires userspace helper appli-
cations to perform some key management tasks; the userspace components can
be obtained from the eCryptfs project web site.

The developers are implementing eCryptfs features on a staged basis. The
first stage (version 0.1) included mount-wide passphrase support and data con-
fidentiality enforcement. The second stage (version 0.2) includes mount-wide
public key support and data integrity verification. The third stage (version
0.3) will include per-file policy support. This document provides a technical
description of the eCryptfs filesystem release version 0.2.

Michael Halcrow has published two papers covering eCryptfs at the Ottawa
Linux Symposium (2004 and 2005)2. These papers provide a high-level overview
of eCryptfs, along with extensive discussion of various topics relating to filesys-
tem security in Linux.

2 Threat Model

eCryptfs protects data confidentiality in the event that an unauthorized agent
gains access to the data in a context that is outside the control of a trusted host
operating environment. Either a secret passphrase or the private component
of a public/private keypair predicates access to the unencrypted contents of
each individual file object. An agent without the passphrase secret or private
component of the public/private keypair associated with any given file (see
Section 4.1) should not be able to discern any strategic information about the
contents of any given encrypted file, aside from what can be deduced from the
file name, the file size, or other metadata associated with the file. It should be
about as difficult to attack an encrypted eCryptfs file as it is to attack a file
encrypted by GnuPG (using the same cipher, key, etc.).

No intermediate state of the file on disk should be more easily attacked than
the final state of the file on disk. In the event of a system error or power failure
during an eCryptfs operation, no partially written content should weaken the
file’s confidentiality, and the file’s integrity should still be verifiable. Attackers
should not be able to detect via a watermarking attack whether an eCryptfs
user is storing any particular plaintext. We assume that an attacker potentially
has access to every intermediate state of an encrypted file on secondary storage.

eCryptfs offers no additional access control functions other than what is
already implementable via standard POSIX file permissions, Mandatory Access
Control mechanisms (i.e., SE Linux), and so forth.

eCryptfs provides data integrity verification in the event that an unautho-
rized agent gains the ability to modify data in a context that is outside the

2See http://www.linuxsymposium.org/2006/proceedings.php. The eCryptfs paper is on
page 209 of the first of the two halves of the proceedings document.

control of a trusted host operating environment. Once the data has returned
to a trusted host operating environment, the user can verify that the file has
not been modified by an agent that does not possess at least one secret value
necessary to access the decrypted file contents. A user can also verify that a
file’s content was generated by a particular individual with a given private key.

3 Functional Overview

eCryptfs is a stacked filesystem that is implemented natively in the Linux kernel
VFS. Since eCryptfs is stacked, it does not write directly into a block device.
Instead, it mounts on top of a directory in a lower filesystem. Most any POSIX-
compliant filesystem can act as a lower filesystem; EXT2, EXT3, and JFS are
known to work with eCryptfs. Objects in the eCryptfs filesystem, including
inode, dentry, and file objects, correlate in a one-to-one basis with the objects
in the lower filesystem.

eCryptfs is derived from Cryptfs[2], which is part of the FiST framework
developed and maintained by Erez Zadok[3].

3.1 VFS Objects

eCryptfs maintains the reference between the objects in the eCryptfs filesystem
and the objects in the lower filesystem. The references to the lower filesystem ob-
jects are maintained from eCryptfs via (1) the file object’s private_data pointer,
(2) the inode object’s u.generic_ip pointer, (3) the dentry object’s d_fsdata
pointer, and (4) the superblock object’s s_fs_info pointer. The pointers for the
eCryptfs dentry, file, and superblock objects only reference the corresponding
lower filesystem objects.

The inode wu.generic_ip pointer references a data structure that contains
state information for cryptographic operations and a reference to the lower
inode object. The ecryptfs_crypt_stat structure is the inode cryptographic state
structure; the contents of this struct are given in Figure 1. eCryptfs fills in the
ecryptfs_crypt_stat struct from information stored in the header region of the
lower file (for existing files) or from the mount-wide policy (for newly created
files).

