CVXOPT User’s Guide

Joachim Dahl & Lieven Vandenberghe

Release 0.9 — August 10, 2007

Copyright and License

Copyright (©2004-2007 J. Dahl & L. Vandenberghe.

CVXOPT is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License' as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any later version.

CVXOPT is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License? for more details, _
The CVXOPT distribution includes source code for the following software

libraries.

e Part of the SuiteSparse suite of sparse matrix algorithms, including;:

AMD Version 2.1. Copyright (¢) 2007 by Timothy A. Davis, Patrick
R. Amestoy, and lain S. Duff.

— CHOLMOD Version 1.5. Copyright (¢) 2005-2007 by University of
Florida, Timothy A. Davis and W. Hager.

COLAMD version 2.7. Copyright (c¢) 1998-2007 by Timothy A.
Davis.

UMFPACK Version 5.0.2. Copyright (¢) 1995-2006 by Timothy A.
Davis.

These packages are licensed under the terms of the GNU Lesser General
Public License, version 2.1 or higher® (UMFPACK, parts of CHOLMOD,
AMD, COLAMD) and the GNU General Public License, version 2 or
higher* (the Supernodal module of CHOLMOD). For copyright and license
details, consult the README files in the source directories or the website
listed below.

Availability: www.cise.ufl.edu/research/sparse’.

Thttp://www.gnu.org/licenses/gpl-3.0.html
2http://www.gnu.org/licenses/gpl-3.0.html
Shttp://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
4http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
Shttp://www.cise.ufl.edu/research/sparse

3

e RNGS Random Number Generation — Multiple Streams (Sep. 22, 1998)
by Steve Park & Dave Geyer.

Availability: www.cs.wm.edu/ va/software/park/park.html®.

Shttp://www.cs.wm.edu/\~{}va/software/park/park.html

Chapter 1

Introduction

CVXOPT is a free software package for convex optimization based on the
Python programming language. It can be used with the interactive Python
interpreter, on the command line by executing Python scripts, or integrated in
other software via Python extension modules. Its main purpose is to make the
development of software for convex optimization applications straightforward by
building on Python’s extensive standard library and on the strengths of Python
as a high-level programming language.

Release 0.9 of CVXOPT includes routines for basic linear algebra calcula-
tions, interfaces to efficient libraries for solving dense and sparse linear equa-
tions, convex optimization solvers written in Python, interfaces to a few other
optimization libraries, and a modeling tool for piecewise-linear convex optimiza-
tion problems. These components are organized in different modules.

cvxopt.base This module defines a Python type matrix for storing and manip-
ulating dense matrices, a Python type spmatrix for storing and manipu-
lating sparse matrices, and routines for sparse matrix-vector and matrix-
matrix multiplication (see chapters ?? and ?7).

cvxopt.random Routines for generating random matrices with uniformly or
normally distributed entries (see section ?7).

cvxopt.blas Interface to most of the double-precision real and complex BLAS
(chapter 7?).

cvxopt.lapack Interface to the dense double-precision real and complex linear
equation solvers and eigenvalue routines from LAPACK (chapter ?7?).

cvxopt.fftw An optional interface to the discrete transform routines from
FFTW (section ?7).

cvxopt.amd Interface to the approximate minimum degree ordering routine

from AMD (chapter 77?).

cvxopt.umfpack Interface to the sparse LU solver from UMFPACK (section 77).

5

6 CHAPTER 1. INTRODUCTION

cvxopt.cholmod Interface to the sparse Cholesky solver from CHOLMOD (sec-
tion 77).

cvxopt.solvers Convex optimization routines and optional interfaces to solvers
from GLPK, MOSEK and DSDP5 (chapters ?? and ?7).

cvxopt.modeling Routines for specifying and solving linear programs and con-
vex optimization problems with piecewise-linear cost and constraint func-
tions (chapter ?7).

cvxopt.info Defines a string version with the version number of the CVX-
OPT installation and a function license() that prints the CVXOPT
license.

The modules are described in detail in this manual and in the on-line Python
help facility pydoc. Several example scripts are included in the distribution.

Chapter 2

Dense Matrices
(cvxopt.base)

The cvxopt.base module defines two new Python types: matrix objects, used
for dense matrix computations, and spmatrix objects, used for sparse matrix
computations. In this chapter we describe the dense matrix object.

2.1 Creating Matrices

A matrix object is created by calling the function matrix (). The arguments
specify the values of the coefficients, the dimensions, and the type (integer,
double or complex) of the matrix.

matrix(x[, size[, tc]])

size is a tuple of length two with the matrix dimensions. The number of
rows and/or the number of columns can be zero.

tc stands for typecode. The possible values are ’i’, ’d’ and ’z’, for
integer, real (double) and complex matrices, respectively.

x can be a number, a sequence of numbers, a dense or sparse matrix, a
one- or two-dimensional NumPy array, or a list of lists of matrices and
numbers.

e If x is a number (Python integer, float or complex), a matrix
is created with the dimensions specified by size and with all the
coefficients equal to x. The default value of size is (1,1), and the
default value of tc is the type of x. If necessary, the type of x is
converted (from integer to double when used to create a matrix of
type >d’, and from integer or double to complex when used to create
a matrix of type ’z”’).

>>> from cvxopt.base import matrix

7

CHAPTER 2. DENSE MATRICES (CVXOPT.BASE)

>>> A = matrix(1, (1,4))
>>> print A
1 1 1 1
>>> A = matrix(1.0, (1,4))
>>> print A
1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00
>>> A = matrix(1+1j)
>>> print A
1.0000e+00+3j1.0000e+00

If x is a sequence of numbers (list, tuple, array array, xrange ob-
ject, one-dimensional NumPy array, ...), then the numbers are in-
terpreted as the coefficients of a matrix in column-major order. The
length of x must be equal to the product of size[0] and size[1].
If size is not specified, a matrix with one column is created. If tc
is not specified, it is determined from the elements of x (and if that
is impossible, for example because x is an empty list, a value ’i’ is
used). Type conversion takes place as for scalar x.

The following example shows several ways to define the same integer
matrix.

>>> A = matrix([0, 1, 2, 3], (2,2))
>>> A = matrix((0, 1, 2, 3), (2,2))
>>> A = matrix(xrange(4), (2,2))
>>> from array import array
>>> A = matrix(array(’i’, [0,1,2,3]), (2,2))
>>> print A
0 2
1 3

If x is a dense or sparse matrix (a matrix or a spmatrix object), or
a two-dimensional NumPy array of type ’i’, ’d’ or ’z’, then the
coefficients of x are copied, in column-major order, to a new matrix of
the given size. The total number of elements in the new matrix (the
product of size[0] and size[1]) must be the same as the product
of the dimensions of x. If size is not specified, the dimensions of x
are used. The default value of tc is the type of x. Type conversion
takes place when the type of x differs from tc, in a similar way as
for scalar x.

>>> A = matrix([1., 2., 3., 4., 5., 6.1, (2,3))
>>> print A
1.0000e+00 3.0000e+00 5.0000e+00
2.0000e+00 4.0000e+00 6.0000e+00
>>> B = matrix(A, (3,2))
>>> print B
1.0000e+00 4.0000e+00

2.1. CREATING MATRICES 9

2.0000e+00 5.0000e+00
3.0000e+00 6.0000e+00

>>> C = matrix(B, tc=’z’)

>>> print C
1.0000e+00-3j0.0000e+00
2.0000e+00-3j0.0000e+00
3.0000e+00-3j0.0000e+00

>>> from numpy import array

>>> x = array([[1., 2., 3.1, [4., 5., 6.11)

>>> print x

(C1. 2. 3.]

(4. 5. 6.]]

>>> y = matrix(x)

>>> print y
1.0000e+00
4.0000e+00

4.0000e+00-30.0000e+00
5.0000e+00-3j0.0000e+00
6.0000e+00-3j0.0000e+00

2.0000e+00
5.0000e+00

3.0000e+00
6.0000e+00

o If x is a list of lists of matrices (matrix or spmatrix objects) or
numbers (Python integer, float or complex), then each element
of x is interpreted as a block-column stored in column-major order.
If size is not specified, the block-columns are juxtaposed to obtain
a matrix with len(x) block-columns. If size is specified, then the
matrix with 1en(x) block-columuns is resized by copying its elements
in column-major order into a matrix of the dimensions given by size.
If tc is not specified, it is determined from the elements of x (and if
that is impossible, for example because x is a list of empty lists, a
value i’ is used). The same rules for type conversion apply as for

scalar x.

>>> A = matrix([[1., 2.1, [3., 4.1, [5., 6.1])

>>> print A
1.0000e+00 3.0000e+00 5.0000e+00
2.0000e+00 4.0000e+00 6.0000e+00

>>> Al = matrix([1, 2], (2,1))

>>> B1 = matrix([6, 7, 8, 9, 10, 111, (2,3))

>>> B2 = matrix([12, 13, 14, 15, 16, 17], (2,3))

>>> B3 = matrix([18, 19, 20], (1,3))

>>> print matrix([[Al, 3.0, 4.0, 5.0], [B1, B2, B3]1)
1.0000e+00 6.0000e+00 8.0000e+00 1.0000e+01
2.0000e+00 7.0000e+00 9.0000e+00 1.1000e+01
3.0000e+00 1.2000e+01 1.4000e+01 1.6000e+01
4.0000e+00 1.3000e+01 1.5000e+01 1.7000e+01
5.0000e+00 1.8000e+01 1.9000e+01 2.0000e+01

A matrix with a single block-column can be represented by a single
list (i.e., when the length of x is one, it can be replaced with x[0]).

>>> print matrix([B1, B2, B3])

10

CHAPTER 2. DENSE MATRICES (CVXOPT.BASE)

6 8 10
7 9 11
12 14 16
13 15 17
18 19 20

2.2 Attributes and Methods

A matrix has the following attributes.

A

uple with the dimensions of the matrix. This is a read-only attribute;
operations that change the size of a matrix are not permitted.

A

char, either ’i’, ’d’, or ’z’, for integer, real and complex matrices,
respectively. A read-only attribute.

trans()

eturns the transpose of the matrix as a new matrix. One can also use A.T
instead of A.trans().

ctrans()

eturns the conjugate transpose of the matrix as a new matrix. One can
also use A.H instead of A.ctrans().

real()

or complex matrices, returns the real part as a real matrix. For integer
and real matrices, returns a copy of the matrix.

imag()

or complex matrices, returns the imaginary part as a real matrix. For
integer and real matrices, returns an integer or real zero matrix.

A

yCObject implementing the NumPy array interface (see section ?? for
details).

tofile(f)

Writes the elements of the matrix in column-major order to a binary file
f.

fromfile(f)

Reads the contents of a binary file £ into the matrix object.

2.3. ARITHMETIC OPERATIONS 11

The last two methods are illustrated in the following example.

>>> from cvxopt.base import matrix
>>> A = matrix([[1.,2.,3.], [4.,5.,6.11)
>>> print A
1.0000e+00 4.0000e+00
2.0000e+00 5.0000e+00
3.0000e+00 6.0000e+00
>>> f = open(’mat.bin’,’w’)
>>> A.tofile(f)
>>> f.close()
>>> B = matrix (0.0, (2,3))
>>> f = open(’mat.bin’,’r’)
>>> B.fromfile(f)
>>> f.close()
>>> print B
1.0000e+00 3.0000e+00 5.0000e+00
2.0000e+00 4.0000e+00 6.0000e+00

Matrices can also be written to or read from files using the dump() and
load () functions in the pickle module.

2.3 Arithmetic Operations
The following table lists the arithmetic operations defined for dense matrices.

In this table A and B are dense matrices with compatible dimensions, c is a
scalar (a Python number or a dense 1 by 1 matrix), and d is a Python number.

Unary plus/minus +A, -A
Addition A+B, A+c, c+A
Subtraction A-B, A-c, c-A
Matrix multiplication AxB

Scalar multiplication and division | c*A, Axc, A/c
Remainder after division AYic
Elementwise exponentiation Axxd

If ¢ in the expressions A+c, c+A, A-c, c-A is a number, then it is interpreted
as a matrix with the same dimensions as A, type given by the type of c, and
all entries equal to c. If ¢ is a 1 by 1 matrix and A is not 1 by 1, then c is
interpreted as a matrix with the same size of A and all entries equal to c[0].

Postmultiplying a matrix with a number ¢ means the same as premultiplying,
i.e., scalar multiplication. Dividing a matrix by ¢ means dividing all entries by
c. If cis a 1 by 1 matrix and the product c*A or Axc cannot be interpreted as a
matrix-matrix product, then it is interpreted as c[0]*A. The division A/c and
remainder A%c with ¢ a 1 by 1 matrix are always interpreted as A/c[0], resp.,
A%clo].

12 CHAPTER 2. DENSE MATRICES (CVXOPT.BASE)

If one of the operands in the arithmetic operations is integer (a scalar
integer or a matrix of type ’i’) and the other operand is double (a scalar
float or a matrix of type ’d’), then the integer operand is converted to dou-
ble, and the result is a matrix of type >d’. If one of the operands is integer or
double, and the other operand is complex (a scalar complex or a matrix of type
’z?), then the first operand is converted to complex, and the result is a matrix
of type ’z’.

The result of A**d is a complex matrix if A or d are complex, and real
otherwise.

Note that Python rounds the result of an integer division towards minus
infinity.

The following in-place operations are also defined, but only if they do not
change the type or the size of the matrix A:

In-place addition A+=B, A+=c
In-place subtraction A-=B, A-=c
In-place scalar multiplication and division | Ax=c, A/=c
In-place remainder AY=c

For example, if A has type >i’, then A+=B is allowed if B has type ’i’. It is
not allowed if B has type ’d’or ’z’because the addition A+B results in a matrix
of type ’d’or ’z’and therefore cannot be assigned to A without changing its
type.

In-place matrix-matrix products are not allowed. (Except when c is a 1 by
1 matrix, in which case A*=c is interpreted as the scalar product A*=c[0].)

It is important to know when a matrix operation creates a new object. The
following rules apply.

e A simple assignment (A = B”) is given the standard Python interpreta-
tion, 4.e., it assigns to the variable A a reference (or pointer) to the object
referenced by B.

>>> B = matrix([[1.,2.], [3.,4.1])
>>> print B

1.0000e+00 3.0000e+00

2.0000e+00 4.0000e+00
>>> A =B
>>> A[0,0] = -1
>>> print B # modifying A[0,0] also modified B[0,0]
-1.0000e+00 3.0000e+00

2.0000e+00 4.0000e+00

e The regular (i.e., not in-place) arithmetic operations always return new
objects. Hence "A = +B” is equivalent to "A = matrix(B)”.

>>> B
>>> A

matrix([[1.,2.], [3.,4.]]1)
+B

2.4. INDEXING AND SLICING 13

>>> A[0,0] = -1

>>> print B # modifying A[0,0] does not modify B[0,0]
1.0000e+00 3.0000e+00
2.0000e+00 4.0000e+00

e The in-place operations directly modify the coefficients of the existing
matrix object and do not create a new object.

>>> B = matrix([[1.,2.], [3.,4.]])

>>> A =B

>>> A x= 2

>>> print B # in-place operation also changed B
2.0000e+00 6.0000e+00

4.0000e+00 8.0000e+00

>>> A = 2%A

>>> print B # regular operation creates a new A, so does not change B
2.0000e+00 6.0000e+00
4.0000e+00 8.0000e+00

The restrictions on in-place operations follow the principle that once a ma-
trix object is created, its size and type cannot be modified. The only matrix
attributes that can be changed are the values of the elements. The values can
be changed by in-place operations or by an indexed assignment, as explained in
the next section.

2.4 Indexing and Slicing

Matrices can be indexed using one or two arguments. In single-argument index-
ing of a matrix A, the index runs from -len(A) to len(A)-1, and is interpreted
as an index in the one-dimensional array of coefficients of A in column-major
order. Negative indices have the standard Python interpretation: for negative
k, A[k] is the same element as A[len(A)+k].

Four different types of one-argument indexing are implemented.

1. The index can be a single integer. This returns a number, e.g., A[0] is
the first element of A.

2. The index can be an integer matrix. This returns a column matrix: the
command ”A[matrix([0,1,2,3])]” returns the 4 by 1 matrix consisting
of the first four elements of A. The size of the index matrix is ignored:
”A[matrix([0,1,2,3], (2,2))]1” returns the same 4 by 1 matrix.

3. The index can be a list of integers. This returns a column matrix, e.g.,
A[[0,1,2,3]] is the 4 by 1 matrix consisting of elements 0, 1, 2, 3 of A.

4. The index can be a Python slice. This returns a matrix with one column
(possibly 0 by 1, or 1 by 1). For example, A[::2] is the column matrix

14 CHAPTER 2. DENSE MATRICES (CVXOPT.BASE)

defined by taking every other element of A, stored in column-major order.
A[0:0] is a matrix with size (0,1).

Thus, single-argument indexing returns a scalar (if the index is an integer),
or a matrix with one column. This is consistent with the interpretation that
single-argument indexing accesses the matrix in column-major order.

Note that an index list or an index matrix are equivalent, but they are both
useful, especially when we perform operations on index sets. For example, if I
and J are lists then I+J is the concatenated list, and 2+*I is I repeated twice
If they are matrices, these operations are interpreted as arithmetic operations.
For large index sets, indexing with integer matrices is also faster than indexing
with lists.

The following example illustrates one-argument indexing.

>>> from cvxopt.base import matrix
>>> A = matrix(range(16), (4,4), ’d’)
>>> print A

0.0000e+00 4.0000e+00 8.0000e+00 1.2000e+01
1.0000e+00 5.0000e+00 9.0000e+00 1.3000e+01
2.0000e+00 6.0000e+00 1.0000e+01 1.4000e+01
3.0000e+00 7.0000e+00 1.1000e+01 1.5000e+01
>>> Al4]
4.0

>>> I = matrix([0, 5, 10, 15])
the diagonal

>>> print A[I]
0.0000e+00
5.0000e+00
1.0000e+01
1.5000e+01

>>> 1 = [0,2];

>>> print A[2*I+J]

.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00

W= NONO

J=1[1,3]

>>> I = matrix([0, 2]); J

>>> print A[2%I+J]

1.0000e+00
7.0000e+00
>>> print A[4:
4.0000e+00
8.0000e+00
1.2000e+01

In two-argument indexing the arguments can be any combinations of the
four types listed above. The first argument indexes the rows of the matrix and

duplicate I and append J

matrix([1, 3]1)

multiply I by 2 and add J

4] # get every fourth element skipping the first four

2.4. INDEXING AND SLICING 15

the second argument indexes the columns. If both indices are scalars, then a
scalar is returned. In all other cases, a matrix is returned. We continue the
example.

>>> print A[:,1]
4.0000e+00
5.0000e+00
6.0000e+00
7.0000e+00

>>> J = matrix ([0, 2])

>>> print A[J,J]
0.0000e+00 8.0000e+00
2.0000e+00 1.0000e+01

>>> print A[:2, -2:]
8.0000e+00 1.2000e+01
9.0000e+00 1.3000e+01

Expressions of the form A[I] or A[I,J] can also appear on the lefthand side
of an assignment. The righthand side must be a scalar (i.e., a number or a 1
by 1 dense matrix), a sequence of numbers, or a dense or sparse matrix. If the
righthand side is a scalar, it is interpreted as a matrix with identical entries
and the dimensions of the lefthand side. If the righthand side is a sequence of
numbers (list, tuple, array array, xrange object, ...) its values are interpreted
as the coefficients of the lefthand side in column-major order. If the righthand
side is a matrix (matrix or spmatrix), it must have the same size as the lefthand
side. Sparse matrices are converted to dense in the assignment.

Indexed assignments are only allowed if they do not change the type of the
matrix. For example, if A is a matrix with type ’d’, then A[I] = B is only
permitted if B is an integer, a float, or a matrix of type i’ or ’d’. If A is
an integer matrix, then A[I] = B is only permitted if B is an integer or an
integer matrix.

The following example illlustrates indexed assignment.

>>> A = matrix(range(16), (4,4))
>>> A[::2,::2] = matrix([[-1, -2], [-3, -4]11)

>>> print A
-1 4 -3 12
1 5 9 13
-2 6 -4 14
3 7 11 15
>>> A[::5] += 1
>>> print A
0 4 -3 12
1 6 9 13
-2 6 -3 14
3 7 11 16

>>> A[0,:] = -1, 1, -1, 1

16 CHAPTER 2. DENSE MATRICES (CVXOPT.BASE)

>>> print A
-1 1 -1 1
1 6 9 13
-2 6 -3 14
3 7 11 16
>>> A[2:,2:] = xrange(4)
>>> print A
-1 1 -1 1
1 6 9 13
-2 6 0 2
3 7 1 3

2.5 Built-in Functions

Many Python built-in functions and operations can be used with matrix argu-
ments. We list some useful examples.
len(x)

Returns the product of the number of rows and the number of columns.
bool([x])

Returns False if x is empty (i.e., len(x) is zero) and True otherwise.
max(x)

Returns the maximum element of x.
min(x)

Returns the minimum element of x.
abs(x)

Returns a matrix with the absolute values of the elements of x.
sum(x[, start=0.0])

Returns the sum of start and the elements of x.

Matrices can be used as arguments to the 1ist (), tuple(), zip(), mapQ),
and filter () functions described in section 2.1 of the Python Library Refer-
ence. list(A) and tuple(A) construct a list, respectively a tuple, from the
elements of A. zip(A,B,...) returns a list of tuples, with the ith tuple con-
taining the ith elements of A, B,

>>> from cvxopt.base import matrix

>>> A = matrix([[-11., -5., -20.]1, [-6., -0., 7.11)
>>> B = matrix(range(6), (3,2))

>>> list(A)

2.6. OTHER MATRIX FUNCTIONS 17

[-11.0, -5.0, -20.0, -6.0, 0.0, 7.0]

>>> tuple(B)

0, 1, 2, 3, 4, 5)

>>> zip(A,B)

[(-11.0, O), (-5.0, 1), (-20.0, 2), (-6.0, 3), (0.0, 4), (7.0, B)]

map (£,A), where f is a function and A is a matrix, returns a list constructed
by applying f to each element of A. Multiple arguments can be provided, for
example, as in map(f,4A,B), if f is a function with two arguments.

>>> A = matrix([[5, -4, 10, -7], [-1, -5, -6, 2], [6, 1, 5, 2],
>>> B = matrix([[4,-15, 9, -14], [-4, -12, 1, -22],
>>> print matrix(map(max, A, B), (4,4))

5 -1 6 -1
-4 -5 1 2
10 1 9 -3
-7 2 12 -6

filter(f,A), where f is a function and A is a matrix, returns a list contain-
ing the elements of A for which f is true.

>>> print filter(lambda x: x%2, A)

[, -7, -1, -5, 1, 5, -1, -3, -7]

>>> print filter(lambda x: -2 < x < 3, A)
[-1, 2, 1, 2, -1, 2]

It is also possible to iterate over matrix elements, as illustrated in the fol-
lowing example.

>>> A = matrix([[5, -3], [9, 1111)
>>> for x in A: print max(x,0)

5
0
9
11

>>> [max(x,0) for x in A]
[5, 0, 9, 11]

The expression "x in A” returns True if an element of A is equal to x and
False otherwise.

2.6 Other Matrix Functions

The following functions of dense matrices can be imported from cvxopt.base.
sqrt(x)

-1, 2,
[-10, -9, 9, 12],
takes componentwise maximum

list of odd elements in A

[-9, -7

list of elements between -2 and 3

-3, -711)
,-11, -611)

18

CHAPTER 2. DENSE MATRICES (CVXOPT.BASE)

The elementwise square root of x. The result is returned as a real matrix
if x is an integer or real matrix and as a complex matrix if x is a complex
matrix. Raises an exception when x is an integer or real matrix with
negative elements.

sin(x)

The sine function applied elementwise to x. The result is returned as a real
matrix if x is an integer or real matrix and as a complex matrix otherwise.

cos(x)

The cosine function applied elementwise to x. The result is returned as
a real matrix if x is an integer or real matrix and as a complex matrix
otherwise.

exp(x)

The exponential function applied elementwise to x. The result is returned
as a real matrix if x is an integer or real matrix and as a complex matrix
otherwise.

log(x)

The natural logarithm applied elementwise to x. The result is returned
as a real matrix if x is an integer or real matrix and as a complex matrix
otherwise. Raises an exception when x is an integer or real matrix with
nonnegative elements, or a complex matrix with zero elements.

mul(x, y)

The elementwise product of x and y. The two matrices must have the
same size and type.

div(x, y)

The elementwise division of x by y. The two matrices must have the same
size and type.

2.7 Randomly Generated Matrices

The module cvxopt.random provides functions for generating random matrices.
Two types of random matrices are defined: matrices with normally distributed
entries and matrices with uniformly distributed entries.

The pseudo-random number generators used to generate the random matri-

ces are from the package described in the references below.

See also:

2.8. THE NUMPY ARRAY INTERFACE 19

S. Park, Random Number Generators.!

S. Park, D. Geyer, Random Number Generators: Good Ones Are Hard
To Find, Communications of the ACM, October 1988.

normal(nrows[, ncols[, mean[, std]]])

Returns a type >d’ matrix of size nrows by ncols with random elements
chosen from a normal distribution with mean mean and standard devi-
ation std. The default values for the optional arguments are ncols=1,
mean=0.0, std=1.0.

uniform(nrows[, ncols[, a[, b]]])

Returns a type >d’ matrix of size nrows by ncols matrix with random
elements, uniformly distributed between a and b. The default values for
the optional arguments are ncols=1, a=0.0, b=1.0.

getseed()

Returns the current seed value (the state of the random number genera-
tor).

setseed([value])

Sets the seed value. value must be a nonnegative integer. If value is
absent or equal to zero, the seed value is taken from the system clock.

2.8 The NumPy Array Interface

The CVXOPT matrix object is compatible with the NumPy Array Interface,
which allows Python objects that represent multidimensional arrays to exchange
data using information stored in the attribute __array_struct__.

See also:

NumPy Array Interface Specification?
NumPy home page?

As already mentioned in section ??, a two-dimensional array object (for ex-
ample, a NumPy matrix or two-dimensional array) can be converted to a CVX-
OPT matrix object by using the matrix () constructor. Conversely, CVXOPT
matrices can be used as array-like objects in NumPy. The following example
illustrates the compatibility of CVXOPT matrices and NumPy arrays.

Ihttp://www.cs.wm.edu/\~{}va/software/park/park.html
2http://numpy.scipy.org/array_interface.shtml
Shttp://numpy.scipy.org

20 CHAPTER 2. DENSE MATRICES (CVXOPT.BASE)

>>> from cvxopt import matrix
>>> a = matrix(range(6), (2,3), ’d’)
>>> print a
0.0000e+00 2.0000e+00 4.0000e+00
1.0000e+00 3.0000e+00 5.0000e+00
>>> from numpy import array
>>> b = array(a)
>>> Db
array([[0. 2. 4.]
(1. 3. 5.1
>>> print axb
array([[0. 4. 16.]
[1. 9. 25.11)
>>> from numpy import mat
>>> ¢ = mat(a)
>>> ¢
matrix([[0. 2. 4.]
[1. 3. 5.1
>>> a.T *x ¢
matrix([[1., 3., 5.1,
[3., 13., 23.],
[5., 23., 41.11)

In the first product, a*b is interpreted as NumPy array multiplication, i.e., com-
ponentwise multiplication. The second product a.T*c is interpreted as NumPy
matrix multiplication, i.e., standard matrix multiplication.

