Assembling matrices in deal.II

Wolfgang Bangerth
ETH Ziirich, Switzerland

May 2002

1 Introduction

Assembling the system matrix for finite element discretizations is standard, at least
as far as scalar problems are concerned. However, things become a little more
complicated in implementations once problems are vector-valued, and in particular
if finite elements are used in which different components of vector-valued shape
functions are coupled, such as for example for divergence-free elements.

It is this case that we are interested in in this report, and we will discuss the
implementational details user programs must follow if they want to use such ele-
ments with deal.II. In order to explain the problem in a simple way, we start by
reviewing the algorithms that are used, first for the scalar case, then for the case of
“simple” vector-valued finite elements, and finally for the most general case. How-
ever, we do not intend to give an introduction into the derivation of finite element
methods, or of posing a partial differential equation in weak form.

The interface for vector-valued finite element shape functions with more than one
non-zero component that is described in this report is presently being implemented,
and will be merged with the library after version 3.4 is released. Thus, it will be part
of version 3.5 or 4.0 of the library, depending on which version number we will assign
to the successor of 3.4. By then, the library will also contain an implementation
of Nedelec elements, for which these techniques are necessary. The interface for
primitive vector-valued shape functions, for which only one vector component is
non-zero, has been part of the library since its publication with version 3.0.

2 Linear systems for finite element methods

We start by briefly introducing the way finite element matrices are assembled “on
paper”. As usual in finite elements, we take the weak form of the partial differential
equation. In the most general case, it reads: find u € V' such that

a(u,v) = (f,v)a Yo eV,

where a(-,-) is the bilinear form associated with the partial differential equations,
and V is the space of test functions. For simplicity, we have here assumed that the
problem is linear and that then a(-,-) is a bilinear form; if the problem is nonlinear,
it is usually solved using a sequence of linear problems, so this is no restriction.

In finite elements, we define an approximation of the solution u by choosing a
finite dimensional subspace V}, spanned by the basis functions {¢;}, and searching
up, € Vi, by testing the weak form by the test functions from V. The problem then
reads: find up € Vi such that

a(uh,vh) = (f, Uh)Q Yy, € Vj,.

Now, {¢;} is a basis of V. We denote the dimension of V,, by N, and will
henceforth let all sums be over the range 0... N — 1, to keep with the standard
notation of the C/C++ programming languages. With this, we can expand the

solution uy = Z;V:_Ol Ujg;, and by bilinearity of the form a(-, -), the problem above
is equivalent to

N-1

Uja(ej, i) = (f, i) Vi=0...N -1 (1)
i—0

<

Denoting
Aij = alej, i), Fy = (f,95);
the equations determining the expansion coefficients U; are therefore:
AU = F. (2)

Note that we have taken a reverted order of indices in the definition of A, since
we want the linear system (2) with the solution to the right of the matrix, to keep
with standard notation, instead of to the left as in (1). For symmetric problems,
there is no difference, but for non-symmetric ones this is a common source for
problems and a rather common trap.

For partial differential equations, the bilinear form used in (1) involves an inte-
gral over the domain €2 on which the problem is posed. For example, for the Laplace
equation we have

Aij = alpj, vi) = (Vp;, Vi)a = /QV% Vi dx.

For practical purposes, we split this equation into integrals over the individual cells
K of the triangulation T we use for the discretization. In deal.II, these cells are
always lines, quadrilaterals, or hexahedra. With this, we have that

A=) A%, Al = ak(pjp) 0<i,j<N-1,
KeT

where the bilinear form ax(-,-) only involves an integral over the cell K. The
important point is that we do so since for the localized basis functions used in finite
elements, AX is a matrix with almost only zeros. The only elements which are not
zero are those corresponding to indices 4,j indicating those shape functions that
have support also on the element K. For example, in 2d and using the usual bilinear
shape functions for a scalar problem, only the four shape functions associated with
the vertices of the cell K are nonzero on K, and thus only the entries in AX are
nonzero where the four rows corresponding to these indices and the respective four
columns intersect.

