
Cedar Backup Software Manual

Kenneth J. Pronovici

Cedar Backup Software Manual
by Kenneth J. Pronovici
Copyright © 2005 Kenneth J. Pronovici

This work is free; you can redistribute it and/or modify it under the terms of the GNU General Public License (the "GPL"),
Version 2, as published by the Free Software Foundation.

For the purposes of the GPL, the "preferred form of modification" for this work is the original Docbook XML text files. If you
choose to distribute this work in a compiled form (i.e. if you distribute HTML, PDF or Postscript documents based on the original
Docbook XML text files), you must also consider image files to be "source code" if those images are required in order to construct
a complete and readable compiled version of the work.

This work is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Copies of the GNU General Public License are available from the Free Software Foundation website, http://www.gnu.org/.
You may also write the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

Table of Contents
Preface ... vi

Purpose .. vi
Audience .. vi
Conventions Used in This Book .. vi

Typographic Conventions .. vi
Icons ... vi

Organization of This Manual ... vii
Acknowledgments ... vii

1. Introduction .. 1
What is Cedar Backup? .. 1
How to Get Support ... 1
History .. 2

2. Basic Concepts .. 4
General Architecture .. 4
Data Recovery .. 4
Cedar Backup Pools .. 4
The Backup Process .. 5

The Collect Action .. 5
The Stage Action .. 6
The Store Action ... 7
The Purge Action .. 7
The All Action ... 7
The Validate Action .. 8
The Rebuild Action ... 8

Coordination between Master and Clients .. 8
Media and Device Types .. 9
Incremental Backups ... 10
Extensions ... 10

3. Installation ... 12
Background ... 12
Installing on a Debian System ... 12
Installing from Source .. 13

Installing Dependencies .. 13
Installing the Source Package .. 14

4. Configuration .. 16
Overview ... 16
Command Line Interface .. 16

Syntax .. 16
Switches .. 17
Actions ... 18

Configuration File Format .. 19
Sample Configuration File .. 19
Reference Configuration ... 20
Options Configuration .. 21
Collect Configuration ... 24
Stage Configuration ... 28
Store Configuration ... 31
Purge Configuration .. 33
Extensions Configuration .. 34

iv

Setting up a Pool of One ... 36
Step 1: Make sure email works. ... 36
Step 2: Configure your CD-R or CD-RW drive. .. 36
Step 3: Configure your backup user. ... 37
Step 4: Create your backup tree. ... 37
Step 5: Modify the backup cron jobs. .. 38
Step 6: Create the Cedar Backup configuration file. ... 38
Step 7: Validate the Cedar Backup configuration file. 39
Step 8: Test your backup. .. 39

Setting up a Client Peer Node .. 39
Step 1: Make sure email works. ... 40
Step 2: Configure the master in your backup pool. ... 40
Step 3: Configure your backup user. ... 40
Step 4: Create your backup tree. ... 41
Step 5: Modify the backup cron jobs. .. 42
Step 6: Create the Cedar Backup configuration file. ... 42
Step 7: Validate the Cedar Backup configuration file. 43
Step 8: Test your backup. .. 43

Setting up a Master Peer Node ... 43
Step 1: Make sure email works. ... 44
Step 2: Configure your CD-R or CD-RW drive. .. 44
Step 3: Configure your backup user. ... 44
Step 4: Create your backup tree. ... 45
Step 5: Modify the backup cron jobs. .. 45
Step 6: Create the Cedar Backup configuration file. ... 46
Step 7: Validate the Cedar Backup configuration file. 47
Step 8: Test connectivity to client machines. ... 47
Step 9: Test your backup. .. 47

Configuring your SCSI Device .. 48
SCSI Required .. 48
Linux Notes ... 48
Mac OS X Notes ... 48

5. Official Extensions ... 50
System Information Extension ... 50
Subversion Extension ... 50
MySQL Extension ... 53

A. Extension Architecture Interface .. 56
B. Dependencies ... 58
C. Data Recovery .. 61

Finding your Data ... 61
Recovering Filesystem Data .. 63

Full Restore ... 63
Partial Restore .. 64

Recovering MySQL Data ... 65
Recovering Subversion Data ... 66

D. Copyright .. 68

Cedar Backup Software Manual

v

Preface
Purpose

This software manual has been written to document the 2.0 series of Cedar Backup, originally released
in early 2005.

Audience
This manual has been written for computer-literate administrators who need to use and configure Cedar
Backup on their Linux or UNIX-like system. The examples in this manual assume the reader is
relatively comfortable with UNIX and command-line interfaces.

Conventions Used in This Book
This section covers the various conventions used in this manual.

Typographic Conventions

Term
Used for first use of important terms.

Command
Used for commands, command output, and switches

Replaceable
Used for replaceable items in code and text

Filenames
Used for file and directory names

Icons

Note

This icon designates a note relating to the surrounding text.

Tip

This icon designates a helpful tip relating to the surrounding text.

Warning

This icon designates a warning relating to the surrounding text.

vi

Organization of This Manual

Chapter 1, Introduction
Provides some background about how Cedar Backup came to be, its history, some general
information about what needs it is intended to meet, etc.

Chapter 2, Basic Concepts
Discusses the basic concepts of a Cedar Backup infrastructure, and specifies terms used throughout
the rest of the manual.

Chapter 3, Installation
Explains how to install the Cedar Backup package either from the Python source distribution or
from the Debian package.

Chapter 4, Configuration
Provides detailed information about how to configure Cedar Backup.

Chapter 5, Official Extensions
Describes each of the officially-supported Cedar Backup extensions.

Appendix A, Extension Architecture Interface
Specifies the Cedar Backup extension architecture interface, through which third party developers
can write extensions to Cedar Backup.

Appendix B, Dependencies
Provides some additional information about the packages which Cedar Backup relies on, including
information about how to find documentation and packages on non-Debian systems.

Appendix C, Data Recovery
Cedar Backup provides no facility for restoring backups, assuming the administrator can handle this
infrequent task. This appendix provides some notes for administrators to work from.

Acknowledgments
The structure of this manual and some of the basic boilerplate has been taken from the book Version
Control with Subversion [http://svnbook.red-bean.com/]. Many thanks to the authors (and O'Reilly) for
making this excellent reference available under a free and open license.

There are not very many Cedar Backup users today, but almost all of them have contributed in some
way to the documentation in this manual, either by asking questions, making suggestions or finding
bugs. I'm glad to have them as users, and I hope that this new release meets their needs even better than
the previous release.

My wife Julie puts up with a lot. It's sometimes not easy to live with someone who hacks on open source
code in his free time — even when you're a pretty good engineer yourself, like she is. First, she managed
to live with a dual-boot Debian and Windoze machine; then she managed to get used to IceWM rather
than a prettier desktop; and eventually she even managed to cope with vim when she needed to. Now,
even after all that, she has graciously volunteered to edit this manual. I much appreciate her skill with a
red pen.

Preface

vii

http://svnbook.red-bean.com/
http://svnbook.red-bean.com/

1See http://cedar-solutions.com/listarchives/.

Chapter 1. Introduction
“Only wimps use tape backup: real men just upload their important stuff on ftp, and let
the rest of the world mirror it.”— Linus Torvalds, at the release of Linux 2.0.8 in July
of 1996.

What is Cedar Backup?
Cedar Backup is a Python package that supports backups of files on local and remote hosts to CD-R or
CD-RW media over a secure network connection. Cedar Backup also includes extensions that
understand how to back up MySQL databases and Subversion repositories, and it can be easily extended
to support other data sources, as well.

The package is focused around weekly backups to a single disc, with the expectation that the disc will be
changed or overwritten at the beginning of each week. If your hardware is new enough, Cedar Backup
can write multisession discs, allowing you to add to a disc in a daily fashion. Directories are backed up
using tar and may be compressed using gzip or bzip2.

There are many different backup software implementations out there in the free and open-source
software world. Cedar Backup aims to fill a niche: it aims to be a good fit for people who need to back
up a limited amount of important data to CD-R or CD-RW on a regular basis. Cedar Backup isn't for
you if you want to back up your MP3 collection every night, or if you want to back up a few hundred
machines. However, if you administer a small set machines and you want to run daily incremental
backups for things like system configuration, current email, small web sites, or a CVS repository, then
Cedar Backup is probably worth your time.

Cedar Backup has been developed on a Debian GNU/Linux system and is primarily supported on
Debian and other Linux systems. However, since it is written in portable Python, it should run without
problems on just about any UNIX-like operating system. In particular, full Cedar Backup functionality is
known to work on Debian and SuSE Linux systems, and client functionality is also known to work on
FreeBSD and Mac OS X systems.

To run a Cedar Backup client, you really just need a working Python installation. To run a Cedar
Backup master, you will also need a set of other executables, most of which are related to building and
writing CD images. A full list of dependencies is provided in the section called “Installing
Dependencies”.

How to Get Support
Cedar Backup is open source software that is provided to you at no cost. It is provided with no warranty,
not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. However, that
said, someone can usually help you solve whatever problems you might see.

If you experience a problem, your best bet is to write the Cedar Backup Users mailing list. 1 This is a
public list for all Cedar Backup users. If you write to this list, you might get help from me, or from some
other user who has experienced the same thing you have.

If you know that the problem you have found constitutes a bug, or if you would like to make an

1

http://cedar-solutions.com/listarchives/

2See http://cedar-solutions.com/bugzilla/.
3See Simon Tatham's excellent bug reporting tutorial: http://www.chiark.greenend.org.uk/~sgtatham/bugs.html .
4See http://www.python.org/ .

enhancement request, then feel free to file a bug report in the Cedar Solutions Bug Tracking System. 2

If you are not comfortable discussing your problem in public or listing it in a public database, or if you
need to send along information that you do not want made public, then you can write
<support@cedar-solutions.com>. That mail will go directly to me or to someone else who can
help you. If you write the support address about a bug, a “scrubbed” bug report will eventually end up in
the public bug database anyway, so if at all possible you should use the public reporting mechanisms.
One of the strengths of the open-source software development model is its transparency.

Regardless of how you report your problem, please try to provide as much information as possible about
the behavior you observed and the environment in which the problem behavior occurred. 3

In particular, you should provide: the version of Cedar Backup that you are using; how you installed
Cedar Backup (i.e. Debian package, source package, etc.); the exact command line that you executed;
any error messages you received, including Python stack traces (if any); and relevant sections of the
Cedar Backup log. It would be even better if you could describe exactly how to reproduce the problem,
for instance by including your entire configuration file and/or specific information about your system
that might relate to the problem. However, please do not provide huge sections of debugging logs unless
you are sure they are relevant or unless someone asks for them.

Tip

Sometimes, the error that Cedar Backup displays can be rather cryptic. This is because
under internal error conditions, the text related to an exception might get propogated all of
the way up to the user interface. If the message you receive doesn't make much sense, or if
you suspect that it results from an internal error, you might want to re-run Cedar Backup
with the --stack option. This forces Cedar Backup to dump the entire Python stack trace
associated with the error, rather than just printing the last message it received. This is good
information to include along with a bug report, as well.

History
Cedar Backup began life in late 2000 as a set of Perl scripts called kbackup. These scripts met an
immediate need (which was to back up skyjammer.com and some personal machines) but proved to be
unstable, overly verbose and rather difficult to maintain.

In early 2002, work began on a rewrite of kbackup. The goal was to address many of the shortcomings
of the original application, as well as to clean up the code and make it available to the general public.
While doing research related to code I could borrow or base the rewrite on, I discovered that there was
already an existing backup package with the name kbackup, so I decided to change the name to Cedar
Backup instead.

Because I had become fed up with the prospect of maintaining a large volume of Perl code, I decided to
abandon that language in favor of Python. 4 At the time, I chose Python mostly because I was interested
in learning it, but in retrospect it turned out to be a very good decision. From my perspective, Python has
almost all of the strengths of Perl, but few of its inherent weaknesses (I feel that primarily, Python code

Introduction

2

http://cedar-solutions.com/bugzilla/
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://www.python.org/

5Debian's stable releases are named after characters in the Toy Story movie.
6Epydoc is a Python code documentation tool. See http://epydoc.sourceforge.net/.
7See http://docs.python.org/lib/module-logging.html .
8Tests are implemented using Python's unit test framework. See http://docs.python.org/lib/module-unittest.html.

often ends up being much more readable than Perl code).

Around this same time, skyjammer.com and cedar-solutions.com were converted to run Debian
GNU/Linux (potato) 5 and I entered the Debian new maintainer queue, so I also made it a goal to
implement Debian packages along with a Python source distribution for the new release.

Version 1.0 of Cedar Backup was released in June of 2002. We immediately began using it to back up
skyjammer.com and cedar-solutions.com, where it proved to be much more stable than the original code.
Since then, we have continued to use Cedar Backup for those sites, and Cedar Backup has picked up a
handful of other users who have occasionally reported bugs or requested minor enhancements.

In the meantime, I continued to improve as a Python programmer and also started doing a significant
amount of professional development in Java. It soon became obvious that the internal structure of Cedar
Backup 1.0, while much better than kbackup, still left something to be desired. In November 2003, I
began an attempt at cleaning up the codebase. I converted all of the internal documentation to use
Epydoc, 6 and updated the code to use the newly-released Python logging package 7 after having a good
experience with Java's log4j. However, I was still not satisfied with the code, which did not lend itself to
the automated regression testing I had used when working with junit in my Java code.

So, rather than releasing the cleaned-up code, I instead began another ground-up rewrite in May 2004.
With this rewrite, I applied everything I had learned from other Java and Python projects I had
undertaken over the last few years. I structured the code to take advantage of Python's unique ability to
blend procedural code with object-oriented code, and I made automated unit testing a primary
requirement. The result is the 2.0 release, which is cleaner, more compact, better focused, and better
documented than any release before it. Utility code is less application-specific, and is now usable as a
general-purpose library. The 2.0 release also includes a complete regression test suite of over 2000 tests,
which will help to ensure that quality is maintained as development continues into the future. 8

Introduction

3

http://epydoc.sourceforge.net/
http://docs.python.org/lib/module-logging.html
http://docs.python.org/lib/module-unittest.html

1See http://en.wikipedia.org/wiki/Setuid

Chapter 2. Basic Concepts
General Architecture

Cedar Backup is architected as a Python package (library) and single executable (a Python script). The
Python package provides both application-specific code and general utilities which can be used by
programs other than Cedar Backup. It also includes modules that can be used by third parties to extend
Cedar Backup or provide related functionality.

The cback script is designed to run as root, since otherwise it's difficult to back up system directories or
write to the CD-R/CD-RW device. However, pains are taken to use the backup user's effective user id
(specified in configuration) when appropriate. Note: this does not mean that cback runs setuid1 or
setgid. However, all files on disk will be owned by the backup user, and and all rsh-based network
connections will take place as the backup user.

The cback script is configured via command-line options and an XML configuration file on disk. The
configuration file is normally stored in /etc/cback.conf, but this path can be overridden at
runtime. See Chapter 4, Configuration for more information on how Cedar Backup is configured.

Warning

You should be aware that backups to CD media can probably be read by any user which
has permissions to mount the CD writer. If you intend to leave the backup disc in the drive
at all times, you may want to consider this when setting up device permissions on your
machine.

Data Recovery
Cedar Backup does not include any facility to restore backups. Instead, it assumes that the administrator
(using the procedures and references in Appendix C, Data Recovery) can handle the task of restoring
their own system, using the standard system tools at hand.

If I were to maintain recovery code in Cedar Backup, I would almost certainly end up in one of two
situations. Either Cedar Backup would only support simple recovery tasks, and those via an interface a
lot like that of the underlying system tools; or Cedar Backup would have to include a hugely
complicated interface to support more specialized (and hence useful) recovery tasks like restoring
individual files as of a certain point in time. In either case, I would end up trying to maintain critical
functionality that would be rarely used, and hence would also be rarely tested by end-users. I am
uncomfortable asking anyone to rely on functionality that falls into this category.

My primary goal is to keep the Cedar Backup codebase as simple and focused as possible. I hope you
can understand how the choice of providing documentation, but not code, seems to strike the best
balance between managing code complexity and providing the functionality that end-users need.

Cedar Backup Pools

4

http://en.wikipedia.org/wiki/Setuid

There are two kinds of machines in a Cedar Backup pool. One machine (the master) has a CD-R or
CD-RW drive on it and writes the backup to disc. The others (clients) collect data to be written to disc
by the master. Collectively, the master and client machines in a pool are called peer machines.