2.9 Printing Options

The format used for printing dense matrices (and the sparse matrices discussed
in chapter ??) is controlled by the dictionary cvxopt.base.print_options.
The dictionary has three keys, >iformat’, *dformat’, ’zformat’ that control,
respectively, how integer, double and complex numbers are printed. The fields
are C printf format strings with default values ’5.4e’ for d’ and ’z’ matrices
and ’5i’ for i’ matrices.

>>> from cvxopt.base import matrix, print_options
>>> print_options
{’zformat’: ’5.4e’, ’iformat’: ’5i’, ’dformat’: ’5.4e’}
>>> A = matrix([1., 2., 3.]1)
>>> print A
1.0000e+00
2.0000e+00
3.0000e+00
>>> print_options[’dformat’] = £’
>>> print A

2.9. PRINTING OPTIONS 21

1.000000

2.000000

3.000000
>>> print_options[’dformat’] = ’5.2e’
>>> print A

1.00e+00

2.00e+00

3.00e+00

22

CHAPTER 2. DENSE MATRICES (CVXOPT.BASE)

Chapter 3

The BLAS Interface
(cvxopt.blas)

The cvxopt.blas module provides an interface to the double-precision real and
complex Basic Linear Algebra Subprograms (BLAS). The names and calling se-
quences of the Python functions in the interface closely match the corresponding
Fortran BLAS routines (described in the references below) and their function-
ality is exactly the same.

Many of the operations performed by the BLAS routines can be implemented
in a more straightforward way by using the matrix arithmetic of section 7?7, com-
bined with the slicing and indexing of section ?7?7. As an example, ”C = A*B”
gives the same result as the BLAS call "gemm(A,B,C)”. The BLAS interface
offers two advantages. First, some of the functions it includes are not easily
implemented using the basic matrix arithmetic. For example, BLAS includes
functions that efficiently exploit symmetry or triangular matrix structure. Sec-
ond, there is a performance difference that can be significant for large matrices.
Although our implementation of the basic matrix arithmetic makes internal calls
to BLAS, it also often requires creating temporary matrices to store intermedi-
ate results. The BLAS functions on the other hand always operate directly on
their matrix arguments and never require any copying to temporary matrices.
Thus they can be viewed as generalizations of the in-place matrix addition and
scalar multiplication of section 7?7 to more complicated operations.

See also:

C. L. Lawson, R. J. Hanson, D. R. Kincaid, F. T. Krogh, Basic Linear Al-
gebra Subprograms for Fortran Use, ACM Transactions on Mathematical
Software, 5(3), 309-323, 1975.

J. J. Dongarra, J. Du Croz, S. Hammarling, R. J. Hanson, An Extended
Set of Fortran Basic Linear Algebra Subprograms, ACM Transactions on
Mathematical Software, 14(1), 1-17, 1988.

23

24 CHAPTER 3. THE BLAS INTERFACE (CVXOPT.BLAS)

J. J. Dongarra, J. Du Croz, S. Hammarling, I. Duff, A Set of Level 3
Basic Linear Algebra Subprograms, ACM Transactions on Mathematical
Software, 16(1), 1-17, 1990.

3.1 Matrix Classes

The BLAS exploit several types of matrix structure: symmetric, Hermitian,
triangular, and banded. We represent all these matrix classes by dense real or
complex matrix objects, with additional arguments that specify the structure.

Vector A real or complex n-vector is represented by a matrix of type *d’ or
>z’ and length n, with the entries of the vector stored in column-major
order.

General matrix A general real or complex m by n matrix is represented by a
real or complex matrix of size (m, n).

Symmetric matrix A real or complex symmetric matrix of order n is repre-
sented by a real or complex matrix of size (n, n), and a character argument
uplo with two possible values: *L’> and *U’. If uplo is ’L’, the lower tri-
angular part of the symmetric matrix is stored; if uplo is U’, the upper
triangular part is stored. A square matrix X of size (n, n) can therefore
be used to represent the symmetric matrices

[X10,0] X11,0] X[2,00 - X[p-10]

X[1,0] X[1,1] X[2,1] - X[n-1,1]

X[2,0] X[2,1] X([2,2] T X[n—1,2] if uplo = "1,
_X[n:_1,01 X[n:_1,1] Xn—1,2] X[n_i,n_l]_

X1[0,0] X1[0,1] X1[0,2] X[0,n—1]

X[0,1] X[1,1] X[1,2] X[1,n—1]

X1[0,2] X[1,2] X[2,2] X[2,n —1] if uplo = U,
_X[o,;z_u X[l,;z—l] X[2,7:1—1] X[n—i,n—l] |

Complex Hermitian matrix A complex Hermitian matrix of order n is rep-
resented by a matrix of type ’z’ and size (n, n), and a character argu-
ment uplo with the same meaning as for symmetric matrices. A complex
matrix X of size (n, n) can represent the Hermitian matrices

RXI0,0] X[1,0] X[2,0] X[n —1,0]
X[1,0] RX[1,1] X[2,1] - X[n—1,1]
X[2,0] X[2,1] RX[2,2] - X[n—1,2

RX[n —.l,n —1]

2] if uplo = 17,

3.1. MATRIX CLASSES 25
RX[0,00 X[0,1] X[0,2] X[0,n — 1]
X0 RX[L1 X[L2] X[1,n—1]
X[O, 2] [1, 2} %X s 2] X[2, n — 1] if uplo — ’U’.
X0,n—1 X[Ln—1 X[2n—1] RX[n—1,n — 1]

Triangular matrix A real or complex triangular matrix of order n is rep-
resented by a real or complex matrix of size (n, n), and two character
arguments: an argument uplo with possible values L’ and ’U’ to distin-
guish between lower and upper triangular matrices, and an argument diag
with possible values U’ and N’ to distinguish between unit and non-unit
triangular matrices. A square matrix X of size (n, n) can represent the

triangular matrices

X|[0,0] 0 0
X|[1,0] X[1,1] 0
X[2,0] X[2,1] X[2,2] 0 if uplo =
X[n—-1,00 Xn-1,1 X[n-—1,2] X[n—1,n-1]
1 0 0 - 0
X[1,0] 1 0 - 0
X[2,0] X[2,1] 1 o 0 if uplo =
X[n—-1,00 X[n—-1,1 X[n-1,2] 1
X[0,0] X][0,1] X]0,2] X[0,n —1]
0 X[1,1] X[1,2 X[1,n—1]
0 0 X1[2,2] X[2,n—1] if uplo =
0 0 0 X[n—-1,n-1]
1 Xx[0,1] X[0,2] X[0,n — 1]
0o 1 X[12 X[1,n—1]
0 0 1 X[2,n —1] if uplo =
0 0 0 1

General band matrix A general real or complex m by n band matrix with
kl subdiagonals and ku superdiagonals is represented by a real or complex
matrix X of size (kl+ku+1, n), and the two integers m and kl. The diag-
onals of the band matrix are stored in the rows of X, starting at the top
diagonal, and shifted horizontally so that the entries of the kth column of
the band matrix are stored in column k of X. A matrix X of size (kl+ku+1,

'L’ and diag =

'L’ and diag =

U’ and diag =

U’ and diag =

7N7’

7U7’

’N?

U

26

CHAPTER 3. THE BLAS INTERFACE (CVXOPT.BLAS)

n) therefore represents the m by n band matrix

X[ky, 0] X[k, —1,1] X[ky —2,2] -+ X[0,ky
X[ky +1,0] X[k, 1] X[ky —1,2] -+ X[,k X[0,ky+1]
X[2,ky] X[1,ky+ 1]

X[ky +2,0] Xk, +1,1] Xlky, 2]

Xlky + k1,0 Xy + ki — 1,1 X[ky+ ki —2,2]
0 X[kqukl,l] X[k‘u+k‘171,2]

Symmetric band matrix A real or complex symmetric band matrix of order
n with &k subdiagonals, is represented by a real or complex matrix X of size

Hermitian band matrix A complex Hermitian band matrix of order n with
k subdiagonals is represented by a complex matrix of size (k+1, n) and
an argument uplo. A matrix X of size (k+1, n) can represent the band

(k+1, n), and an argument uplo to indicate whether the subdiagonals (uplo

is ’L’) or superdiagonals (uplo is *U?) are stored. The k+1 diagonals are

stored as rows of X, starting at the top diagonal (i.e., the main diagonal if
uplois *L’, or the kth superdiagonal if uplo is *U?) and shifted horizontally
so that the entries of the kth column of the band matrix are stored in

column k of X. A matrix X of size (k+1, n) can therefore represent the
band matrices

- x[0,0] X[1,0] 2,0 - X[k0] 0
X0 X[0.1] XL e X[k—1,1] X[k 1]
X120 X[11] 0,2 - X[k-2.2] X[k—1,2]
X@m XmiLu X[k —2,2]

0 Xkl X[k—1.2]

C X0 X[k- L1 X[k—2.9] X0, 0
Xk—-1,1 X[k1] X[k—1.2] - X[LE X[0,k+1]
Xk—22 Xk-1,2 X[k2 - X2k X[Lk+1]

X0K XOLH XRA

0 X[0,k+1] X[1,k+1]

if uplo = 'L’,

if uplo="U".

3.1. MATRIX CLASSES 27

matrices
[®X[0,0] X[1,0] X[2,0] -+ X[kO] 0 |
X[1,0] RX][0,1] X1 - X[k-1,1 X[k1]
X[2,00 X[1,1] RX[0,2] - X[k—22 X[k-1,2
: : : : if uplo = 'L’,
X[k, 0] X[k-1,1 X[k—2,2]
0 X[k, 1] X[k—-1,2]
T RX[k,0] X[k—1,1 X[k-22 - X0,k 0 7
X[k—-1,1 RX[k,1] X[k-1,2] - X[1,k] X[0,k+1]
X[k-2,2 X[k-1,2] RX[k,2] - X[2,k] X[l,k+1]
: : if uplo="U".
X[0, k] X1, K] X2, K]
0 X[0,k+1] X[1,k+1]

Triangular band matrix A triangular band matrix of order n with & subdi-
agonals or superdiagonals is represented by a real complex matrix of size
(k+1, n) and two character arguments uplo and diag. A matrix X of size
(k+1, n) can represent the band matrices

X10,0] 0 0 |
X][1,0] X|[0,1] 0
X|[2,0] X|[1,1) X|[0,2]
: if uplo = ’L’ and diag = 'N’,
X[k,0] X[k-1,1 X[k—2,2
0 X[k, 1] X[k —-1,1]
[1 0 0 T
X|[1,0] 1
X|[2,0] X[1,1] 1
if uplo = ’L’ and diag = "U’,
X[k,0) X[k—-1,1] X[k—2,2]
0 X[k, 1] X[k —-1,2]
X[k,0] X[k-1,1 X[k-2,3] --- X][0,k] 0
0 Xk, 1] Xk-1,2] -+ X[Lk X[0,k+1] --
2,k X[Lk+1] --- if uplo = U’ and diag = "N,

0 0 Xk, 2] e X2,

28 CHAPTER 3. THE BLAS INTERFACE (CVXOPT.BLAS)

1 X[k-1,1 X[k-23] --- XI0,k] 0
0 1 X[k-1,2] --- X[,k X[0,k+1] --- .
0 0 1 o X[2,k] X[Lk+1] - if uplo =’"U’ and d

When discussing BLAS functions in the following sections we will omit sev-
eral less important optional arguments that can be used to select submatrices for
in-place operations. The complete specification is documented in the docstrings
of the source code and the pydoc help program.

3.2 Level 1 BLAS

The level 1 functions implement vector operations.
scal(alpha, x)

Scales a vector by a constant:
T = ax.

If x is a real matrix, the scalar argument alpha must be a Python integer
or float. If x is complex, alpha can be an integer, float, or complex.

nrma2(x)

Euclidean norm of a vector: returns

[[]]2-
asum(x)
1-Norm of a vector: returns
lzll1 (= real), IRx|l1 + [|Sz]|1 (z complex).
iamax(x)
Returns
argmax |zx| (z real), argmax |Rzg| + [Szk| (x complex).
k=0,...,n—1 k=0,...,n—1

If more than one coefficient achieves the maximum, the index of the first
k is returned.

swap(x, y)

Interchanges two vectors:
T Y.

x and y are matrices of the same type (’d’ or ’z’).

3.3. LEVEL 2 BLAS 29

copy(x, y)
Copies a vector to another vector:
Y= x.
x and y are matrices of the same type (°d’ or ’z?).
axpy(x, y[,alpha=1.0])
Constant times a vector plus a vector:
Y :i=ar+y.

x and y are matrices of the same type (’d’ or ’z’). If x is real, the scalar
argument alpha must be a Python integer or float. If x is complex,
alpha can be an integer, float, or complex.

dot(x, y)

Returns
zfy.
x and y are matrices of the same type (’d’ or ’z’).

dotu(x, y)

Returns
acTy.

x and y are matrices of the same type (’d’ or ’z’).

3.3 Level 2 BLAS

The level 2 functions implement matrix-vector products and rank-1 and rank-2
matrix updates. Different types of matrix structure can be exploited using the
conventions of section ?7.

gemv(A, x, y[, trans=’N’[, alpha=1.0[, beta=0.0]]])

Matrix-vector product with a general matrix:

y = aAz+Ly (trans = 'N’), y:=aAlz+py (trans ='T), y = aAP s+ By

The arguments A, x and y must have the same type (’d’ or ’z’). Complex
values of alpha and beta are only allowed if A is complex.

symv(A, x, y[, uplo="L’[, alpha=1.0[, beta=0.0]]])
Matrix-vector product with a real symmetric matrix:
y = oAz + By,

where A is a real symmetric matrix. The arguments A, x and y must have
type ’d’ and alpha and beta must be real.

(trans = 'C’).

30 CHAPTER 3. THE BLAS INTERFACE (CVXOPT.BLAS)

hemv(A, x, y[, uplo="L’[, alpha=1.0[, beta=0.0]]])

Matrix-vector product with a real symmetric or complex Hermitian ma-
trix:
y == adz + By,

where A is real symmetric or complex Hermitian. The arguments A, x and
y must have the same type (’d’ or ’z’). Complex values of alpha and
beta are only allowed if A is complex.

trmv(A, x[, uplo="L’[, trans=’N’[, diag=’N’]]])
Matrix-vector product with a triangular matrix:
x:= Az (trans = 'N’), z:= ATz (trans ='T'), x:= Ay (trans ='C’),

where A is square and triangular. The arguments A and x must have the
same type (’d’ or ’z’).

trsv(A, x[, uplo="L’[, trans=’N’[, diag="N’]]])
Solution of a nonsingular triangular set of linear equations:
r:=A"'z (trans ='N’), r:=A"Tx (trans ='T'), x:=A"Hy (trans ='C’),

where A is square and triangular with nonzero diagonal elements. The
arguments A and x must have the same type (°d’ or ’z°).

gbmv(A, m, k1, x, y[, trans=’N’ [, alpha=1.0[, beta=0.0]]])

Matrix-vector product with a general band matrix:

y = aAz+Ly (trans ='N’), y:=aAlz+py (trans ='T'), y:=aA%z+py (trans

where A is a rectangular band matrix with m rows and k1 subdiagonals.
The arguments A, x and y must have the same type (’d’ or ’z’). Complex
values of alpha and beta are only allowed if A is complex.

sbmv(A, x, y[, uplo="L’[, alpha=1.0[, beta=0.0]]])
Matrix-vector product with a real symmetric band matrix:
y = oAz + Py,

where A is a real symmetric band matrix. The arguments A, x and y must
have type ’d’ and alpha and beta must be real.

hbmv(A, x, y[, uplo="L’[, alpha=1.0[, beta=0.0]]])

Matrix-vector product with a real symmetric or complex Hermitian band
matrix:
y = adz + By,

where A is a real symmetric or complex Hermitian band matrix. The
arguments A, x and y must have the same type (’d’ or ’z’). Complex
values of alpha and beta are only allowed if A is complex.

3.3. LEVEL 2 BLAS 31

tbmv(A, x[, uplo="L’[, trans[, diag]]])
Matrix-vector product with a triangular band matrix:
x:= Az (trans ='N’), z:= ATz (trans ='T’), z:= Az (trans ='C’).
The arguments A and x must have the same type (’d’ or ’z”).

tbsv(A, x[, uplo=’L’[, trans[, diag]]])

Solution of a triangular banded set of linear equations:

z:=A"'z (trans ='N’), z:=ATz (trans ='T’), z:=Az (trans ='T'),

where A is a triangular band matrix of with nonzero diagonal elements.
The arguments A and x must have the same type (*d’ or ’z?).

ger(x, y, A[, alpha=1.0])

General rank-1 update:
A=A+ azy®,

where A is a general matrix. The arguments A, x and y must have the
same type (*d’ or ’z’). Complex values of alpha are only allowed if A is
complex.

geru(x, y, A[, alpha=1.0])

General rank-1 update:
A=A+ azxy’,

where A is a general matrix. The arguments A, x and y must have the
same type (’d’ or ’z’). Complex values of alpha are only allowed if A is
complex.

syr(x, A[, uplo="L’[, alpha=1.0]])
Symmetric rank-1 update:
A=A+ aza?,

where A is a real symmetric matrix. The arguments A and x must have
type ’d’. alpha must be a real number.

her(x, A[, uplo="L’[, alpha=1.0]])
Hermitian rank-1 update:
A=A+ azxz

where A is a real symmetric or complex Hermitian matrix. The arguments
A and x must have the same type (’d’ or ’z’). alpha must be a real
number.

32

CHAPTER 3. THE BLAS INTERFACE (CVXOPT.BLAS)

syr2(x, y, A[, uplo="L’[, alpha=1.0]])
Symmetric rank-2 update:
A=A+ a(zy? +yzT),

where A is a real symmetric matrix. The arguments A, x and y must have
type ’d’. alpha must be real.

her2(x, y, A[, uplo="L’[, alpha=1.0]])
Symmetric rank-2 update:
A=A+ axy? + ayzt,

where A is a a real symmetric or complex Hermitian matrix. The argu-
ments A, x and y must have the same type (’d’ or ’z’). Complex values
of alpha are only allowed if A is complex.

As an example, the following code multiplies the tridiagonal matrix

1 6 0 0
A=1|2 —4 3 0
0 -3 -1 1

with the vector z = (1,-1,2,-2).

>>>
>>>
>>>
>>>
>>>
>>>
>>>
-5.

1.
-1.

>>>
>>>
>>>
>>>
>>>
>>>
-1.

2.
-1.

5.

from cvxopt.base import matrix

from cvxopt.blas import gbmv

A = matrix([[O0., 1., 2.], [6., -4., -3.], [3., -1., 0.1, [1., 0., 0.1D)
x = matrix([1., -1., 2., -2.])

y = matrix(0., (3,1))

gbmv(A, 3, 1, x, y)

print y

0000e+00

2000e+01

0000e+00

The following example illustrates the use of tbsv().

from cvxopt.base import matrix

from cvxopt.blas import tbsv

A = matrix([-6., 5., -1., 2.1, (1,4))
x = matrix(1.0, (4,1))

tbsv(A, x) # x := diag(A) "{-1}xx
print x

6667e-01

0000e-01

0000e+00

0000e-01

3.4. LEVEL 3 BLAS 33

3.4 Level 3 BLAS

The level 3 BLAS include functions for matrix-matrix multiplication.
gemm(A, B, C[, transA=’N’[, transB=’N’[, alpha=1.0[, beta=0.0]]]])

Matrix-matrix product of two general matrices:

C :=aop(A)op(B) + pC

where
A transA ='N’ B transB = 'N’
op(A) = ¢ AT transA ='T’ op(B) =¢ BT transB='T’
AT transA ='C’ BH transB ='C'.

The arguments A, B and C must have the same type (’d’ or ’z’). Complex
values of alpha and beta are only allowed if A is complex.

symm(A, B, C[, side="L’[, uplo="L’[, alpha=1.0[, beta=0.0]]]])
Product of a real or complex symmetric matrix A and a general matrix B:
C:=aAB+ 3C (side ="L’), C:=aBA+3C (side='R).

The arguments A, B and C must have the same type (’d’ or ’z’). Complex
values of alpha and beta are only allowed if A is complex.

hemm(A, B, C[, side="L’[, uplo="L’[, alpha=1.0[, beta=0.0]]]])

Product of a real symmetric or complex Hermitian matrix A and a general
matrix B:

C:=aAB+ 3C (side ="L’), C:=aBA+3C (side='R).

The arguments A, B and C must have the same type (’d’ or ’z’). Complex
values of alpha and beta are only allowed if A is complex.

trmm(A, B[, side=’L’[, uplo=’L’[, transA=’N’[, diag=’N’[, alpha=1.0]]]]])
Product of a triangular matrix A and a general matrix B:
A transA ='N’

B:=aop(4)B (side ='L'), B :=aBop(A) (side='R), op(A4) =< AT transA ='T’
A" transA ='C’.

The arguments A and B must have the same type (’d’ or >z’). Complex
values of alpha are only allowed if A is complex.

trsm(A, B[, side=’L’[, uplo=’L’[, transA=’N’[, diag=’N’[, alpha=1.0]]]]])

CHAPTER 3. THE BLAS INTERFACE (CVXOPT.BLAS)

Solution of a nonsingular triangular system of equations:

A tr
B:=aop(A)"'B (side="1/), B:=aBop(A)~! (side='R/), op(A) ={ AT tr
AT tr,

where A is triangular and B is a general matrix. The arguments A and B
must have the same type (°d’ or ’z’). Complex values of alpha are only
allowed if A is complex.

syrk(A, C[, uplo="L’[, trans=’N’[, alpha=1.0[, beta=0.0]]]])
Rank-k update of a real or complex symmetric matrix C:
C := aAAT + 3C (trans = 'N'), C:=aAT A4 3C (trans ='T'),

where A is a general matrix. The arguments A and C must have the same
type (*d’ or ’z’). Complex values of alpha and beta are only allowed if
A is complex.

herk(A, C[, uplo="L’[, trans=’N’[, alpha=1.0[, beta=0.0]]]])
Rank-k update of a real symmetric or complex Hermitian matrix C:
C:=aAA” + BC (trans ='N’), C:=aA A+ pC (trans ='C’),

where A is a general matrix. The arguments A and C must have the same
type (’d’ or ’z’). alpha and beta must be real.

syr2k(A, B, C[, uplo=’L’[, trans=’N’[, alpha=1.0[, beta=0.0]]]])
Rank- 2k update of a real or complex symmetric matrix C:
C := a(ABT+BAT)4+3C (trans = 'N'), C := a(ATB+BTA)+8C (trans ='T’).

A and B are general real or complex matrices. The arguments A, B and
C must have the same type. Complex values of alpha and beta are only
allowed if A is complex.

her2k(A, B, C[, uplo=’L’[, trans=’N’[, alpha=1.0[beta=0.0]]]])
Rank- 2k update of a real symmetric or complex Hermitian matrix C:
C := aAB¥+aBA" +3C (trans = 'N'), C = aA" B+aB" A+BC (trans ='C’),

where A and B are general matrices. The arguments A, B and C must have
the same type (’d’ or ’z’). Complex values of alpha are only allowed if
A is complex. beta must be real.

Chapter 4

The LAPACK Interface
(cvxopt.lapack)

The module cvxopt.lapack includes functions for solving dense sets of linear
equations, for the corresponding matrix factorizations (LU, Cholesky, LDLT),
for solving least-squares and least-norm problems, for QR factorization, for sym-
metric eigenvalue problems and for singular value decomposition.

In this chapter we briefly describe the Python calling sequences. For further
details on the underlying LAPACK functions we refer to the LAPACK Users’
Guide and manual pages.

The BLAS conventional storage scheme of section 7?7 is used. As in the
previous chapter, we omit from the function definitions less important argu-
ments that are useful for selecting submatrices. The complete definitions are
documented in the docstrings in the source code.

See also:

LAPACK Users’ Guide, Third Edition, STAM, 1999.1

4.1 General Linear Equations
gesv(A, B[, ipiv=None])

Solves
AX = B,

where A and B are real or complex matrices, with A square and nonsin-
gular. On exit, B is replaced by the solution. The arguments A and B
must have the same type (’d’ or ’z’). The optional argument ipiv is
an integer matrix of length at least n. If ipiv is provided, then gesv()
solves the system, replaces A with its triangular factors, and returns the

Thttp://www.netlib.org/lapack/lug/lapack_lug.html

35

36 CHAPTER 4. THE LAPACK INTERFACE (CVXOPT.LAPACK)

permutation matrix in ipiv. If ipiv is not specified, then gesv() solves
the system but does not return the LU factorization and does not modify
A. For example,

>>> gesv(A, B)
solves the system without modifying A and returns the solution in B.
>>> gesv(A, B, ipiv)

returns the solution in B and also returns the details of the LU factorization
in A and ipiv.

Raises an ArithmeticError if the matrix is singular.
getrf(A, ipiv)
LU factorization of a general, possibly rectangular, real or complex matrix,
A=PLU

where A is m by n. The argument ipiv is an integer matrix of length at
least min{m, n}. On exit, the lower triangular part of A is replaced by L,
the upper triangular part by U, and the permutation matrix is returned
in ipiv. Raises an ArithmeticError if the matrix is not full rank.

getrs(A, ipiv, B[, trans=’N’])
Solves a general set of linear equations
AX =B (trans ='N’), ATX =B (trans ='T'), ARX =B (trans ='C’),

given the LU factorization computed by gesv() or getrf(). On entry,
A and ipiv must contain the factorization as computed by gesv() or
getrf (). On exit, B is overwritten with the solution. B must have the
same type as A.

getri(A, ipiv)

Computes the inverse of a matrix. On entry, A and ipiv must contain the
factorization as computed by gesv() or getrf (). On exit, A contains the
inverse.

In the following example we compute
r=(A"14+A4T)

for randomly generated problem data, factoring the coefficient matrix once.

4.1. GENERAL LINEAR EQUATIONS 37

>>> from cvxopt.base import matrix
>>> from cvxopt.random import normal
>>> from cvxopt.lapack import gesv, getrs

>>>n = 10
>>> A = normal(n,n)
>>> b = normal(n)

>>> ipiv = matrix(0, (n,1))

>>> x = +b

>>> gesv(A, x, ipiv) # x = A~{-1}*b
>>> x2 = +b

>>> getrs(A, ipiv, x2, trans=’T’) # x2 = A~{-T*b
>>> x += x2

Separate functions are provided for equations with band matrices.
gbsv(A, k1, B[, ipiv=None])

Solves
AX = B,

where A and B are real or complex matrices, with A n by n and banded
with k1 subdiagonals. The arguments A and B must have the same type
(’d? or ’z?).

The optional argument ipiv is an integer matrix of length at least n. If
ipiv is provided, then A must have 2kl + ku + 1 rows. On entry the
diagonals of A are stored in rows k1 + 1 to 2k1 + ku +1 of the A, using
the BLAS format for general band matrices (see section ??). On exit, the
factorization is returned in A and ipiv.

If ipiv is not provided, then A must have k1 + ku + 1 rows. On entry the
diagonals of A are stored in the rows of A, following the standard format
for general band matrices. In this case, gbsv() does not modify A on exit
and does not return the factorization.

On exit, B is replaced by the solution X. Raises an ArithmeticError if
the matrix is singular.

gbtrf(A, m, k1, ipiv)

LU factorization of a general m by n real or complex band matrix with
k1 subdiagonals. The matrix is stored using the BLAS format for general
band matrices (see section ??), by providing the diagonals (stored as rows
of a ku + k1 + 1 by n matrix), the number of rows m, and the number of
subdiagonals k1. The argument ipiv is an integer matrix of length at least
min{m, n}. On exit, A and ipiv contain the details of the factorization.
Raises an ArithmeticError if the matrix is not full rank.

gbtrs(A, k1, ipiv, B[, trans=’N’])
Solves a set of linear equations

AX =B (trans ='N’), ATX =B (trans ='T'), ARX =B (trans ='C’),

38 CHAPTER 4. THE LAPACK INTERFACE (CVXOPT.LAPACK)

with A a general band matrix with k1 subdiagonals, given the LU fac-
torization computed by gbsv() or gbtrf (). On entry, A and ipiv must
contain the factorization as computed by gbsv() or gbtrf (). On exit, B
is overwritten with the solution. B must have the same type as A.