In general, assume that there are N shape functions with support on cell K,
and let the set of their indices be denoted by Ix. Then we can define a matrix AKX
of (small dimension) Nx x N holding these nonzero entries, and we can obtain
back the original contribution Ax to A by the transformation

AKZ{O ifi%IKorjng,
v

K .
local(i),local(j) OtheI‘WISG7

0<ij<N-1

Here, local(i) gives the number of the global degree of freedom i on the cell K, i.e.
the position of ¢ in the index set Ix. One could call AX the reduced form of AK,
since the many zero rows and column have been stripped.

In general, when assembling the global matrix, the reverse way is used: when
adding up A¥ to A, we do so only with AK by

Agiobal(i),global(j)+= fifj(* 0<4,j<Ng-L1

Thus, indices only run over the (small) range 0... Nx — 1 instead of 0... N — 1.
Here, global(i) denotes the global number of the degree of freedom with number i
on this cell K, i.e. global(i) = Ik|[i], where the bracket operator returns the ith
element of the set [x.

The main part of assembling finite element matrices is therefore to assemble the
local matrix AX. Before we go on with discussing how this is done in deal.II,
we would like to comment on the evaluation of the integrals involved. Since the
integrals are usually too complex to be evaluated exactly (they may depend on
coeflicients appearing in the equation, or the solution of previous steps in nonlinear
or time-dependent problems), they are approximated by quadrature. Assume we
have a quadrature formula with N, points =, defined on cell in real space (as opposed
to the unit cell) and weights w,. Then, for example for the Laplace equation, we
approximate

Ny—1

/15 = /KV% -V, dx ~ Z Vi(zq) - Vj(zg) weldet J(Z4)| (3)
q=0

For other problems, the integrand is different, but the principle remains the same.
det J(Z,) denotes the determinant of the Jacobian of the transformation between
the unit cell on which the quadrature weights are defined, and the real cell, and £,
is the point on the unit cell corresponding to the quadrature point z, in real space.

Since all matrices and right hand side vectors only require knowledge of the
values and gradients of shape functions at quadrature points, this is all that deal.II
usually provides. Omne can see this as a kind of view on a finite element, as it
only provides a certain perspective on the actual definition of a shape function.
Nevertheless, this is entirely sufficient for all purposes of programming finite element
programs.

In deal.II the FEValues class does this: you give it a finite element definition, a
quadrature formula object, and an object defining the transformation between unit
and real cell, and it provides you with the values, gradient, and second derivatives
of shape functions at the quadrature points. It also gives access to the determinant
of the Jacobian, although only multiplied with w, as these two are always used in
conjunction. It also provides you with many other fields, such as normal vectors
to the outer boundary. In practice you do not need them all computed on each
cell; thus, you have to specify explicitly in which data you are interested when
constructing FEValues objects.

In the following, we provide a list of connections between the symbols introduced
above, and the respective functions and variable names used in typical deal.II
programs. With this, we will subsequently show the basic structure of an assembly
routine. If you have already taken a look at the example programs provided with
deal.II, you will recognize all these names. If you haven’t, this would be a good
time to look at the first three of them.

A system matrix

AK cell matrix

K cell

N dof handler.n_dofs()

Ng fe.dofs_per_cell

Ik local_dof_indices

N, quadrature_formula.n_quadrature_points
vi(zq) fe_values.shape_value(i,q)
Vi(zq) fe_values.shape grad(i,q)

Zq fe_values.quadrature_point(q)
|detJ(&,)|w, fe_values.JxW(q)

With this vocabulary, the typical matrix assembly loop in deal.II has the
following form: first declare a quadrature object and use it for the initialization of
a FEValues object as discussed above:

QGauss2<2> quadrature_formula;
FEValues<2> fe_values (fe, quadrature_formula,
UpdateFlags (update_values |
update_gradients |
update_JxW_values));

In practice, you may want to use a different set of fields to be updated on each
cell. For example if you do not need the values of shape functions on a cell, you
may omit update_values from the list. Also note that by default a bi- or tri-linear
(depending on space dimension) mapping between unit and real cell is used. Other
mappings are possible, for example quadratic ones, or a mapping that makes use
of the fact that in many cases cells are actually rectangular, rather than arbitrary
quadrilaterals; in order to use them, another constructor of the FEValues class can
be used, which takes a mapping object as first argument, before the other arguments
listed above.
Next we define abbreviations for the values of Nx and V:

const unsigned int
dofs_per_cell = fe.dofs_per_cell,
n_qg_points = quadrature_formula.n_quadrature_points;

