
Backup Manager 0.7.6 User Guide
Alexis Sukrieh

1.6 - 08 Sept, 2006

Copyright Notice

copyright © 2005 Alexis Sukrieh

This user guide is free software; you may redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either version
2, or (at your option) any later version.

This is distributed in the hope that it will be useful, but without any warranty; without even
the implied warranty of was merchantability or fitness for a particular purpose. See the GNU
General Public License for more details.

A copy of the GNU General Public License is available on the World Wide Web at the GNU
web site (http://www.gnu.org/copyleft/gpl.html). You can also obtain it by writing
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.

http://www.gnu.org/copyleft/gpl.html

i

Contents

1 About this manual 1

1.1 Scope . 1

1.2 Version . 1

1.3 Authors . 1

2 Configuration files 3

2.1 Repository and Archives . 3

2.1.1 The Repository . 3

2.1.2 Encryption . 4

2.1.3 Archives . 5

2.2 Backup Methods . 7

2.2.1 Tarballs . 8

2.2.2 Incremental tarballs . 12

2.2.3 MySQL databases . 13

2.2.4 Subversion repositories . 15

2.2.5 Generic methods . 16

2.3 Upload Methods . 17

2.3.1 Description . 17

2.3.2 Global configuration keys . 17

2.3.3 SSH uploads . 18

2.3.4 Encrypted SSH uploads . 20

2.3.5 FTP uploads . 20

2.3.6 Amazon S3 uploads . 23

2.3.7 RSYNC uploads . 24

CONTENTS ii

2.4 Exports . 25

2.4.1 Burning CDR/DVD media . 25

2.5 Advanced features . 28

2.5.1 Logging to syslog . 28

2.5.2 Writing external hooks . 29

3 Using Backup Manager 31

3.1 Command line . 31

3.1.1 Restrictions . 31

3.1.2 Options . 32

3.2 CRON integration . 34

1

Chapter 1

About this manual

1.1 Scope

Backup Manager is a system tool designed to handle backups. It is written with simplicity in
mind.

If you want to handle a couple of tarballs, reading the default configuration file might be
enough to understand the main design. On the other hand, if you want to know more about
the global design of the program, how to write your own backup methods or even look at some
real life examples, this guide is for you.

This document describes the main design of the software and gives information about sup-
ported configuration keys. All backup methods are described, with a sample configuration file
as illustration. Whenever possible, advices and best practices are given.

This manual also describes every configuration variables supported in the version 0.7.6.

1.2 Version

This document is updated whenever a new release of Backup Manager is published. The
current version covers all features and configuration details about version 0.7.6.

The first version of this document was written with the release 0.6 of Backup Manager.

1.3 Authors

The first version of this document was made in late 2005, by Alexis Sukrieh and has been
reviewed by Sven Joachim.

While the author of this document has tried hard to avoid typos and other errors, these do still
occur. If you discover an error in this manual or if you want to give any comments, suggestions,

Chapter 1. About this manual 2

or criticisms please send an email to the development list, backup-manager-devel@backup-
manager.org, or submit a bug report against the “Documentation” product, in the bug tracking
system1.

1http://bugzilla.backup-manager.org/

3

Chapter 2

Configuration files

Backup Manager’s behaviour is defined in configuration files. You can run Backup Manager with dif-
ferent configuration files (at the same time or not). This chapter will cover all the configuration keys
supported in version 0.7.6 and will explain their meaning.

2.1 Repository and Archives

Backup Manager stores archives it builds in a repository. Archives are built by using a backup
method.

2.1.1 The Repository

BM_REPOSITORY_ROOT

Type: string, default: /var/archives.

The repository is the place in your filesystem where all archives are stored. This is a particular
place for Backup Manager, it will be cleaned during backup sessions: archives older than the
authorized lifetime will be purged. If the repository does not exist, it will be created at runtime.

Isolating the repository on a dedicated partition is a good idea. This can prevent the repository
from eating all the disk space of the partition. With a bad configuration file, backup sessions
can lead to huge archives, for many reasons, so take care.

Example:

export BM_REPOSITORY_ROOT="/var/archives"

BM_REPOSITORY_SECURE

Type: boolean, default: true.

Chapter 2. Configuration files 4

For security reasons, the repository can be accessible by a specific user/group pair. This will
prevent the archives from being readable (and writable) by any user in the system. This mode
is enabled by default (owned by root:root).

To enable this mode, set the configuration key BM_REPOSITORY_SECURE to yes, then update
BM_REPOSITORY_USER and BM_REPOSITORY_GROUP to your needs.

You can also change the permission of the repository and the archives, that is possible with
two configuration variables: BM_REPOSITORY_CHMOD and BM_ARCHIVE_CHMOD.

Example:

export BM_REPOSITORY_SECURE="true"
export BM_REPOSITORY_USER="root"
export BM_REPOSITORY_GROUP="root"
export BM_REPOSITORY_CHMOD="770"
export BM_ARCHIVE_CHMOD="660"

2.1.2 Encryption

If you cannot trust the place where you store your archives, you can choose to encrypt them so you are
the only one who can read their content. That’s a very good idea for archives you plan to upload to some
remote place, or even for the archives you want to daily export on removable media.

BM_ENCRYPTION_METHOD

Type: string, default: undefined.

For Backup Manager, encryption is defined in one place in the configuration file. If the variable
“BM_ENCRYPTION_METHOD” is not defined, no encryption occurs during the archive build
process, if a method is defined there, then any archive built are encrypted through a pipeline
with that method.

Be aware that encryption is supported for the methods “mysql”, “pipe”, “tarball” and “tarball-
incremental” but only for those file types: tar, tar.gz, tar.bz2.

The only valid method supported for encrypting archives is “gpg”.

Backup Manager will encrypt your archive through a pipeline in order not to write any byte of
unencrypted data on the physical media. The encryption will be performed with a command
line like the following:

<command> | gpg -r "$BM_ENCRYPTION_RECIPIENT" -e > archive.gpg

To decrypt an archive built with GPG encryption, you have to be the owner of the private GPG
key for which the encryption was made. Then issue the following:

Chapter 2. Configuration files 5

$ gpg -d <archive.gpg> > archive

GPG will then prompt you for the private key passphrase and will decrypt the content of the
archive if the passphrase is valid.