Cedar Backup has been designed primarily for situations where there is a single master and a set of other
clients that the master interacts with. However, it will just as easily work for a single machine (a backup
pool of one) and in fact more users seem to use it like this than any other way.

The Backup Process
The Cedar Backup backup process is structured in terms of a set of decoupled actions which execute
independently (based on a schedule in cron) rather than through some highly coordinated flow of
control.

This design decision has both positive and negative consequences. On the one hand, the code is much
simpler and can choose to simply abort or log an error if its expectations are not met. On the other hand,
the administrator must coordinate the various actions during initial set-up. See the section called
“Coordination between Master and Clients” (later in this chapter) for more information on this subject.

A standard backup run consists of four steps (actions), some of which execute on the master machine,
and some of which execute on one or more client machines. These actions are: collect, stage, store and
purge.

In general, more than one action may be specified on the command-line. If more than one action is
specified, then actions will be taken in a sensible order (generally collect, stage, store, purge). A special
all action is also allowed, which implies all of the standard actions in the same sensible order.

The cback command also supports several actions that are not part of the standard backup run and
cannot be executed along with any other actions. These actions are validate and rebuild. All of the
various actions are discussed further below.

See Chapter 4, Configuration for more information on how a backup run is configured.

Flexibility

Cedar Backup was designed to be flexible. It allows you to decide for yourself which backup steps you
care about executing (and when you execute them), based on your own situation and your own priorities.

As an example, I always back up every machine I own. I typically keep 7-10 days of staging directories
around, but switch CD media mostly every week. That way, I can periodically take a disc off-site in case
the machine gets stolen or damaged.

If you're not worried about these risks, then there's no need to write to disc. In fact, some users prefer to
use their master machine as a simple “consolidation point”. They don't back up any data on the master,
and don't write to disc at all. They just use Cedar Backup to handle the mechanics of moving backed-up
data to a central location. This isn't quite what Cedar Backup was written to do, but it is flexible enough
to meet their needs.

The Collect Action
The collect action is the first action in a standard backup run. It executes both master and client nodes.

Basic Concepts

5

2Analagous to .cvsignore in CVS
3In terms of Python regular expressions

Based on configuration, this action traverses the peer's filesystem and gathers files to be backed up.
Each configured high-level directory is collected up into its own tar file in the collect directory. The
tarfiles can either be uncompressed (.tar) or compressed with either gzip (.tar.gz) or bzip2
(.tar.bz2).

There are three supported collect modes: daily, weekly and incremental. Directories configured for daily
backups are backed up every day. Directories configured for weekly backups are backed up on the first
day of the week. Directories configured for incremental backups are traversed every day, but only the
files which have changed (based on a saved-off SHA hash) are actually backed up.

Collect configuration also allows for a variety of ways to filter files and directories out of the backup.
For instance, administrators can configure an ignore indicator file 2 or specify absolute paths or filename
patterns 3 to be excluded.

This action is optional on the master. You only need to configure and execute the collect action on the
master if you have data to back up on that machine. If you plan to use the master only as a
“consolidation point” to collect data from other machines, then there is no need to execute the collect
action there. If you run the collect action on the master, it behaves the same there as anywhere else, and
you have to stage the master's collected data just like any other client (typically by configuring a local
peer in the stage action).

The Stage Action
The stage action is the second action in a standard backup run. It executes on the master peer node. The
master works down the list of peers in its backup pool and stages (copies) the collected backup files
from each of them into a daily staging directory by peer name.

For the purposes of this action, the master node can be configured to treat itself as a client node. If you
intend to back up data on the master, configure the master as a local peer. Otherwise, just configure each
of the clients as a remote peer.

Local and remote client peers are treated differently. Local peer collect directories are assumed to be
accessible via normal copy commands (i.e. on a mounted filesystem) while remote peer collect
directories are accessed via an RSH-compatible command such as ssh.

If a given peer is not ready to be staged, the stage process will log an error, abort the backup for that
peer, and then move on to its other peers. This way, one broken peer cannot break a backup for other
peers which are up and running.

Keep in mind that Cedar Backup is flexible about what actions must be executed as part of a backup. If
you would prefer, you can stop the backup process at this step, and skip the store step. In this case, the
staged directories will represent your backup rather than a disc.

Note

Directories “collected” by another process can be staged by Cedar Backup. If the file
cback.collect exists in a collect directory when the stage action is taken, then that
directory will be staged. Just beware that when staged, everything for a given host will
reside in the same directory — so be careful to avoid namespace clash.

Basic Concepts

6

The Store Action
The store action is the third action in a standard backup run. It executes on the master peer node. The
master machine determines the location of the current staging directory, and then writes the contents of
that staging directory to disc. After the contents of the directory have been written to disc, an optional
validation step ensures that the write was successful.

If the backup is running on the first day of the week, if the drive does not support multisession discs, or
if the --full option is passed to the cback command, the disc will be rebuilt from scratch. Otherwise,
a new ISO session will be added to the disc each day the backup runs.

This action is entirely optional. If you would prefer to just stage backup data from a set of peers to a
master machine, and have the staged directories represent your backup rather than a disc, this is fine.

Warning

The store action is not supported on the Mac OS X (darwin) platform. On that platform,
the “automount” function of the Finder interferes significantly with Cedar Backup's ability
to mount and unmount media and write to the CD or DVD hardware. The Cedar Backup
writer and image functionality works on this platform, but the effort required to fight the
operating system about who owns the media and the device makes it nearly impossible to
execute the store action successfully.

Current Staging Directory

The store action tries to be smart about finding the current staging directory. It first checks the current
day's staging directory. If that directory exists, and it has not yet been written to disc (i.e. there is no
store indicator), then it will be used. Otherwise, the store action will look for an unused staging directory
for either the previous day or the next day, in that order. A warning will be written to the log under these
circumstances (controlled by the <warn_midnite> configuration value).

This behavior varies slightly when the --full option is in effect. Under these circumstances, any
existing store indicator will be ignored. Also, the store action will always attempt to use the current day's
staging directory, ignoring any staging directories for the previous day or the next day. This way,
running a full store action more than once concurrently will always produce the same results. (You
might imagine a use case where a person wants to make several copies of the same full backup.)

The Purge Action
The purge action is the fourth and final action in a standard backup run. It executes both on the master
and client peer nodes. Configuration specifies how long to retain files in certain directories, and older
files and empty directories are purged.

Typically, collect directories are purged daily, and stage directories are purged weekly or slightly less
often (if a disc gets corrupted, older backups may still be available on the master). Some users also
choose to purge the configured working directory (which is used for temporary files) to eliminate any
leftover files which might have resulted from changes to configuration.

The All Action

Basic Concepts

7

4Some users find this surprising, because extensions are configured with sequence numbers. I did it this way because I felt that
running extensions as part of the all action would sometimes result in surprising behavior. I am not planning to change the way
this works.

The all action is a pseudo-action which causes all of the actions in a standard backup run to be executed
together in order. It cannot be combined with any other actions on the command line.

Extensions cannot be executed as part of the all action. If you need to execute an extended action, you
must specify the other actions you want to run individually on the command line. 4

The all action does not have its own configuration. Instead, it relies on the individual configuration
sections for all of the other actions.

The Validate Action
The validate action is used to validate configuration on a particular peer node, either master or client. It
cannot be combined with any other actions on the command line.

The validate action checks that the configuration file can be found, that the configuration file is valid,
and that certain portions of the configuration file make sense (for instance, making sure that specified
users exist, directories are readable and writable as necessary, etc.).

The Rebuild Action
The rebuild action is an exception-handling action that is executed independent of a standard backup
run. It cannot be combined with any other actions on the command line.

The rebuild action attempts to rebuild “this week's” disc from any remaining unpurged staging
directories. Typically, it is used to make a copy of a backup, replace lost or damaged media, or to switch
to new media mid-week for some other reason.

To decide what data to write to disc again, the rebuild action looks back and finds first day of the current
week. Then, it finds any remaining staging directories between that date and the current date. If any
staging directories are found, they are all written to disc in one big ISO session.

The rebuild action does not have its own configuration. It relies on configuration for other other actions,
especially the store action.

Coordination between Master and Clients
Unless you are using Cedar Backup to manage a “pool of one”, you will need to set up some
coordination between your clients and master to make everything work properly. This coordination isn't
difficult — it mostly consists of making sure that operations happen in the right order — but some users
are suprised that it is required and want to know why Cedar Backup can't just “take care of it for me”.

Essentially, each client must finish collecting all of its data before the master begins staging it, and the
master must finish staging data from a client before that client purges its collected data. Administrators
may need to experiment with the time between the collect and purge entries so that the master has
enough time to stage data before it is purged.

Basic Concepts

8

5Feel free to write me or the user mailing list if you disagree and can come up with a straightforward implementation which can be
easily verified and maintained.
6My original backup device was an old Sony CRX140E 4X CD-RW drive. It has since died, and I currently develop using a
Lite-On 1673S DVD±RW drive.
7An ISO image is the standard way of creating a filesystem to be copied to a CD. It is essentially a “filesystem-within-a-file” and
many UNIX operating systems can actually mount ISO image files just like hard drives, floppy disks or actual CDs. See Wikipedia
for more information: http://en.wikipedia.org/wiki/ISO_image.
8It would just require a new DvdWriter class in writer.py as well as some minor changes to configuration code. All
writer-related access is through an abstract interface, so once the new writer is implemented, the rest of the code will be able to use
it without any changes.

I decided to do it this way because this coordination step usually doesn't take a lot of effort, and is only
imposed on the user at configuration time. If instead, I wanted to to accomplish the same thing
dynamically in code, this would add quite a bit of complexity to Cedar Backup. This code would be
difficult to test and would initially be somewhat error-prone, at least until I worked out all of the kinks.
Given that the current architecture has been proven to work well, I don't think that it is worth adding
complexity to the code just to simplify the initial set-up process. 5

Media and Device Types
Cedar Backup is focused around writing backups to CD-R or CD-RW media using a standard SCSI or
IDE CD writer. In Cedar Backup terms, the disc itself is referred to as the media, and the CD-R or
CD-RW drive is referred to as the device or sometimes the backup device. 6

When using a new enough backup device, a new “multisession” ISO image 7 is written to the media on
the first day of the week, and then additional multisession images are added to the media each day that
Cedar Backup runs. This way, the media is complete and usable at the end of every backup run, but a
single disc can be used all week long. If your backup device does not support multisession images, then
a new ISO image will be written to the media each time Cedar Backup runs (and you should probably
confine yourself to the “daily” backup mode to avoid losing data).

Cedar Backup currently supports four different kinds of media:

cdr-74
74-minute non-rewritable media

cdrw-74
74-minute rewritable media

cdr-80
80-minute non-rewritable media

cdrw-80
80-minute rewritable media

I have chosen to support just these four types of media because they seem to be the most “standard” of
the various types commonly sold in the U.S. today (early 2005). If you regularly use an unsupported
media type and would like Cedar Backup to support it, send me information about the capacity of the
media in megabytes (MB) and whether it is rewritable.

Future versions of Cedar Backup may support writable DVDs. 8 Now that I have my own DVD±RW

Basic Concepts

9

http://en.wikipedia.org/wiki/ISO_image

9See http://cedar-solutions.com/listarchives/.
10The checksum is actually an SHA cryptographic hash. See Wikipedia for more information: http://en.wikipedia.org/wiki/SHA-1.

hardware, this will happen when I get some time to work on it and/or when someone else shows interest
in it. If you would like to see support for DVDs in Cedar Backup and can offer some help, please write
the Cedar Backup Users mailing list. 9

Incremental Backups
Cedar Backup supports three different kinds of backups for individual collect directories. These are
daily, weekly and incremental backups. Directories using the daily mode are backed up every day.
Directories using the weekly mode are only backed up on the first day of the week, or when the
--full option is used. Directories using the incremental mode are always backed up on the first day of
the week (like a weekly backup), but after that only the files which have changed are actually backed up
on a daily basis.

In Cedar Backup, incremental backups are not based on date, but are instead based on saved checksums,
one for each backed-up file. When a full backup is run, Cedar Backup gathers a checksum value 10 for
each backed-up file. The next time an incremental backup is run, Cedar Backup checks its list of
file/checksum pairs for each file that might be backed up. If the file's checksum value does not match the
saved value, or if the file does not appear in the list of file/checksum pairs, then it will be backed up and
a new checksum value will be placed into the list. Otherwise, the file will be ignored and the checksum
value will be left unchanged.

Cedar Backup stores the file/checksum pairs in .sha files in its working directory, one file per
configured collect directory. The mappings in these files are reset at the start of the week or when the
--full option is used. Because these files are used for an entire week, you should never purge the
working directory more frequently than once per week.

Extensions
Imagine that there is a third party developer who understands how to back up a certain kind of database
repository. This third party might want to integrate his or her specialized backup into the Cedar Backup
process, perhaps thinking of the database backup as a sort of “collect” step.

Prior to Cedar Backup 2.0, any such integration would have been completely independent of Cedar
Backup itself. The “external” backup functionality would have had to maintain its own configuration
and would not have had access to any Cedar Backup configuration.

Starting with version 2.0, Cedar Backup allows extensions to the backup process. An extension is an
action that isn't part of the standard backup process, (i.e. not collect, stage, store or purge) but can be
executed by Cedar Backup when properly configured.

Extension authors implement an “action process” function with a certain interface, and are allowed to
add their own sections to the Cedar Backup configuration file, so that all backup configuration can be
centralized. Then, the action process function is associated with an action name which can be executed
from the cback command line like any other action.

Hopefully, as the Cedar Backup 2.0 user community grows, users will contribute their own extensions
back to the community. Well-written general-purpose extensions will be accepted into the official
codebase.

Basic Concepts

10

http://cedar-solutions.com/listarchives/
http://en.wikipedia.org/wiki/SHA-1

Note

Users should see Chapter 4, Configuration for more information on how extensions are
configured, and Chapter 5, Official Extensions for details on all of the officially-supported
extensions.

Developers may be interested in Appendix A, Extension Architecture Interface.

Basic Concepts

11

1See http://cedar-solutions.com/listarchives/.
2See http://cedar-solutions.com/debian.html.

Chapter 3. Installation
Background

There are two different ways to install Cedar Backup. The easiest way is to install the pre-built Debian
packages. This method is painless and ensures that all of the correct dependencies are available, etc.

If you are running a Linux distribution other than Debian or you are running some other platform like
FreeBSD or Mac, then you must use the Python source distribution to install Cedar Backup. When using
this method, you need to manage all of the dependencies yourself.

Non-Linux Platforms

Cedar Backup has been developed on a Debian GNU/Linux system and is primarily supported on
Debian and other Linux systems. However, since it is written in portable Python, it should run without
problems on just about any UNIX-like operating system. In particular, full Cedar Backup functionality is
known to work on Debian and SuSE Linux systems, and client functionality is also known to work on
FreeBSD and Mac OS X systems.

To run a Cedar Backup client, you really just need a working Python installation. To run a Cedar
Backup master, you will also need a set of other executables, most of which are related to building and
writing CD images. A full list of dependencies is provided further on in this chapter.

If you would like to use Cedar Backup on a non-Linux system, you should install the Python source
distribution along with all of the indicated dependencies. Then, please report back to the Cedar Backup
Users mailing list 1 with information about your platform and any problems you encountered.

Installing on a Debian System
The easiest way to install Cedar Backup onto a Debian system is by using a tool such as apt-get or
aptitude.

If you are running a Debian release which contains Cedar Backup, you can use your normal Debian
mirror as an APT data source. (Currently, only the unstable and testing branches for the “etch” release
contain Cedar Backup packages.) Otherwise, you need to install from the Cedar Solutions APT data
source. To do this, add the Cedar Solutions APT data source to your /etc/apt/sources.list file.
2

After you have configured the proper APT data source, install Cedar Backup using this set of
commands:

$ apt-get update
$ apt-get install cedar-backup2

12

http://cedar-solutions.com/listarchives/
http://cedar-solutions.com/debian.html

3See http://cedar-solutions.com/software.html.
4See http://docs.python.org/lib/module-distutils.html .

Several of the Cedar Backup dependencies are listed as “recommended” rather than required. If you are
installing Cedar Backup on a master machine, you must install some or all of the recommended
dependencies, depending on which actions you intend to execute. The stage action normally requires
ssh, and the store action requires cdrecord, mkisofs and eject. Clients must typically also install some
sort of ssh server if a remote master will collect backups from them.

If you would prefer, you can also download the .deb files any install them by hand with a tool such as
dpkg. You can find a link to the .deb files on the Cedar Solutions website. 3

In either case, once the package has been installed, you can proceed to configuration as described in
Chapter 4, Configuration.