As an example, we solve a linear equation with

1 2 0 0 1
3 4 5 0 1
A=16 7 8 o | *=|1
0 10 11 12 1

>>> from cvxopt.base import matrix
>>> from cvxopt.lapack import gbsv, gbtrf, gbtrs
>>>n, kl, ku = 4, 2, 1
>>> A = matrix([[0., 1., 3., 6.], [2., 4., 7., 10.], [6., 8., 11., 0.1, [9., 12., O
>>> x = matrix(1.0, (4,1))
>>> gbsv(4A, k1, x)
>>> print x
7.1429e-02
4.6429e-01
-2.1429e-01
-1.0714e-01

The code below illustrates how one can reuse the factorization returned by
gbsv().

>>> Ac = matrix(0.0, (2xkl+ku+1,n))
>>> Aclkl:,:] = A
>>> ipiv = matrix(0, (n,1))
>>> x = matrix(1.0, (4,1))
>>> gbsv(Ac, k1, x, ipiv) # solves A*xx = 1
>>> print x
7.1429e-02
4.6429e-01
-2.1429e-01
-1.0714e-01
>>> x = matrix(1.0, (4,1))
>>> gbtrs(Ac, k1, ipiv, x, trans=’T’) # solve A"T*x = 1
>>> print x
7.1429e-02
2.3810e-02
1.4286e-01
-2.3810e-02

An alternative method uses gbtrf () for the factorization.

>>> Acl[kl:,:] = A

4.1. GENERAL LINEAR EQUATIONS

>>> gbtrf(Ac, n, k1, ipiv)
>>> x = matrix(1.0, (4,1))
>>> gbtrs(Ac, k1, ipiv, x)
>>> print x

7.1429e-02

4.6429e-01

-2.1429e-01

-1.0714e-01
>>> x = matrix(1.0, (4,1))

>>> gbtrs(Ac, k1, ipiv, x, trans=’T’)

>>> print x
7.1429e-02
2.3810e-02
1.4286e-01

-2.3810e-02

solve A"Tx*x

solve A"Tx*x

I
[N

I
=

39

The following functions can be used for tridiagonal matrices They use a
simpler matrix format, that stores the diagonals in three separate vectors.

gtsv(dl, d, du, B))

Solves

AX = B,

where A is an n by n tridiagonal matrix, with subdiagonal d1 (a matrix
of length n-1), diagonal d (a matrix of length n), and superdiagonal du
(a matrix of length n-1). The four arguments must have the same type
(’d’ or ’z’). On exit d1, d, du are overwritten with the details of the
LU factorization of A, and B is overwritten with the solution X. Raises an
ArithmeticError if the matrix is singular.

gttrf(dl, d, du, du2, ipiv)

LU factorization of an n by n tridiagonal matrix with subdiagonal d1,
diagonal d and superdiagonal du. d1, d and du must have the same type.
du?2 is a matrix of length n-2, and of the same type as d1. ipivisan i’
matrix of length n. On exit, the five arguments contain the details of the
factorization. Raises an ArithmeticError if the matrix is singular.

pttrs(dl, 4, du, du2, ipiv, B[, trans=’N’])
Solves a set of linear equations
AX =B (trans ='N’), ATX =B (trans ='T’), AHX =B

where A is an n by n tridiagonal matrix. The arguments d1, d, du, du2 and
ipiv contain the details of the LU factorization as returned by gttrf ().
On exit, B is overwritten with the solution X. B must have the same type
as dl.

(trans = 'C’),

40 CHAPTER 4. THE LAPACK INTERFACE (CVXOPT.LAPACK)

4.2 Positive Definite Linear Equations
posv(A, B[, uplo=’L’])

Solves
AX = B,

where A is a real symmetric or complex Hermitian positive definite ma-
trix. On exit, B is replaced by the solution, and A is overwritten with the
Cholesky factor. The matrices A and B must have the same type (*d’ or
’z?). Raises an ArithmeticError if the matrix is not positive definite.

potrf(A[, uplo="L’])
Cholesky factorization
A=LL" o A=LL"

of a positive definite real symmetric or complex Hermitian matrix A. On
exit, the lower triangular part of A (if uplo is ’L’) or the upper triangular
part (if uplo is ’U’) is overwritten with the Cholesky factor or its (conju-
gate) transpose. Raises an ArithmeticError if the matrix is not positive
definite.

potrs(A, B[, uplo="L’])
Solves a set of linear equations
AX =B

with a positive definite real symmetric or complex Hermitian matrix, given
the Cholesky factorization computed by posv() or potrf (). On entry, A
contains the triangular factor, as computed by posv() or potrf(). On
exit, B is replaced by the solution. B must have the same type as A.

potri(A[, uplo=’L’])

Computes the inverse of a positive definite matrix. On entry, A contains
the Cholesky factorization computed by potrf () or posv(). On exit, it
contains the inverse.

As an example, we use posv() to solve the linear system

7ding(d)2 61] [2 } _ [Zb’; } (4.1)

by block-elimination. We first pick a random problem.

>>> from cvxopt.base import matrix, div
>>> from cvxopt.random import normal, uniform
>>> from cvxopt.blas import syrk, gemv

4.2. POSITIVE DEFINITE LINEAR EQUATIONS 41

>>> from cvxopt.lapack import posv
>>>m, n = 100, 50

>>> A = normal(m,n)

>>> bl, b2 = normal(m), normal(n)
>>> d = uniform(m)

We then solve the equations

ATdiag (d) 2 Axy = by + ATdiag (d)"%b;, diag(d)?z; = Azy — by.

>>> Asc = div(A, d[:, n*x[0]]) # Asc := diag(d)"{-1}xA

>>> B = matrix (0.0, (n,n))

>>> syrk(Asc, B, trans=’T’) # B := Asc”T * Asc = A°T * diag(d)~"{-2} * A
>>> x1 = div(bl, d) # x1 := diag(d)~{-1}*bl

>>> x2 = +b2

>>> gemv(Asc, x1, x2, trans=’T’, beta=1.0) # x2 := x2 + Asc"T*x1 = b2 + A"T*diag(d) ~{-2}*bl
>>> posv(B, x2) # x2 := B"{-1}*x2 = B {-1}*(b2 + A"Txdiag(d) "{-2
>>> gemv(Asc, x2, x1, beta=-1.0) # x1 := Asc*x2 - x1 = diag(d)~{-1} * (A*x2 - bl)
>>> x1 = div(x1, d) # x1 := diag(d)"{-1}*x1 = diag(d)"{-2} * (A*x2 -

There are separate routines for equations with positive definite band matri-
ces.
pbsv(A, B[, uplo="L’])

Solves
AX =B

where A is a real symmetric or complex Hermitian positive definite band
matrix. On entry, the diagonals of A are stored in A, using the BLAS
format for symmetric or Hermitian band matrices (see section ??). On
exit, B is replaced by the solution, and A is overwritten with the Cholesky
factor (in the BLAS format for triangular band matrices). The matrices A
and B must have the same type (°d’ or ’z’). Raises an ArithmeticError
if the matrix is not positive definite.

pbtrf(A[, uplo=’L’])
Cholesky factorization
A=LL" o A=LL"

of a positive definite real symmetric or complex Hermitian band matrix
A. On entry, the diagonals of A are stored in A, using the BLAS for-
mat for symmetric or Hermitian band matrices. On exit, A contains the
Cholesky factor, in the BLAS format for triangular band matrices. Raises
an ArithmeticError if the matrix is not positive definite.

pbtrs(A, B[, uplo=’L’])

CHAPTER 4. THE LAPACK INTERFACE (CVXOPT.LAPACK)

Solves a set of linear equations
AX =B

with a positive definite real symmetric or complex Hermitian band matrix,
given the Cholesky factorization computed by pbsv() or pbtrf(). On
entry, A contains the triangular factor, as computed by pbsv () or pbtrf ().
On exit, B is replaced by the solution. B must have the same type as A.

The following functions are useful for tridiagonal systems.
ptsv(d, e, B)

Solves
AX = B,

where A is an n by n positive definite real symmetric or complex Hermi-
tian tridiagonal matrix, with diagonal d (a ’d’ matrix of length n) and
subdiagonal e (a ’d’ or ’z’ matrix of length n-1). The arguments e and
B must have the same type. On exit d contains the diagonal elements of D
in the LDLT or LDL¥ factorization of A, and e contains the subdiagonal
elements of the unit lower bidiagonal matrix L. B is overwritten with the
solution X. Raises an ArithmeticError if the matrix is singular.

pttrf(d, e)

LDLT or LDLH factorization of an n by n positive definite real symmetric
or complex Hermitian tridiagonal matrix A. On entry, the argument d is
a ’d’ matrix with the diagonal elements of A. The argument e is *d’ or
>z’ matrix with the subdiagonal elements of A. On exit d contains the
diagonal elements of D, and e contains the subdiagonal elements of the
unit lower bidiagonal matrix L. Raises an ArithmeticError if the matrix
is singular.

gttrs(d, e, B[, uplo="L’])
Solves a set of linear equations
AX =B

where A is an n by n positive definite real symmetric or complex Her-
mitian tridiagonal matrix, given its LDLT or LDLY factorization. The
argument d is the diagonal of the diagonal matrix D. The argument uplo
only matters for complex matrices. If uplo is ’L’, then on exit e contains
the subdiagonal elements of the unit bidiagonal matrix L. If uplo is *U?’,
then e contains the complex conjugates of the elements of the unit bidiag-
onal matrix L. On exit, B is overwritten with the solution X. B must have
the same type as e.

4.3. SYMMETRIC AND HERMITIAN LINEAR EQUATIONS 43

4.3 Symmetric and Hermitian Linear Equations
sysv(A, B[, ipiv=None[, uplo="L’]])

Solves
AX =B

where A is a real or complex symmetric matrix of order n. On exit, B is
replaced by the solution. The matrices A and B must have the same type
(?d’ or ’z?). The optional argument ipiv is an integer matrix of length at
least equal to n. If ipiv is provided, sysv () solves the system and returns
the factorization in A and ipiv. If ipiv is not specified, sysv() solves
the system but does not return the factorization and does not modify A.
Raises an ArithmeticError if the matrix is singular.

sytrf(A, ipiv[, uplo=’L’])

LDLT factorization
PAPT = LDL"T

of a real or complex symmetric matrix A of order n. ipivisan ’i’ matrix
of length at least n. On exit, A and ipiv contain the factorization. Raises
an ArithmeticError if the matrix is singular.

sytrs(A, ipiv, B[, uplo=’L’])

Solves
AX =B

given the LDL™ factorization computed by sytrf() or sysv(). B must
have the same type as A.

sytri(A, ipiv[, uplo=’L’])

Computes the inverse of a real or complex symmetric matrix. On entry, A
and ipiv contain the LDLT factorization computed by sytrf () or sysv().
On exit, A contains the inverse.

hesv(A, B[, ipiv=None[, uplo=’L’]])

Solves
AX =B

where A is a real symmetric or complex Hermitian of order n. On exit,
B is replaced by the solution. The matrices A and B must have the same
type (’d’ or ’z’). The optional argument ipiv is an integer matrix of
length at least n. If ipiv is provided, then hesv() solves the system and
returns the factorization in A and ipiv. If ipiv is not specified, then
hesv () solves the system but does not return the factorization and does
not modify A. Raises an ArithmeticError if the matrix is singular.

hetrf(A, ipiv[, uplo=’L’])

44

>>>
>>>
>>>
>>>
>>>
>>>
>>>

CHAPTER 4. THE LAPACK INTERFACE (CVXOPT.LAPACK)

LDLH factorization
PAPT = LDLH

of a real symmetric or complex Hermitian matrix of order n. ipivisan ’i’
matrix of length at least n. On exit, A and ipiv contain the factorization.
Raises an ArithmeticError if the matrix is singular.

hetrs(A, ipiv, B[, uplo=’L’])

Solves
AX =B

given the LDLH factorization computed by hetrf () or hesv().
hetri(A, ipiv[, uplo="L’])

Computes the inverse of a real symmetric or complex Hermitian ma-
trix. On entry, A and ipiv contain the LDL factorization computed
by hetrf () or hesv(). On exit, A contains the inverse.

As an example we solve the KKT system (?7).

from cvxopt.lapack import sysv
K = matrix(0.0, (m+n,m+n))

K[: (m+n)*m : m+n+l1] = -d**2
K[l:m, m:] = A

x = matrix(0.0, (m+n,1))
x[:m], x[m:] = b1, b2

sysv(K, x, uplo=’U’)

4.4 Triangular Linear Equations

trtrs(A, B[, uplo="L’[, trans=’N’[, diag="N’]]])

Solves a triangular set of equations
AX =B (trans ='N’), ATX =B (trans ='T’), AfX =B

where A is real or complex and triangular of order n, and B is a matrix with
n rows. A and B are matrices with the same type (’d’ or ’z’). trtrs()
is similar to blas.trsm(), except that it raises an ArithmeticError if a
diagonal element of A is zero (whereas blas.trsm() returns inf values).

trtri(A[, uplo=’L’[, diag=’N’]])

Computes the inverse of a real or complex triangular matrix A. On exit,
A contains the inverse.

tbtrs(A, B[, uplo=’L’[, trans=’T’[,diag="N’]]])

(trans = 'C’),

4.5. LEAST-SQUARES AND LEAST-NORM PROBLEMS 45

Solves a triangular set of equations
AX =B (trans ='N’), ATX =B (trans ='T'), ARX =B (trans ='C’),

where A is real or complex triangular band matrix of order n, and B is a
matrix with n rows. The diagonals of A are stored in A using the BLAS
conventions for triangular band matrices. A and B are matrices with the
same type (°d’ or ’z’). On exit, B is replaced by the solution X.

4.5 Least-Squares and Least-Norm Problems

gels(A, B[, trans=’N’])

Solves least-squares and least-norm problems with a full rank m by n
matrix A.

1. trans is *N’. If m is greater than or equal to n, gels() solves the
least-squares problem

minimize [|[AX — B||p.
If m is less than or equal to n, gels () solves the least-norm problem

minimize || X||F
subject to AX = B.

2. trans is T’ or ’C’ and A and B are real. If m is greater than or
equal to n, gels() solves the least-norm problem

minimize || X||r
subject to ATX = B.

If m is less than or equal to n, gels () solves the least-squares problem
minimize ||ATX — B|r.

3. trans is ’C’ and A and B are complex. If m is greater than or equal
to n, gels() solves the least-norm problem

minimize || X||F
subject to A" X = B.

If mis less than or equal to n, gels() solves the least-squares problem
minimize [[AZX — B|F.

A and B must have the same typecode (’d’ or ’z’). trans = T’ is not
allowed if A is complex. On exit, the solution X is stored as the leading
submatrix of B. The array A is overwritten with details of the QR or the
LQ factorization of A. Note that gels() does not check whether A is full
rank.

46

CHAPTER 4. THE LAPACK INTERFACE (CVXOPT.LAPACK)

geqrf(A, tau)
QR factorization of a real or complex matrix A:
A=QR.

If A is m by n, then @ is m by m and orthogonal/unitary, and R is m
by n and upper triangular (if m is greater than or equal to n), or upper
trapezoidal (if m is less than or equal to n). tau is a matrix of the same
type as A and of length at least min{m, n}. On exit, R is stored in the
upper triangular part of A. The matrix @ is stored as a product of min{m,
n} elementary reflectors in the first min{m, n} columns of A and in tau.

ormqr(A, tau, C[, side=’L’[, trans=’N’]])

Product with a real orthogonal matrix:

Q trans ='N

C:= Op(Q)C (Side = /L/)7 C:= COp(Q) (Side = IR/)a Op(Q) = { QT

where @ is square and orthogonal. @ is stored in A and tau as a product of

min{A.size[0], A.size[l]} elementary reflectors, as computed by geqrf ().
unmgqr(A, tau, C[, side=’L’[, trans=’N’]])

Product with a real orthogonal or complex unitary matrix:

trans =T

/

@Q trans ='N
C:=op(Q)C (side ="1'), C:=Cop(Q) (side='R/), op(Q)=<¢ QT trans="'T
QY trans ='C

@ is square and orthogonal or unitary. @) is stored in A and tau as a
product of min{A.size[0], A.size[l]} elementary reflectors, as computed
by geqrf (). The arrays A, tau and C must have the same type. trans =
>T? is only allowed if the typecode is ’d’.

In the following example, we solve a least-squares problem by a direct call

to gels (), and by separate calls to geqrf (), ormqr (), and trtrs().

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

from cvxopt import random, blas, lapack
from cvxopt.base import matrix

m, n = 10, 5

A, b = random.normal(m,n), random.normal(m,1)

x1 = +b

lapack.gels(+A, x1) # x1[:n] minimizes ||A*x1[:n] - bl||_2
tau = matrix(0.0, (n,1))

lapack.geqrf (A, tau) # A = [Q1, Q2] * [R1; O]

x2 = +b

lapack.ormqr(A, tau, x2, trans=’T’) # x2 := [Q1, Q2]° * Db
lapack.trtrs(Al:n,:], x2, uplo="U’) # x2[:n] := R1°{-1}*x2[:n]
blas.nrm2(x1[:n] - x2[:n])

3.0050798580569307e-16

4.6. SYMMETRIC AND HERMITIAN EIGENVALUE DECOMPOSITIONAT

4.6 Symmetric and Hermitian Eigenvalue De-
composition

The first four routines compute all or selected eigenvalues and eigenvectors of a
real symmetric matrix A:

A = Vdiag(\)VT, vIv =1
syev(A, W[, jobz=’N’[, uplo=’L’]])

Eigenvalue decomposition of a real symmetric matrix of order n. W is a
real matrix of length at least m. On exit, W contains the eigenvalues in
ascending order. If jobz is ’V’, the eigenvectors are also computed and
returned in A. If jobz is ’N’, the eigenvectors are not returned and the
contents of A are destroyed. Raises an ArithmeticError if the eigenvalue
decomposition fails.

syevd(A, W[, jobz=’N’[, uplo=’L’]])

This is an alternative to syev(), based on a different algorithm. It is
faster on large problems, but also uses more memory.

syevx(A, W[, jobz=’N’[, range=’A’[, uplo=’L’[, v1=0.0, vu=0.0[, il=1,
iu=1[, Z=Nomel]]]]])

Computes selected eigenvalues and eigenvectors of a real symmetric matrix
A of order n.

W is a real matrix of length at least n. On exit, W contains the eigenvalues
in ascending order. If range is ’A’, all the eigenvalues are computed. If
range is ’I’°, eigenvalues il through iu are computed, where 1 <= il
<= iu <= n. If range is ’V’, the eigenvalues in the interval (v1l,vu] are
computed.

If jobz is *V’, the (normalized) eigenvectors are computed, and returned
in Z. If jobz is ’N’, the eigenvectors are not computed. In both cases, the
contents of A are destroyed on exit. Z is optional (and not referenced) if
jobz is *N’. It is required if jobz is *V’ and must have at least n columns
if range is A’ or ’V’ and at least iu-il+1 columns if range is *I°’.

syevx () returns the number of computed eigenvalues.

syevr(A, W[, jobz=’N’[, range=’A’[, uplo=’L’[, v1=0.0, vu=0.0[, il=1,
u=n], z-Nons][J]]

This is an alternative to syevx(). syevr() is the most recent LAPACK
routine for symmetric eigenvalue problems, and expected to supersede the
three other routines in future releases.

48 CHAPTER 4. THE LAPACK INTERFACE (CVXOPT.LAPACK)

The next four routines can be used to compute eigenvalues and eigenvectors
for complex Hermitian matrices:

A = Vdiag \)VH, VHV =TI

For real symmetric matrices they are identical to the corresponding syev_()
routines.
heev(A, W[, jobz=’N’[, uplo=’L’]])

Eigenvalue decomposition of a real symmetric or complex Hermitian ma-
trix of order n. The calling sequence is identical to syev(), except that A
can be real or complex.

heevd(A, W[, jobz=’N’[, uplo="L’]])
This is an alternative to heev ().
heevx(A, W[, jobz=’N’[, range=’A’[, uplo=’L’[, v1=0.0, vu=0.0 [, il=1,
iu=n[, Z=Nonell]]]])

Computes selected eigenvalues and eigenvectors of a real symmetric or
complex Hermitian matrix of order n. The calling sequence is identical
to syevx (), except that A can be real or complex. Z must have the same
type as A.

heevr(A, W[, jobz=’N’[, range=’A’[, uplo="L’[, v1=0.0, vu=0.0[, il=1,
iu=n[, Z=None]||]]])

This is an alternative to heevx ().

4.7 Generalized Symmetric Definite Eigenprob-
lems

Three types of generalized eigenvalue problems can be solved:

AZ = BZdiag (\) (type 1), ABZ = Zdiag (\) (type 2), BAZ = Zdiag ()\)
(4.2)

with A and B real symmetric or complex Hermitian, and B positive definite.

The matrix of eigenvectors is normalized as follows:

ZHBZ =T (types 1 and 2), ZHEB™'Z =T (type 3).
sygv(A, B, W[, itype=1[, jobz=’N’[, uplo=’L’]]])

Solves the generalized eigenproblem (??) for real symmetric matrices of
order n, stored in real matrices A and B. itype is an integer with possible
values 1, 2, 3, and specifies the type of eigenproblem. W is a real matrix of
length at least n. On exit, it contains the eigenvalues in ascending order.
On exit, B contains the Cholesky factor of B. If jobz is *V’, the eigenvec-
tors are computed and returned in A. If jobz is *N’, the eigenvectors are
not returned and the contents of A are destroyed.

(type 3),

4.8. SINGULAR VALUE DECOMPOSITION 49

hegv(A, B, W[, itype=1[, jobz=’N’[, uplo=’L’]]])

Generalized eigenvalue problem (?7?) of real symmetric or complex Hermi-
tian matrix of order n. The calling sequence is identical to sygv (), except
that A and B can be real or complex.

4.8 Singular Value Decomposition
gesvd(A, S[, jobu=’N’[, jobvt=’N’[, U=None[, Vt=Nonell]])
Singular value decomposition
A=UxVT, A=UxVH

of a real or complex m by n matrix A.

S is a real matrix of length at least min{m, n}. On exit, its first min{m,
n} elements are the singular values in descending order.

The argument jobu controls how many left singular vectors are computed.
The possible values are N’, A’ °S’ and ’0°. If jobu is ’N’, no left
singular vectors are computed. If jobu is *A’, all left singular vectors are
computed and returned as columns of U. If jobu is ’S”, the first min{m,n}
left singular vectors are computed and returned as columns of U. If jobu is
’0?, the first min{m,n} left singular vectors are computed and returned as
columns of A. The argument U is None (if jobu is N’ or ’A’) or a matrix
of the same type as A.

The argument jobvt controls how many right singular vectors are com-
puted. The possible values are ’N’, A’ °S’> and ’0°. If jobvt is ’N’,
no right singular vectors are computed. If jobvt is *A’, all right singular
vectors are computed and returned as rows of Vt. If jobvt is ’S’, the
first min{m,n} right singular vectors are computed and their (conjugate)
transposes are returned as rows of Vt. If jobvt is *0’, the first min{m,
n} right singular vectors are computed and their (conjugate) transposes
are returned as rows of A. Note that the (conjugate) transposes of the
right singular vectors (i.e., the matrix V) are returned in Vt or A. The
argument Vt can be None (if jobvt is N’ or ’A’) or a matrix of the same
type as A.

On exit, the contents of A are destroyed.
gesdd(A, S[, jobz=’N’[, U=None[, Vt=Nomnel]])

Singular value decomposition of a real or complex m by n matrix A. This
function is based on a divide-and-conquer algorithm and is faster than
gesvd ().

S is a real matrix of length at least min{m, n}. On exit, its first min{m,
n} elements are the singular values in descending order.

50 CHAPTER 4. THE LAPACK INTERFACE (CVXOPT.LAPACK)

The argument jobz controls how many singular vectors are computed.
The possible values are *N’, A’ >3’ and ’0°. If jobz is ’N’, no singu-
lar vectors are computed. If jobz is A’ all m left singular vectors are
computed and returned as columns of U and all n right singular vectors
are computed and returned as rows of Vt. If jobz is *S?, the first min{m,
n} left and right singular vectors are computed and returned as columns
of U and rows of Vt. If jobz is 0’ and m is greater than or equal to n,
the first n left singular vectors are returned as columns of A and the n
right singular vectors are returned as rows of Vt. If jobz is >0’ and m is
less than n, the m left singular vectors are returned as columns of U and
the first m right singular vectors are returned as rows of A. Note that the
(conjugate) transposes of the right singular vectors are returned in Vt or
A.

The argument U can be None (if jobz is N’ or ’A’ of jobz is ’0’ and
m is greater than or equal to n) or a matrix of the same type as A. The
argument Vt can be None (if jobz is ’N’ or *A’ or jobz is ’0° and m is
less than n) or a matrix of the same type as A.

On exit, the contents of A are destroyed.

4.9 Example: Analytic Centering
The analytic centering problem is defined as
minimize —Y_1" log(b; — al).

In the code below we solve the problem using Newton’s method. At each it-
eration the Newton direction is computed by solving a positive definite set of
linear equations

ATdiag (b — Az) 2 Av = —diag (b — Az)~'1

(where A has rows a
line search.

We use the level-3 BLAS function syrk() to form the Hessian matrix and
the LAPACK function posv() to solving the Newton system. The code can
be further optimized by replacing the matrix-vector products with the level-2

BLAS function gemv ().

), and a suitable step size is determined by a backtracking

from cvxopt.base import matrix, log, mul, div
from cvxopt import blas, lapack, random
from math import sqrt

def acent(A,b):

Returns the analytic center of A*x <= b.
We assume that b > 0 and the feasible set is bounded.

4.9. EXAMPLE: ANALYTIC CENTERING 51

MAXITERS = 100

ALPHA = 0.01

BETA = 0.5

TOL = 1e-8

m, n = A.size

x = matrix(0.0, (n,1))
H = matrix (0.0, (n,n))
g = matrix(0.0, (n,1))

for

iter in xrange(MAXITERS):

Gradient is g = A°T * (1./(b-A*x)).
d = (b-Axx)*x-1
g=A.T*d

Hessian is H = AT * diag(d)"2 = A.
Asc = mul(d[:,n*[0]], A)
blas.syrk(Asc, H, trans=’T’)

Newton step is v = -H™-1 * g.
v =-g
lapack.posv(H, v)

Terminate if Newton decrement is less than TOL.

lam = blas.dot(g, v)

if sqrt(-lam) < TOL: return x

Backtracking line search.
y = mul(A*xv, d)

step = 1.0

while 1-step*max(y) < O: step *= BETA

while True:

if -sum(log(1l-stepxy)) < ALPHA*step*lam: break

step *= BETA

X += stepx*v

52

CHAPTER 4. THE LAPACK INTERFACE (CVXOPT.LAPACK)

Chapter 5

Discrete Transforms
(cvxopt.fftw)

The cvxopt.fftw module is an interface to the FFTW library and contains
routines for discrete Fourier, cosine, and sine transforms. This module is op-
tional, and only installed when the FFTW library is made available during the
CVXOPT installation.

See also:

FFTW3 code, documentation, copyright and license.!