Then have an object to store the matrix AK, which is of size N X Nk:
FullMatrix<double> cell matrix (dofs_per_cell, dofs_per_cell);

And an object representing the set of global indices of degrees of freedom, previously
denoted by Ik, that have support on the present cell, i.e. those degrees of freedom
local to the present cell:

std::vector<unsigned int> local_dof_indices (dofs_per_cell);
The next step is then to loop over all cells:

typename DoFHandler<dim>::active_cell_iterator
cell = dof_handler.begin_active(),
endc = dof_handler.end();

for (; cell!=endc; ++cell)

{

On each cell, first tell the FEValues object to compute the values of the various
fields for this particular cell, and do not forget to reset the local matrix A¥ to zero
before adding it up:

fe_values.reinit (cell);
cell_matrix.clear ();

Now comes the main part, assembling the local matrix AKX Tt consists of a loop
over all indices 0 <4, j < Nk and all quadrature points 0 < g < IV, and summing
up the contributions. As this is what we will discuss in detail later on, we only
denote it here by an ellipse:

for (unsigned int i=0; i<dofs_per_cell; ++i)
for (unsigned int j=0; j<dofs_per_cell; ++j)
for (unsigned int g=0; g<n_q_points; ++q)
cell_matrix(i,j) += ...;

After we have AX | we still have to sum it into the global matrix A. This is done by
first getting the set I of the global indices of the shape functions that were active
on this cell, and then distributing AX:

cell->get_dof_indices (local_dof_indices);

for (unsigned int i=0; i<dofs_per_cell; ++i)
for (unsigned int j=0; j<dofs_per_cell; ++j)
system_matrix.add (local_dof_indices[i],
local_dof_indices[j],
cell _matrix(i,j));

};

When this is done, we go on to the next cell. .
Within this framework, the only open point is assembling AX on one quadrature
point. This will be subject of the rest of this report.

3 Assembling scalar problems

For scalar problems, assembling AK s relatively simple. With the terms introduced
above, and for the Laplace equation, this looks as follows:

local_matrix(i,j) += (fe_values.shape_grad(i,q_point) *
fe_values.shape_grad(j,q_point) *
fe_values.JxW (q_point));

This term is placed in the innermost loop, i.e. is performed for all indices 7, j, and
all quadrature points q_point.

For nonsymmetric problems, the order of terms has to be considered, as men-
tioned above. For example, for the advection equation

B-Vu=f,
with which the bilinear form
a(u,v) = (6 - Vu,v)a
is associated, the local matrix is assembled as

local_matrix(i,j) += (fe_values.shape_values(i,q_point) *
(beta * fe_values.shape_grad(j,q_point)) *
fe_values.JxW (q_point));

Here, beta is an object of type Tensor<1,dim>, which represents a tensor of rank
1 in dim space dimensions.

Assembling matrices for scalar problems is also shown from a practical perspec-
tive in many of the example programs of deal.II, where it is also demonstrated
how to do this for the right hand side vectors. Thus, scalar problems are not too
interesting, and we now turn to vector-valued problems.

4 Vector-valued problems

Since we need some problems at which we will explain assembling the matrix for
the vector-valued case, we now briefly introduce two simple equations. The first are
the Lamé equations of elasticity, which are taken for the symmetric case, then we
briefly introduce the Stokes equations as a nonsymmetric problem.

4.1 The elastic equations

As first example for the methods we are going to discuss for vector-valued problems,
we consider the elastic Lamé equations for isotropic materials, which read in strong
form:

VA +p)(V-u)— (V- uV)u=f.