Note

The Debian package-management tools must generally be run as root. It is safe to install
Cedar Backup to a non-standard location and run it as a non-root user. However, to do this,
you must install the source distribution instead of the Debian package.

Installing from Source
On platforms other than Debian, Cedar Backup is installed from a Python source distribution. 4 You will
have to manage dependencies on your own.

Tip

Many UNIX-like distributions provide an automatic or semi-automatic way to install
packages like the ones Cedar Backup requires (think RPMs for Mandrake or RedHat,
Gentoo's Portage system, the Fink project for Mac OS X, or the BSD ports system). If you
are not sure how to install these packages on your system, you might want to check out
Appendix B, Dependencies. This appendix provides links to “upstream” source packages,
plus as much information as I have been able to gather about packages for non-Debian
platforms.

Installing Dependencies
Cedar Backup requires a number of external packages in order to function properly. Before installing
Cedar Backup, you must make sure that these dependencies are met.

Cedar Backup is written in Python and requires version 2.3 or greater of the language. Version 2.3 was
released on 29 July 2003, so by now most current Linux and BSD distributions should include it. You
must install Python on every peer node in a pool (master or client).

Additionally, remote client peer nodes must be running an RSH-compatible server, such as the ssh
server, and master nodes must have an RSH-compatible client installed if they need to connect to remote
peer machines.

Installation

13

http://cedar-solutions.com/software.html
http://docs.python.org/lib/module-distutils.html

5<support@cedar-solutions.com>

Master machines also require several other system utilities, most having to do with writing and
validating CD media. On master machines, you must make sure that these utilities are available if you
want to to run the store action:

• mkisofs

• cdrecord

• eject

• mount

• unmount

• volname

Installing the Source Package
Python source packages are fairly easy to install. They are distributed as .tar.gz files which contain
Python source code, a manifest and an installation script called setup.py.

Once you have downloaded the source package from the Cedar Solutions website, 3 untar it:

$ zcat CedarBackup2-2.0.0.tar.gz | tar xvf -

This will create a directory called (in this case) CedarBackup2-2.0.0. The version number in the
directory will always match the version number in the filename.

If you have root access and want to install the package to the “standard” Python location on your
system, then you can install the package in two simple steps:

$ cd CedarBackup2-2.0.0
$ python setup.py install

Make sure that you are using Python 2.3 or better to execute setup.py.

You may also wish to run the unit tests before actually installing anything. Run them like so:

python util/test.py

If any unit test reports a failure on your system, please email me the output from the unit test, so I can
fix the problem. 5 This is particularly important for non-Linux platforms where I do not have a test
system available to me.

Installation

14

Some users might want to choose a different install location or change other install parameters. To get
more information about how setup.py works, use the --help option:

$ python setup.py --help
$ python setup.py install --help

In any case, once the package has been installed, you can proceed to configuration as described in
Chapter 4, Configuration.

Installation

15

Chapter 4. Configuration
Overview

Configuring Cedar Backup is unfortunately somewhat complicated. The good news is that once you get
through the initial configuration process, you'll hardly ever have to change anything. Even better, the
most typical changes (i.e. adding and removing directories from a backup) are easy.

First, familiarize yourself with the concepts in Chapter 2, Basic Concepts. In particular, be sure that you
understand the differences between a master and a client. (If you only have one machine, then your
machine will act as both a master and a client, and we'll refer to your setup as a pool of one.) Then,
install Cedar Backup per the instructions in Chapter 3, Installation.

Once everything has been installed, you are ready to begin configuring Cedar Backup. Look over the
section called “Command Line Interface” (in Chapter 4, Configuration) to become familiar with the
command line interface. Then, look over the section called “Configuration File Format” (below) and
create a configuration file for each peer in your backup pool. To start with, create a very simple
configuration file, then expand it later. Decide now whether you will store the configuration file in the
standard place (/etc/cback.conf) or in some other location.

After you have all of the configuration files in place, configure each of your machines, following the
instructions in the appropriate section below (for master, client or pool of one). Since the master and
client(s) must communicate over the network, you won't be able to fully configure the master without
configuring each client and vice-versa. The instructions are clear on what needs to be done.

Which Platform?

Cedar Backup has been designed for use on all UNIX-like systems. However, since it was developed on
a Debian GNU/Linux system, and because I am a Debian developer, the packaging is prettier and the
setup is somewhat simpler on a Debian system than on a system where you install from source.

The configuration instructions below have been generalized so they should work well regardless of what
platfomr you are running (i.e. RedHat, Gentoo, FreeBSD, etc.). If instructions vary for a particular
platform, you will find a note related to that distribution.

I am always open to adding more platform-specific hints and notes, so write me if you find problems
with these instructions.

Command Line Interface
Syntax

The Cedar Backup command-line interface is implemented in the cback script. The cback script has the
following syntax:

Usage: cback [switches] action(s)

16

1Some users find this surprising, because extensions are configured with sequence numbers. I did it this way because I felt that
running extensions as part of the all action would sometimes result in “surprising” behavior. Better to be definitive than confusing.

The following switches are accepted:

-h, --help Display this usage/help listing
-V, --version Display version information
-b, --verbose Print verbose output as well as logging to disk
-q, --quiet Run quietly (display no output to the screen)
-c, --config Path to config file (default: /etc/cback.conf)
-f, --full Perform a full backup, regardless of configuration
-l, --logfile Path to logfile (default: /var/log/cback.log)
-o, --owner Logfile ownership, user:group (default: root:adm)
-m, --mode Octal logfile permissions mode (default: 640)
-O, --output Record some sub-command (i.e. tar) output to the log
-d, --debug Write debugging information to the log (implies --output)
-s, --stack Dump a Python stack trace instead of swallowing exceptions

The following actions may be specified:

all Take all normal actions (collect, stage, store, purge)
collect Take the collect action
stage Take the stage action
store Take the store action
purge Take the purge action
rebuild Rebuild "this week's" disc if possible
validate Validate configuration only

You may also specify extended actions that have been defined in
configuration.

You must specify at least one action to take. More than one of
the "collect", "stage", "store" or "purge" actions and/or
extended actions may be specified in any arbitrary order; they
will be executed in a sensible order. The "all", "rebuild"
or "validate" actions may not be combined with other actions.

Note that the all action only executes the standard four actions. It never executes any of the configured
extensions. 1

Switches

-h, --help
Display usage/help listing.

-V, --version
Display version information.

-b, --verbose
Print verbose output to the screen as well writing to the logfile. When this option is enabled, most
information that would normally be written to the logfile will also be written to the screen.

-q, --quiet
Run quietly (display no output to the screen).

Configuration

17

-c, --config
Specify the path to an alternate configuration file. The default configuration file is
/etc/cback.conf.

-f, --full
Perform a full backup, regardless of configuration. For the collect action, this means that any
existing information related to incremental backups will be ignored and rewritten; for the store
action, this means that a new disc will be started.

-l, --logfile
Specify the path to an alternate logfile. The default logfile file is /var/log/cback.log.

-o, --owner
Specify the ownership of the logfile, in the form user:group. The default ownership is
root:adm, to match the Debian standard for most logfiles. This value will only be used when
creating a new logfile. If the logfile already exists when the cback script is executed, it will retain
its existing ownership and mode. Only user and group names may be used, not numeric uid and gid
values.

-m, --mode
Specify the permissions for the logfile, using the numeric mode as in chmod(1). The default mode is
0640 (-rw-r-----). This value will only be used when creating a new logfile. If the logfile
already exists when the cback script is executed, it will retain its existing ownership and mode.

-O, --output
Record some sub-command output to the logfile. When this option is enabled, all output from
system commands will be logged. This might be useful for debugging or just for reference. Cedar
Backup uses system commands mostly for dealing with the CD recorder and its media.

-d, --debug
Write debugging information to the logfile. This option produces a high volume of output, and
would generally only be needed when debugging a problem. This option implies the --output
option, as well.

-s, --stack
Dump a Python stack trace instead of swallowing exceptions. This forces Cedar Backup to dump
the entire Python stack trace associated with an error, rather than just progating last message it
received back up to the user interface. Under some circumstances, this is useful information to
include along with a bug report.

Actions
You can find more information about the various actions in the section called “The Backup Process” (in
Chapter 2, Basic Concepts). In general, you may specify any combination of the collect, stage,
store or purge actions, and the specified actions will be executed in a sensible order. Or, you can
specify one of the all, rebuild or validate actions (but these actions may not be combined with
other actions).

If you have configured any Cedar Backup extensions, then the actions associated with those extensions
may also be specified on the command line. If you specify any other actions along with an extended
action, the actions will be executed in a sensible order per configuration. The all action never executes
extended actions, however.

Configuration

18

2See http://www.xml.com/pub/a/98/10/guide0.html for a basic introduction to XML.
3See the section called “The Backup Process”, in Chapter 2, Basic Concepts.

Configuration File Format
Cedar Backup is configured through an XML 2 configuration file, usually called /etc/cback.conf.
The configuration file contains the following sections: reference, options, collect, stage, store, purge and
extensions.

All configuration files must contain the two general configuration sections, the reference section and the
options section. Besides that, administrators need only configure actions they intend to use. For instance,
on a client machine, administrators will generally only configure the collect and purge sections, while on
a master machine they will have to configure all four action-related sections. 3 The extensions section is
always optional and can be omitted unless extensions are in use.

Note

Even though the Mac OS X (darwin) filesystem is not case-sensitive, Cedar Backup
configuration is generally case-sensitive on that platform, just like on all other platforms.
For instance, even though the files “Ken” and “ken” might be the same on the Mac OS X
filesystem, an exclusion in Cedar Backup configuration for “ken” will only match the file
if it is actually on the filesystem with a lower-case “k” as its first letter. This won't surprise
the typical UNIX user, but might surprise someone who's gotten into the “Mac Mindset”.

Sample Configuration File
Both the Python source distribution and the Debian package come with a sample configuration file. The
Debian package includes a stripped config file in /etc/cback.conf and a larger sample in
/usr/share/doc/cedar-backup2/examples/cback.conf.sample.

This is a sample configuration file similar to the one provided in the source package. Documentation
below provides more information about each of the individual configuration sections.

<?xml version="1.0"?>
<cb_config>

<reference>
<author>Kenneth J. Pronovici</author>
<revision>1.3</revision>
<description>Sample</description>

</reference>
<options>

<starting_day>tuesday</starting_day>
<working_dir>/opt/backup/tmp</working_dir>
<backup_user>backup</backup_user>
<backup_group>group</backup_group>
<rcp_command>/usr/bin/scp -B</rcp_command>

</options>
<collect>

<collect_dir>/opt/backup/collect</collect_dir>
<collect_mode>daily</collect_mode>
<archive_mode>targz</archive_mode>
<ignore_file>.cbignore</ignore_file>
<dir>

<abs_path>/etc</abs_path>

Configuration

19

http://www.xml.com/pub/a/98/10/guide0.html

<collect_mode>incr</collect_mode>
</dir>

</collect>
<stage>

<staging_dir>/opt/backup/staging</staging_dir>
<peer>

<name>debian</name>
<type>local</type>
<collect_dir>/opt/backup/collect</collect_dir>

</peer>
</stage>
<store>

<source_dir>/opt/backup/staging</source_dir>
<media_type>cdrw-74</media_type>
<device_type>cdwriter</device_type>
<target_device>/dev/cdrw</target_device>
<target_scsi_id>0,0,0</target_scsi_id>
<drive_speed>4</drive_speed>
<check_data>Y</check_data>
<warn_midnite>Y</warn_midnite>

</store>
<purge>

<dir>
<abs_path>/opt/backup/stage</abs_path>
<retain_days>7</retain_days>

</dir>
<dir>

<abs_path>/opt/backup/collect</abs_path>
<retain_days>0</retain_days>

</dir>
</purge>

</cb_config>

Reference Configuration
The reference configuration section contains free-text elements that exist only for reference.. The section
itself is required, but the individual elements may be left blank if desired.

This is an example reference configuration section:

<reference>
<author>Kenneth J. Pronovici</author>
<revision>Revision 1.3</revision>
<description>Sample</description>
<generator>Yet to be Written Config Tool (tm)</description>

</reference>

The following elements are part of the reference configuration section:

author
Author of the configuration file.

Configuration

20

Restrictions: None

revision
Revision of the configuration file.

Restrictions: None

description
Description of the configuration file.

Restrictions: None

generator
Tool that generated the configuration file, if any.

Restrictions: None

Options Configuration
The options configuration section contains configuration options that are not specific to any one action.

This is an example options configuration section:

<options>
<starting_day>tuesday</starting_day>
<working_dir>/opt/backup/tmp</working_dir>
<backup_user>backup</backup_user>
<backup_group>backup</backup_group>
<rcp_command>/usr/bin/scp -B</rcp_command>
<override>

<command>cdrecord</command>
<abs_path>/opt/local/bin/cdrecord</abs_path>

</override>
<override>

<command>mkisofs</command>
<abs_path>/opt/local/bin/mkisofs</abs_path>

</override>
<pre_action_hook>

<action>collect</action>
<command>echo "I AM A PRE-ACTION HOOK RELATED TO COLLECT"</command>

</pre_action_hook>
<post_action_hook>

<action>collect</action>
<command>echo "I AM A POST-ACTION HOOK RELATED TO COLLECT"</command>

</post_action_hook>
</options>

The following elements are part of the options configuration section:

starting_day
Day that starts the week.

Configuration

21

Cedar Backup is built around the idea of weekly backups. The starting day of week is the day that
media will be rebuilt from scratch and that incremental backup information will be cleared.

Restrictions: Must be a day of the week in English, i.e. monday, tuesday, etc. The validation is
case-sensitive.

working_dir
Working (temporary) directory to use for backups.

This directory is used for writing temporary files, such as tar file or ISO CD images as they are
being built. It is also used to store day-to-day information about incremental backups.

The working directory should contain enough free space to hold temporary tar files (on a client) or
to build an ISO CD image (on a master).

Restrictions: Must be an absolute path

backup_user
Effective user that backups should run as.

This user must exist on the machine which is being configured and should not be root (although that
restriction is not enforced).

This value is also used as the default remote backup user for remote peers in the staging section.

Restrictions: Must be non-empty

backup_group
Effective group that backups should run as.

This group must exist on the machine which is being configured, and should not be root or some
other “powerful” group (although that restriction is not enforced).

Restrictions: Must be non-empty

rcp_command
Default rcp-compatible copy command for staging.

The rcp command should be the exact command used for remote copies, including any required
options. If you are using scp, you should pass it the -B option, so scp will not ask for any user input
(which could hang the backup). A common example is something like /usr/bin/scp -B.

This value is used as the default value for all remote peers in the staging section. Technically, this
value is not needed by clients, but we require it for all config files anyway.

Restrictions: Must be non-empty

override
Command to override with a customized path.

This is a subsection which contains a command to override with a customized path. This
functionality would be used if root's $PATH does not include a particular required command, or if
there is a need to use a version of a command that is different than the one listed on the $PATH.
Most users will only use this section when directed to, in order to fix a problem.

Configuration

22

This section is optional, and can be repeated as many times as necessary.

This subsection must contain the following two fields:

command
Name of the command to be overridden, i.e. “cdrecord”.

Restrictions: Must be a non-empty string.

abs_path
The absolute path where the overridden command can be found.

Restrictions: Must be an absolute path.

pre_action_hook
Hook configuring a command to be executed before an action.

This is a subsection which configures a command to be executed immediately before a named
action. It provides a way for administrators to associate their own custom functionality with
standard Cedar Backup actions or with arbitrary extensions.

This section is optional, and can be repeated as many times as necessary.

This subsection must contain the following two fields:

action
Name of the Cedar Backup action that the hook is associated with. The action can be a standard
backup action (collect, stage, etc.) or can be an extension action. No validation is done to ensure
that the configured action actually exists.

Restrictions: Must be a non-empty string.

command
Name of the command to be executed. This item can either specify the path to a shell script of some
sort (the recommended approach) or can include a complete shell command.

Note: if you choose to provide a complete shell command rather than the path to a script, you need
to be aware of some limitations of Cedar Backup's command-line parser. You cannot use a subshell
(via the `command` or $(command) syntaxes) or any shell variable in your command line.
Additionally, the command-line parser only recognizes the double-quote character (") to delimit
groupings or strings on the command-line. The bottom line is, you are probably best off writing a
shell script of some sort for anything more sophisticated than very simple shell commands.

Restrictions: Must be a non-empty string.

post_action_hook
Hook configuring a command to be executed after an action.