Refer to the GPG documentation for more details of encryption.

BM_ENCRYPTION_RECIPIENT

Type: string, default: undefined.

As explained in the previous section, that variable should contain the GPG recipient for the
encryption, eg: your GPG ID.

Examples of valid GPG ID:

export BM_ENCRYPTION_RECIPIENT="0x1EE5DD34"
export BM_ENCRYPTION_RECIPIENT="Alexis Sukrieh"
export BM_ENCRYPTION_RECIPIENT="sukria@sukria.net"

2.1.3 Archives

Archives are produced by backup methods, they can be virtually anything, but will always be named
like the following: prefix-name-date.filetype. An archive is a file that contains data, it can
be compressed or not, in a binary form or not.

BM_ARCHIVE_STRICTPURGE

Type: boolean, default: true.

As explained in the BM_REPOSITORY_ROOT section, every archive built by Backup Manager
will be purged when their lifetime expires. In versions prior to 0.7.6, any archive were purged.

You can now choose to purge only the archive built in the scope of the configuration file, that
is: archives prefixed with BM_ARCHIVE_PREFIX.

This is useful if you share the same BM_REPOSITORY_ROOT with different instances of
Backup Manager that have different purging rules (eg: a BM_REPOSITORY_ROOT shared
over NFS for multiple Backup Manager configuration).

Example:

export BM_ARCHIVE_STRICTPURGE="true"

Chapter 2. Configuration files 6

BM_ARCHIVE_PURGEDUPS

Type: boolean, default: true.

If disk usage matters in your backup strategy, you might find useful to use Backup Manager’s
duplicates purging feature. When an archive is generated, Backup Manager looks at the previ-
ous versions of this archive. If it finds that a previous archive is the same file as the one it has
just built, the previous one is replaced by a symlink to the new one. This is useful if you don’t
want to have the same archive twice in the repository.

Example:

export BM_ARCHIVE_PURGEDUPS="true"

host-etc.20051115.tar.gz
host-etc.20051116.tar.gz -> /var/archives/host-etc.20051117.tar.gz
host-etc.20051117.tar.gz

BM_ARCHIVE_TTL

Type: integer, default: 5.

One of the main concepts behind the handling of the repository is to purge deprecated archives
automatically. The purge session is always performed when you launch Backup Manager.
During this phase, all archives older than the authorized lifetime are dropped.

Since version 0.7.3, Backup Manager purges only files it has created whereas in previous ver-
sions, it used to purge also other files within the repository.

Note that when using the incremental method for building archives, Backup Manager will
handle differently master backups and incremental ones. The incremental backups will be
purged like any other archives (when exceeding the authorized lifetime). On the ohter hand,
deprecated master backups won’t be purged unless there is a younger master backup in the
repository. Then, even with a lifetime set to three days, a master backup will live more than
three days, until a newer master backup is built.

Example:

export BM_ARCHIVE_TTL="5"

BM_REPOSITORY_RECURSIVEPURGE

Type: boolean, default: false.

On most setups, all the archives are stored in the top-level directory specified by the
configuration key BM_REPOSITORY_ROOT. But it can make sense to have subdirectories,
for instance to store archives uploaded from other hosts running Backup Manager. In

Chapter 2. Configuration files 7

this case, it is possible to ask Backup Manager to purge those directories too, by setting
BM_REPOSITORY_RECURSIVEPURGE to true.

Please note that the BM_ARCHIVE_TTL value is global, so if you want to have differ-
ent lifetimes for some archives, this is not the way to go. In this case you should save
them outside BM_REPOSITORY_ROOT and write a cron job to do the purge (possibly calling
backup-manager --purge with an alternate configuration file).

Example:

export BM_REPOSITORY_RECURSIVEPURGE="false"

BM_ARCHIVE_PREFIX

Type: string, default: $HOSTNAME.

This is the prefix used for naming archives.

Example:

export BM_ARCHIVE_PREFIX="$HOSTNAME"

echo $HOSTNAME
ouranos
ls /var/archives
ouranos-20051123.md5
ouranos-usr-local-src.20051123.tar.gz
ouranos-etc.20051123.tar.gz

2.2 Backup Methods

The core feature of Backup Manager is to make archives, for doing this, a method is used. Each
method can require a set of configuration keys. We will describe here every method supported
in the version 0.7.6.

The method you choose must be defined in the configuration key BM_ARCHIVE_METHOD. You
can put here a list of all the different methods you want to use. Take care to put every config-
uration key needed by all the methods you choose. Note that you can also choose none of the
proposed methods, if you don’t want to build archives with this configuration file, then just
put none.

A couple of other configuration keys may be needed depending on the method you choose.

Example:

export BM_ARCHIVE_METHOD="tarball-incremental mysql"

Chapter 2. Configuration files 8

2.2.1 Tarballs

Description

Method name: tarball, configuration key prefix: BM_TARBALL.

If all you want to do is to handle a couple of tarballs of your file system, you can use this
method. This method takes a list of directories and builds the corresponding tarballs. This
method is the default one, this is the easiest to use, it just builds tarballs as you could do with
your own tar script. Its main drawback is to eat a lot of disk space: archives can be big from a
day to another, even if there are no changes in their content. See the tarball-incremental
method if you want to optimize archives’ size.

When building full backups (when not building incremental ones), Backup Manager will ap-
pend the keyword “master” to the name of the archive. This is very useful when using the
tarball-incremental method for seeing where the full backups are quickly.

A couple of options are available: the name format of the archive, the compression type (gzip,
zip, bzip2, none) and the facility to dereference symlinks when building the tarball.

BM_TARBALL_NAMEFORMAT

This configuration key defines how to perform the naming of the archive. Two values are
possible:

• long: the name will be made with the absolute path of the directory (eg:
var-log-apache for /var/log/apache).

• short: the name will just contain the directory (eg: apache for /var/log/apache).

Suggested value: long.

BM_TARBALL_FILETYPE

Type: enum(tar, tar.gz, tar.bz2, tar.lz, zip, dar), default: tar.gz.

Basically, this configuration key defines the filetype of the resulting archive. In a way, it de-
fines which compressor to use (zip, gzip, dar or bzip2). Here are the supported values: tar,
tar.gz, tar.bz2, zip and dar. Note that depending on the filetype you choose, you will
have to make sure you have the corresponding compressor installed.