These equations describe the three-dimensional deformation u of an elastic body
under a body force f. The respective bilinear form associated with this operator is
then
a(u,v) =((A+p)V-u,V-v), + Z (uVug, Vug)g
k

or as a sum over COHlpOHGIltSZ

a(u,v) = (A + m)drur, Ovr) g + Y (1O, Dyvg) g -

k,l k,l

When assembling matrices, it is advantageous to write the weak form (i.e. after
integration by parts) as a kind of operator. This is since matrix elements after
discretization are defined as

Al] = a(¢j7 gpi)ﬂa

where ¢;, p; are two vector-valued trial functions, and it would be nice if we could
write the bilinear form a(:,-) as a kind of scalar product (¢;, Qp;), where Q is a
differential operator. This is trivial if we take @ as the operator of the strong form,
Q=-VA+u)V-—(V-uV), but we wanted to do this for the weak form. For this,
we introduce some notation that is used in quantum field theory: for differential
operators, we indicate by an arrow placed atop of it whether it shall act on the
object to the left or to the right of it. Thus, go% . ?1/} = (V) - (Vy). With this, a
simple computation shows that

The sought operator @ is then

9,01 9.0 9101+ 020 0
QO=0+p 219 2192} 101+ 0202 7

0 2 0 1 0 2 0 2 2
and a(u,v) = (u|Q|v). We demonstrate the fact that @ acts to both sides by
placing it in the middle of the scalar product, just as in the bra-ket notation of
quantum physics.

The advantages of this formulation will become clear when discussing assembling

matrices below. For now, we remark that the symmetry of the weak form is equally
apparent from the form of @ as well as from the initial definition of a(-,).

4.2 The Stokes equations

For a nonsymmetric problem, we take the Stokes equations:

—Au+ Vp =0,

div u = 0.

We denote by w = {u, p} the entire solution vector. In the weak form, the above
equations read

a(u,p;v,q) =v(Vuy, Vvy) + v(Vug, Vva) — (p, V- v) + (V- u,q).

Since we integrated the gradient term in the first equation by parts, but not the
divergence term in the second equation, the problem is now nonsymmetric. If we
would have liked, we could have made the problem symmetric again by multiply-
ing the entire second equation by —1, but we don’t want to do that for now for
illustrational purposes.

Again, we introduce the operator @ for this problem, which after some compu-
tations turns out to be

— — — — —

u(8181+8282) 0 —01

— = — = —

Q= 0 v(0101+ 0202) —02
— —

01 P 0

Again, it is clear from this form that we could have made the operator symmetric by
multiplying the last row by —1. Note when checking the symmetry of) that taking
the transpose of such an operator means reverting the directions of the arrows over
the operators, and exchanglng thelr order For example, using the first term, these

twostepsarea 81—>3 81—>3 31

5 Assembling vector-valued problems: The simple
case

The simple case in assembling vector-valued problems is when the (also vector-
valued) shape functions are chosen such that only one component in the vector is
nonzero. This is usually the case, if we choose the shape functions to be the outer
product of scalar shape functions, such as independent bilinear ansatz spaces for
each component of a finite element space.

In this case, each shape function ®; has the representation

®;(x) = (0,...,0,94(x),0,...,0)",

where ®; is the vector-valued shape function, and ¢; its only non-zero component.
Let us denote by ¢(i) the index of this non-zero component, then ®; can also be
written as

(@i(x)); = @i(%)de(i) 15

with the Kronecker delta function 4.
With this simple form, the cell matrix on cell K has a simple form:

Al = ag (P, ®;) = (0 | Q| D)) = (01 | Qeiye(i) | 03) i

Thus, in assembling the local cell matrices, we only have to determine the single
components in which the two shape functions are non-zero, and pick one element
from the matrix @ to assemble each entry of the cell matrix with the help of the
values of the functions ¢; at the quadrature points. Here, it comes handy that we
have written the operator as a matrix operator @), since this makes it very clear
how shape functions ¢ and j couple: if Qc(;),c(j) i zero, then they do not couple at
all for this operator. Otherwise, it is easily visible which derivative acts on which
shape function for this combination of shape functions.

In deal.II, these two actions mentioned above (getting the non-zero component
of a shape function, and the value of this component at a given quadrature point)
are done as follows:

e Determining the non-zero component: Given the shape function with number
i (i.e. its index local to the degrees of freedom on the present cell), its only
non-zero component is obtained by the function call

const unsigned int nonzero_component_i
= fe.system_to_component_index(i).first;

The FiniteElement: : system_to_component_index returns a pair of numbers
for each index 0 < i < Nk, the first of which denotes the only non-zero
component of the shape function i. Since for the case described in this section,
the individual components of the vector-valued finite element are independent,
we consider each component as a set of scalar shape functions; the second
number of the pair returned by the function then denotes the index of the
shape function ¢; within the shape functions corresponding to this component.