This is a subsection which configures a command to be executed immediately after a named action.
It provides a way for administrators to associate their own custom functionality with standard Cedar
Backup actions or with arbitrary extensions.

This section is optional, and can be repeatd as many times as necessary.

This subsection must contain the following two fields:

Configuration

23

action
Name of the Cedar Backup action that the hook is associated with. The action can be a standard
backup action (collect, stage, etc.) or can be an extension action. No validation is done to ensure
that the configured action actually exists.

Restrictions: Must be a non-empty string.

command
Name of the command to be executed. This item can either specify the path to a shell script of some
sort (the recommended approach) or can include a complete shell command.

Note: if you choose to provide a complete shell command rather than the path to a script, you need
to be aware of some limitations of Cedar Backup's command-line parser. You cannot use a subshell
(via the `command` or $(command) syntaxes) or any shell variable in your command line.
Additionally, the command-line parser only recognizes the double-quote character (") to delimit
groupings or strings on the command-line. The bottom line is, you are probably best off writing a
shell script of some sort for anything more sophisticated than very simple shell commands.

Restrictions: Must be a non-empty string.

Collect Configuration
The collect configuration section contains configuration options related the the collect action. This
section contains a variable number of elements, including an optional exclusion section and a repeating
subsection used to specify which directories to collect.

This is an example collect configuration section:

<collect>
<collect_dir>/opt/backup/collect</collect_dir>
<collect_mode>daily</collect_mode>
<archive_mode>targz</archive_mode>
<ignore_file>.cbignore</ignore_file>
<exclude>

<abs_path>/etc</abs_path>
<pattern>.*\.conf</pattern>

</exclude>
<dir>

<abs_path>/etc</abs_path>
</dir>
<dir>

<abs_path>/var/log</abs_path>
<collect_mode>incr</collect_mode>

</dir>
<dir>

<abs_path>/opt</abs_path>
<collect_mode>weekly</collect_mode>
<exclude>

<abs_path>/opt/large</abs_path>
<rel_path>backup</rel_path>
<pattern>.*tmp</pattern>

</exclude>
</dir>

</collect>

Configuration

24

The following elements are part of the collect configuration section:

collect_dir
Directory to collect files into.

On a client, this is the directory which tarfiles for individual collect directories are written into. The
master then stages files from this directory into its own staging directory.

This field is always required. It must contain enough free space to collect all of the backed-up files
on the machine in a compressed form.

Restrictions: Must be an absolute path

collect_mode
Default collect mode.

The collect mode describes how frequently a directory is backed up. See the section called “The
Collect Action” (in Chapter 2, Basic Concepts) for more information.

This value is the collect mode that will be used by default during the collect process. Individual
collect directories (below) may override this value. If all individual directories provide their own
value, then this default value may be omitted from configuration.

Note: if your backup device does not suppport multisession discs, then you should probably use the
daily collect mode to avoid losing data.

Restrictions: Must be one of daily, weekly or incr.

archive_mode
Default archive mode for collect files.

The archive mode maps to the way that a backup file is stored. A value tar means just a tarfile
(file.tar); a value targz means a gzipped tarfile (file.tar.gz); and a value tarbz2
means a bzipped tarfile (file.tar.bz2)

This value is the archive mode that will be used by default during the collect process. Individual
collect directories (below) may override this value. If all individual directories provide their own
value, then this default value may be omitted from configuration.

Restrictions: Must be one of tar, targz or tarbz2.

ignore_file
Default ignore file name.

The ignore file is an indicator file. If it exists in a given directory, then that directory will be
recursively excluded from the backup as if it were explicitly excluded in configuration.

The ignore file provides a way for individual users (who might not have access to Cedar backup
configuration) to control which of their own directories get backed up. For instance, users with a
~/tmp directory might not want it backed up. If they create an ignore file in their directory (e.g.
~/tmp/.cbignore), then Cedar Backup will ignore it.

Configuration

25

4See http://docs.python.org/lib/re-syntax.html

This value is the ignore file name that will be used by default during the collect process. Individual
collect directories (below) may override this value. If all individual directories provide their own
value, then this default value may be omitted from configuration.

Restrictions: Must be non-empty

exclude
List of paths or patterns to exclude from the backup.

This is a subsection which contains a set of absolute paths and patterns to be excluded across all
configured directories. For a given directory, the set of absolute paths and patterns to exclude is
built from this list and any list that exists on the directory itself. Directories cannot override or
remove entries that are in this list, however.

This section is optional, and if it exists can also be empty.

The exclude subsection can contain one or more of each of the following fields:

abs_path
An absolute path to be recursively excluded from the backup.

If a directory is excluded, then all of its children are also recursively excluded. For instance, a value
/var/log/apache would exclude any files within /var/log/apache as well as files within
other directories under /var/log/apache.

This field can be repeated as many times as is necessary.

Restrictions: Must be an absolute path.

pattern
A pattern to be recursively excluded from the backup.

The pattern must be a Python regular expression. 4 It is assumed to be bounded at front and back by
the beginning and end of the string (i.e. it is treated as if it begins with ^ and ends with $).

If the pattern causes a directory to be excluded, then all of the children of that directory are also
recursively excluded. For instance, a value .*apache.* might match the /var/log/apache
directory. This would exclude any files within /var/log/apache as well as files within other
directories under /var/log/apache.

This field can be repeated as many times as is necessary.

Restrictions: Must be non-empty

dir
A directory to be collected.

This is a subsection which contains information about a specific directory to be collected (backed
up).

This section can be repeated as many times as is necessary. At least one collect directory must be
configured.

Configuration

26

http://docs.python.org/lib/re-syntax.html

The collect directory subsection contains the following fields:

abs_path
Absolute path of the directory to collect.

The path may be either a directory, a soft link to a directory, or a hard link to a directory. All three
are treated the same at this level.

The contents of the directory will be recursively collected. The backup will contain all of the files in
the directory, as well as the contents of all of the subdirectories within the directory, etc.

Soft links within the directory are treated as files, i.e. they are copied verbatim (as a link) and their
contents are not backed up.

Restrictions: Must be an absolute path.

collect_mode
Collect mode for this directory

The collect mode describes how frequently a directory is backed up. See the section called “The
Collect Action” (in Chapter 2, Basic Concepts) for more information.

This field is optional. If it doesn't exist, the backup will use the default collect mode.

Note: if your backup device does not suppport multisession discs, then you should probably confine
yourself to the daily collect mode, to avoid losing data.

Restrictions: Must be one of daily, weekly or incr.

archive_mode
Archive mode for this directory.

The archive mode maps to the way that a backup file is stored. A value tar means just a tarfile
(file.tar); a value targz means a gzipped tarfile (file.tar.gz); and a value tarbz2
means a bzipped tarfile (file.tar.bz2)

This field is optional. if it doesn't exist, the backup will use the default archive mode.

Restrictions: Must be one of tar, targz or tarbz2.

ignore_file
Ignore file name for this directory.

The ignore file is an indicator file. If it exists in a given directory, then that directory will be
recursively excluded from the backup as if it were explicitly excluded in configuration.

The ignore file provides a way for individual users (who might not have access to Cedar backup
configuration) to control which of their own directories get backed up. For instance, users with a
~/tmp directory might not want it backed up. If they create an ignore file in their directory (e.g.
~/tmp/.cbignore), then Cedar Backup will ignore it.

This field is optional. If it doesn't exist, the backup will use the default ignore file name.

Restrictions: Must be non-empty

Configuration

27

exclude
List of paths or patterns to exclude from the backup.

This is a subsection which contains a set of paths and patterns to be excluded within this collect
directory. This list is combined with the program-wide list to build a complete list for the directory.

This section is entirely optional, and if it exists can also be empty.

The exclude subsection can contain one or more of each of the following fields:

abs_path
An absolute path to be recursively excluded from the backup.

If a directory is excluded, then all of its children are also recursively excluded. For instance, a value
/var/log/apache would exclude any files within /var/log/apache as well as files within
other directories under /var/log/apache.

This field can be repeated as many times as is necessary.

Restrictions: Must be an absolute path.

rel_path
A relative path to be recursively excluded from the backup.

The path is assumed to be relative to the collect directory itself. For instance, if the configured
directory is /opt/web a configured relative path of something/else would exclude the path
/opt/web/something/else.

If a directory is excluded, then all of its children are also recursively excluded. For instance, a value
something/else would exclude any files within something/else as well as files within
other directories under something/else.

This field can be repeated as many times as is necessary.

Restrictions: Must be non-empty.

pattern
A pattern to be excluded from the backup.

The pattern must be a Python regular expression. 4 It is assumed to be bounded at front and back by
the beginning and end of the string (i.e. it is treated as if it begins with ^ and ends with $).

If the pattern causes a directory to be excluded, then all of the children of that directory are also
recursively excluded. For instance, a value .*apache.* might match the /var/log/apache
directory. This would exclude any files within /var/log/apache as well as files within other
directories under /var/log/apache.

This field can be repeated as many times as is necessary.

Restrictions: Must be non-empty

Stage Configuration
The stage configuration section contains configuration options related the the stage action. The section

Configuration

28

defines the set of peers in a backup pool, and then also indicates where data from those peers should be
staged to.

This is an example stage configuration section:

<stage>
<staging_dir>/opt/backup/stage</staging_dir>
<peer>

<name>machine1</name>
<type>local</type>
<collect_dir>/opt/backup/collect</collect_dir>

</peer>
<peer>

<name>machine2</name>
<type>remote</type>
<backup_user>backup</backup_user>
<collect_dir>/opt/backup/collect</collect_dir>

</peer>
</stage>

The following elements are part of the stage configuration section:

staging_dir
Directory to stage files into.

This is the directory into which the master stages collected data from each of the clients. Within the
staging directory, data is staged into date-based directories by peer name. For instance, peer
“daystrom” backed up on 19 Feb 2005 would be staged into something like
2005/02/19/daystrom relative to the staging directory itself.

This field is always required. The directory must contain enough free space to stage all of the files
collected from all of the various machines in a backup pool. Many administrators set up purging to
keep staging directories around for a week or more, which require even more space.

Restrictions: Must be an absolute path

peer (local version)
Local client peer in a backup pool.

This is a subsection which contains information about a specific local client peer to be staged
(backed up). A local peer is one whose collect directory can be reached without requiring any
rsh-based network calls. It is possible that a remote peer might be staged as a local peer if its collect
directory is mounted to the master via NFS, AFS or some other method.

This section can be repeated as many times as is necessary. At least one remote or local peer must
be configured.

The local peer subsection must contain the following fields:

name
Name of the peer, typically a valid hostname.

For local peers, this value is only used for reference. However, it is good practice to list the peer's

Configuration

29

hostname here, for consistency with remote peers.

Restrictions: Must be non-empty.

type
Type of this peer.

This value identifies the type of the peer. For a local peer, it must always be local.

Restrictions: Must be local.

collect_dir
Collect directory to stage from for this peer.

The master will copy all files in this directory into the appropriate staging directory. Since this is a
local peer, the directory is assumed to be reachable via normal filesystem operations (i.e. cp).

Restrictions: Must be an absolute path.

peer (remote version)
Remote client peer in a backup pool.

This is a subsection which contains information about a specific remote client peer to be staged
(backed up). A remote peer is one whose collect directory can only be reached via an rsh-based
network call.

This section can be repeated as many times as is necessary. At least one remote or local peer must
be configured.

The remote peer subsection must contain the following fields:

name
Hostname of the peer.

For remote peers, this must be a valid DNS hostname or IP address which can be resolved during an
rsh-based network call.

Restrictions: Must be non-empty.

type
Type of this peer.

This value identifies the type of the peer. For a remote peer, it must always be remote.

Restrictions: Must be remote.

collect_dir
Collect directory to stage from for this peer.

The master will copy all files in this directory into the appropriate staging directory. Since this is a
remote peer, the directory is assumed to be reachable via rsh-based network operations (i.e. scp or
the configured rcp command).

Restrictions: Must be an absolute path.

Configuration

30

backup_user
Name of backup user on the remote peer.

This username will be used when copying files from the remote peer via an rsh-based network
connection.

This field is optional. if it doesn't exist, the backup will use the default backup user from the options
section.

Restrictions: Must be non-empty.

rcp_command
The rcp-compatible copy command for this peer.

The rcp command should be the exact command used for remote copies, including any required
options. If you are using scp, you should pass it the -B option, so scp will not ask for any user input
(which could hang the backup). A common example is something like /usr/bin/scp -B.

This field is optional. if it doesn't exist, the backup will use the default rcp command from the
options section.

Restrictions: Must be non-empty.

Store Configuration
The store configuration section contains configuration options related the the store action. This section
contains several optional fields. Most fields control the way media is written using the writer device.

This is an example store configuration section:

<store>
<source_dir>/opt/backup/stage</source_dir>
<media_type>cdrw-74</media_type>
<device_type>cdwriter</device_type>
<target_device>/dev/cdrw</target_device>
<target_scsi_id>0,0,0</target_scsi_id>
<drive_speed>4</drive_speed>
<check_data>Y</check_data>
<warn_midnite>Y</warn_midnite>

</store>

The following elements are part of the store configuration section:

source_dir
Directory whose contents should be written to media.

This directory must be a Cedar Backup staging directory, as configured in the staging configuration
section. Only certain data from that directory (typically, data from the current day) will be written to
disc.

Restrictions: Must be an absolute path

Configuration

31

media_type
Type of the media in the device.

Unless you want to throw away a backup disc every week, you are probably best off using
rewritable media.

If you have no idea what kind of media you have, choose cdr-74. For more information on media
types, see the section called “Media and Device Types” (in Chapter 2, Basic Concepts).

Restrictions: Must be one of cdr-74, cdrw-74, cdr-80 or cdrw-80.

device_type
Type of the device used to write the media.

This field mostly exists for planned future enhancements, such as support for DVD writers. It
indicates what type of device should be used to write the media, in case that makes a difference to
the underlying writer functionality. Currently, it can only be set to cdwriter.

This field is optional. If it doesn't exist, the cdwriter device type is assumed.

Restrictions: If set, must be cdwriter.

target_device
Filesystem device name for writer device.

This is the UNIX device name for the writer drive, for instance /dev/scd0 or /dev/cdrw. The
device name is not needed in order to write to the media. However, it is needed in order to do
several pre-write checks (such as whether the device might already be mounted) as well as the
post-write consistency check, if enabled.

Restrictions: Must be an absolute path.

target_scsi_id
SCSI id for writer device

In order to execute the store action, your CD-R or CD-RW drive must either be a SCSI device or
must be configured to act like a SCSI device from the perspective of the cdrecord and mkisofs
commands. This value configures the SCSI id that will be used to write to your device.

For the purposes of Cedar Backup, a valid SCSI identifier must either be in the form
“scsibus,target,lun”, “ATA:scsibus,target,lun”, or “ATAPI:scsibus,target,lun”. For example,
“1,6,2”, “ATA:0,0,0” and “ATAPI:0,1,0” are all valid identifiers.

Technically, Mac OS X identifiers are also accepted, but the syntax is not documented here because
the store action is not supported for that platform. See the section called “Configuring your SCSI
Device” for more information on SCSI devices and how they are configured.

Restrictions: Must be a valid SCSI identifier.

drive_speed
Speed of the drive, i.e. 2 for a 2x device.

This field is optional. If it doesn't exist, the underlying device-related functionality will use the
default drive speed. Since some media is speed-sensitive, it might be a good idea to set this to a
sensible value for your writer.

Configuration

32

Restrictions: If set, must be an integer >= 1.

check_data
Whether the media should be validated.

This field indicates whether a resulting image on the media should be validated after the write
completes, by running a consistency check against it. If this check is enabled, the contents of the
staging directory are directly compared to the media, and an error is reported if there is a mismatch.

Practice shows that some drives can encounter an error when writing a multisession disc, but not
report any problems. This consistency check allows us to catch the problem. By default, the
consistency check is disabled, but most users should choose to enable it unless they have a good
reason not to.

This field is optional. If it doesn't exist, then N will be assumed.

Restrictions: Must be a boolean (Y or N).

warn_midnite
Whether to generate warnings for crossing midnite.

This field indicates whether warnings should be generated if the store operation has to cross a
midnite boundary in order to find data to write to disc. For instance, a warning would be generated
if valid store data was only found in the day before or day after the current day.

Configuration for some users is such that the store operation will always cross a midnite boundary,
so they will not care about this warning. Other users will expect to never cross a boundary, and
want to be notified that something “strange” might have happened.

