Uses of Class
org.apache.commons.math.ode.DerivativeException

Packages that use DerivativeException
org.apache.commons.math.ode This package provides classes to solve Ordinary Differential Equations problems. 
 

Uses of DerivativeException in org.apache.commons.math.ode
 

Methods in org.apache.commons.math.ode that throw DerivativeException
 void ContinuousOutputModel.append(ContinuousOutputModel model)
          Append another model at the end of the instance.
 void FirstOrderDifferentialEquations.computeDerivatives(double t, double[] y, double[] yDot)
          Get the current time derivative of the state vector.
 void FirstOrderConverter.computeDerivatives(double t, double[] y, double[] yDot)
          Get the current time derivative of the state vector.
protected  void MidpointStepInterpolator.computeInterpolatedState(double theta, double oneMinusThetaH)
          Compute the state at the interpolated time.
protected  void HighamHall54StepInterpolator.computeInterpolatedState(double theta, double oneMinusThetaH)
          Compute the state at the interpolated time.
protected abstract  void AbstractStepInterpolator.computeInterpolatedState(double theta, double oneMinusThetaH)
          Compute the state at the interpolated time.
protected  void GraggBulirschStoerStepInterpolator.computeInterpolatedState(double theta, double oneMinusThetaH)
          Compute the state at the interpolated time.
protected  void DormandPrince853StepInterpolator.computeInterpolatedState(double theta, double oneMinusThetaH)
          Compute the state at the interpolated time.
protected  void GillStepInterpolator.computeInterpolatedState(double theta, double oneMinusThetaH)
          Compute the state at the interpolated time.
protected  void ThreeEighthesStepInterpolator.computeInterpolatedState(double theta, double oneMinusThetaH)
          Compute the state at the interpolated time.
protected  void EulerStepInterpolator.computeInterpolatedState(double theta, double oneMinusThetaH)
          Compute the state at the interpolated time.
protected  void ClassicalRungeKuttaStepInterpolator.computeInterpolatedState(double theta, double oneMinusThetaH)
          Compute the state at the interpolated time.
protected  void DormandPrince54StepInterpolator.computeInterpolatedState(double theta, double oneMinusThetaH)
          Compute the state at the interpolated time.
protected  void DummyStepInterpolator.computeInterpolatedState(double theta, double oneMinusThetaH)
          Compute the state at the interpolated time.
 void SecondOrderDifferentialEquations.computeSecondDerivatives(double t, double[] y, double[] yDot, double[] yDDot)
          Get the current time derivative of the state vector.
 StepInterpolator StepInterpolator.copy()
          Copy the instance.
 StepInterpolator AbstractStepInterpolator.copy()
          Copy the instance.
protected  void AbstractStepInterpolator.doFinalize()
          Really finalize the step.
protected  void DormandPrince853StepInterpolator.doFinalize()
          Really finalize the step.
 boolean SwitchState.evaluateStep(StepInterpolator interpolator)
          Evaluate the impact of the proposed step on the switching function.
 boolean SwitchingFunctionsHandler.evaluateStep(StepInterpolator interpolator)
          Evaluate the impact of the proposed step on all handled switching functions.
 void AbstractStepInterpolator.finalizeStep()
          Finalize the step.
 void StepNormalizer.handleStep(StepInterpolator interpolator, boolean isLast)
          Handle the last accepted step
 void StepHandler.handleStep(StepInterpolator interpolator, boolean isLast)
          Handle the last accepted step
 void ContinuousOutputModel.handleStep(StepInterpolator interpolator, boolean isLast)
          Handle the last accepted step.
 double AdaptiveStepsizeIntegrator.initializeStep(FirstOrderDifferentialEquations equations, boolean forward, int order, double[] scale, double t0, double[] y0, double[] yDot0, double[] y1, double[] yDot1)
          Initialize the integration step.
 void RungeKuttaIntegrator.integrate(FirstOrderDifferentialEquations equations, double t0, double[] y0, double t, double[] y)
          Integrate the differential equations up to the given time.
 void FirstOrderIntegrator.integrate(FirstOrderDifferentialEquations equations, double t0, double[] y0, double t, double[] y)
          Integrate the differential equations up to the given time.
 void EmbeddedRungeKuttaIntegrator.integrate(FirstOrderDifferentialEquations equations, double t0, double[] y0, double t, double[] y)
          Integrate the differential equations up to the given time.
abstract  void AdaptiveStepsizeIntegrator.integrate(FirstOrderDifferentialEquations equations, double t0, double[] y0, double t, double[] y)
          Integrate the differential equations up to the given time.
 void GraggBulirschStoerIntegrator.integrate(FirstOrderDifferentialEquations equations, double t0, double[] y0, double t, double[] y)
          Integrate the differential equations up to the given time.
 void SecondOrderIntegrator.integrate(SecondOrderDifferentialEquations equations, double t0, double[] y0, double[] yDot0, double t, double[] y, double[] yDot)
          Integrate the differential equations up to the given time
 void StepInterpolator.setInterpolatedTime(double time)
          Set the time of the interpolated point.
 void AbstractStepInterpolator.setInterpolatedTime(double time)
          Set the time of the interpolated point.
private  boolean GraggBulirschStoerIntegrator.tryStep(FirstOrderDifferentialEquations equations, double t0, double[] y0, double step, int k, double[] scale, double[][] f, double[] yMiddle, double[] yEnd, double[] yTmp)
          Perform integration over one step using substeps of a modified midpoint method.