5.1 Discrete Fourier Transform
dft(x)

Replaces the columns of a dense complex matrix with their discrete Fourier
transforms: if X has n rows,

n—1
X[k, 1] ::Z6727rjk\/771/TLAX[]'?:]7 k=0,...,n—1.

=0

idft (X)

Replaces the columns of a dense complex matrix with their inverse discrete
Fourier transforms: if X has n rows,

n—1
1 e /=T
X[k’:]::; E e2mik _1/"X[j,:], k=0,...,n—1.

=0

Thttp://www.fftw.org

53

54 CHAPTER 5. DISCRETE TRANSFORMS (CVXOPT.FFTW)

5.2 Discrete Cosine Transform

det(X[, type=2])

Replaces the columns of a dense real matrix with their discrete cosine
transforms. The second argument, an integer between 1 and 4, denotes
the type of transform (DCT-I, DCT-II, DCT-III, DCT-IV). The DCT-
I transform requires that the row dimension of X is at least 2. These
transforms are defined as follows (for a matrix with n rows).

DCT-I. X[k,:] := X[O,:]Jr(l)kX[n1,:]+2§X{j,:]cos(7rjk/(n1)), k=
DCT-I: X[k,:] := 2§X[j,:]cos(7r(j+1/2)k/n), k=0,...,n—1

o
DCT-IIL: X[k,:] := X[O,:]+2§X[j,:]cos(7rj(k+1/2)/n), k=0,...,n—1
DCT-IV: X[k} := 21§X[j,:]cos(7r(j+1/2)(k+1/2)/n), k=0,...,n—1.

=0

idct(X[, type=2])

Replaces the columns of a dense real matrix with the inverses of the dis-
crete cosine transforms defined above.

5.3 Discrete Sine Transform

dst(X[, type=1])

Replaces the columns of a dense real matrix with their discrete sine trans-
forms. The second argument, an integer between 1 and 4, denotes the
type of transform (DST-I, DST-II, DST-III, DST-IV). These transforms
are defined as follows (for a matrix with n rows).

DST-I. X[k, := 2§X[j, Jsin(r(j + 1) (k+1)/(n+1)), k=0,...,n—1.
j=0
DST-II: X[k,:] = 275—: X[j,:|sin(x(j +1/2)(k+1)/n), k=0,...,n—1.
j=0
DST-II: X[k,:] = (-D)*X[n—1,]+ 2§X[j, Jsin(r(j +1)(k +1/2)/n), k=0,
=0
DST-IV: X[k,:] := 2§X[j, Jsin(n(j +1/2)(k+1/2)/n), k=0,...,n— 1.

J=0

5.3. DISCRETE SINE TRANSFORM 55

idst(X[, type=1])

Replaces the columns of a dense real matrix with the inverses of the dis-
crete sine transforms defined above.

56

CHAPTER 5. DISCRETE TRANSFORMS (CVXOPT.FFTW)

Chapter 6

Sparse Matrices
(cvxopt.base)

In this chapter we discuss the spmatrix object defined in cvxopt.base.

6.1 Creating Sparse Matrices

A general spmatrix object can be thought of as a triplet description of a sparse
matrix, i.e., a list of entries of the matrix, with for each entry the value, row
index, and column index. Entries that are not included in the list are assumed
to be zero. For example, the sparse matrix

0 2 00 3
2 00 0 0

A=1_9 9 04 0 (6.1)
0 0100

has the triplet description
(271>0)7 (717270)3 (anv]-)v (727271% (17372)v (47273)v

The list may include entries with a zero value, so triplet descriptions are not
necessarily unique. The list

(2,1,0), (=1,2,0), (0,3,0), (2,0,1), (-2,2,1), (1,3,2),

is another triplet description of the same matrix.

An spmatrix object corresponds to a particular triplet description of a sparse
matrix. We will refer to the entries in the triplet description as the nonzero
entries of the object, even though they may have a numerical value zero.

Two functions are provided to create sparse matrices. The first, spmatrix (),
constructs a sparse matrix from a triplet description.

spmatrix(x, I, J[, size[, tc]])

57

(3,0,4).

(47273)7

(3,0,4)

58

CHAPTER 6. SPARSE MATRICES (CVXOPT.BASE)

I and J are sequences of integers (lists, tuples, array arrays, xrange ob-
jects, ...) or integer matrices (matrix objects with typecode ’i’), con-
taining the row and column indices of the nonzero entries. The lengths of
I and J must be equal. If they are matrices, they are treated as lists of
indices stored in column-major order, i.e., as lists 1ist (I), respectively,
list(J).

size is a tuple of nonnegative integers with the row and column dimen-
sions of the matrix. The size argument is only needed when creating a
matrix with a zero last row or last column. If size is not specified, it is
determined from I and J: the default value for size[0] ismax(I)+1if I is
nonempty and zero otherwise. The default value for size[1] is max(J)+1
if J is nonempty and zero otherwise.

tc is the typecode, *d’ or ’z’, for double and complex matrices, respec-
tively. Integer sparse matrices are not implemented.

x can be a number, a sequence of numbers, or a dense matrix. This
argument specifies the numerical values of the nonzero entries.

e If x is a number (Python integer, float or complex), a matrix is
created with the sparsity pattern defined by I and J, and nonzero
entries initialized to the value of x. The default value of tc is *d’ if
x is integer or float, and ’z’ if x is complex.

The following code creates a 4 by 4 sparse identity matrix.

>>> from cvxopt.base import spmatrix

>>> A = spmatrix(1.0, range(4), range(4))
>>> print A

SIZE: (4,4)

(0, 0) 1.0000e+00

(1, 1) 1.0000e+00

(2, 2) 1.0000e+00

(3, 3) 1.0000e+00

e If x is a sequence of numbers, a sparse matrix is created with the
entries of x copied to the entries indexed by I and J. The list x must
have the same length as I and J. The default value of tc is determined
from the elements of x: ’d’ if x contains integers and floating-point
numbers or if x is an empty list, and ’z’ if x contains at least one
complex number.

As an example, the matrix (??) can be created as follows.

>>> A = spmatrix([2,-1,2,-2,1,4,3], [1,2,0,2,3,2,0], [0,0,1,1,2,3,4])

>>> print A
SIZE: (4,5)
(1, 0) 2.0000e+00
(2, 0) -1.0000e+00
(0, 1) 2.0000e+00

6.1. CREATING SPARSE MATRICES 59

(2, 1) -2.0000e+00
(3, 2) 1.0000e+00
(2, 3) 4.0000e+00
(0, 4) 3.0000e+00

e If x is a dense matrix, a sparse matrix is created with all the entries
of x copied, in column-major order, to the entries indexed by I and
J. The matrix x must have the same length as I and J. The default
value of tc is ’d’ if x is an *i’ or ’d’ matrix, and ’z’ otherwise.

If T and J contain repeated entries, the corresponding values of the coef-
ficients are added.

The function sparse() constructs a sparse matrix from a block-matrix de-
scription.
sparse(x[, tc])

tc is the typecode, *d’ or ’z’, for double and complex matrices, respec-
tively.

x can be a matrix, spmatrix, or a list of lists of matrices (matrix or
spmatrix objects) and numbers (Python integer, float or complex).

e If x is amatrix or spmatrix object, then a sparse matrix of the same
size and the same numerical value is created. Numerical zeros in x are
treated as structural zeros and removed from the triplet description
of the new sparse matrix.

o If x is a list of lists of matrices (matrix or spmatrix) and num-
bers (Python integer, float or complex) then each element of x
is interpreted as a (block-)column matrix stored in colum-major or-
der, and a block-matrix is constructed by juxtaposing the len(x)
block-columns (as in matrix (), see section ??). Numerical zeros are
removed from the triplet description of the new matrix.

The following example shows how to construct a sparse block-matrix.

>>> from cvxopt.base import matrix, spmatrix, sparse
>>> A = matrix([[1, 2, 0], [2, 1, 2], [0, 2, 111)
>>> B = spmatrix([], [1, [1, (3,3))

>>> C = spmatrix([3, 4, 5], [0, 1, 2], [0, 1, 21)
>>> print sparse([[A, B], [B, C]1)

SIZE: (6,6)

(0, 0) 1.0000e+00
(1, 0) 2.0000e+00
(0, 1) 2.0000e+00
(1, 1) 1.0000e+00
(2, 1) 2.0000e+00
(1, 2) 2.0000e+00
(2, 2) 1.0000e+00

60 CHAPTER 6. SPARSE MATRICES (CVXOPT.BASE)

(3, 3) 3.0000e+00
(4, 4) 4.0000e+00
(6, 5) 5.0000e+00

A matrix with a single block-column can be represented by a single

list.

>>> print sparse([A, C])
SIZE: (6,3)

(0, 0) 1.0000e+00
(1, 0) 2.0000e+00
(3, 0) 3.0000e+00
(0, 1) 2.0000e+00
(1, 1) 1.0000e+00
(2, 1) 2.0000e+00
(4, 1) 4.0000e+00
(1, 2) 2.0000e+00
(2, 2) 1.0000e+00
(5, 2) 5.0000e+00

6.2 Attributes and Methods

The following attributes and methods are defined for spmatrix objects.
A

ingle-column dense matrix containing the numerical values of the nonzero
entries in column-major order. Making an assignment to the attribute
is an efficient way of changing the values of the sparse matrix, without
changing the sparsity pattern.

When the attribute V is read, a copy of V is returned, as a new dense
matrix. (This implies, for example, that an indexed assignment ”A.V[I]
= B” does not work, or at least cannot be used to modify A. Instead the
attribute V will be read and returned as a new matrix; then the elements
of this new matrix are modified.)

A

ingle-column integer matrix with the row indices of the entries in V. A
read-only attribute.

A

ingle-column integer matrix with the column indices of the entries in V. A
read-only attribute.

A

uple with the dimensions of the matrix. A read-only attribute.

6.2. ATTRIBUTES AND METHODS 61

trans()

eturns the transpose of a sparse matrix as a new sparse matrix. One can
also use A.T instead of A.trans().

ctrans()

eturns the complex conjugate transpose of a sparse matrix as a new sparse
matrix. One can also use A.H instead of A.ctrans().

In the following example we take the elementwise square root of the matrix

(6.2)

O~ N O
O N O N
_ o O O
O =~ O O
OO O W

>>> from cvxopt.base import sqrt

>>> A = spmatrix([2,1,2,2,1,3,4], [1,2,0,2,3,0,2], [0,0,1,1,2,3,3])
>>> B = spmatrix(sqrt(A.V), A.I, A.J)

>>> print B

SIZE: (4,4)

(1, 0) 1.4142e+00
(2, 0) 1.0000e+00
(0, 1) 1.4142e+00
(2, 1) 1.4142e+00
(3, 2) 1.0000e+00
(0, 3) 1.7321e+00
(2, 3) 2.0000e+00

The next example below illustrates assignments to V.

>>> from cvxopt.base import spmatrix, matrix

>>> A = spmatrix(range(5), [0,1,1,2,2], [0,0,1,1,2])
>>> print A

SIZE: (3,3)

(0, 0) 0.0000e+00

(1, 0) 1.0000e+00

(1, 1) 2.0000e+00

(2, 1) 3.0000e+00

(2, 2) 4.0000e+00

>>> B = spmatrix(A.V, A.J, A.I, (4,4)) # transpose and add a zero row and column
>>> print B

SIZE: (4,4)

(0, 0) 0.0000e+00

(0, 1) 1.0000e+00

(1, 1) 2.0000e+00

(1, 2) 3.0000e+00

(2, 2) 4.0000e+00

62 CHAPTER 6. SPARSE MATRICES (CVXOPT.BASE)

>>> print matrix(B)

0.0000e+00 1.0000e+00 0.0000e+00 0.0000e+00
0.0000e+00 2.0000e+00 3.0000e+00 0.0000e+00
0.0000e+00 0.0000e+00 4.0000e+00 0.0000e+00
0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
>>> B.V[:] =1., 7., 8., 6., 4. # assign new values to nonzero entries
>>> print B

SIZE: (4,4)

(0, 0) 1.0000e+00

(0, 1) 7.0000e+00

(1, 1) 8.0000e+00

(1, 2) 6.0000e+00

(2, 2) 4.0000e+00

>>> B.V += 1.0 # add 1 to the nonzero entries
>>> print B

SIZE: (4,4)

(0, 0) 2.0000e+00

(0, 1) 8.0000e+00

(1, 1) 9.0000e+00

(1, 2) 7.0000e+00

(2, 2) 5.0000e+00

The V, I and J attributes can be used for reading sparse matrices from or
writing them to binary files. Suppose we want to write the matrix A defined
above to a binary file.

>>> f = open(’test.bin’,’w’)
>>> A.V.tofile(f)

>>> A.I.tofile(f)

>>> A.J.tofile(f)

>>> f.close()

A sparse matrix can be created from this file as follows.

>>> f = open(’test.bin’,’r’)

>>> V = matrix(0.0, (5,1)); V.fromfile(f)
>>> I = matrix(0, (5,1)); I.fromfile(f)
>>> J = matrix(0, (5,1)); J.fromfile(f)
>>> B = spmatrix(V, I, J)

>>> print B

SIZE: (3,3)

(0, 0) 0.0000e+00
(1, 0) 1.0000e+00
(1, 1) 2.0000e+00
(2, 1) 3.0000e+00
(2, 2) 4.0000e+00

Note that the pickle module provides a convenient alternative to this method.

6.3. ARITHMETIC OPERATIONS 63

6.3 Arithmetic Operations

Most of the operations defined for dense *d’ and ’z’ matrices (section ??) are
also defined for sparse matrices. In the following table, A is a sparse matrix, B
is sparse or dense, and c is a scalar, defined as a Python number or a 1 by 1
dense matrix.

Unary plus/minus +A, -A

Addition A+B, B+A, A+c, c+A
Subtraction A-B, B-A, A-c, c-A
Matrix multiplication A*B, BxA

Scalar multiplication and division | c*A, Axc, A/c

If B is a dense matrix, then the result of A+B, B+A, A-B, B-A is a dense matrix.
The typecode of the result is >d’ if A has typecode *d’ and B has typecode ’i’
or ’d’, and it is ’z’ if A and/or B have typecode *z’.

If B is a sparse matrix, then the result of A+B, B+A, A-B, B-A is a sparse
matrix. The typecode of the result is >d’ if A and B have typecode ’d’, and
’z’ otherwise.

If ¢ in A+c, A-c, c+A, c-A is a number, then it is interpreted as a dense
matrix with the same size as A, typecode given by the type of ¢, and all entries
equal to c. If cis a 1 by 1 dense matrix and the size of A is not 1 by 1, then
c is interpreted as a dense matrix of the same size as A, typecode given by the
typecode of ¢, and all entries equal to c[0].

The result of a matrix-matrix product A*B or B*A is a dense matrix if B is
dense, and sparse if B is sparse. The matrix-matrix product is not allowed if B
is a dense i’ matrix.

If ¢ is a number (Python integer float or complex), then the operations
cxA and A*xc define scalar multiplication and return a sparse matrix.

If c is a 1 by 1 dense matrix, then, if possible, the products cxA and Axc
are interpreted as matrix-matrix products and a dense matrix is returned. If
the product cannot be interpreted as a matrix-matrix product (either because
the dimensions of A are incompatible or because ¢ has typecode ’i’), then the
product is interpreted as the scalar multiplication with ¢ [0] and a sparse matrix
is returned.

The division A/c is interpreted as scalar multiplication with 1.0/c if c is a
number, or with 1.0/c[0] if c is a 1 by 1 dense matrix.

The following in-place operations are defined for a sparse matrix A if they
do not change the dimensions or type of A.

In-place addition A+=B, A+=c
In-place subtraction A-=B, A-=c
In-place scalar multiplication and division | A*=c, A/=c

For example, A += 1.0” is not allowed because the operation "A = A +
1.0” results in a dense matrix, so it cannot be assigned to A without changing
its type.

64 CHAPTER 6. SPARSE MATRICES (CVXOPT.BASE)

In-place matrix-matrix products are not allowed. (Except when c is a 1 by
1 dense matrix, in which case A*=c is interpreted as a scalar product A*=c[0].)

As for dense operations, the in-place sparse operations do not return a new
matrix but modify the existing object A. The restrictions on in-place operations
follow the principle that once a sparse matrix is created, its size and type cannot
be modified. The only attributes that can be modified are the sparsity pattern
and the numerical values of the nonzero elements. These attributes can be
modified by in-place operations or by indexed assignments.

6.4 Indexing and Slicing

Sparse matrices can be indexed the same way as dense matrices (see section 77

).

>>> from cvxopt.base import spmatrix

>>> A = spmatrix([0,2,-1,2,-2,1], [0,1,2,0,2,1], [0,0,0,1,1,2])
>>> print A[:,[0,1]]

SIZE: (3,2)

(0, 0) 0.0000e+00

(1, 0) 2.0000e+00

(2, 0) -1.0000e+00

(0, 1) 2.0000e+00

(2, 1) -2.0000e+00

>>> B = spmatrix([0,2%1j,0,-2], [1,2,1,2], [0,0,1,1,])
>>> print B[-2:,-2:]

SIZE: (2,2)

(0, 0) 0.0000e+00-3j0.0000e+00

(1, 0) 2.0000e+00-3j0.0000e+00

(0, 1) 0.0000e+00-3j0.0000e+00

(1, 1) 0.0000e+00-3j2.0000e+00

An indexed sparse matrix A[I] or A[I,J] can also be the target of an assign-
ment. The righthand side of the assignment can be a scalar (a Python integer,
float, or complex, or a 1 by 1 dense matrix), a sequence of numbers, or a sparse
or dense matrix of compatible dimensions. If the righthand side is a scalar, it is
treated as a dense matrix of the same size as the lefthand side and with all its
entries equal to the scalar. If the righthand side is a sequence of numbers, they
are treated as the elements of a dense matrix in column-major order.

We continue the example above.

>>> C = spmatrix([10,-20,30], [0,2,1], [0,0,11)
>>> A[:,0] = C[:,0]

>>> print A

SIZE: (3,3)

(0, 0) 1.0000e+01

(2, 0) -2.0000e+01

6.5. BUILT-IN FUNCTIONS 65

(0, 1) 2.0000e+00
(2, 1) -2.0000e+00
(1, 2) 1.0000e+00
>>> D = matrix(range(6), (3,2))
>>> A[:,0] = D[:,0]
>>> print A

SIZE: (3,3)

(0, 0) 0.0000e+00
(1, 0) 1.0000e+00
(2, 0) 2.0000e+00
(0, 1) 2.0000e+00
(2, 1) -2.0000e+00
(1, 2) 1.0000e+00
>>> A[:,0] =1

>>> print A

SIZE: (83,3)

(0, 0) 1.0000e+00
(1, 0) 1.0000e+00
(2, 0) 1.0000e+00
(0, 1) 2.0000e+00
(2, 1) -2.0000e+00
(1, 2) 1.0000e+00
>>> A[:,0] =0

>>> print A

TYPE: (3,3)

(0, 0) 0.0000e+00
(1, 0) 0.0000e+00
(2, 0) 0.0000e+00
(0, 1) 2.0000e+00
(2, 1) -2.0000e+00
(1, 2) 1.0000e+00

6.5 Built-In Functions

The functions described in the table of section ?? also work with sparse matrix
arguments. The difference is that for a sparse matrix only the nonzero entries
are considered.

len(x)

If x is a spmatrix, returns the number of nonzero entries in x.

bool([x])

If x is a spmatrix, returns False if x has at least one nonzero entry; False
otherwise.

max(x)

66

CHAPTER 6. SPARSE MATRICES (CVXOPT.BASE)

If x is a spmatrix, returns the maximum nonzero entry of x.

min(x)

If x is a spmatrix, returns the minimum nonzero entry of x.

abs(x)

If x is a spmatrix, returns a sparse matrix with the absolute value of the
elements of x and the same sparsity pattern.

sum(x[, start=0.0])

If x is a spmatrix, returns the sum of start and the elements of x.

The functions 1ist(), tuple(), zip(), map(), filter() also take sparse
matrix arguments. They work as for dense matrices, again with the difference
that only the nonzero entries are considered.

In the following example we square the entries of the matrix (?77?).

>>> A = spmatrix([2,1,2,2,1,3,4], [1,2,0,2,3,0,2], [0,0,1,1,2,3,3])

>>> B = spmatrix(map(lambda x: x**2, A), A.I, A.J)
>>> print B

SIZE:
(1, 0)
(2, 0)
(0, 1
(2, 1
(3, 2)
(0, 3)
(2, 3)

= O = DD e

(4,4)
4.
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.6000e+01

0000e+00

The expression "x in A” returns True if a nonzero entry of A is equal to x
and False otherwise.

6.6 Sparse BLAS Functions

The cvxopt.base module includes a few arithmetic functions that extend func-
tions from cvxopt.blas to sparse matrices. These functions are faster than
the corresponding operations implemented using the overloaded arithmetic de-
scribed in section ??7. They also work in-place, i.e., they modify their arguments
without creating new objects.

gemv(A, x, y[, trans=’N’[, alpha=1.0[, beta=0.0]]])

Matrix-vector product with a general dense or sparse matrix:

y = aAz+0y

(trans = 'N’), y:=aAlz+py (trans ='T'), y:=aAT x4+ 8y

If A is a dense matrix, this is identical to blas.gemv(). If A is sparse,
the result is the same as when blas.gemv() is called with matrix(A) as
argument, however, without explicitly converting A to dense.

(trans

6.6. SPARSE BLAS FUNCTIONS 67

symv(A, x, y[, uplo="L’[, alpha=1.0[, beta=0.0]]])
Matrix-vector product with a dense or sparse real symmetric matrix:
y = aAx + By.

If A is a dense matrix, this is identical to blas.symv(). If A is sparse,
the result is the same as when blas.symv() is called with matrix(A) as
argument, however, without explicitly converting A to dense.

gemm(A, B, C[, transA="N’[, transB=’N’[, alpha=1.0[, beta=0.0[, partial=False]|]]])
Matrix-matrix product of two general sparse or dense matrices:

C :=aop(A)op(B) + pC

where
A transA = 'N’ B transB = 'N’
op(A) =4 AT transA ='T’ op(B) =< BT transB ='T’
AT transA ='C’ BE transB ='C'.

If A, B and C are dense matrices, this is identical to blas.gemm(), described
in section ??7, and the argument partial is ignored.

If A and/or B are sparse and C is dense, the result is the same as when
blas.gemm() is called with matrix(A) and matrix(B) as arguments, with-
out explicitly converting A and B to dense. The argument partial is
ignored.

If C is a sparse matrix, the matrix-matrix product in the definition of
blas.gemm() is computed, but as a sparse matrix. If partial is False, the
result is stored in C, and the sparsity pattern of C is modified if necessary.
If partial is True, the operation only updates the nonzero elements in C,
even if the sparsity pattern of C differs from that of the matrix product.

syrk(A, C[, uplo=’L’[, trans=’N’[, alpha=1.0[, beta=0.0[, partial=False]]]]])
Rank-k update of a sparse or dense real or complex symmetric matrix:
C = aAAT + 3C (trans = 'N'), C:=aATA+ BC (trans ='T),

If A and C are dense, this is identical to blas.syrk(), described in sec-
tion ??, and the argument partial is ignored.

If A is sparse and C is dense, the result is the same as when blas.syrk()
is called with matrix(A) as argument, without explicitly converting A to
dense. The argument partial is ignored.

If C is sparse, the product in the definition of blas.syrk() is computed,
but as a sparse matrix. If partial is False, the result is stored in C,
and the sparsity pattern of C is modified if necessary. If partial is True,
the operation only updates the nonzero elements in C, even if the sparsity
pattern of C differs from that of the matrix product.

68 CHAPTER 6. SPARSE MATRICES (CVXOPT.BASE)

In the following example, we first compute

C = ATB, A=

= O = O
S = O =
oS OO
N O N O
o W o

[eoRN el Rl an)

>>> from cvxopt.base import spmatrix, gemm

>>> A = spmatrix(1, [1,3,0,2,1], [0,0,1,1,2])
>>> B = spmatrix([2,2,-1,3,2], [1,3,0,2,1], [0,0,1,1,2])
>>> C = spmatrix([], [1, [0, size=(3,3))

>>> gemm(A, B, C, transA=’T’)
>>> print C

SIZE: (3,3)

(0, 0) 4.0000e+00

(2, 0) 2.0000e+00

(1, 1) 2.0000e+00

(0, 2) 2.0000e+00

(2, 2) 2.0000e+00

Now suppose we want to replace C with

01 0
o 130 -2
C=4"D, D=|. |

4.0 0

The new matrix has the same sparsity pattern as C, so we can use gemm() with
the partial=True option. This saves time in large sparse matrix multiplications
when the sparsity pattern of the result is known beforehand.

>>> D = spmatrix([3,4,1,1,-2], [1,3,0,2,1], [0,0,1,1,2])
>>> gemm(A, D, C, transA=’T’, partial=True)

>>> print C

SIZE: (3,3)

(0, 0) 7.0000e+00

(2, 0) 3.0000e+00

(1, 1) 2.0000e+00

(0, 2) -2.0000e+00

(2, 2) -2.0000e+00

Chapter 7

Sparse Linear Equation
Solvers

In this section we describe routines for solving sparse sets of linear equations.

A real symmetric or complex Hermitian sparse matrix is stored as an spmatrix
object X of size (n, n) and an additional character argument uplo with possi-
ble values L’ and ’U’. If uplo is ’L’, the lower triangular part of X contains
the lower triangular part of the symmetric or Hermitian matrix, and the upper
triangular matrix of X is ignored. If uplo is *U’, the upper triangular part of
X contains the upper triangular part of the matrix, and the lower triangular
matrix of X is ignored.

A general sparse square matrix of order n is represented by an spmatrix
object of size (n, n).

Dense matrices, which appear as righthand sides of equations, are stored
using the same conventions as in the BLAS and LAPACK modules.

7.1 Matrix Orderings (cvxopt.amd)

CVXOPT includes an interface to the AMD library for computing approximate
minimum degree orderings of sparse matrices.
See also:

AMD code, documentation, copyright and license.! P. R. Amestoy, T. A.
Davis, I. S. Duff, Algorithm 837: AMD, An Approximate Minimum Degree
Ordering Algorithm, ACM Transactions on Mathematical Software, 30(3),
381-388, 2004.

order(A[, uplo="L’])

Computes the approximate mimimum degree ordering of a symmetric
sparse matrix A. The ordering is returned as an integer dense matrix

Thttp://www.cise.ufl.edu/research/sparse/amd

69

70 CHAPTER 7. SPARSE LINEAR EQUATION SOLVERS

with length equal to the order of A. Its entries specify a permutation that
reduces fill-in during the Cholesky factorization. More precisely, if p =
order (A), then A[p,p] has sparser Cholesky factors than A.

As an example we consider the matrix

1

O W o O

N O OO

O ot o W
(an]

>>> from cvxopt.base import spmatrix

>>> from cvxopt import amd

>>> A = spmatrix([10,3,5,-2,5,2], [0,2,1,2,2,3], [0,0,1,1,2,3])
>>> P = amd.order(A)

>>> print P

W N O+~

7.2 General Linear Equations (cvxopt.umfpack)

The module cvxopt.umfpack includes four functions for solving sparse non-
symmetric sets of linear equations. They call routines from the UMFPACK
library, with all control options set to the default values described in the UMF-
PACK user guide.