This field is optional. If it doesn't exist, then N will be assumed.

Restrictions: Must be a boolean (Y or N).

Purge Configuration
The purge configuration section contains configuration options related the the purge action. This section
contains a set of directories to be purged, along with information about the schedule at which they
should be purged.

Typically, Cedar Backup should be configured to purge collect directories daily (retain days of 0).

If you are tight on space, staging directories can also be purged daily. However, if you have space to
spare, you should consider purging about once per week. That way, if your backup media is damaged,
you will be able to recreate the week's backup using the rebuild action.

You should also purge the working directory periodically, once every few weeks or once per month.
This way, if any unneeded files are left around, perhaps because a backup was interrupted or because
configuration changed, they will eventually be removed. The working directory should not be purged
any more frequently than once per week, otherwise you will risk destroying data used for incremental
backups.

This is an example purge configuration section:

Configuration

33

<purge>
<dir>

<abs_path>/opt/backup/stage</abs_path>
<retain_days>7</retain_days>

</dir>
<dir>

<abs_path>/opt/backup/collect</abs_path>
<retain_days>0</retain_days>

</dir>
</purge>

The following elements are part of the purge configuration section:

dir
A directory to purge within.

This is a subsection which contains information about a specific directory to purge within.

This section can be repeated as many times as is necessary. At least one purge directory must be
configured.

The purge directory subsection contains the following fields:

abs_path
Absolute path of the directory to purge within.

The contents of the directory will be purged based on age. The purge will remove any files that
were last modified more than “retain days” days ago. Empty directories will also eventually be
removed. The purge directory itself will never be removed.

The path may be either a directory, a soft link to a directory, or a hard link to a directory. Soft links
within the directory (if any) are treated as files.

Restrictions: Must be an absolute path.

retain_days
Number of days to retain old files.

Once it has been more than this many days since a file was last modified, it is a candidate for
removal.

Restrictions: Must be an integer >= 0.

Extensions Configuration
The extensions configuration section is used to configure third-party extensions to Cedar Backup. If you
don't intend to use any extensions, or don't know what extensions are, then you can safely leave this
section out of your configuration file. It is optional.

Extensions configuration is used to specify “extended actions” implemented by code external to Cedar
Backup. An administrator can use this section to map command-line Cedar Backup actions to third-party

Configuration

34

extension functions.

Each extended action has a name, which is mapped to a Python function within a particular module.
Each action also has an index associated with it. This index is used to properly order execution when
more than one action is specified on the command line. The standard actions have predefined indexes,
and extended actions are interleaved into the normal order of execution using those indexes. The collect
action has index 100, the stage index has action 200, the store action has index 300 and the purge action
has index 400.

For instance, imagine that a third-party developer provided a Cedar Backup extension to back up a
certain kind of database repository, and you wanted to map that extension to the “database”
command-line action. You have been told that this function is called “foo.bar()”. You think of this
backup as a “collect” kind of action, so you want it to be performed after collect but before stage and
purge if more than one action is specified on the command line.

To configure this extension, you would list an action with a name “database”, a module “foo”, a function
name “bar” and an index of “101”.

This is how the hypothetical action would be configured:

<extensions>
<action>

<name>database</name>
<module>foo</module>
<function>bar</function>
<index>101</index>

</action>
</extensions>

The following elements are part of the extensions configuration section:

action
This is a subsection that contains configuration related to a single extended action.

This section can be repeated as many times as is necessary.

The action subsection contains the following fields:

name
Name of the extended action.

Restrictions: Must be a non-empty string consisting of only lower-case letters and digits.

module
Name of the Python module associated with the extension function.

Restrictions: Must be a non-empty string and a valid Python identifier.

function
Name of the Python extension function within the module.

Restrictions: Must be a non-empty string and a valid Python identifier.

Configuration

35

index
Index of action, for execution ordering.

Restrictions: Must be an integer >= 0.

Setting up a Pool of One
Cedar Backup has been designed primarily for situations where there is a single master and a set of other
clients that the master interacts with. However, it will just as easily work for a single machine (a backup
pool of one).

Once you complete all of these configuration steps, your backups will run as scheduled out of cron. Any
errors that occur will be reported in daily emails to your root user (or the user that receives root's email).
If you don't receive any emails, then you know your backup worked.

Note: all of these configuration steps should be run as the root user, unless otherwise indicated.

Tip

This setup procedure discusses how to set up Cedar Backup in the “normal case” for a pool
of one. If you would like to modify the way Cedar Backup works (for instance, by ignoring
the store stage and just letting your backup sit in a staging directory), you can do that.
You'll just have to modify the procedure below based on information in the remainder of
the manual.

Step 1: Make sure email works.
Cedar Backup relies on email for problem notification. This notification works through the magic of
cron. Cron will email any output from each job it executes to the user associated with the job. Since by
default Cedar Backup only writes output to the terminal if errors occur, this ensures that notification
emails will only be sent out if errors occur.

In order to receive problem notifications, you must make sure that email works for the user which is
running the Cedar Backup cron jobs (typically root). Refer to your distribution's documentation for
information on how to configure email on your system. Note that you may prefer to configure root's
email to forward to some other user, so you do not need to check the root user's mail in order to see
Cedar Backup errors.

Step 2: Configure your CD-R or CD-RW drive.
Your CD-R or CD-RW drive must either be a SCSI device or must be configured to act like a SCSI
device from the perspective of the cdrecord and mkisofs commands. Regardless of what kind of drive
you have, make sure you know its SCSI address and its filesystem device name. The SCSI address will
be used to write to media, and the device name will be used when Cedar Backup needs to mount the
media (for instance, when a validation check must be run).

See the section called “Configuring your SCSI Device” for more information on SCSI devices and how
they are configured.

Configuration

36

Note

There is no need to set up your CD-R or CD-RW device if you have decided not to execute
the store action.

Step 3: Configure your backup user.
Choose a user to be used for backups. Some platforms may come with a “ready made” backup user. For
other platforms, you may have to create a user yourself. You may choose any id you like, but a
descriptive name such as backup or cback is a good choice. See your distribution's documentation for
information on how to add a user.

Note

Standard Debian systems come with a user named backup. You may choose to stay with
this user or create another one.

Step 4: Create your backup tree.
Cedar Backup requires a backup directory tree on disk. This directory tree must be roughly three times
as big as the amount of data that will be backed up on a nightly basis, to allow for the data to be
collected, staged, and then placed into an ISO CD image on disk. (This is one disadvantage to using
Cedar Backup in single-machine pools, but in this day of really large hard drives, it might not be an
issue.) Note that if you elect not to purge the staging directory every night, you will need even more
space.

You should create a collect directory, a staging directory and a working (temporary) directory. One
recommended layout is this:

/opt/
backup/

collect/
stage/
tmp/

If you will be backing up sensitive information (i.e. password files), it is recommended that these
directories be owned by the backup user (whatever you named it), with permissions 700.

Note

You don't have to use /opt as the root of your directory structure. Use anything you
would like. I use /opt because it is my “dumping ground” for filesystems that Debian
does not manage.

Some users have requested that the Debian packages set up a more “standard” location for
backups right out-of-the-box. I have resisted doing this because it's difficult to choose an
appropriate backup location from within the package. If you would prefer, you can create
the backup directory structure within some existing Debian directory such as
/var/backups or /var/tmp.

Configuration

37

Step 5: Modify the backup cron jobs.
There are four parts to a Cedar Backup run: collect, stage, store and purge. The usual way of setting off
these steps is through a cron job. For more information on using cron, see the manpage for crontab(5).

Backing up large directories and creating ISO CD images can be intensive operations, and could slow
your computer down significantly. Choose a backup time that will not interfere with normal use of your
computer. Usually, you will want the backup to occur every day, but it is possible to configure cron to
execute the backup only one day per week, three days per week, etc.

Warning

Because of the way Cedar Backup works, you must ensure that your backup always run on
the first day of your configured week. This is because Cedar Backup will only clear
incremental backup information and re-initialize your media when running on the first day
of the week. If you skip running Cedar Backup on the first day of the week, your backups
will likely be “confused” until either the next week, or until you re-run the backup using
the --full flag.

Since Cedar Backup should be run as root, one way to configure the cron job is to add a line like this to
your /etc/crontab file:

30 00 * * * root cback all

Or, you can create an executable script containing just these lines and place that file in the
/etc/cron.daily directory:

#/bin/sh
cback all

You should consider adding the --output or -O switch to your cback command-line in cron. This
will result in larger logs, but could help diagnose problems when commands like cdrecord or mkisofs
fail mysteriously.

Note

On a Debian system, execution of daily backups is controlled by the file
/etc/cron.d/cedar-backup2. As installed, this file contains several different
settings, all commented out. Uncomment the “Single machine (pool of one)” entry in the
file, and change the line so that the backup goes off when you want it to.

Step 6: Create the Cedar Backup configuration file.
Following the instructions in the section called “Configuration File Format” (above) create a
configuration file for your machine. Since you are working with a pool of one, you must configure all
four action-specific sections: collect, stage, store and purge.

Configuration

38

5 See http://cedar-solutions.com/bugzilla/.

The usual location for the Cedar Backup config file is /etc/cback.conf. If you change the location,
make sure you edit your cronjobs (step 5) to point the cback script at the correct config file (using the
--config option).

Warning

Configuration files should always be writable only by root (or by the file owner, if the
owner is not root).

If you intend to place confidental information into the Cedar Backup configuration file,
make sure that you set the filesystem permissions on the file appropriately. For instance, if
you configure any extensions that require passwords or other similar information, you
should make the file readable only to root or to the file owner (if the owner is not root).

Step 7: Validate the Cedar Backup configuration file.
Use the command cback validate to validate your configuration file. This command checks that the
configuration file can be found and parsed, and also checks for typical configuration problems, such as
invalid CD-R/CD-RW device entries.

Note: the most common cause of configuration problems is in not closing XML tags properly. Any
XML tag that is “opened” must be “closed” appropriately.

Step 8: Test your backup.
Place a valid CD-R or CD-RW disc in your drive, and then use the command cback --full all. You
should execute this command as root. If the command completes with no output, then the backup was
run successfully.

Just to be sure that everything worked properly, check the logfile (/var/log/cback.log) for errors
and also mount the CD-R or CD-RW disc to be sure it can be read.

If Cedar Backup ever completes “normally” but the disc that is created is not usable, please report this
as a bug. 5 To be safe, always enable the consistency check option in the store configuration section.

Setting up a Client Peer Node
Cedar Backup has been designed to backup entire “pools” of machines. In any given pool, there is one
master and some number of clients. Most of the work takes place on the master, so configuring a client
is a little simpler than configuring a master.

Backups are designed to take place over an RSH or SSH connection. Because RSH is generally
considered insecure, you are encouraged to use SSH rather than RSH. This document will only describe
how to configure Cedar Backup to use SSH; if you want to use RSH, you're on your own.

Once you complete all of these configuration steps, your backups will run as scheduled out of cron. Any
errors that occur will be reported in daily emails to your root user (or the user that receives root's email).

Configuration

39

http://cedar-solutions.com/bugzilla/

If you don't receive any emails, then you know your backup worked.

Note: all of these configuration steps should be run as the root user, unless otherwise indicated.

Step 1: Make sure email works.
Cedar Backup relies on email for problem notification. This notification works through the magic of
cron. Cron will email any output from each job it executes to the user associated with the job. Since by
default Cedar Backup only writes output to the terminal if errors occur, this neatly ensures that
notification emails will only be sent out if errors occur.

In order to receive problem notifications, you must make sure that email works for the user which is
running the Cedar Backup cron jobs (typically root). Refer to your distribution's documentation for
information on how to configure email on your system. Note that you may prefer to configure root's
email to forward to some other user, so you do not need to check the root user's mail in order to see
Cedar Backup errors.

Step 2: Configure the master in your backup pool.
You will not be able to complete the client configuration until at least step 3 of the master's
configuration has been completed. In particular, you will need to know the master's public SSH identity
to fully configure a client.

To find the master's public SSH identity, log in as the backup user on the master and cat the public
identity file ~/.ssh/id_rsa.pub:

user@machine> cat ~/.ssh/id_rsa.pub
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEA0vOKjlfwohPg1oPRdrmwHk75l3mI9Tb/WRZfVnu2Pw69
uyphM9wBLRo6QfOC2T8vZCB8o/ZIgtAM3tkM0UgQHxKBXAZ+H36TOgg7BcI20I93iGtzpsMA/uXQy8kH
HgZooYqQ9pw+ZduXgmPcAAv2b5eTm07wRqFt/U84k6bhTzs= user@machine

Step 3: Configure your backup user.
Choose a user to be used for backups. Some platforms may come with a "ready made" backup user. For
other platforms, you may have to create a user yourself. You may choose any id you like, but a
descriptive name such as backup or cback is a good choice. See your distribution's documentation for
information on how to add a user.

Note

Standard Debian systems come with a user named backup. You may choose to stay with
this user or create another one.

Once you have created your backup user, you must create an SSH keypair for it. Log in as your backup
user, and then run the command ssh-keygen -t rsa -N "" -f ~/.ssh/id_rsa:

user@machine> ssh-keygen -t rsa -N "" -f ~/.ssh/id_rsa
Generating public/private rsa key pair.

Configuration

40

Created directory '/home/user/.ssh'.
Your identification has been saved in /home/user/.ssh/id_rsa.
Your public key has been saved in /home/user/.ssh/id_rsa.pub.
The key fingerprint is:
11:3e:ad:72:95:fe:96:dc:1e:3b:f4:cc:2c:ff:15:9e user@machine

The default permissions for this directory should be fine. However, if the directory existed before you
ran ssh-keygen, then you may need to modify the permissions. Make sure that the ~/.ssh directory is
readable only by the backup user (i.e. mode 700), that the ~/.ssh/id_rsa file is only readable and
writable only by the backup user (i.e. mode 600) and that the ~/.ssh/id_rsa.pub file is writable
only by the backup user (i.e. mode 600 or mode 644).

Finally, take the master's public SSH identity (which you found in step 2) and cut-and-paste it into the
file ~/.ssh/authorized_keys. Make sure the identity value is pasted into the file all on one line,
and that the authorized_keys file is owned by your backup user and has permissions 600.

If you have other preferences or standard ways of setting up your users' SSH configuration (i.e. different
key type, etc.), feel free to do things your way. The important part is that the master must be able to SSH
into a client with no password entry required.

Step 4: Create your backup tree.
Cedar Backup requires a backup directory tree on disk. This directory tree must be roughly as big as the
amount of data that will be backed up on a nightly basis (more if you elect not to purge it all every
night).

You should create a collect directory and a working (temporary) directory. One recommended layout is
this:

/opt/
backup/

collect/
tmp/

If you will be backing up sensitive information (i.e. password files), it is recommended that these
directories be owned by the backup user (whatever you named it), with permissions 700.

Note

You don't have to use /opt as the root of your directory structure. Use anything you
would like. I use /opt because it is my “dumping ground” for filesystems that Debian
does not manage.

Some users have requested that the Debian packages set up a more "standard" location for
backups right out-of-the-box. I have resisted doing this because it's difficult to choose an
appropriate backup location from within the package. If you would prefer, you can create
the backup directory structure within some existing Debian directory such as
/var/backups or /var/tmp.

Configuration

41

6See the section called “Coordination between Master and Clients” in Chapter 2, Basic Concepts.

Step 5: Modify the backup cron jobs.
There are two parts to a Cedar Backup run on a client: collect and purge. The usual way of setting off
these steps is through a cron job. For more information on using cron, see the manpage for crontab(5).

Backing up large directories could slow your computer down significantly. Choose a backup time that
will not interfere with normal use of your computer. Usually, you will want the backup to go occur
every day, but it is possible to configure cron to execute the backup only one day per week, three days
per week, etc.

Warning

Because of the way Cedar Backup works, you must ensure that at least your collect action
always runs on the first day of your configured week. This is because Cedar Backup will
only clear incremental backup information when running on the first day of the week. If
you skip running the collect action on the first day of the week, your backups will likely be
“confused” until either the next week, or until you re-run the collect action backup using
the --full flag.

Since Cedar Backup should be run as root, you should add a set of lines like this to your
/etc/crontab file:

30 00 * * * root cback collect
30 06 * * * root cback purge

You should consider adding the --output or -O switch to your cback command-line in cron. This
will result in larger logs, but could help diagnose problems when commands like cdrecord or mkisofs
fail mysteriously.