3.2 VFS Operations
3.2.1 Mount

At mount time, a helper application generates an authentication token corre-
lating either with a passphrase or with a public/prive keypair, depending on
options passed by the user. eCryptfs uses the keyring support in the Linux ker-
nel to store the authentication token in the user’s eCryptfs keyring. A mount
parameter contains the identifier for this authentication token. eCryptfs re-
trieves the authentication token from the eCryptfs keyring using this identifier.
It then uses the contents of the authentication token to set up the cryptographic

context for newly created files. It also uses the contents of the authentication
token to access the contents of previously created files.

3.2.2 File Open

The file format for the lower file is covered in this paper in Section 4.3.

When an existing file is opened in eCryptfs, eCryptfs opens the lower file
and reads in the header. The existence of an eCryptfs marker is verified, the
flags are parsed, and then the packet set is parsed.

Each packet in the packet set is matched (via the identifier) against an
existing authentication token from the user’s eCryptfs keyring. As soon as
eCryptfs finds a matching instantiated authentication token, it uses that token
to decrypt the encrypted file encryption key. If the token is a passphrase token,
eCryptfs generates the key that encrypts the file encryption key via the S2K
mechanism described in Section 3.6 of RFC 2440[1]. If the token is a public
key token, eCryptfs passes the encrypted file encryption key out to the eCryptfs
userspace daemon (See Section 4.4), which utilizes PKI subsystem to attempt
to decrypt the file encryption key. If eCryptfs cannot succeed in decrypting the
encrypted file encryption key, the open fails with a -EIO error code.

The header region may also contain root HMAC data packets and digital
signature packets. If an HMAC data packet is found, eCryptfs associates the
HMAC tree with the inode. If a digital signature packet is found, eCryptfs
verifies that signature against the root HMAC node of the HMAC tree before
continuing. If the signature cannot be verified, eCryptfs returns -EIO on the
open request.

eCryptfs generates a root initialization vector by taking the MD5 sum of the
file encryption key; the root IV is the first N bytes of that MD5 sum, where N
is the number of bytes constituting an initialization vector for the cipher being
used for the file.

While processing the header information, eCryptfs modifies the ecryptfs_crypt_stat
struct associated with the eCryptfs inode object. The modifications to the
ecryptfs_crypt_stat structure include:

e Setting various flags, such as ECRYPTFS_ENCRYPTED.
e Writing the inode file encryption key.

e Writing the cipher name.

e Writing the root initialization vector.

e Writing the HMAC tree.

e Filling in the array of authentication token signatures for the authentica-
tion tokens associated with the inode.

e Setting the number of header pages.

eCryptfs later uses this information when performing VFS operations.

When eCryptfs is opening a file that does not yet exist, it initializes the
ecryptfs_crypt_stat structure according to the mount-wide policy. eCryptfs uses
this information to generate and write the file header prior to any further VFS
operations:

e The file is encrypted.
e The selected cipher.
e The root IV is randomly generated.

e The only authentication token associated with the file is the mount-wide
passphrase or public keypair specified at mount time.

e The HMAC tree and HMAC signature (if enabled at mount).

e The header size, which is equal to the kernel’s configured page size or 8192
bytes, which ever is greater.

Once the ecryptfs_crypt_stat structure is filled in, eCryptfs initializes the
kernel crypto API cryptographic context for the inode. By default, the crypto-
graphic context is initialized in CBC mode and is used in all subsequent page
reads and writes.

3.2.3 Page Read

Reads can only occur on an open file, and a file can only be opened if an
applicable authentication token exists in the user’s eCryptfs keyring at the time
that the VFS syscall that effectively opens the file takes place.