For the best compression rate, choose tar.bz2 or tar.lz.

Since version 0.7.1, Backup Manager supports dar archives. This archiver provides some inter-
esting features like the archive slicing.

Since version 0.7.5, Backup Manager supports lzma archives.

Make sure to statisfy dependencies according to the filetype you choose:

Chapter 2. Configuration files 9

• tar.bz2 : needs “bzip2”.

• tar.lz : needs “lzma”.

• dar : needs “dar”.

• zip : needs “zip”.

BM_TARBALL_SLICESIZE

Type: string

If you want to make sure your archives won’t exceed a given size (for instance 2 GB) you can
use that configuration variable, but only if you are using the dar BM_TARBALL_FILETYPE.
Indeed this feature is only supported by dar.

If you want to limit your archives size to 1 giga byte, use such a statement:

BM_TARBALL_SLICESIZE="1000M"

Refer to the dar manpage for details about slices.

BM_TARBALL_EXTRA_OPTIONS

Type: string

If you want to provide extra options to “tar” or “dar” you may do so here. Leave blank unless
you know what you are doing.

Example: to enable verbosity with tar (which would appeard in the logfiles), use this:

BM_TARBALL_EXTRA_OPTIONS="-v"

BM_TARBALL_DUMPSYMLINKS

Type: boolean, default: true.

It is possible, when generating the tarball (or the zip file) to dereference the symlinks. If you
enable this feature, every symbolic link in the file system will be replaced in the archive by the
file it points to. Use this feature with care, it can quickly lead to huge archives, or even worse:
if you have a circular symlink somewhere, this will lead to an infinite archive!

In most of the cases, you should not use this feature.

Chapter 2. Configuration files 10

BM_TARBALL_DIRECTORIES

Type: space-separated list, default: null.

Since version 0.7.3, this variable is replaced by the array BM_TARBALL_TARGETS[], it’s still
supported for backward compatibility though. You can use this variable for defining the lo-
cations to backup, but you must not use this variable if one or more of the paths you want to
archive contain a space.

If you want to backup some targets that have spaces in their name (eg “Program Files”), you
must not use this variable, but the array BM_TARBALL_TARGETS[] instead.

Example:

export BM_TARBALL_DIRECTORIES="/etc /home /var/log/apache"

BM_TARBALL_TARGETS

Type: array, default: “/etc”, “/boot”.

This variable holds every place you want to backup. This is the recommanded variable to use
for defining your backup targets (BM_TARBALL_DIRECTORIES is deprecated since version
0.7.3).

You can safely put items that contain spaces (eg: “Program Files”) whereas you can’t with
BM_TARBALL_DIRECTORIES.

You can also put Bash patterns in BM_TARBALL_TARGETS[], it will be expanded at runtime
to find the resulting targets. For instance : BM_TARBALL_TARGETS[0]=“/home/*” will lead
to backup every home’s sub-directory.

Example

BM_TARBALL_TARGETS[0]="/etc"
BM_TARBALL_TARGETS[1]="/home/*"
BM_TARBALL_TARGETS[2]="/boot"
BM_TARBALL_TARGETS[3]="/mnt/win/Program Files"

BM_TARBALL_BLACKLIST

Type: space-separated list, default: “/proc /dev /sys /tmp”.

It can be very useful to prevent some locations of your filesytem from being included in the
archives. This is really useful when you use wildcards in BM_TARBALL_DIRECTORIES. In-
deed, you may want to backup every top-level directory of your filesystem (/*) but without
volatile locations like /tmp, /dev and /proc.

You can also use this variable for excluding every files of a given extension, like for instance
mp3 or mpg files.

Chapter 2. Configuration files 11

Example:

export BM_TARBALL_BLACKLIST="/tmp /dev /proc *.mp3 *.mpg"

BM_TARBALL_OVER_SSH

Type: boolean, default: false.

Dependency: BM_UPLOAD_SSH

If you want to archive some remote locations from a server where Backup Manager is insalled,
you can choose to build archives over SSH. This is useful if you don’t want to install Backup
Manager every where and setup some upload methods from all thoses servers to a central data
storage server. This way, Backup Manager will build some archives directly over SSH and will
store the resulting tarballs locally, as if it was built like any other archive. The resulting archive
will be prefixed with the remote hostname instead of BM_ARCHIVE_PREFIX.

This feature requires that the following variables are set in the BM_UPLOAD_SSH section:

• BM_UPLOAD_SSH_USER: the user to use for connecting to the remote server. Note that
this user will run tar remotely, so take care to archive something this user can read!

• BM_UPLOAD_SSH_KEY: as usal, the path to the private key to use for establishing the
connection.

• BM_UPLOAD_SSH_HOSTS: A list of hosts where to run the tarball builds.

If you enable this feature, note that the resulting configuration file will have the following
restrictions:

• Remote tarball build only works with the tarball method, it will silently behaves the
same with tarball-incremental.

• You cannot use the remote build and the local one in the same configuration file. If you
want to do both, use two configuration files.

Example: You have three hosts: host01, host02 and host03. You want to set up host01 as a data
storage server, it has a big /var/archives partition. You want to archive “/etc”, “/home” and
“/var/log” on box02 and box03 and store the archives on host01.

[...]
export BM_ARCHIVE_METHOD="tarball"

export BM_TARBALL_OVER_SSH="true"
export BM_TARBALL_FILETYPE="tar.bz2"
export BM_TARBALL_DIRECTORIES="/etc /home /var/log"

Chapter 2. Configuration files 12

export BM_UPLOAD_SSH_USER="bamuser"
export BM_UPLOAD_SSH_KEY="/home/bamuser/.ssh/id_dsa"
export BM_UPLOAD_SSH_HOSTS="box02 box03"

Of course, for this to work correctly, ‘bamuser’ should be a valid user on box02 and box03;
it must be allowed to connect to them with SSH key autentication and has to be able to read
those directories.

2.2.2 Incremental tarballs

Description

Method name: tarball-incremental, configuration key prefix: BM_TARBALLINC.

If you want to handle tarballs without wasting disk space, you should use this method. The
concept of this method is simple: You choose a frequency when a full backup is made (exactly
like the one made by the tarball mehod). All the days between two full backups, archives
contain only the files that have changed from the previous archive.