If, for example, our finite element in use is a Q?/Q?/Q' combination (for
example for 2d flow computations: bi-quadratic ansatz functions for the ve-
locities, bi-linear for the pressure), then we have a total of 22 shape functions
(949+4). For each 0 < i < 22, the first part of the pair returned by the func-
tion described above, ¢(i), may then either be 0, 1, or 2, denoting the three
possible components of the finite element. If ¢(i) is either 0 or 1, then the
component to which the shape function ¢ belongs is a bi-quadratic one, and
the second index is between 0 and 8 (inclusive) as the Q2 element has 9 shape
functions. If ¢(i) == 2, then the second part is between 0 and 3 (inclusive).

o Getting the value of p;(x4): Since only one component of ®; is non-zero,
we can use the same function as before, i.e. FEValues::shape_value(i,q),
which in the scalar case returned the value of shape function ¢ at quadra-
ture point q. Likewise, the FEValues: :shape_grad(i,q) function returns the
gradient of this particular component.

In other words, whether the finite element is scalar or not, the two indicated
functions return value and gradient of the only non-zero component of a shape
function. If the finite element is scalar, then it is of course clear which compo-
nent this is (since there ¢(i) == 0 for all valid indices), in the vector-valued
case, it is component ¢(i).

5.1 The elastic equations

With this, and the definition of the “bi-directional” operator @) in Section 4.1, the
local matrix assembly function for the elastic equations would then read as follows:

for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
for (unsigned int j=0; j<fe.dofs_per_cell; ++j)
for (unsigned int g=0; q<n_qg_points; ++q)
{
const unsigned int
comp_i = fe.system_to_component_index(i).first,
comp_j = fe.system_to_component_index(j).first;

// first assemble part with lambda+mu
cell_matrix(i,j) += ((lambda+mu) *
fe_values.shape_grad(i,q) [comp_i] *
fe_values.shape_grad(j,q) [comp_j] *
fe_values.JxW(q));

// then part with mu only
if (comp_i == comp_j)
cell_matrix(i,j) += (mu *
(fe_values.shape_grad(i,q) *
fe_values.shape_grad(j,q))*
fe_values.JxW(q));
s

Note that this code works in any space dimension, not only for dim==2. Optimiza-
tion of this is possible by hoisting the computation of comp_i and comp_j, denoting
(i) and c(j), respectively, out of the inner loops. Also, if the coefficients are non-
constant, they need to be computed at each quadrature point; this may be done
using this fragment in the innermost loop:

const double
lambda_value = lambda.value(fe_values.quadrature_point(q)),
mu_value = mu.value(fe_values.quadrature_point(q));

assuming that lambda,mu are variables of classes describing space dependent func-
tions, and which are derived from the Function<dim> class.

5.2 The Stokes equations

For the Stokes equation, things are slightly more complicated since the three com-
ponents denote different quantities, and the operator Q does not have such a simple
form, but the case is still simple enough. We present its generalization to an arbi-
trary number of space dimensions, i.e. assume that there are dim velocity variables
and one scalar pressure:

for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
for (unsigned int j=0; j<fe.dofs_per_cell; ++j)
for (unsigned int g=0; g<n_g_points; ++q)
{
const unsigned int
comp_i = fe.system_to_component_index(i).first,
comp_j = fe.system_to_component_index(j).first;

// velocity-velocity coupling?
if ((comp_i<dim) && (comp_j<dim))
if (comp_i == comp_j)
cell matrix(i,j) += (nu *
(fe_values.shape_grad(i,q) *
fe_values.shape_grad(j,q)) *
fe_values.JxW(q));

// velocity-pressure coupling
if ((comp_i<dim) && (comp_j==dim))
cell_matrix(i,j) += (-fe_values.shape_grad(i,q) [comp_i] *
fe_values.shape_value(j,q) *
fe_values.JxW(q));

// pressure-velocity coupling
if ((comp_i==dim) && (comp_j<dim))
cell_matrix(i,j) += (fe_values.shape_value(i,q) *
fe_values.shape_grad(j,q) [comp_j] *

fe_values.JxW(q));
};

Again, optimization is possible by observing that only one of the outer ifs in the
body can be true, for example using else clauses, or break statements.