You will need to coordinate the collect and purge actions on the client so that the collect action
completes before the master attempts to stage, and so that the purge action does not begin until after the
master has completed staging. Usually, allowing an hour or two between steps should be sufficient. 6

Note

On a Debian system, execution of daily backups is controlled by the file
/etc/cron.d/cedar-backup2. As installed, this file contains several different
settings, all commented out. Uncomment the “Client machine” entries in the file, and
change the lines so that the backup goes off when you want it to.

Step 6: Create the Cedar Backup configuration file.
Following the instructions in the section called “Configuration File Format” (above), create a
configuration file for your machine. Since you are working with a client, you must configure all
action-specific sections for the collect and purge actions.

The usual location for the Cedar Backup config file is /etc/cback.conf. If you change the location,

Configuration

42

make sure you edit your cronjobs (step 5) to point the cback script at the correct config file (using the
--config option).

Warning

Configuration files should always be writable only by root (or by the file owner, if the
owner is not root).

If you intend to place confidental information into the Cedar Backup configuration file,
make sure that you set the filesystem permissions on the file appropriately. For instance, if
you configure any extensions that require passwords or other similar information, you
should make the file readable only to root or to the file owner (if the owner is not root).

Step 7: Validate the Cedar Backup configuration file.
Use the command cback validate to validate your configuration file. This command checks that the
configuration file can be found and parsed, and also checks for typical configuration problems. This
command only validates configuration on the one client, not the master or any other clients in a pool.

Note: the most common cause of configuration problems is in not closing XML tags properly. Any
XML tag that is “opened” must be “closed” appropriately.

Step 8: Test your backup.
Use the command cback --full collect purge. If the command completes with no output, then the
backup was run successfully. Just to be sure that everything worked properly, check the logfile
(/var/log/cback.log) for errors.

Setting up a Master Peer Node
Cedar Backup has been designed to backup entire “pools” of machines. In any given pool, there is one
master and some number of clients. Most of the work takes place on the master, so configuring a master
is somewhat more complicated than configuring a client.

Backups are designed to take place over an RSH or SSH connection. Because RSH is generally
considered insecure, you are encouraged to use SSH rather than RSH. This document will only describe
how to configure Cedar Backup to use SSH; if you want to use RSH, you're on your own.

Once you complete all of these configuration steps, your backups will run as scheduled out of cron. Any
errors that occur will be reported in daily emails to your root user (or whichever other user receives
root's email). If you don't receive any emails, then you know your backup worked.

Note: all of these configuration steps should be run as the root user, unless otherwise indicated.

Tip

This setup procedure discusses how to set up Cedar Backup in the “normal case” for a
master. If you would like to modify the way Cedar Backup works (for instance, by
ignoring the store stage and just letting your backup sit in a staging directory), you can do
that. You'll just have to modify the procedure below based on information in the remainder
of the manual.

Configuration

43

Step 1: Make sure email works.
Cedar Backup relies on email for problem notification. This notification works through the magic of
cron. Cron will email any output from each job it executes to the user associated with the job. Since by
default Cedar Backup only writes output to the terminal if errors occur, this neatly ensures that
notification emails will only be sent out if errors occur.

In order to receive problem notifications, you must make sure that email works for the user which is
running the Cedar Backup cron jobs (typically root). Refer to your distribution's documentation for
information on how to configure email on your system. Note that you may prefer to configure root's
email to forward to some other user, so you do not need to check the root user's mail in order to see
Cedar Backup errors.

Step 2: Configure your CD-R or CD-RW drive.
Your CD-R or CD-RW drive must either be a SCSI device or must be configured to act like a SCSI
device from the perspective of the cdrecord and mkisofs commands. Regardless of what kind of drive
you have, make sure you know its SCSI address and its filesystem device name. The SCSI address will
be used to write to media, and the device name will be used when Cedar Backup needs to mount the
media (for instance, when a validation check must be run).

See the section called “Configuring your SCSI Device” for more information on SCSI devices and how
they are configured.

Note

There is no need to set up your CD-R or CD-RW device if you have decided not to execute
the store action.

Step 3: Configure your backup user.
Choose a user to be used for backups. Some platforms may come with a “ready made” backup user. For
other platforms, you may have to create a user yourself. You may choose any id you like, but a
descriptive name such as backup or cback is a good choice. See your distribution's documentation for
information on how to add a user.

Note

Standard Debian systems come with a user named backup. You may choose to stay with
this user or create another one.

Once you have created your backup user, you must create an SSH keypair for it. Log in as your backup
user, and then run the command ssh-keygen -t rsa -N "" -f ~/.ssh/id_rsa:

user@machine> ssh-keygen -t rsa -N "" -f ~/.ssh/id_rsa
Generating public/private rsa key pair.
Created directory '/home/user/.ssh'.
Your identification has been saved in /home/user/.ssh/id_rsa.
Your public key has been saved in /home/user/.ssh/id_rsa.pub.
The key fingerprint is:

Configuration

44

11:3e:ad:72:95:fe:96:dc:1e:3b:f4:cc:2c:ff:15:9e user@machine

The default permissions for this directory should be fine. However, if the directory existed before you
ran ssh-keygen, then you may need to modify the permissions. Make sure that the ~/.ssh directory is
readable only by the backup user (i.e. mode 700), that the ~/.ssh/id_rsa file is only readable and
writable by the backup user (i.e. mode 600) and that the ~/.ssh/id_rsa.pub file is writable only
by the backup user (i.e. mode 600 or mode 644).

If you have other preferences or standard ways of setting up your users' SSH configuration (i.e. different
key type, etc.), feel free to do things your way. The important part is that the master must be able to SSH
into a client with no password entry required.

Step 4: Create your backup tree.
Cedar Backup requires a backup directory tree on disk. This directory tree must be roughly large enough
hold twice as much data as will be backed up from the entire pool on a given night, plus space for
whatever is collected on the master itself. This will allow for all three operations - collect, stage and
store - to have enough space to complete. Note that if you elect not to purge the staging directory every
night, you will need even more space.

You should create a collect directory, a staging directory and a working (temporary) directory. One
recommended layout is this:

/opt/
backup/

collect/
stage/
tmp/

If you will be backing up sensitive information (i.e. password files), it is recommended that these
directories be owned by the backup user (whatever you named it), with permissions 700.

Note

You don't have to use /opt as the root of your directory structure. Use anything you
would like. I use /opt because it is my “dumping ground” for filesystems that Debian
does not manage.

Some users have requested that the Debian packages set up a more “standard” location for
backups right out-of-the-box. I have resisted doing this because it's difficult to choose an
appropriate backup location from within the package. If you would prefer, you can create
the backup directory structure within some existing Debian directory such as
/var/backups or /var/tmp.

Step 5: Modify the backup cron jobs.
There are four parts to a Cedar Backup run: collect, stage, store and purge. The usual way of setting off
these steps is through a cron job. For more information on using cron, see the manpage for crontab(5).

Configuration

45

Note

Keep in mind that you do not necessarily have to run the collect action on the master. See
notes further below for more information.

Backing up large directories and creating ISO CD images can be intensive operations, and could slow
your computer down significantly. Choose a backup time that will not interfere with normal use of your
computer. Usually, you will want the backup to go occur every day, but it is possible to configure cron
to execute the backup only one day per week, three days per week, etc.

Warning

Because of the way Cedar Backup works, you must ensure that at least your collect and
store actions always run on the first day of your configured week. This is because Cedar
Backup will only clear incremental backup information and re-initialize your media when
running on the first day of the week. If you skip running Cedar Backup on the first day of
the week, your backups will likely be “confused” until either the next week, or until you
re-run the collect and store actions using the --full flag.

Since Cedar Backup should be run as root, you should add a set of lines like this to your
/etc/crontab file:

30 00 * * * root cback collect
30 02 * * * root cback stage
30 04 * * * root cback store
30 06 * * * root cback purge

You should consider adding the --output or -O switch to your cback command-line in cron. This
will result in larger logs, but could help diagnose problems when commands like cdrecord or mkisofs
fail mysteriously.

You will need to coordinate the collect and purge actions on clients so that their collect actions complete
before the master attempts to stage, and so that their purge actions do not begin until after the master has
completed staging. Usually, allowing an hour or two between steps should be sufficient. 6

Note

On a Debian system, execution of daily backups is controlled by the file
/etc/cron.d/cedar-backup2. As installed, this file contains several different
settings, all commented out. Uncomment the “Master machine” entries in the file, and
change the lines so that the backup goes off when you want it to.

Step 6: Create the Cedar Backup configuration file.
Following the instructions in the section called “Configuration File Format” (above), create a
configuration file for your machine. Since you are working with a master machine, you would typically
configure all four action-specific sections: collect, stage, store and purge.

Configuration

46

Note

Note that the master can treat itself as a “client” peer for certain actions. As an example, if
you run the collect action on the master, then you will stage that data by configuring a
local peer representing the master.

Something else to keep in mind is that you do not really have to run the collect action on
the master. For instance, you may prefer to just use your master machine as a
“consolidation point” machine that just collects data from the other client machines in a
backup pool. In that case, there is no need to collect data on the master itself.

The usual location for the Cedar Backup config file is /etc/cback.conf. If you change the location,
make sure you edit your cronjobs (step 5) to point the cback script at the correct config file (using the
--config option).

Warning

Configuration files should always be writable only by root (or by the file owner, if the
owner is not root).

If you intend to place confidental information into the Cedar Backup configuration file,
make sure that you set the filesystem permissions on the file appropriately. For instance, if
you configure any extensions that require passwords or other similar information, you
should make the file readable only to root or to the file owner (if the owner is not root).

Step 7: Validate the Cedar Backup configuration file.
Use the command cback validate to validate your configuration file. This command checks that the
configuration file can be found and parsed, and also checks for typical configuration problems, such as
invalid CD-R/CD-RW device entries. This command only validates configuration on the master, not any
clients that the master might be configured to connect to.

Note: the most common cause of configuration problems is in not closing XML tags properly. Any
XML tag that is “opened” must be “closed” appropriately.

Step 8: Test connectivity to client machines.
This step must wait until after your client machines have been at least partially configured. Once the
backup user(s) have been configured on the client machine(s) in a pool, attempt an SSH connection to
each client.

Log in as the backup user on the master, and then use the command ssh user@machine where user is
the name of backup user on the client machine, and machine is the name of the client machine.

If you are able to log in successfully to each client without entering a password, then things have been
configured properly. Otherwise, double-check that you followed the user setup instructions for the
master and the clients.

Step 9: Test your backup.
Make sure that you have configured all of the clients in your backup pool. On all of the clients, execute

Configuration

47

cback --full collect. (You will probably have already tested this command on each of the clients, so it
should succeed.)

When all of the client backups have completed, place a valid CD-R or CD-RW disc in your drive, and
then use the command cback --full all. You should execute this command as root. If the command
completes with no output, then the backup was run successfully.

Just to be sure that everything worked properly, check the logfile (/var/log/cback.log) on the
master and each of the clients, and also mount the CD-R or CD-RW disc on the master to be sure it can
be read.

You may also want to run cback purge on the master and each client once you have finished validating
that everything worked.

If Cedar Backup ever completes “normally” but the disc that is created is not usable, please report this
as a bug. 5 To be safe, always enable the consistency check option in the store configuration section.

Configuring your SCSI Device
SCSI Required

In order to execute the store action, your CD-R or CD-RW drive must either be a SCSI device or must
be configured to act like a SCSI device from the perspective of the cdrecord and mkisofs commands.
Regardless of what kind of drive you have, make sure you know its SCSI address and its filesystem
device name. The SCSI address will be used to write to media, and the device name will be used when
Cedar Backup needs to mount the media (for instance, when a validation check must be run).

A true SCSI device will always have an address scsibus,target,lun, for instance 1,6,2. This
should hold true on most UNIX-like systems including Linux and the various BSDs (although I do not
have a BSD system to test with currently). The SCSI address represents the location of your writer
device on the one or more SCSI buses that you have available on your system.

Linux Notes
On a Linux system, IDE writer devices often have a simulated SCSI address, which allows SCSI-based
software to access the device through an IDE-to-SCSI interface. Under these circumstances, the first
IDE writer device typically has an address 0,0,0. Newer Linux systems (kernel 2.6.x) can also be
compiled with support for other kinds of CD drive interfaces. If your kernel supports it, you can address
ATA or ATAPI drives without SCSI emulation by prepending an indicator to the simulated device
address, for instance ATA:0,0,0 or ATAPI:0,0,0.

A discussion of how to configure your CD writer hardware is outside the scope of this document, but
you may want to reference the Linux CDROM HOWTO
(http://www.tldp.org/HOWTO/CDROM-HOWTO) or the ATA RAID HOWTO
(http://www.tldp.org/HOWTO/ATA-RAID-HOWTO/index.html) for more information.

Mac OS X Notes
On a Mac OS X (darwin) system, things get strange. Apple has abandoned traditional SCSI device
identifiers in favor of a system-wide resource id. So, on a Mac, your writer device will have a name
something like IOCompactDiscServices (for a CD writer) or IODVDServices (for a DVD
writer). If you have multiple drives, the second drive probably has a number appended, i.e.

Configuration

48

http://www.tldp.org/HOWTO/CDROM-HOWTO
http://www.tldp.org/HOWTO/ATA-RAID-HOWTO/index.html

7Thanks to the file README.macosX in the cdrtools-2.01+01a01 source tree for this information

IODVDServices/2 for the second DVD writer. You can try to figure out what the name of your
device is by grepping through the output of the command ioreg -l.7

Unfortunately, even if you can figure out what device to use, I can't really support the store action on
this platform. In OS X, the “automount” function of the Finder interferes significantly with Cedar
Backup's ability to mount and unmount media and write to the CD or DVD hardware. The Cedar
Backup writer and image functionality does work on this platform, but the effort required to fight the
operating system about who owns the media and the device makes it nearly impossible to execute the
store action successfully.

If you are interested in some of my notes about what works and what doesn't on this platform, check out
the documentation in the doc/osx directory in the source distribution.

Configuration

49

1See http://subversion.org

Chapter 5. Official Extensions
System Information Extension

The System Information Extension is a simple Cedar Backup extension used to save off important
system recovery information that might be useful when reconstructing a “broken” system. It is intended
to be run either immediately before or immediately after the standard collect action.

This extension saves off the following information to the configured Cedar Backup collect directory.
Saved off data is always compressed using bzip2.

• Currently-installed Debian packages via dpkg --get-selections

• Disk partition information via fdisk -l

• System-wide mounted filesystem contents, via ls -laR

The Debian-specific information is only collected on systems where /usr/bin/dpkg exists.

To enable this extension, add the following section to the Cedar Backup configuration file:

<extensions>
<action>

<name>sysinfo</name>
<module>CedarBackup2.extend.sysinfo</module>
<function>executeAction</function>
<index>101</index>

</action>
</extensions>

This extension relies on the options and collect configuration sectionns in the standard Cedar Backup
configuration file, but requires no new configuration of its own.

Subversion Extension
The Subversion Extension is a Cedar Backup extension used to back up Subversion 1 version control
repositories via the Cedar Backup command line. It is intended to be run either immediately before or
immediately after the standard collect action.

Each configured Subversion repository can be backed using the same collect modes allowed for
filesystems in the standard Cedar Backup collect action (weekly, daily, incremental) and the output can
be compressed using either gzip or bzip2.

There are two different kinds of Subversion repositories at this writing: BDB (Berkeley Database) and
FSFS (a "filesystem within a filesystem"). This extension backs up both kinds of repositories in the

50

http://subversion.org

2For instance, see the “Backups” section on this page:
http://freehackers.org/~shlomif/svn-raweb-light/subversion.cgi/trunk/notes/fsfs

same way, using svnadmin dump in an incremental mode. It turns out that FSFS repositories can also
be backed up just like any other filesystem directory. If you would rather do the backup that way, then
use the normal collect action rather than this extension. If you decide to do that, be sure to consult the
Subversion documentation and make sure you understand the limitations of this kind of backup. 2

To enable this extension, add the following section to the Cedar Backup configuration file:

<extensions>
<action>

<name>subversion</name>
<module>CedarBackup2.extend.subversion</module>
<function>executeAction</function>
<index>101</index>

</action>
</extensions>

This extension relies on the options and collect configuration sections in the standard Cedar Backup
configuration file, and then also requires its own subversion configuration section. This is an
example Subversion configuration section:

<subversion>
<collect_mode>incr</collect_mode>
<compress_mode>bzip2</compress_mode>
<repository>

<type>FSFS</type>
<abs_path>/opt/public/svn/software</abs_path>
<collect_mode>daily</collect_mode>

</repository>
<repository>

<type>FSFS</type>
<abs_path>/opt/public/svn/docs</abs_path>

</repository>
<repository>

<type>BDB</type>
<abs_path>/opt/public/svn/web</abs_path>
<compress_mode>gzip</compress_mode>

</repository>
</subversion>

The following elements are part of the Subversion configuration section:

collect_mode
Default collect mode.