For instance, let’s say you want to backup /home with this method. Your /home directory
is composed by two sub-directories: /home/foo and /home/bar. You choose a weekly fre-
quency and say that monday will be the “fullbackup” day. Obviously, you will have a full
tarball of /home on monday. Then, if a file changed inside /home/foo and if /home/bar re-
mains unchanged, tuesday’s archive will only contain the modified files of /home/foo. Using
this method will save a lot of disk space.

To build incremental tarballs, Backup Manager uses tar’s switch --listed-incremental.
This will create a file for each target which will contain some statistics used by tar to figure out
if a file should be backed up or not. When Backup Manager is run for the first time, this file
doesn’t exist, so the first tarballs made are always master backups. If the incremental list files
get removed, the next backups won’t be incremental.

Since version 0.7.3, it’s possible to see at the first glance if a backup is a master or an incremental
one: master backup have the keyword master appended to the date. When purging the
repository, the master backups are not removed as the incremental ones. Backup Manager
always keep a master backup that is older than incremental archives.

This method uses all the tarball’s configuration keys and adds two more. One to define the
kind of frequency, the other to choose on which day the full backups should be done.

BM_TARBALLINC_MASTERDATETYPE

Type: enum(weekly, monthly), default: weekly.

This is the type of frequency you want to use. If you choose weekly, you’ll have to choose a
day number between 1 and 7 for the BM_TARBALLINC_MASTERDATEVALUE configuration
key, if you choose monthly, the day number will be between 1 and 31.

Chapter 2. Configuration files 13

BM_TARBALLINC_MASTERDATEVALUE

Type: integer, default: 1.

The number of the day when making full backups. Note that its meaning directly depends
on the BM_TARBALLINC_MASTERDATETYPE. For instance, 1 means “monday” if you choose a
weekly frequency, but it means “the first day of the month” if you choose a monthly frequency.

2.2.3 MySQL databases

Description

Method name: mysql, configuration keys prefix: BM_MYSQL.

This method provides a way to archive MySQL databases, the archives are made with mysql-
dump (SQL text files) and can be compressed.

In versions prior to 0.7.6, Backup Manager used to pass the MySQL client’s password through
the command line. As explained by the MySQL manual, that’s a security issue as the password
is then readable for a short time in the /proc directory (or using the ps command).

To close that vulnerability, the MySQL client password is not passed through the command line
anymore, it is written in a configuration file located in the home directory of the user running
Backup Manager : ~/.my.cnf.

If that file doesn’t exist at runtime, Backup Manager will create it and will then write the pass-
word provided in BM_MYSQL_ADMINPASS inside.

BM_MYSQL_DATABASES

Type: space-separated list, default: __ALL__.

This is the list of databases you want to archive. You can put the keyword __ALL__ if you like
to backup every database without having to list them.

Example:

export BM_MYSQL_DATABASES="mysql mybase wordpress dotclear phpbb2"

BM_MYSQL_SAFEDUMPS

Type: boolean, default: true.

The best way to produce MySQL dumps is done by using mysqldump’s --opt switch. This
makes the dump directly usable with mysql (adds the drop table statements), locks tables
during the dump generation and other cool things (see mysqldump). This is recommended for
full-clean-safe backups, but needs a privileged user (for the lock permissions).

Example:

Chapter 2. Configuration files 14

export BM_MYSQL_SAFEDUMPS="true"

BM_MYSQL_ADMINLOGIN

Type: string, default: root.

The MySQL login you want to use for connecting to the database. Make sure this login can
read all the databases you’ve set in BM_MYSQL_DATABASES.

Example:

export BM_MYSQL_ADMINLOGIN="root"

BM_MYSQL_ADMINPASS

Type: string, default: undefined.

The MySQL client password.

If you have already made your own ~/.my.cnf configuration file, you don’t have to set that
variable.

If you don’t know what is the ~/.my.cnf configuration file, set the password, then Backup
Manager will take care of creating the MySQL client configuration file.

Example:

export BM_MYSQL_ADMINPASS="MySecretPass"

BM_MYSQL_HOST

Type: string, default: localhost.

The database host where the databases are.

Example:

export BM_MYSQL_HOST="localhost"

BM_MYSQL_PORT

Type: string, default: 3306.

The port on BM_MYSQL_HOST where the mysql server is listening.

Example:

export BM_MYSQL_PORT="3306"

Chapter 2. Configuration files 15

BM_MYSQL_FILETYPE

Type: enum(gzip, bzip2), default: bzip2.

The archive is made with mysqldump which renders SQL lines; the resulting text file can be
compressed. If you want to compress the file, choose the compressor you want. Leave it blank
if you want pure SQL files.

Example:

export BM_MYSQL_FILETYPE="bzip2"

2.2.4 Subversion repositories

Description

You can archive Subversion repositories with this method. The archive will be made with
svnadmin and will contain XML data (text files). Like the mysql method, you can choose to
compress it.

BM_SVN_REPOSITORIES

Type: space-separated list

This is the list of absolute paths to the SVN repositories to archive.

Example:

export BM_SVN_REPOSITORIES="/srv/svnroot/repo1 /srv/svnroot/repo2"

BM_SVN_COMPRESSWITH

Type: enum(gzip, bzip2), default: bzip2.

If you want to compress the resulting XML files, choose a compressor here. Leave this blank if
you don’t want any compression.

Example:

export BM_SVN_COMPRESSWITH="gzip"

Chapter 2. Configuration files 16

2.2.5 Generic methods

Description

Even if most of the common needs are covered by the existing methods, there is always a case
uncovered. Backup Manager provides a way for backing up anything, and can be used in such
circumstances.

This method is called pipe, it is more complex to use but can virtually backup anything. The
concept is simple, a pipe method is defined by the following items:

• A name (for naming the archive)

• A command (that produces content on stdout)

• A file type (txt, sql, dump, . . .)

• A compressor (gzip, bzip2)

Those configuration keys are arrays, so you can implement as many pipe methods as you like.

For each pipe method defined, Backup Manager will launch the command given and redirect
the content sent to stdout by this command to a file named with the name of the method and
its filetype. Then, if the method uses a compressor, the file will be compressed.