On a page read, the eCryptfs page index is interpolated into the correspond-
ing lower page index, taking into account the header pages and any HMAC pages
that may exist in the file (Section 4.3 details the lower file format). eCryptfs
derives the initialization vector for the given page index by concatenating the
ASCII text representation of the page offset to the root initialization vector
bytes for the inode and taking the MD5 sum of that string.

eCryptfs then reads in the encrypted page from the lower file and decrypts
the page. eCryptfs first sets up the cryptographic structures to perform the
decryption. It then makes the call to the kernel crypto API to perform the
decryption for the page. This decrypted page is what gets returned via the VFS
syscall to the userspace application that made the request.

If the file header contained an HMAC data packet at the time that the file
was opened, eCryptfs verifies the HMAC for that page prior to returning the
data. If the calculated HMAC value does not match the stored HMAC value,
eCryptfs returns a -EIO from the VFS page read call. Section ?7 covers the
HMAC processes in more detail.

3.2.4 Page Write

On a page write, eCryptfs performs a similar set of operations that occur on a
page read (see Section 3.2.3), only the data is encrypted rather than decrypted.
The lower index is interpolated, the initialization vector is derived, the page
is encrypted with the file encryption key via the kernel crypto API, and the
encrypted page is written out to the lower file.

If HMAC verification was enabled as a mount paramter, then... TODO

3.2.5 File Truncation

When a file is either truncated to a smaller size or extended to a larger size,
eCryptfs determines whether any truncation needs to occur on the lower file;
any truncation needed on the lower file will grow or shrink the lower file by a
multiple of an entire page. eCryptfs then updates the filesize field (the first 8
bytes of the lower file) accordingly.

3.2.6 File Close

In eCryptfs releases through 0.2, eCryptfs never changes the authentication
packet set in the header after it initially creates the file. When operating with
HMAC verification enabled, eCryptfs maintains two root HMAC value slots in
the header.

When operating with HMAC verification enabled and when writing an extent
out to disk, eCryptfs first calculates all of the intermediate HMAC values in
the 2nd and 1st level HMAC extents, up to the new root HMAC value. Before
writing out the newly encrypted extent, eCryptfs first writes out the new HMAC
value into the least recently written root HMAC slot. For efficiency reasons,
eCryptfs may forestall writing the 1st and 2nd level HMAC extents out to disk
with the updated values during regular data read/write operations until the file
is closed.

When a file is no longer being accessed, the kernel VFS frees its associated
file, dentry, and inode objects according to the standard resource deallocation
process in the VFS.

4 Cryptographic Properties

4.1 Key Management

RFC 2440 (OpenPGP) heavily influences the design of eCryptfs, although de-
viations from the RFC are necessary to support random access in a filesystem.
eCryptfs stores RFC 2440-compatible packets in the header for each file. Valid
packets include Tag 3 (passphrase) and Tag 11 (literal) pairs or Tag 1 (public
key) and Tag 11 (literal) pairs. Each file has a unique file encryption key asso-
ciated with it; the file encryption key acts as a symmetric key to encrypt and

Name Type Description
lock Semaphore Mutex for crypt stat object
root_iv Byte Array The root initialization vector
iv Byte Array The current cached initialization
vector
key Byte Array The file encryption key
cipher Byte Array Kernel crypto API cipher descrip-
tion string
keysig Byte Array Signature for authentication to-
ken associated with the inode
flags Bit vector Status flags (encrypted, etc.)
iv_bytes Integer Length of IV
num_header_pages Integer Number of header pages for lower
file
extent_size Integer Number of bytes in an extent
key _size_bits Integer Length of file encryption key in
bits
tfm Crypto API Context | Bulk data crypto context
md5_tfm Crypto API Context | MD5 crypto context

Figure 1: Contents of cryptographic stat structure (in kernel) for eCryptfs inode

decrypt the file contents3. eCryptfs generates that file encryption key via the
Linux kernel get_random_bytes() function call at the time that a file is created.
The length of the file encryption key is dependent upon the cipher being used.
By default, eCryptfs selects AES-128; the user can select any cipher supported
by the kernel crypto API.