6 Assembling vector-valued problems: The com-
plicated case

The more complicated case is when more than one component of a vector-valued
shape function is non-zero, i.e. the representation

®;(x) = (0,...,0,¢i(x),0,...,00",

does not hold any more. The usual case where this happens is when shape functions
have to satisfy certain constraints, such as that they should have zero divergence
or curl, or when the normal fluxes at some points, e.g. the face centers, are the
degrees of freedom: n - ®;(x,) = §;,. In this case, the individual components of a
shape function are no more independent, and thus cannot be chosen such that only
one component is non-zero.

What happens in this case? First, the function FiniteElement: :system_to_-
component_index does not make much sense any more, since a shape function ®;
cannot be associated with only one vector component any more. Calling this func-
tion for basis functions ®; that are not restricted to only one non-zero component
will thus yield an exception being thrown.

Second, the functions FEValues: : shape_value and FEValues: :shape_grad re-
turning the values and gradients of the only non-zero component of a shape function
at a quadrature point cannot work any more, since there are now more than only
one non-zero components for some or all values of i. For those shape function for
which this holds, you will again get an exception upon calling these functions.

Getting information about shape functions

So how do you find out whether calling these functions is ok or not? In other words,
how do you know whether shape function ®; has only one non-zero component,
or more? For this, there are two functions: FiniteElement::is_primitive(i)
returns as a bool whether the shape function has only one non-zero component.
For example, for a Q%/Q?/Q! element, this would be true for all 22 shape functions.
For a finite element for which every shape function is non-zero in more than one
component, it would be false for all indices 7. It might also be true for only some
shape functions, for example if the velocity components of the Stokes discretization
are done using some more complicated element, but the pressure component with
a Q', then it would be true for the pressure shape functions, but false otherwise.

Second, the FiniteElement::n nonzero_components(i) function returns in
how many components the ith shape function is non-zero. Again, for the Q%/Q?/Q*
combination, this would yield the value 1 for all allowed indices i. For coupled ele-
ments, it would be greater than 1.

Third, you may sometimes want to know in which components a certain shape
function is non-zero. For this, the FiniteElement: :get_nonzero_components (i)
function is the right thing: it returns a reference to a vector of boolean values,
one for each component of the vector-valued finite element, and the values indicate
whether the shape function is non-zero for each of them.

Note that if you have the result of FiniteElement: : get_nonzero_components (i),
then the result of FiniteElement: :n_nonzero_components (i) is simply the num-
ber of true values in the array returned by the first function. In the same way,

10

FiniteElement::is_primitive(i) is simply whether FiniteElement: :n nonzero_-
components (i) returned a value other than 1. The functions are thus redundant in
some way, but useful nevertheless. Of course, the values of the FiniteElement: :-
is_primitive(i) and FiniteElement: :n nonzero_components(i) functions are
not recomputed every time based on the result of some other function, but are
cached once at the time of construction of a finite element object.

Evaluating shape functions

Now, we have seen which functions cannot be called for non-primitive shape func-
tions, and also how to find out about shape functions and whether they are primitive
and the like. Yet, we don’t have replacements for the functions that cannot be called,
so here they are: instead of FEValues: :shape_value and FEValues: :shape_grad,
call FEValues: :shape_value_component and FEValues::shape_grad_component.
These functions take as arguments first the number of the shape function, and sec-
ond the number of the quadrature point (these are also the arguments of the original
functions), but now as additional third argument the vector component.

Of course, these functions can be called on primitive shape functions as well. In
that case, the following holds:

e The value of FEValues: : shape_value_component (i,q,c) is equal to FEValues: : -
shape_value(i,q) if and only if the component c is equal to fe.system_to_-
component_index (i) .first, i.e. if c is the only non-zero component of the
shape function i.

e For all other components c, the returned value of FEValues: : shape_value —
component (i,q,c) is zero.

The same of course also holds for FEValues: : shape_grad_component(i,q,c) and
FEValues: :shape_2nd_derivative_component (i,q,c).