See also:

UMFPACK code, documentation, copyright and license.? T. A. Davis, Al-
gorithm 832: UMFPACK — an unsymmetric-pattern multifrontal method
with a column pre-ordering strategy, ACM Transactions on Mathematical
Software, 30(2), 196-199, 2004.

linsolve(A, B[, trans=’N’])
Solves a sparse set of linear equations
AX =B (trans='N’), ATX =B (trans='T'), A"X =D (trans='C"),
where A is a sparse matrix and B is a dense matrix of the same type (>d’

or ’z’) as A. On exit B contains the solution. Raises an ArithmeticError
exception if the coeflicient matrix is singular.

2http://www.cise.ufl.edu/research/sparse/umfpack

7.2.

Int

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

5.
-5.

1.

1.
-7.

GENERAL LINEAR EQUATIONS (CVXOPT.UMFPACK) 71
he following example we solve an equation with coefficient matrix
2 3 0 0 0
3 0 4 0 6
A=(0 -1 -3 2 0 (7.1)
0 0 1 00
0 4 2 01
from cvxopt.base import spmatrix, matrix
from cvxopt import umfpack
v =1[2,3, 3,-1,4, 4,-3,1,2, 2, 6,1]
I=1[0,1, 0, 2,4, 1, 2,3,4, 2, 1,4]
J=1[0,0, 1, 1,1, 2, 2,2,2, 3, 4,4]
A = spmatrix(V,I,J)
B = matrix (1.0, (5,1))
umfpack.linsolve(A,B)
print B
7895e-01
2632e-02
0000e+00
9737e+00
8947e-01

The function umfpack.linsolve () is equivalent to the following three functions

call

ed in sequence.
symbolic(4)

Reorders the columns of A to reduce fill-in and performs a symbolic LU
factorization. A is a sparse, possibly rectangular, matrix. Returns the
symbolic factorization as an opaque C object that can be passed on to
umfpack.numeric().

numeric(A, F)

Performs a numeric LU factorization of a sparse, possibly rectangular,
matrix A. The argument F is the symbolic factorization computed by
umfpack.symbolic() applied to the matrix A, or another sparse matrix
with the same sparsity pattern, dimensions, and type. The numeric fac-
torization is returned as an opaque C object that that can be passed on to
umfpack.solve(). Raises an ArithmeticError if the matrix is singular.

solve(A, F, B[, trans="N’])
Solves a set of linear equations
AX =B (trans ='N’), ATX =B (trans ='T'), ARX =B (trans ='C’),

where A is a sparse matrix and B is a dense matrix of the same type as A.
The argument F is a numeric factorization computed by umfpack.numeric().
On exit B is overwritten by the solution.

72 CHAPTER 7. SPARSE LINEAR EQUATION SOLVERS

These separate functions are useful for solving several sets of linear equations

with the same coefficient matrix and different righthand sides, or with coeffi-

cient matrices that share the same sparsity pattern. The symbolic factorization

depends only on the sparsity pattern of the matrix, and not on the numerical

values of the nonzero coefficients. The numerical factorization on the other hand

depends on the sparsity pattern of the matrix and on its the numerical values.
As an example, suppose A is the matrix (??) and

4 3 00 0
3 0 40 6

B=|0 -1 -3 2 0|,
0 0 100
0 4 20 2

which differs from A in its first and last entries. The following code computes
r=ATB 1A 11,

>>> from cvxopt.base import spmatrix, matrix
>>> from cvxopt import umfpack
>>> VA = [2,3, 3,-1,4, 4,-3,1,

-
[N

2, 2, 6,1]
>>> VB = [4,3, 3,-1,4, 4,-3,1,2, 2, 6,2]
>> 1= [0,1, 0, 2,4, 1, 2,3,4, 2, 1,4]
>>J = [0,0, 1, 1,1, 2, 2,2,2, 3, 4,4]
>>> A = spmatrix(VA, I, J)
>>> B = spmatrix(VB, I, J)
>>> x = matrix(1.0, (5,1))
>>> Fs = umfpack.symbolic(A)
>>> FA = umfpack.numeric(A, Fs)
>>> FB = umfpack.numeric(B, Fs)

>>> umfpack.solve(A, FA, x)
>>> umfpack.solve(B, FB, x)
>>> umfpack.solve(A, FA, x, trans=’T’)
>>> print x

5.8065e-01
-2.3660e-01

1.6280e+00

8.0656e+00
-1.3075e-01

7.3 Positive Definite Linear Equations (cvxopt.cholmod)

cvxopt.cholmod is an interface to the Cholesky factorization routines of the
CHOLMOD package. It includes functions for Cholesky factorization of sparse
positive definite matrices, and for solving sparse sets of linear equations with
positive definite matrices. The routines can also be used for computing LDLT

7.3. POSITIVE DEFINITE LINEAR EQUATIONS (CVXOPT.CHOLMOD) 73

(or LDLY) factorizations of symmetric indefinite matrices (with L unit lower-
triangular and D diagonal and nonsingular) if such a factorization exists.
See also:

CHOLMOD code, documentation, copyright and license.?

linsolve(A, B[, p=None[, uplo=’L’]])

Solves
AX =B

with A sparse and real symmetric or complex Hermitian. B is a dense
matrix of the same type as A. On exit it is overwritten with the solution.
The argument p is an integer matrix with length equal to the order of A,
and specifies an optional reordering of A. If p is not specified, CHOLMOD
used a reordering from the AMD library. Raises an ArithmeticError if
the factorization does not exist.

As an example, we solve

10 0 3 0 0 4
0 5 0 -2 1 5
3 05 0 X = 2 6 (7.2)
0 -2 0 2 37

>>> from cvxopt.base import matrix, spmatrix
>>> from cvxopt import cholmod
>>> A = spmatrix([10,3, 5,-2, 5, 2], [0,2, 1,3, 2, 3], [0,0, 1,1, 2, 3])
>>> X = matrix(range(8), (4,2), ’d’)
>>> cholmod.linsolve(A,X)
>>> print X
-1.4634e-01 4.8780e-02

1.3333e+00 4.0000e+00

4.8780e-01 1.1707e+00

2.8333e+00 7.5000e+00

splinsolve(A, B[, p=None[, uplo=’L’]])

Similar to linsolve() except that B is a sparse matrix and that the
solution is returned as an output argument (as a new sparse matrix). B is
not modified.

The following code computes the inverse of the coefficient matrix in (??) as
a sparse matrix.

>>> X = cholmod.splinsolve(A, spmatrix(1.0,range(4),range(4)))
>>> print X
SIZE: (4,4)

Shttp://www.cise.ufl.edu/research/sparse/cholmod

74 CHAPTER 7. SPARSE LINEAR EQUATION SOLVERS

(0, 0) 1.2195e-01
(2, 0) -7.3171e-02

(1, 1) 3.3333e-01
(3, 1) 3.3333e-01
(0, 2) -7.3171e-02
(2, 2) 2.4390e-01
(1, 3) 3.3333e-01
(3, 3) 8.3333e-01

The functions 1insolve() and splinsolve() are equivalent to symbolic ()
and numeric () called in sequence, followed by solve (), respectively, spsolve().
symbolic(A[, p=None[, uplo="L’]])

Performs a symbolic analysis of a sparse real symmetric or complex Her-
mitian matrix A for one of the two factorizations:

PAPT = LL7, PAPT = LLH#, (7.3)

and
PAPT = LDLT, PAPT = LDLH, (7.4)

where P is a permutation matrix, L is lower triangular (unit lower tri-
angular in the second factorization), and D is nonsingular diagonal. The
type of factorization depends on the value of options[’supernodal’]
(see below).

Ifuplois ’L’, only the lower triangular part of A is accessed and the upper
triangular part is ignored. If uplo is *U’, only the upper triangular part
of A is accessed and the lower triangular part is ignored.

The symbolic factorization is returned as an opaque C object that can be
passed to cholmod.numeric().

numeric(A, F)

Performs a numeric factorization of a sparse symmetric matrix as (?7?)
or (??). The argument F is the symbolic factorization computed by
cholmod.symbolic() applied to the matrix A, or to another sparse matrix
with the same sparsity pattern and typecode, or by cholmod.numeric()
applied to a matrix with the same sparsity pattern and typecode as A.

If F was created by a cholmod.symbolic with uplo equal to ’L’, then
only the lower triangular part of A is accessed and the upper triangular
part is ignored. If it was created with uplo is ’U’, then only the upper
triangular part of A is accessed and the lower triangular part is ignored.

On successful exit, the factorization is stored in F. Raises an ArithmeticError
if the factorization does not exist.

solve(F, B[, sys=0])

7.3. POSITIVE DEFINITE LINEAR EQUATIONS (CVXOPT.CHOLMOD) 75

Solves one of the following linear equations where B is a dense matrix and F
is the numeric factorization (??) or (??) computed by cholmod numeric().
sys is an integer with values between 0 and 8.

sys equation
0 AX =B
1 | LDL*X =B
2 LDLX =B
3 DLT™X =B
4 LX =B
5 LTX =B
6 DX =B
7 PTX =B
8 PX =8B

(If F is a Cholesky factorization of the form (??), D is an identity matrix
in this table. If A is complex, LT should be replaced by L¥.)

The matrix B is a dense >d’ or ’z’ matrix, with the same type as A. On
exit it is overwritten by the solution.

spsolve(F, B[, sys=0])

Similar to solve(), except that B is a sparse matrix, and the solution is
returned as an output argument (as a sparse matrix). B must have the
same typecode as A.

For the same example as above:

>>> X = matrix(range(8), (4,2), ’d’)
>>> F = cholmod.symbolic(A)
>>> cholmod.numeric(A,F)
>>> cholmod.solve (F,X)
>>> print X
-1.4634e-01 4.8780e-02

1.3333e+00 4.0000e+00

4.8780e-01 1.1707e+00

2.8333e+00 7.5000e+00

diag(F)

Returns the diagonal elements of the Cholesky factor L in (?7?), as a dense
matrix of the same type as A. Note that this only applies to Cholesky
factorizations. The matrix D in an LDLT factorization can be retrieved
via cholmod.solve() with sys equal to 6.

In the functions listed above, the default values of the control parameters
described in the CHOLMOD user guide are used, except for Common->print
which is set to 0 instead of 3 and Common->supernodal which is set to 2 instead

76 CHAPTER 7. SPARSE LINEAR EQUATION SOLVERS

of 1. These parameters (and a few others) can be modified by making an entry
in the dictionary cholmod.options. The meaning of these parameters is as
follows.

options[’supernodal’] If equal to 0, a factorization (?7?) is computed using
a simplicial algorithm. If equal to 2, a factorization (??) is computed
using a supernodal algorithm. If equal to 1, the most efficient of the two
factorizations is selected, based on the sparsity pattern. Default: 2.

options[’print’] A nonnegative integer that controls the amount of output
printed to the screen. Default: 0 (no output).

As an example that illustrates diag() and the use of cholmod.options, we
compute the logarithm of the determinant of the coefficient matrix in (??) by
two methods.

>>> import math

>>> from cvxopt.cholmod import options
>>> from cvxopt.base import log

>>> F = cholmod.symbolic(A)

>>> cholmod.numeric(A,F)

>>> print 2.0 * sum(log(cholmod.diag(F)))
5.50533153593

>>> options[’supernodal’] = 0
>>> F = cholmod.symbolic(A)
>>> cholmod.numeric(A,F)

>>> Di = matrix(1.0, (4,1))
>>> cholmod.solve(F,Di,sys=6)
>>> print -sum(log(Di))
5.50533153593

7.4 Example: Covariance Selection

This example illustrates the use of the routines for sparse Cholesky factorization.
We consider the problem

minimize —logdet K + tr(KY)

subject to K;; =0, (i,7) €S. (7.5)

The optimization variable is a symmetric matrix K of order n and the domain
of the problem is the set of positive definite matrices. The matrix ¥ and the
index set S are given. We assume that all the diagonal positions are included
in S. This problem arises in maximum likelihood estimation of the covariance
matrix of a zero-mean normal distribution, with constraints that specify that
pairs of variables are conditionally independent.

We can express K as

K(z) = Erdiag (z)ET + Eydiag (z)ET

7.4. EXAMPLE: COVARIANCE SELECTION 7

where z are the nonzero elements in the lower triangular part of K, with the
diagonal elements scaled by 1/2, and

Elz[eil €iy eiq]7 EQZ[ejl Cjp ejq]’

where (i_k, j_k) are the positions of the nonzero entries in the lower-triangular
part of K. With this notation, we can solve problem (??) by solving the uncon-
strained problem

minimize f(z) = —logdet K (z) + tr(K(2)Y).

The code below implements Newton’s method with a backtracking line search.
The gradient and Hessian of the objective function are given by

Vf(x) = 2diag(E] (Y - K(z) ")Ey))
= 2d1ag(YU—(x)” 1))

Vif(z) = 2(ETK(x)"'Ei)o (B K(x) 'Ey) + (EfK 2)"'Ey) o (B3 K(z) ' E))
= 2(K(z)”) o (K(x)~) +2 (K(1)IJO<K(:C) 1)JI’

where o denotes Hadamard product.

from cvxopt.base import matrix, spmatrix, log, mul
from cvxopt import blas, lapack, amd, cholmod

def covsel(Y):

Returns the solution of

minimize -logdet K + Tr(KY)
subject to K_{ij}=0, (i,j) not in indices listed in I,J.

Y is a symmetric sparse matrix with nonzero diagonal elements.
I=YI, J=Y.J.

I, J=Y.I, Y.J

n, m = Y.size[0], len(I)

N=1IH+ J*n # non-zero positions for one-argument indexing

D = [k for k in xrange(m) if I[k]==J[k]] # position of diagonal elements

starting point: symmetric identity with nonzero pattern I,J
K = spmatrix(0, I, J)
K[::n+1] =

Kn is used in the line search
Kn = spmatrix(0, I, J)

CHAPTER 7. SPARSE LINEAR EQUATION SOLVERS

symbolic factorization of K
F = cholmod.symbolic(K)

Kinv will be the inverse of K
Kinv = matrix(0.0, (n,n))

for iters in xrange(100):

numeric factorization of K
cholmod.numeric(K, F)
d = cholmod.diag(F)

compute Kinv by solving K+#X = I
Kinv[:] = 0

Kinv[::n+1] = 1

cholmod.solve(F, Kinv)

solve Newton system

grad = 2x(Y.V - Kinv[N])

hess = 2*(mul (Kinv[I,J],Kinv[J,I]) + mul(XinvI[I,I],Kinv[J,J]))
v = -grad

lapack.posv(hess,v)

stopping criterion
sqntdecr = -blas.dot(grad,v)
print "Newton decrement squared:’%- 7.5e" Ysqntdecr
if (sqntdecr < le-12):
print "number of iterations: ", iters+l
break

line search

dx = +v

dx[D] *= 2 # scale the diagonal elems
f =-2.0 * sum(log(d)) # f = -log det K
s =1

for lsiter in xrange(50):

Kn.V = K.V + sxdx

try:
cholmod.numeric(Kn, F)

except ArithmeticError:
s *= 0.5

else:
d = cholmod.diag(F)
fn = -2.0 * sum(log(d)) + 2*sx*blas.dot(v,Y.V)
if (fn < £ - 0.0l*s*sqntdecr):

7.4. EXAMPLE: COVARIANCE SELECTION

break
s *= 0.5

K.V = Kn.V

return K

79

80

CHAPTER 7. SPARSE LINEAR EQUATION SOLVERS

Chapter 8

Cone Programming
(cvxopt.solvers)

A cone (linear) program is an optimization problem of the form

minimize Tz
subject to Gx =X h
Ax =b.

The inequality is a generalized inequality with respect to a proper convex cone.
The cvxopt.solvers module provides functions for solving cone programs with
constraints that include (scalar) linear inequalities, second-order cone inequali-
ties, and linear matrix inequalities. The main solver, described in section 77, is
conelp(). For convenience (and backward compatibility), simpler interfaces to
this function are also provided that handle pure linear programs, second-order
cone programs, and semidefinite programs. These are described in sections 77—
??. In section 77 we explain how customized solvers can be implemented that
exploit structure in specific classes of problems. The last two sections describe
optional interfaces to external solvers, and the algorithm parameters that con-
trol the cone programming solvers.

8.1 General Solver

conelp(c, G, h, dims[, A, b[, primalstart|, dualstart[, kktsolver]]]])

Solves a pair of primal and dual cone programs

minimize ¢’z maximize —hTz—bTy
subject to Gx+s=nh subject to GTz+ ATy4+c¢=0
Az =D z = 0.
s~ 0

(8.1)

81

82

CHAPTER 8. CONE PROGRAMMING (CVXOPT.SOLVERS)

The primal variables are z and the slack variable s. The dual variables are
y and z. The inequalities are interpreted as s € C, z € C, where C is a
cone defined as a Cartesian product of a nonnegative orthant, a number
of second-order cones, and a number of positive semidefinite cones:

C:C()X01X"'XCMXCM+1><--~XCM+N

with

CO = {u S Rl | ug > 0, k= 1,.. .,l}, Ck+1 = {(UO,U1) S RXqu_l | Uy > ||U1||2},

Here vec(u) denotes a symmetric matrix u stored as a vector in column
major order.

The arguments c, h and b are real single-column dense matrices. G and A
are real dense or sparse matrices. The default values for A and b are sparse
matrices with zero rows, meaning that there are no equality constraints.
The number of rows of G and h is equal to

M-1 N-1
K=I1+ Z qr + Zpi
k=0 k=0
The columns of G and h are vectors in
R X R% x -+ x R x RP0 x .. x RPN-1,

where the last N components represent symmetric matrices stored in col-
umn major order. The strictly upper triangular entries of these matrices
are not accessed (i.e., the symmetric matrices are stored in the 'L’-type
column major order used in the blas and lapack modules).

The argument dims is a dictionary with the dimensions of the cones. It
has three fields.

dims[’1°]: [, the dimension of the nonnegative orthant (a nonnegative
integer).

dims[’q’]: [q-0, ..., g-{M-1}], alist with the dimensions of the second-
order cones (positive integers).

dims[’s’]: [p-0, ..., p-{N-1}1, a list with the dimensions of the pos-
itive semidefinite cones (nonnegative integers).

primalstart is a dictionary with keys *x’ and ’s’, used as an optional
primal starting point. primalstart[’x’] and primalstart[’s’] arereal
dense matrices of size (n,1) and (K, 1), respectively, where n is the length
of c¢. The vector primalstart[’s’] must be strictly positive with respect
to the cone C.

dualstart is a dictionary with keys ’y’ and ’z’, used as an optional
dual starting point. dualstart[’y’] and dualstart[’z’] are real dense

8.1.

GENERAL SOLVER 83

matrices of size (p,1) and (¥,1), respectively, where p is the number
of rows in A. The vector dualstart[’s’] must be strictly positive with
respect to the cone C.

The role of the optional argument kktsolver is explained in section 77.

conelp() returns a dictionary with keys ’status’, ’x’, ’s’, ’y’?, ’z’.
The ’status’ field is a string with possible values ’optimal’, ’primal
infeasible’, ’dual infeasible’ and ’unknown’. The meaning of the
other fields depends on the value of >status’.

’optimal’. In this case the ’x’, ’s’, ’y’ and ’z’ entries contain the
primal and dual solutions, which approximately satisfy

Gx+s =h, Az =0, Gl 24ATy+c =0, s =0, z >0,

’primal infeasible’. The ’x’ and ’s’ entries are None, and the ’y?,
>z’ entries provide an approximate certificate of infeasibility, i.e.,
vectors that approximately satisfy

GTz4+ ATy =0, Rz + 0Ty = -1, z = 0.

’dual infeasible’. The ’y’ and ’z’ entries are None, and the ’x’ and
’s’ entries contain an approximate certificate of dual infeasibility

Gr+ s =0, Ax =0, e =-1, s = 0.
>unknown’. The ’x’, ’s’, ’y’, ’z’ entries are None.
It is required that

rank(A) = p, rank({ ¢ }) —n,

where p is the number or rows of A and n is the number of columns of G
and A.

As an example we solve the problem

minimize —6x1 —4x9 — Hx3

subject to 16x7 — 149 4 bxg < —3

7%1 +2(E2 S 5

((8z1 + 13wy — 1233 — 2)% + (—8xq + 18z2 + 6w — 14)2 + (21 — 3z — 1723 — 13)?)

(23 + 23 + 23)'/2 < 10

Tx1 + 3xo + 923 —5x1 + 1325 + 623 x1 — 6xy — 623
—5.’[11 + 133&‘2 + 6.’L‘3 r1 + 12{132 — 7$3 —71‘1 — 10.7:2 — 73;‘3
Tr1 — 6332 — 6%‘3 —7£L‘1 — 10112 — 7303 —4331 — 28I2 — 11.%‘3

=

68
—-30
—-19

-30
99
23

< —24.%‘1 —

-19
23
10

84

CHAPTER 8. CONE PROGRAMMING (CVXOPT.SOLVERS)

>>> from cvxopt.base import matrix
>>> from cvxopt import solvers

>>> ¢ = matrix([-6., -4., -5.])

>>> G = matrix([[16., 7., 24., -8. 8. -1. 0., -1. 0.
[-14., 2., 7., -13., -18. 3. 0. 0., -1.
[5., 0., -15., 12. -6. 17. 0. 0. 0.

>>> h = matrix([-3., 5., 12., -2., -14., -13., 10. 0. 0.

>>> dims = {°1’: 2, ’q’: [4, 4], ’s’: [3]}

>>> sol = solvers.conelp(c, G, h, dims)

>>> print sol[’status’]

optim
>>> p
-1.
9.
3.
>>> p

= NN ©

[Er

al

rint sol[’x’]
2209e+00
6633e-02
5775e+00
rint sol[’z’]

.2986e-02
.0401e-08
.3534e-01
.3339%e-01
.7354e-02
.8801e-01

2.7871e-08

.8544e-09
.3156e-10
.5921e-09
.2558e-01
.7775e-02
.6652e-02
.7775e-02
.1349e-02
.0564e-02
.6652e-02
.0564e-02
.9790e-02

68.

© W N

13.

-30.

Only the entries of G and h defining the lower triangular portions of the
coefficients in the linear matrix inequalities are accessed. This means we obtain
the same result if we define G and h as below.

>>> G = matrix([[16., 7., 24., -8. 8. -1. 0., -1. 0.
[-14., 2., 7., -13., -18. 3. 0. 0., -1.
[5., 0., -156., 12. -6. 17. 0. 0. 0.
>>> h = matrix([-3., 5., 12., -2., -14., -13., 10. 0. 0.

68.

© W N

13.

-30.

8.2. LINEAR PROGRAMMING 85

8.2 Linear Programming

The function 1p() is an interface to conelp() for linear programs. It also
provides the option of using the linear programming solvers from GLPK or
MOSEK.

Ip(c, G, h[, A, b[, solver|, primalstart|[, dualstart]|]]])

Solves the pair of primal and dual linear programs

minimize ¢’z maximize —hTz—bTy
subject to Gx+s=nh subject to GTz+ ATy +c=0
Ax =b z = 0.
s~ 0

All inequalities are componentwise vector inequalities.

The solver argument is used to choose among three solvers. When it
is omitted or None, the CVXOPT function solvers.conelp() is used.
The external solvers GLPK and MOSEK (if installed) can be selected by
setting solver = ’glpk’ or solver = ’mosek’; see section ?7.

The meaning of the other arguments and the return value are the same as
for conelp() called with dims = {’1’: G.size[0], ’q’: [1, ’s’:
[1}. No certificates of primal or dual infeasibility are returned with the
solver = ’glpk’ option.

As a simple example we solve the LP

minimize —4x; — 5x9
subject to 2x1 + a2 < 3
21+ 222 <3

120, mx>0.

>>> from cvxopt.base import matrix
>>> from cvxopt import solvers
>>> ¢ = matrix([-4., -5.1)
>>> @ = matrix([[2., 1., -1., 0.1, [1., 2., 0., -1.1D1)
>>> h = matrix([3., 3., 0., 0.])
>>> sol = solvers.lp(c, G, h)
>>> print sol[’x’]
1.0000e-00
1.0000e-00

8.3 Second-Order Cone Programming

The function socp() is a simpler interface to conelp() for cone programs with
no linear matrix inequality constraints.
socp(c[, G1, hl[, Gq, hq[, A, b[, primalstart|, dualstart]]]]])

CHAPTER 8. CONE PROGRAMMING (CVXOPT.SOLVERS)

Solves the pair of primal and dual second-order cone programs

minimize ¢’z maximize — 224:0 hEz, —bTy
subject to Grr+ s = hg, k=0,...,.M Subject to I]cw:O ngk + ATy +c=
Az =10 20z 0
Soto ZkOZ ||Zk1||27]{1:1,...

sko > |Iskillz, k=1,....M

The inequalities
so = 0, 20z 0

are componentwise vector inequalities. In the other inequalities, it is as-
sumed that the variables are partitioned as

sk = (sk0, 551) € R x R, 2 = (2k0, 211) € R X R*1

The input argument c is a real single-column dense matrix. The arguments
Gl and hl are the coefficient matrix Gy and the righthand side hg of the
componentwise inequalities. Gl is a real dense or sparse matrix; hl is a
real single-column dense matrix. The default values for G1 and hl are
matrices with zero rows.

The argument Gq is a list of M dense or sparse matrices G_1, ..., GM. The
argument hq is a list of M dense single-column matrices h_1, ..., h-M. The
elements of Gq and hq must have at least one row. The default values of
Gq and hq are empty lists.

A is dense or sparse matrix and b is a single-column dense matrix. The
default values for A and b are matrices with zero rows.

primalstart and dualstart are dictionaries with optional primal, respec-
tively, dual starting points. primalstart has elements ’x’, ’sl’, ’sq’.
primalstart[’x’] and primalstart[’sl’] are single-column dense ma-
trices with the initial values of z and s_0; primalstart[’sq’] is a list of
single-column matrices with the initial values of s_1, ..., s_M. The initial
values must satisfy the inequalities in the primal problem strictly, but not
necessarily the equality constraints.

dualstart haselements ’y’, ’z1’, ’zq’. dualstart[’y’] and dualstart[’z1’]
are single-column dense matrices with the initial values of y and 2z_0.
dualstart[’zq’] is a list of single-column matrices with the initial values

of z_1, ..., z_M. These values must satisfy the dual inequalities strictly,

but not necessarily the equality constraint.

socp() returns a dictionary with keys ’status’, ’x’, ’sl’, ’sq’, ’y’,
’z1’, ’zq’. The meaning is similar to the output of conelp(). The ’s1’
and ’z1’ fields are matrices with the primal slacks and dual variables
associated with the componentwise linear inequalities. The >sq’ and ’zq’
fields are lists with the primal slacks and dual variables associated with
the second-order cone inequalities.

8.4. SEMIDEFINITE PROGRAMMING 87

As an example, we solve the second-order cone program

minimize =2z 4+ zo + dx3
S 712561 — 61’2 + 51’3 —12

subject to H [
2

—13z1 4+ 3z + 53 — 3
—123’,‘1 + 12.7,‘2 — 6.’1)3 -2
—3x1 + 622 + 223
1 + 9z + 223 + 3
—x1 — 1929 + 323 — 42

< —3x1 + 69 — 1023 + 27.