Example

Example for archiving a remote MySQL database through SSH:

BM_PIPE_COMMAND[0]="ssh host -c \"mysqldump -ufoo -pbar base\""
BM_PIPE_NAME[0]="base"
BM_PIPE_FILETYPE[0]="sql"
BM_PIPE_COMPRESS[0]="gzip"

Imagine you have a second pipe method to implement, for instance building a tarball trough
SSH:

BM_PIPE_COMMAND[1]="ssh host -c \"tar -c -z /home/user\""
BM_PIPE_NAME[1]="host.home.user"
BM_PIPE_FILETYPE[1]="tar.gz"
BM_PIPE_COMPRESS[1]=""

Note that we have incremented the array’s index.

Chapter 2. Configuration files 17

2.3 Upload Methods

2.3.1 Description

One of the most important thing to do when backing up file systems is to store the archives on different
places. The more different physical spaces you have, the better. Backup Manager provides a way for
achieving this goal : the upload methods.

There are different upload methods, each of them behaves differently and provides particular
features. In Backup Manager 0.7.6 you can use FTP, SSH, RSYNC or Amazon S3 uploads.

In the same manner as for backup methods, you can choose to use as many upload methods
as you like. If you don’t want to use this feature at all, just put the keyword none in the
configuration BM_UPLOAD_METHOD.

Note that the FTP, SSH and S3 methods are dedicated to upload archives, using those method
depends on the use of at least one backup method.

On the opposite, the RSYNC method uploads a directory to remote locations, this directory
can be your repository or whatever other location of your file sytem.

2.3.2 Global configuration keys

The following configuration keys are global in the upload section:

BM_UPLOAD_HOSTS

Type: space-separated list

Each of the hosts defined in that list is used by all the upload methods when establishing
connections. For instance if you want to perform SSH uploads of your archives and RSYNC
upload of a location to the same host, put it in this list.

Example:

export BM_UPLOAD_HOSTS="mirror1.lan.mysite.net mirror2.lan.mysite.net"

BM_UPLOAD_DESTINATION

Type: string

This is the absolute path of the directory in the remote hosts where to put the files uploaded.

If you have installed installed Backup Manager on the remote host, a good idea is to choose a
sub-directory of the repository. Then, during the remote host purge phase, your uploads will
be cleaned at the same time.

Chapter 2. Configuration files 18

You can also define a destination dedicated to your host:
BM_UPLOAD_DESTINATION=“/var/archives/$HOSTNAME”

Example:

Let’s say you want that all your uploads are performed on the host mirror2.lan.mysite.net, in
the sub-directory /var/archives/uploads

export BM_UPLOAD_HOSTS="mirror2.lan.mysite.net"
export BM_UPLOAD_DESTINATION="/var/archives/uploads"

2.3.3 SSH uploads

Description

Method name: ssh, goal: upload archives to remote hosts over SSH. This method depends on a backup
method.

If you want to upload your archives on remote locations, you can use the SSH method. This
method is good if you like to use a secure tunnel between the two points of the upload.

The call to scp will be done with the identity of the user BM_UPLOAD_SSH_USER, thus, you
have to make sure this user can have access to the repository (take care to the secure mode).

BM_UPLOAD_SSH_USER

Type: string

This is the user to use for performing the ssh connection. Make sure this user can access repos-
itory.

Example:

export BM_UPLOAD_SSH_USER="bmngr"

BM_UPLOAD_SSH_KEY

Type: string

This is the path to the private key of the user BM_UPLOAD_SSH_USER.

Example:

export BM_UPLOAD_SSH_KEY="/home/bmngr/.ssh/id_dsa"

Chapter 2. Configuration files 19

BM_UPLOAD_SSH_PORT

Type: integer

You may want to connect to remote hosts with a specific port. Use this configuration key then.

Example:

export BM_UPLOAD_SSH_PORT="1352"

BM_UPLOAD_SSH_HOSTS

Type: space-separated list

Put here the list of hosts to use for SSH-only uploads. Note that if you put some hosts in
BM_UPLOAD_HOSTS, they will be used as well.

Example:

export BM_UPLOAD_SSH_HOSTS="mirror3.lan.mysite.net"

BM_UPLOAD_SSH_PURGE

Type: boolean

If you set this boolean to “true”, the remote archives will be purged before the new ones are
uploaded. The purging rules are the same as the ones Backup Manager uses for local purging.
If BM_UPLOAD_SSH_TTL is defined, this time to live will be used, else BM_ARCHIVE_TTL will
be used.

Example:

export BM_UPLOAD_SSH_PURGE="true"
export BM_UPLOAD_SSH_TTL="10"

BM_UPLOAD_SSH_DESTINATION

Type: string

Put here the destination for SSH-only uploads, this key overrides BM_UPLOAD_DESTINATION.

Example:

export BM_UPLOAD_SSH_DESTINATION="/var/archives/scp-uploads"

Chapter 2. Configuration files 20

2.3.4 Encrypted SSH uploads

Description

Method name: ssh-gpg, goal: encrypt arcives using public key encryption and upload the result to
untrusted remote hosts over SSH. This method depends on a backup method.

The upload using SSH can also be combined with public key encryption provided by gpg. The
archives will be encrypted using a public key prior to sending them over the network, so on
the remote server your files are protected from inspection.

This method can be used to protect your data from inspection on untrusted remote servers.
However, since the encrypted files are not signed, this does not protect you from archive ma-
nipulation. So the md5 hases are still needed.

This method uses all of the configuartion keys of the ssh method. One additional key is re-
quired.

BM_UPLOAD_SSH_GPG_RECIPIENT

Type: string

This parameter sets the recipient for which the archive is encrypted. A valid specification is
a short or long key id, or a descriptive name, as explained in the gpg man page. The public
key for this identity must be in the key ring of the user running gpg, which is the same as
specified by BM_UPLOAD_SSH_USER. To test this run the command gpg --list-keys ID
as that user, where ID is the ID as you give it to this parameter. If gpg displays exactly one key,
then you are fine. Refer to the gpg man page for further details.

Example:

export BM_UPLOAD_SSH_GPG_RECIPIENT="email@address.com"
export BM_UPLOAD_SSH_GPG_RECIPIENT="ECE009856"

2.3.5 FTP uploads

Description

If security does not matter much on your lan (between the two points of the upload) you can
choose to use the FTP method. One of the main pros of this method is that it can perform
purging independently. You can safely use this method for uploading files to a host where you
just have an FTP account.

