
Web Development with CherryPy
Presented to the Calgary Linux Users Group

Jeffrey Clement

jclement@calgary.linux.ca

CherryPy Revision: 1.8 – p. 1/22

Overview

• What is CherryPy?

• Design Philosophy

• Installation
• Classes, Masks, Views, Functions and URLs
• "Hello World!"
• Compiling

• The HTTP Server
• "Hello World! v2"
• Standard Cherry Classes

• Example: Guestbook

• Why CherryPy?

• References

CherryPy Revision: 1.8 – p. 2/22

What is CherryPy?

• A Python based web application development toolkit: libraries, and compiler

• Allows us to build web applications in Python in much the same way we would
build an other Python program

• CherryPy applications are compiled into a standalone Python app complete with
all your program logic and a web server (really, really easy deployment)

• My favorite web development tool ever! (not that I’m biased :)

CherryPy Revision: 1.8 – p. 3/22

Design Philosophy

• Speed - compiled into one app, runs from memory

• Scalability - simply start more processes on one or more machines and add a load
balancer

• Web app is just a normal Python app - cross platform deployment

• Developers can use OOP

• Templating Language (putting HTML in code is annoying) - allows web developers
to maintain look and feel without seeing (much) code.

CherryPy Revision: 1.8 – p. 4/22

Noteworthy Features

• Good documentation and examples

• Standard library provides some very helpful things like authentication, database
connectivity, etc

• Supports SSL using PyOpenSSL

• Supports XML-RPC calls to server (really easy way to setup an XMLRPC server!)

• CherryPy applications are a simple standalone Python script that runs anywhere
Python does

• Simple. Learning and using CherryPy is very quick and intuitive.

CherryPy Revision: 1.8 – p. 5/22

Installation

Debian (I love Debian):

• (root) apt-get install cherrypy (it’s in testing)

• Then to invoke the compiler just call cherrypy. It’s in the path.

Other Unix / Win:
• (user) tar -xzvf cherrypy-XXX.tgz

• Just put your project under the cherrypy directory and invoke the compiler with
../cherrypy.py.

CherryPy Revision: 1.8 – p. 6/22

Classes, Views, Masks and Functions

• CherryPy adds a few new constructs to the Python language:
• CherryClasses: A Class construct for web apps. Requests are mapped to

method calls on CherryClasses
• Views: Pure python code that can be called by browser. This is just a normal

Python method that returns a string of HTML
• Masks: Method which consists of HTML marked up with templating code.

Easier than embedding HTML code in Python code such as we would do in a
View. Again can called by browser.

• Functions: Pure python code that can not be called by browser but can be
used by views and masks.

CherryPy Revision: 1.8 – p. 7/22

URL Mapping

• CherryPy takes requests from the browser and translates them to method calls on
instantiated CherryClasses

• If the browser sends a request that looks like "/a/b" then CherryPy executes a.b()

• If the browser sends a request that looks like "/a" then CherryPy executes the first
of root.a() or a.index()

• If the browsers sends a request like "/" then CherryPy executes root.index()

• So it’s really easy to make method calls to CherryClasses

• Even more exciting is passing data to the methods. Form data is automatically
passed as named arguments to the method. ie) "/a/b?p1=abc&p2=def invokes
a.b(p1=’abc’,p2=’def’).

• This means we layout our application into logical sections (CherryClasses) and
add methods to that class that behave just like normal python methods. No
complicated request.getField() syntax or anything like that.

CherryPy Revision: 1.8 – p. 8/22

"Hello World!"

• The default CherryClass should be called "Root". Within a CherryClass the default
method is called "index".

• The Root/index method is called it the user doesn’t specify a class/method to
invoke.

Hello.cpy
1 CherryClass Root:
2 mask:
3 def index(self):
4 <h1>Hello World</h1>

CherryPy Revision: 1.8 – p. 9/22

"Compiling and Testing"

• To try out our first application we run it through the CherryPy compiler which
produces the standalone Python script:
$ cherrypy Hello.cpy

• This creates a python script called HelloServer.py which contains the
webserver and all your content. Simply ship this script to your server machine and
run it.

• By default CherryPy apps bind to port 8000. You can override this by creating a
config file called "HelloServer.cfg"

• After we startup the server we just point our web browser at
"http://127.0.0.1:8000/" and voila!

• We can even take our script and run it through something like py2exe to convert it
to a standalone executable for Windows users.