2
>>> from cvxopt.base import matrix

>>> from cvxopt import solvers

>>> ¢ = matrix([-2., 1., 5.1)

>>> G = [matrix([[12., 13., 12.], [6., -3., -12.]1, [-5., -5., 6.1]1)]
>>> G += [matrix([[3., 3., -1., 1.1, [-6., -6., -9., 19.]1, [10., -2., -2., -3.11)]

>>> h = [matrix([-12., -3., -2.]), matrix([27., 0., 3., -42.]) 1]

>>> sol = solvers.socp(c, Gqg = G, hq = h)

>>> sol[’status’]

optimal

>>> print sol[’x’]
-5.0150e+00
-5.7670e+00
-8.5219e+00

>>> print sol[’zq’][0]
1.3423e+00
-7.6286e-02
-1.3401e+00

>>> print sol[’zq’][1]
1.0185e+00
4.0234e-01
7.7996e-01
-5.1681e-01

8.4 Semidefinite Programming

The function sdp() is a simple interface to conelp() for cone programs with
no second-order cone constraints. It also provides the option of using the DSDP
semidefinite programming solver.

sdp(c[, G1, hl[, Gs, hs[, A, b[, solver|, primalstart|, dualstart]]]]]])

Solves the pair of primal and dual semidefinite programs

minimize ¢’z
subject to Gox + so = ho
Grr + vec (si) =vec(hy), k=1,...,N
Axr=b
S0 t 0
sg =0, k=1,...,N

maximize
subject to

—hT 2 — o, tr(hyzg) —
GT 2+ S, GT vec(z) -
Z0 E 0

zk=0, k=1,...,N.

88

CHAPTER 8. CONE PROGRAMMING (CVXOPT.SOLVERS)

The inequalities
so = 0, 20z 0

are componentwise vector inequalities. The other inequalities are matrix
inequalities (i.e., the require the lefthand sides to be positive semidefinite).
We use the notation vec(z) to denote a symmetric matrix z stored in
column major order as a column vector.

The input argument c is a dense real matrix with one column of length n.
The arguments G1 and hl are the coefficient matrix Gy and the righthand
side hg of the componentwise inequalities. Gl is a real dense or sparse
matrix; hl is a real single-column dense matrix. The default values for G1
and hl are matrices with zero rows.

Gs and hs are lists of length IV that specify the linear matrix inequality
constraints. Gs is a list of N dense or sparse real matrices G_1, ..., GM.
The columns of these matrices can be interpreted as symmetric matrices
stored in column major order, using the BLAS ’L’-type storage (i.e., only
the entries corresponding to lower triangular positions are accessed). hs
is a list of N dense symmetric matrices h_1, ..., h.N. Only the lower
triangular elements of these matrices are accessed. The default values for
Gs and hs are empty lists.

A is a dense or sparse matrix and b is a single-column dense matrix. The
default values for A and b are matrices with zero rows.

The solver argument is used to choose between two solvers: the CVX-
OPT conelp() solver (used when solver is absent or equal to None)
and the external solver DSDP5 (solver=’dsdp’); see section ??. With
the >dsdp’ option the code does not accept problems with equality con-
straints.

The optional argument primalstart is a dictionary with keys *x’, ’s1’,
and ’ss’, used as an optional primal starting point. primalstart[’x’]
and primalstart[’sl’] are single-column dense matrices with the initial
values of z and s_0; primalstart[’ss’] is a list of square matrices with
the initial values of s_1, ..., s_N. The initial values must satisfy the in-
equalities in the primal problem strictly, but not necessarily the equality
constraints.

dualstart is a dictionary with keys ’y’, ’z1’, ’zs’, used as an optional
dual starting point. dualstart[’y’] and dualstart[’zl’] are single-
column dense matrices with the initial values of y and z_0. dualstart[’zs’]
is a list of square matrices with the initial values of z_1, ..., z_N. These
values must satisfy the dual inequalities strictly, but not necessarily the
equality constraint.

The arguments primalstart and dualstart are ignored when the DSDP
solver is used.

sdp() returns a dictionary with keys ’status’, ’x’, ’sl’, ’ss’, ’y’,
’z1’, ’ss’. The *s1’ and ’z1’ fields are matrices with the primal slacks

8.4. SEMIDEFINITE PROGRAMMING 89

and dual variables associated with the componentwise linear inequalities.
The ’ss’ and ’zs’ fields are lists with the primal slacks and dual variables
associated with the second-order cone inequalities.

We illustrate the calling sequence with a small example.

minimize x1 — xo + T3

. -7 11 7 —18 -2 -8 33 -9
subject to 1 11 3 } + x2 18 8 + 3 8 1 = [9 9%
-21 —11 O 0 10 16 -5 2 —17 14 9 40
ry | =11 10 8 | +2o| 10 —10 —-10 | + z3 2 -6 -7 = 9 91 10
0 8 5 16 —-10 3 —-17 8 6 40 10 15

>>> from cvxopt.base import matrix
>>> from cvxopt import solvers
>>> ¢ = matrix([1.,-1.,1.])

>>> G = [matrix([[-7., -11., -11., 3.1,
[7., -18., -18., 8.1,
[-2., -8., -8., 1.11) 1
>>> G += [matrix([[-21., -11., O0., -11., 10., 8., 0., 8., 5.1,
[o., 10., 16., 10., -10., -10., 16., -10., 3.1,
[-5., 2., -17., 2., -6., 8., -17., -7., 6.11) 1

>>> h = [matrix([[33., -9.1, [-9., 26.]]1)
>>> h += [matrix([[14., 9., 40.]1, [9., 91., 10.]1, [40., 10., 15.11) 1
>>> sol = solvers.sdp(c, Gs=G, hs=h)
>>> print sol[’x’]
-3.6767e-01
1.8983e+00
-8.8755e-01
>>> print sol[’zs’][0]
3.9611e-03 -4.3384e-03
-4.3384e-03 4.7516e-03
>>> print sol[’zs’][1]
5.5801e-02 -2.4091e-03 2.4215e-02
-2.4091e-03 1.0402e-04 -1.0454e-03
2.4215e-02 -1.0454e-03 1.0508e-02

Only the entries in Gs and hs that correspond to lower triangular entries need
to be provided, so in the example h and G may also be defined as follows.

>>> G = [matrix([[-7., -11., 0., 3.],
[7., -18., 0., 8.1,

[-2., -8., 0., 1.1 1
>>> G += [matrix([[-21., -11., ©0., 0., 10., 8., 0., 0., 5.],
[0., 10., 16., 0., -10., -10., 0., 0., 3.7,
[-5., 2., -17., 0., -6., 8., 0., 0., 6.11) 1

>>> h = [matrix([[33., -9.]1, [0., 26.1])]
>>> h += [matrix([[14., 9., 40.], [0., 91., 10.]1, [O.,

(@]

., 151D 1

90 CHAPTER 8. CONE PROGRAMMING (CVXOPT.SOLVERS)

8.5 Exploiting Structure

By default, the conelp() exploits no problem structure except (to some limited
extent) sparsity. Two mechanisms are provided for implementing customized
solvers that take advantage of problem structure.

Providing a function for solving KKT equations. The most expensive step
of each iteration of conelp() is the solution of a set of linear equations
(‘KKT equations’) of the form

0 AT GT um bCE
A 0 0 uy | =1 by | . (8.2)
G 0 —WTW uz bz

The matrix W depends on the current iterates and is defined as follows.
We use the notation of section ?7?7. Suppose

u=(w, Uq,0, -, UqM—1, V€C(Us(), ..., VeC (UsN_1)), u € Rl, ugr € R™*, k=
Then W is a block-diagonal matrix,
Wu = (Wi, Wq,o0tq0s ---s Wam—1Uqm—1, Wsovec (Usg), ..., Wsn_1vec (usn_1))
with the following diagonal blocks.
e The first block is a positive diagonal scaling with a vector d:
W) = diag (d), W, = diag (d) "
This transformation is symmetric:

Wi =W

e The next M blocks are positive multiples of hyperbolic Householder
transformations:

Wk = Brugvl —J), W s = =—2Jvpvi J-J), k=0,...,M—1,

1
Bk
where

B >0, vgo > 0, v,{Jvkzl, J:[l 0]

These transformations are also symmetric:

T
W k == Wq’k.

q

8.5. EXPLOITING STRUCTURE 91

e The last N blocks are congruence transformations with nonsingular
matrices:

T -1 -T -1
Wi vec (us i) = vec (T}, Us k7%), W, vec (us,k) = vec (r; " usiry), k=0,...,N—1.
In general, this operation is not symmetric, and

ng vec (ug) = vec (ryus 171), Wsjk,T vec (us) = vec (ry, tus gy), k=0,...
It is often possible to exploit structure in the coefficient matrices G and
A to solve (?7) faster than by standard methods. The last argument
kktsolver of conelp() allows the user to supply a Python function
for solving the KKT equations. This function will be called as "f =
kktsolver (W)”, where W is a dictionary that contains the parameters of
the scaling:

e W[’d’] is the positive vector that defines the diagonal scaling. W[’>di’]
is its componentwise inverse.

e W[’beta’] and W[’v’] are lists of length M with the coefficients and
vectors that define the hyperbolic Householder transformations.

e W[’r’] is a list of length N with the matrices that define the the
congruence transformations. W[’rti’] is a list of length N with the
transposes of the inverses of the matrices in W[’r’].

The function call ’f = kktsolver (W)” should return a routine for solving
the KKT system (??) defined by W. It will be called as ”f (bx, by, bz)”.
On entry, bx, by, bz contain the righthand side. On exit, they should
contain the solution of the KKT system, with the last component scaled,
i.e., on exit,

by = Uy, by 1= Uy, b, .= Wu,.

Specifying constraints via Python functions. In the default use of conelp(),
the arguments G and A are the coefficient matrices in the constraints
of (?7?). It is also possible to specify these matrices by providing Python
functions that evaluate the corresponding matrix-vector products and
their adjoints.

If the argument G of conelp() is a Python function, it should be defined
as follows:

G(x, y [, alpha[, beta[, trans]]])
This evaluates the matrix-vector products
y:=aGr+ By (trans ='N’), y:=aGTz + By (trans ="T').

The default values of the optional arguments must be alpha = 1.0,
beta = 0.0, trans = ’N’.

92 CHAPTER 8. CONE PROGRAMMING (CVXOPT.SOLVERS)

Similarly, if the argument A is a Python function, then it must be defined
as follows.

A(x, y [, alpha[, beta[, trans]]])
This evaluates the matrix-vector products
y = aAx+ By (trans = 'N’), y:=aATz + By (trans ='T).

The default values of the optional arguments must be alpha = 1.0,
beta = 0.0, trans = ’N’.

If G or A are Python functions, then the argument kktsolver must also
be provided.

We illustrate these features with three applications.
Example: 1-norm approximation The optimization problem
minimize ||[Pu — gl
can be formulated as a linear program

minimize 17w

subject to —v X Pu—q <.
By exploiting the structure in the inequalities, the cost of an iteration
of an interior-point method can be reduced to the cost of least-squares

problem of the same dimensions. (See section 11.8.2 in the book Convex
Optimization'.) The code belows takes advantage of this fact.

from cvxopt import base, blas, lapack, solvers
from cvxopt.base import matrix, spmatrix, mul, div

def 11(P, q):

Returns the solution u, w of the 11 approximation problem
(primal) minimize [1P¥u - qll_1
(dual) maximize q’*w

subject to P’*w =0
| lwl]_infty <= 1.

m, n = P.size

Thttp://www.ee.ucla.edu/\~{}vandenbe/cvxbook

8.5. EXPLOITING STRUCTURE 93

Solve the equivalent LP

minimize [0; 11’ * [u; vl
subject to [P, -I; -P, -I] * [u; v] <= [q; -q]

maximize -[q; -ql’ * z

subject to [P’, -P’J*xz =
[-I, -Il*z + 1
z >= 0.

#
#
#
#
#
#
0
=0
#

¢ = matrix(n*[0.0] + m*[1.0])
def G(x, y, alpha = 1.0, beta = 0.0, trans = ’N’):

if trans==’N’:
y := alpha * [P, -I; -P, -I] * x + beta*y
u = P*x[:n]
y[:m] = alpha * (u - x[n:]) + beta * y[:m]
y[m:] = alpha * (-u - x[n:]) + beta * y[m:]

else:
y := alpha * [P’, -P’; -I, -I] * x + betaxy
y[:n] = alpha * P.T * (x[:m] - x[m:]) + beta * y[:n]
y[n:] = -alpha * (x[:m] + x[m:]) + beta * y[n:]

h = matrix([q, -ql)
dims = {°1’: 2*m, ’q’: [, ’s’: [}

def F(W):

Returns a function f(x, y, z) that solves

[0 O P -p’ 1 [x[:n]] [bx[:n]]
[0 O-I -I 1 [x[n:] 1] [bx[n:]]
[P-I -D1°{-1} ©] [zl:iml 1 =1[bzl:m]]
[-P -I © -D2°{-1} 1 [z[m:] 1] [bz[m:]]

where D1 = diag(dil[:m])~2, D2

diag(di[m:]1)"2 and di = W[’di’].

Factor A = 4xP’xD#P where D = d1.%d2 ./(d1+d2) and
#dl =dilim]."2, d2 = di[m:]."2.

di = W[’di’]

94 CHAPTER 8. CONE PROGRAMMING (CVXOPT.SOLVERS)

dl, d2 = dil[:m]**2, dil[m:]**2

D = div(mul(di,d2), di+d2)

A = P.T * spmatrix(4#D, range(m), range(m)) * P
lapack.potrf (A4)

def f(x, y, 2z):

On entry bx, bz are stored in x, z.
On exit x, z contain the solution, with z scaled: z./di is

returned instead of z.
nmnnn

Solve for x[:n]:

#

#

Axx[:n] = bx[:n] + P> * (((D1-D2)*(D1+D2) "{-1})*bx[n:]

+ (2xD1*D2*(D1+D2) "{-1}) * (bz[:m] - bz[m:])).

x[:n] += P.T * (mul(div(d1-d2, d1+d2), x[n:]) + mul(2*D, z[:m]-z[
lapack.potrs(A, x)

x[n:] := (D1+D2)"{-1} * (bx[n:] - Dix*bz[:m] - D2*bz[m:] + (D1-D2

u = P*xx[:n]
x[n:] = div(x[n:] - mul(dl, z[:m]) - mul(d2, z[m:]) + mul(di-d2,

z[:m] :=dil:m] .* (Pxx[:n] - x[n:] - bz[:m])
z[m:] := d2[m:] .* (-P*x[:n] - x[n:] - bz[m:])
z[:m] = mul({d[:m], u - x[n:] - z[:m])
z[m:] = mul({dm:], -u - x[n:] - z[m:])

return f

sol = solvers.conelp(c, G, h, dims, kktsolver = F)
return sol[’x’][:n], sol[’z’][m:] - sol[’z’][:m]

Example: SDP with diagonal linear term The SDP

minimize 17z
subject to W +diag(z) =0

can be solved efficiently by exploiting properties of the diag operator.

from cvxopt import base, blas, lapack, solvers
from cvxopt.base import matrix

8.5. EXPLOITING STRUCTURE 95

def mcsdp(w):

Returns solution x, z to

(primal) minimize sum (x)
subject to w + diag(x) >= 0

(dual) maximize -tr(w*xz)
subject to diag(z) =1
z >= 0.

n = w.size[0]
¢ = matrix(1.0, (n,1))

def G(x, y, alpha = 1.0, beta = 0.0, trans = ’N’):

y := alphax(-diag(x)) + betaxy.

if trans==’N’:
x is a vector; y is a symmetric matrix in column major order.
y *= beta
y[::n+1] -= alpha * x

else:
x is a symmetric matrix in column major order; y is a vector.
y *= beta
y —= alpha * x[::n+1]

def cngrnc(r, x, alpha = 1.0):

Congruence transformation

"
I

alpha * r’*x*r.

r is a matrix of size (n, n).

x is a matrix of size (n**2, 1), representing a symmetric matrix stored in columr
nnn

Scale diagonal of x by 1/2.
x[::n+1] *= 0.5

a := tril(x)*r

96

CHAPTER 8. CONE PROGRAMMING (CVXOPT.SOLVERS)

a = +r
blas.trmm(x, a, side = ’L’)
x := alphax(a*r’ + r*a’)

blas.syr2k(r, a, x, trans = ’T’, alpha = alpha)
dims = {’1’: 0, ’q’: [1, ’s’: [nl}
def F(W):

Returns a function f(x, y, z) that solves

-diag(z) = bx
-diag(x) - r*r’*z*r*r’ = bz

where r = W[’r’][0] = W[’rti’][0]~{-T%}.

rti = W’rti’][0]

#t rti*rti’ as a nonsymmetric matrix.
t = matrix(0.0, (n,n))
blas.gemm(rti, rti, t, transB = ’T’)

Cholesky factorization of tsq = t.*t.
tsq = t**2
lapack.potrf (tsq)

def f(x, y, 2):
nnn
On entry, x contains bx, y is empty, and z contains bz stored
in column major order.
On exit, they contain the solution, with z scaled
(vec(r’*z*r) is returned instead of z).

We first solve
((rti*xrti’) .* (rtixrti’)) * x = bx - diag(txbz*t)

and take z = - rti’ * (diag(x) + bz) * rti.
nnn

tbst =t *x bz *x t
tbst = +z
cngrnc(t, tbst)

8.5. EXPLOITING STRUCTURE 97

x := x - diag(tbst) = bx - diag(rti*rti’ * bz * rtixrti’)
x -= tbst[::n+1]

x = (t.xt)"{-1} * x = (t.*t)"{-1} * (bx - diag(txbz*t))
lapack.potrs(tsq, x)

z := z + diag(x) = bz + diag(x)
z[::n+1] += x

z := -vec(rti’ * z * rti)
-vec(rti’ * (diag(x) + bz) * rti
cngrnc(rti, z, alpha = -1.0)

return f

sol = solvers.conelp(c, G, w[:], dims, kktsolver = F)
return sol[’x’], sol[’z’]

Example: Minimizing 1-norm subject to a 2-norm constraint In the sec-
ond example, we use a similar trick to solve the problem

minimize |julx
subject to ||Au —b||2 < 1.

The code below is efficient, if we assume that the number of rows in A is
greater than or equal to the number of columns.

def qcli(A, b):

nmnn

Returns the solution u, z of

(primal) minimize [l uw 1.1

subject to || A*xu-Db ||_2 <=1
(dual) maximize b°T z - |lzll|_2

subject to || A’*z ||_inf <= 1.

Exploits structure, assuming A is m by n with m >= n.

m, n = A.size

Solve equivalent cone LP with variables x = [u; v].
#

minimize [0; 11’ * x

CHAPTER 8. CONE PROGRAMMING (CVXOPT.SOLVERS)

subject to [I -I] *xx<= [0] (componentwise)
[-I -I]1=*xx<= [0] (componentwise)
[0 0]lx*xx<= [1] (s0C)

[-A 0] [-b]

#

maximize -t + Db xw

subject to z1 - z2 = A’*y

zl +2z2 =1

z1l >= 0, z2 >=0, |lwll_2 <= t.

¢ = matrix(n*[0.0] + n*x[1.0])

h = matrix(0.0, (2%n + m + 1, 1))
h[2*n] = 1.0

h[2*n+1:] = -b

def G(x, y, alpha = 1.0, beta = 0.0, trans = ’N’):
y *= beta
if trans==’N’:
y += alpha * G * x
y[:n] += alpha * (x[:n] - x[n:2*n])
y[n:2xn] += alpha * (-x[:n] - x[n:2+%n])
y[2*n+1:] -= alpha * A*x[:n]

else:
y += alpha * G’*x
y[:n] += alpha * (x[:n] - x[n:2*n] - A.T * x[-m:])
y[n:] -= alpha * (x[:n] + x[n:2*n])

def Fkkt(W):

Returns a function f(x, y, z) that solves

(o G 1 [xJ1=~[1nbx]
[G -WxWw] [z] [bz].

First factor

#

S = G’ * Wxx—1 * Wk*x-T * G

= [0; -A]’ * W3™-2 x [0; -A] + 4 * (Wik*2 + W2**2)**x-1
#

where

#

W1l = diag(dl) with d1 = W[’d’]J[:n] =1 ./ W[’di’][:n]

W2 = diag(d2) with d2 = W[’d’][n:] =1 ./ W[’di’][n:]

8.5. EXPLOITING STRUCTURE 99

W3 = beta * (2xv*v’ - J), W3"-1 = 1/beta * (2xJxvxy’*J - J)
with beta = W[’beta’][0], v = W[’v’][0], J = [1, 0; O, -I].

As = W3™-1 x [0 ; -A] = 1/beta * (2%Jxv x v’ - I) * [0; A]
beta, v = W[’beta’][0], W[’v’][0]

As = 2 x v x (v[1:].T * A)

As[1:,:] *= -1.0

As[1:,:] —= A

As /= beta
S = As’*As + 4 x (Wilkk2 + W2**2)**k-1
S = As.T x As

di, d2 = W[’d’]1[:n], W’d’][n:]
d = 4.0 * (d1**2 + d2**2)**-1
S[::n+1] +=d

lapack.potrf (S)

def f(x, y, 2z):

#z = - Wkx-T % z

z[:n] = -div(z[:n], d1)

z[n:2*n] = -div(z[n:2*n], d2)

z[2*%n:] -= 2.0xv*(v[0]*z[2*n] - blas.dot(v[1:], z[2*n+1:]))
z[2%n+1:] *= -1.0

z[2*n:] /= beta

#x :=x - G % Wxk-1 % z
x[:n] -= div(z[:n], d1) - div(z[n:2*n], d2) + As.T * z[-(m+1):]
x[n:] += div(z[:n], d1) + div(z[n:2*n], d2)

Solve for x[:n]:
#
S*x[:n] = x[:n] - (Wi%x%x2 - W2**2) (W1**2 + W2*x*2)"-1 * x[n:]

x[:n] —= mul(div(di1**2 - d2**2, di1**2 + d2%x2), x[n:])
lapack.potrs(S, x)

Solve for x[n:]:
#
(d1**-2 + d2*xx-2) * x[n:] = x[n:] + (d1**-2 - d2**x-2)*x[:n]

x[n:] += mul(di*x*x-2 - d2**x-2, x[:n])
x[n:] = div(x[n:], di**-2 + d2*%x-2)

#z =z + W-T *x G*x
z[:n] += div(x[:n] - x[n:2*n], d1)

100 CHAPTER 8. CONE PROGRAMMING (CVXOPT.SOLVERS)

z[n:2*n] += div(-x[:n] - x[n:2*n], d2)
z[2*n:] += As*x[:n]

return f

dims = {’1’: 2*n, ’q’: [m+1], ’s’: [1}
sol = solvers.conelp(c, G, h, dims, kktsolver = Fkkt)
if sol[’status’] == ’optimal’:
return sol[’x’][:n], sol[’z’][-m:]
else:
return None, None

8.6 Optional Solvers
CVXOPT includes optional interfaces to several other optimization libraries.

GLPK 1p() with the solver=’glpk’ option uses the simplex algorithm in
GLPK (GNU Linear Programming Kit)?.

MOSEK 1p() with the solver=’mosek’ option uses MOSEK? version 4.

DSDP sdp() with the solver=’dsdp’ option uses the DSDP5.8* solver.

GLPK, MOSEK and DSDP are not included in the CVXOPT distribution and
need to be installed separately.

8.7 Algorithm Parameters

In this section we list some algorithm control parameters that can be modified
without editing the source code. These control parameters are accessible via
the dictionary solvers.options. By default the dictionary is empty and the
default values of the parameters are used.

One can change the parameters in the default solvers by adding entries with
the following key values.

’show_progress’ True or False; turns the output to the screen on or off (de-
fault: True).

‘maxiters’ maximum number of iterations (default: 100).
’abstol’ absolute accuracy (default: 1e-7).

’reltol’ relative accuracy (default: 1e-6).

2http://www.gnu.org/software/glpk/glpk.html
Shttp://www.mosek.com
4http://www-unix.mcs.anl.gov/DSDP

8.7. ALGORITHM PARAMETERS 101

>feastol’ tolerance for feasibility conditions (default: 1e-7).
For example the command

>>> from cvxopt import solvers
>>> solvers.options[’show_progress’] = False

turns off the screen output during calls to the solvers. The tolerances abstol,
reltol and feastol have the following meaning. conelp() terminates with
status ’optimal’ if

s20. 20, IGz+s—hll . — ldz=bla _ — [IGTe+ ATy +cl
max{1, [|h]2} max{1, |[b]]2} max{1, |[c[]2}
and
sTz
sT2 <eaps or <min {"z, Wz +bTy} <0, {7 T 1 5Ty < Erel) .

It returns with status ’primal infeasible’ if

IG"2 + ATyll2

=0
=0 max{1, ell2}

§ €feas; hTz+bTy: -L

It returns with status ’dual infeasible’ if

|Gz + sl [[Az]l2

" oll2 S | | T = 1.
max{L, [} = % max{T, Bl e O

s> 0,
The functions 1p(), socp() and sdp() call conelp() and hence use the same
stopping criteria.

The control parameters listed in the GLPK documentation are set to their
default values and can also be customized by making an entry in solvers.options.
The keys in the dictionary are strings with the name of the GLPK parameter.
The command

>>> from cvxopt import solvers
>>> solvers.options[’LPX_K_MSGLEV’] = 0

turns off the screen output subsequent calls 1p() with the *glpk’ option.

The MOSEK control parameters® are set to their default values. The corre-
sponding keys in solvers.options are strings with the name of the MOSEK
parameter. For example the command

>>> from cvxopt import solvers
>>> solvers.options[’MSK_IPAR_LOG’] = 0

turns off the screen output during calls of 1p() with the ’mosek’ option.
The following control parameters affect the DSDP algorithm:

Shttp://www.mosek.com/fileadmin/products/3/tools/doc/html/tools/node22.html

> €feas)

102 CHAPTER 8. CONE PROGRAMMING (CVXOPT.SOLVERS)

’DSDP_Monitor’ the interval (in number of iterations) at which output is printed
to the screen (default: 0).

’DSDP_MaxIts’ maximum number of iterations.

’DSDP_GapTolerance’ relative accuracy (default: 1e-5).

Chapter 9

Nonlinear Convex
Programming
(cvxopt.solvers)

The functions in this chapter are intended for nonlinear convex optimization
problems in the format

minimize fo(x)
x)

subject to <0, k=1,....m
J gcx(<h (9.1)
Ax = b,
with f = (fo,..., fm) convex and twice differentiable. The inequalities are

componentwise vector inequalities.

The most important function in this chapter is solvers.cp(), described in
section ??. There are also functions for two special problem classes: quadratic
programming (section ??) and geometric programming (section ??). These
solvers are all interfaces to a more general function nlcp(), which can also be
called directly but requires user-provided functions for evaluating the constraints
and for solving KKT equations. This allows the user to exploit certain types of
problem structure (section ?7).

9.1 General Solver
cp(F[, G, h[, A, b]])
Solves an optimization problem (??) with f = (fo,..., fm) convex and

twice differentiable. F is a function that evaluates the objective and non-
linear constraint functions. It must handle the following calling sequences.

103

104CHAPTER 9. NONLINEAR CONVEX PROGRAMMING (CVXOPT.SOLVERS)

e F() returns a tuple (m, x0), where m is the number of nonlinear con-
straints and x0 is a point in the domain of f. x0 is a dense real matrix
of size (n, 1).

e F(x), with x a dense real matrix of size (n,1), returns a tuple (£, Df).
f is a dense real matrix of size (m+1,1), with £ [k] equal to fk(z).
(If m is zero, f can also be returned as a number.) Df is a dense
or sparse real matrix of size (m+1, n) with Df [k, :] equal to the
transpose of the gradient of f.k at x. If x is not in the domain of f,
F(x) returns None or a tuple (None,None).

e F(x,z), with x a dense real matrix of size (n,1) and z a positive dense
real matrix of size (m+1,1) returns a tuple (f, Df, H). £ and Df are
defined as above. H is a square dense or sparse real matrix of size (n,
n), whose lower triangular part contains the lower triangular part of

zov2fo(x) + V2 () +---+ szQfm(x).

If F is called with two arguments, it can be assumed that x is in the
domain of f.