Active eCryptfs inodes contain cryptographic contexts, with one unique con-
text per unique inode. This context exists in a data structure that contains such
things as the file encryption key, the cipher name, the root initialization vector,
signatures of authentication tokens associated with the inode, various flags in-
dicating inode cryptographic properties, pointers to crypto API structs, and so
forth. The ecryptfs_crypt_stat struct definition is in the ecryptfs_kernel.h header
file and is comprised of the elements in Figure 1.

For each authentication token specified by the policy, the file encryption key
(as returned from get_random_bytes()) is encrypted by the key associated with
the authentication token and stored in the first extent of the lower (encrypted)
file. For releases 0.1 and 0.2 of eCryptfs only one authentication token is sup-
ported: the mount-wide policy. The key used to encrypt the file encryption key,
that is the key associated with the authentication token, is called the file key
encryption key.

The type of the authentication token indicates the encryption mechanism for

3Note that the file encryption key is analogous to the session key referenced in RFC 2440

that key. eCryptfs 0.2 supports two types of authentication tokens: passphrase
authentication tokens (section 4.1.1), and public key authentication tokens (sec-
tion 4.1.2). All authentication tokens are generated by the eCryptfs mount
helper and inserted into the user’s eCryptfs keyring (a component of the Linux
kernel keyring service), prior to mounting eCryptfs.

When eCryptfs opens an encrypted file, it attempts to match the authenti-
cation token contained in the header of the file against the instantiated authen-
tication token for the mount point. If the authentication token for the mount
point matches the authentication token in the header of the file, then it uses
that instantiated authentication token to decrypt the file encryption key that is
used to encrypt and decrypt the file contents on page write and read operations.

4.1.1 Passphrase Authentication Tokens

The file key encryption key associated with a passphrase authentication token
is the result of a conversion of the passphrase into a key. This conversion
follows the S2K process as described in RFC 2440, in that the passphrase is
concatenated with a salt; that data block is then iteratively MD5-hashed 65,536
times to generate the key that encrypts the file encryption key. The signature
for this type of token is the 16-byte hexadecimal character representation of the
first 8 bytes of the MDb5 sum of the file key encryption key.

4.1.2 Public Key Authentication Tokens

Public key authentication tokens store the public key and a “hint” about the
PKI where the key can be found. The public/private key pair is used to encrypt
and decrypt the file encryption key. The signature for this type of token is
the MD5 hash of the public key; the public key is used to ensure that the
authentication token (and therefore the file) is not linked to a specific PKI.
However, in order to facilitate reasonable search times for the key pair, a hint is
stored in the authentication token about where the key was last known to be.

eCryptfs may have access to any number of Public Key Infrastructures (PKI)
via a pluggable module interface. Keys in individual PKI systems generally
have unique identifiers within those PKI systems. The OpenSSL-specific key
identifier is the path to a file on disk containing an RSA public/private keypair.
The GnuPG-specific key identifier is the 8-digit hexadecimal key id.

4.2 Cryptographic Confidentiality Enforcement

eCryptfs enforces the confidentiality of the data that is outside the control of
the host operating environment by encrypting the contents of the file objects
containing the data. eCryptfs utilizes the Linux kernel cryptographic API to
perform the encryption and decryption of the contents of its files over subregions
known as extents.

The length of each extent is fixed to 4096 bytes - eCryptfs requires its host
Linux kernel to be configured with its page size of at least extent size; this

e T " s

Header | 1st Level [2nd Level | Encrypted | Encrypted 2nd Level | Encrypted | Encrypted 1st Level | 2nd Level
(including | HMAC HMAC Data Data HMAC Data Data HMAC HMAC
root Values | Values | Extent | Extent Values | Extent | Extent Values | Values

HMAC ove | | | | |

Figure 2: File format with HMAC verification enabled.

ensures that a page is collection of extents. Each file encrypted by eCryptfs
contains a header with a size of either the host kernel’s page size, or of two
extents (8192 bytes), which ever is larger. This requirement for the header size
being 8192 bytes at a minimum is to ensure page alignment when transitioning
a file between a 4k page size system and 8k page size system.

eCryptfs operates most efficiently when there is page alignment between
eCryptfs and the lower file system. Page alignment is the state where a page of
data in eCryptfs correlates a single page containing the appropriate extents in
the lower file system. Should page alignment be disrupted, eCryptfs transpar-
ently maps the page indices and offsets between the eCryptfs file and the lower
file on read and write operations.