CherryPy Revision: 1.8 – p. 10/22

The HTTP Server

CherryPy "executables" include a fairly complete HTTP server that can be run in several
ways:

• single threaded - Server consists of only one process which handles all requests
• Very fast. Minimal overhead per request.
• Not appropriate for use on it’s own since only one request is processed at a

time. A slow web client holds up everyone.
• Usually run behind Apache using mod_proxy or mod_rewrite (easy to do)
• Can easily run on multiple machines and load balance between them to scale

up

• forking - starts a fixed number of forked servers
• Useful for multiprocessor servers.
• Should still be run behind Apache. Since we just need one slow request per

forked copy still holds up the whole system

• multithreaded - each request is processed in separate thread
• A bit more overhead per request runs well standalone.
• One/Many slow client(s) will not hold up others

CherryPy Revision: 1.8 – p. 11/22

"Hello World!" v2

• Python maps URLs to method calls: ie)
http://server:8000/ invokes Root.index
http://server:8000/hello invokes Root.hello or ...
http://server:8000/root/hello invokes Root.hello

• Query parameters are automatically parsed and pased as named parameters to
the method call. ie)
http://server:8000/hello?name=Jeff invokes Root.hello(name=’jeff’)

• This example collects the users name and then uses the HTML templating to
insert that into a webpage.

Hello2.cpy
1 CherryClass Root:
2 mask:
3 def index(self):
4 <h1>Hello World</h1>
5 <form action="/hello">
6 Name: <input type="text" name="name">
7 </form>
8 def hello(self, name):
9 <h1>Hello <py-eval="name"></h1>

CherryPy Revision: 1.8 – p. 12/22

Example: Guest Book

• We are going to make three CherryClasses:

1. MyPage: Base class for all our pages. Includes "header" and "footer" methods
to add common look and feel for us.

2. Root: Has our main homepage which links to our guest book

3. Guestbook: Contains all the methods related to the guestbook including
"view" and "add"

• We have a prebuilt normal Python class for handling the guest book (Our business
object) – To keep the code simple the guest book is stored in memory only.

• So we’ll have four files: guestbook.py, Root.cpy, Guestbook.cpy and MyPage.cpy

• Oh... And maybe RootServer.cfg if we want to enable SSL or change the server
port

CherryPy Revision: 1.8 – p. 13/22

Example: "guestbook.py"

guestbook.py
1 import time
2 class Guestbook:
3 def __init__(self):
4 self._list = []
5 def add(self, name, comment):
6 """ Add given name and comment to the guestbook """
7 newRecord = {} # new guestbook entry - it’s a dictionary
8 newRecord[’name’] = name
9 newRecord[’comment’] = comment

10 newRecord[’date’] = time.ctime()
11 # add new record onto tail of guestbook
12 self._list.append(newRecord)
13 def list(self):
14 """ Returns array containing all guest book entries """
15 return self._list

• This is just a normal python class I’m going to use to build my web app

CherryPy Revision: 1.8 – p. 14/22

Example: "MyPage.cpy"

MyPage.cpy
1 CherryClass MyPage abstract: # abstract class isn’t instantiated
2 function:
3 def redirect(self, url):
4 # handly little function to send a redirect
5 response.headerMap[’status’]=302
6 response.headerMap[’location’]=url
7 return ’Moved here’ % url
8 mask:
9 def header(self, title):

10 <html>
11 <head><title><py-eval="title"></title></head>
12 <body bgcolor="lightblue">
13 <h2><py-eval="title"></h2>
14 <hr>
15 def footer(self):
16 <hr>
17 © 2003 Someone or Something.
18 </body>
19 </html>

CherryPy Revision: 1.8 – p. 15/22

Example: "Root.cpy"

Root.cpy
1 use MyPage
2
3 CherryClass Root(MyPage):
4 mask:
5 def index(self):
6 <py-eval="self.header(’Homepage’)">
7 <p>Welcome to my homepage
8 <p>Click here to view
9 my guestbook

10 <py-eval="self.footer()">

• Remember: the Root class is the default class called if the browser doesn’t
specificially name one.