The collect mode describes how frequently a Subversion repository is backed up. The Subversion
extension recognizes the same collect modes as the standard Cedar Backup collect action (see
Chapter 2, Basic Concepts).

Official Extensions

51

http://freehackers.org/~shlomif/svn-raweb-light/subversion.cgi/trunk/notes/fsfs

This value is the collect mode that will be used by default during the backup process. Individual
repositories (below) may override this value. If all individual repositories provide their own value,
then this default value may be omitted from configuration.

Note: if your backup device does not suppport multisession discs, then you should probably use the
daily collect mode to avoid losing data.

Restrictions: Must be one of daily, weekly or incr.

compress_mode
Default compress mode.

Subversion repositories backups are just specially-formatted text files, and often compress quite
well using gzip or bzip2. The compress mode describes how the backed-up data will be
compressed, if at all.

This value is the compress mode that will be used by default during the backup process. Individual
repositories (below) may override this value. If all individual repositories provide their own value,
then this default value may be omitted from configuration.

Restrictions: Must be one of none, gzip or bzip2.

repository
A Subversion repository be collected.

This is a subsection which contains information about a specific Subversion repository to be backed
up.

This section can be repeated as many times as is necessary. At least one repository directory must
be configured.

The repository subsection contains the following fields:

type
Repository type for this repository.

The repository type indicates what kind of Subversion repository backend is in use. The Subversion
extension recognizes two kinds of backends: BDB and FSFS, as described above.

This field is optional. If it doesn't exist, the backup will assume the BDB type.

Restrictions: Must be one of BDB or FSFS.

collect_mode
Collect mode for this repository.

This field is optional. If it doesn't exist, the backup will use the default collect mode.

Restrictions: Must be one of daily, weekly or incr.

compress_mode
Compress mode for this repository.

This field is optional. If it doesn't exist, the backup will use the default compress mode.

Official Extensions

52

3See http://www.mysql.com

Restrictions: Must be one of none, gzip or bzip2.

abs_path
Absolute path of the Subversion repository to back up.

Restrictions: Must be an absolute path.

MySQL Extension
The MySQL Extension is a Cedar Backup extension used to back up MySQL 3 databases via the Cedar
Backup command line. It is intended to be run either immediately before or immediately after the
standard collect action.

Note

This extension always produces a full backup. There is currently no facility for making
incremental backups. If/when someone has a need for this and can describe how to do it, I
will update this extension or provide another.

The backup is done via the mysqldump command included with the MySQL product. Output can be
compressed using gzip or bzip2. Administrators can configure the extension either to back up all
databases or to back up only specific databases.

The extension assumes that all configured databases can be backed up by a single user. Often, the “root”
database user will be used. An alternative is to create a separate MySQL “backup” user and grant that
user rights to read (but not write) various databases as needed. This second option is probably your best
choice.

Warning

The extension accepts a username and password in configuration. However, you probably
do not want to list those values in Cedar Backup configuration. This is because Cedar
Backup will provide these values to mysqldump via the command-line --user and
--password switches, which will be visible to other users in the process listing.

Instead, you should configure the username and password in one of MySQL's
configuration files. Typically, that would be done by putting a stanza like this in
/root/.my.cnf:

[mysqldump]
user = root
password = <secret>

Of course, if you are executing the backup as a user other than root, then you would create
the file in that user's home directory instead.

Regardless of whether you are using ~/.my.cnf or /etc/cback.conf to store

Official Extensions

53

http://www.mysql.com

database login and password information, you should be careful about who is allowed to
view that information. Typically, this means locking down permissions so that only the file
owner can read the file contents (i.e. use mode 0600).

To enable this extension, add the following section to the Cedar Backup configuration file:

<extensions>
<action>

<name>mysql</name>
<module>CedarBackup2.extend.mysql</module>
<function>executeAction</function>
<index>101</index>

</action>
</extensions>

This extension relies on the options and collect configuration sections in the standard Cedar Backup
configuration file, and then also requires its own mysql configuration section. This is an example
MySQL configuration section:

<mysql>
<compress_mode>bzip2</compress_mode>
<all>Y</all>

</mysql>

If you have decided to configure login information in Cedar Backup rather than using MySQL
configuration, then you would add the username and password fields to configuration:

<mysql>
<user>root</user>
<password>password</password>
<compress_mode>bzip2</compress_mode>
<all>Y</all>

</mysql>

The following elements are part of the MySQL configuration section:

user
Database user.

The database user that the backup should be executed as. Even if you list more than one database
(below) all backups must be done as the same user. Typically, this would be root (i.e. the database
root user, not the system root user).

This value is optional. You should probably configure the username and password in MySQL
configuration instead, as discussed above.

Restrictions: If provided, must be non-empty.

Official Extensions

54

password
Password associated with the database user.

This value is optional. You should probably configure the username and password in MySQL
configuration instead, as discussed above.

Restrictions: If provided, must be non-empty.

compress_mode
Compress mode.

MySQL databases dumps are just specially-formatted text files, and often compress quite well using
gzip or bzip2. The compress mode describes how the backed-up data will be compressed, if at all.

Restrictions: Must be one of none, gzip or bzip2.

all
Indicates whether to back up all databases.

If this value is Y, then all MySQL databases will be backed up. If this value is N, then one or more
specific databases must be specified (see below).

If you choose this option, the entire database backup will go into one big dump file.

Restrictions: Must be a boolean (Y or N).

database
Named database to be backed up.

If you choose to specify individual databases rather than all databases, then each database will be
backed up into its own dump file.

This field can be repeated as many times as is necessary. At least one database must be configured
if the all option (above) is set to N. You may not configure any individual databases if the all option
is set to Y.

Restrictions: Must be non-empty.

Official Extensions

55

Appendix A. Extension Architecture
Interface

The Cedar Backup Extension Architecture Interface is the application programming interface used by
third-party developers to write Cedar Backup extensions. This appendix briefly specifies the interface in
enough detail for someone to succesfully implement an extension.

You will recall that Cedar Backup extensions are third-party pieces of code which extend Cedar
Backup's functionality. Extensions can be invoked from the Cedar Backup command line and are
allowed to place their configuration in Cedar Backup's configuration file.

There is a one-to-one mapping between a command-line extended action and an extension function. The
mapping is configured in the Cedar Backup configuration file using a section something like this:

<extensions>
<action>

<name>database</name>
<module>foo</module>
<function>bar</function>
<index>101</index>

</action>
</extensions>

In this case, the action “database” has been mapped to the extension function foo.bar().

Extension functions can take any actions they would like to once they have been invoked, but must
abide by these rules:

1. Extensions may not write to stdout or stderr using functions such as print or sys.write.

2. All logging must take place using the Python logging facility. Flow-of-control logging should
happen on the CedarBackup2.log topic. Authors can assume that ERROR will always go to
the terminal, that INFO and WARN will always be logged, and that DEBUG will be ignored unless
debugging is enabled.

3. Any time an extension invokes a command-line utility, it must be done through the
CedarBackup2.util.executeCommand function. This will help keep Cedar Backup safer
from format-string attacks, and will make it easier to consistently log command-line process output.

4. Extensions may not return any value.

5. Extensions must throw a Python exception containing a descriptive message if processing fails.
Extension authors can use their judgement as to what constitutes failure; however, any problems
during execution should result in either a thrown exception or a logged message.

6. Extensions may rely only on Cedar Backup functionality that is advertised as being part of the
public interface. This means that extensions cannot directly make use of methods, functions or
values starting with with the _ character. Furthermore, extensions should only rely on parts of the
public interface that are documented in the online Epydoc documentation.

56

7. Extension authors are encouraged to extend the Cedar Backup public interface through normal
methods of inheritence. However, no extension is allowed to directly change Cedar Backup code in
a way that would affect how Cedar Backup itself executes when the extension has not been
invoked. For instance, extensions would not be allowed to add new command-line options or new
writer types.

Extension functions take three arguments: the path to configuration on disk, a
CedarBackup2.cli.Options object representing the command-line options in effect, and a
CedarBackup2.config.Config object representing parsed standard configuration.

def function(configPath, options, config):
"""Sample extension function."""
pass

This interface is structured so that simple extensions can use standard configuration without having to
parse it for themselves, but more complicated extensions can get at the configuration file on disk and
parse it again as needed.

The interface to the CedarBackup2.cli.Options and CedarBackup2.config.Config
classes has been thoroughly documented using Epydoc, and the documentation is available on the Cedar
Backup website. The interface is guaranteed to change only in backwards-compatible ways unless the
Cedar Backup major version number is bumped (i.e. from 2 to 3).

If an extension needs to add its own configuration information to the Cedar Backup configuration file,
this extra configuration must be added in a new configuration section using a name that does not conflict
with standard configuration or other known extensions.

For instance, our hypothetical database extension might require configuration indicating the path to
some repositories to back up. This information might go into a section something like this:

<database>
<repository>/path/to/repo1</repository>
<repository>/path/to/repo2</repository>

</database>

In order to read this new configuration, the extension code can either inherit from the Config object
and create a subclass that knows how to parse the new database config section, or can write its own
code to parse whatever it needs out of the file. Either way, the resulting code is completely independent
of the standard Cedar Backup functionality.

Extension Architecture Interface

57

Appendix B. Dependencies
Python 2.3

Version 2.3 of the Python interpreter was released on 29 July 2003, so most “current” Linux and
BSD distributions should include it (although Debian “woody” does not include it.)

Source URL

upstream http://www.python.org

Debian http://packages.debian.org/testing/python/python2.3

Gentoo http://packages.gentoo.org/packages/?category=dev-lang;name=python;

RPM http://rpmfind.net/linux/rpm2html/search.php?query=python

Mac OS X (fink) http://fink.sourceforge.net/pdb/package.php/python23

If you can't find a package for your system, install from the package source, using the “upstream”
link.

RSH Server and Client
Although Cedar Backup will technically work with any RSH-compatible server and client pair
(such as the classic “rsh” client), most users should only use an SSH (secure shell) server and client.

The defacto standard today is OpenSSH. Some systems package the server and the client together,
and others package the server and the client separately. Note that master nodes need an SSH client,
and client nodes need to run an SSH server.

Source URL

upstream http://www.openssh.com/

Debian http://packages.debian.org/testing/net/ssh

Gentoo http://packages.gentoo.org/packages/?category=net-misc;name=openssh;

RPM http://rpmfind.net/linux/rpm2html/search.php?query=openssh

Mac OS X built-in

If you can't find SSH client or server packages for your system, install from the package source,
using the “upstream” link.

mkisofs
The mkisofs command is used create ISO CD images that can later be written to backup media.

Source URL

upstream http://freshmeat.net/projects/mkisofs/

Debian http://packages.debian.org/testing/otherosfs/mkisofs

Gentoo
unknown

RPM http://rpmfind.net/linux/rpm2html/search.php?query=mkisofs

58

http://www.python.org
http://packages.debian.org/testing/python/python2.3
http://packages.gentoo.org/packages/?category=dev-lang;name=python;
http://rpmfind.net/linux/rpm2html/search.php?query=python
http://fink.sourceforge.net/pdb/package.php/python23
http://www.openssh.com/
http://packages.debian.org/testing/net/ssh
http://packages.gentoo.org/packages/?category=net-misc;name=openssh;
http://rpmfind.net/linux/rpm2html/search.php?query=openssh
http://freshmeat.net/projects/mkisofs/
http://packages.debian.org/testing/otherosfs/mkisofs
http://rpmfind.net/linux/rpm2html/search.php?query=mkisofs

Source URL

Mac OS X (fink) http://fink.sourceforge.net/pdb/package.php/mkisofs

If you can't find a package for your system, install from the package source, using the “upstream”
link.

I have classified Gentoo as “unknown” because I can't find a specific package for that platform. I
think that maybe mkisofs is part of the cdrtools package (see below), but I'm not sure. Any Gentoo
users want to enlighten me?

cdrecord
The cdrecord command is used to write ISO images to media in a backup device.

Source URL

upstream http://freshmeat.net/projects/cdrecord/

Debian http://packages.debian.org/testing/otherosfs/cdrecord

Gentoo http://packages.gentoo.org/packages/?category=app-cdr;name=cdrtools;

RPM http://rpmfind.net/linux/rpm2html/search.php?query=cdrecord

Mac OS X (fink) http://fink.sourceforge.net/pdb/search.php?summary=cdrecord

If you can't find a package for your system, install from the package source, using the “upstream”
link.

eject and volname
The eject command is used to open and close the tray on a backup device (if the backup device has
a tray). Sometimes, the tray must be opened and closed in order to "reset" the device so it notices
recent changes to a disc.

The volname command is used to determine the volume name of media in a backup device.

Source URL

upstream http://sourceforge.net/projects/eject

Debian http://packages.debian.org/testing/utils/eject

Gentoo http://packages.gentoo.org/packages/?category=sys-apps;name=eject;

RPM http://rpmfind.net/linux/rpm2html/search.php?query=eject

Mac OS X (fink) http://fink.sourceforge.net/pdb/package.php/eject

If you can't find a package for your system, install from the package source, using the “upstream”
link.

mount and umount
The mount and umount commands are used to mount and unmount CD media after it has been
written, in order to run a consistency check.

Source URL

upstream http://freshmeat.net/projects/util-linux/

Dependencies

59

http://fink.sourceforge.net/pdb/package.php/mkisofs
http://freshmeat.net/projects/cdrecord/
http://packages.debian.org/testing/otherosfs/cdrecord
http://packages.gentoo.org/packages/?category=app-cdr;name=cdrtools;
http://rpmfind.net/linux/rpm2html/search.php?query=cdrecord
http://fink.sourceforge.net/pdb/search.php?summary=cdrecord
http://sourceforge.net/projects/eject
http://packages.debian.org/testing/utils/eject
http://packages.gentoo.org/packages/?category=sys-apps;name=eject;
http://rpmfind.net/linux/rpm2html/search.php?query=eject
http://fink.sourceforge.net/pdb/package.php/eject
http://freshmeat.net/projects/util-linux/

Source URL

Debian http://packages.debian.org/testing/base/mount

Gentoo
unknown

RPM http://rpmfind.net/linux/rpm2html/search.php?query=mount

Mac OS X
built-in

If you can't find a package for your system, install from the package source, using the “upstream”
link.

I have classified Gentoo as “unknown” because I can't find a specific package for that platform. It
may just be that these two utilities are considered standard, and don't have an independent package
of their own. Any Gentoo users want to enlighten me?

I have classified Mac OS X “built-in” because that operating system does contain a mount
command. However, it isn't really compatible with Cedar Backup's idea of mount, and in fact what
Cedar Backup needs is closer to the hdiutil command. However, there are other issues related to
that command, which is why the store action is not really supported on Mac OS X.

Dependencies

60

http://packages.debian.org/testing/base/mount
http://rpmfind.net/linux/rpm2html/search.php?query=mount

Appendix C. Data Recovery
Finding your Data

The first step in data recovery is finding the data that you want to recover. You need to decide whether
you are going to to restore off backup media, or out of some existing staging data that has not yet been
purged. The only difference is, if you purge staging data less frequently than once per week, you might
have some data available in the staging directories which would not be found on your backup media,
depending on how you rotate your media. (And of course, if your system is trashed or stolen, you
probably will not have access to your old staging data in any case.)

Regardless of the data source you choose, you will find the data organized in the same way. The
remainder of these examples will work off an example backup CD, but the contents of the staging
directory will look pretty much like the contents of the CD, with data organized first by date and then by
backup peer name.

This is the root directory of my example CD:

root:/mnt/cdrw# ls -l
total 4
drwxr-x--- 3 backup backup 4096 Sep 01 06:30 2005/

In this root directory is one subdirectory for each year represented in the backup. In this example, the
backup represents data entirely from the year 2005. If your configured backup week happens to span a
year boundary, there would be two subdirectories here (for example, one for 2005 and one for 2006).

Within each year directory is one subdirectory for each month represented in the backup.

root:/mnt/cdrw/2005# ls -l
total 2
dr-xr-xr-x 6 root root 2048 Sep 11 05:30 09/

In this example, the backup represents data entirely from the month of September, 2005. If your
configured backup week happens to span a month boundary, there would be two subdirectories here (for
example, one for August 2005 and one for September 2005).