G and A are dense or sparse real matrices with n columns. Their default
values are matrices of size (0, n). h and b are dense real matrices with
one column, and the same number of rows as G and A, respectively. Their
default values are matrices of size (0,1).

cp(O returns a dictionary with keys ’status’, ’x’, ’snl’, ’sl’, ’y’,
’znl’, ’z1’. The possible values of the ’status’ key are:

>optimal’ In this case the *x’ entry of the dictionary is the primal opti-
mal solution, the >snl’ and ’s1’ entries are the corresponding slacks
in the nonlinear and linear inequality constraints, and the ’znl?’,
’z1” and ’y’ entries are the optimal values of the dual variables as-
sociated with the nonlinear inequalities, the linear inequalities, and
the linear equality constraints. These vectors approximately satisfy
the Karush- Kuhn-Tucker (KKT) conditions

v.f()(‘T)+Df(x)Tan+GTZI+ATy = 07 f(x)+5nl = 07 k= 17 cee,Mm, GI+51 = h7
where f: (f1,- s fm)s
Sn1 = 0, 51 =0, Zn = 0, 2 = 0, sh 2z + 812 = 0.

>unknown’ This indicates that the algorithm reached the maximum num-
ber of iterations before a solution was found. The ’x’, >snl’, ’s1’,
>y’ ?znl’ and ’zl’ entries are None.

cp() requires that the problem is solvable and that the Karush-Kuhn-
Tucker matrix

S o Vife(z) Df(x)T GT AT
Df(x) —diag (d;) 0 0
G 0 —diag(d2) 0
A 0 0 0

9.1. GENERAL SOLVER 105

is nonsingular for all z, all nonnegative z, and all positive dy, ds.

Example: equality constrained analytic centering The equality constrained
analytic centering problem is defined as

minimize —> ", logw;

subject to Ax = b.

The function acent() defined below solves the problem, assumping it is
solvable.

from cvxopt import solvers
from cvxopt.base import matrix, spmatrix, log

def acent(A, b):

m, n = A.size

def F(x=None, z=None):
if x is None: return O, matrix(1.0, (n,1))
if min(x) <= 0.0: return None
f = -sum(log(x))
Df = -(x*x-1).T
if z is None: return f, Df
H = z[0] * spmatrix(x**-2, range(n), range(n))
return f, Df, H

return solvers.cp(F, A=A, b=b)[’x’]

Example: robust least-squares The function robls() defined below solves
the unconstrained problem

minimize Y ;. ¢((Azx — b)i), where A€ R™", ¢(u) = /p+u?

from cvxopt import solvers
from cvxopt.base import matrix, spmatrix, sqrt, div

def robls(A, b, rho):

m, n = A.size

def F(x=None, z=None):
if x is None: return 0, matrix(0.0, (n,1))
y = A*x-b
w = sqrt(rho + y*x2)
f = sum(w)
Df = div(y, w).T * A
if z is None: return f, Df
H = A.T * spmatrix(z[0]*rho*(w**-3), range(m), range(m)) * A
return f, Df, H

return solvers.cp(F)[’x’]

106 CHAPTER 9. NONLINEAR CONVEX PROGRAMMING (CVXOPT.SOLVERS)

Example: floor planning This example is the floor planning problem of sec-
tion 8.8.2 in the book Convex Optimization':

minimize W 4+ H

subject to Awmink/he —wr <0, k=1,...,5
xle, 33220, 1‘420
r1+wr+p<ws, 22twet+p<wz, x3twst+p<wzs, T4twstp < s,
y2>0, y3>0, ys>0
Ya+thot+p<y1, yi+hi+p<ys, ysths+p<wys, va+ths<H, ys+]
hk/vgwkgwhk, kzl,...75.

This problem has 22 variables
W, H, z e R, yeR5, we R’ heR5,

5 nonlinear inequality constraints, and 26 linear inequality constraints.
The code belows defines a function floorplan() that solves the problem
by calling cp(), then applies it to 4 instances, and creates a figure.

import pylab
from cvxopt import solvers
from cvxopt.base import matrix, spmatrix, mul, div

def floorplan(Amin):

minimize W+H

subject to Amink / hk <= wk, k=1,..., 5
x1 >= 0, x2 >= 0, x4 >=0

x1 + wl + rho <= x3

x2 + w2 + rho <= x3

x3 + w3 + rho <= x5

x4 + w4 + rho <= xb

x5 + wb <= W

y2 >= 0, y3 >0, yb >0

y2 + h2 + rho <=yl

yl + hl + rho <= y4

y3 + h3 + rho <= y4

y4 + h4 <= H

y6 + hb <= H

hk/gamma <= wk <= gamma*hk, k=1, ..., 5
#

22 Variables W, H, x (8), y (8), w (56), h (5).
#

W, H: scalars; bounding box width and height

x, y: b-vectors; coordinates of bottom left corners of blocks

Thttp://www.stanford.edu/\~{}boyd/cvxbook

9.1. GENERAL SOLVER 107

w, h: b-vectors; widths and heigths of the 5 blocks
rho, gamma = 1.0, 5.0 # min spacing, min aspect ratio

The objective is to minimize W + H. There are five nonlinear
constraints

#

-wk + Amink / hk <=0, k=1, ..., 5

def F(x=None, z=None):
if x is None: return 5, matrix(17*[0.0] + 5%[1.0])
if min(x[17:]) <= 0.0: return None
f = matrix(0.0, (6,1))
f[0] = x[0] + x[1]
fl1:1 = -x[12:17] + div(Amin, x[17:])
Df = matrix(0.0, (6,22))
Df [0, [0,1]1] 1.0
Df[1:,12:17] spmatrix(-1.0, range(5), range(5))
Df[1:,17:] = spmatrix(-div(Amin, x[17:]1*%2), range(5), range(5))
if z is None: return f, Df
H = spmatrix(2.0% mul(z[1:], div(Amin, x[17::1**3)), range(17,22), range(17,22)
return f, Df, H

G = matrix(0.0, (26,22))
h = matrix (0.0, (26,1))

G[14, [1, 10, 20]] = -1.0, 1.0, 1.0
G[15, [1, 11, 21]] = -1.0, 1.0, 1.0
Gli6, [12, 1711 = -1.0, 1.0/gamma

G[17, [12, 171]
Gri18, [13, 18]]
G[19, [13, 18]]
G[20, [14, 18]]

-H+y4 +hd <=0

-H + y5 + h5 <= 0

-wl + hl/gamma <= 0
wl - gamma * hl <= 0
-w2 + h2/gamma <= 0
w2 - gamma * h2 <= 0
-w3 + h3/gamma <= 0

1.0, -gamma
-1.0, 1.0/gamma
1.0, -gamma
-1.0, 1.0/gamma

G[0,2] = -1.0 # -x1 <=0
G[1,3] = -1.0 # -x2 <=0
G[2,5] = -1.0 # -x4 <=0
G[3, [2, 4, 12]], h[3] = [1.0, -1.0, 1.0], -rho # x1 - x3 + wl <= -rho
G[4, [3, 4, 1311, n[4] = [1.0, -1.0, 1.0], -rho # x2 - x3 + w2 <= -rho
G[5, [4, 6, 14]], n[5] = [1.0, -1.0, 1.0], -rho # x3 - x5 + w3 <= -rho
Gl6, [5, 6, 1511, n[6] = [1.0, -1.0, 1.0], -rho # x4 - x5 + w4 <= -rho
G[7, [0, 6, 16]] = -1.0, 1.0, 1.0 # -W+ x5 + wb <=0
G[8,8] = -1.0 # -y2 <= 0
G[9,9] = -1.0 # -y3 <= 0
G[10,11] = -1.0 # -y5 <= 0
G[11, [7, 8, 1811, h[11] = [-1.0, 1.0, 1.0], -tho # -yl + y2 + h2 <= -rho
G[12, [7, 10, 1711, n[12] = [1.0, -1.0, 1.0], -rho # yl1 - y4 + hl <= -rho
G[13, [9, 10, 19]], n[13] = [1.0, -1.0, 1.0], -rho # y3 - y4 + h3 <= -rho

#

#

#

#

#

#

#

108CHAPTER 9. NONLINEAR CONVEX PROGRAMMING (CVXOPT.SOLVERS)

G[21, [14, 19]] = 1.0, -gamma # w3 - gamma * h3 <=
G[22, [15, 19]] = -1.0, 1.0/gamma # -w4 + h4/gamma <= 0
G[23, [15, 20]] = 1.0, -gamma # w4 - gamma * h4 <=
G[24, [16, 21]1] = -1.0, 1.0/gamma # -wb + h5/gamma <= 0
G[25, [16, 21]] = 1.0, -gamma # w5 - gamma * h5 <=

solve and return W, H, x, y, w, h
sol = solvers.cp(F, G, h)
return sol[’x’]1[0], sol[’x’]1[1], sol[’x’]1[2:7], sol[’x’]1[7:12], sol[’x’][

pylab.figure(facecolor=’w’)

pylab.subplot(221)

Amin = matrix([100., 100., 100., 100., 100.1)

W, H, x, y, w, h = floorplan(Amin)

for k in xrange(5):
pylab.fill([x[k], x[kl, x[kl+wlk]l, x[kl+w[kl],

[y[k]l, y[kl+h[k], y[kl+h[k], y[k]ll, ’#DODODO’)

pylab.text (x[k]+.5*w[k], y[kl+.5%h[k], "%d" %(k+1))

pylab.axis([-1.0, 26, -1.0, 26])

pylab.xticks([])

pylab.yticks([])

pylab.subplot (222)
Amin = matrix([20., 50., 80., 150., 200.]1)
W, H, x, y, w, h = floorplan(Amin)
for k in xrange(5):
pylab.fill([x[k], x[kl, x[kl+wlk]l, x[kl+wlk]l],
[y[k]l, y[kl+h[k], y[kl+h[k], y[kll, ’#DODODO’)
pylab.text (x[k]+.5%w[k], ylkl+.5xh[k], "%d" %(k+1))
pylab.axis([-1.0, 26, -1.0, 26])
pylab.xticks([])
pylab.yticks([])

pylab.subplot (223)
Amin = matrix([180., 80., 80., 80., 80.])
W, H, x, y, w, h = floorplan(Amin)
for k in xrange(5):
pylab.fil1([x[k], x[k], x[k]l+wlk], x[k]+w[k]],
[y[k]l, y[kl+h[k], y[kl+h[k], y[k]],’#DODODO’)
pylab.text (x[k]+.5*%w[k], y[kl+.5xh[k], "%d" %(k+1))
pylab.axis([-1.0, 26, -1.0, 26])
pylab.xticks([])
pylab.yticks([1)

pylab.subplot(224)
Amin = matrix([20., 150., 20., 200., 110.])

9.2. QUADRATIC PROGRAMMING 109

W, H, x, y, w, h = floorplan(Amin)
for k in xrange(5):
pylab.fill([x[k], x[k], x[kl+wlk]l, x[kl+w[kl],
[y[x], y[kl+h[k], y[k]+h[k], y[k]1,’#DODODO’)
pylab.text (x[k]l+.5*w[k], y[kl+.5%h[k], "%d" %(k+1))
pylab.axis([-1.0, 26, -1.0, 26])
pylab.xticks([])
pylab.yticks([])

pylab.show()

25F] 25F]
4
4
1
5 5
T
5 L
3
2 2
O 1 o 1]
0 25 0 25
25F] 25F]
4
4
1 5 5
3]
2 3
2
0 4 0
0 25 0 25

9.2 (Quadratic Programming

ap(P, q, [, G, h [, A, b[, solver]]])

110CHAPTER 9. NONLINEAR CONVEX PROGRAMMING (CVXOPT.SOLVERS)

Solves a convex quadratic program

minimize (1/2)2T Pz +¢Tz
subject to Gz =< h
Ax =b.

P is a square dense or sparse real matrix, representing a symmetric matrix
in ’L’ storage, i.e., only the lower triangular part of P is referenced. G and
A are dense or sparse real matrices. Their default values are sparse matri-
ces with zero columns. g, h and b are single-column real dense matrices.
The default values of h and b are matrices of size (0,1).

The default CVXOPT solver is used when the solver argument is absent
or None. The MOSEK solver (if installed) can be selected by setting
solver=’mosek’.

gp() returns a dictionary with keys ’status’, ’x’, ’s’, ’y’, ’z’. The
possible values of the >status’ key are as follows.

>optimal’ In this case the *x’ entry is the primal optimal solution, the
’s’ entry is the corresponding slack in the inequality constraints,
the >z’ and ’y’ entries are the optimal values of the dual variables
associated with the linear inequality and linear equality constraints.
These values (approximately) satisfy the optimality conditions

Pa+q+GT 24+ ATy =0, Gx+s = h, Ax =b, s =0, z =0,

’primal infeasible’ This only applies when solver is ’mosek’, and
means that a certificate of primal infeasibility has been found. The
’x? and ’s’ entries are None, and the ’z’ and ’y’ entries are vectors
that approximately satisfy

GTz+ ATy =0, Rz 4+ 0Ty = -1, z > 0.

’dual infeasible’ This only applies when solver is ’mosek’, and means
that a certificate of dual infeasibility has been found. The ’z’ and
>y’ entries are None, and the *x’ and ’s’ entries are vectors that
approximately satisfy

Px =0, ¢ e = —1, Gx+s5=0, Az =0, s = 0.

>unknown’ This means that the algorithm reached the maximum number
of iterations before a solution was found. The ’x’, ’s’, ’y’, ’2z’
entries are None.

As an example we compute the trade-off curve on page 187 of the book
Convex Optimization?, by solving the quadratic program
minimize —pTx + pz’ Sz
subject to 1Tz =1, x>0

2http://www.stanford.edu/\~{}boyd/cvxbook

9.2. QUADRATIC PROGRAMMING 111

for a sequence of positive values of mu. The code below computes the trade-off
curve and produces two figures using the Matplotlib® package.

Risk-return trade-off curve (fig 4.12)
0.15 . . :

expected return

0'08.00 0.05 0.10 0.15 0.20
standard deviation

Optimal allocations (fig 4.12)
1.0 T T T

x4 x3 X2

o
o
T

L

x1

allocation

o
IS
T

.

0.2 i

06).00 0.05 0.10 0.15 0.20
standard deviation

from math import sqrt

from cvxopt.base import matrix
from cvxopt.blas import dot
from cvxopt.solvers import qp
import pylab

Shttp://matplotlib.sourceforge.net

112CHAPTER 9. NONLINEAR CONVEX PROGRAMMING (CVXOPT.SOLVERS)

Problem data.

n=4

S = matrix([[4e-2, 6e-3, -4e-3, 0.0 1,
[6e-3, 1e-2, 0.0, 0.0 1,
[-4e-3, 0.0, 2.5e-3, 0.0 1],
[0.0, 0.0, 0.0, 0.0 11D

pbar = matrix([.12, .10, .07, .03])

G = matrix (0.0, (n,n))

G[::n+1] = -1.0

h = matrix(0.0, (n,1))

A = matrix(1.0, (1,n))

b = matrix(1.0)

Compute trade-off.

N = 100

mus = [10*%*(5.0*%t/N-1.0) for t in xrange(N)]

portfolios = [qp(mu*S, -pbar, G, h, A, b)[’x’] for mu in mus]
returns = [dot(pbar,x) for x in portfolios]

risks = [sqrt(dot(x, S*x)) for x in portfolios]

Plot trade-off curve and optimal allocations.
pylab.figure(1l, facecolor=’w’)

pylab.plot(risks, returns)

pylab.xlabel(’standard deviation’)
pylab.ylabel(’expected return’)

pylab.axis([0, 0.2, 0, 0.15])
pylab.title(’Risk-return trade-off curve (fig 4.12)°)
pylab.yticks([0.00, 0.05, 0.10, 0.15])

pylab.figure(2, facecolor=’w’)

cl = [x[0] for x in portfolios]

c2 = [x[0] + x[1] for x in portfolios]

c3 = [x[0] + x[1] + x[2] for x in portfolios]

c4 = [x[0] + x[1] + x[2] + x[3] for x in portfolios]

pylab.fill(risks + [.20], c1 + [0.0], ’#FOFOFO’)
pylab.fill(risks[-1::-1] + risks, c2[-1::-1] + c1, ’#DODODO’)
pylab.fill(risks[-1::-1] + risks, c3[-1::-1] + c2, ’#FOFOFO0’)
pylab.fill(risks[-1::-1] + risks, c4[-1::-1] + c3, ’#DODODO’)
pylab.axis([0.0, 0.2, 0.0, 1.0])

pylab.xlabel(’standard deviation’)

pylab.ylabel(’allocation’)

pylab.text(.15,.5,’x1’)

pylab.text(.10,.7,°%x2")

pylab.text(.05,.7,°x3”)

pylab.text(.01,.7,’x4’)

9.3. GEOMETRIC PROGRAMMING 113

pylab.title(’Optimal allocations (fig 4.12)7)
pylab.show()

9.3 Geometric Programming

gp(K, F, g [, G, h [, A, b]])

Solves a geometric program in convex form

minimize fo(z) = lse(Fox + go)
subject to fi(x) =lse(Foz +¢;) <0, i=1,...,m

Gz <h
Axr=b
where
T T
Ise(u) =log ¥ exp(uy), F=[F F - FL]", g=[gl of - b] .
k

K is a list of m+1 positive integers with K[i] equal to the number of rows
in F_i. F is a dense or sparse real matrix of size (sum(K),n). g is a dense
real matrix with one column and the same number of rows as F. G and A
are dense or sparse real matrices. Their default values are sparse matrices
with zero rows. h and b are dense real matrices with one column. Their
default values are matrices of size (0,1).

gp() returns a dictionary with keys ’status’, ’x’, ’snl’, ’sl’, ’y’,
’znl’ and ’z1’. The possible values of the ’status’ key are:

>optimal’ In this case the *x’ entry is the primal optimal solution, the
’snl’ and ’sl’ entries are the corresponding slacks in the nonlin-
ear and linear inequality constraints. The ’znl’, ’z1’ and ’y’ en-
tries are the optimal values of the dual variables associated with the
nonlinear and linear inequality constraints and the linear equality
constraints. These values approximately satisfy

V@) +Y znVie(@)+G a+ATy =0, fu(a)+sar=0, k=1,....m, Guzts =Dh,
k=1
and

sm>=0, s1=0, zu>=0, x>0, shzy+slza=0.

>unknown’ This means that the algorithm reached the maximum number
of iterations before a solution was found. The ’x’, >snl’, *s1’, ’y’,
’znl’ and ’z1’ entries are None.

114CHAPTER 9. NONLINEAR CONVEX PROGRAMMING (CVXOPT.SOLVERS)

As an example, we solve the small GP of section 2.4 of the paper A Tutorial
on Geometric Programming?. The posynomial form of the problem is

minimize w lh~td~!
subject to (Z/Awan)hw + (2/Awa11)hd <1
(1/Ag)wd < 1
awh™1 <1
(1/8)hw=t <1
ywd=t <1
(1/8)dw=t <1

with variables h, w, d.

from cvxopt.base import matrix, log, exp
from cvxopt import solvers

Aflr = 1000.0
Awall = 100.0
alpha = 0.5
beta = 2.0
gamma = 0.5
delta = 2.0
F = matrix([[-1., 1., 1., O., -1., 1., 0., 0.],
[-1., 1., 0., 1., 1., -1., 1., -1.],
[-1., 0., 1., 1., 0., O., -1., 1.1
= log(matrix([1.0, 2/Awall, 2/Awall, 1/Aflr, alpha, 1/beta, gamma, 1/deltal))

[1, 2’ 1’ 1, 1’ 1’ 1]
, w, d = exp(solvers.gp(X, F, g)[’x’])

g
K
h

9.4 Exploiting Structure

The solvers cp(), qp() and gp() are interfaces to nlcp(), which can also be
called directly but requires user-provided functions for evaluating the constraint
and for solving the KKT equations.
nlcp(kktsolver, F[, G, h[, A, b]])
Solves the nonlinear convex optimization problem (?7).

The meaning of the arguments h and b is the same as for cp(). The
arguments kktsolver, F, G and A are functions that must handle the
following calling sequences.

e kktsolver(x, z,dnl, d1), returns a function for solving KKT systems

m
Z Z’fv2fk(x)uo: + ATuy + Df:(‘r)Tuan + GlTua = by
k=0

4nttp://www.stanford.edu/\~{}boyd/gp_tutorial

9.4. EXPLOITING STRUCTURE 115

Az = b,
Df(x)x — diag (dn) 22 = b,
Gz — diag (d) 2z = b
where f = (f1,---, fm). The arguments are single-column real dense

matrices. x is in the domain of the objective and constraint functions.
z, dnl and d1 are positive vectors.

The function f created by "f = kktsolver(bx, by, bznl, bzl)”
will be called as ”f (bx, by, bznl, bzl)”. On entry, the arguments
contain the righthand sides. On exit, they should be replaced by the
solution.

e Called with no arguments, F() returns a tuple (m, x0), where m is the

number of nonlinear inequality constraints) and x0 is a point in the
domain of f).
Called with one argument, F(x) returns a tuple (f, Df). f is a dense
matrix of size (m+1,1) with the function values of the objective func-
tion and the nonlinear constraint functions at x. Df is a dense or
sparse real matrix of size (m+1,n) with Df [k, :] equal to the trans-
pose of the gradient of f k at z. Alternatively, Df can be given as a
function. In that case the function call Df(u,v), where u and v are
dense column vectors, should evaluate

vi= Zukak(x) + v.
k=0

If x is not in the domain of f, F(x) returns None or (None,None).

e G(x, y[, alpha=1.0[, beta=0.0[, trans="N’]]]) evaluates the matrix-
vector products

y:=aGx + By (trans ='N’), y:=aGlz + Py (trans='T").

Alternatively, G can be specified as a real sparse or dense matrix.

o A(x, y[, alpha=1.0[, beta=0.0], trans="N’]]]) evaluates the matrix
vector products

y:=aAr+ Py (trans ='N’), y:=aATz+ By (trans ='T).
Alternatively, A can be specified as a real sparse or dense matrix.
As an example, we consider the 1-norm regularized least-squares problem
minimize ||Az — y||3 + ||=]]1
with variable z. The problem is equivalent to the quadratic program
minimize ||Az —y|]3 +1Tu
subject to —u =z <u

with variables z and uw. The implementation below is efficient when A has many
more columns than rows.

116CHAPTER 9. NONLINEAR CONVEX PROGRAMMING (CVXOPT.SOLVERS)

from cvxopt.base import matrix, spmatrix, mul, div
from cvxopt import blas, lapack, solvers

m, n = A.size
def F(x=None):

Function and gradient evaluation of

f= 1| A*x[:n] -y |1_2°2 + sum(x[n:])

nvars = 2*n

if x is None: return O, matrix(0.0, (nvars,1))
r = Axx[:n] -y

f = blas.nrm2(r)**2 + sum(x[n:])

gradf = matrix(1.0, (1,2*n))

blas.gemv(A, r, gradf, alpha=2.0, trans=’T’)
return f, +gradf

def G(u, v, alpha=1.0, beta=0.0, trans=’N’):

v := alphax[I, -I; -I, -I] * u + beta * v (trans

v *= beta
v[:n] += alphax(ul:n] - uln:]1)
v[n:] += alpha*x(-ul:n] - uln:])

h = matrix(0.0, (2%n,1))

We first eliminate zl and x[n:]:

(2%z[0]*A>*A + 4*xD1xD2*(D1+D2)"-1) * x[:n]
+ D1 * (I + (D2-D1)*(D14D2)"-1) * bzl[

x[n:] = (D1+D2)"-1 * (bx[n:] - Dix*bzl[:n]

= N’ or ’T?)

Customized solver for the KKT system
[2.0%xz[0]*A’*A O I -1] [x[:n] 1] [bx[:n]]
[O 0o -I -1] [x[n:] 1 = [bx[n:]].
[I -I -Di1"-1 0 1 [z1[:n]] [bzl[:n]]
[-1 -I 0 -D2°-1 1 [zl[n:]] [bzl[n:]]

= bx[:n] - (D2-D1)*(D1+D2)"-1 *
:n] - D2 * (I - (D2-D1)*(D1+D2)"

- D2*bzl[n:]) - (D2-D1)*(D1+D2)"

9.4. EXPLOITING STRUCTURE 117

z1[:n]
z1l[n:]

D1 * (x[:n] - x[n:] - bzl[:n])
D2 * (-x[:n] - x[n:] - bzl[n:]).

The first equation has the form
(z[0]*A’*A + D)*x[:n] = rhs
and is equivalent to

[D A’] [x:n]l] = [rhs]
[A -1/z[01*I] [v] Lo 1.

It can be solved as

(A¥D"-1%A> + 1/z[0]*I) * v = A * D°-1 * rhs
x[:n] = D-1 * (rhs - A’*v).

H H H HHHEHHHEHHEHHEHHEH

S = matrix(0.0, (m,m))

Asc = matrix(0.0, (m,n))

v = matrix(0.0, (m,1))

def kktsolver(x, z, dnl, dl):

Factor

#

S = A¥D"-1xA’ + 1/z[0]*I
#

where D = 2*xD1#D2x(D1+D2)"-1, D1 = d1l[:n]**2, D2 = dl[n:]**2.

dl, d2 = dl[:n]l**2, dl[n:]**2 # d1 = diag(D1), d2 = diag(D2)
ds is square root of diagonal of D

ds = sqrt(2.0) * div(mul(dl[:n], dl[n:]), sqrt(di+d2))

d3 = div(d2 - 41, 41 + d2)

Asc = Axdiag(d)~-1/2
Asc = A x spmatrix(ds*x-1, range(n), range(n))

S =1/z[0]*I + A *x D°-1 = A’
blas.syrk(Asc, S)

S[::m+1] += 1.0 / z[0]
lapack.potrf (S)

def g(x, y, znl, zl):

x[:n]
x[:n]

0.5 * (x[:n] - mul({d3, x[n:]) + mul(dl, zl[:n] + mul(d3, zl[:n])) - mul(d2, :
div(x[:n], ds)

118 CHAPTER 9. NONLINEAR CONVEX PROGRAMMING (CVXOPT.SOLVERS)

Solve

#
#
S*v=0.5%Ax%D"-1x% (bx[:n] - (D2-D1)*(D1+D2)"-1 * bx[n:]

+ D1 *x (I + (D2-D1)*(D1+D2)"-1) * bzl[:n] - D2 * (I - (D2-
blas.gemv(Asc, x, V)

lapack.potrs(S, v)

x[:n] = D"-1 * (rhs - A’*xv).
blas.gemv(Asc, v, x, alpha=-1.0, beta=1.0, trans=’T’)
x[:n] = div(x[:n], ds)

x[n:] = (D1+D2)"-1 * (bx[n:] - Dixbzl[:n] - D2*bzl[n:]) - (D2-D1)*(D1+
x[n:] = div(x[n:] - mul(d1l, z1[:n]) - mul(d2, zl[n:]), d1+d2) - mul(43,

z1[:n] = D1 *x (x[:n] - x[n:] - bzl[:n])
z1[n:] = D2 *x (-x[:n] - x[n:] - bzl[n:]).
z1[:n] = mul(d1, =x[:n] - x[n:] - z1[:n])
z1l[n:] = mul(d2, -x[:n] - x[n:] - z1[n:])

return g

x = solvers.nlcp(kktsolver, F, G, h)[’x’][:n]

9.5 Algorithm Parameters

The following algorithm control parameters are accessible via the dictionary
solvers.options. By default the dictionary is empty and the default values of
the parameters are used.

One can change the parameters in the default solvers by adding entries with
the following key values.