Each extent is independently encrypted. eCryptfs derives the initialization
vector (IV) for each extent from a root initialization vector that is unique for
each file. eCryptfs offers an HMAC verification policy option, which can be
enabled via a mount parameter. This enablement causes eCryptfs to associate
the HMAC verification policy with any new files that are created; if the option
is not enabled, HMAC verification is ignored. Files previously created maintain
their own policy, and are unaffected by this mount option.

eCryptfs calculates HMAC values over a fixed number L of extents and
stores those values in headers preceeding the groups of extents; these are the the
2nd level HMAC headers. eCryptfs also calculates HMAC values over the 2nd
level HMAC headers and stores them in the 1st level HMAC headers. Finally,
eCryptfs calculates a root HMAC value over all of the 1st level HMAC extents
and stores that root HMAC value in the header. eCryptfs stores t HMAC values
per HMAC header, where x = %. The HMAC header size is the
same as the eCryptfs header size, 8192 bytes or kernel page size, which ever is
larger. The 2nd level HMAC headers are followed by x * L extents of file data
content; the set of all of the 2nd level HMAC headers followed by data extents
for any given 1st level HMAC header is known as an HMAC group. The 1st
level HMAC header precede the first 2nd level HMAC header in each HMAC
group. Figure 2 illustrates the file format with HMAC verification enabled.

Figure 3 gives a tree representation of the HMAC structure.

When a data extent is written, eCryptfs must update the appropriate HMAC
values in order to maintain consistency. On write, each HMAC node lying on
the path from the root HMAC to the 2nd level HMAC for the modified extent
must be regenerated. Figure 4 illustrates this operation.

When eCryptfs initially opens an eCryptfs file, it first validates all of the

Root
HMAC

1st Level 1st Level
HMAC Extent HMAC Extent
2nd Level 2nd Level 2nd Level 2nd Level
HMAC HMAC - HMAC HMAC
Extent Extent Extent Extent

AWAAWAAWEAWAAWA!

Data Extents

Figure 3: Simplified HMAC tree. Each 1st and 2nd level HMAC node contains
one 4096-byte extent worth of HMAC values.

1st level HMAC extents in the file against the root HMAC value in the header.
On subsequent reads, eCryptfs validates each extent against the corresponding
HMAC value in the 2nd level HMAC extent, and then eCryptfs validates the 2nd
level HMAC extent against the corresponding HMAC value in the previously-
validated 1st level HMAC extent.

4.3 File Format

The packet set consists of a combination of the following packets:

e Tag 1 followed by either 1 or 2 Tag 11 identifiers
e Tag 3 followed by a single Tag 11 identifier
e Tag 11 containing HMAC data

e Tag 2 containing digital signature on root HMAC

The Tag 1 and Tag 3 packets store the encrypted file encryption key and
adhere to the specification given in RFC 2440. In release 0.2, eCryptfs will
only generate either a Tag 1 packet or a Tag 3 packet, depending on the mount
options. The Tag 11 root HMAC packet is optional, based on a mount parameter
to enable integrity verification. A Tag 2 packet can only follow a Tag 11 root
HMAC packet. By default, Tag 2 packets are generated whenever Tag 11 packets
are generated, unless explicitly disabled by a mount parameter.

10

Root

HMAC

P IRy T :
: :
' 1st Level 1st Level !
H HMAC Extent HMAC Extent '
' H
' 1]

A o N

: A : \ 2

' '

H 2nd Level 2nd Level H 2nd Level 2nd Level

H HMAC HMAC - H HMAC HMAC

' Extent Extent H Extent Extent

: :

H '

AR SRR R VSRR AP R WOV SRR R W .