CherryPy Revision: 1.8 – p. 16/22

Example: "Guestbook.cpy (1/2)"

Guestbook.cpy
1 use MyPage
2
3 import guestbook
4 import cgi
5
6 CherryClass Guestbook(MyPage):
7 variable:
8 data = guestbook.Guestbook() # new instance of guestbook
9 function:

10 def viewGuestbook(self):
11 out = ’’
12 for record in self.data.list():
13 out += "%s - %s
%s

" % (
14 cgi.escape(record[’name’]), # escape any HTML
15 cgi.escape(record[’date’]),
16 cgi.escape(record[’comment’]))
17 return out

CherryPy Revision: 1.8 – p. 17/22

Example: "Guestbook.cpy (2/2)"

Guestbook.cpy
1 view:
2 def addFormSubmit(self, name, comment):
3 self.data.add(name, comment)
4 return self.redirect(’index’)
5 mask:
6 def index(self):
7 <py-eval="self.header(’View Guestbook’)">
8 <py-eval="self.viewGuestbook()">
9 <center>Add New Record</center>

10 <py-eval="self.footer()">
11 def addForm(self):
12 <py-eval="self.header(’Add to Guestbook’)">
13 <form action="addFormSubmit" method="post">
14 Name: <input type="text" name="name">

15 Comment:
16 <textarea rows=5 cols=40 name="comment"></textarea>

17 <input type="submit">
18 </form>
19 <py-eval="self.footer()">

CherryPy Revision: 1.8 – p. 18/22

Example: Compiling and Running

1 jsc@mico:~/sample$ cherrypy Root.cpy Guestbook.cpy
2 jsc@mico:~/sample$ python RootServer.py
3 Reading parameters from RootServer.cfg ...
4 Server parameters:
5 logToScreen: 1
6 logFile:
7 socketPort: 0
8 socketFile:
9 fixedNumberOfProcesses: 1

10 threading: 0
11 forking: 0
12 sslKeyFile:
13 sslCertificateFile:
14 xmlRpc: 0
15 flushCacheDelay: 0 min
16 staticContent: []
17 Calling initServer() ...
18 Serving HTTP on socket port: 8000

• Now point your web browser to "http://127.0.0.1:8000" and voila!
CherryPy Revision: 1.8 – p. 19/22

Why CherryPy? (1/2)

• It’s Open Source (GPL’d) – The GPL is only applied to the Cherry compiler. The
output of the compiler, your website, is your property.

• Python based – Python is a very good tool for rapidly developing software and it
shows here. We have access to all the standard python libraries.

• Again... Fantastic documentation.

• Minimal Dependencies / Simple Installation – Server only requires Python to run.
Plugins into Apache using standard modules.

• Cross platform – Runs on any platform that supports Python (Win, Lin, Max,
Jython (JAVA)).

• Applications can run behind other webservers or standalone.

• Simple – Very logical and pythonic. Easy to get started.

CherryPy Revision: 1.8 – p. 20/22

Why CherryPy? (2/2)

• Gives an easy way for hobby users to setup a website/app without the effort of
installing Apache, PHP, ...

• Great way to build web apps for a third party. Installation is always easy and very
few dependencies.

• Easy debugging: Errors just throw standard Python exceptions with traceback.

• Very fast, stable, and scales well. http://www.waypath.com/ runs CP with
about 10k hits/day with no problems.

• The underlying Python HTTPd is quite stable and has a good security track record.

CherryPy Revision: 1.8 – p. 21/22

http://www.waypath.com/

References

• http://cherrpy.org
CherryPy homepage

• http://tinyurl.com/fc6w
Introduction to CherryPy

• http://www.freecherrypy.org/
Free CherryPy application hosting for personal use

• http://www.python-hosting.com/
Commercial hosting

• http://jclement.ca/clug/cherrypy-clug
This presentation in PDF/TEX formats as well as sample code

• http://python.org
Homepage of the Python programming language

• http://jclement.ca/software/jcard2/
JCard2 is a little web contact manager I wrote in CherryPy. Might be handy for a
bigger example.

CherryPy Revision: 1.8 – p. 22/22

http://cherrpy.org
http://tinyurl.com/fc6w
http://www.freecherrypy.org/
http://www.python-hosting.com/
http://jclement.ca/clug/cherrypy-clug
http://python.org
http://jclement.ca/software/jcard2/

	Overview
	What is CherryPy?
	Design Philosophy
	Noteworthy Features
	Installation
	Classes, Views, Masks and Functions
	URL Mapping
	"Hello World!"
	"Compiling and Testing"
	The HTTP Server
	"Hello World!" v2
	Example: Guest Book
	Example: "guestbook.py"
	Example: "MyPage.cpy"
	Example: "Root.cpy"
	Example: "Guestbook.cpy (1/2)"
	Example: "Guestbook.cpy (2/2)"
	Example: Compiling and Running
	Why CherryPy? (1/2)
	Why CherryPy? (2/2)
	References