’show_progress’ True or False; turns the output to the screen on or off (de-
fault: True).

’maxiters’ maximum number of iterations (default: 100).
’abstol’ absolute accuracy (default: 1e-7).

’reltol’ relative accuracy (default: 1e-7).

>feastol’ tolerance for feasibility conditions (default: 1e-7).
For example the command

>>> from cvxopt import solvers
>>> solvers.options[’show_progress’] = False

9.5. ALGORITHM PARAMETERS 119

turns off the screen output during calls to the solvers. The tolerances abstol,
reltol and feastol have the following meaning in nlcp().
nlcp() returns with status ’optimal’ if

IV fo(@) + DF () omt + G + ATyl _ I(f(@) + sm, G+ 51— h Az = b)ls _
max{L, |V fo(xo) + Df(z0)T1+GT12} ~ 7 max{L[|(f(xo) + 1,Gzo + 1~ h, Axo —b)l|2} ~

€feas

where z0 is the point returned by F(O), and

gap gap
ap < €abs or z) <0, < €re or L(x,y,2) >0, ———— < €
8P = b (<0, 05 <) (Hner =0 205 <)

where

T
gap = [} [} L) = folw) B () T (Gah)+yT (An—b).

The functions qp (), gp () and cp() call nlcp() and hence use the same stopping
criteria (with 20=0 for qp() and gp()).

The MOSEK control parameters® are set to their default values. The corre-
sponding keys in solvers.options are strings with the name of the MOSEK
parameter. For example the command

>>> from cvxopt import solvers
>>> solvers.options[’MSK_IPAR_LOG’] = 0

turns off the screen output during calls of qp() with the mosek’ option.

Shttp://www.mosek.com/fileadmin/products/3/tools/doc/html/tools/node22.html

120CHAPTER 9. NONLINEAR CONVEX PROGRAMMING (CVXOPT.SOLVERS)

Chapter 10

Modeling (cvxopt.modeling)

The module cvxopt.modeling can be used to specify and solve optimization
problems with convex piecewise-linear objective and constraint functions.

To specify an optimization problem one first defines the optimization vari-
ables (see section ??), and then defines the objective and constraint functions
using linear operations (vector addition and subtraction, matrix-vector multi-
plication, indexing and slicing) and nested evaluations of max (), min(), abs()
and sum() (see section ?7).

10.1 Variables

Optimization variables are represented by variable objects.
variable([size[, name]])

A vector variable. The first argument is the dimension of the vector (a
positive integer with default value 1). The second argument is a string
with a name for the variable. The name is optional and has default value
" Tt is only used when displaying variables (or objects that depend on
variables, such as functions or constraints) using print statements, when
calling the built-in functions repr() or str(), or when writing linear
programs to MPS files.

The function len() returns the length of a variable. A variable x has two
attributes.
name

he name of the variable.
value

ither None or a dense ’d’ matrix of size len(x) by 1.

The attribute x.value is set to None when the variable x is created. It can
be given a numerical value later, typically by solving an LP that has x as

121

122 CHAPTER 10. MODELING (CVXOPT.MODELING)

one of its variables. One can also make an explicit assignment x.value
= y. The assigned value y must be an integer or float, or a dense ’d’
matrix of size (len(x),1). If y is an integer or float all the elements of
x.value are set to the value of y.

>>> from cvxopt.base import matrix
>>> from cvxopt.modeling import variable
>>> x = variable(3,’a’)
>>> len(x)
3
>>> print x.name
a
>>> print x.value
None
>>> x.value = matrix([1.,2.,3.])
>>> print x.value

1.0000e+00

2.0000e+00

3.0000e+00
>>> x.value = 1
>>> print x.value

1.0000e+00

1.0000e+00

1.0000e+00

10.2 Functions

Objective and constraint functions can be defined via overloaded operations on
variables and other functions. A function f is interpreted as a column vector,
with length len(f) and with a value that depends on the values of its variables.
Functions have two public attributes.

variables()

eturns a copy of the list of variables of the function.
value()

he function value. If any of the variables of £ has value None, then
f.value() returns None. Otherwise, it returns a dense ’d’ matrix of size
(len(£f),1) with the function value computed from the value attributes
of the variables of f.

Three types of functions are supported: affine, convex piecewise-linear and
concave piecewise-linear.
Affine functions represent vector valued functions of the form

f(x177xn):A1x1++An$n+b

10.2. FUNCTIONS 123

The coefficients can be scalars or dense or sparse matrices. The constant term
is a scalar or a column vector.
Affine functions result from the following operations.

Unary operations For a variable x, the unary operation +x results in an affine
function with x as variable, coefficient 1.0, and constant term 0.0. The
unary operation -x returns an affine function with x as variable, coefficient
-1.0, and constant term 0.0. For an affine function f, +f is a copy of £,
and -f is a copy of £ with the signs of its coefficients and constant term
reversed.

Addition and subtraction Sums and differences of affine functions, variables
and constants result in new affine functions. The constant terms in the
sum can be of type integer or float, or dense or sparse ’d’ matrices
with one column.

The rules for addition and subtraction follow the conventions for matrix
addition and subtraction in sections 7?7 and ??, with variables and affine
functions interpreted as dense ’d’ matrices with one column. In particu-
lar, a scalar term (integer, float, 1 by 1 dense ’d’ matrix, variable of
length 1, or affine function of length 1) can be added to an affine function
or variable of length greater than 1.

Multiplication Suppose v is an affine function or a variable, and a is an
integer, float, sparse or dense ’d’ matrix. The products a*xv and v*a
are valid affine functions whenever the product is allowed under the rules
for matrix and scalar multiplication of sections 7?7 and 7?7, with v inter-
preted as a ’d’ matrix with one column. In particular, the product a*v
is defined if a is a scalar (integer, float or 1 by 1 dense ’d’ matrix),
or a matrix (dense or sparse) with a.size[1] = len(v). The operation
v*a is defined if a is scalar, or if len(v) = 1 and a is a matrix with one
column.

Inner products The following two functions return scalar affine functions de-
fined as inner products of a constant vector with a variable or affine func-
tion.

sum(v)

The argument is an affine function or a variable. The result is an
affine function of length 1, with the sum of the components of the
argument v.

dot(u,v)

If v is a variable or affine function and u is a ’d’ matrix of size
(len(v),1), then dot (u,v) and dot (v,u) are equivalent to u.trans () *v.
If u and v are dense matrices, then dot(u,v) is equivalent to the
function blas.dot(u,v) defined in section 7?7, i.e., it returns the
inner product of the two matrices.

124 CHAPTER 10. MODELING (CVXOPT.MODELING)

In the following example, the variable x has length 1 and y has length 2.
The functions £ and g are given by

flzy) = §}w+y+[§}
glzy) = ; i]f(f”vyH“ 1]?/*{—11]
LI

>>> from cvxopt.modeling import variable

>>> x = variable(1,’x’)

>>> y = variable(2,’y’)

>>> f = 2xx +y + 3

>>> A = matrix([[1., 2.1, [3.,4.1]1)
>>> b = matrix([1.,-1.])

>>> g = Axf + sum(y) + b

>>> print g
affine function of length 2
constant term:

1.3000e+01

1.7000e+01
linear term: linear function of length 2
coefficient of variable(2,’y’):
2.0000e+00 4.0000e+00
3.0000e+00 5.0000e+00
coefficient of variable(1l,’x’):
8.0000e+00

1.2000e+01

In-place operations For an affine function f the operations f += uand £ -=
u, with u a constant, a variable or an affine function, are allowed if they
do not change the length of £, i.e., if u has length len(f) or length 1.
In-place multiplication £ *= u and division £ /= u are allowed if u is an
integer, float, or 1 by 1 matrix.

Indexing and slicing Variables and affine functions admit single-argument
indexing of the four types described in section ??7. The result of an index-
ing or slicing operation is an affine function.

>>> x = variable(4,’x’)

>>> f = x[::2]

>>> print f

>>> linear function of length 2

linear term: linear function of length 2
coefficient of variable(4,’x’):

10.2. FUNCTIONS 125

TYPE: general
SIZE: (2,4)
(0, 0) 1.0000e+00
(1, 2) 1.0000e+00
>>> y = variable(3,’x’)
>>> g = matrix(range(12),(3,4),°d’)*x - 3%y + 1
>>> print g[0] + gl[2]
affine function of length 1
constant term:
2.0000e+00
linear term: linear function of length 1
coefficient of variable(4,’x’):
2.0000e+00 8.0000e+00 1.4000e+01 2.0000e+01
coefficient of variable(3,’y’):
TYPE: general
SIZE: (1,3)
(0, 0) -3.0000e+00
(0, 2) -3.0000e+00

The general expression of a convex piecewise-linear function is

K

flxr,. .. xn) =b+ Az + -+ Apzy, + Zmax(yl,y27...,ymk).
k=1

The maximum in this expression is a componentwise maximum of its vector
arguments, which can be constant vectors, variables, affine functions or convex
piecewise-linear functions. The general expression for a concave piecewise-
linear function is

K

flze,...,zn) =b+ A1z 4+ -+ Apzy, + Zmin(yl,yg,...,ymk).
k=1

Here the arguments of the min() can be constants, variables, affine functions or
concave piecewise-linear functions.
Piecewise-linear functions can be created using the following operations.

max If the arguments in £ = max(yl,y2, ...) do not include any variables or
functions, then the Python built-in max () is evaluated.

If one or more of the arguments are variables or functions, max () returns
a piecewise-linear function defined as the elementwise maximum of its
arguments. In other words, f[k] = max(y1[k],y2[k], ...) for k=0,
..., len(£)-1. The length of f is equal to the maximum of the lengths
of the arguments. Each argument must have length equal to len(f) or
length one. Arguments with length one are interpreted as vectors of length
len(f) with identical entries.

126 CHAPTER 10. MODELING (CVXOPT.MODELING)

The arguments can be scalars of type integer or float, dense ’d’ matri-
ces with one column, variables, affine functions or convex piecewise-linear
functions.

With one argument, f = max(u) is interpreted as f = max(u[0],ul1],...
ullen(u)-11).

min Similar to max() but returns a concave piecewise-linear function. The
arguments can be scalars of type integer or float, dense ’d’ matrices
with one column, variables, affine functions or concave piecewise-linear
functions.

abs If u is a variable or affine function then f = abs(u) returns the convex
piecewise-linear function max (u,-u).

Unary plus and minus +f creates a copy of £. -f is a concave piecewise-
linear function if f is convex and a convex piecewise-linear function if f is
concave.

Addition and subtraction Sums and differences involving piecewise-linear
functions are allowed if they result in convex or concave functions. For
example, one can add two convex or two concave functions, but not a con-
vex and a concave function. The command sum(f) is equivalent to f [0]
+ f[1] + ...+ f[len(f)-1].

Multiplication Scalar multiplication a*f of a piecewise-linear function f is
defined if a is an integer, float, 1 by 1 ’d’ matrix. Matrix-matrix
multiplications a*f or f*a are only defined if a is a dense or sparse 1 by
1 matrix.

Indexing and slicing Piecewise-linear functions admit single-argument index-
ing of the four types described in section ??. The result of an indexing or
slicing operation is a new piecewise-linear function.

In the following example, f is the 1-norm of a vector variable x of length 10,
g is its infinity-norm and h is the function

0 lu] <1

ha) = S oal), b= -1 1<[u <2
k 2ul -3 |u| >2.

>>> from cvxopt.modeling import variable, max
>>> x = variable(10, ’x’)

>>> f = sum(abs(x))

>>> g = max(abs(x))

>>> h = sum(max(0, abs(x)-1, 2*abs(x)-3))

In-place operations If f is piecewise-linear then the in-place operations f
+=u, f -= u, f *= u, f /= u are defined if the corresponding expanded
operations f = f+u, f = f-u, f = f*u and f = f/u are defined and if
they do not change the length of £.

10.3. CONSTRAINTS 127

10.3 Constraints
Linear equality and inequality constraints of the form

fz1,...,2,) =0, flz,...,z,) 20,

where f is a convex function, are represented by constraint objects. Equality
constraints are created by expressions of the form

f1 == f2.

Here f1 and f£2 can be any objects for which the difference £1-£2 yields an
affine function. Inequality constraints are created by expressions of the form

f1 <= £2, £2 >= f1,

where f1 and £2 can be any objects for which the difference £1-£2 yields a
convex piecewise-linear function. The comparison operators first convert the ex-
pressions to £1-f2 == 0, resp. £1-f2 <= 0, and then return a new constraint
object with constraint function £1-£2.

In the following example we create three constraints

0xx=1, 17y = 2,
for a variable of length 5.

>>> x = variable(5,’x’)
>>> cl = (x <= 1)
>>> ¢c2 = (x >= 0)
>>> ¢3 = (sum(x) == 2)

The built-in fucntion len() returns the dimension of the constraint function.
Constraints have four public attributes.

type()

Returns ’=’ if the constraint is an equality constraint, and ’<’ if the
constraint is an inequality constraint.

value()
Returns the value of the constraint function.
multiplier

or a constraint ¢, c.multiplier is a variable object of dimension len(c).
It is used to represent the Lagrange multiplier or dual variable associated
with the constraint. Its value is initialized as None, and can be modified
by making an assignment to c.multiplier.value.

name

he name of the constraint. Changing the name of a constraint also changes
the name of the multiplier of c. For example, the command c.name =
’newname’ also changes c.multiplier.name to ’newname mul’.

128 CHAPTER 10. MODELING (CVXOPT.MODELING)

10.4 Optimization Problems

Optimization problems are be constructed by calling the following function.
op([objective[, constraints[, name]l])

The first argument specifies the objective function to be minimized. It can
be an affine or convex piecewise-linear function with length 1, a variable
with length 1, or a scalar constant (integer, float or 1 by 1 dense ’d’
matrix). The default value is 0.0.

The second argument is a single constraint, or a list of constraint
objects. The default value is an empty list.

The third argument is a string with a name for the problem. The default
value is the empty string.

The following attributes and methods are useful for examining and modifying
optimization problems.
objective

he objective or cost function. One can write to this attribute to change
the objective of an existing problem.

variables()

eturns a list of the variables of the problem.
constraints()

eturns a list of the constraints.
inequalities()

eturns a list of the inequality constraints.
equalities()

eturns a list of the equality constraints.
delconstraint(c)

Deletes constraint ¢ from the problem.
addconstraint(c)

Adds constraint ¢ to the problem.

An optimization problem with convex piecewise-linear objective and con-
straints can be solved by calling the method solve().
solve([format[, solver]])

10.4. OPTIMIZATION PROBLEMS 129

This function converts the optimization problem to a linear program in
matrix form and then solves it using the solver described in section ?7.

The first argument is either *dense’ or ’sparse’, and denotes the matrix
types used in the matrix representation of the LP. The default value is
’dense’.

The second argument is either None. *glpk’ or *mosek’, and selects one of
three available LP solvers: a default solver written in Python, the GLPK
solver (if installed) or the MOSEK LP solver (if installed); see section ?77?.
The default value is None.

The solver reports the outcome of optimization by setting the attribute
self.status and by modifying the value attributes of the variables and
the constraint multipliers of the problem.

e If the problem is solved to optimality, self.status is set to optimal’.
The value attributes of the variables in the problem are set to their
computed solutions, and the value attributes of the multipliers of
the constraints of the problem are set to the computed dual optimal
solution.

e If it is determined that the problem is infeasible, self.status is set
to ’primal infeasible’. The value attributes of the variables are
set to None. The value attributes of the multipliers of the constraints
of the problem are set to a certificate of primal infeasibility. With the
’glpk’ option, solve() does not provide certificates of infeasibility.

e If it is determined that the problem is dual infeasible, self.status is
set to ’dual infeasible’. The value attributes of the multipliers of
the constraints of the problem are set to None. The value attributes
of the variables are set to a certificate of dual infeasibility. With the
’glpk’ option, solve() does not provide certificates of infeasibility.

e If the problem was not solved successfully, self.status is set to
>unknown’. The value attributes of the variables and the constraint
multipliers are set to None.

We refer to section 7?7 for details on the algorithms and the different solver
options.
As an example we solve the LP

>>>
>>>
>>>
>>>

minimize —4x — by
subject to 2z +y <3
r+2y <3

rz>0, y=>0.

x = variable()
y = variable()
cl = (2*xxt+y <=
c2 = (x+2*y <=

w w
NN

130 CHAPTER 10. MODELING (CVXOPT . MODELING)

>>>c3 = (x> 0)

>>>c4d = (y>0)

>>> 1pl = op(-4*x-5*y, [cl,c2,c3,c4])
>>> 1pl.solve()

>>> print lpl.status

optimal
>>> print lpl.objective.value()
-9.0000e+00
>>> print x.value
1.0000e-00
>>> print y.value
1.0000e-00
>>> print cl.multiplier.value
1.0000e-00
>>> print c2.multiplier.value
2.0000e-00
>>> print c3.multiplier.value
8.8912e-09
>>> print c4.multiplier.value
9.8567e-09

We can solve the same LP in matrix form as follows.

>>> x = variable(2)

>>> A = matrix([[2.,1.,-1.,0.], [1.,2.,0.,-1.11)
>>> b = matrix([3.,3.,0.,0.]1)

>>> ¢ = matrix([-4.,-5.])

>>> ineq = (A*x <= b)
>>> 1p2 = op(dot(c,x), ineq)
>>> 1p2.solve()
>>> print 1p2.objective.value()
-9.0000e+00
>>> print x.value

1.0000e-00

1.0000e-00
>>> print ineq.multiplier.value
1.0000e+00

2.0000e+00

8.8912e-09

9.8567e-09

The op class also includes two methods for writing and reading files in MPS
format?.
tofile(filename)

Thttp://www-fp.mcs.anl.gov/otc/Guide/OptWeb/continuous/constrained/linearprog/
mps.html

10.5. EXAMPLES 131

If the problem is an LP, writes it to the file >filename’ using the MPS
format. Row and column labels are assigned based on the variable and
constraint names in the LP.

fromfile(filename)

Reads the LP from the file >filename’. The file must be a fixed-format
MPS file. Some features of the MPS format are not supported: comments
beginning with dollar signs, the row types 'DE’, 'DL’, 'DG’, and 'DN’; and
the capability of reading multiple righthand side, bound or range vectors.

10.5 Examples

Norm and Penalty Approximation In the first example we solve the norm
approximation problems

minimize ||Az — || oo, minimize ||Az —b|; ,
and the penalty approximation problem

0 lu| < 3/4
minimize Y, ¢((Az — b)), d(u)={ |u| ~3/4 3/4<|u| <3/2
olul — 9/4 |u| > 3/2.

We use randomly generated data.

The code uses the Matplotlib? package for plotting the histograms of the
residual vectors for the two solutions. It generates the figure shown below.

from cvxopt.random import normal
from cvxopt.modeling import variable, op, max, sum
import pylab

m, n = 500, 100
A = normal(m,n)
b = normal(m)

x1 = variable(n)
op (max (abs (A*x1-b))) .solve()

x2 = variable(n)
op (sum(abs (A*x2-b))) .solve()

x3 = variable(n)
op(sum(max (0, abs(A*x3-b)-0.75, 2*abs(A*x3-b)-2.25))).solve()

2http://matplotlib.sourceforge.net

132 CHAPTER 10. MODELING (CVXOPT.MODELING)

pylab.subplot(311)

pylab.hist (A*x1.value-b, m/5)
pylab.subplot (312)

pylab.hist (A*x2.value-b, m/5)
pylab.subplot(313)

pylab.hist (A*x3.value-b, m/5)
pylab.show()

—%.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Equivalently, we can formulate and solve the problems as LPs.

t = variable()
x1 = variable(n)
op(t, [-t <= A*x1-b, A*x1-b<=t]).solve()

u = variable(m)
x2 = variable(n)
op(sum(u), [-u <= A*x2+b, A*x2+b <= u]).solve()

v = variable(m)
x3 = variable(n)
op(sum(v), [v >= 0, v >= A*x3+b-0.75, v >= -(A*x3+b)-0.75, v >= 2% (A*x3-b)-2.2!

Robust Linear Programming The robust LP
minimize ¢’
subject to sup”vmngl(ai4—v)T$ < b;, i=1,....,m

10.5. EXAMPLES 133

is equivalent to the problem
minimize c¢’x
subject to alx + ||z|1 < by, i=1,...,m.

The following code computes the solution and the solution of the equiva-

lent LP
minimize Tz
subject to al'z + 1Ty < b, i=1,...,m
—y=x =y

for randomly generated data.

from cvxopt.random import normal, uniform
from cvxopt.modeling import variable, dot, op, sum
from cvxopt.blas import nrm2

, n = 500, 100
= normal (m,n)
uniform(m)
normal (n)

0o o =B

x = variable(n)
op(dot(c,x), Axx+sum(abs(x)) <= b).solve()

x2 = variable(n)
y = variable(n)

op(dot(c,x2), [A*x2+sum(y) <= b, -y <= x2, x2 <= y]).solve()

1-Norm Support Vector Classifier The following problem arises in classi-

fication:
minimize ||z||; +1Tu
subject to Ax = 1—u
u > 0.

It can be solved as follows.

variable(A.size[1],’x’)
u = variable(A.size[0],’u’)
op(sum(abs(x)) + sum(u), [A*x >= 1-u, u >= 0]).solve()

X

An equivalent unconstrained formulation is

x = variable(A.size[1],’x’)
op(sum(abs(x)) + sum(max(0,1-A*x))).solve()

134 CHAPTER 10. MODELING (CVXOPT.MODELING)

Chapter 11

C API

The API can be used to extend CVXOPT with interfaces to external C routines
and libraries. A C program that creates or manipulates the dense or sparse
matrix objects defined in cvxopt.base must include the cvxopt.h header file
in the src directory of the distribution.

Before the C API can be used in an extension module it must be initialized
by calling the macro import_cvxopt. As an example we show the module
initialization from the cvxopt.blas module, which itself uses the API:

PyMODINIT_FUNC initblas(void)
{
PyObject *m;

m = Py_InitModule3("cvxopt.blas", blas_functions, blas__doc__);

if (import_cvxopt() < 0)
return;

11.1 Dense Matrices

As can be seen from the header file cvxopt.h, a matrix is essentially a structure
with four fields. The fields nrows and ncols are two integers that specify the
dimensions. The id field controls the type of the matrix and can have values
DOUBLE, INT and COMPLEX. The buffer field is an array that contains the matrix
elements stored contiguously in column-major order.

The following C functions can be used to create matrices.

matrix *Matrix_New(int nrows, int ncols, int id)

Returns a matrix object of type id with nrows rows and ncols columns.
The elements of the matrix are uninitialized.

matrix *Matrix_ NewFromMatrix(matrix *src, int id)

135

136 CHAPTER 11. C API

Returns a copy of the matrix src converted to type id. The following
type conversions are allowed: ’i’ to ’d’, ’i’ to >z’ and ’d’ to ’z’.

matrix *Matrix_NewFromSequence(PyListObject *x, int id)

Creates a matrix of type id from the Python sequence type x. The re-
turned matrix has size (len(x),1). The size can be changed by modifying
the nrows and ncols fields of the returned matrix.

To illustrate the creation and manipulation of dense matrices (as well as the
Python C API), we show the code for the uniform() function from cvxopt.random
described in section ?7.

PyObject * uniform(PyObject *self, PyObject *args, PyObject *kwrds)
{

matrix *obj;

int i, nrows, ncols = 1;

double a = 0, b = 1;

char *kwlist[] = {"nrows", "ncols", "a", "b", NULL};

if (!PyArg_ParseTupleAndKeywords(args, kwrds, "il|idd", kwlist,
&nrows, &ncols, &a, &b)) return NULL;

if ((nrows<0) || (ncols<0)) {
PyErr_SetString (PyExc_TypeError, "dimensions must be non-negative");
return NULL;

b

if (!(obj = Matrix_New(nrows, ncols, DOUBLE)))
return PyErr_NoMemory () ;

for (i = 0; i < nrows*ncols; i++)
MAT_BUFD(obj) [i] = Uniform(a,b);

return (PyObject *)obj;

11.2 Sparse Matrices

Sparse matrices are stored in compressed column storage (CCS) format. For
a general nrows by ncols sparse matrix with nnz nonzero entries this means
the following. The sparsity pattern and the nonzero values are stored in three
fields:

values: A ’d’ or ’z’ matrix of size (nnz,1) with the nonzero entries of the
matrix stored columnwise.

11.2. SPARSE MATRICES 137

rowind: An array of integers of length nnz containing the row indices of the
nonzero entries, stored in the same order as values.

colptr: An array of integers of length ncols+1 with for each column of the ma-
trix the index of the first element in values from that column. More pre-
cisely, colptr[0] is O, and for k = 0, 1, ..., ncols-1, colptr[k+1]
is equal to colptr[k] plus the number of nonzeros in column k of the
matrix. Thus, colptr[ncols] is equal to nnz, the number of nonzero
entries.

For example, for the matrix

A:

W o N =
o O OO
S O = O
O O O Ut

the elements of values, rowind and colptr are:

values: 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, rowind: 0, 1,3, 1, 0, 2,
colptr: 0, 3, 3, 4, 6.

It is crucial that for each column the row indices in rowind are sorted; the
equivalent representation

values: 3.0, 2.0, 1.0, 4.0, 5.0, 6.0, rowind: 3, 1, 0, 1, 0, 2,
colptr: 0, 3, 3,4, 6

is not allowed (and will likely cause the program to crash).

The nzmax field specifies the number of non-zero elements the matrix can
store. It is equal to the length of rowind and values; this number can be larger
that colptr[nrows], but never less. This field makes it possible to preallocate
a certain amount of memory to avoid reallocations if the matrix is constructed
sequentially by filling in elements. In general the nzmax field can safely be
ignored, however, since it will always be adjusted automatically as the number
of non-zero elements grows.

The id field controls the type of the matrix and can have values DOUBLE and
COMPLEX.

Sparse matrices are created using the following functions from the API.

spmatrix *SpMatrix,New(int nrows, int ncols, int nzmax, int id)

Returns a sparse zero matrix with nrows rows and ncols columns. nzmax
is the number of elements that will be allocated (the length of the values
and rowind fields).

spmatrix *SpMatrix_NewFromMatrix(spmatrix *src, int id)
Returns a copy the sparse matrix src.

spmatrix *SpMatrix_NewFromIJV (matrix *I, matrix *J, matrix *V,
int nrows, int ncols, int nzmax, int id)

138 CHAPTER 11. C API

Creates a sparse matrix with nrows rows and ncols columns from a triplet
description. I and J must be integer matrices and V either a double or
complex matrix, or NULL. If V is NULL the values of the entries in the matrix
are undefined, otherwise they are specified by V. Repeated entries in V are
summed. The number of allocated elements is given by nzmax, which is
adjusted if it is smaller than the required amount.

We illustrate use of the sparse matrix class by listing the source code for the
real () method, which returns the real part of a sparse matrix:

static PyObject * spmatrix_real(spmatrix *self) {

if (SP_ID(self) != COMPLEX)
return (PyObject *)SpMatrix_NewFromMatrix(self, 0, SP_ID(self));

spmatrix *ret = SpMatrix_New(SP_NROWS(self), SP_NCOLS(self),
SP_NNZ(self), DOUBLE);
if (!ret) return PyErr_NoMemory() ;

int 1i;
for (i=0; i < SP_NNZ(self); i++)
SP_VALD(ret) [i] = creal(SP_VALZ(self)[i]);

memcpy (SP_COL(ret), SP_COL(self), (SP_NCOLS(self)+1)*sizeof(int_t));
memcpy (SP_ROW(ret), SP_ROW(self), SP_NNZ(self)*sizeof(int_t));
return (PyObject *)ret;