\ 4 \ 4 Y \ 4 Y \ 4
Data Extents

Figure 4: HMAC update. When a single data extent is modified, eCryptfs
recalculates the corresponding HMAC value in the 2nd level HMAC extent. The
1st level HMAC extent covering that 2nd level HMAC extent is also recalculated.
Finally, the root RHMC is recalculated across all of the 1st level HMAC extents.
If HMAC values occupy 16 bytes each and if each 2nd level HMAC value covers
a single data extent, then there will be one 1st level HMAC extent for every 256
megabytes of data in any given file.

The first 26 bytes consist of the file size, the eCryptfs marker, a set of status
flags, and header extent size information. From byte 26 on, only RFC 2440-
compliant packets are valid. All values more than a single byte are written out
in network byte order.

Format version: 2

HMAC disabled:
Header Extent:

Octets 0-7: Unencrypted file size

Octets 8-15: eCryptfs special marker

Octets 16-19: Flags

Octet 16: File format version number (between O and 255)
Octets 17-18: Reserved

Octet 19: Bit 1 (1sb): HMAC? (=0)

Bit 2: Encrypted?
Bits 3-8: Reserved

Octets 20-23: Header extent size
Octets 24-25: Number of header extents at front of file
Octet 26: Begin RFC 2440 authentication token packet set

(Size is 8192 octets or page size of host one which file was
created, whichever is greater)
Data Extent 0:

11

Lower data (CBC encrypted)
Data Extent 1:
Lower data (CBC encrypted)

HMAC enabled:
Header Extent:
As above; packet set includes Tag 11 root HMAC
HMAC Level 1 Header [new HMAC group]
Covers ((header extent size / HMAC value size) = N) HMAC Level 2 headers
HMAC Level 2 Header
Covers N*L Data extents, where L is the number of extents per HMAC value
Data Extent 0:
Lower data (CBC encrypted)
Data Extent 1:
Lower data (CBC encrypted)

HMAC Level 2 Header
Data Extent N*L
Data Extent N*L+1

HMAC Level 2 Header
Data Extent 2N*L
Data Extent 2N*L+1

HMAC Level 1 Header [new HMAC groupl
HMAC Level 2 Header

Data Extent N*NxL

Data Extent N*NxL+1

In the RFC 2440 packet set, each Tag 3 (passphrase) packet is immediately
followed by a Tag 11 (literal) packet containing the identifier for the passphrase
in the Tag 3 packet. This identifier is formed by hashing the key that is generated
from the passphrase in the String-to-Key (S2K) operation.

Each Tag 1 (public key) packet is immediately followed by a Tag 11 (literal)
packet containing the global key identifier. Optionally, one additional Tag 11
packet containing a “hint” string may follow. The format of the hint string is
pki_id:hint, where pki_id is a unique PKI module identifier and hint contains a
suggestion to the PKI how the key may be found.

4.3.1 Marker

The eCryptfs marker for each file is formed by generating a 32-bit random
number (X) and writing it immediately after the 8-byte file size at the head of
the lower file. The hexadecimal value? 0x3¢81b7f5 is XOR’d with the random
value (Y = 023c¢81b7f5 ® X), and the result is written immediately after the
random number.

4.4 Kernel-userspace Communication Protocol

The kernel code sends requests to the userspace code to perform public key
operations. The protocol for this communication is patterned after RFC 2440
packets that are written to each file header (see Section 4 of RFC 2440).

4This value is arbitrary.