Within each month directory is one subdirectory for each day represented in the backup.

root:/mnt/cdrw/2005/09# ls -l
total 8
dr-xr-xr-x 5 root root 2048 Sep 7 05:30 07/
dr-xr-xr-x 5 root root 2048 Sep 8 05:30 08/
dr-xr-xr-x 5 root root 2048 Sep 9 05:30 09/
dr-xr-xr-x 5 root root 2048 Sep 11 05:30 11/

61

Depending on how far into the week your backup media is from, you might have as few as one daily
directory in here, or as many as seven.

Within each daily directory is a stage indicator (indicating when the directory was staged) and one
directory for each peer configured in the backup:

root:/mnt/cdrw/2005/09/07# ls -l
total 10
dr-xr-xr-x 2 root root 2048 Sep 7 02:31 host1/
-r--r--r-- 1 root root 0 Sep 7 03:27 cback.stage
dr-xr-xr-x 2 root root 4096 Sep 7 02:30 host2/
dr-xr-xr-x 2 root root 4096 Sep 7 03:23 host3/

In this case, you can see that my backup includes three machines, and that the backup data was staged
on September 7, 2005 at 03:27.

Within the directory for a given host are all of the files collected on that host. This might just include
tarfiles from a normal Cedar Backup collect run, and might also include files “collected” from Cedar
Backup extensions or by other third-party processes on your system.

root:/mnt/cdrw/2005/09/07/host1# ls -l
total 157976
-r--r--r-- 1 root root 11206159 Sep 7 02:30 boot.tar.bz2
-r--r--r-- 1 root root 0 Sep 7 02:30 cback.collect
-r--r--r-- 1 root root 3199 Sep 7 02:30 dpkg-selections.txt.bz2
-r--r--r-- 1 root root 908325 Sep 7 02:30 etc.tar.bz2
-r--r--r-- 1 root root 389 Sep 7 02:30 fdisk-l.txt.bz2
-r--r--r-- 1 root root 1003100 Sep 7 02:30 ls-laR.txt.bz2
-r--r--r-- 1 root root 19800 Sep 7 02:30 mysqldump.txt.bz2
-r--r--r-- 1 root root 4133372 Sep 7 02:30 opt-local.tar.bz2
-r--r--r-- 1 root root 44794124 Sep 8 23:34 opt-public.tar.bz2
-r--r--r-- 1 root root 30028057 Sep 7 02:30 root.tar.bz2
-r--r--r-- 1 root root 4747070 Sep 7 02:30 svndump-0:782-opt-svn-repo1.txt.bz2
-r--r--r-- 1 root root 603863 Sep 7 02:30 svndump-0:136-opt-svn-repo2.txt.bz2
-r--r--r-- 1 root root 113484 Sep 7 02:30 var-lib-jspwiki.tar.bz2
-r--r--r-- 1 root root 19556660 Sep 7 02:30 var-log.tar.bz2
-r--r--r-- 1 root root 14753855 Sep 7 02:30 var-mail.tar.bz2

As you can see, I back up variety of different things on host1. I run the normal collect action, as well as
the sysinfo, mysql and subversion extensions. The resulting backup files are named in a way that makes
it easy to determine what they represent.

Files of the form *.tar.bz2 represent directories backed up by the collect action. The first part of the
name (before “.tar.bz2”), represents the path to the directory. For example, boot.tar.gz contains
data from /boot, and var-lib-jspwiki.tar.bz2 contains data from /var/lib/jspwiki.

The fdisk-l.txt.bz2, ls-laR.tar.bz2 and dpkg-selections.tar.bz2 files are
produced by the sysinfo extension.

The mysqldump.txt.bz2 file is produced by the mysql extension. It represents a system-wide
database dump, because I use the “all” flag in configuration. If I were to configure Cedar Backup to

Data Recovery

62

dump individual datbases, then the filename would contain the database name (something like
mysqldump-bugs.txt.bz2).

Finally, the files of the form svndump-*.txt.bz2 are produced by the subversion extension. There
is one dump file for each configured repository, and the dump file name represents the name of the
repository and the revisions in that dump. So, the file
svndump-0:782-opt-svn-repo1.txt.bz2 represents revisions 0-782 of the repository at
/opt/svn/repo1. You can tell that this file contains a full backup of the repository to this point,
because the starting revision is zero. Later incremental backups would have a non-zero starting revision,
i.e. perhaps 783-785, followed by 786-800, etc.

Recovering Filesystem Data
Filesystem data is gathered by the standard Cedar Backup collect action. This data is placed into files of
the form *.tar. The first part of the name (before “.tar”), represents the path to the directory. For
example, boot.tar would contain data from /boot, and var-lib-jspwiki.tar would contain
data from /var/lib/jspwiki. (As a special case, data from the root directory would be placed in
-.tar). Remember that your tarfile might have a bzip2 (.bz2) or gzip (.gz) extension, depending on
what compression you specified in configuration.

If you are using full backups every day, the latest backup data is always within the latest daily directory
stored on your backup media or within your staging directory. If you have some or all of your directories
configured to do incremental backups, then the first day of the week holds the full backups and the other
days represent incremental differences relative to that first day of the week.

Where to extract your backup

If you are restoring a home directory or some other non-system directory as part of a full restore, it is
probably fine to extract the backup directly into the filesystem.

If you are restoring a system directory like /etc as part of a full restore, extracting directly into the
filesystem is likely to break things, especially if you re-installed a newer version of your operating
system than the one you originally backed up. It's better to extract directories like this to a temporary
location and pick out only the files you find you need.

When doing a partial restore, I suggest always extracting to a temporary location. Doing it this way
gives you more control over what you restore, and helps you avoid compounding your original problem
with another one (like overwriting the wrong file, oops).

Full Restore
To do a full system restore, find the newest applicable full backup and extract it. If you have some
incremental backups, extract them into the same place as the full backup, one by one starting from oldest
to newest. (This way, if a file changed every day you will always get the latest one.)

All of the backed-up files are stored in the tar file in a relative fashion, so you can extract from the tar
file either directly into the filesystem, or into a temporary location.

For example, to restore boot.tar.bz2 directly into /boot, execute tar from your root directory (/):

root:/# bzcat boot.tar.bz2 | tar xvf -

Data Recovery

63

Of course, use zcat or just cat, depending on what kind of compression is in use.

If you want to extract boot.tar.gz into a temporary location like /tmp/boot instead, just change
directories first. In this case, you'd execute the tar command from within /tmp instead of /.

root:/tmp# bzcat boot.tar.bz2 | tar xvf -

Again, use zcat or just cat as appropriate.

For more information, you might want to check out the manpage or GNU info documentation for the tar
command.

Partial Restore
Most users will need to do a partial restore much more frequently than a full restore. Perhaps you
accidentally removed your home directory, or forgot to check in some version of a file before deleting it.
Or, perhaps the person who packaged Apache for your system blew away your web server configuration
on upgrade (it happens). The solution to these and other kinds of problems is a partial restore (assuming
you've backed up the proper things).

The procedure is similar to a full restore. The specific steps depend on how much information you have
about the file you are looking for. Where with a full restore, you can confidently extract the full backup
followed by each of the incremental backups, this might not be what you want when doing a partial
restore. You may need to take more care in finding the right version of a file — since the same file, if
changed frequently, would appear in more than one backup.

Start by finding the backup media that contains the file you are looking for. If you rotate your backup
media, and your last known “contact” with the file was a while ago, you may need to look on older
media to find it. This may take some effort if you are not sure when the change you are trying to correct
took place.

Once you have decided to look at a particular piece of backup media, find the correct peer (host), and
look for the file in the full backup:

root:/tmp# bzcat boot.tar.bz2 | tar tvf - path/to/file

Of course, use zcat or just cat, depending on what kind of compression is in use.

The tvf tells tar to search for the file in question and just list the results rather than extracting the file.
Note that the filename is relative (with no starting /). Alternately, you can omit the path/to/file
and search through the output using more or less

If you haven't found what you are looking for, work your way through the incremental files for the
directory in question. One of them may also have the file if it changed during the course of the backup.
Or, move to older or newer media and see if you can find the file there.

Data Recovery

64

Once you have found your file, extract it using xvf:

root:/tmp# bzcat boot.tar.bz2 | tar xvf - path/to/file

Again, use zcat or just cat as appropriate.

Inspect the file and make sure it's what you're looking for. Again, you may need to move to older or
newer media to find the exact version of your file.

For more information, you might want to check out the manpage or GNU info documentation for the tar
command.

Recovering MySQL Data
MySQL data is gathered by the Cedar Backup mysql extension. This extension always creates a full
backup each time it runs. This wastes some space, but makes it easy to restore database data. The
following procedure describes how to restore your MySQL database from the backup.

Warning

I am not a MySQL expert. I am providing this information for reference. I have tested
these procedures on my own MySQL installation; however, I only have a single database
for use by Bugzilla, and I may have misunderstood something with regard to restoring
individual databases as a user other than root. If you have any doubts, test the procedure
below before relying on it!

MySQL experts and/or knowledgable Cedar Backup users: feel free to write me and
correct any part of this procedure.

First, find the backup you are interested in. If you have specified “all databases” in configuration, you
will have a single backup file, called mysqldump.txt. If you have specified individual databases in
configuration, then you will have files with names like mysqldump-database.txt instead. In
either case, your file might have a .gz or .bz2 extension depending on what kind of compression you
specified in configuration.

If you are restoring an “all databases” backup, make sure that you have correctly created the root user
and know its password. Then, execute:

daystrom:/# bzcat mysqldump.txt.bz2 | mysql -p -u root

Of course, use zcat or just cat, depending on what kind of compression is in use.

Because the database backup includes CREATE DATABASE SQL statements, this command should
take care of creating all of the databases within the backup, as well as populating them.

If you are restoring a backup for a specific database, you have two choices. If you have a root login, you
can use the same command as above:

Data Recovery

65

daystrom:/# bzcat mysqldump-database.txt.bz2 | mysql -p -u root

Otherwise, you can create the database and its login first (or have someone create it) and then use a
database-specific login to execute the restore:

daystrom:/# bzcat mysqldump-database.txt.bz2 | mysql -p -u user database

Again, use zcat or just cat as appropriate.

For more information on using MySQL, see the documentation on the MySQL web site,
http://mysql.org/, or the manpages for the mysql and mysqldump commands.

Recovering Subversion Data
Subversion data is gathered by the Cedar Backup subversion extension. Cedar Backup will create either
full or incremental backups, but the procedure for restoring is the same for both. Subversion backups are
always taken on a per-repository basis. If you need to restore more than one repository, follow the
procedures below for each repository you are interested in.

First, find the backup or backups you are interested in. Typically, you will need the full backup from the
first day of the week and each incremental backup from the other days of the week.

The subversion extension creates files of the form svndump-*.txt. These files might have a .gz or
.bz2 extension depending on what kind of compression you specified in configuration. There is one
dump file for each configured repository, and the dump file name represents the name of the repository
and the revisions in that dump. So, the file svndump-0:782-opt-svn-repo1.txt.bz2
represents revisions 0-782 of the repository at /opt/svn/repo1. You can tell that this file contains a
full backup of the repository to this point, because the starting revision is zero. Later incremental
backups would have a non-zero starting revision, i.e. perhaps 783-785, followed by 786-800, etc.

Next, if you still have the old Subversion repository around, you might want to just move it off (rename
the top-level directory) before executing the restore. Or, you can restore into a temporary directory and
rename it later to its real name once you've checked it out. That is what my example below will show.

Next, you need to create a new Subversion repository to hold the restored data. This example shows an
FSFS repository, but that is an arbitrary choice. You can restore from an FSFS backup into a FSFS
repository or a BDB repository. The Subversion dump format is “backend-agnostic”.

root:/tmp# svnadmin create --fs-type=fsfs testrepo

Next, load the full backup into the repository:

root:/tmp# bzcat svndump-0:782-opt-svn-repo1.txt.bz2 | svnadmin load testrepo

Data Recovery

66

http://mysql.org/

Of course, use zcat or just cat, depending on what kind of compression is in use.

Follow that with loads for each of the incremental backups:

root:/tmp# bzcat svndump-783:785-opt-svn-repo1.txt.bz2 | svnadmin load testrepo
root:/tmp# bzcat svndump-786:800-opt-svn-repo1.txt.bz2 | svnadmin load testrepo

Again, use zcat or just cat as appropriate.

When this is done, your repository will be restored to the point of the last commit indicated in the
svndump file (in this case, to revision 800).

Note

Note: don't be surprised if, when you test this, the restored directory doesn't have exactly
the same contents as the original directory. I can't explain why this happens, but if you
execute svnadmin dump on both old and new repositories, the results are identical. This
means that the repositories do contain the same content.

For more information on using Subversion, see the book Version Control with Subversion
(http://svnbook.red-bean.com/) or the Subversion FAQ (http://subversion.tigris.org/faq.html).

Data Recovery

67

http://svnbook.red-bean.com/
http://subversion.tigris.org/faq.html

Appendix D. Copyright

Copyright (c) 2005
Kenneth J. Pronovici

This work is free; you can redistribute it and/or modify it under
the terms of the GNU General Public License (the "GPL"), Version 2,
as published by the Free Software Foundation.

For the purposes of the GPL, the "preferred form of modification"
for this work is the original Docbook XML text files. If you
choose to distribute this work in a compiled form (i.e. if you
distribute HTML, PDF or Postscript documents based on the original
Docbook XML text files), you must also consider image files to be
"source code" if those images are required in order to construct a
complete and readable compiled version of the work.

This work is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Copies of the GNU General Public License are available from
the Free Software Foundation website, http://www.gnu.org/.
You may also write the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA.

==

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid

68

anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

Copyright

69

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

Copyright

70

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

Copyright

71

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

Copyright

72

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

==

Copyright

73

	Cedar Backup Software Manual
	Table of Contents
	Preface
	Purpose
	Audience
	Conventions Used in This Book
	Typographic Conventions
	Icons

	Organization of This Manual
	Acknowledgments

	Chapter 1. Introduction
	What is Cedar Backup?
	How to Get Support
	History

	Chapter 2. Basic Concepts
	General Architecture
	Data Recovery
	Cedar Backup Pools
	The Backup Process
	The Collect Action
	The Stage Action
	The Store Action
	The Purge Action
	The All Action
	The Validate Action
	The Rebuild Action

	Coordination between Master and Clients
	Media and Device Types
	Incremental Backups
	Extensions

	Chapter 3. Installation
	Background
	Installing on a Debian System
	Installing from Source
	Installing Dependencies
	Installing the Source Package

	Chapter 4. Configuration
	Overview
	Command Line Interface
	Syntax
	Switches
	Actions

	Configuration File Format
	Sample Configuration File
	Reference Configuration
	Options Configuration
	Collect Configuration
	Stage Configuration
	Store Configuration
	Purge Configuration
	Extensions Configuration

	Setting up a Pool of One
	Step 1: Make sure email works.
	Step 2: Configure your CD-R or CD-RW drive.
	Step 3: Configure your backup user.
	Step 4: Create your backup tree.
	Step 5: Modify the backup cron jobs.
	Step 6: Create the Cedar Backup configuration file.
	Step 7: Validate the Cedar Backup configuration file.
	Step 8: Test your backup.

	Setting up a Client Peer Node
	Step 1: Make sure email works.
	Step 2: Configure the master in your backup pool.
	Step 3: Configure your backup user.
	Step 4: Create your backup tree.
	Step 5: Modify the backup cron jobs.
	Step 6: Create the Cedar Backup configuration file.
	Step 7: Validate the Cedar Backup configuration file.
	Step 8: Test your backup.

	Setting up a Master Peer Node
	Step 1: Make sure email works.
	Step 2: Configure your CD-R or CD-RW drive.
	Step 3: Configure your backup user.
	Step 4: Create your backup tree.
	Step 5: Modify the backup cron jobs.
	Step 6: Create the Cedar Backup configuration file.
	Step 7: Validate the Cedar Backup configuration file.
	Step 8: Test connectivity to client machines.
	Step 9: Test your backup.

	Configuring your SCSI Device
	SCSI Required
	Linux Notes
	Mac OS X Notes

	Chapter 5. Official Extensions
	System Information Extension
	Subversion Extension
	MySQL Extension

	Appendix A. Extension Architecture Interface
	Appendix B. Dependencies
	Appendix C. Data Recovery
	Finding your Data
	Recovering Filesystem Data
	Full Restore
	Partial Restore

	Recovering MySQL Data
	Recovering Subversion Data

	Appendix D. Copyright