BM_UPLOAD_FTP_SECURE

Type: boolean, default: false.

Chapter 2. Configuration files 21

If this variable is set to true, all FTP transfers will be done over SSL.

Example:

export BM_UPLOAD_FTP_SECURE="true"

BM_UPLOAD_FTP_PASSIVE

Type: boolean, default: true.

If this variable is set to true, FTP transfers will be performed in passive mode, which is manda-
tory in NATed/firewalled environments.

Example:

export BM_UPLOAD_FTP_PASSIVE="true"

BM_UPLOAD_FTP_TTL

Type: integer, default: $BM_ARCHIVE_TTL

Using different time to live values for local and remote archives can be useful in certain situ-
ations. For instance, it’s possible to install Backup Manager locally, make it build archives,
upload them to a remote FTP host and then purge them locally (but not on the remote host).
Doing this is possible with setting a null value to the local TTL (BM_ARCHIVE_TTL) and a
non-null value to BM_UPLOAD_FTP_TTL.

Example:

in your main conffile -- /etc/backup-manager.conf
export BM_ARCHIVE_TTL="0"
export BM_UPLOAD_FTP_TTL="5"
export BM_POST_BACKUP_COMMAND="/usr/sbin/backup-manager --purge"

in your cron job:
/usr/sbin/backup-manager
/usr/sbin/backup-manager --purge

(Don’t put the post-command in the main conffile or you’ll face an infinite loop.)

BM_UPLOAD_FTP_USER

Type: string.

Put here the FTP user to use for opening the connections.

Example:

export BM_UPLOAD_FTP_USER="bmngr"

Chapter 2. Configuration files 22

BM_UPLOAD_FTP_PASSWORD

Type: string.

Put here the BM_UPLOAD_FTP_USER’s password to use (in plain text).

Example:

export BM_UPLOAD_FTP_USER="secret"

BM_UPLOAD_FTP_HOSTS

Type: space-separated list

Put here the list of hosts to use for FTP-only uploads. Note that if you put some hosts in
BM_UPLOAD_HOSTS, they will be used as well.

Example:

export BM_UPLOAD_FTP_HOSTS="mirror4.lan.mysite.net"

BM_UPLOAD_FTP_DESTINATION

Type: string

Put here the destination for FTP-only uploads, this key overrides BM_UPLOAD_DESTINATION.

Example:

export BM_UPLOAD_FTP_DESTINATION="/var/archives/ftp-uploads"

BM_UPLOAD_FTP_PURGE

Type: boolean, default: true

You can choose to purge deprecated archives before uploading new ones. This purge is done
over FTP and uses the configuration key BM_ARCHIVE_TTL in the same manner as the local
purge behaves (the FTP purge is not recursive though).

Example:

export BM_UPLOAD_FTP_PURGE="true"

Chapter 2. Configuration files 23

2.3.6 Amazon S3 uploads

Description

Amazon’s new Simple Storage Service (S3) is an Internet “web service” that permits
you to store unlimited blocks of data on their replicated and managed systems. See
http://aws.amazon.com for more information. Registration is free and the rates are quite rea-
sonable.

Using the S3 upload method will permit your archives to be stored on Amazon’s S3 service.
You must allocate a “bucket” to the exclusive use of Backup Manager. Each of your created
archives will be uploaded to S3 and stored within this bucket in a key name that matches the
name of the archive.

As with the other backup methods Backup Manager does not assist you in restoring files from
archives. You must retrieve archives from S3 using other mechanisms such as the S3Shell
provided as an examle command line utility by Amazon.

Note that when using this upload method, the BM_UPLOAD_HOSTS variable is ignored as the
only valid host for S3 uploads in s3.amazon.com.

BM_UPLOAD_S3_DESTINATION

Type: string.

This option is required for the S3 upload method. This specifies the bucket used to store
backup data. If the bucket does not exist it will be created as a private bucket. This key over-
rides BM_UPLOAD_DESTINATION. Note that Amazon requires that bucket names be globally
unique. Be creative picking one.

Example:

export BM_UPLOAD_S3_DESTINATION="my_backup_bucket"

BM_UPLOAD_S3_ACCESS_KEY

Type: string.

This option is required for the S3 upload method. After you have registered Amazon will
provide you an access key. You must use this key to access your storage on S3.

Example:

export BM_UPLOAD_S3_ACCESS_KEY="a9sabkz0342dasv"

Chapter 2. Configuration files 24

BM_UPLOAD_S3_SECRET_KEY

Type: string.

This option is required for the S3 upload method. After you have registered Amazon will
provide you a secret key. You must use this key to write to your storage on S3.

Example:

export BM_UPLOAD_S3_SECRET_KEY="lkj2341askj123sa"

BM_UPLOAD_S3_PURGE

Type: boolean, default: true

You can choose to purge deprecated archives before uploading new ones. This purge is done
over S3 and uses the configuration key BM_ARCHIVE_TTL in the same manner as the local
purge behaves (the S3 purge is not recursive though).

Example:

export BM_UPLOAD_S3_PURGE="true"

2.3.7 RSYNC uploads

Description

You may want to upload some parts of your file system to some remote hosts. In these cases,
archives are not needed, you just want to synchronize some directories to remote places. This
is where the RSYNC upload method is useful.

RSYNC uploads need a SSH user/key pair to behave correctly, thus there is a dependency
against the keys BM_UPLOAD_SSH_USER and BM_UPLOAD_SSH_KEY.

BM_UPLOAD_RSYNC_DIRECTORIES

Type: space-separated list

Put here the list of local directories you want to upload with rsync.

Example:

export BM_UPLOAD_RSYNC_DIRECTORIES="/data/photos /data/videos /data/mp3"

Chapter 2. Configuration files 25

BM_UPLOAD_RSYNC_HOSTS

Type: space-separated list

Put here the list of hosts to use for RSYNC-only uploads. Note that if you put some hosts in
BM_UPLOAD_HOSTS, they will be used as well.

Example:

export BM_UPLOAD_RSYNC_HOSTS="mirror5.lan.mysite.net"

BM_UPLOAD_RSYNC_DESTINATION

Type: string

Put here the destination for RSYNC-only uploads, this key overrides
BM_UPLOAD_DESTINATION.