12

Public Key Decryption Request (tag 64)
Content tag (64) (1 octet)
Global key identifier size (1, 2, or 5 octets)
Global key identifier
Encrypted file encryption key size (1, 2, or 5 octets)
Encrypted file encryption key

Public Key Decryption Reply (tag 65)
Content tag (65) (1 octet)
Status indicator: Zero on success, non-zero on error (1 octet)
If status is zero:
File encryption key size (1, 2, or 5 octets)
File encryption key

Public Key Encryption Request (tag 66)
Content tag (66) (1 octet)
Global key identifier size (1, 2, or 5 octets)
Global key identifier
File encryption key size (1, 2, or 5 octets)
File encryption key

Public Key Encryption Reply (tag 67)
Content tag (67) (1 octet)
Status indicator: Zero on success, non-zero on error (1 octet)
If status is zero:
Encrypted file encryption key size (1, 2, or 5 octets)
Encrypted file encryption key

The global key identifier is a string used as the “signature” of the authentica-
tion token key object in the keyring. This authentication token object contains
additional information necessary for the userspace code to complete the opera-
tion.

eCryptfs manages a netlink socket between the kernel module and the userspace
daemon. When the kernel would like to request a public key operation from the
userspace daemon on a file open event, the kernel module allocates from a pool
of free netlink message context objects. It then constructs the request packet
and sends it down to the userspace daemon, after which the process calls the
scheduler. The daemon wakes up and parses the message, directing the request
to the appropriate PKI module. Once the request has been processed, the dae-
mon sends a reply packet via the netlink socket. A kernel thread receives the
reply, associates the received packet with its netlink message context object,
and wakes up the process that originally sent the request out to userspace. The
process parses the received packet from the netlink message and continues with
the file open operation.

4.5 Deployment Considerations

eCryptfs is concerned with protecting the confidentiality of data on secondary
storage that is outside the control of a trusted host environment. eCryptfs op-
erates on the VFS layer, and so it will not encrypt data written to the swap
secondary storage. It is recommended that the user employ dm-crypt® to en-
crypt the swap space on a machine where sensitive data may be loaded into
memory at some point.

5See http://wuw.saout.de/misc/dm-crypt/

13

Selection of a passphrase should follow standard strong passphrase practices.
eCryptfs ships with various helper applications in the misc/ directory; use what-
ever tools are convenient for you to generate a strong passphrase string. The
user should store the string in a secure place and use that as the passphrase
when prompted.

4.6 Cryptographic Summary

The key design components for eCryptfs release 0.2 are:

e Header page contains plaintext file size, eCryptfs marker, version, flags,
header metadata, and RFC 2440 packets.

e Either a mount-wide passphrase authentication token or a mount-wide
public key authentication token is stored in the user’s eCryptfs keyring.

e Each file has a unique randomly-generate file encryption key. The file
encryption key is encrypted and stored in the file header as a Tag 3 packet
or as a Tag 1 packet as defined by RFC 2440.

e The passphrase authentication token identifier, which is stored in the Tag
11 packet following the Tag 3 packet, is formed by taking the hash of
the key that encrypts the file encryption key. The public key authenti-
cation token identifier is the MD5 hash of the public component of the
public/private keypair.

— When using a passphrase authentication token, the key that encrypts
the file encryption key is generated according to the S2K mechanism
described in RFC 2440.

e The public key authentication token identifier is the MD5 hash of the
public exponent of the public/private keypair.

e Data extents, 4096 bytes in length, are encrypted with the selected cipher
(CBC mode by default).

e Each file’s root initialization vector is the MD5 sum of the file encryption
key for the file.

e The initialization vector for each extent is generated by concatenating the
root IV and the ASCII representation of the extent index and taking the
MD5 sum of that string.

References

[1] J. Callas, L. Donnerhacke, H. Finney, R. Thayer, “OpenPGP Message For-
mat,” RFC 2440, Internet Engineering Task Force, Network Working Group,
Nov. 1998, http://www.ietf.org/rfc/rfc2440.txt; accessed March 13,
2006.

14

[2] E. Zadok, I. Badulescu, and A. Shender. Cryptfs: A Stackable Vnode Level
Encryption File System. Technical Report CUCS-021-98. Computer Science
Department, Columbia University, 1998.

[3] E. Zadok and J. Nieh. FiST: A Language for Stackable File Systems. To
appear in USENIX Conf. Proc., June 2000.

15