6.1 The elastic equations

With the above, we can now assemble the matrix for the elastic equation in mostly
the same way as before. The difference is that for each shape function, we have to
loop over all components. The code then looks like this (compare this with the one
in Section 5.1):

for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
for (unsigned int comp_i=0; comp_i<fe.n_components(); ++comp_i)
for (unsigned int j=0; j<fe.dofs_per_cell; ++j)
for (unsigned int comp_j=0; comp_j<fe.n_components(); ++comp_j)
for (unsigned int g=0; g<n_qg_points; ++q)
{
// first assemble part with lambda+mu
cell matrix(i,j)
+= ((lambda+mu) *
fe_values.shape_grad_component (i,q,comp_i) [comp_i] *
fe_values.shape_grad_component (j,q,comp_j) [comp_j] *
fe_values.JxW(q));

// then part with mu only

if (comp_i == comp_j)
cell_matrix(i,j)
+= (mu *

(fe_values.shape_grad_component(i,q,comp_i) *

11

fe_values.shape_grad_component (j,q,comp_j))*
fe_values.JxW(q));
};

If you dislike this particular order of the loops, you can reorder them as you like,
as they are independent.

The code as shown above can be optimized. For example, instead of uncondition-
ally performing the loop over all components of shape functions ¢ of j, we might first
ask whether these shape functions are primitive, using fe.is_primitive(i), and
use the loop only if the result is false; if, on the other hand, the result is true, we only
need to set comp_i to the fixed value fe.system to_component_index(i).first,
and likewise for shape function j.

Another possibility for optimization would be to ask whether a certain compo-
nent over which we loop is actually non-zero, or if the shape function is a non-
primitive one but happens to be zero in the present component nevertheless. For
this, we could replace the loop over comp_i by this:

for (unsigned int comp_i=0; comp_i<fe.n_components(); ++comp_i)
if (fe.get_nonzero_components(i) [comp_i] == true)

If the if-clause does not succeed then this component of the shape function is def-
initely zero, and there will not be a contribution to the matrix anyway, so we can
also skip the computations.

6.2 The Stokes equations

Likewise, this is now the code for the Stokes equations:

for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
for (unsigned int comp_i=0; comp_i<fe.n_components(); ++comp_1i)
for (unsigned int j=0; j<fe.dofs_per_cell; ++j)
for (unsigned int comp_j=0; comp_j<fe.n_components(); ++comp_j)
for (unsigned int q=0; g<n_q_points; ++q)
{
// velocity-velocity coupling?
if ((comp_i<dim) && (comp_j<dim))
if (comp_i == comp_j)
cell _matrix(i,j)
+= (nu *
(fe_values.shape_grad_component (i,q,comp_i) *
fe_values.shape_grad_component(j,q,comp_j)) *
fe_values.JxW(q));

// velocity-pressure coupling
if ((comp_i<dim) && (comp_j==dim))
cell_matrix(i,j)
+= (-fe_values.shape_grad_component(i,q,comp_i) [comp_i] *
fe_values.shape_value_component (j,q,comp_j) *
fe_values.JxW(q));

// pressure-velocity coupling
if ((comp_i==dim) && (comp_j<dim))
cell_matrix(i,j)
+= (fe_values.shape_value_component(i,q,comp_i) *
fe_values.shape_grad_component (j,q,comp_j) [comp_j] *

12

fe_values.JxW(q));
};

Again, the same optimizations as above are possible. Here, they even seem worth-
while, since it is often the case that the velocity variables are discretized using a
non-primitive finite element, while the pressure uses a primitive element. In that
case, some shape functions are primitive (namely those discretizing the pressure),
and of the non-primitive shape functions (those for the velocity variables) some
vector components (the pressure components) are always zero. Thus, both opti-
mizations described above would be useful. We leave the implementation of this to
the reader.

7 Conclusions

We have shown how finite element matrices are assembled using the functionality of
the deal.II library. For the scalar case, and, in the vector-valued case, if the finite
element shape functions are such that only one vector component of each shape
function is non-zero, assembling is relatively simple. In the other case, when there
are shape functions with more than one non-zero component, some more care is
necessary, but assembling is still straightforward and follows the same pattern as
before.

13