Example:

export BM_UPLOAD_RSYNC_DESTINATION="/var/archives/rsync-snapshots"

BM_UPLOAD_RSYNC_DUMPSYMLINKS

Type: boolean, default: false.

You can choose to dereference files pointed by symlinks in your RSYNC snapshots. This feature
should be used with care.

Example:

export BM_UPLOAD_RSYNC_DUMPSYMLINKS="false"

2.4 Exports

Another way of storing your archives to a safe place is to use external media.

In version 0.7.6, only CDs and DVDs are supported as external media, so we will discuss in this
section only the BM_BURNING features. Other exports are expected to come in next versions
though.

2.4.1 Burning CDR/DVD media

In the version 0.7.6, Backup Manager supports four different kinds of media: CDR, CDRW and
DVD+R(W) and DVD-R(W).

Chapter 2. Configuration files 26

BM_BURNING_METHOD

Set the key BM_BURNING_METHOD to the method corresponding to the media you want to
burn:

• CDR

• CDRW

• DVD

• DVD-RW

In non-interactive mode (when backup-manager is not lauchned from a terminal), any of these
methods will try to put the whole archive repository in the media, if it does not fit in the media,
it will try to put only the archives built on the day, if that’s not possible, nothing will be burnt.

In interactive mode (when backup-manager is launched from a terminal), the whole repository
will be burnt into as many media as needed. When a medium is satured with archives, backup-
manager will pause the process asking the user to put a new media inside.

The CDRW and DVD-RW methods will first blank the media, so you can safely use these methods
if you want to use the same medium several times.

The CDR and DVD medthods won’t blank the medium first (DVD+RW media doesn’t need
blanking, it’s possible to re-burn data on-the-fly over such media)..

DVD media are handled by the tool dvd+rw-tools, problems can occur in CRON environ-
ment with dvd+rw-tools versions prior to 6.1, make sure to have 6.1 or later if you want
to burn DVD media with Backup Manager.

As usual, you can put none in order to disable the burning process.

All those burning methods share the same configuration keys, so it’s easy to switch from a
medium to another.

BM_BURNING_DEVICE

Type: string, default: /dev/cdrom.

This is mandatory for using the burning feature, it’s the device to use for mounting the media.
It’s needed by backup manager for performing the MD5 checks and for other needs.

Example:

export BM_BURNING_DEVICE="/dev/cdrom"

Chapter 2. Configuration files 27

BM_BURNING_DEVFORCED

Type: string

Backup Manager uses cdrecord for burning CDs. If when you run cdrecord -scanbus
you don’t see your burning device, that means you will have to force the device in ATA
mode. To tell Backup Manager to do so, just put here the path to your device, and a
switch will be appended to the cdrecord commandline like the following : cdrecrord ...
dev=$BM_BURNING_DEVFORCED

Leave this configuration key blank if you see your device with cdrecord -scanbus, in this
case, Backup Manager will use the default cdrecord device for burning CDR media.

Example:

export BM_BURNING_DEVFORCED="/dev/cdrom"

BM_BURNING_ISO_FLAGS

Type: string, default: “-R -J”

Media burned with Backup Manager will be made using a Joliet disc image. The flags defined
in that variable will be appended to the mkisofs command lines in order to specify wich media
image to use.

The default value “-R -J” produces a Joliet image, if you want to make non-Joliet disc images,
you can change these flags. Refer to the manpage of mkisofs for details about possible disc
images.

Don’t change that variable if you don’t know what you’re doing.

Example:

export BM_BURNING_ISO_FLAGS="-R -J"

BM_BURNING_MAXSIZE

Type: integer, default: 700.

This is where you define the maximum size (in megabytes) of the media you will put in the
device. Here is the list of the common sizes:

• CDR/CDRW: 650, 700, 800

• DVD: 4700

Chapter 2. Configuration files 28

When Backup Manager looks in the repository for burning data, it will try to put the whole
archive repository in the media. If the summarized size of the repository does not fit in
BM_BURNING_MAXSIZE, Backup Manager will then try to put only the archives of the day.

Example for a CD burner

export BM_BURNING_METHOD="CDRW"
export BM_BURNING_MAXSIZE="700"

Example for a DVD burner:

export BM_BURNING_METHOD="DVD"
export BM_BURNING_MAXSIZE="4700"

BM_BURNING_CHKMD5

Type: boolean, default: true.

If this boolean is set to a true value, every MD5 sum will be checked when the media is burned
in order to make sure everything is ok.

Note that you can choose to perform this checkup with the command switch --md5check.

Example:

exports BM_BURNING_CHKMD5="true"

2.5 Advanced features

A couple of advanced features are provided, they will be covered in this section.

2.5.1 Logging to syslog

If you want to log Backup Manager actions to syslog, you can enable the internal logger, this is
done with the configuration key BM_LOGGER. You are also able to choose which syslog facility
to use thanks to the key BM_LOGGER_FACILITY.

BM_LOGGER

Type: boolean, default: true.

If this boolean is set to true, Backup Manager will log everything to syslog.

Example:

exports BM_LOGGER="true"

Chapter 2. Configuration files 29

BM_LOGGER_FACILITY

Type: string, default: user.

You can specify here a syslog facility to use, this can be useful if you like to filter messages
from Backup Manager to a special syslog file.

Example:

exports BM_LOGGER_FACILITY="cron"

2.5.2 Writing external hooks

You have the availability to write your own hooks if you want to automate some special beav-
iours within the Backup Manager process. You may like to mount over NFS your archive
repository before the backup session and unmount it after, or you may like to launch your own
uploader script when the backup session is finished.

In order to let you implement any solution you like, Backup Manager provides two different
hooks: the pre-command and post-command hooks.

BM_PRE_BACKUP_COMMAND

Type: string

Put here the path to a program (or a shell command) to launch before the backup session. If the
command fails (exits with non zero value, or prints the keyword false on stdout) the backup
session will stop. If the pre-command succeeds, the process can follow.

