dune-localfunctions  2.2.0
hierarchicalsimplexp2localinterpolation.hh
Go to the documentation of this file.
00001 // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
00002 // vi: set ts=4 sw=2 et sts=2:
00003 #ifndef DUNE_HIERARCHICAL_SIMPLEX_P2_LOCALINTERPOLATION_HH
00004 #define DUNE_HIERARCHICAL_SIMPLEX_P2_LOCALINTERPOLATION_HH
00005 
00006 #include <vector>
00007 
00008 namespace Dune 
00009 {
00013   template<class LB>
00014   class HierarchicalSimplexP2LocalInterpolation 
00015   {
00016   public:
00017 
00018     template<typename F, typename C>
00019     void interpolate (const F& f, std::vector<C>& out) const
00020     {
00021       typename LB::Traits::DomainType x;
00022       typename LB::Traits::RangeType y;
00023 
00024       dune_static_assert(LB::Traits::dimDomain <=3, "LocalInterpolation for HierarchicalSimplexP2 finite elements"
00025           " is only implemented for dimDomain <=3!");
00026 
00027       switch ( int(LB::Traits::dimDomain))  {
00028 
00029         case 1:
00030 
00031           out.resize(3);
00032 
00033           // First: the two vertex dofs
00034           x[0] = 0.0;   f.evaluate(x, y);    out[0] = y;
00035           x[0] = 1.0;   f.evaluate(x, y);    out[2] = y;
00036 
00037           // Then: the edge dof
00038           x[0] = 0.5;   f.evaluate(x, y);
00039           out[1] = y - 0.5*(out[0] + out[2]);
00040 
00041           break;
00042 
00043 
00044         case 2:
00045 
00046           out.resize(6);
00047 
00048           // First: the three vertex dofs
00049           x[0] = 0.0;    x[1] = 0.0;      f.evaluate(x, y);    out[0] = y;
00050           x[0] = 1.0;    x[1] = 0.0;      f.evaluate(x, y);    out[2] = y;
00051           x[0] = 0.0;    x[1] = 1.0;      f.evaluate(x, y);    out[5] = y;
00052 
00053           // Then: the three edge dofs
00054           x[0] = 0.5;    x[1] = 0.0;      f.evaluate(x, y);
00055           out[1] = y - 0.5*(out[0] + out[2]);
00056 
00057           x[0] = 0.0;    x[1] = 0.5;      f.evaluate(x, y);
00058           out[3] = y - 0.5*(out[0] + out[5]);
00059 
00060           x[0] = 0.5;    x[1] = 0.5;      f.evaluate(x, y);
00061           out[4] = y - 0.5*(out[2] + out[5]);
00062 
00063           break;
00064 
00065         case 3:
00066 
00067           out.resize(10);
00068 
00069           // First: the four vertex dofs
00070           x[0] = 0.0;    x[1] = 0.0;     x[2] = 0.0;    f.evaluate(x, y);    out[0] = y;
00071           x[0] = 1.0;    x[1] = 0.0;     x[2] = 0.0;    f.evaluate(x, y);    out[2] = y;
00072           x[0] = 0.0;    x[1] = 1.0;     x[2] = 0.0;    f.evaluate(x, y);    out[5] = y;
00073           x[0] = 0.0;    x[1] = 0.0;     x[2] = 1.0;    f.evaluate(x, y);    out[9] = y;
00074 
00075           // Then: the six edge dofs
00076           x[0] = 0.5;    x[1] = 0.0;     x[2] = 0.0;    f.evaluate(x, y);
00077           out[1] = y - 0.5*(out[0] + out[2]);
00078 
00079           x[0] = 0.0;    x[1] = 0.5;     x[2] = 0.0;    f.evaluate(x, y);
00080           out[3] = y - 0.5*(out[0] + out[5]);
00081 
00082           x[0] = 0.5;    x[1] = 0.5;     x[2] = 0.0;    f.evaluate(x, y);
00083           out[4] = y - 0.5*(out[2] + out[5]);
00084 
00085           x[0] = 0.0;    x[1] = 0.0;     x[2] = 0.5;    f.evaluate(x, y);
00086           out[6] = y - 0.5*(out[0] + out[9]);
00087 
00088           x[0] = 0.5;    x[1] = 0.0;     x[2] = 0.5;    f.evaluate(x, y);
00089           out[7] = y - 0.5*(out[2] + out[9]);
00090 
00091           x[0] = 0.0;    x[1] = 0.5;     x[2] = 0.5;    f.evaluate(x, y);
00092           out[8] = y - 0.5*(out[5] + out[9]);
00093 
00094           break;
00095 
00096       }
00097     }
00098 
00099   };
00100 }
00101 
00102 #endif