Example with a basic shell command:

export BM_PRE_BACKUP_COMMAND="mount -t nfs mirror.lan.net:/exports/backups /var/archives"

Example with a custom script:

export BM_PRE_BACKUP_COMMAND="/usr/local/bin/backup-prepare.pl $TODAY"

BM_POST_BACKUP_COMMAND

Type: string

Put here the path to a program (or a shell command) to launch after the backup session. If
the command fails (exits with non zero value, or prints the keyword false on stdout) Backup
Manager will exit with an error code (and will log to syslog the post-command failure if the
logger is enabled).

Example with a basic shell command:

Chapter 2. Configuration files 30

export BM_POST_BACKUP_COMMAND="umount /var/archives"

Example with a custom script:

export BM_POST_BACKUP_COMMAND="/usr/local/bin/backup-cleanup.pl $TODAY"

31

Chapter 3

Using Backup Manager

Now that you know in details how to write your configuration files, let’s see how to use Backup Manager.

3.1 Command line

3.1.1 Restrictions

In version 0.7.6, Backup Manager can only be used by root, as it has be designed as a sys-
temwide tool.

$ backup-manager
backup-manager must be run as root.

If you want to launch it from the command line, you first have to use the root account.

$ su
Password:
backup-manager -h
/usr/sbin/backup-manager [options]

Output:
--help|-h : Print this short help message.
--verbose|-v : Print what happens on STDOUT.
--no-warnings : Disable warnings.

Single actions:
--upload|-u : Just upload the files of the day.
--burn|-b : Just burn the files of the day.
--md5check|-m : Just test the md5 sums.
--purge|-p : Just purge old archives.

Chapter 3. Using Backup Manager 32

Behaviour:
--conffile|-c file : Choose an alternate config file.
--force|-f : Force overwrite of existing archives.

Unwanted actions:
--no-upload : Disable the upload process.
--no-burn : Disable the burning process.
--no-purge : Disable the purge process.
ouranos:/home/sukria#

As you can see in the example above, using the -h switch (or --help) gives a short help
message and prints all supported command switches. We will cover in this section each of
them.

3.1.2 Options

The following switches can be used for altering Backup Manager’s behaviour.

--version

Prints on stdout the Backup Manager version installed on the system and exit.

Example:

backup-manager --version
Backup Manager 0.6

--verbose or -v

Using this switch will enabled the verbose mode. All actions are reported on stdout.

Example:

backup-manager -v
Getting lock for backup-manager 10605 with /etc/backup-manager.conf: ok
Cleaning /var/archives
Entering directory /var/archives/lost+found.
[...]

--no-warnings

When a non-critical problem occurs (an error occured but the backup process can follow)
Backup Manager will print a warning message (and will log it if the logger is enabled). If
you don’t want to see warning messages, you can append this switch on the command line.

Chapter 3. Using Backup Manager 33

--conffile or -c

Backup Manager relies on configuration files, by default, the file
/etc/backup-manager.conf is used but you can choose to run it with a different
one. This is done by using the following syntax :

backup-manager -c <FILE>

Note that Backup Manager is designed to work properly when launched in parallel mode with
different configuration files, but it will refuse to run twice at the same time with the same
configuration file. You can then safely do something like that:

backup-manager -c /etc/backup-manager/backup-nfs.conf &
backup-manager -c /etc/backup-manager/backup-homedirs.conf &
backup-manager -c /etc/backup-manager/backup-rsync-filer.conf

--force

When building an archive, Backup Manager looks if the archive already exists in the repository,
if so, a warning is sent saying that the archive exists. If you want to bypass this warning and
overwrite archives, use this switch.

--upload or -u

If you have made a configuration file that enables the uploading system, you can ask Backup
Manager to perform the uploading session instead of the whole process with this switch.

--burn or -b [<DATE>]

If you have made a configuration file that enables the burning system, you can ask Backup
Manager to perform the burning session instead of the whole process with this switch.

You can also ask Backup Manager to burn only archives of a given date with providing a
timestamp after the --burn switch.

Example:

Burning all the archives made on March, 12nd 2006:

backup-manager --bnurn 20060312

--md5check or -m

If you have made a configuration file that enables the MD5 checks on burnt media, you can ask
Backup Manager to perform the MD5 checks instead of the whole process with this switch.

Chapter 3. Using Backup Manager 34

--purge or -p

This switch will as Backup Manager to just perform the archive repository purge: removing
any depreacted archives (according to BM_ARCHIVE_TTL.

--no-upload or -p

Use this switch if you have a configuration file that enables the uploading system and want to
run Backup Manager without it.

--no-burn

Use this switch if you have a configuration file that enables the burning system and want to
run Backup Manager without it.

--no-purge or -p

Use this switch if you want to disable the purging phase. This can be useful if you like to
implement another kind of purging system, with a post-command hook for instance.

3.2 CRON integration

There is a global idea behind Backup Manager’s design: “You won’t do it if you have to think
about it”. This is specifically true for backup concerns and it is strongly adviced to automate
your backup process with a tasks scheduler like CRON.

Setting up a Backup Manager job in cron is pretty easy, you just have to write a shell script un-
der the appropriate CRON sub-directory that will call backup-manager. The best sub-directory
to choose is /etc/cron.daily as Backup Manager handles daily archives.

Here is an example of a CRON script:

cat > /etc/cron.daily/backup-manager
#!/bin/sh

/usr/sbin/backup-manager

If you want to be notified by mail if a problem occurs during the backup session, just make
sure you receive mails coming from CRON. When the verbose mode is off, only warnings and
errors are printed on stdout, so you will receive a mail from the Backup Manager CRON job
only in case of unexpected effects.

On the other hand, if you like to receive daily mails from the job, even if everything went well,
just append the –verbose switch like that :

Chapter 3. Using Backup Manager 35

cat > /etc/cron.daily/backup-manager
#!/bin/sh

/usr/sbin/backup-manager --verbose

	About this manual
	Scope
	Version
	Authors

	Configuration files
	Repository and Archives
	The Repository
	Encryption
	Archives

	Backup Methods
	Tarballs
	Incremental tarballs
	MySQL databases
	Subversion repositories
	Generic methods

	Upload Methods
	Description
	Global configuration keys
	SSH uploads
	Encrypted SSH uploads
	FTP uploads
	Amazon S3 uploads
	RSYNC uploads

	Exports
	Burning CDR/DVD media

	Advanced features
	Logging to syslog
	Writing external hooks

	Using Backup Manager
	Command line
	Restrictions
	Options

	CRON integration

